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Abstract

A quadratic set of a nonsingular quadric Q of Witt index at least three is de-
fined as a set of points intersecting each subspace of Q in a possibly reducible
quadric of that subspace. By using the theory of pseudo-embeddings and pseudo-
hyperplanes, we show that if Q is one of the quadrics Q+(5, 2), Q(6, 2), Q−(7, 2),
then the quadratic sets of Q are precisely the intersections of Q with the quadrics of
the ambient projective space of Q. In order to achieve this goal, we will determine
the universal pseudo-embedding of the geometry of the points and planes of Q.
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1 Introduction

In [4], Buekenhout defined the notion of a quadratic set in a projective space, see also [16,
Chapter 5]. These are sets of points in projective spaces that satisfy similar structural
properties as quadrics. In [8], the notion of a quadratic set of a nonsingular quadric Q is
defined as a set of points that satisfies similar structural properties as the intersections
of Q with the quadrics of the ambient projective space of Q. Specifically, a quadratic
set of a nonsingular quadric Q of Witt index at least three is defined as a set of points
intersecting each subspace of Q in a possibly reducible quadric of that subspace.

The authors of [13] studied line sets in PG(3, q) that satisfy a list of axioms. Their
main theorem states that for q ≥ 7 each such line set is either the set of secant lines
with respect to a hyperbolic quadric or belongs to a hypothetical family of line sets. The
question whether this hypothetical family of line sets is nonempty was left open in [13].
Further investigations showed that these line sets are related to quadratic sets of the
Klein quadric, see [10]. This fact urged the first author of the present paper to initiate
the study of quadratic sets of the Klein quadric in [8, 9]. In fact, one of the several families
of quadratic sets described in [9] will explicitly be used in [10] to provide examples of line
sets in the hypothetical family.
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Also the results of the present paper arose as a by-product of these investigations.
We obtain here a classification of all quadratic sets of the nonsingular quadrics Q+(5, 2),
Q(6, 2) and Q−(7, 2). Using the theory of pseudo-embeddings and pseudo-hyperplanes
developed in [6], we show that each such quadratic set is “standard”, i.e. obtained by
intersecting the considered quadric with another quadric of the ambient projective space.
In the theory of quadratic sets, it is often the case that a certain argument fails to work
for the smallest value(s) of the prime power q. In this regard, it can be important to have
a separate classification available for small values of q. In fact, the results of the current
paper will explicitly be used in [8] to show that a certain result remains true for q = 2.

As already alluded above, our classification of the quadratic sets of the quadrics
Q+(5, 2), Q(6, 2) and Q−(7, 2) requires that we study the pseudo-embeddings of some
geometries related to these quadrics. In particular, we will determine the universal pseudo-
embeddings of the geometries of the points and planes of these quadrics. We therefore
start by defining the notion of pseudo-embedding of a general point-line geometry.

Consider a point-line geometry S = (P ,L, I) having the property that the number of
points on each line is finite and at least 3. For such a geometry, we can define the notion
of a pseudo-embedding. This is a map ε from P to the point set of a projective space
PG(V ) defined by a vector space V over F2 = {0, 1} for which the following properties
are satisfied:

(PS1) the image ε(P) of ε generates the whole of PG(V );

(PS2) ε maps in a bijective way the point set of each line L of S to a frame of a subspace
ΣL of PG(V ).

With a frame of a projective space of dimension n, we mean a set of n + 2 points no
n + 1 of which are contained in a hyperplane. A pseudo-embedding ε as above will
shortly be denoted by ε : S → PG(V ). Two pseudo-embeddings ε1 : S → PG(V1) and
ε2 : S → PG(V2) of the same point-line geometry S are called isomorphic if there exists
an isomorphism θ from PG(V1) to PG(V2) such that ε2 = θ ◦ ε1.

Suppose ε : S → PG(V ) is a pseudo-embedding of S = (P ,L, I) and α is a subspace of
PG(V ) disjoint from ε(P) and all subspaces ΣL with L ∈ L. Then the map x 7→ 〈α, ε(x)〉
defines a pseudo-embedding of S into the quotient projective space PG(V )/α whose points
are those subspaces of PG(V ) that contain α as a hyperplane. We then call ε/α a quotient
of ε. We write that ε1 ≥ ε2 for two pseudo-embeddings ε1 and ε2 of S if ε2 is isomorphic
to a quotient of ε1.

If ε̃ is a pseudo-embedding of S with the property that ε̃ ≥ ε for any other pseudo-
embedding ε of S, then ε̃ is called universal. If S has pseudo-embeddings, then it also has
a universal pseudo-embedding, which is moreover unique, up to isomorphisms. The vector
dimension er(S) of the universal pseudo-embedding is called the pseudo-embedding rank.
In case |P| <∞, we have er(S) = |P| − dim(C) where C is the binary code of length |P|
generated by the characteristic vectors of the lines of S. This gives a link between coding
theory and the theory of pseudo-embeddings. Pseudo-embeddings were introduced in [6],
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and we refer to this paper for more background information, in particular for proofs of
the above facts.

The geometries under consideration in this paper are related to nonsingular quadrics
of Witt index 3 in finite projective spaces over F2. There are three types of such quadrics,
namely Q+(5, 2) in PG(5, 2), Q(6, 2) in PG(6, 2) and Q−(7, 2) in PG(7, 2). The maximal
subspaces of the projective space contained in each of these quadrics are planes which are
also called generators. The generators of Q+(5, 2) can be partitioned into two isomorphic
families, with two generators belonging to the same family if they intersect in a subspace of
even dimension. If Q is one of the above quadrics, then GQ denotes the set of generators of
Q. For every G ⊆ GQ, we define the point-line geometry SQ,G as (Q,G, I), where I ⊆ Q×G
is the natural incidence relation defined by containment. We will prove here the following.

Theorem 1.1. Let Q be one of the quadrics Q+(5, 2), Q(6, 2), Q−(7, 2), and let G be the
set of all generators of Q or one family of generators if Q = Q+(5, 2). Then the geometry
S = SQ,G has pseudo-embeddings. Moreover, the pseudo-embedding rank of S is equal to
20 if Q = Q+(5, 2) and G is the set GQ of all generators, equal to 24 if Q = Q+(5, 2) and
G is one of the two families of generators, equal to 27 if Q = Q(6, 2) and equal to 35 if
Q = Q−(7, 2).

If S is one of the geometries as in Theorem 1.1, then we know that the dimension
of the binary code generated by the characteristic vectors of the lines of S is equal to
|P| − er(S) with P the point set of S. These dimensions are thus respectively equal
35− 20 = 15, 35− 24 = 11, 63− 27 = 36 and 119− 35 = 84. This fact is certainly known
if Q = Q+(5, 2) and G is one of the families of generators of Q. Indeed, every pseudo-
embedding of PG(3, 2) is an ordinary embedding and so er(PG(3, 2)) = 4, implying that
the incidence matrix of PG(3, 2) has F2-rank 15−4 = 11. Using the Klein correspondence
[2, 14], we see that this is also the F2-rank of the incidence matrix of SQ,G.

