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Abstract

We classify finite near hexagons that satisfy the following three properties for
certain s, t2 ∈ N \ {0, 1}: every line contains precisely s+ 1 points; every two points
at distance 2 have either 2 or t2 + 1 common neighbours; if Q is a quad of order
(s, t2), then Γ2(Q) does not contain lines. As a consequence of our treatment, we
are able to complete the classification of all finite dense near hexagons and octagons
with four points on each line.
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1 Introduction

This paper is concerned with the classification of certain near polygons. As we will see in
Section 2, for classification purposes we may often assume that the near polygons under
consideration have a constant number of points on each line. We will also make this
assumption here. Specifically, we classify finite near hexagons that satisfy the following
three properties for certain numbers s, t2 ∈ N \ {0, 1}:

(P1) Every line contains precisely s+ 1 points.

(P2) Every two points at distance 2 have either 2 or t2 + 1 common neighbours.

(P3) If Q is a quad of order (s, t2), then Γ2(Q) does not contain lines.

For the definitions of the basic notions and notations that occur in this introductory
section, the reader is referred to Section 2. We already note here that Properties (P1)
and (P2) imply that S has an order (s, t) and that every two points at distance 2 are
contained in a unique quad, which is either an (s + 1) × (s + 1)-grid or a quad of order
(s, t2). If one of the quads of order (s, t2) is big, then necessarily all quads of order (s, t2)
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are big. In the following theorem, which is our first main result, we make use of the
following sets of tuples:

T1 := {(4, 77), (5, 10), (5, 146), (8, 569), (11, 1442), (12, 171), (14, 11), (14, 56), (18, 6139),

(21, 365), (23, 12674), (32, 33761), (53, 151634), (56, 92), (65, 65), (99, 66),

(129, 1861), (158, 3969119), (204, 1683)};
T2 := {(8, 4, 68), (8, 13, 221), (9, 3, 57), (12, 6, 195), (14, 7, 287), (17, 7, 623),

(20, 40, 14705), (22, 6, 930), (26, 52, 2756), (35, 7, 1085), (41, 7, 623), (41, 7, 659),

(41, 7, 1289)}.

Theorem 1.1 Suppose S is a finite near hexagon satisfying Properties (P1), (P2), (P3)
for certain s, t2 ∈ N \ {0, 1}, and let (s, t) denote the order of S. Then the following hold.

(1) If s ≤ 500 and all quads of S are grids, then either S ∼= E1, S is a Hamming near
hexagon H(3, s+ 1) or (s, t) ∈ T1.

(2) If s ≤ 50 and S contains non-big quads of order (s, t2), then either S ∼= E2 or
(s, t2, t) ∈ T2.

(3) If S contains big quads of order (s, t2), then S is one of the following:

(a) a dual polar space DW (5, q), DQ(6, q), DQ−(7, q), DH(5, q2), DH(6, q2) for
some prime power q;

(b) a product near hexagon of the form Ls+1×Q, where Ls+1 is a line of size s+ 1
and Q is a generalized quadrangle of order (s, t2);

(c) a glued near hexagon of type Q1 ⊗ Q2, where Q1 and Q2 are two generalized
quadrangles of order (s, t2);

(d) the near hexagon H3.

No example of a near hexagon is known for each of the possibilities for (s, t) and (s, t2, t)
mentioned in Theorem 1.1. In fact, among the thirteen mentioned possibilities for (s, t2, t)
there are only two for which there exists a (currently) known generalized quadrangle of
order (s, t2), namely (8, 4, 68) and (9, 3, 57). For each of the mentioned possibilities for
(s, t2, t), there also exists a constant b such that every point is contained in b quads of
order (s, t2), see Section 10.

As we will see in Section 2, Property (P3) is satisfied if Q does not admit a partition in
(induced) ovoids, an induced ovoid being a set of points of Q of the form Γ2(x)∩Q where
x ∈ Γ2(Q). This is for instance the case when Q is a generalized quadrangle isomorphic to
W (q), q odd, or Q(5, q). It is also the case if the generalized quadrangle Q is isomorphic
to H(3, q2) or Q(4, q) with all induced ovoids being classical. We refer to [21, Chapter 3]
for the definitions of the mentioned generalized quadrangles and for proofs of these facts
about ovoids.
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Classification results in the direction of Theorem 1.1 have already been obtained in
the papers [5, 10]. In Sections 3 till 9, we derive all kinds of restrictions (equalities,
inequalities, divisibility conditions) involving the parameters of near hexagons satisfying
(P1), (P2), (P3) and having non-big quads of order (s, t2). In fact, several of these
restrictions are generalizations of arguments already given in [5, 10], but we will also
derive several new restrictions. In generalizing some of the arguments in [5, 10], we try
to optimize the obtained bounds with the aim of excluding as many cases for (s, t2, t) as
possible. And indeed, as we can see in Theorem 1.1, there are not many possibilities for
(s, t2, t) that will ultimately survive all these restrictions.

In [10], we classified finite dense near hexagons with four points per line. This clas-
sification was “almost complete” in the sense that only four open cases remained with
specific information about s, t and some other parameters. In recent work, we excluded
three of these four cases (one in [17] and two in [14]), resulting in one case still being open.
The elusive near hexagons corresponding to this final case are in fact near hexagons of
order (3, 27) satisfying (P1), (P2), (P3) with s = t2 = 3 and all quads of order (3, 3) being
non-big and isomorphic to Q(4, 3). The nice thing is that one of the new restrictions we
derive here will allow us to kill this final case (see Section 10), resulting in a complete
classification of all finite dense near hexagons with four points per line, almost twenty
years after the original incomplete classification was obtained in [10]. The following is
thus our second main result.

Theorem 1.2 Suppose S is a finite dense near hexagon with four points per line. Then
S is one of the 10 near hexagons described in Section 1 of [10].

In Proposition 1.1 and Theorem 1.2 of [12], we obtained an incomplete classification of the
finite dense near octagons with four points per line. In that paper, we described an explicit
list of 28 near octagons, and showed that any other example must contain an “exceptional
near hexagon” as subgeometry. Such an exceptional near hexagon corresponds to one of
the four open cases in the classification of the finite dense near hexagons with four points
per line as obtained in [10]. In view of Theorem 1.2, we thus have:

Theorem 1.3 Suppose S is a finite dense near octagon with four points per line. Then
S is isomorphic to one of the 28 near octagons mentioned in Proposition 1 of [12].

Theorems 1.2 and 1.3 thus complete existing results from the literature. In fact, with
these results available, we now have a complete classification of all finite dense near 2d-
gons with three or four points per line if the diameter d is at most 4. Indeed, disregarding
the trivial cases d = 0 and d = 1 (where the near polygons are points and lines), we may
assume here that d ≥ 2. The dense near 2d-gons with three points per line have been
classified in [5] for d = 3, in [16] for d = 4 and in [21, Section 6.1] for d = 2 (although the
latter classification was already folklore long before [21] was published). The classification
of the finite generalized quadrangles with four points per line was obtained in [18], see
also [21, Section 6.2].
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2 Preliminaries

A point-line geometry S = (P ,L, I) with non-empty point set P , line set L and incidence
relation I ⊆ P×L is called a near polygon if every two distinct points are incident with at
most one line, and if for every point-line pair (x, L), there exists a unique point πL(x) on
L that is nearest to x with respect to the distance in the collinearity graph Γ of S. This
is the graph whose vertices are the points of S, with two distinct points being adjacent
whenever they are incident with the same line. If d ∈ N is the diameter of Γ, then the
near polygon is called a near 2d-gon. A near 0-gon is a point and a near 2-gon is a line.
Near quadrangles having two disjoint lines are also known as generalized quadrangles [21].

If x1 and x2 are two points of a near polygon, then d(x1, x2) denotes the distance
between x1 and x2 (in the collinearity graph). If x is a point and Y a non-empty set of
points, then d(x, Y ) denotes the smallest distance between x and a point of Y . If Y1 and
Y2 are two non-empty sets of points, then d(Y1, Y2) denotes the smallest distance between
a point of Y1 and a point of Y2. If ∗ is a point or a non-empty set of points, then Γi(∗)
with i ∈ N denotes the set of points at distance i from ∗. For every point x, we denote
Γ0(x) ∪ Γ1(x) also by x⊥.

A set X of points of a point-line geometry S is called a subspace if every line having
two of its points in X has all its points in X. For every non-empty subspace X, we denote
by X̃ the subgeometry of S defined on the point set X by all those lines of S that have all
their points in X. A set X of points of S is called convex if every point on a shortest path
between two points of X is also contained in X. If X is a non-empty convex subspace of a
near polygon S, then X̃ is also a near polygon. If X̃ is moreover a generalized quadrangle,
then X is called a quad of S. Two distinct quads of a near polygon intersect in either
a singleton, a line or the empty set. If ∗1, ∗2, . . . , ∗k is a collection of objects of a near
polygon (like points, lines and non-empty sets of points), then 〈∗1, ∗2, . . . , ∗k〉 denotes the
smallest convex subspace containing ∗1, ∗2, . . . , ∗k. This new object is well-defined as it
equals the intersection of all convex subspaces containing the mentioned objects.

A near polygon is called dense if every line is incident with at least three points and
if every two points at distance 2 have at least two common neighbours. If S is a dense
near polygon, then every two points at distance 2 are contained in a unique quad, as well
as any two distinct intersecting lines.

If S1 and S2 are two near polygons with respective collinearity graphs Γ1 and Γ2, then
a new near polygon S1×S2 can be constructed whose collinearity graph is isomorphic to
the cartesian product Γ1 × Γ2 of Γ1 and Γ2, see [7, p. 146] or [13, Section 6.6]. The near
polygon S1×S2 is called the direct product of S1 and S2 and its diameter is the sum of the
diameters of S1 and S2. If S1, S2 and S3 are three near polygons, then S1×S2

∼= S2×S1

and S1 × (S2 × S3) ∼= (S1 × S2) × S3 and so the direct product S1 × S2 × · · · × Sk of
k ≥ 2 near polygons S1,S2, . . . ,Sk is well-defined. The direct product of a number of
lines is called a Hamming near polygon. If there are d lines of size s + 1 involved in this
construction, then the Hamming near polygon is denoted by H(d, s+ 1).

If S is a near polygon having the property that every two points at distance 2 have
at least two common neighbours (as it is the case for dense near polygons), then by [7,
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Theorem 1] (see also [13, Corollary 6.17]) we know that S is isomorphic to some product
near polygon S1 × S2 × · · · × Sk, where each Si is a near polygon having a constant
number of points on each line. For this reason, when classifying near polygons, we may
often assume that there is a constant number s+ 1 of points on each line. A near polygon
with two points per line is nothing else than a bipartite graph ([13, Theorem 6.3]). Such
near polygons are usually excluded from classification purposes as there are too many
such graphs.

A line spread of a point-line geometry S is a set of lines partitioning the point set.
If Q1 and Q2 are two generalized quadrangles having line spreads S1 and S2 satisfying
certain nice properties, then by [9] (a) new near hexagon(s) S can be constructed from
(Q1,Q2, S1, S2). Any such near hexagon is said to be glued of type Q1⊗Q2. By [9], glued
near hexagons of type Q1 ⊗Q2 are characterized by the following properties:
• for every i ∈ {1, 2}, S has a partition Ri in quads isomorphic to Qi;
• every quad of R1 intersects every quad of R2 in a line;
• every line is contained in a quad of R1 or a quad of R2.

Suppose x is a point and Q a quad of a near polygon such that d(x,Q) = i. The point
x is called classical with respect to Q if there exists a unique point πQ(x) in Q at distance
i from x, in which case it holds that d(x, y) = d(x, πQ(x)) + d(πQ(x), y) for every y ∈ Q.

The point x is called ovoidal with respect to Q if Γi(x) ∩ Q is an ovoid of Q̃ (or shortly

of Q). This is a set of points of Q̃ meeting each line of Q̃ in a singleton. If the latter
case occurs, then the set Γi(x)∩Q is called a subtended ovoid. For every point-quad pair
(x,Q) in a dense near polygon, the point x is classical or ovoidal with respect to Q, see
[23, Proposition 2.6] (or [13, Theorem 6.24]).

