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Abstract

Consider the Klein quadric Q+(5, q) in PG(5, q). A set of points of Q+(5, q) is
called a quadratic set if it intersects each plane π of Q+(5, q) in a possibly reducible
conic of π, i.e. in a singleton, a line, an irreducible conic, a pencil of two lines or
the whole of π. A quadratic set is called good if at most two of these possibilities
occur as π ranges over all planes of Q+(5, q). Good quadratic sets can come into 15
possible types and in [3] we already discussed 11 of these types. The present paper
is devoted to the remaining types. We will describe several infinite families of good
quadratic sets of Q+(5, q). This will show that there are examples of quadratic sets
for each of these four types and for each value of the prime power q.
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1 Introduction

This paper is a sequel to the paper [3] in which we classified (so-called) good quadratic
sets of the Klein quadric Q+(5, q). Such quadratic sets fall into 15 types and in [3] we were
able to deal in a geometric and combinatorial way with 11 of these 15 types, obtaining
nonexistence results or complete classifications for 10 of the types and indicating how the
quadratics sets of one of the types are equivalent with so-called ovoids of Q+(5, q).

In the present paper, we discuss the four remaining types. We do not obtain complete
classification results here, but we are able to show that there are examples for any of these
types and this for all possible values of the prime power q. The techniques used here differ
from those of [3]. The main aim here is to construct several infinite families of quadratic
sets in an entirely algebraic way.

A quadratic set of a nonsingular quadric Q of Witt index at least 3 is defined as
a set of points meeting each subspace π of Q is a possibly reducible quadric of π. The
classical examples of such sets are the intersections of Q with other quadrics of the ambient
projective space of Q. This notion has some similarity with the notion of a quadratic set
of a projective space defined in [2] (see also [14, Chapter 5]) as a set of points having
similar structural properties as quadrics.
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A set S of points of the Klein quadric Q+(5, q) is thus a quadratic set if and only if
every plane π of Q+(5, q) meets S in either a singleton, a line, a conic, a pencil or the
whole of π. Here and in the sequel of this paper, we use the words “conic” and “pencil”
as abbreviations for respectively “irreducible conic” and “pencil of two lines”. We say
that the intersection π∩S has type (S), (L), (C), (P) or (W) depending on whether π∩S
is a singleton, a line, a conic, a pencil or the whole of π. If all plane intersections have
the same type (X), then we say that the quadratic set S has type (X). If there are exactly
two possible types for the plane intersections, say (X) and (Y), then the quadratic set is
said to be of type (XY). A quadratic set S of Q+(5, q) is called good if there are at most
two possible types for the plane intersections. There are thus 15 possible types for a good
quadratic set: (S), (L), (C), (P), (W), (SL), (SC), (SP), (SW), (LC), (LP), (LW), (CP),
(CW), (PW).

In [3] we gave a computer assisted classification of all good quadratic sets of the
(smallest) Klein quadric Q+(5, 2), showing that there are up to isomorphism 27 of them.
In [3], we also obtained a complete classification of all good quadratic sets of Q+(5, q)
for which the type is equal to either (L), (P), (W), (SL), (SP), (SW), (LP), (LW), (CW)
or (PW). We also noted there that the good quadratic sets of type (S) are precisely the
images under the Klein correspondence of the line spreads of the projective space PG(3, q).
The cases of good quadratic sets of types (C), (SC), (LC) and (CP) were not discussed in
[3]. These form the content of the present paper. In fact, one of these cases was already
discussed in the literature.

In [7], Glynn described for every prime power q a line set L in PG(3, q) that satisfies
the following two properties:

• for every plane π of PG(3, q), the set of lines of L contained in π is a conic envelope
or a dual conic of π (i.e., a conic in the dual plane of π);

• for every point p, the set of lines of L containing p is a conic in the quotient projective
space PG(3, q)x ∼= PG(2, q) of PG(3, q) defined by the point x.

This set L was obtained as orbit of a line under a Singer group of PG(3, q) and its image
under the Klein correspondence gives rise to a quadratic set of type (C).

In Section 5 of the present paper, we describe six families of quadratic sets of type
(LC) of Q+(5, q), three for q even and three for q odd. All the quadratic sets of type (LC)
are examples of so-called (q + 1)-ovoids, where an m-ovoid of Q+(5, q) is defined as a set
of points meeting each plane of Q+(5, q) in exactly m points. m-ovoids of polar spaces
have been widely investigated, see e.g. [1, 13]. We are not aware that the (q + 1)-ovoids
that arise from our quadratic sets of type (LC) have already occurred in the literature.

In Section 4, we also describe two families of quadratic sets of type (SC) of Q+(5, q)
(one for q even and one for q odd) and in Section 6 we describe three families of good
quadratic sets of type (CP) of Q+(5, q) (two for q even and one for q odd).

The proofs that we give for each family provide information on which planes of the
Klein quadric have a particular type. This information can be useful to establish non-
isomorphism between two quadratic sets of the same type (such as two quadratic sets
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occurring in the present paper). For each of the families, we will collect some of this
information in a proposition at the end of the discussion.

The classical examples of quadratic sets of Q+(5, q) are obtained by intersecting
Q+(5, q) with quadrics Q of PG(5, q). It is therefore no surprise that all families of
good quadratic sets we describe later are obtained in this way. Good quadratic sets of the
types considered here are quite rare objects and probably hard to find. The only way we
were able to find these examples was via prior computer computations for the smallest
values of the prime power q which suggested some candidates for the quadratic forms that
describe the quadrics Q. The number of such quadratic forms is huge and only a tiny
fraction of them seem to work. Several of the described families were ultimately found
via a trial-and-error method.

To verify that the described families of point sets are indeed good quadratic sets
of the given types, a lot of computations are necessary. We have verified each of these
computations with the aid of the Computer Algebra System SageMath [11]. The computer
code we used can be found in [4]. Although the proofs follow a unified approach, also some
ad hoc arguments are necessary for several families to obtain the desired conclusions.

Good quadratic sets are not only rare but also very special in the sense that for all
plane intersections (and there are usually many of these), we always have the same type
or the same two types that occur. It might therefore not be surprising that such point
sets will turn out to be useful in the future for other interesting geometrical problems.
This is in fact already the case for two of such problems.

The quadratic sets we construct in Section 5.6 are used in [6] to answer an open
problem from the paper [10]. The authors of [10] studied line sets in PG(3, q), q odd,
that satisfy a list of axioms. Their main theorem states that for q ≥ 7 each such line
set is either the set of secant lines with respect to a hyperbolic quadric or belongs to
a hypothetical family of line sets. The family of quadratic sets we describe in Section
5.6 are explicitly used in [6] to provide examples of line sets in the hypothetical family,
hereby showing that this family is nonempty for every odd prime q. In fact, the research
on quadratic sets in [3] and the current paper was motivated by an observation (to be
found in [6]) that the line sets in the hypothetical family are related to quadratic sets of
Q+(5, q). We would also like to mention that the quadratic sets constructed in Section
5.1 of the present paper also play some role in [6].

The family of quadratic sets constructed in Section 4.2 can be used to construct an
infinite family of hyperovals of Q+(5, q) (see [5]), the first infinite family of hyperovals in
polar spaces of rank at least three with more than three points per line. The smallest
example in this family provides a computer-free description of a hyperoval of Q+(5, 4)
that was already discovered in [9] by means of a backtrack search. One of the open
problems of [9] precisely asked for a computer-free description of this hyperoval. A further
investigation of these hyperovals is currently under way by the author.