Theorem 1.1 will be proved by means of the notion of pseudo-generating set. Again
under the assumption that S = (P ,L, I) is a point-line geometry with the property that
the number of points on each line is finite and at least 3, a pseudo-subspace of S is defined
as a set X of points having the property that no line intersects P \X in a singleton. Note
that the whole point set P is always an example of a pseudo-subspace. Given a set X of
points of S, the intersection [X] of all pseudo-subspaces containing X is again a pseudo-
subspace, obviously equal to the smallest pseudo-subspace that contains X. We call [X]
the pseudo-subspace generated by X. If [X] = P , then X is called a pseudo-generating set.
The smallest size gr(S) of a pseudo-generating set of S is called the pseudo-generating
rank. By [6], we know that if S has pseudo-embeddings, then er(S) ≤ gr(S). This fact is
often an important tool for determining both er(S) and gr(S), see e.g. Proposition 2.1. It
turns out that for many point-line geometries S, the numbers er(S) and gr(S) are equal.
We will prove that this is again the case for the point-line geometries under consideration
here.

Theorem 1.2. Let Q be one of the quadrics Q+(5, 2), Q(6, 2) and Q−(7, 2), and let G be
the set of all generators of Q or the generators of one family if Q = Q+(5, 2). Then the
pseudo-embedding and pseudo-generating ranks of SQ,G are equal.
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In this paper, we also give explicit descriptions of the universal pseudo-embeddings. Let
V (8, 2) be an 8-dimensional vector space over F2 for which PG(7, 2) is the associated
projective space. We choose an ordered basis (ē1, ē2, . . . , ē8) in V (8, 2) with respect to
which Q−(7, 2) ⊆ PG(7, 2) has equation X1X2 + X3X4 + X5X6 + X2

7 + X7X8 + X2
8 = 0.

Here, (X1, X2, . . . , X8) = 〈X1ē1 +X2ē2 + · · ·+X8ē8〉 denotes a generic point of PG(7, 2).
We denote by PG(6, 2) and PG(5, 2) the subspaces of PG(7, 2) with respective equations
X8 = 0 and X7 = X8 = 0. Points (X1, X2, . . . , X8) belonging to these subspaces will
also be abbreviated to respectively (X1, X2, . . . , X7) and (X1, X2, . . . , X6). Obviously,
PG(6, 2) ∩ Q−(7, 2) is the quadric Q(6, 2) of PG(6, 2) with equation X1X2 + X3X4 +
X5X6 +X2

7 = 0 and PG(5, 2)∩Q−(7, 2) is the quadric Q+(5, 2) of PG(5, 2) with equation
X1X2 +X3X4 +X5X6 = 0. We put Q5 = Q+(5, 2), Q6 = Q(6, 2) and Q7 = Q−(7, 2). Let
G∗ be the family of generators of Q5 containing the plane with equation X1 = X3 = X5 =
X7 = X8 = 0.

Consider a 35-dimensional vector space V35 over F2 with a basis consisting of the
vectors ḡi and h̄jk with i, j, k ∈ {1, 2, . . . , 8} such that j < k and (j, k) 6= (1, 2). The base
elements ḡi and h̄jk with i, j, k ≤ 7 define a 27-dimensional vector subspace V27 of V35 and
those with i, j, k ≤ 6 a 20-dimensional subspace V20. Let V24 be a 24-dimensional vector
space generated by V20 and four additional vectors which we will denote by f̄135, f̄146, f̄236
and f̄245.

In the sequel, we denote by Σn with n ∈ {6, 7, 8} the summation ranging over all
j, k ∈ {1, 2, . . . , n} with j < k and (j, k) 6= (1, 2). We denote by Σ∗ the summation
ranging over all (i, j, k) ∈ {(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}.

If n ∈ {6, 7, 8} and l = (n+2)(n−1)
2

, then εn,l is the map from the point set of Qn−1 to the
point set of PG(Vl) sending the point (X1, X2, . . . , Xn) of Qn−1 to the point 〈

∑n
i=1Xiḡi +

ΣnXjXkh̄jk〉 of PG(Vl). We will prove the following.

Theorem 1.3. Let n ∈ {6, 7, 8} and l = (n+2)(n−1)
2

. Then εn,l is a pseudo-embedding of
SQn−1,GQn−1

which is moreover universal.

Let ε∗6,24 be the map from the point set of Q5 to the point set of PG(V24) sending the

point (X1, X2, . . . , X6) of Q5 to the point 〈
∑6

i=1Xiḡi +
∑6XjXkh̄jk +

∑∗XiXjXkf̄ijk〉 of
PG(V24). We will show the following.

Theorem 1.4. The map ε∗6,24 is a pseudo-embedding of SQ5,G∗ which is moreover universal.

In [7], we considered the point-line geometry Sn, n ≥ 2, whose points and lines are the
points and planes of the projective plane PG(n, 2), with incidence being containment, and
showed that Sn has pseudo-embeddings. From the description of the universal pseudo-
embedding of Sn, we will derive the following.

Theorem 1.5. The sets of points of PG(n, 2), n ≥ 2, that intersect each plane of PG(n, 2)
in a possibly reducible conic of that plane are precisely the possibly reducible quadrics of
PG(n, 2).
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Using the description of the universal pseudo-embedding of the geometry SQ,G with Q ∈
{Q+(5, 2), Q(6, 2), Q−(7, 2)} and G = GQ, we derive the following.

Theorem 1.6. Let Q be one of the quadrics Q+(5, 2), Q(6, 2) or Q−(7, 2). Then the sets
of points of Q intersecting each plane π of Q in a possibly reducible conic of π are precisely
the intersections of Q with the possibly reducible quadrics of its ambient projective space.

For nonsingular quadrics Q of Witt index 3, the quadratic sets of Q are precisely the sets
of points of Q that intersect each plane of Q in a possibly reducible conic. Theorem 1.6
can thus be rephrased as follows.

Corollary 1.7. Let Q be one of the quadrics Q+(5, 2), Q(6, 2) or Q−(7, 2). Then the
quadratic sets of Q are precisely the intersections of Q with the quadrics of its ambient
projective space.

It is interesting to note that the conclusion of Corollary 1.7 is not valid for the quadrics
Q+(5, q) with q ≥ 3. Indeed, we show in [8] that each of these quadrics has quadratic sets
that do not arise as intersection of Q+(5, q) with another quadric.

The conclusion of Theorem 1.6 is no longer valid for Q = Q+(5, 2) if we restrict to
the planes π of one family G1 of generators of Q+(5, 2). Indeed, each π1 ∈ G1 meets each
π ∈ G1 in either a point or the whole of π, and so in a reducible conic of π. A plane π1
of G1 however cannot be obtained by intersecting Q+(5, 2) with a quadric of PG(5, 2), as
otherwise every plane of Q+(5, 2) would have to contain a point of π1, in particular those
planes of Q+(5, 2) that are disjoint from π1, an obvious impossibility.

At the very end of the paper, we will see that the conclusion of Theorem 1.5 is also
no longer valid for PG(5, 2) if we restrict to those planes that are totally isotropic with
respect to a given symplectic polarity of PG(5, 2).

