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Abstract

Consider the Klein quadric Q+(5, q) in PG(5, q). A set of points of Q+(5, q) is
called a quadratic set if it intersects each plane π of Q+(5, q) in a possibly reducible
conic of π, i.e. in a singleton, a line, an irreducible conic, a pencil of two lines or the
whole of π. A quadratic set is called good if at most two of these possibilities occur
as π ranges over all planes of Q+(5, q). We obtain several classification results for
good quadratic sets. We also provide a complete classification of all good quadratic
sets of Q+(5, 2) and give an explicit construction for each of them.
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1 Introduction

One of the most fundamental objects in finite geometry is the Klein quadric. This is
a nonsingular hyperbolic quadric Q+(5, q) in the projective space PG(5, q). Via the so-
called Klein correspondence several relationships between objects of the projective space
PG(3, q) and objects of Q+(5, q) can be described and this is often very useful. For
instance, via the Klein correspondence line spreads of PG(3, q) correspond to ovoids of
Q+(5, q) [12] and Cameron-Liebler line classes of PG(3, q) [5] correspond to tight sets of
Q+(5, q) [11]. In the present paper, we study a family of point sets of the Klein quadric
which we call here quadratic sets.

We refer to the monograph [13] by Hirschfeld and Thas as a general reference book for
the basic properties of (singular and nonsingular) quadrics in finite projective spaces that
we will use throughout this paper. Let Q be a given quadric in PG(n, q). If Q′ is another
quadric in PG(n, q), then the intersection S := Q∩Q′ satisfies the following property:

(∗′) Every nonempty subspace π of Q intersects S in a quadric of π.

By a subspace of Q, we mean here a subspace of PG(n, q) that is contained in Q. We call
a set S of points of Q a quadratic set if it satisfies property (∗′). Note that a set of points
of Q is a quadratic set of the following property is satisfied:

(∗) Every maximal subspace π of Q intersects S in a quadric of π.
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The notion of a quadratic set in a projective space was defined and studied by Buekenhout
in [3], see also [13, §1.10] and [21, Chapter 5]. Basically, these are sets of points in
projective spaces that satisfy similar structural properties as quadrics. In this paper we
have defined quadratic sets of a quadric as sets of points of this quadric that satisfy similar
structural properties as the intersections of this quadric with the quadrics of its ambient
space.

Let us now look at the case of nonsingular quadrics Q whose Witt index is 3, that
is, whose maximal subspaces are planes. By [13], Q is then either a hyperbolic quadric
Q+(5, q) in PG(5, q) (the Klein quadric), a parabolic quadric Q(6, q) in PG(6, q) or an
elliptic quadric Q−(7, q) in PG(7, q). As a plane and a quadric intersect in a quadric of
that plane, we then know by [13] that the following must hold.

Proposition 1.1. Let Q be one of the quadrics Q+(5, q), Q(6, q), Q−(7, q). Then S is
a quadratic set if and only if every plane π of Q meets S in either a singleton, a line, a
conic, a pencil or the whole of π.

Here and in the sequel of this paper, the words “conic” and “pencil” are abbreviations
for respectively “irreducible conic” and “pencil of two lines”. If S is a quadratic set of
Q ∈ {Q+(5, q), Q(6, q), Q−(7, q)} and π is a plane of Q, then we say that the intersection
π∩S has type (S), (L), (C), (P) or (W) depending on whether π∩S is a singleton, a line,
a conic, a pencil or the whole point set of π. If all plane intersections have the same type
(X), then we say that the quadratic set S has type (X). If there are exactly two possible
types for the plane intersections, say (X) and (Y), then the quadratic set is said to be of
type (XY). A quadratic set S of Q is called good if there are at most two possible types
for the plane intersections. There are thus 15 possible types for a good quadratic set: (S),
(L), (C), (P), (W), (SL), (SC), (SP), (SW), (LC), (LP), (LW), (CP), (CW), (PW).

In this paper, we initiate the study of good quadratic sets of the Klein quadric Q+(5, q).
This study was motivated by an open problem in the paper [15] regarding the existence
of certain line sets in PG(3, q). Subsequent investigations showed that these line sets are
related to quadratic sets of the Klein quadric. Some of our investigations on quadratic
sets will allow the authors of [10] to prove that the formerly elusive line sets do actually
exist.

In this paper, we obtain a complete classification of all good quadratic sets of Q+(5, q)
for which the type is equal to either (L), (P), (W), (SL), (SP), (SW), (LP), (LW), (CW)
or (PW). We also observe that the good quadratic sets of type (S) are precisely the images
under the Klein correspondence of the line spreads of the projective space PG(3, q). We
keep the study of the good quadratic sets of types (C), (SC), (LC) and (CP) for another
paper where we will describe in an algebraic way several infinite families. One of these
families will play a crucial role in [10] to prove that certain line sets of PG(3, q) exist.

The standard examples of quadratic sets are those that are obtained by intersecting
the quadric with another quadric of the ambient projective space. One can therefore
wonder whether all quadratic sets of Q+(5, q) arise in this way. We will see in Proposition
3.4 that the answer to this question is false for q ≥ 3. For q = 2 however, the following
can be proved.
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Proposition 1.2 ([9, Corollary 1.7]). Let Q be one of the quadrics Q+(5, 2), Q(6, 2),
Q−(7, 2). Then every quadratic set of Q arises by intersecting Q with a quadric of the
ambient projective space of Q.

Quadratic sets of Q ∈ {Q+(5, 2), Q(6, 2), Q−(7, 2)} are examples of so-called pseudo-
hyperplanes of the geometry of the points and planes of Q. The proof of Proposition
1.2 given in [9] used this observation along with the various connections between pseudo-
hyperplanes, pseudo-embeddings and pseudo-generating ranks described in [7]. In the
present paper, the connection between pseudo-hyperplanes and pseudo-embeddings is used
to give a computer-assisted classification of all (good) quadratic sets of Q+(5, 2). Using a
certain model for the quadric Q+(5, 2), we will also provide computer free constructions
for all good quadratic sets. There are up to isomorphism 27 of them.

2 The Klein quadric

Let V be a 4-dimensional vector space over the finite field Fq of order q. Associated with
V , there is the 3-dimensional projective space PG(3, q) = PG(V ). The second exterior
power

∧2 V of V is a 6-dimensional vector space over Fq whose associated projective
space PG(

∧2 V ) will also be denoted by PG(5, q). In this section, we will describe a
certain connection between the lines of PG(3, q) and certain points of PG(5, q). For more
background information on this correspondence, we refer to [12] and [17].

Let L be a line of PG(V ). If 〈v̄1〉 and 〈v̄2〉 denote two distinct points of L, then we
denote by κ(L) the point 〈v̄1 ∧ v̄2〉 of PG(

∧2 V ) = PG(5, q). We note here that the point
〈v̄1 ∧ v̄2〉 does not depend on the chosen points 〈v̄1〉 and 〈v̄2〉 on the line L. The map κ
is thus well-defined. In fact, κ defines a bijection between the set of lines of PG(3, q) and
a certain hyperbolic quadric Q+(5, q) in PG(5, q) = PG(

∧2 V ) which is called the Klein
quadric. The bijective correspondence between the lines of PG(3, q) and the points of
Q+(5, q) is called the Klein correspondence. With respect to a certain reference system in
PG(5, q) = PG(

∧2 V ), the Klein quadric Q+(5, q) has equation X1X2+X3X4+X5X6 = 0.
The Klein quadric satisfies the following properties on which we will often rely.

Lemma 2.1. (1) The subspaces of maximal possible dimension contained in Q+(5, q)
are the planes of Q+(5, q). These planes can be partitioned in two families such that
two planes belong to the same family if and only if they are equal or intersect in a
point.

(2) Every point of Q+(5, q) is contained in 2(q + 1) planes of Q+(5, q). Every line of
Q+(5, q) is contained in two planes of Q+(5, q), one of each family of planes.

(3) For every non-incident point-line pair (p, L) of Q+(5, q), either one or all points of
L are collinear with p on Q+(5, q).

(4) For every non-incident point-plane pair (p, π) of Q+(5, q), there exists a unique plane
of Q+(5, q) through p intersecting π in a line.
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(5) For every line-plane pair (L, π) of Q+(5, q) such that L ∩ π is a singleton, there
exists a unique plane of Q+(5, q) through L intersecting π in a line.

Hereby, two points of Q+(5, q) are said to be collinear on Q+(5, q) if there is some
line of Q+(5, q) containing them. If x is a point of Q+(5, q), then the set x⊥ of all points
of Q+(5, q) that are collinear with x on Q+(5, q) is obtained by intersecting Q+(5, q)
with a hyperplane Πx of PG(5, q). Such a hyperplane Πx of PG(5, q) is called a tangent
hyperplane of PG(5, q), more specifically the hyperplane of PG(5, q) that is tangent to
Q+(5, q) in the point x. A tangent hyperplane Πx of PG(5, q) intersects Q+(5, q) in a
quadric of type xQ+(3, q) which is a cone whose kernel is the point x and whose base is a
hyperbolic quadric Q+(3, q) in a 3-dimensional subspace not containing x. The point-line
geometry Sx whose points and lines are the lines and planes of Q+(5, q) through x, with
incidence being containment, is thus isomorphic to the geometry of the points and lines
contained in the hyperbolic quadric Q+(3, q), i.e. to a (q + 1)× (q + 1)-grid. Such a grid
is an example of a generalized quadrangle, i.e. a partial linear space having two disjoint
lines such that for every non-incident point-line pair (x, L) there exists a unique point on
L collinear with x.

If Π is a non-tangent hyperplane of PG(5, q), then Π∩Q+(5, q) is a parabolic quadric
of type Q(4, q) [13]. We call such an intersection a Q(4, q)-quadric. The points and lines
contained in a Q(4, q)-quadric define a generalized quadrangle which we will also denote
by Q(4, q). This generalized quadrangle has q + 1 points on each line and q + 1 lines
through each point.

With Q+(5, q) there is associated a polarity [13] which maps each point x ∈ Q+(5, q)
to the tangent hyperplane Πx and each point y 6∈ Q+(5, q) to a nontangent hyperplane.
This polarity is orthogonal if q is odd and symplectic if q is even.

An ovoid of a generalized quadrangle is a set of points intersecting each line in a
singleton. Every ovoid is an example of a hyperplane, where a hyperplane of a point-
line geometry with point set P is defined as a proper subset of P meeting each line in
a singleton or the whole line. We will later need the properties that the generalized
quadrangle Q(4, 2) has six ovoids and that through each point x of Q(4, 2), there are two
ovoids which partition the set of points noncollinear with x.

We will also need some information about the intersection of Q+(5, q) with three-
dimensional subspaces. If β is a 3-dimensional subspace of PG(5, q), then β ∩ Q+(5, q)
is either the union of two distinct planes through a line, a quadric of type xQ(2, q), a
hyperbolic quadric of type Q+(3, q) or an elliptic quadric of type Q−(3, q). In the latter
two cases, these intersections are also called Q+(3, q)-quadrics and Q−(3, q)-quadrics,
respectively. A Q+(3, q)-quadric contains lines, while a Q−(3, q)-quadric does not. An
intersection of type xQ(2, q) is the union of q+ 1 lines of Q+(5, q) through the point x no
two of which are contained in the same plane of Q+(5, q), i.e. these q + 1 lines form an
ovoid of Sx. In fact, such an intersection is a cone with kernel a point x ∈ Q+(5, q) whose
base is a conic in a plane not containing x.

One of the following two cases occurs for two disjoint lines L1 and L2 of Q+(5, q):

(1) For every i ∈ {1, 2}, there exists a unique point xi ∈ Li which is collinear on Q+(5, q)
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with all points of L3−i. Then the 3-dimensional subspace 〈L1, L2〉 intersects Q+(5, q)
in the union of the two planes 〈x1x2, L1〉 ∪ 〈x1x2, L2〉.

(2) For every i ∈ {1, 2} and every x ∈ Li, there exists a unique point on L3−i collinear
on Q+(5, q) with x. Then the 3-dimensional subspace 〈L1, L2〉 intersects Q+(5, q) in
a Q+(3, q)-quadric.

If case (2) occurs, then the lines L1 and L2 are called opposite.

Lemma 2.2. Let p1 and p2 be two points of Q+(5, q) which are noncollinear on Q+(5, q).
Let K1 and L1 be two lines of Q+(5, q) through p1 which are not contained in a plane of
Q+(5, q). Then 〈K1, L1, p2〉 is a 3-space intersecting Q+(5, q) in a Q+(3, q)-quadric.

Proof. Obviously, 〈K1, L1〉 is a plane contained in the tangent hyperplane Πp1 . As p2 6∈
Πp1 , α := 〈K1, L1, p2〉 is a 3-dimensional subspace. There are four possibilities for the
intersection α ∩Q+(5, q):

(1) quadric of type Q+(3, q);
(2) a quadric of type Q−(3, q);
(3) a quadric of type pQ(2, q);
(4) the union of two distinct planes.

As there exists two distinct intersecting lines K1 and L1 through a point p1 and an
additional point p2 such that there are no planes of Q+(5, q) containing 〈K1, L1〉 and no
line of Q+(5, q) containing p1 and p2, we see that case (1) must occur.

In Lemma 2.2, we thus see that the two lines through p2 meeting K1 or L1 are also not
contained in a plane of Q+(5, q). So, if L is a set of lines of Q+(5, q) through p1 forming
an ovoid of Sp1 , then the set of all lines of Q+(5, q) through p2 meeting a line of L is an
ovoid of Sp2 .
For a set S of points of Q+(5, q), an S-line is defined as a line of Q+(5, q) having all its
points in S.

3 Good quadratic sets of type (S)

Quadratic sets of type (S) of Q+(5, q) are also known as ovoids of Q+(5, q), and it is well
known that these are related to line spreads of PG(3, q). A line spread of PG(3, q) is a set
of q2 + 1 lines of PG(3, q) partitioning its point set. The connection between line spreads
of PG(3, q) and ovoids of Q+(5, q) is described in the following proposition.

Proposition 3.1 ([12]). The ovoids of Q+(5, q) are the images under the Klein corre-
spondence of the line spreads of PG(3, q).

Classifying good quadratic sets of type (S) of Q+(5, q) is thus equivalent with classifying
line spreads of PG(3, q). Several isomorphism classes of line spreads of PG(3, q) are known
to exist. The standard examples are the regular spreads which correspond via the Klein
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correspondence to the Q−(3, q)-quadrics of Q+(5, q), see [12]. These Q−(3, q)-quadrics of
Q+(5, q) are also known as the classical ovoids of Q+(5, q). By [12, page 55], we know
that every spread of PG(3, 2) is regular, or equivalently, that every ovoid of Q+(5, 2) is
classical. We will need that result later.

A regulusR of PG(3, q) is a set of q+1 mutually disjoint lines contained in a hyperbolic
quadric Q+(3, q) ⊆ PG(3, q). The set R′ of the q + 1 remaining (mutually disjoint) lines
of Q+(3, q) is then called the opposite regulus of R. A regular spread of PG(3, q) contains
many reguli. In fact, any two distinct lines of a regular spread S of PG(3, q) are contained
in a unique regulus R ⊆ S.

By the following lemma, we know that the classical ovoids of Q+(5, q) can be obtained
by intersecting Q+(5, q) with a suitable quadric of PG(5, q).

Lemma 3.2. Let Π and Π′ be two (not necessarily distinct) hyperplanes of PG(5, q).
Then each of the intersections S1 := (Π ∩ Π′) ∩ Q+(5, q) and S2 := (Π ∪ Π′) ∩ Q+(5, q)
are of the form Q+(5, q) ∩Q for some suitable quadric Q of PG(5, q).

Proof. Suppose Π and Π′ are described by the respective equations a1X1 + a2X2 + · · ·+
a6X6 = 0 and a′1X1 + a′2X2 + · · · + a′6X6 = 0. If f(X, Y ) ∈ Fq[X, Y ] is an irreducible
homogeneous polynomial of degree 2 in the variables X and Y , then S1 is also obtained
by intersecting Q+(5, q) with the quadric Q1 whose equation is given by

Q1(X1, X2, . . . , X6) = f(a1X1 + a2X2 + · · ·+ a6X6, a
′
1X1 + a′2X2 + · · ·+ a′6X6) = 0.

On the other hand, S2 is obtained by intersecting Q+(5, q) with the quadric Q2 whose
equation is

Q2(X1, X2, . . . , X6) = (a1X1 + a2X2 + · · ·+ a6X6)(a
′
1X1 + a′2X2 + · · ·+ a′6X6) = 0.

Suppose Q is a quadric of the projective space PG(5, q). For every point x of Q, the union
of all lines L through x that meet Q in either {x} or the whole line L is a subspace of
PG(5, q) which is either a hyperplane or the whole of PG(5, q). We call this subspace the
subspace at x tangent to Q. In case Q is a nonsingular quadric, all tangent subspaces are
hyperplanes.