Additional applications might be possible. For instance, the various examples of
quadratic sets of type (LC) constructed in Section 5 might be helpful to construct ex-
amples of (q + 1)-ovoids in the elliptic quadric Q−(7, q). In this context, it is worthwhile
to mention Theorem 13 in [1] which implies that the smallest value of m > 0 for which
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m-ovoids of Q−(7, q) can exist is m = q + 1.

2 The Klein correspondence

Let V be a 4-dimensional vector space over the finite field Fq of order q. Associated with
V , there is the 3-dimensional projective space PG(3, q) = PG(V ). The second exterior
power

∧2 V of V is a 6-dimensional vector space over Fq whose associated projective
space PG(

∧2 V ) will also be denoted by PG(5, q). In this section, we will describe a
certain connection between the lines of PG(3, q) and certain points of PG(5, q). For more
background information on this correspondence, we refer to [8] and [12].

Let L be a line of PG(V ). If 〈v̄1〉 and 〈v̄2〉 are two distinct points of L, then we
denote by κ(L) the point 〈v̄1 ∧ v̄2〉 of PG(

∧2 V ) = PG(5, q). We note here that the point
〈v̄1 ∧ v̄2〉 does not depend on the chosen points 〈v̄1〉 and 〈v̄2〉 on the line L. The map κ is
thus well-defined. In fact, κ defines a bijection between the set of lines of PG(3, q) and a
certain nonsingular hyperbolic quadric Q+(5, q) in PG(5, q) = PG(

∧2 V ) which is called
the Klein quadric. The bijective correspondence between the lines of PG(3, q) and the
points of Q+(5, q) is called the Klein correspondence.

If L is a set of lines of PG(3, q), then we define κ(L) := {κ(L) |L ∈ L}. If p is a point
of PG(3, q), then we denote by Lp the set of lines of PG(3, q) through p, and if π is a
plane of PG(3, q), then we denote by Lπ the set of lines of PG(3, q) contained in π. The
following properties are well-known.

Lemma 2.1. • For every point p of PG(3, q), κ(Lp) is a plane of Q+(5, q).

• For every plane π of PG(3, q), κ(Lπ) is a plane of Q+(5, q).

• If α is a plane of Q+(5, q), then either α = κ(Lp) for some point p of PG(3, q) or
α = κ(Lπ) for some plane π of PG(3, q).

The planes of Q+(5, q) of the form κ(Lp) for points p of PG(3, q) are called Latin planes,
and the planes of Q+(5, q) of the form κ(Lπ) for planes π of PG(3, q) are called Greek
planes. The following holds.

Lemma 2.2. (1) Two distinct Latin planes intersect in a singleton.

(2) Two distinct Greek planes intersect in a singleton.

(3) A Latin and a Greek plane are either disjoint or meet in a line.

(4) Every line of Q+(5, q) is contained in precisely two planes of Q+(5, q), a Latin and
a Greek plane.

(5) Every point of Q+(5, q) is contained in precisely 2(q+ 1) planes of Q+(5, q). Among
these planes, there are q + 1 Latin planes and q + 1 Greek planes.

4



Lemma 2.3. (1) The Latin planes are precisely the planes of PG(
∧2 V ) generated by

three points 〈v̄1∧ v̄2〉, 〈v̄1∧ v̄3〉 and 〈v̄1∧ v̄4〉, where (v̄1, v̄2, v̄3, v̄4) is an ordered basis
of V . The Latin plane is then equal to κ(Lp) where p = 〈v̄1〉.

(2) The Greek planes are precisely the planes of PG(
∧2 V ) generated by the points 〈v̄1∧

v̄2〉, 〈v̄1 ∧ v̄3〉 and 〈v̄2 ∧ v̄3〉 where v̄1, v̄2, v̄3 is a linearly independent collection of
vectors of V . The Greek plane is then equal to κ(Lπ) where π is the plane of PG(3, q)
generated by 〈v̄1〉, 〈v̄2〉 and 〈v̄3〉.

Suppose now that (ē1, ē2, ē3, ē4) is an ordered basis of V and put ēij := ēi ∧ ēj ∈
∧2 V

for all i, j ∈ {1, 2, 3, 4}. Then (ē12, ē34, ē13, ē42, ē14, ē23) is an ordered basis of
∧2 V . If

L is a line of PG(3, q), then the coordinates of κ(L) with respect to this basis are
called the Plücker coordinates of L. The coordinates of a point of PG(5, q) with re-
spect (ē12, ē34, ē13, ē42, ē14, ē23) will be denoted by (p12, p34, p13, p42, p14, p23). The point
(p12, p34, p13, p42, p14, p23) belongs to Q+(5, q) if and only if p12p34 + p13p42 + p14p23 = 0.

If p is a point of PG(3, q) with coordinates (X1, X2, X3, X4) with respect to (ē1, ē2, ē3, ē4),
then we denote by L(X1, X2, X3, X4) the Latin plane κ(Lp). If π is a plane of PG(3, q)
with equation a1X1 + a2X2 + a3X3 + a4X4 = 0 where (a1, a2, a3, a4) ∈ F4

q \ {(0, 0, 0, 0)},
then we denote by G(a1, a2, a3, a4) the Greek plane κ(Lπ).

The Latin planes are thus precisely the planes L(1, x, y, z), L(0, 1, x, y), L(0, 0, 1, x)
and L(0, 0, 0, 1) with x, y, z ∈ Fq. The Greek planes are precisely the planes G(1, x, y, z),
G(0, 1, x, y), G(0, 0, 1, x) and G(0, 0, 0, 1) with x, y, z ∈ Fq. If π is one of these Latin or
Greek planes, then by Lemma 2.3 the points of π are the points pπ(α, β, γ) := 〈v̄π(α, β, γ)〉
with (α, β, γ) ∈ F3

q \ {(0, 0, 0)}. Here, v̄π(α, β, γ) = α · v̄1 ∧ w̄1 + β · v̄2 ∧ w̄2 + γ · v̄3 ∧ w̄3,
with v̄1, w̄1, v̄2, w̄2, v̄3 and w̄3 the vectors of V as mentioned in the following table.

L(1, x, y, z) L(0, 1, x, y) L(0, 0, 1, x) L(0, 0, 0, 1)

v̄1 ē1 + xē2 + yē3 + zē4 ē2 + xē3 + yē4 ē3 + xē4 ē4
w̄1 ē2 ē1 ē1 ē1
v̄2 ē1 + xē2 + yē3 + zē4 ē2 + xē3 + yē4 ē3 + xē4 ē4
w̄2 ē3 ē3 ē2 ē2
v̄3 ē1 + xē2 + yē3 + zē4 ē2 + xē3 + yē4 ē3 + xē4 ē4
w̄3 ē4 ē4 ē4 ē3

G(1, x, y, z) G(0, 1, x, y) G(0, 0, 1, x) G(0, 0, 0, 1)

v̄1 −xē1 + ē2 ē1 ē1 ē1
w̄1 −yē1 + ē3 −xē2 + ē3 ē2 ē2
v̄2 −xē1 + ē2 ē1 ē1 ē1
w̄2 −zē1 + ē4 −yē2 + ē4 −xē3 + ē4 ē3
v̄3 −yē1 + ē3 −xē2 + ē3 ē2 ē2
w̄3 −zē1 + ē4 −yē2 + ē4 −xē3 + ē4 ē3

We thus obtain the following points pπ(α, β, γ).
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π pπ(α, β, γ)