Theorems 1.5 and 1.6 are examples of local characterization results for which many
examples in finite geometry do exist. Such characterization theorems basically state that
a geometrical object satisfies Property X as soon as certain local substructures satisfy a
number of properties that are consistent with this Property X. One of the most known
results in this direction is due to Barlotti [1] and Panella [12] and states that an ovoid of
PG(3, q) is a(n elliptic) quadric if and only if all plane intersections are possibly reducible
conics. In fact, by Brown [3] we know that such an ovoid is an elliptic quadric as soon as
there is one plane intersection that is an irreducible conic.

2 Preliminaries

Throughout this section, S = (P ,L, I) is a point-line geometry having the property that
the number of points on each line is finite and at least 3. The following proposition is
precisely Theorem 1.5 of [6] and is often useful for determining the pseudo-generating
rank and universal pseudo-embedding of a given point-line geometry.
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Proposition 2.1 ([6]). If S has pseudo-embeddings, then er(S) ≤ gr(S). Moreover, if

there exists a pseudo-embedding ε̃ : S → PG(Ṽ ) and a pseudo-generating set X of S such

that |X| = dim(Ṽ ) < ∞, then the pseudo-embedding and pseudo-generating ranks of S
are equal to dim(Ṽ ) and ε̃ is isomorphic to the universal pseudo-embedding of S.

A set X of points of S distinct from P is called a pseudo-hyperplane if P \X intersects
each line of S in an even number of points. The complement of the symmetric difference
of two distinct pseudo-hyperplanes is again a pseudo-hyperplane.

Suppose ε : S → PG(V ) is a pseudo-embedding of S. Then Hπ := ε−1(π ∩ ε(P)) is
a pseudo-hyperplane of S for every hyperplane π of PG(V ). We will say that Hπ arises
from the pseudo-embedding ε. We denote by Hε the set of all pseudo-hyperplanes of S
arising from ε. We also note that the correspondence π ↔ Hπ between the hyperplanes
of PG(V ) and the pseudo-hyperplanes of Hε is bijective. The case where ε is universal is
interesting as the following can be shown.

Proposition 2.2 ([6]). Suppose S has pseudo-embeddings, and denote by ε̃ : S → PG(Ṽ )
the universal pseudo-embedding of S. Then Hε̃ is the set of all pseudo-hyperplanes of
S. Moreover the correspondence π ↔ Hπ = ε̃−1(ε̃(P) ∩ π) between the hyperplanes π of

PG(Ṽ ) and the pseudo-hyperplanes Hπ of S is bijective.

3 Pseudo-generating sets of the geometries

Proposition 3.1. Let G be one of the families of generators of the quadric Q = Q+(5, 2).
Then the geometry SQ,G has a pseudo-generating set of size 24.

Proof. Let x1 and x2 be two noncollinear points of Q+(5, 2). Then x⊥1 ∩ x⊥2 is a quadric
of type Q+(3, 2). Put X := Q+(5, 2) \ ((x⊥1 ∩ x⊥2 ) ∪ {x1, x2}). Then X is a set of size
35− 9− 2 = 24. We show that X is a pseudo-generating set of SQ,G. Denote by [X] the
smallest pseudo-subspace of SQ,G containing X.

Let K1, K2, K3, L1, L2, L3 be the six lines contained in x⊥1 ∩ x⊥2 such that K1, K2, K3

are mutually disjoint, as well as L1, L2, L3. For every i ∈ {1, 2, 3}, let αi denote the
unique plane of G containing Ki, and let βi denote the unique plane of G containing
Li. The planes α1, α2, α3, β1, β2, β3 mutually intersect in singletons. Note that for all
i, j ∈ {1, 2, 3}, the planes αi and βj intersect in the singleton Ki ∩ Lj ⊆ x⊥1 ∩ x⊥2 . If we
denote by k the intersection point of the planes α1 and α2, then as K1 ∪ K2 ⊆ k⊥, we
have (x⊥1 ∩ x⊥2 ) ⊆ k⊥ and so k ∈ {x1, x2} and αi = 〈k,Ki〉 for every i ∈ {1, 2, 3}. In a
similar way, one proves that there exists an l ∈ {x1, x2} such that βi = 〈l, Li〉 for every
i ∈ {1, 2, 3}. As αi ∩ βj = Ki ∩ Lj ⊆ x⊥1 ∩ x⊥2 for all i, j ∈ {1, 2, 3}, we have k 6= l and so
{k, l} = {x1, x2}.

We first prove that every point p of x⊥1 ∩ x⊥2 belongs to [X]. Suppose this point p is
the unique intersection point of the lines Ki and Lj. Denote by γ the unique element of
G through p not containing the line Ki nor the line Lj. The planes αi, βj and γ mutually

6



intersect in the point p, and so the points x1 and x2 do not belong to γ. This implies that
every point of γ \ {p} belongs to X and thus that p ∈ [X].

We thus see that [X] contains all points of Q+(5, 2) with the possible exceptions of x1
and x2.

Now, take a plane δ of G through xi, i ∈ {1, 2}. This plane δ does not contain x3−i
and so δ \ {xi} ⊆ [X]. This implies that also xi ∈ [X].

We thus see that [X] = Q+(5, 2), i.e. X is a pseudo-generating set.

Proposition 3.2. If Q = Q+(5, 2), then the geometry SQ,GQ has a pseudo-generating set
of size 20.

Proof. Let k and l be two noncollinear points of Q+(5, 2). Then k⊥ ∩ l⊥ is a quadric of
type Q+(3, 2). Let K and L be two intersecting lines of k⊥ ∩ l⊥. Put K ∩ L = {u},
K = {u, v1, v2} and L = {u, v3, v4}. Put {y1} := kv1 \ {k, v1}, {y2} := kv2 \ {k, v2},
{y3} := lv3 \ {l, v3} and {y4} := lv4 \ {l, v4}. Also, put X := Q+(5, 2) \ ((k⊥ ∩ l⊥) ∪
{k, l, y1, y2, y3, y4}). Then X is a set of size 20. We prove that X is a pseudo-generating
set of SQ,G. Denote by [X] the smallest pseudo-subspace of SQ,GQ containing X.

Recall from Proposition 3.1 that the planes 〈k,K〉 and 〈l, L〉 belong to the same family
G of generators of Q+(5, 2). If we take the unique generator π of G through u distinct
from 〈k,K〉 and 〈l, L〉, then π has six points in common with X and so the seventh point
u belongs to [X]. Now, put k′ := ku \ {k, u} and l′ := lu \ {l, u}. Then l′v1, l

′v2, k
′v3

and k′v4 are lines of Q+(5, 2). The unique element of G containing these lines intersect
〈k,K〉 and 〈l, L〉 in singletons and contain six points of X. So, also the remaining points
in these planes belong to [X], i.e. v1, v2, v3, v4 ∈ [X].

Now, the plane 〈l,K〉 intersects 〈k,K〉 in the line {u, v1, v2}, 〈l, L〉 in the line {l, l′, u}
and k⊥ ∩ l⊥ in {u, v1, v2}. As {u, v1, v2, l′} ⊆ [X], the plane 〈l,K〉 already contains six
points of [X]. Hence, also the seventh point l belongs to [X].