Lemma 3.3. Suppose S is an ovoid of Q+(5, q) obtained by intersecting Q+(5, q) with a
quadric Q. Then for every point x ∈ S, the tangent hyperplane Tx at x to the quadric
Q+(5, q) is contained in the tangent subspace T ′x at x to the quadric Q.

Proof. The tangent hyperplane Tx is generated by all lines through x contained inQ+(5, q).
As S = Q+(5, q) ∩ Q, all these lines contain a unique point of Q and so are contained in
T ′x. We must therefore have that Tx ⊆ T ′x.

Proposition 3.4. Let α be a 3-dimensional subspace of PG(5, q) intersecting Q+(5, q) in a
Q−(3, q)-quadric Q. Let π be a plane of α intersecting Q+(5, q) in a conic C. Put π′ := πζ,
where ζ is the polarity of PG(5, q) associated with Q+(5, q). Put C ′ := π′∩Q+(5, q). Then
the following hold:
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(1) (Q∪ C ′) \ C is a good quadratic set of type (S);

(2) if q ≥ 3, then this good quadratic set cannot be obtained by intersecting Q+(5, q)
with a quadric.

Proof. First note that C ∩ C ′ = ∅.
Claim (1) is a known property. Every plane of Q+(5, q) containing a (unique) point

of C also contains a unique point of C ′. Therefore (Q ∪ C ′) \ C is a good quadratic set
of type (C). Alternatively, one can argue as follows. Put S := κ−1(Q), R := κ−1(C) and
R′ := κ−1(C ′). Then R is a regulus of the regular spread S and R′ is its opposite regulus
[12]. Therefore, (S∪R′)\R is a line spread of PG(3, q) and so κ((S∪R′)\R) = (Q∪C ′)\C
is a quadratic set of type (S).

As to Claim (2), suppose to the contrary that there exists a quadric Q′ in PG(5, q)
for which (Q∪ C ′) \ C = Q′ ∩Q+(5, q).

We first prove that this is impossible in case q ≥ 3 is odd. The intersection π ∩ Q′
must contain a point x, and this point does not belong to C. Let L be a line of π through
x which is external to C. In α there are two planes through L that are tangent to Q and
q − 1 planes through L that meet Q in a conic. Let π1 be one of the q − 2 ≥ 1 planes of
α through L distinct from π for which π ∩Q is a conic. As Q \ C ⊆ Q′, the q + 2 points
in {x} ∪ (π1 ∩Q) all belong to Q′. We now show that π1 is contained in Q′.

If this were not the case, then the fact that π1 ∩ Q is a conic of π1 contained in Q′
implies that q = 3 and π1 ∩Q′ is the union of two lines L1 and L2. Moreover, each of L1,
L2 must contain two points of π1 ∩Q and L1 ∩ L2 is not contained in π1 ∩Q. Now, take
a point u ∈ π1 ∩ Q belonging to L1 \ L2. As L1 is a line through u contained in Q′ and
intersecting Q in exactly two points, we know from Lemma 3.3 that the tangent subspace
at u to the quadric Q′ is the whole space PG(5, q). Now, the lines of π1 through u all
contain an additional point of L2 ⊆ Q′ and so are completely contained in Q′. Hence,
π1 ⊆ Q′. But this is in contradiction with the fact that π1 ∩Q′ is the union of two lines.

So, we must have that π1 ⊆ Q′. In particular, the line L is contained in Q′. As any
line L′ of π that is external with respect to C contains a point of L ⊆ Q′, we can repeat
the above argument for the line L′ to conclude that L′ ⊆ Q′. As any point of π \ C is
contained in a line of π that is external to C, we can then conclude that π \ C ⊆ Q′. So,
π contains at least q2 points of Q′. It has therefore all its points in Q′, in contradiction
with the fact that C ∩Q′ = ∅.

We now also derive a contradiction in the case that q ≥ 4 is even. As before, the
intersection π ∩ Q′ must contain a point x that does not belong to C. Let L be a line of
π through x which is tangent to C and denote by xL the tangency point. In α there is
a unique plane through L that is tangent to Q (necessarily in the point xL). In α, there
is also a unique plane β through L such that β ∩ Q is a conic with nucleus x [12]. As
q 6= 2, there exists a plane π1 of α through L distinct from π which intersects Q in a conic
for which x is not the nucleus of the conic π1 ∩ Q. As Q \ C ⊆ Q′, the q + 1 points in
{x} ∪ ((π1 ∩Q) \ {xL}) all belong to Q′.
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Suppose π1∩Q′ is a conic. Note that two distinct conics of π1 have at most four points
in common. As x ∈ (π1 ∩Q′) \ (π1 ∩Q), the conics π1 ∩Q′ and π1 ∩Q of π1 are distinct.
As they also have at least q points in common, namely the points in A := (π1∩Q)\{xL},
we must have q = 4. But then xL must be the nucleus of the conic π1 ∩Q′ = A∪{x} and
x must be the nucleus of the conic π1 ∩Q = A ∪ {xL}, an obvious contradiction.

So, π1 ∩Q′ cannot be a conic. We show that π1 is contained in Q′.
If this were not the case, then the fact that π1 ∩ Q is a conic of π1 for which (π1 ∩

Q) \ {xL} ⊆ Q′ implies that q = 4 and that π1 ∩ Q′ is the union of two lines L1 and L2.
Moreover, each of L1, L2 must contain two points of (π1 ∩ Q) \ {xL} and L1 ∩ L2 is not
contained in (π1 ∩Q) \ {xL}. Now, take a point u ∈ (π1 ∩Q) \ {xL} belonging to L1 \L2.
As L1 is a line through u contained in Q′ and intersecting Q in exactly two points, we
know from Lemma 3.3 that the tangent subspace at u to the quadric Q′ is the whole space
PG(5, q). Now, the lines of π1 through u all contain an additional point of L2 ⊆ Q′ and
so are completely contained in Q′. Hence, π1 ⊆ Q′. But this is in contradiction with the
fact that π1 ∩Q′ is the union of two lines.

So, we must have that π1 ⊆ Q′. In particular, the line L is contained in Q′. But then
the point xL would also be contained in Q′, in contradiction with Q′ ∩ C = ∅.

4 Good quadratic sets of types (L), (W), (SP), (SW),

(LW) and (CW)

Classifying good quadratic sets of type (W) ofQ+(5, q) is a trivial problem, as the following
clearly holds.

Proposition 4.1. Let S be a set of points of Q+(5, q) having the property that each plane
of Q+(5, q) is contained in S. Then S = Q+(5, q).

In the following proposition, we classify all good quadratic sets of types (L) and (LW).

Proposition 4.2. (1) Let S be a set of points of Q+(5, q) having the property that each
plane of Q+(5, q) intersects S in a line. Then S is obtained by intersecting Q+(5, q)
with a nontangent hyperplane, i.e. S is a Q(4, q)-quadric.

(2) Let S be a set of points of Q+(5, q) having the property that each plane π of Q+(5, q)
intersects S in either a line or the whole of π, and suppose that both possibilities
occur. Then S is a set of points that arises by intersecting Q+(5, q) with a tangent
hyperplane.

Proof. Let S be a set of points as in (1) or (2). Then any line L of Q+(5, q) is contained in
a plane π of Q+(5, q) which meets S in either a line or the whole of π, showing that S ∩L
is either a singleton or the whole of L. It follows that S is a hyperplane of the point-line
geometry induced on Q+(5, q). By Cohen and Shult [6, Theorem 5.12], we know that
such a hyperplane arises by intersecting Q+(5, q) with a hyperplane Π of PG(5, q). If Π
is a tangent hyperplane, then situation (2) occurs. If Π is a nontangent hyperplane, then
situation (1) occurs.
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We thus see that all good quadratic sets of types (W), (L) and (LW) are obtained by
intersecting Q+(5, q) with a suitable quadricQ of PG(5, q). For the unique good quadratic
set of type (W), we can take Q = Q+(5, q). For the good quadratic sets of types (L) and
(LW), we know that this holds by Lemma 3.2 and Proposition 4.2.

In the following two propositions, we prove the nonexistence of good quadratic sets of
types (SW), (CW) and (SP).

Proposition 4.3. (1) There are no sets S of points of Q+(5, q) having the property that
each plane π of Q+(5, q) intersects S in either a singleton or the whole of π, with
both possibilities occurring.

(2) There are no sets S of points of Q+(5, q) having the property that each plane π
of Q+(5, q) intersects S in either a conic or the whole of π, with both possibilities
occurring.

Proof. Let S be a set of points as in (1) or (2). The graph defined on the planes of
Q+(5, q) by calling two planes adjacent whenever they meet in a line is connected. So,
there exist two planes π1 and π2 intersecting in a line such that π1 ∩ S = π1 and π2 ∩ S
is a conic or a singleton. This is clearly impossible.

Proposition 4.4. There are no sets S of points of Q+(5, q) having the property that
each plane of Q+(5, q) intersects S in either a singleton or a pencil, with both possibilities
occurring.

Proof. We determine an upper bound for |S|. Let π1 be a plane of Q+(5, q) meeting S in
a singleton {x}. By Lemma 2.1(4), the planes of Q+(5, q) meeting π1 in a line partition
the set S \ π1. There are now q2 planes of Q+(5, q) meeting π1 in a line not containing
x and each of these planes must contain a unique point of S \ π1. There are also q + 1
planes of Q+(5, q) meeting π1 in a line containing x and these planes contain at most 2q
points of S \ π1. Hence, |S \ π1| ≤ q2 + 2q(q + 1) = 3q2 + 2q and |S| ≤ 3q2 + 2q + 1.

We also determine a lower bound for |S|. Let π2 be a plane of Q+(5, q) meeting S in
the union of two lines L1 and L2 through a point u. The planes of Q+(5, q) meeting π2 in
a line partition the set S \ π2. There are now q2 planes of Q+(5, q) meeting π2 in a line
not containing u and each of these planes contains exactly 2q − 1 points of S \ π2. There
are also two planes of Q+(5, q) meeting π2 in either L1 or L2, and each of these planes
contains exactly q points of S \π2. It follows that |S \π2| ≥ q2(2q−1)+2q = 2q3−q2 +2q
and hence |S| ≥ 2q3 − q2 + 4q + 1.

So, we have 2q3 − q2 + 4q + 1 ≤ |S| ≤ 3q2 + 2q + 1. It follows that 2q3 − 4q2 + 2q =
2q2(q − 2) + 2q ≤ 0, a contradiction.

5 Good quadratic sets of type (P)

5.1 Examples and basic properties

In the following proposition, we describe the standard examples of good quadratic sets of
type (P).
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Proposition 5.1. The union of two Q(4, q)-quadrics intersecting in a Q−(3, q)-quadric
is a good quadratic set of type (P ).

Proof. Let Π1 and Π2 be two distinct hyperplanes of PG(5, q) such that the 3-dimensional
subspace Π1 ∩ Π2 intersects Q+(5, q) in an elliptic quadric Q−(3, q). Put Q1 = Π1 ∩
Q+(5, q), Q2 = Π2 ∩ Q+(5, q) and S := Q1 ∪ Q2. Then Q1 and Q2 are two Q(4, q)-
quadrics intersecting in the elliptic quadric Q−(3, q). We prove that S is a good quadratic
set of type (P ).

Let π be an arbitrary plane of Q+(5, q). Then π cannot be contained in Π1 nor in
Π2 as neither of Q1, Q2 contains planes. So, π ∩ Πi with i ∈ {1, 2} is a line Li. Now,
π ∩ S = π ∩ (Q+(5, q) ∩ (Π1 ∪Π2)) = π ∩ (Π1 ∪Π2) = L1 ∪ L2. Note also that L1 and L2

are mutually distinct as otherwise the line L1 = L2 must be contained in Q−(3, q) which
cannot be true.

Note that if Q1 and Q2 are two Q(4, q)-quadrics intersecting in a Q−(3, q)-quadric and
S := Q1 ∪Q2, then each point of Q1 ∩Q2 is contained in 2(q+ 1) S-lines and every point
of Q1∆Q2 is contained in exactly q + 1 S-lines.

For q = 2, we can also construct the following family of examples.

Proposition 5.2. Let O be a (necessarily classical) ovoid of Q+(5, 2), let x ∈ O and let
{L1, L2, L3} be a set of three lines of Q+(5, 2) through x forming an ovoid of Sx. Put
S := (L1 ∪ L2 ∪ L3 ∪ O) \ {x} and S := Q+(5, 2) \ S. Then S is a good quadratic set of
type (P).

Proof. Let π be a plane of Q+(5, 2) through x and let Li with i ∈ {1, 2, 3} be the unique
line of {L1, L2, L3} contained in π. Then π ∩ S is the union of the two lines of π through
x distinct from Li.

Let π be a plane of Q+(5, 2) not containing x, let π′ be the unique plane through x
meeting π in a line and let Li with i ∈ {1, 2, 3} be the unique line of {L1, L2, L3} contained
in π′ and let o be the unique point of O contained in π. Then π ∩ S consists of all points
of π, except for the point o and the unique point in Li ∩ π. It follows that π ∩ S is the
union of two distinct lines of π.

By Proposition 1.2 and Lemma 3.2, the quadratic sets described in Propositions 5.1 and
5.2 are obtained by intersecting Q+(5, q) with quadrics of PG(5, q).

We can divide the good quadratic sets of type (P) of Q+(5, 2) constructed in Proposition
5.2 into two subfamilies. Suppose as in Proposition 5.2 that O is an ovoid of Q+(5, 2),
that x ∈ O and that {L1, L2, L3} is an ovoid of Sx. The ovoid O is classical and thus is
obtained by intersecting Q+(5, 2) with a 3-dimensional subspace α of PG(5, 2). Let Π1, Π2

and Π3 denote the three hyperplanes of PG(5, 2) through α and put Qi := Πi ∩Q+(5, 2).
Then Q1, Q2 and Q3 are three Q(4, 2)-quadrics which mutually intersect in O. In fact, O
is an ovoid of each of Q1, Q2, Q3 if we regard it as a generalized quadrangle. For every
i ∈ {1, 2, 3}, denote by Li the set of three lines of Q+(5, 2) through x contained in Πi

(or equivalently, in Qi). Then {L1,L2,L3} is a partition of the point set of Sx in three
ovoids. There are thus two possibilities:
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(a) {L1, L2, L3} = Li for some i ∈ {1, 2, 3};

(b) {L1, L2, L3} has a unique line in common with each of L1, L2 and L3.

We prove that case (a) corresponds to the standard examples of good quadratics sets of
type (P), namely those that are discussed in Proposition 5.1, and that case (b) gives rise
to other (nonstandard) examples.

As in Proposition 5.2, we put S := (L1 ∪ L2 ∪ L3 ∪ O) \ {x} and S = Q+(5, 2) \ S.
Let O′ denote the unique ovoid of Q1

∼= Q(4, 2) through x distinct from O. Then O′ is
also an ovoid of Q+(5, 2) (as every plane of Q+(5, 2) intersects Q1 in a line and thus O′

in a singleton) and O′ is contained in S. Obviously, the point x ∈ O′ is contained in six
S-lines, namely the lines of Q+(5, 2) through x distinct from L1, L2 and L3.

Suppose that case (b) occurs. Then without loss of generality, we may suppose that
Li ∈ Li for every i ∈ {1, 2, 3}. We claim that every point y ∈ O′ \ {x} ⊆ S is contained
in precisely four S-lines. Note first that each of the three lines of Q1 through y contains
a point of O and can therefore not be an S-line. Now, a line of Q+(5, 2) through y not
contained in Q1 is an S-line if and only if it is disjoint from L2 ∪ L3, i.e. if and only
if it is distinct from the two lines of Q+(5, 2) through y meeting L2 and L3. So, we
indeed see that y is contained in precisely four S-lines. The good quadratic sets of type
(P) corresponding to case (b) can therefore not be included in the standard examples
constructed in Proposition 5.1, as otherwise y would be contained in either three or six
S-lines.

Suppose that case (a) occurs. Then without loss of generality, we assume that {L1, L2,
L3} = L1. The ovoid O′ of Q+(5, 2) is obtained by intersecting Q+(5, 2) with a 3-
dimensional subspace α′ of PG(5, 2). Besides Π1, there are two other hyperplanes of
PG(5, 2) through α which we will denote by Π′2 and Π′3. Put Q′i := Π′i ∩ Q+(5, 2) for
every i ∈ {2, 3}. Then Q′2 and Q′3 are two Q(4, 2)-quadrics meeting in O′. Now, as
S = (L1 ∪ L2 ∪ L3 ∪ O) \ {x} = Q1 \ O′, we have S = Q′2 ∪ Q′3. The good quadratic
sets of type (P) corresponding to case (a) are therefore included in the standard examples
constructed in Proposition 5.1.

The following will be the main result of this section.