Suppose Q is a quad of a dense near hexagon S. Then the maximal distance from a
point of S to Q is equal to 2. Points of Q ∪ Γ1(Q) are classical with respect to Q, and
points of Γ2(Q) are ovoidal with respect to Q. If Γ2(Q) = ∅, then Q is called big. By [7,
(b)] (see also [13, Theorem 6.25]), one of the following cases occurs for a line L of S:

(i) L ⊆ Q.
(ii) L intersects Q in a unique point.
(iii) L is contained in Γ1(Q). In this case, πQ(L) := {πQ(x) |x ∈ L} is a line of Q.
(iv) L contains a unique point yL ∈ Γ1(Q) and all remaining points of L lie in Γ2(Q). If

zL denotes the unique point of Q collinear with yL, then the subtended ovoids determined
by the points of L \ {yL} all contain zL and partition the set of points of Q ∩ Γ2(zL).

(iv) L ⊆ Γ2(Q). In this case, the subtended ovoids determined by the points of L form
a partition of Q.

We thus see that Q ∪ Γ1(Q) is a subspace of S.
A near polygon is called classical if every two points at distance 2 are contained in

a quad and if every point is classical with respect to any quad. It follows from [8] that
classical near polygons are so-called dual polar spaces, a class of point-line geometries
closely related to the polar spaces of Tits [24]. In the finite case, it follows from Tits’
classification of polar spaces (see e.g. [13, Sections 7.7, 7.9, 8.2]) that every classical dense
near hexagon is isomorphic to one of the following geometries:
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• a product near polygon L×Q, where L is a finite line and Q is a finite generalized
quadrangle, each having at least three points on each line;
• the symplectic dual polar space DW (5, q) for some prime power q;
• the orthogonal dual polar space DQ(6, q) for some prime power q;
• the elliptic dual polar space DQ−(7, q) for some prime power q;
• the Hermitian dual polar space DH(5, q2) for some prime power q;
• the Hermitian dual polar space DH(6, q2) for some prime power q.

A near polygon is said to have order (s, t) if every line is incident with precisely
s + 1 points and if every point is incident with exactly t + 1 lines. A near hexagon is
said to be regular with parameters (s, t, t2) if it has order (s, t) and if every two points
at distance 2 have precisely t2 + 1 common neighbours. If S is a regular near hexagon
with parameters (s, t, t2), s ≥ 2, then an inequality of Haemers and Mathon [19] states
that t ≤ s3 + t2(s2 − s + 1), see also [7, (i)], [20, p. 207] or [13, Theorem 6.48]. The
near hexagons E1 and E2 mentioned in Theorem 1.1 are regular near hexagons whose
parameters (s, t2, t) are respectively equal to (2, 1, 11) and (2, 2, 14) (and so for each of
them, we have equality in the Haemers-Mathon bound). They were constructed in [23]
from the extended ternary Golay code and the Witt design S(5, 8, 24). By [3] and [4],
these near hexagons are uniquely determined (up to isomorphism) by their parameters.

Suppose now again that S is a regular near hexagon with parameters (s, t, t2). It is
then known, see e.g. [22], [7, (i)] or [13, Theorems 3.13, 6.46 and 6.48] that the collinearity
graph Γ of S has exactly four distinct eigenvalues λ1 = s(t + 1), λ2, λ3, λ4 = −(t + 1),
where λ1 > λ2 > λ3 > λ4 and λ2, λ3 are the roots of the quadratic polynomial

x2 − (s− 1)(t2 + 2)x+ (s2 − s+ 1)t2 − st+ (s− 1)2 ∈ R[x].

We have

λ2 =
(s− 1)(t2 + 2) +

√
D

2
, λ3 =

(s− 1)(t2 + 2)−
√
D

2
,

where D = (s− 1)2t22 + 4s(t− t2). Putting

k0 = 1, k1 = s(t+ 1), k2 =
s2(t+ 1)t

t2 + 1
, k3 =

s3t(t− t2)

t2 + 1
,

we have that |Γi(x)| = ki for every i ∈ {0, 1, 2, 3} and every point x of S. The total
number of points of S is then equal to

v = 1 + s(t+ 1) +
s2(t+ 1)t

t2 + 1
+
s3t(t− t2)

t2 + 1
= (s+ 1)(1 + st+

s2t(t− t2)

t2 + 1
). (1)

We denote by mi, i ∈ {1, 2, 3, 4}, the multiplicity of the eigenvalue λi of S. Since Γ is a
connected graph, its valency λ1 = s(t + 1) has multiplicity m1 = 1. The multiplicity m4

of −(t + 1) can be computed from Biggs’ formula [1] (see also [6, Theorem 4.1.4] or [13,
Theorem 3.19]). We have

m4 =
v∑3

i=0 kis
−2i

= s3 (t2 + 1) + s(t2 + 1)t+ s2t(t− t2)

s2(t2 + 1) + st(t2 + 1) + t(t− t2)
. (2)
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As m1 + m2 + m3 + m4 = v and λ1m1 + λ2m2 + λ3m3 + λ4m4 = Tr(A) = 0, where A is
the adjacency matrix of Γ, we have

m2 +m3 = v −m1 −m4 = v − 1−m4,

λ2m2 + λ3m3 = −λ1m1 − λ4m4 = −s(t+ 1) + (t+ 1)m4.

We deduce that

m2 =
λ3(v − 1−m4)− (t+ 1)(m4 − s)

λ3 − λ2

, m3 =
λ2(v − 1−m4)− (t+ 1)(m4 − s)

λ2 − λ3

.

It follows that

m3 =
((s− 1)(t2 + 2) +

√
D)(v − 1−m4)− 2(t+ 1)(m4 − s)

2
√
D

.

The multiplicities m1, m2, m3 and m4 should all be integral. This is the case if and only
if m3 and m4 are integral. We note that if D is not a square, then m3 is integral if and
only if v − 1−m4 is even and

m4 =
(s− 1)(t2 + 2)(v − 1) + 2s(t+ 1)

2(t+ 1) + (s− 1)(t2 + 2)
. (3)

Lemma 2.1 If s ≥ 2 and t2 = 1, then D must be a square.

Proof. Suppose to the contrary that D is not a square. Equating the values of m4

obtained in (2) and (3) (and using (1)), we see that t must satisfy the equation s3−s
2
t(t+

1)(at2 + bt + c) = 0, i.e. at2 + bt + c = 0, where a = 3s, b = 2s2 − 9s + 2 and c =
−(2s2 − 10s + 2). The discriminant d = b2 − 4ac = 4s4 − 12s3 − 31s2 − 12s + 4 must
therefore be a square. If s ≥ 21, then one verifies that

(2s2−3s−11)2 = 4s4−12s3−35s2+66s+121 < d < 4s4−12s3−31s2+60s+100 = (2s2−3s−10)2

and so d cannot be a square. For s ∈ {2, 3, . . . , 20}, one verifies individually that d is
only a square if s = 5. In this case, t ∈ N satisfies the quadratic equation at2 + bt + c =
15t2 + 7t− 2 = (5t− 1)(3t+ 2), which is impossible. �

In the following proposition, we prove the first claim of Theorem 1.1.

Proposition 2.2 If 2 ≤ s ≤ 500 and t2 = 1, then either S ∼= E1, S ∼= H(3, s + 1) or
(s, t) ∈ T1.

Proof. We have t ≥ t2 + 1 = 2. If t = 2, then no two (grid-)quads can intersect in a
singleton, implying that every (grid-)quad is big. So, the near hexagon is classical and
necessarily isomorphic to the Hamming near hexagon H(3, s + 1). So, we may assume
that t ≥ 3. By the Haemers–Mathon inequality, we also have t ≤ s3 + t2(s2 − s + 1) =
s3 +s2−s+1. With the aid of a computer, see [15], we have determined all (s, t) ∈ N×N
for which 2 ≤ s ≤ 500, 3 ≤ t ≤ s3 + s2 − s + 1 such that the numbers

√
D, m2
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and m4 are integral. This turned out to be the case if (s, t) is equal to (2, 11), (3, 9),
(3, 34) or to one of the elements of T1. As mentioned before, any regular near hexagon
with parameters (s, t, t2) = (2, 11, 1) must be isomorphic to E1. By [2], no regular near
hexagon with parameters (s, t, t2) = (3, 9, 1) exists, and by [17, Proposition 4.7] no regular
near hexagon with parameters (s, t, t2) = (3, 34, 1) exists. �

3 Basic inequalities and divisibility conditions

Suppose S = (P ,L, I) is a finite near hexagon that satisfies the Properties (P1), (P2),
(P3) of Section 1 for certain s, t2 ∈ N \ {0, 1}. Then S is a dense near polygon and by
[7, Lemma 19] (see also [13, Theorem 6.26(3)]), there exists a t ∈ N \ {0, 1} such that S
has order (s, t). Let v denote the total number of points of S. The following lemma is
precisely Theorem 1(2) of [14]. It gives an extremely restrictive divisibility condition not
available at the time of the writing of [5, 10]. (In fact, the treatments given in [5, 10] can
often be simplified if one would rely on this condition.)

Lemma 3.1 ([14]) The number

s5v

(s+ 1)2(s− 1)(s2 + 1) + st(s− 1)(s+ 1)2 + v

is integral.

For every point x of S, let Lx denote the set of lines through x. For every incident
point-quad pair (x,Q), we denote by Lx,Q the set of lines through x contained in Q. The
linear space Sx defined on the set Lx by all sets Lx,Q, where Q is a quad through x, is
called the local space at x. Put

δ0 := 1, δ1 := s(t+ 1), δ2 :=
v

s+ 1
− 1 + s2t− st, δ3 :=

sv

s+ 1
− s− s2t.

The following lemma is a special case of Lemma 3 of [11].

Lemma 3.2 ([11]) For every point x of S and every i ∈ {0, 1, 2, 3}, we have |Γi(x)| = δi.

Lemma 3.3 Every point of S is contained in a := δ2(t2+1)
s2(t2−1)

− t(t+1)
t2−1

grid-quads and b :=

1
t2(t2−1)

(
t(t+ 1)− 2δ2

s2

)
quads of order (s, t2).

Proof. Let x be a given point of S. We denote by Ax, respectively Bx, the number of
grid-quads, respectively quads of order (s, t2), through x. As two distinct lines through x
are contained in a unique quad, we have

2Ax + t2(t2 + 1)Bx = t(t+ 1). (4)
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Every grid-quad through x contains s2 points of Γ2(x) and every quad of order (s, t2)
through x contains s2t2 points of Γ2(x). As any two points at distance 2 are contained in
a unique quad, we have

s2Ax + s2t2Bx = |Γ2(x)| = δ2 (5)

by Lemma 3.2. From (4) and (5), we find Ax = a and Bx = b. �

In view of Theorem 1.1 (which we need to prove) and Proposition 2.2, we may assume
that quads of order (s, t2) exist, i.e. that b > 0. Lemma 3.3 then implies the following.

Corollary 3.4 We have v < (s+ 1)(1
2
s2t(t− 1) + st+ 1).

Corollary 3.5 The total number of grid-quads is equal to va
(s+1)2

and the total number of

quads of order (s, t2) is equal to vb
(s+1)(st2+1)

. As a consequence, these numbers are integral.

Proof. This follows from Lemma 3.3 and the facts that each grid-quad contains (s+ 1)2

points and that each quad of order (s, t2) contains (s+ 1)(st2 + 1) points. �

Lemma 3.6 Let Q be a quad of order (s, t2) and x ∈ Γ1(Q). Then the number of lines
through x contained in Γ1(Q) is bounded above by t2(t2 + 1).

Proof. Suppose L is a line through x contained in Γ1(Q). The unique quad through
the lines L and xπQ(x) then contains the line πQ(L) ⊆ Q through πQ(x). Now, there are
t2 + 1 quads through xπQ(x) intersecting Q in a line, and each of these quads contains at
most t2 lines through x contained in Γ1(Q). The required number is thus bounded above
by t2(t2 + 1). �

Put

∆0 := (s+1)(st2+1), ∆1 := s(s+1)(st2+1)(t−t2), ∆2 := v−(s+1)(st2+1)(1+s(t−t2)).