In a similar way, one can show that the plane 〈k, L〉 already contains six points of [X]
and that the seventh point k therefore also belongs to [X].

Now, consider the plane of Q+(5, 2) through {k′, y1, v2} not belonging to G. This plane
intersects 〈l, L〉 ∈ G in the empty set and k⊥ ∩ l⊥ in {v2}. So, this plane already contains
six points of [X], implying that also the seventh point y1 belongs to [X].

In a similar way, by considering the planes through {k′, v1, y2}, {l′, y3, v4}, {l′, y4, v3}
not belonging to G, one can show that the points y2, y3 and y4 must belong to [X].

We have thus already shown that all points of Q+(5, 2) belong to [X], with the possible
exception of the four points in (k⊥∩ l⊥)\{u, v1, v2, v3, v4}. If w is one of these four points,
then we can take a plane through w not containing any line of k⊥∩ l⊥. This plane already
contains six points of [X] and so also the seventh point w belongs to [X].

We conclude that [X] = Q+(5, 2).

In order to determine suitable pseudo-generating sets for the geometries SQ,GQ , where
Q ∈ {Q(6, 2), Q−(7, 2)}, we need some preparatory work.

Suppose S = (P ,L, I) is a point-line geometry. A subspace of S is then defined as a
set X of points of S having the property that a line of S has all its points in X as soon as
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it has at least two of its points in X. A subspace X is called singular if any two distinct
points of X are collinear. A subspace X is called a hyperplane if X 6= P and if every line
has at least one of its points in X. The geometry S is called a polar space (in the sense
of Buekenhout and Shult [5]) if the following three properties are satisfied:

(1) for every point x and every line L not incident with x, either one or all points of L
are collinear with x;

(2) there exists no point x that is collinear with all the remaining points of S;

(3) every strictly ascending chain X1 ( X2 ( · · · ( Xk of singular subspaces of S has
finite length.

The point-line geometry defined by the points and lines of any nonsingular quadric in a
projective space is an example of a polar space. The following proposition is well-known.
For a proof, see e.g. Shult [15, Lemma 5.2].

Proposition 3.3. Suppose S is a polar space having lines and that all these lines contain
at least three points. If H is a hyperplane of S, then the subgraph of the collinearity graph
induced on the complement of H is connected.

Lemma 3.4. Let Q ∈ {Q(6, 2), Q−(7, 2)}, i.e. Q = Qn with n ∈ {6, 7}. Let Π be
the hyperplane of PG(n, 2) intersecting Q in the quadric Qn−1 ∈ {Q+(5, 2), Q(6, 2)}, let
p ∈ Qn−1, let Πp denote the hyperplane of PG(n, 2) that is tangent to Q at the point p,
and let x be a point of Q \Qn−1 not collinear with p on Q. Then Qn−1 ∪ (Πp ∩Qn)∪ {x}
is a pseudo-generating set of the geometry S = SQ,GQ.

Proof. Denote by S the pseudo-subspace generated by Qn−1 ∪ (Πp ∩Qn) ∪ {x}.
The subspace Π ∩ Πp, which has co-dimension 2 in PG(n, 2), is contained in three

hyperplanes, namely Π, Πp and a third one which we will denote by Π′.
The intersection Π ∩ Πp ∩ Q is a cone of type pQ+(3, 2) if n = 6 and a cone of type

pQ(4, 2) if n = 7. In any case, p is the only point in Π ∩ Πp ∩ Q that is collinear on Q
with all points of Π ∩ Πp ∩Q.

We show that Π′ is a nontangent hyperplane. Suppose to the contrary that Π′ is
tangent to Q in the point p′. As Π′ 6= Πp, we have p′ 6= p and so by the previous paragraph
we have p′ 6∈ Π∩Πp. The tangent hyperplane Π′ in the point p′ would then coincide with
〈p′,Π∩Πp〉, implying that pp′ is a line of Q and that p′ ∈ Πp. So, p′ ∈ Π′ ∩Πp = Π∩Πp,
a contradiction.

So, Π′ is a nontangent hyperplane and Π ∩ Πp is a hyperplane of Π. In case n = 6,
Π∩Πp ∩Q is a cone of type pQ+(3, 2) and so Π′ ∩Q is a quadric of type Q+(5, 2). In the
case n = 7, Π∩Πp ∩Q is a cone of type pQ(4, 2) and Π′ ∩Q is a quadric of type Q(6, 2).

Now, let Γ be the subgraph of the collinearity graph of Π′ ∩Q induced on the comple-
ment of its hyperplane Π∩Πp∩Q. By Proposition 3.3, we then know that Γ is connected.
Recall that Π∩Q = Qn−1 and Πp∩Q are contained in S. In order to show that S coincides
with the whole point set, we thus still need to show that every vertex of Γ belongs to S.
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As the vertex x of Γ belongs to S, it suffices to prove that if u, v are two adjacent vertices
of Γ such that u ∈ S, then also v ∈ S.

As u, v ∈ Π′ \ (Π ∩Πp), the line uv of Q meets Π ∩Πp in a point w. Let π be a plane
of Q through {u, v, w} not contained in Π′ ∩Q. This plane intersects Π∩Q ⊆ S in a line
L and Πp ∩ Q ⊆ S in another line L′. The two points of π not in L ∪ L′ ⊆ S are the
points u and v. As S is a pseudo-subspace, the fact that u ∈ S thus implies that v ∈ S,
as we needed to prove.

Lemma 3.5. Let Q ∈ {Q(6, 2), Q−(7, 2)}, i.e. Q = Qn with n ∈ {6, 7}. Let Π be
the hyperplane of PG(n, 2) intersecting Q in the quadric Qn−1 ∈ {Q+(5, 2), Q(6, 2)},
let p ∈ Qn−1 and let x be a point of Q \ Qn−1 not collinear with p on Q. Denote by
L1, L2, . . . , Lk the lines of Q through p not contained in Qn−1, and put Li = {p, xi, yi} for
every i ∈ {1, 2, . . . , k}. Then k = 6 if n = 6 and k = 12 if n = 7. Moreover, the set
Qn−1 ∪ {x1, x2, . . . , xk, y1, x} is a pseudo-generating set of the geometry S = SQ,GQ.

Proof. Let Πp denote the hyperplane that is tangent to Q in the point p. Then Πp ∩Q is
a cone of type pQ(4, 2) if n = 6 and a cone of type pQ−(5, 2) if n = 7. Also, Πp ∩ Qn−1
is a cone of type pQ+(3, 2) if n = 6 and a cone of type pQ(4, 2) if n = 7. As |Q(4, 2)| −
|Q+(3, 2)| = 6 and |Q−(5, 2)| − |Q(4, 2)| = 12, we thus see that k = 6 if n = 6 and k = 12
if n = 7.

In view of Lemma 3.4, it suffices to prove that the pseudo-subspace S generated by
Qn−1 ∪ {x1, x2, . . . , xk, y1} contains all lines L1, L2, . . . , Lk. We already know that this is
the case for the line L1 = {p, x1, y1}.