Proposition 5.3. If q ≥ 3, then every good quadratic set of type (P) of Q+(5, q) is as
obtained in Proposition 5.1. If q = 2, then every good quadratic set of type (P) of Q+(5, q)
is obtained as in Proposition 5.2.

As the complements of the 2-ovoids of Q+(5, 2) are precisely the good quadratic sets of
type (P) of Q+(5, 2), we thus have:

Corollary 5.4. The 2-ovoids of Q+(5, 2) are precisely the complements of the sets de-
scribed in Proposition 5.2.

Corollary 5.4 in combination with the discussion preceding Proposition 5.3 allows us to
see that there are two families of 2-ovoids of Q+(5, 2) (see also Section 9). m-ovoids of
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general polar spaces have been studied at various places in the literature, see e.g. [1, 18].
We did not find a reference in the literature for the complete classification of 2-ovoids of
Q+(5, 2).

The remainder of this section is devoted to the proof of Proposition 5.3. So, we assume
here that S is a set of points of Q+(5, q) such that every plane π of Q+(5, q) intersects S
in a pencil. If L1 and L2 are the two lines contained in π ∩ S, then the unique point in
L1 ∩ L2 is called the center of π.

A point x ∈ S is said to be of type (1) if there exists a plane of Q+(5, q) through x
for which x is the center. A point x ∈ S is said to be of type (2) if there exists a plane of
Q+(5, q) through x for which x is not the center. In principle, a point of S can thus have
both types (1) and (2).

Lemma 5.5. We have |S| = (2q + 1)(q2 + 1).

Proof. There are 2(q + 1)(q2 + 1) planes contained in Q+(5, q). Each of these planes
contains 2q+ 1 points of S, and conversely each point of S is contained in 2(q+ 1) planes

of Q+(5, q). It follows that |S| = 2(q+1)(q2+1)·(2q+1)
2(q+1)

= (2q + 1)(q2 + 1).

Lemma 5.6. The number of S-lines is equal to 2(q + 1)(q2 + 1).

Proof. There are 2(q+1)(q2+1) planes contained in Q+(5, q) and each of these planes con-
tains exactly two S-lines. As each S-line is contained in precisely two planes of Q+(5, q),

we see that the total number of S-lines is equal to 2(q+1)(q2+1)·2
2

= 2(q + 1)(q2 + 1).

Lemma 5.7. Let x be a point of type (1) of S. Then x is contained in either 2q, 2q + 1
or 2q + 2 S-lines. Moreover, if x does not have type (2), then x is contained in exactly
2q + 2 S-lines.

Proof. Let π be a plane of Q+(5, q) for which x is the center and denote by L1 and L2

the two S-lines contained in π.
Each S-line through x that does not lie in π is contained in a unique plane of Q+(5, q)

that meets π in a line. There are now q − 1 planes of Q+(5, q) through x meeting π in
a line distinct from L1 and L2. Each of these planes has x as center and contains two
S-lines that do not lie in π. There are also two planes of Q+(5, q) meeting π in a line
Li for some i ∈ {1, 2}. The center of such a plane lies in Li. If x is the center (as it is
the case if x does not have type (2), then there is a unique S-line in the plane through x
not contained in π. If the center is distinct from x, then there is no such S-line. Taking
into account that there are also two S-lines in π through x (namely L1 and L2), we
thus see that the total number of S-lines through x is either N , N + 1 or N + 2, with
N := 2(q−1)+2 = 2q. If x is not a point of type (2), then the number of S-lines through
x is equal to N + 2 = 2q + 2.

Lemma 5.8. Let x be a point of type (2) of S. Then x is contained in either q + 1 or
q + 2 S-lines. Moreover, if x does not have type (1), then x is contained in exactly q + 1
S-lines.
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Proof. Let π be a plane of Q+(5, q) through x for which x is not the center and denote
by L1 and L2 the two S-lines contained in π such that x ∈ L1.

Each S-line through x that does not lie in π is contained in a unique plane of Q+(5, q)
that meets π in a line. There are now q planes π′ of Q+(5, q) through x meeting π in a
line distinct from L1. As the line π ∩ π′ meets S in two points, the center of π′ lies in
π′ \ π and so there is a unique S-line through x contained in π′ (but not in π). There
is also a unique plane meeting π in the line L1, and the center of this plane lies on L1.
If the center is distinct from x (as it is the case if x does not have type (1)), then the
plane does not contain an S-line through x distinct from L1. If the center equals x, then
there is a unique such S-line. Taking into account that there is also a unique S-line in π
through x (namely L1), we thus see that the total number of S-lines through x is either
N or N + 1, with N := q + 1. If x is not a point of type (1), then the number of S-lines
through x is equal to N = q + 1.

The following is a consequence of Lemmas 5.7, 5.8 and the fact that q + 2 < 2q for every
q ≥ 3.

Corollary 5.9. If q ≥ 3, then no point of S has both types (1) and (2). Moreover, every
point of type (1) is contained in exactly 2q + 2 S-lines and every point of type (2) is
contained in exactly q + 1 S-lines.

We can now distinguish two cases:

• Case 1: No point of S has both types (1) and (2).

• Case 2: There is at least one point in S that has types (1) and (2).

By Corollary 5.9, we know that q must be equal to 2 if case 2 occurs.
We show in this section that case (1) corresponds to the standard examples described

in Proposition 5.1 and that case (2) corresponds to the extra examples described in Propo-
sition 5.2, see Corollary 5.17 and Propositions 5.20, 5.23.

5.2 Treatment of Case 1

We classify here sets S of points of Q+(5, q) that satisfy the following two properties:

(I) every plane of Q+(5, q) intersects S in a pencil;

(II) no point of S has types (1) and (2).

By Lemmas 5.7 and 5.8, we know that the following must hold.

Corollary 5.10. Every S-point of type (1) is contained in 2(q + 1) S-lines and every
S-point of type (2) is contained in q + 1 S-lines.

Lemma 5.11. Any line L of Q+(5, q) containing a point x ∈ S of type (2) either is
contained in S or contains exactly two points of S which both have type (2).
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Proof. Let π be a plane of Q+(5, q) through L. Then π ∩ S = L1 ∪ L2 for two distinct
lines L1 and L2 in π. Without loss of generality, we may suppose that x ∈ L1 \ L2. The
line L1 through x is entirely contained in S. Every other line of π through x contains
precisely two points of S and those two points have both type (2).

Lemma 5.12. Any line L of Q+(5, q) containing at least three points of S is completely
contained in S.

Proof. Let π be a plane of Q+(5, q) through L. As π ∩ S is a pencil of two lines and L
has at least three points in common with π ∩ S, the line L must be one of the two lines
of this pencil.

Lemma 5.13. Any line L of Q+(5, q) with |L∩ S| ≥ 2 containing an S-point of type (1)
is completely contained in S.

Proof. Let π be a plane of Q+(5, q) through L with center c. Recall that π ∩S is a pencil
of two lines. As L ⊆ π has an S-point of type (1), it is a line of π through c. As L has at
least two points in common with π ∩ S, it is one of the two lines of the pencil.

Lemma 5.14. Every S-line L contains one point of type (1) and q points of type (2).

Proof. Let π be an arbitrary plane of Q+(5, q) containing L and let c be the center of π.
Then c ∈ L has type (1) and every point of L \ {c} has type (2).

Lemma 5.15. Let L1 and L2 be two distinct S-lines through a given point x of type (2).
Then there is no plane of Q+(5, q) containing L1 and L2.

Proof. If there were a plane π of Q+(5, q) containing L1 and L2, then π ∩ S = L1 ∪ L2

and x would be the center of π, which is not the case.

Proposition 5.16. The set O of points of type (1) is an ovoid of Q+(5, q) and thus
contains q2 + 1 points of S. If this ovoid is classical, then S = Q1 ∪ Q2 for two distinct
Q(4, q)-quadrics Q1 and Q2 of Q+(5, q) through O.

Proof. Let π be an arbitrary plane of Q+(5, q). Then π ∩ S = L1 ∪ L2 for two distinct
lines L1 and L2 of Q+(5, q). The unique point c in L1 ∩ L2 is then the unique point of
type (1) in π, and all points of (L1 ∪ L2) \ {c} have type (2). This proves that O is an
ovoid of Q+(5, q).

Suppose now that O is classical. Then 〈O〉 is 3-dimensional and O = 〈O〉 ∩Q+(5, q).
Let K1 be an S-line through a point x ∈ O. The 4-dimensional subspace 〈O,K1〉 intersects
Q+(5, q) then in a Q(4, q)-quadric Q1. We note the following.

(1) If y ∈ Q1 \ O, then there are q + 1 lines of Q+(5, q) through y meeting O, namely
the q + 1 lines of Q1 through y. All these lines are thus contained in Q1.

(2) If y ∈ S \O, then by Corollary 5.10 and Lemmas 5.13, 5.14 there are q + 1 lines of
Q+(5, q) through y meeting O. All these lines are contained in S.
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By [2, Theorem 7.3] or [19, Lemma 6.1], we know that the complement of O in Q1 is
connected and since K1 \ O ⊆ S ∩ Q1, we see from (1) and (2) that the whole of Q1 is
contained in S.

Now, there are 2(q + 1) lines of Q+(5, q) through x contained in S and q + 1 lines
of Q+(5, q) through x contained in Q1. Repeating the above argument for a line K2

through x not contained in Q1, we find that there exists another Q(4, q)-quadric Q2 that
is contained in S, namely Q+(5, q) ∩ 〈O,K2〉.

We now have Q1 ∪Q2 ⊆ S and Q1 ∩Q2 = O. As |Q1 ∪Q2| = (2q + 1)(q2 + 1) = |S|,
we have S = Q1 ∪Q2.

Corollary 5.17. If q = 2, then S is the union of two Q(4, q)-quadrics that meet in a
Q−(3, q)-quadric.

Proof. This follows from Proposition 5.16 and the fact that every ovoid of Q+(5, 2) is a
classical.

In view of Corollary 5.17, we may from now on suppose that q ≥ 3.

Lemma 5.18. Let x1, x2 and x3 be three distinct points of O and let L be an S-line through
x1 such that the unique points x′2 and x′3 of L collinear on Q+(5, q) with respectively x2
and x3 are distinct. Then there is a unique Q+(3, q)-quadric G containing {x1, x2, x3}∪L.
Moreover, all points of G lie in S.

Proof. The three points x1, x2 and x3 cannot lie on the same line of PG(5, q) as other-
wise the unique line of PG(5, q) containing them contains three points of Q+(5, q) and so
would be contained in Q+(5, q). So, 〈x1, x2, x3〉 is a plane necessarily intersecting Q+(5, q)
in a conic. It follows that 〈x1, x2, x3, L〉 is a 3-dimensional subspace of PG(5, q), whose
intersection with Q+(5, q) contains the lines L, x2x

′
2 and x3x

′
3. By looking at the pos-

sible intersections of Q+(5, q) with 3-dimensional subspaces (see Section 2), we see that
〈x1, x2, x3, L〉 intersects Q+(5, q) in a Q+(3, q)-quadric G. Obviously, G is the unique
Q+(3, q)-quadric containing {x1, x2, x3} ∪ L. Recall that the points and lines contained
in G define a (q + 1)× (q + 1)-grid.

Put K2 = x2x
′
2 and K3 = x3x

′
3. By Lemma 5.13, K2 and K3 are S-lines. Let L′

denote the unique line of G through x2 meeting K3, and let K1 denote the unique line of
G through x1 meeting L′. By applying Lemma 5.13 two consecutive times, once for L′

and another time for K1, we see that all points of L′ and all points of K1 are contained in
S. Now, the lines of G meeting the three mutually disjoint S-lines K1, K2 and K3 have
all their points in S by Lemma 5.12. These lines cover all points of G.

Lemma 5.19. Let L1 and L2 be two S-lines intersecting in a point x of type (2). Then
there are precisely q Q+(3, q)-quadrics through L1 ∪ L2 that have all their points in S.

Proof. Through x, there are q + 1 S-lines and each of these S-lines contains a unique
point of type (1) by Lemma 5.14. We denote by A the set of q + 1 S-points of type (1)
that arise in this way. The set consisting of the remaining (q2 + 1) − (q + 1) = q2 − q
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S-points of type (1) will be denoted by B. We denote by xi, i ∈ {1, 2}, the unique point
of type (1) contained in Li.

By Lemma 5.14, each Q+(3, q)-quadric through L1 ∪ L2 that is entirely contained in
S has q + 1 S-points of type (1) which consist of x1, x2 and q − 1 points of the set B.
Conversely, by Lemma 5.18 we know that for each of the q2 − q points y of B there is
a unique Q+(3, q)-quadric through {x1, x2, y} containing L1 (and thus also the unique
line L2 through x2 meeting L1) and entirely consisting of points of S. We can therefore
conclude that the number of Q+(3, q)-quadrics through L1∪L2 entirely consisting of points

of S is equal to |B|
q−1 = q2−q

q−1 = q.

Proposition 5.20. If q ≥ 3, then we also have that S = Q1 ∪ Q2 for two distinct
Q(4, q)-quadrics Q1 and Q2 intersecting in an elliptic quadric.

Proof. Let x be an S-point of type (2) and let L1, L2 be two distinct S-lines through
x. By Lemma 5.19, we know that there exist two Q+(3, q)-quadrics G1 and G2 through
L1 ∪ L2 that have all their points in S.

We show that the subspace 〈G1, G2〉 intersects Q+(5, q) in a Q(4, q)-quadric. Suppose
that this is not the case. Then 〈G1, G2〉 is a tangent hyperplane Πy for some point
y ∈ Q+(5, q) \ (G1∪G2). By considering a collection of q+ 1 planes of Q+(5, q) through y
intersecting G1 in a collection of q+1 mutually disjoint lines of G1, we see that y 6∈ S and
|Πy∩S| = (q+1)(2q+1). Indeed, q of these q+1 planes intersect G1∪G2 ⊆ S in a pencil
not containing y. As |G1 ∪G2| = 2q2 + 2q + 1, we see that |(Πy ∩ S) \ (G1 ∪G2)| = q. In
fact, q points of (Πy∩S)\(G1∪G2) must be contained in the plane 〈y, L1〉 and q points of
(Πy∩S)\ (G1∪G2) must be contained in 〈y, L2〉. This implies that (Πy∩S)\ (G1∪G2) =
yx \ {x}. But that is impossible as y 6∈ S.

So, the subspace 〈G1, G2〉 intersects Q+(5, q) in a Q(4, q)-quadric Q1. We show that
Q1 is completely contained in S.

Suppose that the only lines of Q1 through x that are contained in S are the lines L1

and L2. Since q ≥ 3, there are at least two additional lines of Q1 through x, two of which
we will denote by L3 and L4. By Lemma 5.11, the set Li \ {x} with i ∈ {3, 4} contains a
unique S-point xi and this S-point has type (2).

For every i ∈ {1, 2}, the set of points of type (1) contained in Gi is an ovoid Oi of
Gi by Lemma 5.14. This ovoid Oi contains points x1 ∈ L1 and x2 ∈ L2. In Gi, the
points x1 and x2 have two neighbours, namely x and a certain point ui. Obviously, also
O′i := (Oi \ {x1, x2}) ∪ {x, ui} is an ovoid of Gi. Note that also O′′i := x⊥3 ∩ Gi and
O′′′i := x⊥4 ∩Gi are ovoids of Gi. We show that every point v of Oi \{x1, x2} = O′i \{x, ui}
is collinear with x3 and x4. It suffices to show that v ∼ x3 as the reasoning showing that
v ∼ x4 is then completely similar. Let x′3 6= x denote the unique point of L3 collinear
with v. The line vx′3 contains an S-point of type (1), namely v, and an additional point
of S, namely the unique point in vx′3 ∩ G3−i and so must be contained in S by Lemma
5.13. But then x′3 ∈ S ∩ L3 implies that x′3 = x3.

We thus see that all points of O′1 \ {x, u1} and O′2 \ {x, u2} are collinear with x3 and
x4. As x is also collinear with x3 and x4, we see that O′′1 = O′′′1 = O′1 and O′′2 = O′′′2 = O′2,
i.e. also u1 and u2 are collinear with x3 and x4. So, we have located 2q + 1 common
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neighbours of x3 and x4 in Q1, namely the points of O′1 ∪ O′2, but that is impossible as
there are only q + 1 such neighbours.

We thus see that there exists an S-line L3 of Q1 through x that is distinct from L1

and L2. We now prove that every point y of Q1 noncollinear with x belongs to S. Let
L be the unique line of Q1 through y meeting L3. This line contains three points of S,
namely the unique points in L ∩G1, L ∩G2 and L ∩ L3 and so all points of L belong to
S by Lemma 5.12. In particular, the point y belongs to S. We now also show that every
point z of Q1 \{x} collinear with x belongs to S. Let K be a line of Q1 through z distinct
from xz. Then all q ≥ 3 points of K \ {z} belong to S and so K itself is also contained
in S by Lemma 5.12. In particular, we have z ∈ S.