Lemma 3.7 Let Q be a quad of order (s, t2). Then d(x,Q) ≤ 2 for every point x of S.
Moreover, |Γi(Q)| = ∆i for every i ∈ {0, 1, 2}.

Proof. Suppose d(x,Q) ≥ 3 for some point x of S. Then every line L of Q contains a
point at distance at least d(x,Q)+1 ≥ 4 from x, an obvious contradiction. So, d(x,Q) ≤ 2
for every point x of S.

Obviously, |Γ0(Q)| = |Q| = (s + 1)(st2 + 1) = ∆0. As every point of Γ1(Q) is
collinear with a unique point of Q, we have |Γ1(Q)| = |Q| · s(t − t2) = ∆1. Hence,
|Γ2(Q)| = v − |Γ0(Q)| − |Γ1(Q)| = v − (s+ 1)(st2 + 1)− (s+ 1)(st2 + 1)s(t− t2) = ∆2. �

Corollary 3.8 If a quad of order (s, t2) is big, then every quad of order (s, t2) is big.

Proof. A quad and thus all quads of order (s, t2) are big if and only if ∆2 = 0. �

The case where none of the quads of order (s, t2) is big will be treated in Sections 4 till
10. The case where all quads of order (s, t2) are big will be treated in Section 11.
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4 Basic restrictions in case no quad of order (s, t2) is

big

In this section, as well as Sections 5 till 10, we assume that no quad of order (s, t2) is big,
or equivalently, that ∆2 > 0. Recall that if Q is a quad of order (s, t2) and x ∈ Γ2(Q),
then Γ2(x) ∩Q is an ovoid of Q.

Lemma 4.1 If Q is a quad of order (s, t2) and x ∈ Γ2(Q), then every line through x
contains a unique point of Γ1(Q) (besides s points of Γ2(Q)).

Proof. If this were not the case, then there exists a line L through x contained in Γ2(Q),
in contradiction with Property (P3). �

Lemma 4.2 Let Q be a quad of order (s, t2) and x ∈ Γ2(Q). Then x is contained in γ1 :=
st22+t2+st2−t

t2−1
grid-quads and γ2 := t−2st2−1

t2−1
quads of order (s, t2) meeting Q in singletons.

Proof. We show that every line L through x is contained in a unique quad 〈x, y〉, where
y ∈ Ox := Γ2(x) ∩ Q. Indeed, if yL denotes the unique point on L contained in Γ1(Q),
then y necessarily is the unique point of Q collinear with yL. Now, suppose there are M1,
respectively M2, grid-quads, respectively quads of order (s, t2), through x meeting Q in a
singleton (necessarily contained in Ox). Then

M1 +M2 = |Ox| = st2 + 1. (6)

As each grid-quad through x meeting Q contributes 2 lines to Lx and each quad of order
(s, t2) through x meeting Q contributes t2 + 1 lines to Lx, we have

2M1 + (t2 + 1)M2 = t+ 1. (7)

From (6) and (7), it follows that M1 =
st22+t2+st2−t

t2−1
and M2 = t−2st2−1

t2−1
. �

Corollary 4.3 We have st22 + t2 + st2 − t ≤ (t2 − 1)a and t− 2st2 − 1 ≤ (t2 − 1)b.

Proof. Lemmas 3.3 and 4.2 imply that γ1 ≤ a and γ2 ≤ b. �

The following is another consequence of Lemma 4.2.

Corollary 4.4 We have

(1) 2(st2 + 1) ≤ t+ 1 ≤ (t2 + 1)(st2 + 1),

(2) t2 − 1 is a divisor of t− 2s− 1.

The following lemma says something about the structure of S if t attains the upper bound
in Corollary 4.4(1).

Lemma 4.5 If t = (t2 + 1)st2 + t2, then S is a regular near hexagon with parameters
(s, t, t2), i.e. S has no grid-quads.
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Proof. If t = (t2 +1)st2 + t2, then we know from Lemma 4.2 that there are no grid-quads
that meet a quad of order (s, t2) in a singleton.

Now, let x be an arbitrary point of S, let Q be a quad of order (s, t2) through x,
L a line through x not contained in Q and y a point of L \ {x}. By Lemma 3.6, there
are at most (t2 + 1)t2 < t lines through y contained in Γ1(Q). So, there is some line M
through y meeting Γ2(Q). As the quad Q′ := 〈L,M〉 intersects Q in a singleton, it has
order (s, t2). Now, consider another line L′ through x not contained in Q ∪ Q′ and let
y′ ∈ L′ \ {x}. Through y′, there are at most 2t2(t2 + 1) < t lines contained in Γ1(Q) or
Γ1(Q′) and so there exists a line M ′ through y′ containing points of Γ2(Q) and Γ2(Q′).
The quad Q′′ := 〈L′,M ′〉 meets each of Q,Q′ in the singleton {x}. Now, there cannot
exists a grid-quad through x as such a grid-quad would intersect Q, Q′ and Q′′ in lines,
but there are only two lines through a point in a grid-quad. �

Based on the above divisibility conditions and inequalities, we now define a set F(s, t2)
consisting of all possible values for (t, b). For given s and t2, we know that 2st2 + 1 ≤ t ≤
(t2 + 1)st2 + t2 by Corollary 4.4(1). As b ≥ 1 and 2a + t2(t2 + 1)b = t(t + 1), we have

1 ≤ b ≤ b t(t+1)
t2(t2+1)

c and a = t(t+1)
2
− t2(t2+1)

2
b. Also the number v can be expressed in terms

of s, t2, t and b. We have

δ2 = s2t2b+ s2a = s2t2b+
1

2
s2t(t+ 1)− 1

2
s2t2(t2 + 1)b =

1

2
s2t(t+ 1)− 1

2
s2t2(t2 − 1)b

and hence

v = (s+ 1)(δ2 + 1− s2t+ st) = (s+ 1)
(1

2
s2t(t− 1)− 1

2
s2t2(t2 − 1)b+ st+ 1

)
.

Note that the condition ∆2 > 0 is equivalent with t(t− 1)− t2(t2 − 1)b > 2t2(t− t2).

Let F(s, t2) denote the set of all (t, b) satisfying

2st2 + 1 ≤ t ≤ (t2 + 1)st2 + t2, 1 ≤ b ≤ b t(t+ 1)

t2(t2 + 1)
c,

for which
• t(t− 1)− t2(t2 − 1)b > 2t2(t− t2),
• st22 + t2 + st2 − t ≤ (t2 − 1)a,
• t− 2st2 − 1 ≤ (t2 − 1)b,
• t−2s−1

t2−1
∈ N,

• s5v
(s+1)2(s−1)(s2+1)+st(s−1)(s+1)2+v

∈ N,
• va

(s+1)2
∈ N,

• vb
(s+1)(st2+1)

∈ N,
where

a =
t(t+ 1)

2
− t2(t2 + 1)

2
b,

and

v = (s+ 1)
(1

2
s2t(t− 1)− 1

2
s2t2(t2 − 1)b+ st+ 1

)
.
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For a given s ∈ N \ {0, 1}, we know that
√
s ≤ t2 ≤ s2 and s+ t2 | st2(s+ 1)(t2 + 1) by

[21, 1.2.2 & 1.2.3]. As no quad of order (s, t2) is big, every quad of order (s, t2) has induced
ovoids, implying that t2 ≤ s2 − s by [21, 1.8.3]. We also know that {s, t2} 6= {3, 6} ([18],
[21, 6.2.2]). For a given s ∈ N \ {0, 1}, we denote by F(s) the set of all triples (t2, t, b),
where t2 satisfies the just-mentioned restrictions and (t, b) ∈ F(s, t2). We computed F(s)
for 2 ≤ s ≤ 50, see [15]. We found that

F(2) = {(2, 9, 12), (2, 10, 9), (2, 13, 15), (2, 14, 35)},

F(3) = {(3, 21, 22), (3, 23, 5), (3, 25, 8), (3, 27, 43), (3, 35, 83), (3, 39, 35)},

F(4) = {(2, 17, 16), (2, 20, 46), (2, 22, 20), (2, 25, 56), (2, 25, 65),

(2, 26, 115), (4, 51, 65), (4, 66, 170), (6, 99, 225), (8, 233, 582)}.

The sizes of the sets F(s) for s ≤ 50 have been mentioned in the following table.

s |F(s)| s |F(s)| s |F(s)| s |F(s)| s |F(s)| s |F(s)| s |F(s)|
2 4 9 104 16 32 23 274 30 96 37 7 44 311
3 6 10 54 17 273 24 84 31 4 38 74 45 657
4 10 11 206 18 90 25 69 32 271 39 75 46 37
5 177 12 110 19 17 26 232 33 188 40 196 47 112
6 62 13 34 20 302 27 78 34 86 41 938 48 40
7 13 14 739 21 187 28 272 35 1670 42 88 49 84
8 196 15 159 22 51 29 182 36 282 43 17 50 1009

For 2 ≤ s ≤ 50, there are thus 10259 possibilities for (s, t2, t, b). Sections 5 till 10 have
as goal to show for as many of these quadruples as possible that they cannot occur as
parameters of a near hexagon satisfying (P1), (P2), (P3) and having non-big quads of order
(s, t2). And indeed, as we can see from Theorem 1.1, from the 10259 original possibilities
for (s, t2, t, b) there are only |T2| + 1 = 14 that will survive the various restrictions that
we will derive in these sections. We also note that an example is known only for the case
(s, t2, t, b) = (2, 2, 14, 35), in which case it is even unique and isomorphic to E2.

Remark. Lemma 3.1 seems to be the most restrictive among all the above restrictions.
E.g., without this divisibility condition |F(7)| would be equal to 149694 instead of 13.

5 Restrictions arising from the mutual position of

two quads

Lemma 5.1 Let Q be a quad of order (s, t2). Then the number of grid-quads meeting Q
in a singleton is equal to Φ′1 := ∆2γ1

s2
and the number of quads of order (s, t2) meeting Q

in a singleton is equal to Φ1 := ∆2γ2
s2t2

.
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Proof. If x is one of the ∆2 points of Γ2(Q), then by Lemma 4.2, x is contained in γ1

grid-quads and γ2 quads of order (s, t2) meeting Q in a singleton.
Conversely, for every grid-quad R meeting Q in a singleton {u}, we have |Γ2(Q)∩R| =

|Γ2(u) ∩ R| = s2 and for every quad S of order (s, t2) meeting Q in a singleton {v}, we
have |Γ2(Q)∩S| = |Γ2(v)∩S| = s2t2. The numbers stated in the lemma now easily follow
from straightforward counting. �

Lemma 5.2 Let Q be a quad of order (s, t2). Then the number of grid-quads meeting Q
in a line is equal to Φ′2 := (st2 + 1)a − ∆2γ1

s2(s+1)
and the number of quads of order (s, t2)

meeting Q in a line is equal to Φ2 := (st2 + 1)(b − 1) − ∆2γ2
s2t2(s+1)

. As a consequence,

a ≥ ∆2γ1
s2(s+1)(st2+1)

, b− 1 ≥ ∆2γ2
s2t2(s+1)(st2+1)

and the numbers ∆2γ1
s2(s+1)

and ∆2γ2
s2t2(s+1)

are integral.

Proof. Through each of the (s + 1)(st2 + 1) points of Q, there are a grid-quads. The
grid-quads that meet Q in a singleton are counted only once in this way, but the grid-
quads that meet Q in a line are counted s + 1 times. Invoking Lemma 5.1, we thus see
that the total number of grid-quads meeting Q in a line is given by

1

s+ 1

(
(s+ 1)(st2 + 1)a− Φ′1

)
= (st2 + 1)a− ∆2γ1

s2(s+ 1)
.

