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Abstract

Let Q−(3, q) be an elliptic quadric and Q+(3, q) a hyperbolic quadric in PG(3, q).
For ε ∈ {−,+}, let T ε denote the set of all tangent lines of PG(3, q) with respect to
Qε(3, q). If k is the minimum size of a T ε-blocking set in PG(3, q), then it is known
that q2+1 ≤ k ≤ q2+q. For an odd prime q, we prove that there are no T +-blocking
sets of size q2 + 1 and that the quadric Q−(3, q) is the only T −-blocking set of size
q2 + 1 in PG(3, q). When q = 3, we show with the aid of a computer that there
are no minimal T −-blocking sets of size 11 and that, up to isomorphisms, there are
eight minimal T −-blocking sets of size 12 in PG(3, 3). We also provide geometrical
constructions for these eight mutually nonisomorphic minimal T −-blocking sets of
size 12.
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1 Introduction

1.1 Nonsingular quadrics in finite projective spaces

In this section, we recall the basic properties of nonsingular quadrics in finite projective
spaces. These properties as well as additional background information on quadrics can
be found in the standard works on this topic such as [11, 12].

Let PG(n, q), n ≥ 1, denote the n-dimensional projective space defined over the finite
field Fq of order q. A quadric and a line of PG(n, q) intersect each other in either 0, 1, 2
or q + 1 points. With respect to a quadric Q, a line L of PG(n, q) is called external if
|L ∩Q| = 0, secant if |L ∩Q| = 2, and tangent if |L ∩Q| ∈ {1, q + 1}.

There are two types of nonsingular quadrics in PG(n, q) if n ≥ 1 is odd: (1) elliptic
quadrics which are of Witt index (n− 1)/2, and (2) hyperbolic quadrics which are of Witt
index (n+ 1)/2. An elliptic quadric in PG(n, q), n odd, will be denoted by Q−(n, q) while
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a hyperbolic quadric in this projective space will be denoted by Q+(n, q). An elliptic
quadric in PG(1, q) is empty while a hyperbolic quadric is a set of two points.

If n ≥ 2 is even, then every nonsingular quadric of PG(n, q) has Witt index n/2. Such
a quadric is called a parabolic quadric and denoted by Q(n, q). A parabolic quadric in
PG(2, q) is nothing else than an irreducible conic.

Let Q be a nonsingular quadric in PG(n, q), n ≥ 1, and suppose that q is odd if n is
even. With the quadric Q, there is naturally associated a polarity ζ of PG(n, q) which is
symplectic if q is even (and n odd) and orthogonal if q is odd. For every point x of Q, xζ

is a hyperplane tangent to Q at the point x, and the tangent lines through x are precisely
the lines through x contained in xζ . For every point x of PG(n, q) \Q, xζ is a nontangent
hyperplane intersecting Q in a nonsingular quadric Qx of xζ . If q is odd, then x 6∈ xζ and
the tangent lines through x are precisely the lines through x containing a point of Qx. If
q is even, then x ∈ xζ and the tangent lines through x are precisely the lines through x
contained in xζ .

Consider now a parabolic quadric Q(n, q) in PG(n, q) where n ≥ 2 is even and q is
odd. If x is a point of PG(n, q) \ Q(n, q), then the intersection xζ ∩ Q(n, q) is either an
elliptic or hyperbolic quadric of xζ ∼= PG(n− 1, q). If n = 2, so if Q(2, q) is an irreducible
conic C of the projective plane PG(2, q), then such a point is called an interior or exterior
point (with respect to C) depending on whether the former or the latter case occurs. In

PG(2, q), there are q(q+1)
2

exterior points and q(q−1)
2

interior points. Every tangent line
(with respect to C) contains one point of C and q exterior points. More information on
the basic properties of points and lines of PG(2, q) with respect to an irreducible conic
can be found in [13].