We thus see that the Q(4, q)-quad Q1 is contained in S. This already amounts for
(q + 1)(q2 + 1) points of the (2q + 1)(q2 + 1) points of S. The points of O ∩ Q1 form an
ovoid of Q1 having exactly q2 + 1 points, showing that O ∩ Q1 = O, i.e. O ⊆ Q1. Now,
let x′ ∈ S \ Q1. Then x′ necessarily has type (2). Taking two S-lines L′1 and L′2 through
x′ and repeating the above argument, we see that there exists a Q(4, q)-quad Q2 through
x′ and O completely contained in S. As Q1 6= Q2 and O ⊆ Q1∩Q2, we have Q1∩Q2 is a
Q−(3, q)-quadric, O = Q1∩Q2 and |Q1∩Q2| = |Q1|+ |Q2|− |O| = (2q+ 1)(q2 + 1) = |S|.
So, we must have that S = Q1 ∪Q2.

5.3 Treatment of Case 2

We classify here sets S of points of Q+(5, q) that satisfy the following two properties:

(I) every plane of Q+(5, q) intersects S in a pencil of two lines;

(II) there are points in S that have both types (1) and (2).

By Corollary 5.9, we then know that q = 2. The number of S-lines through a point x ∈ S
will be denoted by I(x) and called the index of x. By Lemmas 5.7 and 5.8, we know the
following.

Lemma 5.21. The index of a point that has both types (1) and (2) is equal to 4.

Lemma 5.22. One of the following two cases occurs for a plane π of Q+(5, 2) intersecting
S in the union L1 ∪ L2 of two distinct lines L1 and L2.

(a) The center c of π has index 6 and the four points of (L1 ∪ L2) \ {c} have index 3.

(b) The center c of π has index 4 and for each i ∈ {1, 2}, one point of Li \{c} has index
4 while the other has index 3.

Moreover, there exists a plane π of Q+(5, 2) for which case (b) occurs.

Proof. For every i ∈ {1, 2}, let πi be the unique plane of Q+(5, 2) through Li distinct
from π and denote by ci the center of πi. The indices of the points of L1 ∪ L2 depend on
the precise position of the points c1 and c2 and can be computed with the information
provided in the proofs of Lemmas 5.7 and 5.8. If c1 = c2 = c, then case (a) occurs. If
c1 6= c 6= c2, then case (b) occurs, with the points c1 ∈ L1 \ {c} and c2 ∈ L2 \ {c} having
index 4. If precisely one of c1, c2 equals c, then the following third possibility occurs.
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(c) The center c of π has index 5, there exists a unique i ∈ {1, 2} such that the two
points of Li \ {c} have index 3, one point of L3−i \ {x} has index 3 and the other
point of L3−i \ {c} has index 4.

We prove however that possibility (c) cannot occur. Indeed, in this case the center c3−i
of the plane π3−i would have index 4 and case (b) would occur for this plane π3−i. This
means that all points of π3−i ∩ S have index 3 or 4, but that is not possible as the point
c ∈ π3−i ∩ S has index 5.

If case (b) never occurs for a plane π of Q+(5, 2), then all points of S have index 3 or
6, in contradiction with Lemma 5.21.

Proposition 5.23. (1) There is a unique point x with index 6, all 12 points of x⊥ ∩ S
distinct from x have index 3 and all 12 points of S \ x⊥ have index 4.

(2) There exists an ovoid O of Q+(5, 2) containing x and an ovoid {L1, L2, L3} of Sx
such that S = Q+(5, 2) \ S, where S = (L1 ∪ L2 ∪ L3 ∪O) \ {x}.

(3) There exists no Q(4, 2)-quadric containing L1, L2, L3 and O.

Proof. Let π be a plane of Q+(5, 2) for which case (b) of Lemma 5.22 occurs. Put
π∩S = L1∪L2 with L1 = {c, x1, y1} and L2 = {c, x2, y2} where I(c) = I(x1) = I(x2) = 4
and I(y1) = I(y2) = 3.

Let π1 be the unique plane of Q+(5, 2) through y1y2 distinct from π. All other six
planes meeting π in a line contain a point with index 4 and so correspond to case (b) of
Lemma 5.22, implying that each such plane contains three S-points with index 4 and two
S-points with index 3. There are now two possibilities.

(1) π1 is a plane of type (a) containing a unique S-point x with index 6 and four
S-points with index 3. As each point of S ∩ π is contained in three planes of Q+(5, 2)
meeting π in a line and each point of S \ π is contained in a unique plane of Q+(5, 2)
meeting π in a line, we see that there exists a unique S-point with index 6 (namely x),
6 · 3 + 1 · 0− 2 · 3 = 12 S-points with index 4 and 6 · 2 + 1 · 4− 2 · 2 = 12 S-points with
index 3. By Lemma 5.22, the 12 S-points of index 3 are necessarily the S-points of x⊥∩S
distinct from x. There are three lines L1, L2 and L3 through x not contained in S and no
plane through x can contain two of these lines, i.e. {L1, L2, L3} is an ovoid of Sx. If π′

is a plane not containing x, then π′ contains a unique point of O′ := Q+(5, 2) \ (S ∪ x⊥).
This also shows that O := {x} ∪O′ is an ovoid of Q+(5, 2). We can now see that S is as
described in the proposition. Note that there cannot exist a Q(4, 2)-quadric containing
L1, L2, L3 and O, as otherwise the good quadratic set would belong to the standard ones
constructed in Proposition 5.1 and these only have S-points with indices 3 and 6.

(2) π1 is a plane of type (b) containing three S-points with index 4 and two S-points
with index 3. As each point of S ∩π is contained in three planes of Q+(5, 2) meeting π in
a line and each point of S\π is contained in a unique plane of Q+(5, 2) meeting π in a line,
we see that there exist 7 ·3−2 ·3 = 15 S-points with index 4 and 7 ·2−2 ·2 = 10 S-points
with index 3. We prove that there are no examples corresponding to this situation. To
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that end, we consider the model of Q+(5, 2) where the points are the subsets of size 3
of {1, 2, 3, 4, 5, 6, 7} and where two distinct points are adjacent whenever they meet in a
singleton (see Section 9). For every σ ∈ S7, we define

P [σ] := {{1σ, 2σ, 3σ}, {1σ, 4σ, 5σ}, {1σ, 6σ, 7σ}, {2σ, 4σ, 6σ}, {2σ, 5σ, 7σ}, {3σ, 4σ, 7σ}, {3σ, 5σ, 6σ}}.

Then {P [σ] |σ ∈ S7} is the set of all 30 planes of Q+(5, 2). The lines of Q+(5, 2) have the
form {{x, y1, z1}, {x, y2, z2}, {x, y3, z3}}, where {x, y1, z1, x2, y2, x3, y3} = {1, 2, 3, 4, 5, 6, 7}.

Consider now an S-point x with index 4 which is the center of a plane α1. In α1, there
exists a unique line L through x such that none of the two points of L \ {x} belongs to S.
If α2 is the other plane of Q+(5, 2) through L, then (α1 ∪ α2) \ L is contained in S and
the four S-lines through x are the four lines through x contained in α1 ∪ α2 and distinct
from L. If K is a line of Q+(5, 2) through x not contained in α1 ∪ α2, then the fact that
the unique plane through K meeting π1 in a line (necessarily contained in S) has type
(P) implies that K contains besides x one other point of S.

Without loss of generality, we may suppose that x = {1, 2, 3} and L = {{1, 2, 3}, {1, 4, 5},
{1, 6, 7}}. So, we have

(1) {1, 2, 3} ∈ S and {1, 4, 5}, {1, 6, 7} ∈ S := Q+(5, 2) \ S.

Expressing that (α1 ∪ α2) \ L ⊆ S leads to

(2) {2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 5, 7}, {3, 4, 6}, {3, 4, 7}, {3, 5, 6}, {3, 5, 7} ∈ S.

The lines ofQ+(5, 2) through x not contained in α1 nor in α2 are the lines {x, {1, 5, 6}, {1, 4,
7}}, {x, {1, 4, 6}, {1, 5, 7}}, {x, {2, 4, 5}, {2, 6, 7}} and {x, {3, 4, 5}, {3, 6, 7}}. Each of
these four lines contains a unique point of S. This leads to 16 possibilities. Specifically, if
we also take (1) into account we see that S contains either A1 := {{1, 4, 5}, {1, 4, 6}, {1, 5,
6}, {1, 6, 7}, {2, 4, 5}, {3, 4, 5}}, A2 := {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {1, 6, 7}, {2, 4, 5}, {3, 6,
7}}, A3 := {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {1, 6, 7}, {2, 6, 7}, {3, 6, 7}}, A(47)(56)

1 , A
(4756)
1 , A

(67)
1 ,

A
(23)
2 , A

(23)(47)(56)
2 , A

(47)(56)
2 , A

(23)(4756)
2 , A

(4756)
2 , A

(67)
2 , A

(23)(67)
2 , A

(47)(56)
3 , A

(4756)
3 and A

(67)
3 .

Without loss of generality, we thus suppose that either A1 ⊆ S, A2 ⊆ S or A3 ⊆ S. We
now give a unified treatment of these three cases.

If A1 ⊆ S, then we define

A = A1, u = {2, 3, 7}, v = {4, 5, 7},

π1 = P [(1236)], π2 = P [(1367)], π3 = P [(136)], π4 = P [(126)], π5 = P [(17)],

E = {{1, 2, 4}, {1, 2, 5}, {1, 2, 7}, {1, 3, 4}, {1, 3, 5}, {1, 3, 7}, {2, 3, 6}, {4, 6, 7}, {5, 6, 7}},

Lu = {{u, {1, 3, 4}, {3, 5, 6}}, {u, {1, 5, 7}, {4, 6, 7}}, {u, {1, 4, 7}, {5, 6, 7}},

{u, {1, 2, 4}, {2, 5, 6}}, {u, {1, 2, 5}, {2, 4, 6}}, {u, {1, 3, 5}, {3, 4, 6}}},

Lv = {{v, {1, 3, 7}, {2, 6, 7}}, {v, {1, 2, 7}, {3, 6, 7}}, {v, {1, 2, 4}, {3, 4, 6}},

{v, {1, 3, 4}, {2, 4, 6}}, {v, {1, 2, 5}, {3, 5, 6}}, {v, {1, 3, 5}, {2, 5, 6}}}.

19



If A2 ⊆ S, then we define

A = A2, u = {1, 2, 6}, v = {1, 3, 7},

π1 = P [(1236)], π2 = P [(1246)], π3 = P [(126)], π4 = P [(135)], π5 = P [(14)],

E = {{1, 2, 7}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}},
Lu = {{u, {3, 4, 6}, {5, 6, 7}}, {u, {3, 5, 6}, {4, 6, 7}}, {u, {1, 3, 4}, {1, 5, 7}},
{u, {2, 3, 4}, {2, 5, 7}}, {u, {1, 3, 5}, {1, 4, 7}}, {u, {2, 3, 5}, {2, 4, 7}}},

Lv = {{v, {2, 3, 4}, {3, 5, 6}}, {v, {2, 4, 7}, {5, 6, 7}}, {v, {2, 6, 7}, {4, 5, 7}},
{v, {2, 5, 7}, {4, 6, 7}}, {v, {2, 3, 5}, {3, 4, 6}}, {v, {2, 3, 6}, {3, 4, 5}}}.

If A3 ⊆ S, then we define

A = A3, u = {2, 3, 6}, v = {4, 5, 6},

π1 = P [(124)], π2 = P [(135)], π3 = P [(1235)], π4 = P [(1246)], π5 = P [(167)],

E = {{1, 2, 4}, {1, 2, 5}, {1, 2, 7}, {1, 3, 4}, {1, 3, 5}, {1, 3, 7}, {2, 3, 4}, {2, 3, 5}, {4, 5, 7}},
Lu = {{u, {1, 2, 7}, {2, 4, 5}}, {u, {1, 2, 4}, {2, 5, 7}}, {u, {1, 3, 7}, {3, 4, 5}},
{u, {1, 3, 4}, {3, 5, 7}}, {u, {1, 2, 5}, {2, 4, 7}}, {u, {1, 3, 5}, {3, 4, 7}}},

Lv = {{v, {1, 4, 7}, {2, 3, 4}}, {v, {1, 3, 4}, {2, 4, 7}}, {v, {1, 5, 7}, {2, 3, 5}},
{v, {1, 3, 5}, {2, 5, 7}}, {v, {1, 2, 4}, {3, 4, 7}}, {v, {1, 2, 5}, {3, 5, 7}}}.

We thus have

(3) A ⊆ S.

Now, if π is a plane intersecting A ⊆ S in two points, then π \A necessarily is contained
in S. Applying this observation to the planes π1, π2, π3 and π4, we then see that

(4) E ⊆ S.

Consider now the point u. If u ∈ S, then by (1), (2) and (4) the six elements of Lu are
six lines of Q+(5, 2) through u contained in S. That is impossible as there no S-points
with index 6. So,

(5) u ∈ S.

Now, the plane π5 intersectsA∪{u} ⊆ S in two points. This implies that π5\(A∪{u}) ⊆ S.
In particular, we have that

(6) v ∈ S.

Now, by (1), (2), (4) and (6) the six elements of Lv are six lines of Q+(5, 2) through
v contained in S. As there are no S-points with index 6, we have reached our final
contradiction.
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6 Good quadratic sets of type (SL)

In the following two propositions, we describe the two standard examples of good quadratic
sets of type (SL).

Proposition 6.1. Let x be a point of Q+(5, q) and L a set of lines of Q+(5, q) through x
forming an ovoid of Sx. Then S :=

⋃
L∈L L is a good quadratic set of type (SL) containing

q2 + q + 1 points.

Proof. Let π be an arbitrary plane of Q+(5, q).
Suppose x ∈ π. The fact that L is an ovoid of Sx implies that there is a unique line

L ∈ L in π. Then S ∩ π is the line L.
Suppose x 6∈ π. Let π′ denote the unique plane through x meeting π in a line. Let

L′ be the unique line of L contained in π′. Then L′ ∩ π is a singleton {x′} and hence
π ∩ S = {x′}.

Obviously, we have |S| = 1 + q · |L| = q2 + q + 1.

Proposition 6.2. Every Q+(3, q)-quadric Q is a good quadratic set of type (SL).

Proof. Q is obtained by intersecting Q+(5, q) with a 3-dimensional subspace α. Let π be
an arbitrary plane of Q+(5, q). AsQ does not contain planes and since π and α meet, there
are two possibilities: π meets Q in a point or in a line. We prove that both possibilities
occur.

Let x be a point of Q and L1, L2 the two lines of Q through x. There are four planes of
Q+(5, q) containing (precisely) one of the lines L1, L2 and each of these planes intersects
Q in a line. The remaining 2(q + 1)− 4 = 2(q− 1) planes of Q+(5, q) through x intersect
Q in the singleton {x}.

By Lemma 3.2, the quadratic set of type (SL) constructed in Proposition 6.2 can be
obtained by intersecting Q+(5, q) with a quadric of PG(5, q). Assuming that Q+(5, q)
has equation X1X2 + X3X4 + X5X6 = 0, a situation as in Proposition 6.2 occurs if we
intersect Q+(5, q) with the subspace with equation X1 = X2 = 0, or with the quadric
with equation a11X

2
1 + a12X1X2 + a22X

2
2 = 0 where a11, a22 ∈ F∗q and a12 ∈ Fq such that

the polynomial x11X
2 + a12X + a22 is irreducible in Fq[X].

The good quadratic sets constructed in Proposition 6.2 contain (q + 1)2 points and so
cannot be isomorphic to the ones constructed in Proposition 6.1.

We now prove that every good quadratic set of type (SL) of Q+(5, q) can be obtained as
in Proposition 6.1 or as in Proposition 6.2. So, assume now that S is a set of points of
Q+(5, q) meeting each plane of Q+(5, q) in either a singleton or a line.

Lemma 6.3. Any line L of Q+(5, q) containing at least two points of S has all its points
in S.

Proof. Consider a plane π of Q+(5, q) through L. As |π ∩ S| ≥ |L∩ S| ≥ 2, we then have
that π ∩ S is a line, necessarily equal to L.
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The following is a rephrasing of Lemma 6.3.

Corollary 6.4. S is a subspace of the geometry of the points and lines of Q+(5, q).

Lemma 6.5. Any two disjoint S-lines L1 and L2 are opposite.

Proof. Suppose this is not the case. Then there is a line L of Q+(5, q) meeting L1 and L2

such that 〈L,L1〉 and 〈L,L2〉 are planes of Q+(5, q). But each of these planes would then
contain at least q + 2 points of S, an obvious contradiction.