A similar argument applies to the quads of order (s, t2) if we take into account that
through each of the (s + 1)(st2 + 1) points of Q, there are b − 1 quads of order (s, t2)
distinct from Q. �

Lemma 5.3 Let Q be a quad of order (s, t2). Then the number of grid-quads disjoint
from Q is equal to Φ′3 := va

(s+1)2
− ∆2γ1

s(s+1)
− (st2 + 1)a and the number of quads of order

(s, t2) disjoint from Q is equal to Φ3 := vb
(s+1)(st2+1)

− ∆2γ2
st2(s+1)

− (st2 + 1)b+ st2.

Proof. As the total number of grid-quads is equal to va
(s+1)2

(Corollary 3.5), it follows
from Lemmas 5.1 and 5.2 that the number of grid-quads disjoint from Q is equal to
va

(s+1)2
− Φ′1 − Φ′2 = Φ′3.

As the total number of quads of order (s, t2) is equal to vb
(s+1)(st2+1)

(Corollary 3.5), it

follows from Lemmas 5.1 and 5.2 that the number of quads of order (s, t2) disjoint from
Q is equal to vb

(s+1)(st2+1)
− Φ1 − Φ2 − 1 = Φ3. �

Lemma 5.4 We have Φ2 ≤ (t2 + 1)(st2 + 1)b t−t2
t2
c, with equality if and only if every line

is contained in either 0 or b t
t2
c quads of order (s, t2). If this is the case, then the number

b t
t2
c is a divisor of b(t2 + 1).

Proof. Let Q be a given quad of order (s, t2). By Lemma 5.2, there are Φ2 quads
of order (s, t2) meeting Q in a line. On the other hand, each of the (t2 + 1)(st2 + 1)
lines of Q is contained in at most b t−t2

t2
c quads of order (s, t2) distinct from Q. So,

Φ2 ≤ (t2 + 1)(st2 + 1)b t−t2
t2
c, with equality if and only if every line of Q is contained in

precisely b t
t2
c quads of order (s, t2). The first claim of the lemma now follows from the

fact that Q was an arbitrary quad of order (s, t2).
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As to the second claim, consider a point x. A standard double counting then gives
that the number of lines through x that are contained in some quad of order (s, t2) is
equal to b(t2 + 1)b t

t2
c−1. �

Remark. A similar reasoning as in the proof of Lemma 5.4 would show that Φ′2 ≤
(t2 + 1)(st2 + 1)(t − t2). However, this inequality already follows from earlier results.
Indeed, it can be shown from earlier derived formulas (see e.g. the remark at the end of
Section 7) that Φ′2 + t2Φ2 = (t2 + 1)(st2 + 1)(t− t2).

Lemma 5.5 Let Q be a quad of order (s, t2) and R a quad disjoint from Q. Then Γ1(Q)∩
R is either R or a hyperplane of R (i.e. a proper subspace of R meeting each line of R).

Proof. As the set Γ0(Q)∪Γ1(Q) is a subspace of S, the intersection (Γ0(Q)∪Γ1(Q))∩R =
Γ1(Q)∩R is a subspace of R. As every line L of R meets Γ1(Q) (Lemma 4.1), this subspace
is either R or a hyperplane of R. �

The following are two consequences of Lemma 5.5 and [21, 2.3.1].

Corollary 5.6 Let Q be a quad of order (s, t2) and R a grid-quad disjoint from Q. Then
precisely one of the following cases occurs:

(1) R ⊆ Γ1(Q);

(2) R ∩ Γ1(Q) is the union of two intersecting lines;

(3) R ∩ Γ1(Q) is an ovoid of R.

As a consequence, |R ∩ Γ2(Q)| ≤ s(s+ 1).

Corollary 5.7 Let Q be a quad of order (s, t2) and R a quad of order (s, t2) disjoint from
Q. Then precisely one of the following cases occurs:

(1) R ⊆ Γ1(Q);

(2) R ∩ Γ1(Q) = x⊥ ∩R for some point x ∈ R;

(3) R ∩ Γ1(Q) is a sub(generalized)quadrangle of order (s, t2
s

) of R;

(4) R ∩ Γ1(Q) is an ovoid of R.

As a consequence, |R ∩ Γ2(Q)| ≤ s(st2 + 1).

Lemma 5.8 Let Q be a quad of order (s, t2). Then the number of grid-quads disjoint

from Q is at least ∆2(a−γ1)
s(s+1)

and the number of quads of order (s, t2) disjoint from Q is at

least ∆2(b−γ2)
s(st2+1)

.
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Proof. By Lemmas 3.3, 3.7 and 4.2 each of the ∆2 points x ∈ Γ2(Q) is contained in a−γ1

grid-quads disjoint from Q. Conversely, every grid-quad R disjoint from Q contains at
most s(s+ 1) points of Γ2(Q) by Corollary 5.6. It follows that the number of grid-quads

disjoint from Q is at least ∆2(a−γ1)
s(s+1)

.
A similar reasoning can be applied to obtain a lower bound for the number of quads

of order (s, t2) disjoint from Q. This time one needs to rely on Corollary 5.7. �

The following is an immediate consequence of Lemmas 5.3 and 5.8 (and the latter’s proof).

Corollary 5.9 We have

va

(s+ 1)2
− ∆2γ1

s(s+ 1)
− (st2 + 1)a ≥ ∆2(a− γ1)

s(s+ 1)
,

vb

(s+ 1)(st2 + 1)
− ∆2γ2

st2(s+ 1)
− (st2 + 1)b+ st2 ≥

∆2(b− γ2)

s(st2 + 1)
.

Equality holds in the first (respectively, second) inequality if and only if every grid-quad
(respectively, quad of order (s, t2)) disjoint from a quad Q of order (s, t2) meets Γ1(Q) is
an ovoid of that quad.

Taking into account that ∆2 = v − (s + 1)(st2 + 1)(1 + s(t − t2)), the first inequality of
Corollary 5.9 reduces to the following.

Corollary 5.10 We have v ≤ (s+ 1)2(st2 + 1)(1 + s(t− t2−1)), with equality if and only
if every grid-quad disjoint from a quad Q of order (s, t2) meets Γ1(Q) in an ovoid of that
quad.

In certain cases, the second inequality of Corollary 5.9 can be improved as follows.

Lemma 5.11 Let Q be a quad of order (s, t2). Suppose no ovoid of Q intersects a sub-
tended ovoid of Q in precisely t2 + 1 points. Then

vb

(s+ 1)(st2 + 1)
− ∆2γ2

st2(s+ 1)
− (st2 + 1)b+ st2 ≥

∆2(b− γ2)

s2t2
,

with equality if and only if for every quad R of order (s, t2) disjoint from Q, we have
R ∩Q = x⊥ ∩R for some point x ∈ R.

Proof. LetR be an arbitrary quad of order (s, t2) disjoint fromQ. We show thatR∩Γ1(Q)
cannot be an ovoid of R. By Corollary 5.7, we then know that |R ∩ Γ2(Q)| ≤ s2t2, and
the inequality would then follow from a similar reasoning as in Corollary 5.9.

So, suppose R ∩ Γ1(Q) is an ovoid OR of R. Then Oq := Q ∩ Γ1(R) is an ovoid of Q,
and every point of OQ is collinear with a unique point of OR (implying that every such
point is classical with respect to R). Now, take a point x ∈ R \ OR. As x is collinear
with precisely t2 + 1 points of OR, the subtended ovoid Γ2(x) ∩ Q of Q would intersect
the ovoid OQ of Q in precisely t2 + 1 points, a contradiction. �
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Remark. The conditions on the quad Q mentioned in Lemma 5.11 are valid if (s, t2) =

(2, 2), in which case Q̃ ∼= W (2).

Lemma 5.12 The case b = 1 cannot occur.

Proof. Suppose b = 1. Then no two distinct quads of order (s, t2) can intersect, and so
by Lemma 4.2 we have γ2 = 0, or equivalently, t = 2st2 + 1.

Let Q be a quad of order (s, t2). If R is a grid-quad of S, then |Γ2(Q) ∩ R| ∈
{0, s2, s(s + 1)} by Corollary 5.6. Let Mi, i ∈ {0, s2, s(s + 1)}, be the number of grid-
quads R for which |R ∩ Γ2(Q)| = i.

The grid-quads R for which |Γ2(Q)∩R| = s(s+1) are precisely the grid-quads disjoint
from Q for which Γ1(Q)∩R is an ovoid of R. Now, through each point x of Γ1(Q), there
is one line meeting Q and t2 + 1 lines contained in Γ1(Q). Indeed, as each quad through
xπQ(x) is a grid (as b = 1), there are t2 + 1 such grids that meet Q in a line, and each of
these t2 + 1 grids determines a line through x contained in Γ1(Q). Conversely, every line
through x contained in Γ1(Q) is contained together with the line xπQ(x) in a grid-quad
that intersectsQ in a line. So, through x, there are t−t2−1 lines meeting Γ2(Q) in s points.
Hence, Ms(s+1) ≤ 1

s+1
·|Γ1(Q)|· 1

2
(t−t2−1)(t−t2−2) = 1

2
s(st2+1)(t−t2)(t−t2−1)(t−t2−2).

As b = 1, there are t−t2 grid-quads through each line of Q and so there are (t2+1)(st2+
1)(t − t2) grid-quads that meet Q in a line. The grid-quads R for which R ∩ Γ2(Q) = ∅
are precisely the grid-quads that meet Q in a line or are contained in Γ1(Q).

As b = 1, there are 1
2
(t−t2)(t−t2−1) grid-quads through each point of Q that meet Q

in a singleton, and so there are 1
2
(s+ 1)(st2 + 1)(t− t2)(t− t2− 1) grid-quads that meet Q

in a singleton. The grid-quads R for which |Γ2(Q) ∩R| = s2 are precisely the grid-quads
meeting Q in a singleton and the grid-quads disjoint from Q for which the intersection
with Γ1(Q) is the union of two intersecting lines.

Now, counting triples (R,L1, L2), where L1, L2 ⊆ Γ1(Q) are two distinct intersecting
lines and R is a grid-quad through L1 and L2 (necessarily disjoint from Q), we find:

(s+ 1)2(M0 − (t2 + 1)(st2 + 1)(t− t2)) + (Ms2 −
1

2
(s+ 1)(st2 + 1)(t− t2)(t− t2 − 1))

≤ |Γ1(Q)| · (t2 + 1)t2
2

= s(s+ 1)(st2 + 1)(t− t2)
(t2 + 1)t2

2
.

It follows that

M0 − (t2 + 1)(st2 + 1)(t− t2) +Ms2 −
1

2
(s+ 1)(st2 + 1)(t− t2)(t− t2 − 1)

≤ s(s+ 1)(st2 + 1)(t− t2)
(t2 + 1)t2

2
.

Invoking Corollary 3.5, we thus see that

va

(s+ 1)2
= M0 +Ms2 +Ms2+s ≤ (t2 +1)(st2 +1)(t− t2)+

1

2
(s+1)(st2 +1)(t− t2)(t− t2−1)
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+
1

2
s(s+ 1)(st2 + 1)(t− t2)(t2 + 1)t2 +

1

2
s(st2 + 1)(t− t2)(t− t2 − 1)(t− t2 − 2).

We denote by z1, z2, z3, z4 the four terms occurring at the right hand side of the last
inequality. Then

(s+ 1)(z1 + z2 + z3 + z4)− v

s+ 1
a ≥ 0. (8)

Now,

b = 1,

t = 2st2 + 1,

a =
t(t+ 1)

2
− t2(t2 + 1)

2
b,

v

s+ 1
=

1

2
s2t(t− 1)− 1

2
s2t2(t2 − 1)b+ st+ 1.

So, we see that each of the numbers z1, z2, z3, z4,
v
s+1

and a can be expressed as polynomials
in s and t2. Equation (8) is then equivalent with

−1

4
(4s5 − 2s4 − 10s3 + 5s2)t42 −

1

2
(2s5 + 2s4 − 4s3 − 7s2 + 3s)t32

−1

4
(6s4 + 4s3 − 17s2)t22 −

1

2
(s3 + s2 − 3s)t2 ≥ 0.

The latter inequality is never satisfied. �

6 Further restrictions in the case t = 2st2 + 1

In Corollary 4.4, we derived a lower and upper bound for t. In case t attains the upper
bound, we provided structural information about S in Lemma 4.5. In this section, we
derive further information in the case t attains the lower bound 2st2 + 1. For every line
L of S, we denote by αL the number of quads of order (s, t2) through L.