Now, consider the graph Γ on the vertex set U = {L1, L2, . . . , Lk} where two distinct
lines of U are adjacent whenever the plane they generate is also a plane of Q. By looking
at the quotient polar space at the point p, we see that Γ is isomorphic to the subgraph
of the collinearity graph of Q1 induced on the complement of Q2 ⊆ Q1, where (Q1, Q2) =
(Q(4, 2), Q+(3, 2)) if n = 6 and (Q1, Q2) = (Q−(5, 2), Q(4, 2)) if n = 7. As Γ is connected
by Proposition 3.3, it suffices to prove that if L and L′ are two adjacent vertices of Γ such
that L ⊆ S, then also L′ ⊆ S.

Now, the plane π = 〈L,L′〉 is a plane of Q intersecting Qn−1 in a line L′′ ⊆ S. Note
that L, L′ and L′′ are the three lines of π through p. As L,L′′ ⊆ S and (L′ \ {p})∩S 6= ∅,
the fact that S is a pseudo-subspace implies that also L′ ⊆ S as we needed to prove.

Proposition 3.6. If Q = Q(6, 2), then the geometry SQ,GQ has a pseudo-generating set
of size 27.

Proof. Let Π denote the hyperplane of PG(6, 2) for which Π ∩ Q(6, 2) = Q+(5, 2), let
p = (1, 0, 0, 0, 0, 0, 0) ∈ Q+(5, 2) and let Πp denote the hyperplane of PG(6, 2) that is
tangent to Q(6, 2) in the point p. By Lemma 3.5, there are six lines L1, L2, . . . , L6 of
Q(6, 2) through p not contained in Q+(5, 2). For every {1, 2, . . . , 6}, we may put Li =
{p, xi, yi}, where x1 = (0, 0, 0, 1, 1, 1, 1), y1 = (1, 0, 0, 1, 1, 1, 1), x2 = (0, 0, 0, 0, 1, 1, 1), y2 =
(1, 0, 0, 0, 1, 1, 1), x3 = (0, 0, 1, 0, 1, 1, 1), y3 = (1, 0, 1, 0, 1, 1, 1), x4 = (0, 0, 1, 1, 0, 0, 1),
y4 = (1, 0, 1, 1, 0, 0, 1), x5 = (0, 0, 1, 1, 0, 1, 1), y5 = (1, 0, 1, 1, 0, 1, 1), x6 = (1, 0, 1, 1, 1, 0, 1)
and y6 = (0, 0, 1, 1, 1, 0, 1). Note that x = (0, 1, 0, 0, 1, 1, 1) is a point of Q(6, 2) \Q+(5, 2)
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not collinear with p on the quadric Q(6, 2). For every point z of Q(6, 2), denote by z⊥

the set of points of Q(6, 2) collinear with z on Q(6, 2) (including z itself).
By Proposition 3.2, we know that there exists a pseudo-generating set Z of size 20 of

the geometry SQ′,GQ′ with Q′ = Q+(5, 2). We now show that S := Z∪{x1, x2, x3, x4, x5, x6,
x} is a pseudo-generating set (of size 27) of SQ,GQ . Denote by [S] the pseudo-subspace of
SQ,GQ generated by S.

Since Z ⊆ S is a pseudo-generating set of SQ′,GQ′ , we have Q+(5, 2) ⊆ [S]. The fact
that [S] is a pseudo-subspace then implies the following.

Suppose u, v and w are points of Q(6, 2) such that 〈u, v, w〉 is a generator
intersecting Q+(5, 2) in the line vw = 〈v, w〉 and 〈u, v, w〉 \ ({u} ∪ vw) ⊆ [S],
then also u ∈ [S].

This fact allows us to prove that the three points u1, u2 and y1 of Q(6, 2) are contained
in [S], see the following table where also the points u1 and u2 are defined.

u v, w ∈ u⊥ ∩Q+(5, 2) with w ∈ v⊥ 〈u, v, w〉 \ ({u} ∪ vw)

u1 := (0, 1, 1, 1, 0, 0, 1) (0,0,1,1,1,1,0),(0,1,0,0,0,0,0) x2, x4, x
u2 := (1, 1, 0, 1, 1, 0, 1) (0,1,1,0,0,0,0),(1,0,0,1,0,1,0) x3, x6, x
y1 = (1, 0, 0, 1, 1, 1, 1) (0,1,0,0,0,1,0),(1,0,1,0,1,0,0) x5, u1, u2

Since [S] contains Q+(5, 2) ∪ {x1, x2, x3, x4, x5, x6, y1, x}, we know from Lemma 3.5 that
the pseudo-subspace [S] coincides with Q(6, 2), i.e. S is a pseudo-generating set of size
27 of SQ,GQ .

Proposition 3.7. If Q = Q−(7, 2), then the geometry SQ,GQ has a pseudo-generating set
of size 35.

Proof. Let Π denote the hyperplane of PG(7, 2) for which Π∩Q−(7, 2) = Q(6, 2), let p =
(1, 0, 0, 0, 0, 0, 0, 0) ∈ Q(6, 2) and let Πp denote the hyperplane of PG(7, 2) that is tangent
to Q−(7, 2) in the point p. By Lemma 3.5, there are twelve lines L1, L2, . . . , L12 of Q−(7, 2)
through p not contained in Q(6, 2). For every {1, 2, . . . , 12}, we may put Li = {p, xi, yi},
where x1 = (0, 0, 0, 1, 1, 1, 0, 1), y1 = (1, 0, 0, 1, 1, 1, 0, 1), x2 = (0, 0, 0, 0, 1, 1, 0, 1), y2 =
(1, 0, 0, 0, 1, 1, 0, 1), x3 = (0, 0, 1, 0, 1, 1, 0, 1), y3 = (1, 0, 1, 0, 1, 1, 0, 1), x4 = (0, 0, 1, 1, 0, 0,
0, 1), y4 = (1, 0, 1, 1, 0, 0, 0, 1), x5 = (0, 0, 1, 1, 0, 1, 0, 1), y5 = (1, 0, 1, 1, 0, 1, 0, 1), x6 =
(1, 0, 1, 1, 1, 0, 0, 1), y6 = (0, 0, 1, 1, 1, 0, 0, 1), x7 = (0, 0, 0, 0, 1, 1, 1, 1), y7 = (1, 0, 0, 0, 1, 1,
1, 1), x8 = (0, 0, 0, 1, 1, 1, 1, 1), y8 = (1, 0, 0, 1, 1, 1, 1, 1), x9 = (0, 0, 1, 0, 1, 1, 1, 1), y9 =
(1, 0, 1, 0, 1, 1, 1, 1), x10 = (0, 0, 1, 1, 0, 0, 1, 1), y10 = (1, 0, 1, 1, 0, 0, 1, 1), x11 = (1, 0, 1, 1, 1,
0, 1, 1), y11 = (0, 0, 1, 1, 1, 0, 1, 1), x12 = (0, 0, 1, 1, 0, 1, 1, 1) and y12 = (1, 0, 1, 1, 0, 1, 1, 1).
Note that x = (0, 1, 0, 0, 1, 1, 0, 1) is a point of Q−(7, 2) \ Q(6, 2) not collinear with p on
the quadric Q−(7, 2).