Lemma 6.6. If L1 and L2 are two disjoint S-lines, then 〈L1, L2〉∩Q+(5, q) is a Q+(3, q)-
quadric which is entirely contained in S.

Proof. By Lemma 6.5, we know that 〈L1, L2〉 ∩ Q+(5, q) is a Q+(3, q)-quadric. As this
Q+(3, q)-quadric is the smallest subspace containing L1∪L2 ⊆ S, we know from Corollary
6.4 that it is contained in S.

Proposition 6.7. If there are two disjoint S-lines, then S is a Q+(3, q)-quadric.

Proof. By Lemma 6.6, we know that there is some Q+(3, q)-quadric Q which is entirely
contained in S. We show that S = Q.

Suppose to the contrary that S 6= Q and let x ∈ S \ Q. There is a point y ∈ Q
collinear on Q+(5, q) with x. By Lemma 6.3, the line xy is completely contained in S.
We show that 〈y,Q〉 ∩Q+(5, q) is a Q(4, q)-quadric.

Suppose that this is not the case. Then 〈L,Q〉 is a hyperplane and there is a plane of
Q+(5, q) through the tangency point containing xy ⊆ S and another line in Q ⊆ S. This
is clearly impossible.

So, Q′ = 〈xy,Q〉 ∩Q+(5, q) is a Q(4, q)-quadric. As Q ∪ xy ⊆ S and Q is a maximal
subspace of Q′ (regarded as generalized quadrangle), the fact that S ∩Q′ is a subspace of
Q′ then implies that S ∩ Q′ = Q′, i.e. Q′ ⊆ S. But as every plane of Q+(5, q) intersects
Q ⊆ S in a line, there can then not exist planes meeting S in singletons, a contradiction.
So, we must have S = Q.

In the sequel, we may therefore assume that any two S-lines meet in a singleton.

Lemma 6.8. There exists a point x∗ which is contained in all S-lines. Moreover, the set
Lx∗ of all S-lines through x∗ is a partial ovoid of Sx∗.

Proof. This follows from the fact that there are no disjoint S-lines and no planes of
Q+(5, q) containing at least two S-lines.

Lemma 6.9. No point of Q+(5, q) that is noncollinear with x∗ on Q+(5, q) can be con-
tained in S.

Proof. Suppose y is such a point. Let L be an S-line through x∗ and let z be the unique
point of L collinear with y on Q+(5, q). As S is a subspace, yz must be an S-line meeting
the S-line L in a point distinct from x∗, a contradiction.
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Lemma 6.10. Lx∗ is an ovoid of Sx∗.

Proof. Suppose that this is not the case. Then by Lemma 6.8, we know that there is a
plane π through x∗ meeting S in the singleton {x∗}. If L is a line of π not containing x∗

and π′ is the plane of Q+(5, q) through L distinct from π, then π′ would be disjoint from
S by Lemma 6.9, an obvious contradiction.

We have thus proved the following.

Proposition 6.11. If any two S-lines meet in a singleton, then S is as in Proposition
6.1.

7 Good quadratic sets of type (LP)

7.1 Examples and basic properties

In the following proposition, we describe the standard examples of good quadratic sets
of type (LP). By Lemma 3.2, these quadratic sets arise as intersections of Q+(5, q) with
quadrics of PG(5, q).

Proposition 7.1. The union of two Q(4, q)-quadrics Q1 and Q2 intersecting in a Q+(3, q)-
quadric or in a quadric of type xQ(2, q) is a good quadratic set of type (LP).

Proof. Let Π1 and Π2 be two hyperplanes of PG(5, q) for which Q1 = Π1 ∩Q+(5, q) and
Q2 = Π2 ∩Q+(5, q). Put S := Q1 ∪Q2. Let π be an arbitrary plane of Q+(5, q). Then π
cannot be contained in Π1 nor in Π2 as neither of Q1, Q2 contains planes. So, π∩Πi with
i ∈ {1, 2} is a line Li. Now, π∩S = π∩ (Q+(5, q)∩ (Π1∪Π2)) = π∩ (Π1∪Π2) = L1∪L2.
We must therefore prove that we can choose the plane π in such a way that L1 = L2 and
also that we can choose another π such that L1 6= L2.

If we choose the plane π such that it contains a line L of Q1 ∩Q2, then we obviously
have L1 = L2. On the other hand, if we choose the plane π such that it contains a line
L1 of Q1 that is not line of Q1 ∩Q2, then L1 6= L2.

We note that if q = 2, then there do not exist two Q(4, q)-quadrics meeting in a Q+(3, q)-
quadric.

In this section, we will show that all good quadratic sets of type (LP) can be obtained
as described in Proposition 7.1. In the sequel, we suppose that S is a good quadratic set
of type (LP) of Q+(5, q). If π is a plane of type (P) of Q+(5, q) and π ∩ S = L1 ∪ L2 for
two lines L1 and L2, then the unique point in L1 ∩ L2 is called the center of π.

Lemma 7.2. There exists an ε ∈ {0, 1, . . . , q + 1} such that |S| = 2q3 + q + 1 + εq.
Moreover, if π is a plane of type (P), then the number of planes of type (P) meeting π in
a line is equal to ε+ q2 and ε of these planes contain the center of π.
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Proof. Put π∩S = L1∪L2 and {x} = L1∩L2. The points of S \π are partitioned by the
planes of Q+(5, q) that meet π in a line. There are now q2 planes of Q+(5, q) that meet
π in a line not containing x and each of these planes has type (P). The remaining q + 1
planes of Q+(5, q) that meet π in a line have type (L) or (P). So,

|S| = |π ∩ S|+ |S \ π| = (2q + 1) + q2(2q − 1) + (q − 1)q + εq = 2q3 + q + 1 + εq,

where ε ∈ {0, 1, . . . , q+1} is the number of planes of type (P) meeting π in a line through
x.

Lemma 7.3. If L is an S-line contained in a plane of type (L), then both planes of
Q+(5, q) through L have type (L).

Proof. Suppose to the contrary that π1 and π2 are the two planes of Q+(5, q) through L
such that π1 has type (L) and π2 has type (P). Put π2 ∩ S = L ∪ L′ and {x} := L ∩ L′.

We prove that every y ∈ L \ {x} is contained in q S-lines distinct from L. Note that
every S-line through y distinct from L is contained in a unique plane of Q+(5, q) distinct
from π1 that meets π2 in a line. Now, each of the q planes of Q+(5, q) through y distinct
from π1 that meets π2 in a line intersects π2 ∩ S in two points and so is a plane of type
(P) with center outside π2. These q planes thus give rise to q S-lines through y distinct
from L.

We prove that every plane π through y ∈ L \ {x} distinct from π2 that meets π1 in a
line is a plane of type (L). Indeed, there are q such planes and each such plane contributes
at least one and hence exactly one S-line through y distinct from L. Now, as π contains
one S-line through y and the line π ∩ π1 intersects S in the singleton {y}, we see that π
must be a plane of type (L).

We now compute an upper bound for the number of points of S. Each point of S \ π1
is contained in a unique plane meeting π1 in a line. There are q2 such planes that meet π1
in a line that does not contain x and each such plane has type (L) and thus contributes
q points of S \ π1. The remaining q + 1 planes intersecting π1 in a line have type (L) or
(P). So, we have

|S| = |S ∩ π1|+ |π1 \ S| = (q + 1) + q2 · q + 1 · q + ε′ · 2q + (q − ε′)q

= q3 + q2 + 2q + 1 + ε′q ≤ q3 + 2q2 + 2q + 1,

with ε′ + 1 ∈ {1, 2, . . . , q + 1} the number of planes of type (P) meeting π1 in a line
(necessarily through x). For q ≥ 3, we know that q3 + 2q2 + 2q + 1 < 2q3 + q + 1 and so
we have a contradiction by Lemma 7.2. We therefore have q = 2. But we also show that
this case cannot occur.

If q = 2, then by Lemma 7.2, we have that |S| = 19+2ε with ε ∈ {0, 1, 2, 3} and by the
above we have |S| = 17 + 2ε′ with ε′ ∈ {0, 1, 2}. There are thus two possibilities. Either,
(ε, ε′) = (0, 1) or (ε, ε′) = (1, 2). We now count the number of S-lines through x not
contained in π2. Each such line is contained in a unique plane of Q+(5, q) that meets π1
in a line through x distinct from L. Among the two planes that meet π1 in a line through
x distinct from L, there are ε′ that have type (P) and 2 − ε′ that have type (L). So, the
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number of S-lines through x not contained in π2 equals 2 · ε′+(2− ε′) = 2+ ε′ = 3+ ε. On
the other hand, each S-line through x not contained in π2 is contained in a unique plane
of Q+(5, q) meeting π2 in a line. As 3 + ε ≥ 3, we see that the unique plane of Q+(5, 2)
intersecting π2 in L′ contains one S-line through x distinct from L′ and the unique plane
of Q+(5, 2) intersecting π2 in a line through x distinct from L and L′ has two S-lines
through x. The number of planes of type (P) of Q+(5, 2) meeting π2 in a line through x
is therefore 2, in contradiction with Lemma 7.2 and the fact that ε ∈ {0, 1}.

The following is an immediate consequence of Lemmas 7.2 and 7.3.

Corollary 7.4. We have ε ≥ 2.

We call an S-line nice if the two planes of Q+(5, q) through it have type (L). We obviously
have:

Lemma 7.5. Let L1 and L2 be two distinct nice S-lines meeting in a point. Then no
plane of Q+(5, q) through x can contain L1 and L2.

The following is an immediate consequence of Lemma 7.5.

Corollary 7.6. Let x ∈ Q+(5, q). Then the nice S-lines through x form a partial ovoid
of Sx. As a consequence, there are at most q + 1 nice S-lines through x.

Lemma 7.7. If L1 and L2 are two disjoint nice S-lines, then they are opposite.

Proof. If this were not the case, then there is a plane of Q+(5, q) containing L1 and a
point x of L2. But then π ∩ S cannot be a line.

Lemma 7.8. If L1 and L2 are two disjoint nice S-lines, then any line L of Q+(5, q)
meeting L1 and L2 is a nice S-line.

Proof. Let π be an arbitrary plane through L. Let π1 and π2 denote the planes through
respectively L1 and L2 that meet π in lines. Put L′i := πi ∩ π for every i ∈ {1, 2}. As
S ∩ π is disjoint from L′1 \ (L ∩ L′i) and L2 \ (L ∩ L′2), we have S ∩ π = L. We thus have
that L is a nice S-line.

The following is an immediate consequence of Lemma 7.8.

Corollary 7.9. Let L1 and L2 be two disjoint nice S-lines and let G be the unique
Q+(3, q)-quadric containing L1 and L2. Then all 2(q + 1) lines of G are nice S-lines.

Lemma 7.10. Let N denote the number of nice S-lines. Then |S| = (q2+1)(2q+1)− Nq
q+1

.
As a consequence, N is a multiple of q + 1.
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Proof. Taking into account that every line of Q+(5, q) is contained in two planes of
Q+(5, q), we see that there are 2N planes of type (L) and 2(q+ 1)(q2 + 1)− 2N planes of
type (P). As every point is contained in 2(q + 1) planes of Q+(5, q), we thus have that

|S| = 2N(q + 1) + (2(q + 1)(q2 + 1)− 2N)(2q + 1)

2(q + 1)
= (q2 + 1)(2q + 1)− Nq

q + 1
.

From Lemmas 7.2 and 7.10, we find:

Corollary 7.11. We have q + 1 = ε+ N
q+1

.

By Corollaries 7.4 and 7.11, we have:

Corollary 7.12. We have N ≤ q2 − 1.

Let G be the geometry whose lines are all nice S-lines and whose points are all points of
S that are contained on a nice S-line (natural incidence).

Lemma 7.13. The geometry G is connected.

Proof. Let x1 and x2 be two points of G. Let Li with i ∈ {1, 2} denote a nice S-line
containing xi. If L1 and L2 meet, then x1 and x2 are connected by a path. If L1 and L2

are disjoint, then they are connected by a path by Lemma 7.8.

We now consider two cases.

• Case 1: There exist two disjoint nice S-lines.

• Case 2: Any two nice S-lines meet.

7.2 Treatment of case 1

In this subsection, we suppose that there exist two disjoint nice S-lines. We call a Q+(3, q)-
quadric nice if all its 2(q + 1) lines are nice S-lines.

Lemma 7.14. Every nice S-line L is contained in a nice Q+(3, q)-quadric.

Proof. Suppose first that all nice S-lines meet L. If K1 and K2 are two disjoint S-lines,
then K1 6= L 6= K2 and so K1 and K2 meet L in distinct points. But then Corollary
7.9 implies that the unique Q+(3, q)-quadric containing K1 and K2 must be nice. This
Q+(3, q)-quadric contains L.

Suppose therefore that there is a nice S-line disjoint from L. Then also Corollary 7.9
implies that there is a nice Q+(3, q)-quadric containing L.

Lemma 7.15. All points of G are incident with the same number of nice S-lines.
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Proof. Bt Lemma 7.13, it suffices to prove that any two distinct G-collinear points x1 and
x2 are incident with the same number of nice S-lines. Let Ni with i ∈ {1, 2} denote the
total number of nice S-lines incident with xi. We thus need to prove that N1 = N2. Let
L denote the unique nice S-line containing x1 and x2. Let x ∈ L \ {x1, x2}. By Lemma
7.14, there must exist a nice S-line K through x distinct from L. By Corollary 7.9 the
number of nice Q+(3, q)-quadrics containing L ∪K is equal to both N1 − 1 and N2 − 1,
indeed showing that N1 = N2.

Assume now that every point of G is incident with exactly α + 1 nice S-lines.

Lemma 7.16. Every nice S-line L is contained in exactly α2 nice Q+(3, q)-quadrics.

Proof. Let x1 and x2 be two distinct points of L. Then a nice Q+(3, q)-quadric through
L contains a nice S-line L1 6= L through x1 and a nice S-line L2 6= L through x2. There
are α2 possibilities for the nice S-lines L1 and L2 and for each such choice for L1 and L2,
there is by Corollary 7.9 a unique Q+(3, q)-quadric containing L, L1 and L2.

By Corollary 7.9 and Lemma 7.16, we find:

Corollary 7.17. The number of nice S-lines disjoint from a given S-line is equal to qα2.
As a consequence, we have N = 1 + (q + 1)α + qα2 = (1 + α)(1 + qα).

Lemma 7.18. We have α = 1, N = 2(q + 1), ε = q − 1 and |S| = 2q3 + q2 + 1.

Proof. As q+1 is a divisor ofN = (1+α)(1+qα) by Lemma 7.10, we have that q+1 | α2−1.
If α 6= 1, then we would have that α ≥

√
q + 2. But then N = (1 + α)(1 + qα) > qα2 ≥

q2 + 2q and this is in contradiction with Corollary 7.12.
So, α = 1, N = (1 + α)(1 + qα) = 2(q + 1), ε = q + 1 − N

q+1
= q − 1 and |S| =

(q2 + 1)(2q + 1)− Nq
q+1

= 2q3 + q2 + 1.

The following is a consequence of Lemmas 7.14 and 7.18.

Corollary 7.19. The geometry G is a (q + 1)× (q + 1)-grid.

Lemma 7.20. Let π be a plane of type (P) of Q+(5, q). Then the center of π is a point
of G.

Proof. Put π ∩ S = L1 ∪ L2 and {x} = L1 ∩ L2. As ε = q − 1, we know from Lemma 7.2
that there are two lines K1 and K2 of π through x such that the unique planes of Q+(5, q)
through K1 and K2 distinct from π are planes of type (L). This implies that there are
two nice S-lines through x, i.e. that x is a point of G.

Corollary 7.21. Every S-line L is either a line of G or contains a unique point of G.

Proof. This follows from Corollary 7.19 and Lemma 7.20 by considering a plane ofQ+(5, q)
through L.
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Lemma 7.22. For every point x ∈ S not belonging to G, the set of S-lines containing x
is an ovoid of Sx necessarily containing q + 1 elements.

Proof. Let π be an arbitrary plane of Q+(5, q) through x. As x is no point of G, π has type
(P). By Lemma 7.20, x cannot be the center of π. So, there is a unique S-line through x
contained in π.

Lemma 7.23. Every point x of G is incident with 2q − 2 S-lines not contained in G.

Proof. Let L1 and L2 be the two lines of G through x. Then there are 2(q+1)−4 = 2q−2
planes of Q+(5, q) through x not containing L1 and L2. Each of these planes must have
type (P) and its center equals x by Lemma 7.20. As each line of Q+(5, q) is contained
in two planes of Q+(5, q), we thus see that the total number of S-lines through x not

contained in G is equal to (2q−2)·2
2

= 2q − 2.

Lemma 7.24. Let x be a point of G and let L be one of the 2q− 2 S-lines through x not
contained in G. Then 〈G, L〉 intersects Q+(5, q) is a Q(4, q)-quadric.