We now define a certain number k. This number is equal to u + 1, where u = t2
s

,
unless one of the following conditions is satisfied, in which case k is equal to 1:
• u 6∈ N;
• {s, u} = {3, 6};
• u ∈ N \ {0, 1} and u2 < s;
• u ∈ N \ {0, 1} and s2 < u;

• u ∈ N \ {0, 1} and su(s+1)(u+1)
s+u

6∈ N.

Lemma 6.1 If t = 2st2+1, then the following hold:

(1) No two quads of order (s, t2) intersect in a singleton.

(2) b ≤ max(2s, t22 + t2 + 1).

17



(3) If max(2s, 2t2) < b, then for every line L of S, we have αL ≤ k or αL = t2 + 1.

(4) If max(2s, t2) < b, then for every line L of S, we have αL ≤ k or αL ∈ {t2, t2 + 1}.

(5) If max(2s, 2t2) < b 6= t22 + t2 + 1, then d b+t2−(t2+1)k
t2+1−k e < k + 1.

Proof. (1) Suppose Q1 and Q2 are two quads of order (s, t2) that intersect in the singleton
{x}. Let y ∈ Q2 ∩ Γ2(x). Then y ∈ Γ2(Q1) and so by Lemma 4.2, there exists no quad
of order (s, t2) through y intersecting Q1 in a singleton. This is a contradiction as Q2 is
such a quad.

(2) Let x be a point of S. In the local space Sx, there are only lines of size t2 + 1 and
2. There are b lines of size t2 + 1 and by part (1), we know that any two such lines of size
t2 + 1 meet.

Suppose now that b > 2s and let L1, L2 be two distinct lines of size t2 + 1 in Sx. Put
{p} = L1∩L2. Through p, there are at most b t

t2
c = 2s lines of size t2 +1. As b > 2s, there

exists a line M of size t2 + 1 in Sx not containing {p}. As any line of size t2 + 1 through
p meets M , there are at most t2 + 1 such lines. Any line of size t2 + 1 not containing p
meets L1 \ {p} and L2 \ {p} and so there are at most t22 such lines. We conclude that if
b > 2s then there are at most (t2 + 1) + t22 lines of size t2 + 1 in Sx.

(3) Let x and y be two distinct points of L. The line L is contained in at most
b t
t2
c = 2s quads of order (s, t2). As b > 2s, there exists a quad Q of order (s, t2) through

x not containing L. Any quad of order (s, t2) through L meets Q in a line and so we have
αL ≤ t2 + 1. Suppose l := αL ∈ [k + 1, t2]. Denote by Q1, Q2, . . . , Ql the l quads of order
(s, t2) through L (necessarily intersecting Q in a line), and by R1, R2, . . . , Rt2+1−l the grid-
quads through L intersecting Q in a line through x. For every i ∈ {1, 2, . . . , t2 + 1 − l},
let Ki denote the unique line of R through y distinct from L. Any quad S of order
(s, t2) through y not containing L intersects Γ1(Q) in a set that contains the l > k lines
Q1 ∩ S,Q2 ∩ S, . . . , Ql ∩ S. By Corollary 5.7 and [21, 1.2.2, 1.2.3, 6.2.2], every line of S
through y is contained in Γ1(Q), implying that the line K1 is contained in S. As any quad
of order (s, t2) through K1 intersects Q1 in a line through y distinct from L, there are at
most t2 such quads. So, the number of quads of order (s, t2) through y is bounded above
by l + t2 ≤ 2t2. As b > 2t2, this is a contradiction. It follows that l ≤ k or l = t2 + 1.

(4) The proof is similar to the proof of part (3). Here, we assume that l := αL ∈
[k + 1, t2 − 1]. Following the same notational conventions as in (3), we must have that
K1 and K2 are contained in S. Every quad of order (s, t2) through y not containing L
should therefore coincide with 〈K1, K2〉, implying that the number of quads of order (s, t2)
through y is bounded above by l + 1 ≤ t2. As b > t2, this is a contradiction. It follows
that l ≤ k or l ∈ {t2, t2 + 1}.

(5) If max(2s, 2t2) < b 6= t22 + t2 + 1, then we know from (2) that b < t22 + t2 + 1.

Suppose to the contrary that d b+t2−(t2+1)k
t2+1−k e ≥ k + 1. Let x be a point of S and consider

a line U of size t2 + 1 in the local space Sx. By (3) we know that αu ≤ k or αu = t2 + 1
for every point u of U . Let N1 denote the number of points u ∈ U for which αu = t2 + 1.
Then there are t2 + 1 − N1 points u of U for which αu ≤ k. Since any two lines of size
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t2 + 1 of Sx meet, we have
∑

u∈U αu = b+ t2 and hence

N1(t2 + 1) + (t2 + 1−N1)k ≥ b+ t2,

i.e.

N1 ≥
b+ t2 − (t2 + 1)k

t2 + 1− k
.

This implies that

N1 ≥ d
b+ t2 − (t2 + 1)k

t2 + 1− k
e ≥ k + 1.

Since
∑

u∈U αu = b + t2 < t22 + 2t2 + 1 = (t2 + 1)2, there exists a point u2 ∈ U for which
αu2 ≤ k. As N1 ≥ k + 1, there also exists a point u1 ∈ U for which αu1 = t2 + 1. Let
U ′ be a line of size t2 + 1 through u1 distinct from U . As αu2 ≤ k, there exists a point
v ∈ U ′ \ {u1} such that vu2 is a line of size 2. As N1 ≥ k+ 1, there are at least k+ 1 lines
of size t2 + 1 through v, i.e. αv ≥ k + 1. But this would imply that αv = t2 + 1 which is
impossible as vu2 is a line of size 2. �

7 Derivation of some other constants

The following lemma is an improvement of one of the claims of Lemma 5.1.

Lemma 7.1 Let Q be a quad of order (s, t2). If γ2 6= 1, then through every point x of Q,
there are φ1 := ∆2γ2

s2t2(s+1)(st2+1)
quads of order (s, t2) that meet Q in the singleton {x}.

Proof. For every point u of Q, let Nu denote the number of quads of order (s, t2) that
meet Q in the singleton {u}. If u1 and u2 are two noncollinear points of Q, then counting
in two different ways the number of pairs (R1, R2), where R1 and R2 are two quads of
order (s, t2) satisfying R1 ∩ Q = {u1}, R2 ∩ Q = {u2} and |R1 ∩ R2| = 1, we find by
Lemma 4.2 that Nu1 · (γ2− 1) = Nu2 · (γ2− 1), i.e. Nu1 = Nu2 . Now, since the collinearity
relation defined on the point set of Q gives rise to a connected graph (as s ≥ 2), we see
that all Nu’s are equal, necessarily to Φ1

|Q| = φ1. �

For every line L, we denote by αL, respectively βL, the number of quads of order (s, t2),
respectively grid-quads, through L. As any two intersecting lines are contained in a unique
quad, we have t2αL + βL = t. Hence, αL ≤ b tt2 c.

Lemma 7.2 (1) We have(
db− 1− Φ1

(s+ 1)(st2 + 1)
e
)(
db− t22−b

t

t2
c− Φ1

(s+ 1)(st2 + 1)
e
)
≤ Φ1b

(s+ 1)(st2 + 1)
.

(2) If Φ1

(s+1)(st2+1)
∈ N and(

b− Φ1

(s+ 1)(st2 + 1)

)(
b+ 1− t22 − b

t

t2
c − Φ1

(s+ 1)(st2 + 1)

)
>

Φ1b

(s+ 1)(st2 + 1)
,
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then through every point x of a quad Q of order (s, t2), there are φ1 = Φ1

(s+1)(st2+1)

quads of order (s, t2) meeting Q in the singleton {x}.

Proof. For a quad Q of order (s, t2) and a point x ∈ Q, let Nx,Q denote the number of
quads of order (s, t2) that intersect Q in the singleton {x}. By Corollary 3.5 and Lemma
5.1, we have ∑

x

∑
Q

Nx,Q =
∑
Q

∑
x

Nx,Q =
∑
Q

Φ1 =
Φ1vb

(s+ 1)(st2 + 1)
, (9)

where the summation ranges over all points x and all quads Q of order (s, t2) such that
x ∈ Q. Now, let x be a fixed point and consider the local space Sx. For a line L of size
t2 + 1 of Sx, we define AL :=

∑
p∈L αp. Let M be one of the AL − (t2 + 1) lines of size

t2 + 1 meeting L in a singleton, say {p1}. There are at least
∑

p∈L\{p1}(αp − (t2 + 1)) =

AL − αp1 − t2(t2 + 1) ≥ AL − b tt2 c − t2(t2 + 1) lines of size t2 + 1 disjoint from M . Hence,∑
Q

Nx,Q ≥
(
AL − (t2 + 1)

)(
AL − b

t

t2
c − t2(t2 + 1)

)
(10)

for every line L of size t2 + 1 of Sx.
For a line L of size t2 + 1 of Sx, there are b− (AL − (t2 + 1))− 1 = b + t2 − AL lines

of size t2 + 1 disjoint from L. Hence,∑
Q

Nx,Q =
∑
L

(b+ t2 − AL), (11)

where the latter summation ranges over all lines L of size t2 + 1 of Sx.

Suppose now that(
db− 1− Φ1

(s+ 1)(st2 + 1)
e
)(
db− t22 − b

t

t2
c − Φ1

(s+ 1)(st2 + 1)
e
)
>

Φ1b

(s+ 1)(st2 + 1)
.

Then b − 1 − Φ1

(s+1)(st2+1)
> 0 (by Lemma 5.2) and b − t22 − b tt2 c −

Φ1

(s+1)(st2+1)
> 0. The

displayed inequality in combination with (10) implies that if x is a point such that Sx has a
line L of size t2+1 for which AL ≥ b+t2− Φ1

(s+1)(st2+1)
(i.e. AL ≥ db+t2− Φ1

(s+1)(st2+1)
e), then∑

QNx,Q >
Φ1b

(s+1)(st2+1)
. On the other hand, if x is a point such that AL < b+t2− Φ1

(s+1)(st2+1)

for every line L of size t2 + 1 of Sx, then (11) implies that
∑

QNx,Q > Φ1b
(s+1)(st2+1)

. This
allows us to conclude that ∑

x

∑
Q

Nx,Q >
Φ1bv

(s+ 1)(st2 + 1)
,

in contradiction with (9). So, Part (1) of the theorem is certainly valid.
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Suppose now that Φ1

(s+1)(st2+1)
∈ N and(

b− Φ1

(s+ 1)(st2 + 1)

)(
b+ 1− t22 − b

t

t2
c − Φ1

(s+ 1)(st2 + 1)

)
>

Φ1b

(s+ 1)(st2 + 1)
.

Then b− Φ1

(s+1)(st2+1)
> 0 and b+1−t22−b tt2 c−

Φ1

(s+1)(st2+1)
> 0. Also (10) implies that if x is

a point such that Sx has a line L of size t2 +1 for which AL ≥ b+ t2 +1− Φ1

(s+1)(st2+1)
, then∑

QNx,Q >
Φ1b

(s+1)(st2+1)
. On the other hand, if x is a point such that AL ≤ b+t2− Φ1

(s+1)(st2+1)

for every line L of size t2 + 1 of Sx, then (11) implies that
∑

QNx,Q ≥ Φ1b
(s+1)(st2+1)

. As∑
x

∑
QNx,Q = Φ1vb

(s+1)(st2+1)
, we thus see that for every point x and every line L of size

t2 + 1 of Sx, we have AL = b+ t2 − Φ1

(s+1)(st2+1)
.

Now, let Q be a quad of order (s, t2) and x ∈ Q. Let L be the line of size t2 + 1 of Sx
corresponding to Q. Then the fact that AL = b + t2 − Φ1

(s+1)(st2+1)
implies that there are

b − 1 − Φ1

(s+1)(st2+1)
quads of order (s, t2) that meet Q in a line through x. So, there are

Φ1

(s+1)(st2+1)
quads of order (s, t2) that meet Q in the singleton {x}. �

Remark: In view of Lemma 7.1, Lemma 7.2(2) only offers new information in the case
γ2 = 1.