By Proposition 3.6, we know that there exists a pseudo-generating set Z of size 27 of
the geometry SQ′,GQ′ with Q′ = Q(6, 2). We now show that S := Z ∪{x1, x2, x3, x4, x5, x6,
x7, x} is a pseudo-generating set (of size 35) of SQ,GQ . Denote by [S] the pseudo-subspace
of SQ,GQ generated by S.
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Since Z ⊆ S is a pseudo-generating set of SQ′,GQ′ , we have Q(6, 2) ⊆ [S]. The fact
that [S] is a pseudo-subspace then implies the following.

Suppose u, v and w are points of Q−(7, 2) such that 〈u, v, w〉 is a generator
intersecting Q(6, 2) in the line vw = 〈v, w〉 and 〈u, v, w〉 \ ({u} ∪ vw) ⊆ [S],
then also u ∈ [S].

This fact allows us to prove that the 18 points u1, u2, . . . , u12, y1, x8, x9, x10, x11, x12 of
Q−(7, 2) are contained in [S], see the following table where also the points u1, u2, . . . , u12
are defined.

u v, w ∈ u⊥ ∩Q(6, 2) with w ∈ v⊥ 〈u, v, w〉 \ ({u} ∪ vw)

u1 := (0, 1, 0, 1, 1, 1, 0, 1) (0,0,0,1,0,0,0,0), (0,1,0,0,0,0,0,0) x1, x2, x
u2 := (0, 1, 1, 0, 1, 1, 0, 1) (0,0,1,0,0,0,0,0), (0,1,0,0,0,0,0,0) x2, x3, x
u3 := (0, 1, 1, 1, 0, 0, 0, 1) (0,0,1,1,1,1,0,0), (0,1,0,0,0,0,0,0) x2, x4, x
u4 := (1, 1, 0, 0, 0, 1, 0, 1) (0,1,1,1,1,1,0,0), (1,0,0,0,1,0,0,0) x4, x6, x
u5 := (1, 1, 0, 1, 1, 0, 0, 1) (0,1,1,0,0,0,0,0), (1,0,0,1,0,1,0,0) x3, x6, x
u6 := (1, 1, 1, 0, 1, 0, 0, 1) (0,1,0,1,0,0,0,0), (1,0,1,0,0,1,0,0) x1, x6, x
u7 := (0, 1, 1, 1, 0, 0, 1, 1) (0,1,1,1,1,1,0,0), (1,0,1,1,0,1,1,0) x6, x7, u4
u8 := (1, 1, 1, 0, 0, 1, 0, 1) (0,0,1,0,0,0,0,0), (1,0,0,0,1,0,0,0) x, u2, u4
u9 := (1, 1, 0, 0, 0, 0, 0, 1) (0,0,0,0,0,1,0,0), (1,1,1,1,0,0,0,0) x4, x5, u4
u10 := (1, 1, 1, 1, 1, 1, 1, 1) (1,1,1,1,0,0,0,0), (0,0,1,1,1,0,1,0) x5, x7, u4
u11 := (1, 1, 0, 0, 1, 0, 0, 1) (0,0,0,1,0,0,0,0), (1,0,0,0,0,1,0,0) x, u1, u5
u12 := (0, 1, 1, 1, 0, 1, 1, 1) (0,0,0,0,0,1,0,0), (1,0,1,1,0,0,1,0) u4, u7, u9
y1 = (1, 0, 0, 1, 1, 1, 0, 1) (0,1,0,0,0,1,0,0), (1,0,1,0,1,0,0,0) x5, u3, u5
x8 = (0, 0, 0, 1, 1, 1, 1, 1) (0,0,0,1,0,0,0,0), (1,1,0,0,0,1,1,0) x7, u5, u11
x9 = (0, 0, 1, 0, 1, 1, 1, 1) (0,0,1,0,0,0,0,0), (1,1,0,0,0,1,1,0) x7, u6, u11
x10 = (0, 0, 1, 1, 0, 0, 1, 1) (0,0,1,1,1,1,0,0), (1,1,0,1,0,1,1,0) x7, u5, u8
x11 = (1, 0, 1, 1, 1, 0, 1, 1) (0,1,0,0,0,1,0,0), (1,0,0,0,1,1,1,0) x5, u3, u10
x12 = (0, 0, 1, 1, 0, 1, 1, 1) (0,0,0,0,0,1,0,0), (0,1,0,0,0,0,0,0) x10, u7, u12

Since [S] contains Q(6, 2) ∪ {x1, x2, . . . , x12, y1, x}, we know from Lemma 3.5 that the
pseudo-subspace [S] coincides with Q−(7, 2), i.e. S is a pseudo-generating set of size 35
of SQ,GQ .

4 Proofs of the main results

Let Q be one of the quadrics Q5 = Q+(5, 2), Q6 = Q(6, 2) or Q7 = Q−(7, 2). In Section
1, we constructed for every n ∈ {6, 7, 8} a map εn,l from the point set of Qn−1 to the

point set of the projective space PG(Vl) where l = (n+2)(n−1)
2

. Our first goal is to show
that the image of this map generates the whole projective space PG(Vl). This will be a
consequence of the following lemma.
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Lemma 4.1. Let Q be one of the quadrics Q+(5, 2), Q(6, 2), Q−(7, 2), and let PG(n−1, 2)
with n ∈ {6, 7, 8} be the ambient projective space of Q. Also, let S be a set of points of
PG(n− 1, 2) described by an equation of the form

n∑
i=1

aiXi +
∑n

bjkXjXk = 0,

with all coefficients belonging to F2. If Q ⊆ S, then ai = bjk = 0 for all i, j, k ∈
{1, 2, . . . , n} with j < k and (j, k) 6= (1, 2).

Proof. For all j, k ∈ {1, 2, . . . , n} with j < k and (j, k) 6= (1, 2), put bkj := bjk.
Since every point 〈ēi〉 with i ∈ {1, 2, . . . , 6} belongs to Q ⊆ S, we have ai = 0 for

every i ∈ {1, 2, . . . , 6}.
Since aj = ak = 0 and 〈ēj + ēk〉 ∈ Q ⊆ S for all j, k ∈ {1, 2, . . . , 6} with j < k and

(j, k) 6∈ {(1, 2), (3, 4), (5, 6)} we have that bjk = 0 for all such values of j and k.
Since a1 = a2 = · · · = a6 = b13 = b14 = b23 = b24 = b15 = b16 = b25 = b26 = 0, the fact

that the points 〈ē1 + ē2 + ē3 + ē4〉 and 〈ē1 + ē2 + ē5 + ē6〉 belong to Q ⊆ S implies that also
b34 = b56 = 0. At this stage, we have already proved the lemma in the case Q = Q+(5, 2).
So, suppose n ≥ 7.

We show that bjk = ak = 0 for all j, k ∈ N with 1 ≤ j ≤ 6 and 7 ≤ k ≤ n. Take
(j′, j′′) ∈ {(3, 4), (5, 6)} such that j, j′ and j′′ are mutually distinct. As aj = aj′ = aj′′ =
bjj′ = bjj′′ = bj′j′′ = 0, the fact that the points 〈ēj′ + ēj′′ + ēk〉 and 〈ēj + ēj′ + ēj′′ + ēk〉
belong to Q ⊆ S implies that ak + bj′k + bj′′k = ak + bjk + bj′k + bj′′k = 0 and hence that
bjk = 0. As 1 ≤ j′, j′′ ≤ 6, we then also know that bj′k = bj′′k = 0 and so the above then
also implies that ak = 0.