Proof. Suppose that this is not the case. Then 〈G, L〉 is a tangent hyperplane and there
is a line L′ of G through x such that L and L′ are in the same plane of Q+(5, q). This is
obviously not possible as L′ is a nice S-line.

Lemma 7.25. Let x be a point of G and let L be one of the 2q− 2 S-lines through x not
contained in G. Then the Q(4, q)-quadric Q := 〈G, L〉 ∩ Q+(5, q) is completely contained
in S.

Proof. Note that G is a hyperplane of Q. In view of the connectedness of hyperplane
complements in Q ([2, Theorem 7.3], [19, Lemma 6.1]) and the fact that L ⊆ S, it suffices
to prove the following.

If y ∈ Q∩ S is not contained in G, then the q + 1 lines of Q through y are all
contained in S.

But this follows from the fact that there are q + 1 S-lines through y (Lemma 7.22) and
that each of these S-lines meets G (Corollary 7.21) and are thus contained in Q.

Proposition 7.26. S is the union of two Q(4, q)-quadrics through G.

Proof. By Lemma 7.25, there exists a Q(4, q)-quadric Q1 through G entirely consisting of
points of S. If x ∈ G, then q + 1 of the 2q S-lines through x are contained in Q1. So,
there is an additional S-line through x not contained in Q1. This gives rise to a second
Q(4, q)-quadric Q2 through G that entirely consists of points of S. From Q1 ∪ Q2 ⊆ S
and |Q1 ∪Q2| = |Q1|+ |Q2| − |Q1 ∩Q2| = (q + 1)(q2 + 1) + (q + 1)(q2 + 1)− (q + 1)2 =
2q3 + q2 + 1 = |S|, it follows that S = Q1 ∪Q2.
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7.3 Treatment of case 2

In this subsection, we suppose that there do not exist two disjoint nice S-lines.

Lemma 7.27. All N = q + 1 nice S-lines go through the same point x forming an ovoid
Ox of Sx.

Proof. Let L 6= ∅ denote the set of all nice S-lines. As N = |L| 6= 0 is a multiple of q + 1
(Lemma 7.10), we have N ≥ q+ 1. Let L1 and L2 be two arbitrary distinct elements of L
and put {x} := L1∩L2. As L1 and L2 are not contained in a plane of Q+(5, q) (Corollary
7.6), no S-line can meet L1 and L2 in points distinct from x. So, all lines of L contain x.
By Corollary 7.6, L is a partial ovoid of Sx. As |L| ≥ q+ 1, we then have that |L| = q+ 1
and that L is an ovoid of Sx.

By Lemmas 7.10, 7.27 and Corollary 7.11, we have:

Corollary 7.28. We have ε = q and |S| = 2q3 + q2 + q + 1.

Let X denote the set of points of Q+(5, q) that are contained in a nice S-line.

Lemma 7.29. The planes of Q+(5, q) through x have type (L). The planes of Q+(5, q)
not through x have type (P) and their centers lie in X \ {x}.

Proof. By Lemma 7.27, a plane through x contains a unique nice S-line and is therefore a
plane of type (L). Suppose therefore that π is a plane not containing x. By Lemma 7.27,
π cannot contain nice S-lines and is therefore a plane of type (P). Put π ∩ S = L1 ∪ L2

for two distinct lines L1 and L2. Also put {y} := L1 ∩ L2. By Lemma 7.2 and Corollary
7.28, we know that there exists a unique line L3 in π through y having the property that
the plane of Q+(5, q) through L3 distinct from π has type (L). So, there is a nice S-line
through y, implying that y ∈ X \ {x}.

Lemma 7.30. Every S-line L is either contained in X or contains a unique point of
X \ {x}.

Proof. Let π be an arbitrary plane of Q+(5, q) through L. If x ∈ π, then by Lemma 7.29
L is a nice S-line through x contained in X. If x 6∈ π and y is the center of the plane π
(of type (P)), then y ∈ L∩X by Lemma 7.29. The unique plane through x meeting π in
a line intersects S in the line xy, showing that L ∩X = {y}.

Lemma 7.31. Every y ∈ S \X is contained in q + 1 S-lines forming an ovoid Oy of Sy.

Proof. Let π be an arbitrary plane of Q+(5, q) through y. Then π has type (P) and its
center belongs to X and is thus distinct from y. This implies that there is a unique S-line
in π through y.

The following is an immediate consequence of Lemmas 7.30 and 7.31.
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Corollary 7.32. For every y ∈ S \X, the q + 1 S-lines through y are precisely the q + 1
lines through y meeting the lines of Ox.

The following is a consequence of Corollary 7.32.

Corollary 7.33. Let y ∈ S \X. Let L1 and L2 be two distinct S-lines through y and let
K1, K2 be the S-lines through x meeting L1 and L2. Then the unique Q+(3, q)-quadric
containing K1, K2, L1 and L2 has all its points in S.

Note that Lemma 2.2 implies that the 4-dimensional subspace generated by K1, K2, L1

and L2 indeed intersects Q+(5, q) in a Q+(3, q)-quadric.

Lemma 7.34. The ovoid Ox of Sx is classical.

Proof. Let L1, L2 and L3 be three distinct S-lines through x and let α be the 3-dimensional
subspace 〈L1, L2, L3〉. Then α ∩ Q+(5, q) is a cone of type xQ(2, q) and Πx is the only
tangent hyperplane through α. So, if y ∈ S \X, then 〈α, y〉 is a 4-dimensional subspace
intersecting Q+(5, q) in a Q(4, q)-quadric Q.

We will show that all lines of Q through x are S-lines. This then implies that Ox

coincides with the set of lines of Q through x, i.e. Ox is a classical ovoid of Sx.
Suppose to the contrary that there exists a line L4 of Q through x that is not an S-

line. By considering a plane of Q+(5, q) through L4 (which has type (L)), we then see that
L4∩S = {x}. Let y′ be the unique point of L4 that is collinear with y on Q+(5, q). For all
mutually distinct i, j, k ∈ {1, 2, 3}, let Gi denote the unique Q+(3, q)-quadric containing
y, Lj and Lk. By Corollary 7.33, we know that Gi has all its points in S. Now, consider a
line K through y′ distinct from y′x and y′y. This line K contains three distinct points of
S, namely the points in the singletons G1∩K, G2∩K and G3∩K. By considering a plane
of Q+(5, q) through K (which has type (L) or (P)), we see that this is only possible when
K ⊆ S. In particular, we must have y′ ∈ S. But that is impossible as L4 ∩ S = {x}.

Proposition 7.35. S is the union of two Q(4, q)-quadrics meeting in a quadric of type
xQ(2, q).

Proof. By Lemma 7.34, the union of the lines in Ox is a quadric of type xQ(2, q) obtained
by intersecting Q+(5, q) with a 3-dimensional subspace α. If y1 ∈ S\X, then 〈α, y1〉 is a 4-
dimensional subspace intersecting Q+(5, q) in a Q(4, q)-quadric Q1. Since the complement
of xQ(2, q) in Q1 is connected ([2, Theorem 7.3], [19, Lemma 6.1]), Corollary 7.32 implies
that all points of Q1 are contained in S. As (q+1)(q2 +1) = |Q1| < |S| = 2q3 +q2 +q+1,
there exists a point y2 ∈ S \ (X ∪ Q1). Again 〈α, y2〉 intersects Q+(5, q) in a Q(4, q)-
quadric Q2 that has all its points in S. We have Q1 ∪ Q2 ⊆ S and Q1 ∩ Q2 = xQ(2, q).
As |Q1 ∪Q2| = |Q1|+ |Q2| − |Q1 ∩Q2| = (q+ 1)(q2 + 1) + (q+ 1)(q2 + 1)− (q2 + q+ 1) =
2q3 + q2 + q + 1 = |S|, we have S = Q1 ∪Q2.

30



8 Good quadratic sets of type (PW)

8.1 Examples and basic properties

In the following two propositions, we first describe the two standard examples of good
quadratic sets of type (PW). By Lemma 3.2, these quadratic sets arise as intersections of
Q+(5, q) with quadrics of PG(5, q).

Proposition 8.1. Let x1 and x2 be two noncollinear points of Q+(5, q). Then S =
(Πx1 ∪ Πx2) ∩Q+(5, q) is a good quadratic set of type (PW).

Proof. Let π be an arbitrary plane of Q+(5, q). If either x1 ∈ π or x2 ∈ π, then π ⊆ S.
Suppose therefore that π ∩ {x1, x2} = ∅. For every i ∈ {1, 2}, let πi denote the unique
plane through xi meeting π in a line Li. Then we have L1 6= L2 as otherwise π, π1 and
π2 would be three distinct planes of Q+(5, q) through L1 = L2. So, S ∩ π = L1 ∪ L2 is a
pencil.

Proposition 8.2. Let x be a point of Q+(5, q) and Q a Q(4, q)-quadric containing x.
Then (Πx ∩Q+(5, q)) ∪Q is a good quadratic set of type (PW).

Proof. Let π be an arbitrary plane of Q+(5, q). If x ∈ π, then π ⊆ S. Suppose therefore
that x 6∈ S. Then π intersects Q in a line L1 not containing x. As there exists a unique
point on L1 collinear with x on Q+(5, q), there is no plane of Q+(5, q) containing x and
L1 and so the unique plane of Q+(5, q) through x intersecting π in a line intersects π in
a line L2 distinct from L1. Now, S ∩ π = L1 ∪ L2 is a pencil.

In this section, we prove that any good quadratic set of type (PW) is obtained as in one
of the Propositions 8.1 and 8.2. From now on we suppose that S is a set of points of
Q+(5, q) intersecting each plane of Q+(5, q) in either a pencil or the whole plane with
both possibilities occurring. We call a plane of Q+(5, q) that has all its points in S an
S-plane.

Lemma 8.3. Every line L of Q+(5, q) containing at least three points of S has all its
points in S.

Proof. Let π be a plane of Q+(5, q) containing L. Then π ∩ S is either a pencil or the
whole of π. As |L ∩ S| ≥ 3, we then necessarily have that the whole of L is contained in
S.

Lemma 8.4. Precisely one of the following cases occurs:

(a) |S| = 2q3 + 2q2 + q + 1 and for every plane π of Q+(5, q) intersecting Q+(5, q) in a
pencil of two lines L1 and L2, precisely one of L1, L2 is contained in an S-plane.

(b) |S| = 2q3 + 3q2 + 1. In this case, any S-line is contained in either 1 or 2 S-planes.
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Proof. Let π be a plane of Q+(5, q) intersecting S in a pencil of two distinct lines L1 and
L2. Let ε ∈ {0, 1, 2} denote the number of lines among L1 and L2 that are contained in
an S-plane. The points of S \π are now partitioned by the planes of Q+(5, q) intersecting
π in a line. There are q2 planes of Q+(5, q) intersecting π in a line not containing L1 ∩L2

and each of these planes contributes 2q − 1 points to S \ π. There are also q − 1 planes
intersecting π in a line through L1 ∩ L2 distinct from L1 and L2 themselves and each
of these planes contributes 2q points to S \ π. There are also two planes intersecting
π in L1 or L2, and each such plane contributes q2 or q points to S \ π depending on
whether the plane is an S-plane or not. We thus find that |S| = |S ∩ π| + |S \ π| =
2q + 1 + q2(2q − 1) + (q − 1)2q + εq2 + (2 − ε)q = 2q3 + q2 + 2q + 1 + ε(q2 − q). One of
the following three situations occur:

(a) |S| = 2q3 + 2q2 + q + 1 and precisely one of L1, L2 is contained in an S-plane;

(b) |S| = 2q3 + 3q2 + 1 and L1, L2 are contained in S-planes;

(c) |S| = 2q3 + q2 + 2q + 1 and none of L1, L2 is contained in an S-plane.

We show that case (c) cannot occur. Suppose to the contrary that case (c) occurs. Then
|S| = 2q3 + q2 + 2q + 1 and for every plane π′ of Q+(5, q) intersecting S in a pencil of
two lines L′1 and L′2, none of L′1, L

′
2 is contained in an S-plane. This means that if we

take an S-plane π′′, then every plane of Q+(5, q) meeting π′′ in a line must be an S-plane.
But the planes of Q+(5, q) meeting π′′ in a line cover all points of Q+(5, q), an obvious
contradiction.

So, we always have case (a) or (b). The lemma follows.

Lemma 8.5. If |S| = 2q3 + 2q2 + q + 1, then there are precisely 2q + 2 S-planes. If
|S| = 2q3 + 3q2 + 1, then there are precisely 4q + 4 S-planes.

Proof. Let N denote the number of S-planes. Then the number of planes of Q+(5, q)
intersecting S in a pencil is equal to 2(q3 + q2 + q + 1) − N . Counting the number of
points of S, we find

|S| = N · (q2 + q + 1) + (2(q3 + q2 + q + 1)−N)(2q + 1)

2(q + 1)
.

The lemma follows.

Lemma 8.6. Let π be an S-plane. If |S| = 2q3 + 2q2 + q + 1, then there are precisely
q + 1 S-planes meeting π in a line. If |S| = 2q3 + 3q2 + 1, then there are precisely q + 2
S-planes meeting π in a line.

Proof. Let N denote the number of S-planes meeting π in a line. Then there are q2 + q+
1−N planes of Q+(5, q) meeting π in a line and S in a pencil. Counting points of S, we
find

|S| = |S ∩ π|+ |S \ π| = (q2 + q + 1) +Nq2 + (q2 + q + 1−N)q,

taking into account that the points of S \ π are partitioned by the planes meeting π in a
line. If |S| = 2q3 + 2q2 + q + 1, then we find N = q + 1. If |S| = 2q3 + 3q2 + 1, then we
find N = q + 2.
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8.2 Treatment of the case |S| = 2q3 + 3q2 + 1

We call a point x of S deep if all lines of Q+(5, q) through x are contained in S.

Lemma 8.7. If |S| = 2q3 + 3q2 + 1, then for every S-plane π, the set Lπ of lines of π
that are contained in two S-planes is either a dual hyperoval (and then q must be even)
or a line pencil in π, plus one extra line. In the latter case, the center of the line pencil
of π is a deep point.

Proof. By Lemma 8.6, we know that |Lπ| = q + 2. So, it suffices to prove that if L1,
L2, L3 are three distinct lines of Lπ through a point x ∈ π, then all lines of π through x
belong to Lπ. For every i ∈ {1, 2, 3}, let πi denote the unique plane through Li distinct
from π. Let π′ be an arbitrary plane of Q+(5, q) through x belonging to the same family
as π. Then for every i ∈ {1, 2, 3}, π′ ∩ πi is a line L′i ⊆ S. As π′ ∩ S contains a pencil
of three lines, π′ is an S-plane. Now, all lines of Q+(5, q) through x are covered by the
planes of Q+(5, q) through x belonging to the same family as π. It follows that all lines
of Q+(5, q) through x are S-lines and all planes of Q+(5, q) through x are S-planes. In
particular, all lines of π through x belong to Lπ.

Lemma 8.8. If |S| = 2q3 + 3q2 + 1, then there are no S-planes π for which Lπ is a dual
hyperoval.

Proof. Suppose π is an S-plane for which Lπ is a dual hyperoval. Let x ∈ π such that x
is not contained in a line of Lπ.

Let π′ be an arbitrary plane of Q+(5, q) through x meeting π in the singleton {x}. As
x ∈ S, the number N of S-lines through x contained in π′ is 1, 2 or q + 1. If N ∈ {1, 2}
and if L is an S-line of π′ through x, then by Lemma 8.4(b) the unique plane of Q+(5, q)
through L distinct from π′ is an S-plane intersecting π in a line of Lπ through x, a
contradiction. So, N = q + 1 and π′ is an S-plane.

So, every plane of Q+(5, q) through x intersecting π in the singleton {x} is an S-plane.
As each line of Q+(5, q) through x not contained in π is contained in precisely one such
plane, we see that all lines of Q+(5, q) through x are S-lines and all planes of Q+(5, q)
through x are S-planes. This is not possible as there are no lines of Lπ through the point
x.

The following is a consequence of Lemmas 8.7 and 8.8.

Corollary 8.9. If |S| = 2q3 +3q2 +1, then for every S-plane π, the set Lπ is a line pencil
in π, plus one extra line. The center of this line pencil is a deep point.

Proposition 8.10. Suppose |S| = 2q3 + 3q2 + 1. Then there exist two noncollinear points
x1 and x2 on Q+(5, q) such that S = (Πx1 ∪ Πx2) ∩Q+(5, q).

Proof. By Corollary 8.9, there exists a deep point x1. As there are 4(q+1) S-planes among
which 2(q + 1) go through x1, there exists an S-plane not containing x1. This S-plane
contains a deep point x2 6= x1. If x1 and x2 are collinear on Q+(5, q), then every plane
of Q+(5, q) through x1x2 would contradict Corollary 8.9. So, x1 and x2 are noncollinear.
As (Πx1 ∩Q+(5, q))∪ (Πx2 ∩Q+(5, q)) ⊆ S and both sets have size 2q3 + 3q2 + 1, we have
equality.
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8.3 Treatment of the case |S| = 2q3 + 2q2 + q + 1

From now on, we assume that |S| = 2q3 + 2q2 + q + 1.