Lemma 7.3 Let Q be a quad of order (s, t2). Suppose that the number of quads of order
(s, t2) meeting Q in a singleton {x} ⊆ Q is independent from x. Then through every point
x ∈ Q, there are

• φ1 = ∆2γ2
s2t2(s+1)(st2+1)

quads of order (s, t2) that meet Q in the singleton {x},

• φ′1 := ∆2γ1
s2(s+1)(st2+1)

grid-quads that meet Q in the singleton {x},

• φ2 := b− 1− ∆2γ2
s2t2(s+1)(st2+1)

quads of order (s, t2) that meet Q in a line,

• φ′2 := a− ∆2γ1
s2(s+1)(st2+1)

grid-quads that meet Q in a line.

As a consequence, these numbers are integral. In particular, this holds if γ2 6= 1 or
Φ1

(s+1)(st2+1)
∈ N and(

b− Φ1

(s+ 1)(st2 + 1)

)(
b+ 1− t22 − b

t

t2
c − Φ1

(s+ 1)(st2 + 1)

)
>

Φ1b

(s+ 1)(st2 + 1)
.

Proof. For every point u of Q, we denote by
• Nu the number of quads of order (s, t2) meeting Q in the singleton {u},
• N ′u the number of grid-quads meeting Q in the singleton {u},
• Mu the number of quads of order (s, t2) meeting Q in a line through u,
• M ′

u the number of grid-quads meeting Q in a line through u.

Then we have Nu +Mu = b− 1, N ′u +M ′
u = a and M ′

u + t2Mu = (t2 + 1)(t− t2) (as any
two distinct lines through a point are contained in a unique quad). The fact that all Nu’s
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are constant thus implies that also all Mu’s, N
′
u’s and M ′

u’s are constant. For every point
u ∈ Q, we thus have

Nu =
Φ1

(s+ 1)(st2 + 1)
= φ1, N ′u =

Φ′1
(s+ 1)(st2 + 1)

= φ′1,

Mu = b− 1−Nu = b− 1− φ1 = φ2, M ′
u = a−N ′u = a− φ′1 = φ′2.

�

Remark: Making use of Lemma 7.3, we compute that

φ′2 + t2φ2 = a+ t2b− t2 −
∆2γ1

s2(s+ 1)(st2 + 1)
− ∆2γ2

s2(s+ 1)(st2 + 1)

=
δ2

s2
− t2 −

∆2(γ1 + γ2)

s2(s+ 1)(st2 + 1)

=
1

s2

( v

s+ 1
− 1 + s2t− st

)
− t2 −

∆2

s2(s+ 1)

=
1

s2

( v

s+ 1
− 1 + s2t− st

)
− t2 −

v − (s+ 1)(s2t2(t− t2) + st+ 1)

s2(s+ 1)

= (t2 + 1)(t− t2).

This inequality also follows from a double counting of the pairs (L1, L2), where L1 and L2

are two lines through a given point x of a given quad Q of order (s, t2) such that L1 ⊆ Q
and L2 is not contained in Q.

As φ′2 + t2φ2 = (t2 + 1)(t− t2), the condition that φ1 is integral thus implies that also
φ′1, φ2 and φ′2 are integral.

8 Restrictions arising from the αL’s

If Q is a quad of order (s, t2), then in Lemmas 7.1 and 7.2(2), we gave sufficient conditions
for the number of quads of order (s, t2) intersecting Q in a given singleton {y} ⊆ Q to be
independent from y. We need the fact that these numbers are constant in the following
two lemmas.

Lemma 8.1 Let Q be a quad of order (s, t2). Assume that the number of quads of order
(s, t2) intersecting Q in a given singleton {y} ⊆ Q is independent from the point y. Then
for every x ∈ Q, we have∑

L∈Lx,Q

αL = b+ t2 −
∆2γ2

s2t2(s+ 1)(st2 + 1)
.

Proof. The number of quads of order (s, t2) that intersect Q in a line through x is equal
to
∑

L∈Lx,Q(αL − 1) =
∑

L∈Lx,Q αL − (t2 + 1). By Lemma 7.3, this number is equal to

b− 1− ∆2γ2
s2t2(s+1)(st2+1)

. �
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Lemma 8.2 Assume that for any quad Q of order (s, t2), the number of quads of order
(s, t2) intersecting Q in a given singleton {y} ⊆ Q is independent from the point y. Let x
be a point of S. Summing over all points p of the local space Sx, we find:∑

p

1 = t+ 1,∑
p

αp = (t2 + 1)b,

∑
p

α2
p = b

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
.

As a consequence, (t2 + 1)b and b
(
b+ t2 − ∆2γ2

s2t2(s+1)(st2+1)

)
have the same parity and

(t2 + 1)2b ≤ (t+ 1)
(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
,

with equality of and only if the αL’s are constant, in which case αL = (t2+1)b
t+1

for every line
L of S (implying that this number is then integral).

Proof. The number
∑

p 1 is the number of points of Sx, i.e. t+ 1. The number
∑

p αp is
the number of flags (p, L) of Sx, where L is a line of size t2 + 1. As there are b lines of size
t2 + 1 in Sx, there are b(t2 + 1) such flags. The number

∑
p α

2
p is the number of triples

(p, L1, L2), where p is a point of Sx and L1, L2 are two not necessarily distinct lines of
size t2 + 1 through p. Now, there are b possibilities for L1, and for given L1 there are by
Lemma 8.1 b+ t2 − ∆2γ2

s2t2(s+1)(st2+1)
possibilities for (x, L2). Hence,

∑
p

α2
p = b

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
.

Now, the Cauchy-Schwartz inequality (
∑

p αp)
2 ≤ (

∑
p 1) · (

∑
p α

2
p) reduces to the in-

equality mentioned in the lemma. Obviously, we have equality in this inequality if and
only if all αp’s are constant, in which case all αp’s are equal to their average value

αp := (
∑

p αp)/(
∑

p 1) = (t2+1)b
t+1

. �

We now show that the inequality of Lemma 8.2 always holds.

Lemma 8.3 We always have

(t2 + 1)2b ≤ (t+ 1)
(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
.

If equality holds, then for a given quad Q of order (s, t2), the number of quads of order
(s, t2) intersecting Q in a given singleton {y} ⊆ Q is independent from the point y (and
so the additional conclusions of Lemma 8.2 are also valid.)
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Proof. Let x be a point of S. Summing over all points p of the local space Sx =
(Px,Lx, Ix), we find ∑

p∈Px

1 = t+ 1,
∑
p∈Px

αp = (t2 + 1)b,

and hence
∑

p∈Px
α2
p ≥

(t2+1)2b2

t+1
. Invoking Corollary 3.5 and Lemma 5.2, we then have

(t2 + 1)2b2

t+ 1
v ≤

∑
x∈P

∑
p∈Px

α2
p = (s+ 1) ·

∑
L∈L

α2
L

= (s+ 1)
bv

(s+ 1)(st2 + 1)

(
(t2 + 1)(st2 + 1) + Φ2

)
= bv

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
,

from which the stated inequality readily follows. In case of equality, we have that∑
p∈Px

α2
p = (t2+1)2b2

t+1
for every point x of S. Just as in the proof of Lemma 8.2, we

then know that αp is independent from p ∈ Px, and so that αL = (t2+1)b
t+1

for every line L
of S. But then for every quad Q of order (s, t2) and every point x ∈ Q, the number of
quads of order (s, t2) intersecting Q in the singleton {x} is equal to

b− 1− (t2 + 1)
((t2 + 1)b

t+ 1
− 1
)

and thus constant. �

9 Further restrictions arising from the αL’s

Lemma 9.1 Let L1 and L2 be two disjoint lines contained in a grid-quad R. If γ2 6= 0,
then αL1 = αL2.

Proof. Let K be a line meeting L1 and L2, say in the points x1 and x2. For every
i ∈ {1, 2}, the number αi of quads of order (s, t2) through xi meeting R in a line is equal
to αK +αLi

. It thus suffices to prove that α1 = α2, or equivalently, that the number b−α1

of quads of order (s, t2) intersecting R in the singleton {x1} equals the number b− α2 of
quads of order (s, t2) intersecting R in the singleton {x2}. For every point u of R, let Nu

denote the total number of quads of order (s, t2) meeting R in the singleton {u}.
Let u1 and u2 be two noncollinear points of R. We count in two different ways the

pairs (R1, R2), where R1 and R2 are two quads of order (s, t2) such that R ∩ R1 = {u1},
R ∩ R2 = {u2} and |R1 ∩ R2| = 1. By Lemma 4.2, the number of such pairs is equal to
Nu1 · γ2, but also to Nu2 · γ2, implying that Nu1 = Nu2 .

Now, since the noncollinearity relation defined on the point set of R gives rise to a
connected graph, we see that all Nu’s are equal. In particular, we have Nx1 = Nx2 . �

Now, let Q∗ be a given quad of order (s, t2). We then count the number Ω of pairs (L,R),
where R is a quad of order (s, t2) disjoint from Q∗ and L is a line contained in Γ1(Q∗)∩R.
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Lemma 9.2 We have Ω = (t2 + 1)(st2 + 1)Φ3 − t2+1
s

∆2(b− γ2).

Proof. Let U denote the set of quads of order (s, t2) disjoint from Q∗. For every Q ∈ U ,
let MQ denote the number of lines of Q contained in Γ1(Q∗). Through each point of
Γ2(Q∗) ∩ Q, there are t2 + 1 lines contained in Q and each of these t2 + 1 lines contains
s points of Γ2(Q∗) ∩Q and one point of Γ1(Q∗) ∩Q. Hence, there are t2+1

s
· |Γ2(Q∗) ∩Q|

lines in Q meeting Γ2(Q∗) and

MQ = (t2 + 1)(st2 + 1)− t2 + 1

s
· |Γ2(Q∗) ∩Q|

lines in Q contained in Γ1(Q∗). By Lemmas 3.3, 3.7, 4.2 and 5.3, we thus have

Ω =
∑
Q∈U

MQ = (t2 + 1)(st2 + 1) · |U| − t2 + 1

s

∑
Q∈U

|Γ2(Q∗) ∩Q|

= (t2 + 1)(st2 + 1)Φ3 −
t2 + 1

s
∆2(b− γ2).

�

For every line L ⊆ Γ1(Q∗), there exists a unique quad (namely 〈L, πQ∗(L)〉) through L
intersecting Q∗ in a line. We denote by Ω1, respectively Ω2, the number of pairs (L,R)
where R is a quad of order (s, t2) disjoint from Q∗ and L is a line contained in Γ1(Q∗)∩R
such that 〈L, πQ∗(L)〉 is a grid-quad, respectively a quad of order (s, t2). Then Ω = Ω1+Ω2.
�

Let L∗ denote the set of lines contained in Q∗.

Lemma 9.3 If γ2 6= 0, then Ω1 =
∑

L∈L∗ sαL(t− t2αL).

Proof. Let L ∈ L∗ be fixed. It suffices to prove that the number of pairs (K,R), where R
is a quad of order (s, t2) disjoint from Q∗, K is a line contained in R∩Γ1(Q∗), πQ∗(K) = L
and 〈K,L〉 is a grid-quad is equal to sαL(t−t2αL). Indeed, there are βL = t−t2αL choices
for the grid-quad S = 〈K,L〉, and for each such grid-quad S, there are s choices for the
line K. As every quad of order (s, t2) through each such K is disjoint from Q∗, we know
from Lemma 9.1 that there are αK = αL choices for R for each such K. Hence, the
requested number is equal to (t− t2αL) · sαL. �

Lemma 9.4 We have
∑

L∈L∗ αL = (st2 + 1)(b+ t2)− ∆2γ2
s2t2(s+1)

.