At this stage, we have already proved the lemma in the case that Q is either Q+(5, 2)
or Q(6, 2). In case Q = Q−(7, 2), we have already showed that all coefficients are zero
with the possible exception of b78. However, as the point 〈ē1 + ē2 + ē7 + ē8〉 belongs to
Q−(7, 2) ⊆ S, we can then see that also b78 = 0.

Corollary 4.2. For every n ∈ {6, 7, 8}, the image of the map εn,l generates the whole

projective space PG(Vl) where l = (n+2)(n−1)
2

.

Proof. If this were not the case, then there exists a hyperplane in PG(Vl) containing all
points of the image. But the existence of such a hyperplane would contradict Lemma
4.1.

For every n ∈ N\{0, 1, 2}, let Sn−1 be the geometry of the points and planes of PG(n−1, 2),
with incidence being containment. In [7], we showed that Sn−1 has pseudo-embeddings and
determined the universal pseudo-embedding of Sn−1. To describe this universal pseudo-
embedding, we need to consider a vector space V ′ of dimension n(n+1)

2
having base elements

ḡ′i and h′jk with i, j, k ∈ {1, 2, . . . , n} such that j < k.

Proposition 4.3 ([7]). Let ε̃n be the map from the point set of Sn−1 to the point set of
PG(V ′) sending the point (X1, X2, . . . , Xn) of Sn−1 to the point 〈

∑n
i=1Xiḡ

′
i+

∑
1≤j<k≤nXj

Xkh̄
′
jk〉 of PG(V ′). Then ε̃n is isomorphic to the universal pseudo-embedding of Sn−1.
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If Q = Qn−1 with n ∈ {6, 7, 8} and G is the set of all generators of Q or one family of
generators if Q = Q5 = Q+(5, 2), then SQ,G is a full subgeometry of Sn−1. The pseudo-
embedding ε̃n of Sn−1 will therefore induce a pseudo-embedding of SQ,G. The following
can be proved about this induced pseudo-embedding.

Proposition 4.4. If Q = Qn−1 with n ∈ {6, 7, 8} and G is the set of all generators
of Q or one family of generators if Q = Q5 = Q+(5, 2), then the pseudo-embedding of
SQ,G induced by the pseudo-embedding ε̃n of Sn−1 is isomorphic to the map εn,l defined in
Section 1.

Proof. We define ḡ′′i = ḡ′i for every i ∈ {1, 2, . . . , 6}, ḡ′′7 := ḡ′7 + h̄′12 if n ∈ {7, 8} and
ḡ′′8 := ḡ′8 + h̄′12 if n = 8. We also define h̄′′ij := h̄′ij for all i, j ∈ {1, 2, . . . , n} with i < j and
(i, j) 6∈ {(1, 2), (3, 4), (5, 6), (7, 8)}, h̄′′34 := h̄′12 + h̄′34 and h̄′′56 := h̄′12 + h̄′56. We also define
h̄′′78 = h̄′12 + h̄′78 if n = 8. Let V ′′ denote the hyperplane of V ′ = 〈V ′′, h̄′12〉 generated by
the vectors ḡ′′i and h̄′′jk with i, j, k ∈ {1, 2, . . . , n} such that j < k and (j, k) 6= (1, 2). For
every point p = (X1, X2, . . . , Xn) of Qn−1, we then have that ε̃n(p) is equal to the point
〈
∑n

i=1Xiḡ
′′
i +

∑nXiXjh̄
′′
ij〉 of PG(V ′′). Taking into account Corollary 4.2, we see that

ε̃n(Qn−1) generates the whole of PG(V ′′) and that the pseudo-embedding of SQ,G induced
by ε̃n is isomorphic to the map εn,l defined in Section 1.

Denote by V28 a 28-dimensional vector space over F2 generated by V27 and an addi-
tional vector h̄12. Let V ′27 be the hyperplane of V28 consisting of all vectors

∑7
i=1Xiḡi +∑

1≤j<k≤7XjXkh̄jk for which X7 = 0. Let V21 be the subspace of V28 generated by V20
and h̄12. The fact that X7 +X1X2 +X3X4 +X5X6 = 0 for points of Q(6, 2) implies that
the universal pseudo-embedding ε7,27 of SQ6,GQ6

is isomorphic to the map

(X1, X2, . . . , X7) 7→ 〈
6∑
i=1

Xiḡi +
∑

1≤j<k≤7

XjXjh̄jk〉

from the point set of Q(6, 2) to the point set of PG(V ′27). We now show that the map ε7,21

(X1, X2, . . . , X7) 7→ 〈
6∑
i=1

Xiḡi +
∑

1≤j<k≤6

XjXjh̄jk〉

from the point set of Q(6, 2) to the point set of PG(V21) is also a pseudo-embedding of
SQ6,GQ6

.

Proposition 4.5. If Q = Q(6, 2) and G is the set of all generators of Q(6, 2), then the
map ε7,21 is a pseudo-embedding of the geometry SQ,G.

Proof. The map (X1, X2, . . . , X7) 7→ (X1, X2, . . . , X6) defines a bijection between the
points of Q(6, 2) and the points of PG(5, 2) mapping every generator of Q(6, 2) to a plane
of PG(5, 2). This map thus defines a full embedding of SQ,G into S5 and every pseudo-
embedding of S5 will induce a pseudo-embedding of SQ,G. This pseudo-embedding of SQ,G
is isomorphic to the map ε7,21.
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Suppose now that Q = Q+(5, 2). Recall that G∗ is the family of generators of Q to
which the plane with equation X1 = X3 = X5 = X7 = X8 = 0 belongs. Note that
if G = GQ5 , then SQ5,G∗ is a full subgeometry of SQ5,G having the same point set. The
pseudo-embedding ε6,20 of SQ5,G will therefore induce the following pseudo-embedding ε∗6,20
of SQ5,G∗ in PG(V20):

ε∗6,20 : (X1, X2, . . . , X6) 7→ 〈
6∑
i=1

Xiḡi +
∑6

XjXkh̄jk〉.

We will now define an additional pseudo-embedding of SQ5,G∗ . The construction is based
on the following proposition which is a slight improvement of Proposition 2.1 of [11].

Proposition 4.6. Let S = (P ,L, I) be a point-line geometry having the property that the
number of points on each line is finite and at least 3, let V and V be two vector spaces
over F2 such that V is a hyperplane of V , let v̄∗ ∈ V \ V , let ε : S → PG(V ) be a
pseudo-embedding of S and let H be a pseudo-hyperplane of S. For every point x of H,
we define ε(x) := ε(x) and for every point y of S not contained in H, let ε(y) denote the
third point on the line through ε(y) and 〈v̄∗〉. If PG(W ) denotes the subspace of PG(V )
generated by the image of ε, then the following hold:

(1) ε : S → PG(W ) is a pseudo-embedding of S;

(2) if H 6∈ Hε, then W = V , H ∈ Hε, and ε, ε are nonisomorphic pseudo-embeddings;

(3) if H ∈ Hε, then W is a hyperplane of V and ε, ε are isomorphic pseudo-embeddings.