Lemma 8.11. All 2q + 2 S-planes go through the same point p∗ and p∗ is a deep point.

Proof. Let π be an S-plane. By Lemma 8.6, there are two S-planes π1 and π2 meeting π
in a line. Put Li := π ∩ πi and {p∗} := L1 ∩ L2. Let π′ be an arbitrary plane of Q+(5, q)
through p∗ belonging to the same family as π. Then for every i ∈ {1, 2}, π′ ∩ πi is a line
L′i ⊆ S. By Lemma 8.4(a), we then know that π′ must be an S-plane. Now, all lines
of Q+(5, q) through p∗ are covered by the planes of Q+(5, q) through p∗ belonging to the
same family as π. It follows that all lines of Q+(5, q) through p∗ are S-lines. Hence, also
all 2(q + 1) planes of Q+(5, q) through p∗ are S-planes.

Lemma 8.12. We have |S \ (p∗)⊥| = q3.

Proof. As (p∗)⊥ ⊆ S, we have |S\(p∗)⊥| = |S|−|(p∗)⊥| = (2q3+2q2+q+1)−(1+q(q+1)2) =
q3.

For every point x of S \ (p∗)⊥, let Lx denote the set of S-lines through x.

Lemma 8.13. For every point x of S \ (p∗)⊥, Lx is an ovoid of Sx (containing q + 1
elements).

Proof. Let π be an arbitrary plane of Q+(5, q) through x. As p∗ 6∈ π, π is a plane of
type (P). As π ∩ S contains the line (p∗)⊥ ∩ π and x 6∈ (p∗)⊥ ∩ π, there is a unique S-line
through x contained in π.

Proposition 8.14. If q = 2, then S = (p∗)⊥∪Q, where Q is a Q(4, 2)-quadric containing
the point p∗.

Proof. Assuming as before that Q+(5, q) = Q+(5, 2) has equations X1X2+X3X4+X5X6 =
0, we may without loss of generality assume that p∗ = (1, 0, 0, 0, 0, 0). By Proposition 1.2,
the set S is obtained by intersecting Q+(5, 2) with a quadric Q′. We may suppose that
Q′ has equation Q :=

∑
1≤i≤j≤6 aijXiXj = 0 with a56 = 0 (otherwise, replace Q by

Q + X1X2 + X3X4 + X5X6). The fact that the points (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 1) belong to Q′ implies that a11 = a33 =
a44 = a55 = a66 = 0. The fact that the points (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0)
and (1, 0, 0, 0, 0, 1) belong to Q′ then implies that also a13 = a14 = a15 = a16 = 0.
The fact that the points (0, 0, 1, 0, 1, 0), (0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0) and (0, 0, 0, 1, 0, 1)
belong to Q′ implies that a35 = a36 = a45 = a46 = 0, and finally the fact that the point
(0, 0, 1, 1, 1,−1) belongs to Q′ implies that a34 = 0. So, Q′ has equation

X2(a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6) = 0

and so S = Q+(5, 2) ∩ Q′ is the union of two hyperplane intersections. One of these
hyperplane intersections is (p∗)⊥. As there are planes of type (P), the other hyperplane
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intersection Q cannot coincide with (p∗)⊥. In fact, as the only S-planes are the planes
through p∗, we see that Q must be a Q(4, 2)-quadric. If Q does not contain the point p∗,
then we would have |S| = |(p∗)⊥ ∪ Q| = |(p∗)⊥| + |Q| − |(p∗)⊥ ∩ Q| = 19 + 15 − 9 = 25,
in contradiction with |S| = 2q3 + 2q2 + q + 1 = 27. So, Q is a Q(4, 2)-quadric containing
p∗.

Lemma 8.15. Let Γ be a graph on the ovoids of a (4×4)-grid G, with two distinct ovoids
being adjacent whenever they meet in a singleton. Then Γ is a regular graph with valency
8 having two connected components of size 12.

Proof. Let C1 = {L1, L2, L3, L4} and C2 = {K1, K2, K3, K4} be two parallel classes of lines
of G. For every ovoid O of G, let σO be the permutation of {1, 2, 3, 4} such that the point
in Li ∩Kσ(i) belongs to O for every i ∈ {1, 2, 3, 4}. The map O 7→ σO defines a bijection
between the set of 24 ovoids of G and the set S4 of 24 permutations of the set {1, 2, 3, 4}.

For every ovoid O of G, there are four points x ∈ O and for each x ∈ O there are
two ovoids O1 and O2 intersecting O in the singleton {x}. If {x} = Li ∩ Ki′ for some
i, i′ ∈ {1, 2, 3, 4}, then σO1 and σO2 are equal to σOσ1 and σOσ2, where σ1 and σ2 are the
two cycles of length 3 defined on the set {1, 2, 3, 4} \ {i′}. The following facts follow from
these observations.

(1) Γ is regular with valency 8.

(2) If C is a connected component of Γ, then all permutations σO with O ∈ C have the
same parity.

There are now 12 permutations of each parity. The fact that Γ is regular with valency
8 thus implies that there are two connected components of size 12 and that for each
connected component C the permutations σO with O ∈ C form one of the two cosets of
A4 in S4.

Suppose now that q = 3. Then Sp∗ is a (4 × 4)-grid G and we assume that the graph Γ
defined in Lemma 8.15 arises from this grid G. By Lemma 8.15, we know that Γ is regular
with valency 8. By Lemma 8.13, the subgraph Γ′ of the collinearity graph of Q+(5, 3)
induced on the set S \ (p∗)⊥ is also regular with valency 8. We can prove the following.

Lemma 8.16. Suppose q = 3. For every point x ∈ S \ (p∗)⊥, let Ox denote the set of
four lines through p∗ meeting the four lines of Lx. Then Ox is an ovoid of Sp∗. Moreover,
the map x 7→ Ox between the vertex sets of Γ′ and Γ cannot be a cover.

Proof. We first prove that Ox is an ovoid of Sp∗ . Suppose two distinct lines L1 and L2

of Ox are contained in the same plane π of Q+(5, 3) through p∗. Then the two lines of
Lx through x meeting L1 and L2 are contained in the unique plane through x meeting π.
This is impossible by Lemma 8.13. Now, as Ox is a partial ovoid of Sx of size 4, it is also
an ovoid.

Suppose that the mentioned map is a cover. Let O1 and O2 denote the two connected
components of the graph Γ. Then there exist constants N1 and N2 such that that each
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ovoid O of Oi with i ∈ {1, 2} is the image of precisely Ni vertices of Γ′. The number of
vertices of Γ′ is then precisely |O1| ·N1 + |O2| ·N2 = 12(N1 +N2), but that is impossible
as Γ′ has precisely q3 = 27 vertices.

Proposition 8.17. If q = 3, then S = (p∗)⊥∪Q, where Q is a Q(4, 3)-quadric containing
the point p∗.

Proof. By Lemma 8.16, we know that there exist two distinct adjacent vertices x and
x′ in S \ (p∗)⊥ such that the ovoids Ox and Ox′ of Sp∗ do not intersect in a singleton.
Then L1 := xx′ is a line of Lx. We denote the other lines of Lx by L2, L3 and L4.
For every i ∈ {1, 2, 3, 4}, let Mi denote the unique line through p∗ meeting Li, and put
{ui} := Li ∩Mi. For every i ∈ {2, 3, 4}, let Gi denote the unique Q+(3, 3)-quadric of
Q+(5, 3) containing the lines L1, M1, Li and Mi. The unique hyperplane of PG(5, 3)
containing G2 ∪ G3 cannot be a tangent hyperplane as otherwise there is a plane of
Q+(5, 3) through the tangency point of 〈G2, G3〉 containing L2 and L3, and this is in
contradiction with Lemma 8.13. So, there is a unique Q(4, 3)-quadric Q containing the
Q+(3, 3)-quadrics G2 and G3. The set of lines of Q+(5, 3) through x contained in Q is an
ovoid of Sx containing L1, L2 and L3 and so coincides with Lx. This shows that the lines
L1, L2, L3, L4, M1, M2, M3 and M4 are all contained in Q, as well as the Q+(3, 3)-quadric
G4.

The line M1 now belongs to both ovoids Ox = {M1,M2,M3,M4} and Ox′ . As Ox and
Ox′ do not intersect in the singleton {M1}, we may without loss of generality suppose that
the line M2 also belongs to Ox′ , implying that the unique line L′2 through x′ meeting M2 is
contained in S. Now, the mutually disjoint lines M1, L

′
2 and L2 of G2 are all contained in

S, implying that the four lines of G2 meeting M1, L
′
2 and L2 are also completely contained

in S as they already contain three points of S. So, we have that G2 ⊆ S.
We prove that among the eight S-lines through a point of (xu1 ∪ xu2) \ {x, u1, u2}

and not contained in G2, there is a line that is contained in Q. Suppose to the con-
trary that this is not the case. Then by Lemma 8.16, these eight S-lines meet M ′

3 and
M ′

4, where {M1,M2,M
′
3,M

′
4} is the unique ovoid of Sp∗ through {M1,M2} distinct from

{M1,M2,M3,M4}. Let L′3 denote the unique line of Q+(5, 3) through x meeting M ′
3 and

let G′3 denote the unique Q+(3, 3)-quadric containing L1, L
′
3, M1 and M ′

3. In G′3, there
are four lines meeting L1 and M ′

3. With exception of L′3 all these four lines are S-lines.
The four lines in G′3 meeting M1 and L′3 thus contain at least three points of S and thus
are completely contained in S. This implies that L′3 ⊆ S. But that is impossible as L1,
L2, L3 and L4 are the only S-lines through z.

We thus see that among the eight S-lines through a point of (xu1 ∪ xu2) \ {x, u1, u2}
not contained in G2, there is certainly one line that is contained in Q. Without loss of
generality, we may suppose that this line meets xu1 and M3. If the intersection with xu1
is equal to u′1, then Ou′1

contains the lines M1, M2, M3 and hence also M4. Similarly as in
the previous paragraph, we then know that S contains the Q+(3, 3)-quadrics G3 and G4.

Now, the S-points in G2, G3 and G4 already cover 34 of the 40 points of Q. The six
remaining points of Q are the points in (K1∪K2)\{u1} where K1 and K2 are the two lines
of Q through u1 distinct from u1p

∗ = M1 and u1x = L1. Each point y ∈ (K1 ∪K2) \ {u1}
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is now contained in a line of Q distinct from K1 and K2. As this line already contains
three S-points, it must be completely contained in S, in particular the point y. We thus
see that all points of Q are contained in S.

Now, as (p∗)⊥ ∪Q ⊆ S and both sets have the same size, we have S = (p∗)⊥ ∪Q.

For every S-point p ∈ (p∗)⊥ \ {p∗}, let Lp denote the set of S-lines through p not entirely
contained in (p∗)⊥, plus the line pp∗.

Lemma 8.18. For every S-point p ∈ (p∗)⊥ \ {p∗}, we have that Lp is a partial ovoid of
Sp.

Proof. Let π be an arbitrary plane of Q+(5, q) through p. If π is one of the two planes of
Q+(5, q) through pp∗, then pp∗ is the unique line of Lp contained in π. Suppose therefore
that p∗ 6∈ π. As π is a plane of type (P) containing the S-line (p∗)⊥ ∩ π, we then see that
there is at most one S-line in π through p that is not entirely contained in (p∗)⊥.

Proposition 8.19. If q ≥ 4, then S = Πp∗ ∪Q, where Q is a Q(4, q)-quadric containing
the point p∗.

Proof. We prove that there exist two Q+(3, q)-quadrics G1 and G2 for which the following
hold:

(1) G1 ∪G2 ⊆ S;

(2) G1 ∩G2 = L1 ∪ L2 for two distinct lines L1 and L2 through a point x;

(3) the point x is not collinear with p∗;

(4) G1 and G2 do not contain p∗;

(5) there is a Q(4, q)-quadric Q containing G1 and G2.

Let z ∈ S \ (p∗)⊥. There are now (q3− 1)− (q+ 1)(q− 1) = q3− q2 S-points noncollinear
with z and p∗ on Q+(5, q). The number of paths z, u, v of length 2 in the collinearity
graph of Q+(5, q) such that u and v are S-points noncollinear with p∗ on Q+(5, q) and
zu 6= uv is equal to q(q + 1)(q − 1)2. For any such path, the points z and v are not

collinear on Q+(5, q) by Lemma 8.13. As q(q+1)(q−1)2
q3−q2 = q − 1

q
, there exists an S-point

v noncollinear with z and p∗ on Q+(5, q) and q ≥ 4 neighbours u1, u2, . . . , uq of z and
v noncollinear on Q+(5, q) with p∗ such that zu1, zu2, . . . , zuq, u1v, u2v, . . . , uqv are all
S-lines. The partial ovoids {zu1, zu2, . . . , zuq} and {vu1, vu2, . . . , vuq} in respectively Sz
and Sv can be completed in unique ways to ovoids. Moreover, these ovoids only consist
of S-lines by Lemma 8.13. In fact, an S-point uq+1 can be chosen in z⊥ ∩ v⊥ such that
{zu1, zu2, . . . , zuq+1} and {vu1, vu2, . . . , vuq+1} are these ovoids of respectively Sz and Sv.

As {zu1, zu2, . . . , zuq+1} is an ovoid of Sz, we know from Lemma 2.2 that for every
i ∈ {1, 2, . . . , q}, there exists a unique Q+(3, q)-quadric Gi containing the points z, v,
u1 and ui+1. As p∗ 6∈ u1z ∪ u1v, at most one of these Q+(3, q)-quadrics can contain p∗.
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So, without loss of generality, we may suppose that G1 and G2 do not contain the point
p∗. Also, put x := u1, L1 := u1z and L2 := u1v. The smallest subspace of PG(5, q)
containing G1 and G2 cannot be a tangent hyperplane otherwise the lines zu2 and zu3
would be contained in a plane of Q+(5, q) through the tangency point. So, this subspace
of PG(5, q) intersects Q+(5, q) in a Q(4, q)-quadric Q. It remains to show that both G1

and G2 are contained in S. Let i ∈ {1, 2} be arbitrary.
As q ≥ 4, there exists a line M in Gi disjoint from u1z and vui+1 meeting u1v and

zui+1 in points noncollinear with p∗ on Q+(5, q). Such a line M contains at least three
points of S, namely the unique points in M ∩ u1v, M ∩ zui+1 and M ∩ (p∗)⊥, and is
therefore completely contained in S. Now, the lines of Gi meeting u1z ⊆ S, vui+1 ⊆ S
and M ⊆ S are contained in S as they contain at least three points of S. As these lines
cover all the points of Gi, we have that Gi ⊆ S. This finished the proof of our claims.

Now, let G1, G2, L1, L2, x and Q be as in (1), (2), (3), (4) and (5) above. We first
prove that x⊥ ∩ Q ⊆ S. To that end, it suffices to show that every line L of Q though
x distinct from L1 and L2 is contained in S. Put {x′} := L ∩ (p∗)⊥. In order to show
that L ⊆ S, it suffices to prove that L contains besides x and x′ one other point of S.
Note that the fact that x 6∈ (p∗)⊥ implies that |(Gi ∩ (p∗)⊥) \ (L1 ∪L2)| = q− 1 for every
i ∈ {1, 2}.

Take x1, x2 ∈ L \ {x, x′} and consider the set of 2q lines of Q (distinct from L)
containing precisely one of the points x1 and x2. These 2q lines have no overlap in Q\L.
As both |(G1 ∩ (p∗)⊥) \ (L1 ∪ L2)| and |(G2 ∩ (p∗)⊥) \ (L1 ∪ L2)| have size q − 1, one of
these lines, say K, must be disjoint from G1∩ (p∗)⊥ and G2∩ (p∗)⊥. But then K contains
at least three points of S, namely the points in S ∩G1, S ∩G2 and S ∩ (p∗)⊥, and must
therefore be completely contained in S. In particular, at least one of x1, x2 is contained
in S. It follows that L is contained in S and thus also that x⊥ ∩Q ⊆ S.

We now also prove that every point y of Q \ x⊥ is contained in S. Take a line M
through y disjoint from L1 and L2. As M contains at least three points of S, namely the
unique points in M ∩ G1, M ∩ G2 and M ∩ x⊥, we see that M must be contained in S.
In particular, the point y is contained in S.