L(1, x, y, z) (α,−zβ + yγ, β, zα− xγ, γ,−yα + xβ)
L(0, 1, x, y) (−α,−yβ + xγ,−xα,−γ,−yα, β)
L(0, 0, 1, x) (0, γ,−α, xβ,−xα,−β)
L(0, 0, 0, 1) (0,−γ, 0, β,−α, 0)
G(1, x, y, z) (yα + zβ, γ,−xα + zγ,−β,−xβ − yγ, α)
G(0, 1, x, y) (−xα− yβ, γ, α, xγ, β, yγ)
G(0, 0, 1, x) (α, 0,−xβ,−γ, β,−xγ)
G(0, 0, 0, 1) (α, 0, β, 0, 0, γ)

3 On the intersection of Q+(5, q) with quadrics

Recall that Q+(5, q) is the Klein quadric of PG(5, q) having equation X1X2 + X3X4 +
X5X6 = 0 with respect to the ordered basis (ē12, ē34, ē13, ē42, ē14, ē23) of

∧2 V . Let Q be
another quadric of PG(5, q) described by the quadratic form Q :

∧2 V → Fq.
Let π be a plane of Q+(5, q). Then we define

Qπ(α, β, γ) := Q(v̄π(α, β, γ)),

where v̄π(α, β, γ) is as in Section 2. Put

Qπ(α, β, γ) = a11α
2 + a22β

2 + a33γ
2 + a12αβ + a13αγ + a23βγ,

where a11, a22, a33, a12, a13, a23 ∈ Fq.
If q is odd, then we define

∆π :=

∣∣∣∣∣∣
a11

a12
2

a13
2

a12
2

a22
a23
2

a13
2

a23
2

a33

∣∣∣∣∣∣ .
If ∆π 6= 0, then π ∩ Q is a conic of π. If ∆π = 0, then π ∩ Q is either a singleton, a line,
a pencil or the whole of π.

If q is even, then we define kπ = (a23, a13, a12) and Dπ := Qπ(a23, a13, a12). If Dπ 6= 0,
then π ∩ Q is a conic of π with kernel equal to kπ. If Dπ = 0, then π ∩ Q is either a
singleton, a line, a pencil or the whole of π. The following can also be said in case Dπ = 0.

Lemma 3.1. (1) If (a23, a13, a12) = (0, 0, 0), then Dπ = 0 and π ∩Q is a line.

(2) If Dπ = 0 and aij 6= 0 for a certain (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, then Qπ(α, β, γ) =
aii(α

′)2 + aijα
′β′+ ajj(β

′)2, where [α′ β′ γ′]T = A · [αβ γ]T for a certain nonsingular
(3× 3)-matrix A over Fq.

Proof. (1) If (a23, a13, a12) = (0, 0, 0), then Dπ = Qπ(0, 0, 0) = 0, Moreover, Qπ(α, β, γ) =
a11α

2 + a22β
2 + a33γ

2 = (
√
a11α+

√
a22β+

√
a33γ)2 and so π∩Q is the line with equation√

a11α +
√
a22β +

√
a33γ = 0.
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(2) Suppose Dπ = a11a
2
23 + a22a

2
13 + a33a

2
12 + a12a13a23 = 0 and aij 6= 0 for a certain

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}. Without loss of generality, we may suppose that a12 6= 0. If
we put α = α′ + a23γ

′, β = β′ + a13γ
′ and γ = a12γ

′, then we compute that Qπ(α, β, γ) =
a11(α

′)2 + a12α
′β′ + a22(β

′)2. So, the claim of the lemma holds with A the inverse of the
matrix  1 0 a23

0 1 a13
0 0 a12

 .

Lemma 3.1 can be useful to determine which type of quadric a certain intersection π ∩Q
is. Also information about the number of roots of quadratic equations can be useful.
Still under the assumption that q is even, we put q = 2h with h ∈ N∗ and we define
Tr(k) := k + k2 + k4 + · · · + k2

h−1
for every k ∈ Fq. We then have that Tr(k2) = Tr(k)

and Tr(k1 + k2) = Tr(k1) + Tr(k2) for all k, k1, k2 ∈ Fq. We also have Tr(k) ∈ {0, 1} for
every k ∈ Fq with Tr(k) = 0 if and only if the equation X2 + X + k = 0 has a root r in
Fq (the other root is then r + 1). Note that if k1, k2, k3 ∈ Fq with k1 6= 0 6= k2, then the
quadratic equation k1X

2 + k2X + k3 = 0 is equivalent with (k1X
k2

)2 + (k1X
k2

) + k1k3
k22

= 0 and

so there is a solution in Fq if and only if Tr(k1k3
k22

) = 0.

4 Quadratic sets of type (SC)

4.1 A first family of quadratic sets of type (SC)

Let Q be the quadric of PG(5, q), q odd, defined by the quadratic form

X2
1 + a33a44X

2
2 + a33X

2
3 + a44X

2
4 ,

where a33, a44 ∈ F∗q such that −a33 and −a44 are non-squares in Fq.
Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (1 + a44z

2)α2 + (a33 + a33a44z
2)β2 +

(a33a44y
2 +a44x

2)γ2− (2a44xz)αγ− (2a33a44yz)βγ and ∆π = a33a44(1+a44z
2)(x2 +a33y

2).
If (x, y) 6= (0, 0), then ∆π 6= 0 and so π∩Q is a conic. If (x, y) = (0, 0), then Qπ(α, β, γ) =
(1 +a44z

2)(α2 +a33β
2) and so π∩Q is the singleton consisting of the point of π for which

(α, β, γ) = (0, 0, 1).
Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (1+a33x

2)α2+(a33a44y
2)β2+(a33a44x

2+
a44)γ

2− (2a33a44xy)βγ and ∆π = a33a
2
44y

2(1 +a33x
2). If y 6= 0, then ∆π 6= 0 and so π∩Q

is a conic. If y = 0, then Qπ(α, β, γ) = (1+a33x
2)(α2+a44γ

2) and so π∩Q is the singleton
consisting of the point of π for which (α, β, γ) = (0, 1, 0).

Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = a33α
2 + (a44x

2)β2 + (a33a44)γ
2 and

∆π = a233a
2
44x

2. If x 6= 0, then ∆π 6= 0 and so π ∩ Q is a conic. If x = 0, then
Qπ(α, β, γ) = a33(α

2 + a44γ
2) and so π ∩ Q is the singleton consisting of the point of π

for which (α, β, γ) = (0, 1, 0).
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Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a44(β
2 + a33γ

2) and so π ∩ Q is the
singleton consisting of the point of π for which (α, β, γ) = (1, 0, 0).

Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (y2 +a33x
2)α2 +(z2 +a44)β

2 +a33(a44 +
z2)γ2+(2yz)αβ−(2a33xz)αγ and ∆π = a33a44(y

2+a33x
2)(z2+a44). If (x, y) 6= (0, 0), then

∆π 6= 0 and so π∩Q is a conic. If (x, y) = (0, 0), then Qπ(α, β, γ) = (z2 +a44)(β
2 +a33γ

2)
and so π ∩Q is the singleton consisting of the point of π for which (α, β, γ) = (1, 0, 0).

Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = (x2 + a33)α
2 + y2β2 + a44(a33 + x2)γ2 +

(2xy)αβ and ∆π = a33a44y
2(a33 + x2). If y 6= 0, then ∆π 6= 0 and so π ∩ Q is a conic. If

y = 0, then Qπ(α, β, γ) = (x2 + a33)(α
2 + a44γ

2) and so π ∩ Q is the singleton consisting
of the point of π for which (α, β, γ) = (0, 1, 0).

Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = α2 + (a33x
2)β2 + a44γ

2 and ∆π =
a33a44x

2. If x 6= 0, then ∆π 6= 0 and so π∩Q is a conic. If x = 0, then Qπ(α, β, γ) = α2 +
a44γ

2 and so π∩Q is the singleton consisting of the point of π for which (α, β, γ) = (0, 1, 0).
If π = G(0, 0, 0, 1), then Qπ(α, β, γ) = α2 + a33β

2 and so π ∩ Q is the singleton
consisting of the point of π for which (α, β, γ) = (0, 0, 1).

Combining all the above information, we find:

Proposition 4.1. The set S := Q ∩ Q+(5, q) is a quadratic set of type (SC). There are
4(q + 1) planes of Q+(5, q) that meet S in a singleton and 2(q + 1)2(q − 1) planes of

Q+(5, q) that meet S in a conic. As a consequence, |S| = 1
2(q+1)

·
(

4(q + 1) · 1 + 2(q +

1)2(q − 1) · (q + 1)
)

= q3 + q2 − q + 1.

4.2 A second family of quadratic sets of type (SC)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

X2
2 +a33X

2
3 +a44X

2
4 +a55X

2
5 +a66X

2
6 +a35X3X5+a36X3X6+a45X4X5+a46X4X6+a56X5X6,

where a33, a44, a55, a66, a35, a36, a45, a46, a56 ∈ F∗q satisfy

a44 =
a33a

2
45

a235
, a46 =

a36a45
a35

, a55 =
a33a45
a36

, a56 =
a35a36
a33

, a66 =
a33a36a45
a235

, Tr(
a233a45
a235a36

) = 1.

We refer to the last condition as the trace condition.
Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = 1

a235
(a33a36a45y

2+a35a36a45yz+a33a
2
45z

2)

α2+ 1
a235

(a33a36a45x
2+a235a36x+a235z

2+a33a
2
35)β

2+ 1
a235a36

(a33a36a
2
45x

2+a235a36a45x+a235a36y
2+

a33a
2
35a45)γ

2 + 1
a35

(a36a45xz+ a35a36y)αβ + 1
a33a35

(a33a36a45xy+ a235a36y+ a33a35a45z)αγ +
1

a33a35
(a33a36a45x

2 + a235a36x+ a33a
2
35)βγ and Dπ = 1

a233
(a33a36y

2 + a35a36yz+ a33a45z
2)2. If

(y, z) 6= (0, 0), then the trace condition implies that Dπ 6= 0 and π ∩ Q is then a conic.
If (y, z) = (0, 0), then Qπ(α, β, γ) = 1

a33a235a36
(a33a36a45x

2 + a235a36x + a33a
2
35)(a33a36β

2 +

a35a36βγ + a33a45γ
2) and the trace condition then implies that π ∩ Q is the singleton

consisting of the unique point of π with (α, β, γ) = (1, 0, 0).
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Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = 1
a36

(a33a36x
2 + a35a36xy+ a33a45y

2)α2 +
1
a235

(a235y
2 + a33a36a45)β

2 + 1
a235

(a235x
2 + a33a

2
45)γ

2 + 1
a33

(a33a36x + a35a36y)αβ + a45yαγ +
1
a35
a36a45βγ and Dπ = 1

a233
(a33a36x

2 + a35a36xy + a33a45y
2)2. If (x, y) 6= (0, 0), then the

trace condition implies that Dπ 6= 0 and π ∩ Q is then a conic. If (x, y) = (0, 0), then
Qπ(α, β, γ) = a45

a235
(a33a36β

2 + a35a36βγ + a33a45γ
2) and the trace condition then implies

that π ∩Q is the singleton consisting of the unique point of π with (α, β, γ) = (1, 0, 0).
Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = 1

a36
(a33a45x

2 + a35a36x + a33a36)α
2 +

1
a235

(a33a
2
45x

2 + a35a36a45x + a33a36a45)β
2 + γ2 + 1

a33
(a33a45x

2 + a35a36x + a33a36)αβ and

Dπ = 1
a233

(a33a45x
2 + a35a36x + a33a36)

2 6= 0 by the trace condition. So, π ∩ Q is then

always a conic.

Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a33a45
a36

α2 +
a33a245
a235

β2 + γ2 + a45αβ and

Dπ = a245 6= 0. So, π ∩Q is then a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = 1

a235
(a33a

2
35x

2 + a235a36x+ a33a36a45)α
2 +

1
a235a36

(a33a
2
35a45x

2+a235a36a45x+a33a36a
2
45)β

2+ 1
a36

(a33a45y
2+a35a36yz+a33a36z

2+a36)γ
2+

1
a33a35

(a33a
2
35x

2 + a235a36x+ a33a36a45)αβ + 1
a33

(a33a35xy+ a35a36y+ a33a36z)αγ + (a35xz +

a45y)βγ and Dπ = 1
a233a

2
35

(a33a
2
35x

2 + a235a36x+ a33a36a45)
2 6= 0 by the trace condition. So,

π ∩Q is then always a conic.
Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = a33α

2 + a33a45
a36

β2 + 1
a235

(a33a
2
45x

2 +

a35a36a45xy + a33a36a45y
2 + a235)γ

2 + a35αβ + a36yαγ + 1
a33

(a33a45x + a35a36y)βγ and

Dπ = a235 6= 0. So, π ∩Q is then always a conic.
Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = 1

a33a235a36
(a33a36x

2+a35a36x+a33a45)(a33

a235β
2 + a235a36βγ + a33a36a45γ

2) and by the trace condition π ∩ Q is then the singleton
consisting of the unique point of π with (α, β, γ) = (1, 0, 0).

Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = 1
a235

(a33a
2
35β

2 + a235a36βγ + a33a36a45γ
2)

and by the trace condition π ∩Q is then the singleton consisting of the unique point of π
with (α, β, γ) = (1, 0, 0).

Combining all the above information, we find:

Proposition 4.2. The set S := Q ∩ Q+(5, q) is a quadratic set of type (SC). There are
2(q + 1) planes of Q+(5, q) that meet S in a singleton and 2q2(q + 1) planes of Q+(5, q)

that meet S in a conic. As a consequence, |S| = 1
2(q+1)

·
(

2(q+1) ·1+2q2(q+1) ·(q+1)
)

=

q3 + q2 + 1.

5 Quadratic sets of type (LC)

In this section, we describe six families of quadratic sets of type (LC) of Q+(5, q), three
for q even and three for q odd. As mentioned before, all the constructed quadratic sets
of type (LC) are also examples of (q + 1)-ovoids.
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5.1 A first family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

X2X5 + a26X2X6 + a33X
2
3 + a44X

2
4 + a66X

2
6 ,

where a26, a33, a44, a66 ∈ F∗q with Tr(
a33a44a226

a266
) = 1.

Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (a66y
2 + a44z

2)α2 + (a33 + a26xz +
a66x

2)β2 + (y + a44x
2)γ2 + (a26yz)αβ + (a26y

2)αγ + (a26xy + z)βγ and Dπ = a33a
2
26y

4 +

a66y
2z2 + a44z

4. As Tr(
a33a44a226

a266
) = 1, we have Dπ 6= 0 if and only if (y, z) 6= (0, 0). So, if

(y, z) 6= (0, 0), then π∩Q is a conic. If (y, z) = (0, 0), then Qπ(α, β, γ) = (a33+a66x
2)β2+

(a44x
2)γ2 and so π ∩Q is a line.

Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (a33x
2)α2 + (a66 + a26y)β2 + a44γ

2 +

y2αβ + xyαγ + a26xβγ and Dπ = a33a
2
26x

4 + a66x
2y2 + a44y

4. As Tr(
a33a44a226

a266
) = 1, we

have Dπ 6= 0 if and only if (x, y) 6= (0, 0). So, if (x, y) 6= (0, 0), then π ∩ Q is a conic. If
(x, y) = (0, 0), then Qπ(α, β, γ) = a66β

2 + a44γ
2 and so π ∩Q is then a line.

Suppose π = L(0, 0, 1, x). Then one computes that Qπ(α, β, γ) = a33α
2 + (a44x

2 +

a66)β
2 + xαγ + a26βγ and Dπ = a44x

4 + a66x
2 + a33a

2
26. As Tr(

a33a44a226
a266

) = 1, we have

Dπ 6= 0 and so π ∩Q is a conic.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a44β

2 + αγ and so π ∩Q is a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (a66+a33x

2)α2+a44β
2+(y+a33z

2)γ2+

a26αγ + xβγ and Dπ = a33x
4 + a66x

2 + a44a
2
26. As Tr(

a33a44a226
a266

) = 1, we have Dπ 6= 0 and

so π ∩Q is a conic.
Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = a33α

2 + (a44x
2 + a66y

2 + a26y)γ2 + βγ
and Dπ = a33 6= 0, showing that π ∩Q is a conic.

Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = (a33x
2)β2 +(a44 +a66x

2)γ2 and so π∩Q
is a line.

Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = a33β
2 + a66γ

2 and so π ∩Q is a line.

Combining all the above information, we find:

Proposition 5.1. The set S := Q ∩ Q+(5, q) is a quadratic set of type (LC) having
(q + 1)(q2 + 1) points. There are 2(q + 1) planes of Q+(5, q) that meet S in a line and
2q2(q + 1) planes of Q+(5, q) that meet S in a conic.

5.2 A second family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

a11X
2
1 + a22X

2
2 +X3X5,

where a11, a22 ∈ F∗q.
Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = a11α

2 + a22z
2β2 + a22y

2γ2 + βγ and
Dπ = a11 6= 0, showing that π ∩Q is a conic.
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Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (a11+xy)α2+a22y
2β2+a22x

2γ2, showing
that π ∩Q is a line.

Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = xα2 + a22γ
2, showing that π ∩ Q is a

line.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a22γ

2 and so π ∩Q is a line.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = a11y

2α2 + a11z
2β2 + (a22 + yz)γ2 +

x2αβ + xyαγ + xzβγ and Dπ = a22x
4. So, if x 6= 0, then π ∩Q is a conic. If x = 0, then

Qπ(α, β, γ) = a11y
2α2 + a11z

2β2 + (a22 + yz)γ2 and so π ∩Q is then a line.
If π = G(0, 1, x, y), thenQπ(α, β, γ) = a11x

2α2+a11y
2β2+a22γ

2+αβ andDπ = a22 6= 0,
showing that π ∩Q is a conic.

If π = G(0, 0, 1, x), then Qπ(α, β, γ) = a11α
2 + xβ2 and so π ∩Q is a line.

If π = G(0, 0, 0, 1), then Qπ(α, β, γ) = a11α
2 and so π ∩Q is a line.

Combining all the above information, we find:

Proposition 5.2. The set S := Q ∩ Q+(5, q) is a quadratic set of type (LC) having
(q + 1)(q2 + 1) points. There are 2(q2 + q + 1) planes of Q+(5, q) that meet S in a line
and 2q3 planes of Q+(5, q) that meet S in a conic.

5.3 A third family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

X1X6 + a25X2X5 + a33X
2
3 + a44X

2
4 + a56X5X6,

where a25, a33, a44, a56 ∈ F∗q with Tr(a25
a256

) = Tr(
a33a44a256

a225
) = 1.

Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (y+a44z
2)α2+a33β

2+(a44x
2+a25y)γ2+

xαβ+a56yαγ+(a25z+a56x)βγ and Dπ = a44(a25z
2 +a56xz+x2)2 +a33a

2
56y

2 +(a25y)(x2 +

a56xz + a25z
2). As Tr(a25

a256
) = Tr(

a33a44a256
a225

) = 1, we have Dπ 6= 0 if and only if (x, y, z) 6=
(0, 0, 0). So, if (x, y, z) 6= (0, 0, 0), then π ∩ Q is a conic. If (x, y, z) = (0, 0, 0), then
Qπ(α, β, γ) = a33β

2 and π ∩Q is a line.
Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = a33x

2α2 +a44γ
2 +(1+a56y+a25y

2)αβ+
a25xyαγ and Dπ = a44(1 + a56y + a25y

2)2 6= 0. So, π ∩Q is a conic.
Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = a33α

2+a44x
2β2+(a56x)αβ+a25xαγ = 0

and Dπ = a44a
2
25x

4. If x 6= 0, then Dπ 6= 0 and so π ∩ Q is a conic. If x = 0, then
Qπ(α, β, γ) = a33α

2 and so π ∩Q is a line.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a44β

2 + a25αγ and so π ∩Q is a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (y+a33x

2)α2+a44β
2+(a25y+a33z

2)γ2+
(z+a56x)αβ+a56yαγ+(a25x)βγ and Dπ = a33(z

2+a56xz+a25x
2)2+a44a

2
56y

2+a25y(a25x
2+

z2 + a56xz). As Tr(a25
a256

) = Tr(
a33a44a256

a225
) = 1, we have Dπ = 0 if and only if (x, y, z) =

(0, 0, 0). So, if (x, y, z) 6= (0, 0, 0), then π ∩ Q is a conic. If (x, y, z) = (0, 0, 0), then
Qπ(α, β, γ) = a44β

2 and so π ∩Q is a line.
Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = a33α

2 + a44x
2γ2 + xyαγ + (y2 + a56y +

a25)βγ and Dπ = a33(y
2 + a56y + a25)

2 6= 0 and so π ∩Q is a conic.
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Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = (a33x
2)β2 + a44γ

2 + xαγ + a56xβγ
and Dπ = a33x

4. So, if x 6= 0, then Dπ 6= 0 and π ∩ Q is a conic. If x = 0, then
Qπ(α, β, γ) = a44γ

2 and so π ∩Q is a line.
Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = a33β

2 + αγ and so π ∩Q is a conic.

Combining all the above information, we find:

Proposition 5.3. The set S := Q∩Q+(5, q) is a quadratic set of type (LC) having (q +
1)(q2+1) points. There are 4 planes of Q+(5, q) that meet S in a line and 2(q3+q2+q−1)
planes of Q+(5, q) that meet S in a conic.

5.4 A fourth family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q odd, defined by the quadratic form

X2
1 +

µ2

4
X2

2 + µX3X4 − µX5X6,

where µ ∈ F∗q.
Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (α+ µz

2
β+ µy

2
γ)2− (µ2yz+ 2µx)βγ. So,

if µ2yz + 2µx = 0, then π ∩Q is a line and if µ2yz + 2µx 6= 0, then π ∩Q is a conic.
Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (α + µy

2
β + µx

2
γ)2 − µ2xyβγ. So, if

xy = 0, then π ∩Q is a line and if xy 6= 0, then π ∩Q is a conic.
Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = µ2γ2

4
− (2µx)αβ. So, if x = 0 then π∩Q

is a line and if x 6= 0 then π ∩Q is a conic.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = µ2γ2

4
and so π ∩Q is a line.

Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (yα− zβ + µγ
2

)2 + 2(2yz + µx)αβ. So,
if 2yz + µx = 0, then π ∩Q is a line and if 2yz + µx 6= 0, then π ∩Q is a conic.

Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = (xα− yβ+ µγ
2

)2 + 4xyαβ. So, if xy = 0
then π ∩Q is a line and if xy 6= 0 then π ∩Q is a conic.

Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = α2 + 2µxβγ. So, if x = 0 then π ∩Q is
a line and if x 6= 0, then π ∩Q is a conic.

Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = α2 and π ∩Q is a line.

Combining all the above information, we find:

Proposition 5.4. The set S := Q ∩ Q+(5, q) is a quadratic set of type (LC) having
(q + 1)(q2 + 1) points. There are 2(q + 1)2 planes of Q+(5, q) that meet S in a line and
2q(q2 − 1) planes of Q+(5, q) that meet S in a conic.

5.5 A fifth family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q odd, defined by the quadratic form

X2
1 + a22X

2
2 + a35X3X5 + a46X4X6,

where a22, a35, a46 ∈ F∗q with a22 = a35a46
4

.
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Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (1 − a46yz)α2 + a22z
2β2 + a22y

2γ2 +
a46xzαβ+a46xyαγ+ (a35− 2a22yz−a46x2)βγ and ∆π = −1

4
(a35a46yz+a46x

2−a35)2. So,
if a35a46yz+ a46x

2− a35 6= 0, then π ∩Q is a conic and if a35a46yz+ a46x
2− a35 = 0, then

one computes that Qπ(α, β, γ) = a22

(
2x
a35
α+ zβ+ yγ

)2
, showing that π∩Q is then a line.

Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (1 + a35xy)α2 + a22y
2β2 + a22x

2γ2 −
(2a22xy+ a46)βγ and ∆π = −a246

4
(1 + a35xy)2. If 1 + a35xy 6= 0, then ∆π 6= 0 and so π∩Q

is a conic. If 1 + a35xy = 0, then one computes that Qπ(α, β, γ) = a22(yβ + xγ)2 and so
π ∩Q is then a line.

Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = a35xα
2 − a46xβ

2 + a22γ
2 and ∆π =

−a22a35a46x2. If x 6= 0, then ∆π 6= 0 and so π ∩Q is a conic. If x = 0, then Qπ(α, β, γ) =
a22γ

2 and so π ∩Q is a line.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = a22γ

2 and so π ∩Q is a line.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = y2α2 + z2β2 + (a22 − a35yz)γ2 + (2yz −

a46 +a35x
2)αβ+a35xyαγ−a35xzβγ and ∆π = −1

4
a22(a35x

2 +4yz−a46)2. If a35x
2 +4yz−

a46 6= 0, then ∆π 6= 0 and so π∩Q is a conic. If a35x
2 + 4yz−a46 = 0, then one computes

that Qπ(α, β, γ) = (yα− zβ + a35x
2
γ)2 and so π ∩Q is then a line.

Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = x2α2 + y2β2 + (a22 + a46xy)γ2 + (2xy+
a35)αβ and ∆π = −1

4
a22(4xy + a35)

2. If 4xy + a35 6= 0, then ∆π 6= 0 and so π ∩ Q is a
conic. If 4xy + a35 = 0, then one computes that Qπ(α, β, γ) = (xα − yβ)2 and so π ∩ Q
is then a line.

Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = α2 − a35xβ
2 + a46xγ

2 and ∆π =
−a35a46x2. If x 6= 0, then ∆π 6= 0 and so π ∩Q is a conic. If x = 0, then Qπ(α, β, γ) = α2

and so π ∩Q is then a line.
Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = α2 and so π ∩Q is a line.

Combining all the above information, we find:

Proposition 5.5. The set S := Q ∩ Q+(5, q) is a quadratic set of type (LC) having
(q + 1)(q2 + 1) points. If a35a46 is a square in Fq, then there are 2(q + 1)2 planes of
Q+(5, q) that meet S in a line and 2q(q2 − 1) planes of Q+(5, q) that meet S in a conic.
If a35a46 is not a square in Fq, then there are 2(q2 + 1) planes of Q+(5, q) that meet S in
a line and 2q(q2 + 1) planes of Q+(5, q) that meet S in a conic.

5.6 A sixth family of quadratic sets of type (LC)

Let Q be the quadric of PG(5, q), q odd, defined by the quadratic form

X2X5 + d1X2X6 + a33X
2
3 + 2a33d2X3X4 + a33d

2
2X

2
4 ,

where a33, d1, d2 ∈ F∗q with −d1d2 a non-square in Fq.
Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (a33d

2
2z

2)α2 + (a33 − d1xz)β2 + (y +
a33d

2
2x

2)γ2 + (d1yz + 2a33d2z)αβ − (d1y
2 + 2a33d

2
2xz)αγ + (d1xy − z − 2a33d2x)βγ and

∆π = −a33
4

(d1y
2 + d2z

2)2. If (y, z) 6= (0, 0), then ∆π 6= 0 and so π ∩ Q is a conic. If
(y, z) = (0, 0), then Qπ(α, β, γ) = a33(β − d2xγ)2 and so π ∩Q is a line.
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Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (a33x
2)α2 − d1yβ2 + a33d

2
2γ

2 + y2αβ +
(2a33d2x − xy)αγ + d1xβγ and ∆π = −a33

4
(d1x

2 + d2y
2)2. If (x, y) 6= (0, 0), then ∆π 6= 0

and so π ∩ Q is a conic. If (x, y) = (0, 0), then Qπ(α, β, γ) = a33d
2
2γ

2 and so π ∩ Q is a
line.

Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = a33α
2 + (a33d

2
2x

2)β2 − (2a33d2x)αβ −
xαγ − d1βγ and ∆π = −a33

4
(d2x

2 + d1)
2 6= 0 and so π ∩Q is a conic.

If π = L(0, 0, 0, 1), then Qπ(α, β, γ) = a33d
2
2β

2 + αγ and so π ∩Q is a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (a33x

2)α2 + (a33d
2
2)β

2 + (a33z
2− y)γ2 +

(2a33d2x)αβ + (d1 − 2a33xz)αγ − (x+ 2a33d2z)βγ and ∆π = −a33
4

(x2 + d1d2)
2 6= 0 and so

π ∩Q is a conic.
Suppose π = G(0, 1, x, y). ThenQπ(α, β, γ) = a33α

2+(d1y+a33d
2
2x

2)γ2+(2a33d2x)αγ+
βγ and ∆π = −1

4
a33 6= 0 and so π ∩Q is a conic.

If π = G(0, 0, 1, x), then Qπ(α, β, γ) = a33(xβ + d2γ)2 and so π ∩Q is a line.
If π = G(0, 0, 0, 1), then Qπ(α, β, γ) = a33β

2 and so π ∩Q is a line.

Combining all the above information, we find:

Proposition 5.6. The set S := Q ∩ Q+(5, q) is a quadratic set of type (LC) having
(q + 1)(q2 + 1) points. There are 2(q + 1) planes of Q+(5, q) that meet S in a line and
2q2(q + 1) planes of Q+(5, q) that meet S in a conic.

6 Quadratic sets of type (CP)

6.1 A first family of quadratic sets of type (CP)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

X2
2 + a35X3X5 + a36X3X6 + a45X4X5 + a46X4X6 + a56X5X6 + a66X

2
6 ,

where a35, a36, a45, a46, a56, a66 ∈ F∗q with

a46 =
a36a45
a35

, a66 =
a36a56
a35

, Tr(
a36a45
a256

) = 1.

Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (a66y
2 + a46yz)α2 + (a66x

2 + a36x +
z2)β2 + (a45x + y2)γ2 + (a46xz + a36y)αβ + (a46xy + a56y + a45z)αγ + (a46x

2 + a56x +
a35)βγ and Dπ = (a36y

2 + a56yz + a45z
2)2. As Tr(a36a45

a256
) = 1, we have Dπ = 0 if and

only if (y, z) = (0, 0). So, if (y, z) 6= (0, 0), then π ∩ Q is a conic. If (y, z) = (0, 0),
then Qπ(α, β, γ) = 1

a35
((a56x + a35)β + (a45x)γ)((a36x)β + a35γ). As (a56x + a35)a35 +

(a45x)(a36x) = (a36a45)x
2 + (a35a56)x + a235 and Tr(

a36a45a235
(a35a56)2

) = Tr(a36a45
a256

) = 1, π ∩ Q is

then a pencil.
Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (a35xy)α2+(y2+a66)β

2+x2γ2+(a36x+
a56y)αβ + (a45y)αγ + a46βγ and Dπ = (a36x

2 + a56xy + a45y
2)2. As Tr(a36a45

a256
) = 1, we

have Dπ = 0 if and only if (x, y) = (0, 0). So, if (x, y) 6= (0, 0), then π ∩ Q is a conic. If
(x, y) = (0, 0), then Qπ(α, β, γ) = a36

a35
β(a56β + a45γ) and π ∩Q is a pencil.
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Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = (a35x)α2 +(a46x+a66)β
2 +γ2 +(a45x

2 +
a56x+ a36)αβ and Dπ = (a45x

2 + a56x+ a36)
2. As Tr(a45a36

a256
) = 1, Dπ 6= 0 and so π ∩Q is

a conic.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = γ2 + a45αβ and so π ∩Q is a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (a36x + a66)α

2 + (a45x)β2 + (a35yz +
1)γ2 + (a35x

2 + a56x + a46)αβ + (a35xy + a56y + a36z)αγ + (a35xz + a45y)βγ and Dπ =
(a35x

2 + a56x+ a46)
2. As Tr(a35a46

a256
) = Tr(a36a45

a256
) = 1, π ∩Q is a conic.

Suppose π = G(0, 1, x, y). ThenQπ(α, β, γ) = (a46xy+a66y
2+1)γ2+a35αβ+(a36y)αγ+

(a45x+ a56y)βγ and Dπ = a235 6= 0. So, π ∩Q is a conic.
Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = (a35x)β2 + (a66x

2 + a46x)γ2 + (a36x
2 +

a56x + a45)βγ = 1
a35

(a35β + a36xγ) · (a35xβ + (a56x + a45)γ). As a35(a56x + a45) +

(a36x)(a35x) = (a35a36)x
2 + (a35a56)x + (a35a45) and Tr( (a35a36)·(a35a45)

(a35a56)2
) = Tr(a36a45

a256
) = 1,

π ∩Q is a pencil.
Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = a66γ

2 + a36βγ = γ(a66γ + a36β) and so
π ∩Q is a pencil.

Proposition 6.1. The set S := Q ∩ Q+(5, q) is a quadratic set of type (CP). There are
2q2(q + 1) planes of Q+(5, q) that meet S in a conic and 2(q + 1) planes of Q+(5, q) that

meet S in a pencil. As a consequence, |S| = 1
2(q+1)

(
2q2(q+1)·(q+1)+2(q+1)·(2q+1)

)
=

q3 + q2 + 2q + 1.

6.2 A second family of quadratic sets of type (CP)

Let Q be the quadric of PG(5, q), q odd, defined by the quadratic form

X2
2 + a35X3X5 + a36X3X6 + a45X4X5 + a46X4X6 + a56X5X6 + a66X

2
6 ,

where a35, a36, a45, a46, a56, a66 ∈ F∗q such that a46 = a36a45
a35

, a66 = a36a56
a35

and a256 − 4a36a45
is a nonsquare in Fq.

Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (a66y
2 − a46yz)α2 + (a66x

2 + a36x +
z2)β2 + (y2 − a45x)γ2 + (a46xz − a36y − 2a66xy)αβ + (a46xy − a56y + a45z)αγ + (a56x −
2yz + a35 − a46x

2)βγ and ∆π = −1
4

(
a36y

2 − a56yz + a45z
2
)2

. As a256 − 4a36a45 is a

nonsquare, ∆π = 0 if and only if (y, z) = (0, 0). So, if (y, z) 6= (0, 0), then π∩Q is a conic.
If (y, z) = (0, 0), then Qπ(α, β, γ) = 1

a35
(a36xβ + a35γ) · ((a56x + a35)β − (a45x)γ). As

(a36x)(a45x)+a35(a56x+a35) = (a36a45)x
2 +(a35a56)x+a235 and (a35a56)

2−4(a36a45)a
2
35 =

a235(a
2
56 − 4a36a45) is a nonsquare, π ∩Q is then a pencil.

Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = (a35xy)α2+(y2+a66)β
2+x2γ2−(a36x+

a56y)αβ+(a45y)αγ−(2xy+a46)βγ and ∆π = −1
4

(
a36x

2−a56xy+a45y
2
)2

. As a256−4a36a45

is a nonsquare, ∆π = 0 if and only if (x, y) = (0, 0). So, if (x, y) 6= (0, 0), then π ∩ Q is a
conic. If (x, y) = (0, 0), then Qπ(α, β, γ) = a36

a35
β(a56β − a45γ) and so π ∩Q is a pencil.

Suppose π = L(0, 0, 1, x). Then Qπ(α, β, γ) = (a35x)α2 + (a66−a46x)β2 +γ2 + (a56x+
a36−a45x2)αβ and ∆π = −1

4
(a45x

2−a56x+a36)
2. As a256−4a45a36 is a nonsquare, ∆π 6= 0

and so π ∩Q is a conic.
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Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = γ2 − a45αβ and so π ∩Q is a conic.
Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = (a66 − a36x)α2 + (a45x)β2 + (1 −

a35yz)γ2 + (a35x
2 − a56x − a46)αβ + (a35xy − a56y + a36z)αγ + (a45y − a35xz)βγ and

∆π = − 1
4a235

(a235x
2 − a35a56x + a36a45)

2. As (a35a56)
2 − 4a235a36a45 = a235(a

2
56 − 4a36a45) is

a nonsquare, ∆π 6= 0 and so π ∩Q is a conic.
Suppose π = G(0, 1, x, y). ThenQπ(α, β, γ) = (a46xy+a66y

2+1)γ2+a35αβ+(a36y)αγ+
(a45x+ a56y)βγ and ∆π = −1

4
a235 6= 0. So, π ∩Q is a conic.

Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = (−a35x)β2 + (a66x
2 + a46x)γ2 +

(a36x
2 − a56x− a45)βγ = 1

a35
((a35x)β + (a56x+ a45)γ) · (−a35β + (a36x)γ). As (a35a56)

2 −
4(a35a36)(a35a45) = a235(a

2
56 − 4a36a45) is a nonsquare, (a35x)(a36x) + a35a56x+ a35a45 6= 0

and so π ∩Q is a pencil.
Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = a66γ

2 + a36βγ = γ(a66γ + a36β) is a
pencil.