Proof. We have
∑

L∈L∗ αL = (st2+1)(t2+1)+
∑

L∈L∗(αL−1), where
∑

L∈L∗(αL−1) equals
the number of quads of order (s, t2) meeting Q∗ in a line. By Lemma 5.2,

∑
L∈L∗(αL−1) =

Φ2 = (st2 + 1)(b− 1)− ∆2γ2
s2t2(s+1)

. �

Lemma 9.5 Suppose that the number of quads of order (s, t2) meeting a given quad Q
of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q. Then the
number Ω2 is equal to(

(st2+1)(b−1)− ∆2γ2

s2t2(s+ 1)

)
·
(
s(t2−1)(b− ∆2γ2

s2t2(s+ 1)(st2 + 1)
)−st2

)
+
∑
L∈L∗

sαL(αL−1).
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Proof. Let Q be a quad of order (s, t2) intersecting Q∗ in a line U . Let L1 denote the
set of lines of Q disjoint from U and let L2 denote the set of lines of Q meeting U in a
singleton.

We count the number NQ of pairs (L,R), where R is a quad of order (s, t2) disjoint
from Q∗ and L = Q ∩R is a line.

Since
∑

L∈Lx,Q(αL− 1) = b− 1− ∆2γ2
s2t2(s+1)(st2+1)

for every x ∈ Q (Lemma 7.3), we have∑
L∈L2(αL − 1) = (s + 1)(b − 1 − ∆2γ2

s2t2(s+1)(st2+1)
) − (s + 1)(αU − 1). We also have that

S :=
∑

x∈Q\U
∑

L∈Lx,Q(αL − 1) is equal to(
b− 1− ∆2γ2

s2t2(s+ 1)(st2 + 1)

)
· |Q \ U | =

(
b− 1− ∆2γ2

s2t2(s+ 1)(st2 + 1)

)
(s+ 1)st2.

On the other hand, S is also equal to∑
L∈L1

(s+1)(αL−1)+
∑
L∈L2

s(αL−1) = (s+1)NQ+s(s+1)
(
b− ∆2γ2

s2t2(s+ 1)(st2 + 1)

)
−s(s+1)αU .

Combining both expressions for S, we deduce that

NQ = s(t2 − 1)(b− ∆2γ2

s2t2(s+ 1)(st2 + 1)
)− st2 + sαU .

Let Q denote the set of all quads that meet Q∗ in a line. Summing over all Φ2 =
(st2 + 1)(b− 1)− ∆2γ2

s2t2(s+1)
quads of Q, we find that Ω2 =

∑
Q∈QNQ is equal to(

(st2+1)(b−1)− ∆2γ2

s2t2(s+ 1)

)
·
(
s(t2−1)(b− ∆2γ2

s2t2(s+ 1)(st2 + 1)
)−st2

)
+
∑
L∈L∗

sαL(αL−1).

�

Lemma 9.6 Suppose γ2 6= 0 and that the number of quads of order (s, t2) meeting a given
quad Q of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q. Then
Ω = Ω′ − s(t2 − 1)

∑
L∈L∗ α

2
L, where

Ω′ =
(

(st2 + 1)(b− 1)− ∆2γ2

s2t2(s+ 1)

)
·
(
s(t2 − 1)

(
b− ∆2γ2

s2t2(s+ 1)(st2 + 1)

)
− st2

)
+s(t− 1)

(
(st2 + 1)(b+ t2)− ∆2γ2

s2t2(s+ 1)

)
.

Proof. By Lemmas 9.3 and 9.5, we know that Ω = Ω1 + Ω2 is equal to(
(st2 + 1)(b− 1)− ∆2γ2

s2t2(s+ 1)

)
·
(
s(t2 − 1)

(
b− ∆2γ2

s2t2(s+ 1)(st2 + 1)

)
− st2

)
−s(t2 − 1) ·

∑
L∈L∗

α2
L + s(t− 1)

∑
L∈L∗

αL.

By Lemma 9.4, this is equal to Ω′ − s(t2 − 1)
∑

L∈L∗ α
2
L. �

The following is an immediate consequence of Lemmas 9.4 and 9.6.
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Corollary 9.7 Suppose γ2 6= 0 and that the number of quads of order (s, t2) meeting a
given quad Q of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q.
Then ∑

L∈L∗
α2
L =

Ω′ − Ω

s(t2 − 1)
.

As a consequence, the latter number is integral and has the same parity as the number
(st2 + 1)(b+ t2)− ∆2γ2

s2t2(s+1)
.

Lemma 9.8 Suppose γ2 6= 0 and that the number of quads of order (s, t2) meeting a given
quad Q of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q. Then(

(st2 + 1)(b+ t2)− ∆2γ2

s2t2(s+ 1)

)2

≤ (t2 + 1)(st2 + 1)
Ω′ − Ω

s(t2 − 1)
,

with equality if and only if every line is contained in either 0 or 1
t2+1

(
b+t2− ∆2γ2

s2t2(s+1)(st2+1)

)
quads of order (s, t2). If this is the case, then the numbers

1

t2 + 1

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
,

b(t2 + 1)2

b+ t2 − ∆2γ2
s2t2(s+1)(st2+1)

are integral.

Proof. The stated inequality is precisely the Cauchy-Schwartz inequality( ∑
L∈L∗

αL

)2

≤
( ∑
L∈L∗

1
)
·
( ∑
L∈L∗

α2
L

)
.

We have equality if and only if every line of Q∗ is contained in precisely∑
L∈L∗ αL

|L∗|
=

1

t2 + 1

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
=: η

quads of order (s, t2). Since Q∗ was an arbitrary quad of order (s, t2), we thus see that
equality occurs if and only if every line of S is contained in either 0 or η quads of order
(s, t2). We now also see that the first number should be integral. A standard counting
yields that the total number of lines through a point that is contained in a quad of order
(s, t2) is equal to b(t2+1)

η
. So, also the second number should be integral. �

Lemma 9.9 Suppose γ2 6= 0 and that the number of quads of order (s, t2) meeting a given
quad Q of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q. If L
denotes the set of lines of S, then∑

L∈L

1 =
v(t+ 1)

s+ 1
,
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∑
L∈L

αL =
vb(t2 + 1)

s+ 1
,

∑
L∈L

α2
L =

vb

s+ 1

(
b+ t2 −

∆2γ2

s2t2(s+ 1)(st2 + 1)

)
,

∑
L∈L

α3
L =

Ω′ − Ω

s(t2 − 1)
· vb

(s+ 1)(st2 + 1)
.

Proof. The first equality follows from the fact that the total number of lines of S is equal
to v(t+1)

s+1
. The number

∑
L∈L αL is equal to (t2 + 1)(st2 + 1) times the number of quads of

order (s, t2), i.e. equal to (t2 + 1)(st2 + 1) vb
(s+1)(st2+1)

= vb(t2+1)
s+1

. The third equality follows

from the third equality of Lemma 8.2 (by summing over all points p of S). The fourth
equality follows from the equality in Corollary 9.7 (by summing over all quads Q∗ of order
(s, t2) of S). �

Corollary 9.10 Suppose γ2 6= 0 and that the number of quads of order (s, t2) meeting a
given quad Q of order (s, t2) in a singleton {x} ⊆ Q is independent from the point x ∈ Q.

Then the numbers vb(t2+1)
s+1

and Ω′−Ω
s(t2−1)

· vb
(s+1)(st2+1)

are congruent modulo 6.

Proof. For every L ∈ L, the numbers αL and α3
L are congruent modulo 6. The claim

then follows from Lemma 9.9. �

10 The surviving possibilities

We have used a computer ([15]) to determine which of the original 10259 possibilities for
(s, t2, t, b) survived all conditions mentioned in Sections 5 till 9. In Appendix A, we list
the number of cases killed by each of these conditions.

Although we see that Lemma 5.12 and the divisibility conditions of Lemma 8.2 do
not kill any of the possibilities, it is still possible that they do for s ≥ 51. In fact, if
we disregard the strong divisibility condition mentioned in Lemma 3.1, these conditions
actually kill possibilities. In fact, at the time of the writing of [10] the divisibility con-
dition mentioned in Lemma 3.1 was not yet available and the nonexistence of the case
(s, t2, t, b) = (3, 3, 19, 1) was proved in [10] using the ideas mentioned in the proof of
Lemma 5.12. We also note that although Lemma 5.11 “only” looks like a small improve-
ment of the second inequality of Corollary 5.9, it is essential as it gives the only restriction
in this paper that would kill the case (s, t2, t, b) = (2, 2, 10, 9).

From the 10259 possibilities for (s, t, t2, b) mentioned in Section 4, the following 16
survive all restrictions mentioned in Sections 5 till 9:

(2, 2, 14, 35), (3, 3, 21, 22), (8, 4, 68, 33), (8, 13, 221, 25), (9, 3, 57, 30), (12, 4, 244, 2989),

(12, 6, 195, 397), (14, 7, 287, 750), (17, 7, 623, 5781), (20, 40, 14705, 124413), (22, 6, 930, 20615),

(26, 52, 2756, 1107), (35, 7, 1085, 15590), (41, 7, 623, 1245), (41, 7, 659, 1851), (41, 7, 1289, 22206).
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We see that the possibility (s, t2, t, b) = (3, 3, 27, 43), which is the remaining open case
in the classification of the finite dense near hexagons with four points per line, is no
longer among these possibilities. In fact, it is only the very last condition (Corollary
9.10) which is responsible for its elimination. At the end of this section we give an
alternative proof for the nonexistence of the case (s, t2, t, b) = (3, 3, 27, 43) still relying on
ideas of Section 9 (actually this was the first proof we found). In this section, we also kill
two additional possibilities, namely (12, 4, 244, 2989) and (3, 3, 21, 22), and note that the
possibility (2, 2, 14, 35) corresponds to the near hexagon E2. In this way, we have proved
the second claim of Theorem 1.1.

The case (s, t2, t, b) = (2, 2, 14, 35)

By Lemma 4.5, we know that S is a regular near hexagon with parameters (s, t, t2) =
(2, 14, 2). By [4], we know that there exists up to isomorphism a unique such near hexagon,
namely the regular near hexagon E2 related to the Witt design S(5, 8, 24).

The case (s, t2, t, b) = (12, 4, 244, 2989)

By Lemma 4.5, we know that S is a regular near hexagon with parameters (s, t, t2) =
(12, 244, 4). The eigenvalues and multiplicities can be computed with the aid of the
techniques mentioned at the end of Section 2. The near hexagon S has four eigenvalues,
namely λ1 = s(t + 1) = 2940, λ4 = −(t + 1) = −245 and the two roots λ2 = 91 and
λ3 = −25 of the quadratic polynomial x2− (s−1)(t2 +2)x+(s2−s+1)t2−st+(s−1)2 =
x2 − 66x− 2275 = (x+ 25)(x− 91). If mi with i ∈ {1, 2, 3, 4} denotes the multiplicity of
the eigenvalue λi, then

v = (s+ 1)
(

1 + st+
s2t(t− t2)

t2 + 1

)
= 21962941,

m4 = s3 (t2 + 1) + s(t2 + 1)t+ s2t(t− t2)

s2(t2 + 1) + st(t2 + 1) + t(t− t2)
= 197469,

m3 =
λ2(v − 1−m4)− (t+ 1)(m4 − s)

λ2 − λ3

6∈ N.