We thus see that the Q(4, q)-quadric Q is contained in S. We show that p∗ ∈ Q.
Suppose to the contrary that p∗ 6∈ Q. Then |(p∗)⊥ ∪ Q| = |(p∗)⊥| + |Q| − |(p∗)⊥ ∩ Q| =
1 + q(q + 1)2 + (q + 1)(q2 + 1)− (q + 1)2 = 2q3 + 2q2 + 1 = |S| − q. We are still missing q
points of S. If L is a line of Q contained in (p∗)⊥ and π1, π2 are the two planes of Q+(5, q)
through L, then the fact that L = (p∗)⊥ ∩ πi = Q ∩ πi for every i ∈ {1, 2} implies that q
of these missing points must be contained in each of π1 \ L and π2 \ L. This is obviously
impossible.

So, p∗ ∈ Q. We then see that (p∗)⊥ ∪ Q ⊆ S and as both sets have the same size, we
must have equality.
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9 Good quadratic sets of Q+(5, 2)

In this section, we describe all good quadratic sets of Q+(5, 2). The description of all good
quadratic sets seems most naturally achieved in a model of Q+(5, 2) that immediately
reveals its automorphisms. We therefore start by describing a model of Q+(5, 2) on which
Aut(Q+(5, 2)) ∼= S8 has a natural action. The discussion we give here is based on Cameron
[4, Section 7.2] and Neumaier [14].

Let Y be a set of size 7. We denote by SY and AY the symmetric and alternating
groups on the set Y . By a Fano collection on Y , we mean a set Y consisting of seven
subsets of size 3 of Y such that the point-line geometry defined by Y and Y is Fano plane.
There are 30 Fano collections on Y which are all equivalent under the action of SY . Under
the action of the subgroup AY ≤ SY , the set of 30 Fano collections splits into two orbits
of size 15. We call these two orbits the two systems of Fano collections on Y .

Let X be a set of size 8. Associated with X, there is the following point-line geometry
SX :

• The points of SX are the partitions of X in two subsets of size 4.

• The lines of SX are the partitions of X in four subsets of size 2.

• A point of SX is incident with a line of SX if and only if the line is a refinement of
the points (where both are regarded as partitions).

The point-line geometry SX is then isomorphic to (the point-line system of the hyperbolic
quadric) Q+(5, 2) (of PG(5, 2)). Every permutation of X naturally induces a bijection of
the point and line sets of SX that is an automorphism of SX . In fact, every automorphism
of SX can be obtained in this way, i.e. the full automorphism group of SX ∼= Q+(5, 2) is
isomorphic to the symmetric group S8.

We now give a description of the planes of SX ∼= Q+(5, 2). Let x∗ ∈ X. For every
Fano collection F on X \ {x∗}, let Πx∗,F consist of all 7 partitions of the form {{x∗} ∪
A,X \ ({x∗}∪A)} with A ∈ F . Then Πx∗,F is a plane of SX and every plane of SX can be
obtained in this way. If F1 and F2 are the two AY -orbits of Fano collections on X \ {x∗},
then {Πx∗,F |F ∈ F1} and {Πx∗,F |F ∈ F2} are the two families of planes of Q+(5, 2).

If we take from a partition of X in two subsets of size 4, this subset containing x∗ then
after removing x∗ we obtain a subset of size 3 of X \ {x∗}. In this way, we see that the
collinearity graph of Q+(5, 2) is isomorphic to the graph whose vertices are the subsets of
size 3 of {1, 2, . . . , 7}, where two such subsets are adjacent when they meet in a singleton.

Recall that a set P of points of Q+(5, 2) is called a quadratic set if every plane π
intersects P in a possibly reducible conic to π. Such (possibly reducible) conics of π
are precisely the sets of points of π that have odd size. Indeed, those of size 1 are the
singletons (type (S)), those of size 3 the lines (type (L)) and irreducible conics (type (C)),
those of size 5 the pencils of two lines (type (P)), and the unique one of size 7 consists of
all points of π (Type (W)). If we denote by S∗ the geometry of the points and planes of
Q+(5, 2), then a quadratic set is nothing else than the complement of an even set of S∗.
This is a set of points of S∗ meeting each line of S∗ in an even number of points. The
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even sets of many geometries (including S∗) can easily be found in a computational way
based on the fact that a set of points is an even set if and only if its characteristic vector
is F2-orthogonal with the characteristic vectors of all lines. In this way, we were able to
computationally classify all quadratic sets of Q+(5, 2) [8]. We found that there are up to
isomorphism 131 of them. Among the 131 isomorphism classes, there turned out to be 27
that consisted of good quadratic sets.

We now give a description of all good quadratic sets of Q+(5, 2) using the model of
Q+(5, 2) described above, i.e. we will give descriptions of these quadratic sets as sets
of points of SX . If one is using another model of Q+(5, 2) (e.g. based on a quadratic
form), then using an explicit isomorphism between both models one can then also obtain
a description of all good quadratic sets in this other model.

We start with some definitions. A subset of size 4 of X will shortly be called a
quadruple. For any set Q of quadruples satisfying Q1 ∪Q2 6= X for any two Q1, Q2 ∈ Q,
we define

Ω(Q) := {{Q,X \Q} |Q ∈ Q}.

We call Q an admissible collection of quadruples of X if Q1 ∪ Q2 6= X for any two
Q1, Q2 ∈ Q and Ω(Q) is a good quadratic set of SX ∼= Q+(5, 2). We now give 27
constructions for admissible collections of quadruples of X. We have verified by computer
that these are admissible collections of quadruples. This verification could in principle also
be done by hand if one would be willing to do the effort. It is possible that a construction
can provide two admissible collections Q and Q′ of quadruples for which Ω(Q) = Ω(Q′).
We will explicitly mention when and how this is the case. Using this information, we can
then easily count the number of good quadratic sets of each type. These numbers can be
found in Table 1.

(1) Let {A,B} be a partition of X with |A| = 3 and |B| = 5. Let Q5 denote the set
of all quadruples of the form A ∪ {x} with x ∈ B.

(2) Let {A,B,C} be a partition of X with |A| = |B| = 2 and |C| = 4. Let Q7 denote
the set of the quadruples A ∪ B, and A ∪ U with U ∈

(
C
2

)
. If we denote this set of

quadruples by Q7(A,B,C), then we have Ω(Q7) = Ω(Q′7) where Q′7 = Q7(B,A,C).
(3) Let {A,B,C} be a partition of X with |A| = 2 and |B| = |C| = 3. Let Q9a denote

the set of the quadruples of the form A∪{x, y} with (x, y) ∈ B×C. If we denote this set of
quadruples by Q9a(A,B,C), then we have Ω(Q9a) = Ω(Q′9a) where Q′9a = Q9a(A,C,B).

(4) Let {A,B,C,D} be a partition of X with |A| = 1, |B| = |C| = 2 and |D| = 3.
Then Q9b consists of the quadruples A ∪D, A ∪ B ∪ {x} with x ∈ C, and A ∪ {x} ∪ U
with x ∈ B and U ∈

(
D
2

)
.

(5) Let {A,B,C,D} be a partition of X with |A| = 1, |B| = |C| = 2 and |D| = 3.
Let f be a bijection between B and C. Then Q11 consists of the quadruples A∪B ∪ {x}
with x ∈ C, A ∪ C ∪ {x} with x ∈ D, and A ∪ {x, f(x), y} with (x, y) ∈ B ×D.

(6) Let {A,B,C} be a partition of X with |A| = 1, |B| = 3 and |C| = 4. Then Q13a

consists of the quadruples A ∪B, and A ∪ U ∪ {y} with U ∈
(
B
2

)
and y ∈ C.

(7) Let {A,B,C,D,E} be a partition of X with |A| = |B| = |C| = 1, |D| = 2 and
|E| = 3. Then Q13b consists of the quadruples A ∪ E, A ∪ {x} ∪ U with x ∈ B ∪ C and
U ∈

(
E
2

)
, and A ∪B ∪ {x, y} with (x, y) ∈ D × E.
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(8) Let {A,B} be a partition of X with |A| = 2 and |B| = 6. Let Q15a denote the set
of all quadruples of the form A ∪ U with U ∈

(
B
2

)
.

(9) Let {A,B1, B2, B3} be a partition of X with |A| = |B1| = |B2| = |B3| = 2 and
let a ∈ A. Then Q15b consists of all quadruples A ∪ Bi for some i ∈ {1, 2, 3}, and
{a} ∪ Bi ∪ {y} for some i ∈ {1, 2, 3} and some y ∈ (B1 ∪ B2 ∪ B3) \ Bi. If we denote
this set of quadruples by Q15b(A,B1, B2, B3), then we have Ω(Q15b) = Ω(Q′15b), where
Q′15b = Q15b(A,Bσ(1), Bσ(2), Bσ(3)) with σ ∈ S3.

(10) Let {A,B} be a partition of X with |A| = 3 and |B| = 5. Let B be a set of five
pairs of B such that the graph (B,B) is a cycle (of length 5). The Q15c denotes the set
of all quadruples of the form U ∪ V with U ∈

(
A
2

)
and V ∈ B.

(11) Let {A,B,C} be a partition of X with |A| = |B| = 2 and |C| = 4. Let (a, b) ∈
A × B. Then Q15d consists of the quadruples C, {x} ∪ U with x ∈ A and U ∈

(
C
3

)
,

and {a, b} ∪ U with U ∈
(
C
2

)
. If we denote this set of quadruples by Q15d(A,B,C, a, b),

then we have Ω(Q15d) = Ω(Q′15d) where Q′15d = Q15d(A,B,C, a
′, b′) with A = {a, a′} and

B = {b, b′}.
(12) Let {A,B,C} be a partition of X with |A| = 2 and |B| = |C| = 3. Let f be a

bijection between B and C. Then Q15e consists of all quadruples B ∪ {x} with x ∈ C,
and {x, y} ∪ (C \ {f(x)}) with x ∈ B and y ∈ A ∪ (B \ {x}).

(13) Let {A,B,C,D} be a partition of X with |A| = |B| = 1, |C| = 2 and |D| = 4.
Then Q17a consists of the quadruples A ∪ B ∪ C, A ∪ U with U ∈

(
D
3

)
, and A ∪ {x} ∪ U

with x ∈ C and U ∈
(
D
2

)
.

(14) Let {A,B,C} be a partition of X with |A| = 1, |B| = 3 and |C| = 4. Let C be
a set of four pairs of C such that the graph (C, C) is a quadrangle. Then Q17b consists of
the quadruples A ∪B, B ∪ {x} with x ∈ C, and U ∪ V with U ∈

(
B
2

)
and V ∈ C.

(15) Let {A,B} be a partition of X with |A| = |B| = 4. Let a ∈ A. Then Q19a

consists of the quadruples A, and {a, x} ∪ U with x ∈ A \ {a} and U ∈
(
B
2

)
. If we

denote this set of quadruples by Q19a(A,B, a), then we have Ω(Q19a) = Ω(Q′19a) where
Q′19a = Q19a(A

′, B′, a′) where {A′, B′} = {A,B} and a′ ∈ A′.
(16) Let {A,B,C,D} be a partition of X with |A| = 1, |B| = |C| = 2 and |D| = 3.

Let f be a bijection between B and C. Then Q19b consists of the quadruples of the form
A∪U with U ∈

(
B∪C
3

)
, A∪ {x, f(x), y} with x ∈ B and y ∈ D, A∪B ∪ {x} with x ∈ D,

and A ∪ {x} ∪ U with x ∈ C and U ∈
(
D
2

)
.

(17) Let {A,B,C} be a partition of X with |A| = 2 and |B| = |C| = 3. Then Q21a

consists of the quadruples A ∪ U with U ∈
(
B
2

)
, and {x, y} ∪ U with (x, y) ∈ A× C and

U ∈
(
B
2

)
.

(18) Let {A,B,C,D,E} be a partition of X with |A| = |B| = |C| = 1, |D| = 2 and
|E| = 3. Then Q21b consists of the quadruples of the form A ∪ E, A ∪ {x} ∪ U with
x ∈ B ∪ C ∪D and U ∈

(
E
2

)
, A ∪B ∪ C ∪ {x} with x ∈ D, and A ∪ U ∪ {x} with x ∈ E

and U ∈
(
C∪D
2

)
\ {D}.

(19) Let {A,B,C,D} be a partition of X with |A| = 1, |B| = |C| = 2 and |D| = 3.
Let f be a bijection between B and C. Then Q21c consists of the quadruples of the form
A∪D, A∪ {x} ∪U with x ∈ B and U ∈

(
D
2

)
, A∪B ∪ {x} with x ∈ C, A∪B ∪ {x} with

x ∈ D, A ∪ C ∪ {x} with x ∈ D, and A ∪ {x, f(x), y} with (x, y) ∈ B ×D.
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(20) Let {A,B,C,D,E} be a partition of X with |A| = |B| = 1 and |C| = |D| = |E| =
2. Then Q21d consists of the quadruples of the form A ∪ B ∪ U with U ∈

(
D∪E
2

)
\ {D},

A ∪ D ∪ {x} with x ∈ E, A ∪ U with U ∈
(
C∪E
3

)
, and A ∪ {x} ∪ U with x ∈ D and

U ∈
(
C∪E
2

)
\ {E}.

(21) Let {A,B} be a partition of X with |A| = |B| = 4. Let a ∈ A and let {B1, B2}
be a partition of B in two pairs. Then Q23a consists of the quadruples A, {a} ∪ U with
U ∈

(
B
3

)
, {a, x} ∪ U with x ∈ B and U ∈

(
A\{a}

2

)
, and {a, x} ∪ Bi with x ∈ A \ {a}

and i ∈ {1, 2}. If we denote this set of quadruples by Q23a(A,B1, B2, a), then we have
Ω(Q23a) = Ω(Q′23a) where Q′23a = Q23a(A,B1, B2, a

′) with a′ ∈ A.
(22) Let {A,B,C,D} be a partition of X with |A| = 1, |B| = |C| = 2 and |D| = 3.

Let f be a bijection between B and C. Then Q23b consists of the quadruples of the form
A∪B∪{x} with x ∈ C∪D, A∪{x}∪U with x ∈ B∪C and U ∈

(
D
2

)
, and A∪{x, f(x), y}

with x ∈ B and y ∈ D.
(23) Let {A,B,C} be a partition of X with |A| = 1, |B| = 2 and |C| = 5. Then Q25a

consists of all quadruples of the form A ∪ B ∪ {x} with x ∈ C, and A ∪ {x} ∪ U with
x ∈ B and U ∈

(
C
2

)
.

(24) Let {A,B,C} be a partition of X with |A| = 1, |B| = 3 and |C| = 4. Let {C1, C2}
be a partition of C in two pairs. Then Q25b consists of all quadruples of the form A ∪B,
A ∪ {x} ∪ U with x ∈ B and U ∈

(
C
2

)
\ {C1, C2}, and A ∪ U ∪ {x} with U ∈

(
B
2

)
and

x ∈ C.
(25) Let {A,B,C} be a partition of X with |A| = |B| = 2 and |C| = 4. Let a ∈ A.

Then Q27 consists of all quadruples of the form A ∪ U with U ∈
(
B∪C
2

)
, and {a, x} ∪ U

with x ∈ B and U ∈
(
C
2

)
. If we denote this set of quadruples by Q27(A,B,C, a), then we

have Ω(Q27) = Ω(Q′27) where Q′27 = Q27(A,B,C, a
′) with {a, a′} = A.

(26) Let {A,B,C} be a partition of X with |A| = 2 and |B| = |C| = 3. Let a ∈ A.
Then Q29 consists of all quadruples of the form {a} ∪ U with U ∈

(
B∪C
3

)
, and A ∪ {x, y}

with (x, y) ∈ B×C. If we denote this set of quadruples by Q29(A,B,C, a), then we have
Ω(Q29) = Ω(Q′29) where Q′29 = Q29(A,B

′, C ′, a′) with {B′, C ′} = {B,C} and a′ ∈ A.
(27) Let x ∈ X be fixed. Q35 consists of all quadruples containing x. If we denote this

set of quadruples by Q35(x), then we have Ω(Q35) = Ω(Q′35) where Q′35 = Q35(x
′) with

x′ ∈ X.

The complete classification of all good quadratic sets of SX ∼= Q+(5, 2) can now be found
in the following theorem.

Theorem 9.1. Up to isomorphism, SX has 27 good quadratic sets. These quadratic sets
are the sets Ω(Q), where Q is one of the 27 above-defined sets of quadruples.

Properties for these 27 good quadratic sets can be found in Table 1. In this table, N
denotes the size of the isomorphism class to which the good quadratic set Ω(Q) belongs.
The stabilizer of Ω(Q) in the full automorphism group of SX ∼= Q+(5, 2) is also mentioned
along with the number of orbits this stabilizer has on Ω(Q) and on the complement of
Ω(Q). If the numbers of these orbits are respectively equal to O1 and O2, then we write
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O1 + O2 in the column ”Orbits”. The number of plane intersections of type (T) ∈
{(S), (L), (C), (P), (W)} will be denoted by the number T .
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