Proof. Suppose first that H 6∈ Hε, then by Proposition 2.1 of [11] we know that W = V
and that ε : S → PG(W ) is a pseudo-embedding. By construction, it follows that
the pseudo-hyperplane H arises from the hyperplane PG(V ) of PG(W ) = PG(V ). So,
H ∈ Hε. As H 6∈ Hε, we then see that ε and ε cannot be isomorphic.

Suppose that H ∈ Hε. Then there exists a unique hyperplane π of PG(V ) such that
H = ε−1(π ∩ ε(P)). We denote by PG(W ′) the unique hyperplane of PG(V ) through
π distinct from PG(V ) and 〈π, v̄∗〉. The projection from PG(V ) to PG(W ′) with center
〈v̄∗〉 defines an isomorphism θ between PG(V ) and PG(W ′) such that ε(x) = θ(ε(x)) for
every point x of S. We thus have that W = W ′ is a hyperplane of V and that ε, ε are
isomorphic pseudo-embeddings.

Lemma 4.7. Let S be a set of points of PG(5, 2) described by an equation of the form

∑∗
aijkXiXjXk +

6∑
i=1

biXi +
∑6

cjkXjXk = 0,

with all coefficients belonging to F2. If Q+(5, 2) ⊆ S, then a135 = a146 = a236 = a245 =
bi = cjk = 0 for all i, j, k ∈ {1, 2, . . . , 6} with j < k and (j, k) 6= (1, 2).
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Proof. Since 〈ēi〉 ∈ Q+(5, 2) ⊆ S for every i ∈ {1, 2, . . . , 6}, we have bi = 0 for every
i ∈ {1, 2, . . . , 6}.

Since 〈ēj + ēk〉 ∈ Q+(5, 2) ⊆ S for all j, k ∈ {1, 2, . . . , 6} with j < k and (j, k) 6∈
{(1, 2), (3, 4), (5, 6)}, we have cjk = 0 for such values of j and k.

Since 〈ē1 + ē2 + ē3 + ē4〉 and 〈ē1 + ē2 + ē5 + ē6〉 belong to Q+(5, 2) ⊆ S, we then also
have c34 = c56 = 0.

Since 〈ē1 + ē3 + ē5〉, 〈ē1 + ē4 + ē6〉, 〈ē2 + ē3 + ē6〉 and 〈ē2 + ē4 + ē5〉 are points of
Q+(5, 2) ⊆ Q, we finally have that a135 = a146 = a236 = a245 = 0.

Proposition 4.8. Let G∗ be the family of generators of Q5 = Q+(5, 2) containing the
plane with equation X1 = X3 = X5 = X7 = X8 = 0. Then the map ε∗6,24 is a pseudo-
embedding of SQ5,G∗ in the projective space PG(V24).

Proof. By Lemma 4.7, we know that the image of ε∗6,24 generates the whole projective space
PG(V24). Combining this with Proposition 4.6, we know that ε∗6,24 is a pseudo-embedding
of SQ5,G∗ if the sets of points of Q+(5, 2) with equations X1X3X5 = 0, X1X4X6 = 0,
X2X3X6 = 0 and X2X4X5 = 0 form four pseudo-hyperplanes of SQ5,G∗ (we can then
apply Proposition 4.6 four consecutive times). We now observe the following for an
(a, b, c) ∈ {(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}.

(1) The set of points of Q+(5, 2) with equation Xa = Xb = Xc = 0, or equivalently
XaXbXc+XaXb+XaXc+XbXc+Xa+Xb+Xc = (Xa+ 1)(Xb+ 1)(Xc+ 1) + 1 = 0
is a pseudo-hyperplane of SQ5,G∗ as this set of points is an element of G∗ and so
meets every generator of G∗ in either 1 or 7 points.

(2) The sets of points of Q+(5, 2) with equations XaXb = 0, XaXc = 0, XbXc = 0,
Xa = 0, Xb = 0 and Xc = 0 are pseudo-hyperplanes of SQ5,G∗ arising from ε∗6,20.

(3) If H1 and H2 are two distinct pseudo-hyperplanes of SQ5,G∗ with respective equa-
tions f1(X1, X2, . . . , X6) = 0 and f2(X1, X2, . . . , X6) = 0, then the set of points of
Q+(5, 2) with equation f1(X1, X2, . . . , X6)+f2(X1, X2, . . . , X6) = 0 is also a pseudo-
hyperplane as this set is just the complement of the symmetric difference of H1 and
H2.

The properties (1), (2) and (3) imply that the set of points of Q+(5, 2) with equation
XaXbXc = 0 is a pseudo-hyperplane of SQ5,G∗ for every (a, b, c) ∈ {(1, 3, 5), (1, 4, 6), (2, 3, 6),
(2, 4, 5)}.

Theorems 1.1, 1.2, 1.3 and 1.4 of Section 1 are now consequences of Propositions 2.1, 3.1,
3.2, 3.6, 3.7, 4.4 and 4.8. At this stage, we also have done enough preparatory work to
prove Theorems 1.5 and 1.6.

Let S = (P ,L, I) be one of the geometries Sn with n ≥ 2 or SQ,GQ with Q ∈
{Q+(5, 2), Q(6, 2), Q−(7, 2)}. Note that each π ∈ L is a plane of the ambient projec-
tive space of S. A set of points of odd size of π is either a point, a line, an irreducible
conic, the union of two distinct lines or the whole of π, i.e. a possibly reducible conic of
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π. The pseudo-hyperplanes of S are thus precisely those sets of points of S distinct from
P that meet each π ∈ L in a possibly reducible conic of π. Theorems 1.5 and 1.6 are
then immediate consequences of Proposition 2.2 if we also take into account the algebraic
descriptions of the universal pseudo-embeddings of S (Theorem 1.3 and Proposition 4.3).

We end this paper with showing that the conclusion of Theorem 1.5 is no longer valid
for PG(5, 2) if we restrict to those planes that are totally isotropic with respect to a given
symplectic polarity of PG(5, 2). The projection of Q(6, 2) from the kernel (0, 0, 0, 0, 0, 0, 1)
of Q(6, 2) to PG(5, 2) defines an isomorphism η between the geometry of points and planes
of Q(6, 2) and the geometry of points and planes of a symplectic polar space W (5, 2).

The sets of points of PG(5, 2) intersecting each plane of W (5, 2) in a possibly reducible
conic therefore correspond via η to the sets of points of Q(6, 2) arising from the universal
pseudo-embedding ε7,27 of SQ6,GQ6

.
On the other hand, by Theorem 1.5 the sets of points of PG(5, 2) intersecting each

plane of PG(5, 2) in a possibly reducible conic are precisely the possibly reducible quadrics
of PG(5, 2). These correspond via η to the sets of points of Q(6, 2) arising from the pseudo-
embedding ε7,21 (see also the proof of Proposition 4.5).
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