The case (s, t2, t, b) = (3, 3, 21, 22)

This case was in fact already treated in [10], but with what we have derived so far, the
treatment is very short. For this reason, we have decided to include it. By Lemma 7.2(2),
we know that through every point x of a quad Q of order (s, t2) = (3, 3), there are φ1 = 3
quads of order (3, 3) meeting Q in the singleton {x}. So, for each line L = {y1, y2, y3, y4}
in the local space Sx, there are three lines of size 4 disjoint from L and 18 lines of size 4
meeting L in a singleton. Suppose M1 is a line of size 4 meeting L in the singleton {y1}.
Then there are at least (αy2−4)+(αy3−4)+(αy4−4) = αy2 +αy3 +αy4−12 lines of size 4
disjoint from M1, implying that αy2 +αy3 +αy4 ≤ 15. As αy1 +αy2 +αy3 +αy4 = 18+4 = 22
and αyi ≤ b tt2 c = 7 for every i ∈ {1, 2, 3, 4}, we have αy1 = 7, and there are at least
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(1,7,9,9) 212 (3,7,7,9) 188 (5,5,7,9) 180
(1,8,8,9) 210 (3,7,8,8) 186 (5,5,8,8) 178
(2,6,9,9) 202 (4,4,9,9) 194 (5,6,6,9) 178
(2,7,8,9) 198 (4,5,8,9) 186 (5,6,7,8) 174
(2,8,8,8) 196 (4,6,7,9) 182 (5,7,7,7) 172
(3,5,9,9) 196 (4,6,8,8) 180 (6,6,6,8) 172
(3,6,8,9) 190 (4,7,7,8) 178 (6,6,7,7) 170

Table 1: The possibilities for (αL1 , αL2 , αL3 , αL4)

three i ∈ {1, 2, 3, 4} for which αyi ≥ 2. Without loss of generality, we may suppose that
αy1 , αy2 , αy3 ≥ 2. Repeating the above argument for lines M2 and M3 of size 4 intersecting
L in the singletons {y2} and {y3}, we see that αy2 = αy3 = 7. So, αy4 = 1, i.e. every line
of size 4 of Sx contains a unique point y for which αy = 1. As b = 22 = t+ 1, all points y
of Sx satisfy αy = 1, an obvious contradiction.

Another treatment for the case (s, t2, t, b) = (3, 3, 27, 43)

In both Sections 8 and 9, we derived a number of conditions that must be satisfied by
the αL’s. It might be possible that contradictions can be obtained by combining these
two sets of conditions. We illustrate this principle here by giving a nonexistence proof for
the case (s, t2, t, b) = (3, 3, 27, 43) (which is also excluded by Corollary 9.10). In fact, the
proof presented here was our first nonexistence proof for this case.

By the classification of all finite generalized quadrangles with four points per line ([18];
[21, Section 6.2]), we know that there are up to isomorphism two generalized quadrangles
of order (3, 3), namely Q(4, 3) and W (3). As W (3) does not have ovoids ([21, 3.2.1 and
3.4.1]) and no quad of order (3, 3) is big in S, we know that all quads of order (3, 3) of S
are isomorphic to Q(4, 3).

IfQ is aQ(4, 3)-quad and x ∈ Q, then we know from Lemma 8.1 that
∑

L∈Lx,Q αL = 26.

As αL ≤ b tt2 c = 9 for every line L of S, we then know the following.

Lemma 10.1 Let x be a point of a Q(4, 3)-quad Q, and put Lx,Q = {L1, L2, L3, L4} such
that αL1 ≤ αL2 ≤ αL3 ≤ αL4. Then (αL1 , αL2 , αL3 , αL4) is equal to one of the 4-tuples
mentioned in Table 1.

If x is a point of a Q(4, 3)-quad Q and Lx,Q = {L1, L2, L3, L4} such that αL1 ≤ αL2 ≤
αL3 ≤ αL4 , then we put η(x,Q) := α2

L1
+α2

L2
+α2

L3
+α2

L4
. For each of the possibilities for

(αL1 , αL2 , αL3 , αL4), we have also mentioned the corresponding value of η(x,Q) in Table
1. If {x1, x2, . . . , x10} is an ovoid of Q, then by Corollary 9.7

10∑
i=1

η(xi, Q) =
Ω′ − Ω

s(t2 − 1)
= 2090. (12)
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By Lemma 10.1, we know that

η(xi, Q) ∈ {170, 172, 174, 178, 180, 182, 186, 188, 190, 194, 196, 198, 202, 210, 212}

for every i ∈ {1, 2, . . . , 10}. Let I1 denote the set of all i ∈ {1, 2, . . . , 10} for which
η(xi, Q) > 209 and put I2 = {1, 2, . . . , 10} \ I1. Equation (12) implies that∑

i∈I1

(
η(xi, Q)− 209

)
=
∑
i∈I2

(
209− η(xi, Q)

)
.

As η(xi, Q) − 209 ≤ 3 for every i ∈ I1 and 209 − η(xi, Q) ≥ 7 for every i ∈ I2, we have

3 · |I1| ≥ 7 · |I2| = 7 ·
(

10− |I1|
)

. This implies that 10 · |I1| ≥ 70, i.e. |I1| ≥ 7.

So, every Q(4, 3)-quad contains at least seven lines L for which αL = 1. On the other
hand, every line L for which αL = 1 is contained in a unique Q(4, 3)-quad. As there
are vb

(s+1)(st2+1)
= 8944 Q(4, 3)-quads, the number of lines L for which αL = 1 is at least

8944 · 7 = 62608. But this is impossible as there are only v(t+1)
s+1

= 58240 lines.

11 Proof of Theorem 1.1 in case there are big quads

of order (s, t2)

In this section, we suppose that S is a finite near hexagon satisfying the properties (P1),
(P2) and (P3) for some s, t2 ∈ N \ {0, 1}. We moreover assume that there exist big quads
of order (s, t2). In particular, we have b > 0. The following sequence of lemmas proves
the last claim of Theorem 1.1. We note that each of the near hexagons mentioned in (a),
(b), (c), (d) of Theorem 1.1 satisfies Properties (P1), (P2) and (P3).

Lemma 11.1 If S is a classical near hexagon, then S is one of the following:

• a dual polar space DW (5, q), DQ(6, q), DQ−(7, q), DH(5, q2), DH(6, q2) for some
prime power q;

• a product near hexagon of the form Ls+1 ×Q, where Q is a generalized quadrangle
of order (s, t2).

Proof. This follows from Tits’ classification of polar spaces, taking into account that S
is a classical dense near hexagon, see Section 2. �

Since every quad of order (s, t2) is big, the following is a special case of Theorem 6.10 of
[13].

Lemma 11.2 If Q is a quad of order (s, t2), then every other quad intersects Q in the
empty set or a line.

Lemma 11.3 There exist two quads intersecting in a singleton. Any two such quads are
grids.
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Proof. Since S is not classical, there exists a nonclassical point-quad pair (x,Q). Then
d(x,Q) = 2. If y ∈ Γ2(x)∩Q, then the quads 〈x, y〉 and Q intersect in the singleton {y}.
The second claim follows from Lemma 11.2. �

Lemma 11.4 We have b ∈ {1, 2, 3, 4}.

Proof. By Lemma 11.3, there exist two grid-quads R1 and R2 intersecting in a singleton
{x}. By Lemma 11.2, each of the b quads of order (s, t2) through x intersects R1 and R2

in lines and so there are at most four of them. �

Lemma 11.5 The case b = 1 cannot occur.

Proof. Let R1 and R2 be two grid-quads intersecting in a point x. Denote by Q the
unique quad of order (s, t2) through x. Let Li with i ∈ {1, 2} denote the unique line of
Ri through x not contained in Q. Then L1 6= L2 and by Lemma 11.2, the quad 〈L1, L2〉
must intersect Q in a line through x. As 〈L1, L2〉 has at least three lines through x, it
must be a quad of order (s, t2), in contradiction with b = 1. �

Lemma 11.6 If b = 2, then S is a glued near hexagon of type Q1 ⊗ Q2, where Q1 and
Q2 are two quads of order (s, t2).

Proof. Consider a point x and let Q1, Q2 denote the two quads of order (s, t2) through
x. Then L = Q1 ∩Q2 is a line by Lemma 11.2.

We show that t = 2t2. If this were not the case, then there exists a line K through x
not contained in Q1 ∪Q2. Let K ′ be a line of Q2 through x distinct from L. As the quad
〈K,K ′〉 meets Q1 in a line, there are at least three lines through x contained in 〈K,K ′〉
and so 〈K,K ′〉 is a quad of order (s, t2) distinct from Q1 and Q2, in contradiction with
b = 2. Hence, t = 2t2.

As t = 2t2 and any point is contained in precisely b = 2 quads of order (s, t2), every
local space should be isomorphic to the unique linear space on 1 + 2t2 points having two
lines of size t2 + 1 and t22 lines of size 2. This implies by Theorem 7.2 of [9] that S is a
glued near hexagon, necessarily of type Q1 ⊗Q2. �

In view of Lemmas 11.4, 11.5 and 11.6, we may assume that b ∈ {3, 4}.

Lemma 11.7 Let x be a point of S. Then there exists no line L through x such that
every quad of order (s, t2) through x contains L.

Proof. Suppose to the contrary that this is the case. As b ∈ {3, 4}, there then exist
three quads Q1, Q2 and Q3 of order (s, t2) through L. Let R be a quad through x not
containing L. Then R must be a grid-quad containing the three distinct lines R ∩ Q1,
R ∩Q2 and R ∩Q3 through the point x, a contradiction. �

Lemma 11.8 There exists a constant α such that every line is contained in α quads of
order (s, t2).
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Proof. Let L be a line and denote by βL, respectively αL, the number of grid-quads,
respectively quads of order (s, t2), through the line L. By Lemma 11.7, there exists a
quad Q of order (s, t2) meeting L in a singleton {x}. As every quad through L intersects
Q in a line, we have

αL + βL = t2 + 1. (13)

As the quads through L partition the set of lines through x distinct from L, we have

t2αL + βL = t. (14)

From (13) and (14), we have

αL =
t− t2 − 1

t2 − 1
. (15)

So, the αL’s are constant. �

Lemma 11.9 We have α = 2.

Proof. As b ≥ 2, there exist two quads of order (s, t2) intersecting in a line and so we
have α ≥ 2.

Now, let R be a grid-quad and L a line meeting R in a singleton. Each of the α quads
of order (s, t2) through L intersects R in a line and so we also have α ≤ 2. �

Lemma 11.10 We have t2 = 2, b = 4 and t = 5.

Proof. Let Q be a quad of order (s, t2) and x ∈ Q. Each line of Q through x is contained
in α− 1 = 1 quads of order (s, t2) distinct from Q. As every quad of order (s, t2) through
x distinct from Q meets Q in a line, we have b = t2 + 2. As t2 ≥ 2 and b ≤ 4, we have
t2 = 2 and b = 4. Equation (15) then implies that t = 5. �

Lemma 11.11 Every local space is isomorphic to the Fano plane in which one point has
been removed.

Proof. Every local space has six points and four lines of size 3. There is only one such
linear space, namely the Fano plane in which one point has been removed. �

Lemma 11.12 We have s ∈ {2, 4}.

Proof. As there exists a quad of order (s, t2) = (s, 2) with s > 1, we have s ∈ {2, 4}
since s ≤ t22 and (s+ t2) | st2(s+ 1)(t2 + 1) by [21, 1.2.2 & 1.2.3]. �

Lemma 11.13 If s = 2, then S ∼= H3.

Proof. This follows from the classification of the finite dense near hexagons with three
points per line obtained in [5]. �

Lemma 11.14 The case s = 4 cannot occur.

Proof. Let Q be a quad of order (s, t2) = (4, 2). Then |Q| = 45 and v = |Q| · (1 + s(t−
t2)) = 585. As the number ((s+ 1)2(s− 1)(s2 + 1) + st(s− 1)(s+ 1)2 + v)−1(s5v) is not
integral, a contradiction follows from Lemma 3.1. �
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A Number of cases killed by the various conditions

Result Type of condition # cases killed

Lemma 5.2 Divisibility conditions 6595
Lemma 5.2 Inequalities 9786
Lemma 5.4 Inequality 2466
Lemma 5.4 Divisibility condition 3
Corollary 5.9 Second inequality 7233
Corollary 5.10 Inequality 7245
Lemma 5.11 + Remark Inequality 2
Lemma 5.12 b 6= 1 0
Lemma 6.1(2)+(5) Inequalities 35
Lemma 7.2(1) Inequality 5507
Lemma 7.3 + Remark Divisibility condition 8172
Lemma 8.2 Parity argument 3326
Lemma 8.3 Inequality 7666
Lemmas 8.2 and 8.3 Divisibility conditions 0
Corollary 9.7 Divisibility condition 9098
Corollary 9.7 Parity argument 4685
Lemma 9.8 Inequality 374
Lemma 9.8 Divisibility conditions 42
Corollary 9.10 Divisibility condition 7203
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