Proposition 6.2. The set S := Q ∩ Q+(5, q) is a quadratic set of type (CP). There are
2q2(q + 1) planes of Q+(5, q) that meet S in a conic and 2(q + 1) planes of Q+(5, q) that

meet S in a pencil. As a consequence, |S| = 1
2(q+1)

(
2q2(q+1)·(q+1)+2(q+1)·(2q+1)

)
=

q3 + q2 + 2q + 1.

6.3 A third family of quadratic sets of type (CP)

Let Q be the quadric of PG(5, q), q even, defined by the quadratic form

X3X5 + a36X3X6 + a44X
2
4 + a45X4X5 + a46X4X6 + a56X5X6,

where a36, a44, a45, a46, a56 ∈ F∗q such that

a46 =
a36
a45

, a56 =
a44
a45

, Tr(
a36a

3
45

a244
) = 1.

As all elements of Fq are squares, we can put aij = b2ij for all (i, j) ∈ {(3, 6), (4, 4), (4, 5), (4, 6),
(5, 6)}.

Suppose π = L(1, x, y, z). Then Qπ(α, β, γ) = (b236b
2
45yz+b244z

2)α2+(b236x)β2+(b244x
2+

b245x)γ2 + (b236b
2
45xz+ b236y)αβ+ 1

b245
(b236b

4
45xy+ b445z+ b244y)αγ+ 1

b245
(b236b

4
45x

2 + b244x+ b245)βγ

and Dπ =
b244
b445

(b236b
2
45xy + b36b

3
45xz + b244xz + b36b45y + b245z)2. Note also that

Qπ(α, β, γ)− 1

b345b36
(b36b

3
45zα+b236b

2
45xβ+(b244x+b245)γ)((b236b

2
45y+b244z)α+(b36b45)β+(b36b

3
45x)γ)

=
1

b345b36
α(b236b

2
45β + (b36b

3
45 + b244)γ)(b236b

2
45xy + b36b

3
45xz + b244xz + b36b45y + b245z).

So, if b236b
2
45xy+ b36b

3
45xz + b244xz + b36b45y+ b245z 6= 0, then π ∩Q is a conic. If b236b

2
45xy+

b36b
3
45xz+b244xz+b36b45y+b245z = 0, then Qπ(α, β, γ) = 1

b345b36
(b36b

3
45zα+b236b

2
45xβ+(b244x+
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b245)γ)((b236b
2
45y + b244z)α+ (b36b45)β + (b36b

3
45x)γ). As Tr(

b236b
4
45·b245

(b244)
2 ) = 1, we then have that∣∣∣∣ b236b245x b244x+ b245

b36b45 b36b
3
45x

∣∣∣∣ = b36b45(b
2
36b

4
45x

2 + b244x+ b245) 6= 0

and so π ∩Q is then a pencil.
Suppose π = L(0, 1, x, y). Then Qπ(α, β, γ) = xyα2 + b244γ

2 + 1
b245

(b236b
2
45x+ b244y)αβ +

b245yαγ+b236b
2
45βγ and Dπ =

b244
b445

(b236b
2
45x+b36b

3
45y+b244y)2. So, if b236b

2
45x+b36b

3
45y+b244y 6= 0,

then π ∩ Q is a conic. If b236b
2
45x + b36b

3
45y + b244y = 0, then Qπ(α, β, γ) = 1

b245b
2
36

(yα +

b36b45γ)((b36b
3
45 + b244)yα + b336b

3
45β + b36b

2
44b45γ) and so π ∩Q is then a pencil.

So, π = L(0, 0, 1, x). Then Qπ(α, β, γ) = xα2+(b236b
2
45x+b244x

2)β2+ 1
b245

(b445x
2+b236b

2
45+

b244x)αβ = 1
b245

(α + b245xβ)(b245xα + (b236b
2
45 + b244x)β). As Tr(

b445·b236b245
(b244)

2 ) = 1, we then have

that ∣∣∣∣ 1 b245x
b245x b236b

2
45 + b244x

∣∣∣∣ = b445x
2 + b244x+ b236b

2
45 6= 0

and so π ∩Q is then a pencil.
Suppose π = L(0, 0, 0, 1). Then Qπ(α, β, γ) = b244β

2 + b245αβ = β(b245α + b244β) and so
π ∩Q is a pencil.

Suppose π = G(1, x, y, z). Then Qπ(α, β, γ) = b236xα
2 + (b245x + b244)β

2 + yzγ2 +
1
b245

(b236b
4
45 + b245x

2 + b244x)αβ + 1
b245

(b236b
2
45z + b245xy + b244y)αγ + (b245y + xz)βγ and Dπ =

b244
b445

(b36b
3
45y + b236b

2
45z + b245xy + b36b45xz + b244y)2. Note also that

Qπ(α, β, γ)− 1

b245b36
(b36xα + b36b

2
45β + b45yγ)((b236b

2
45)α + (b244 + b245x)β + (b36b45z)γ)

=
1

b245b36
γ(b36α + b45β)(b36b

3
45y + b236b

2
45z + b245xy + b36b45xz + b244y).

So, if b36b
3
45y+b236b

2
45z+b245xy+b36b45xz+b244y 6= 0, then π∩Q is a conic. If b36b

3
45y+b236b

2
45z+

b245xy+ b36b45xz + b244y = 0, then Qπ(α, β, γ) = 1
b245b36

(b36xα+ b36b
2
45β + b45yγ)((b236b

2
45)α+

(b244 + b245x)β + (b36b45z)γ). As Tr(
b36b245·b336b445
(b36b244)

2 ) = 1, we then have that∣∣∣∣ b36x b36b
2
45

b236b
2
45 b245x+ b244

∣∣∣∣ = b36b
2
45x

2 + b36b
2
44x+ b336b

4
45 6= 0

and so π ∩Q is then a pencil.
Suppose π = G(0, 1, x, y). Then Qπ(α, β, γ) = (b236b

2
45xy + b244x

2)γ2 + αβ + b236yαγ +
1
b245

(b445x + b244y)βγ and Dπ =
b244
b245

(b45x + b36y)2. If b45x + b36y 6= 0, then π ∩ Q is a conic.

If b45x + b36y = 0, then Qπ(α, β, γ) = 1
b45b36

(β + b36b45xγ)(b36b45α + (b36b
3
45 + b244)xγ) and

so π ∩Q is a pencil.
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Suppose π = G(0, 0, 1, x). Then Qπ(α, β, γ) = xβ2 + (b236b
2
45x+ b244)γ

2 + 1
b245

(b236b
2
45x

2 +

b445 + b244x)βγ = 1
b245

(xβ+ b245γ)(b245β+ (b236b
2
45x+ b244)γ). As Tr(

b236b
2
45·b445

(b244)
2 ) = 1, we then have

that ∣∣∣∣ x b245
b245 b236b

2
45x+ b244

∣∣∣∣ = b236b
2
45x

2 + b244x+ b445 6= 0

and so π ∩Q is then a pencil.
Suppose π = G(0, 0, 0, 1). Then Qπ(α, β, γ) = b236βγ and so π ∩Q is a pencil.

Proposition 6.3. The set S := Q ∩ Q+(5, q) is a quadratic set of type (CP). There are
2q(q2− 1) planes of Q+(5, q) that meet S in a conic and 2(q+ 1)2 planes of Q+(5, q) that

meet S in a pencil. As a consequence, |S| = 1
2(q+1)

(
2q(q2−1)·(q+1)+2(q+1)2 ·(2q+1)

)
=

q3 + 2q2 + 2q + 1.
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