Of special interest in this paper are the elliptic and hyperbolic quadrics in PG(3, q).
The elliptic quadric Q−(3, q) contains q2 + 1 points such that no three of them are on
the same line. Every point of Q−(3, q) is contained in q + 1 tangent lines, this gives
(q + 1)(q2 + 1) tangent lines to Q−(3, q). We also have q2(q2 + 1)/2 secant lines and then
(q2 +1)(q2 +q+1)−q2(q2 +1)/2− (q+1)(q2 +1) = q2(q2 +1)/2 external lines to Q−(3, q).
Every point of Q−(3, q) is contained in q2 secant lines. Every point of PG(3, q) \Q−(3, q)
is contained in q + 1 tangent lines, q(q − 1)/2 secant lines and q(q + 1)/2 external lines.

The hyperbolic quadric Q+(3, q) contains (q+ 1)2 points and 2(q+ 1) (tangent) lines.
Every point of Q+(3, q) is contained in q + 1 tangent lines and q2 secant lines. Every
point of PG(3, q) \Q+(3, q) is contained in q+ 1 tangent lines, q(q+ 1)/2 secant lines and
q(q− 1)/2 external lines. There are (q+ 1)(q2 + 1) tangent lines, q2(q+ 1)2/2 secant lines
and q2(q − 1)2/2 external lines to Q+(3, q).

Consider now the quadric Qε(3, q) in PG(3, q) where ε ∈ {+,−} and q is even. The
polarity ζ is then symplectic and so there an associated symplectic generalized quadrangle
W (q), whose points are the points of PG(3, q) and whose lines are the lines of PG(3, q)
that are totally isotropic with respect to ζ, with incidence being containment. The lines
of W (q) are precisely the lines of PG(3, q) that are tangent to Qε(3, q). One can refer to
[17] for the basics on finite generalized quadrangles.
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1.2 Blocking sets in PG(3, q)

For a given nonempty set L of lines of PG(n, q), a set X of points of PG(n, q) is called
an L-blocking set if each line of L meets X. The first step in the study of blocking sets
has been to determine the smallest cardinality of a blocking set and to characterize, if
possible, all blocking sets of that cardinality. If L is the set of all lines of PG(n, q) and
X is an L-blocking set in PG(n, q), then |X| ≥ (qn− 1)/(q− 1) and equality holds if and
only if X is the point set of a hyperplane of PG(n, q). This classical result was proved by
Bose and Burton in [4, Theorem 1].

We denote by E ε, Sε and T ε the set of lines of PG(3, q) that are external, secant and
tangent, respectively, with respect to the quadric Qε(3, q), ε ∈ {−,+}. If Lε is one of
the line sets E ε, Sε, E ε ∪ T ε, E ε ∪ Sε and T ε ∪ Sε, then the minimum size Lε-blocking
sets in PG(3, q) are characterized in the papers [3, 6, 7, 21] for ε = − and in the papers
[2, 3, 8, 19, 20, 21] for ε = +.

In this paper, we study T ε-blocking sets in PG(3, q). A T ε-blocking set X in PG(3, q)
is said to be minimal if X has no proper subset which is also a T ε-blocking set in PG(3, q).
Every T ε-blocking set in PG(3, q) of minimum size is a minimal T ε-blocking set. Two T ε-
blocking sets X1 and X2 in PG(3, q) are said to be isomorphic if there exists a collineation
of PG(3, q) stabilizing Qε(3, q) and mapping X1 to X2.

If X is a minimum size T ε-blocking set in PG(3, q), then q2 + 1 ≤ |X| ≤ q2 + q, and
|X| = q2 + 1 if and only if every tangent line contains a unique point of X. This was
proved in [9, Lemmas 2.1, 2.2] for ε = + and the same arguments work for ε = − as well.

If q is even, then the T ε-blocking sets in PG(3, q) of size q2+1 are precisely the ovoids1

of the generalized quadrangle W (q) associated with Qε(3, q). There are two known types
of ovoids of W (q): ovoids which are elliptic quadrics of the ambient projective space
PG(3, q) and the so-called Suzuki-Tits ovoids. The former ovoids exist for each power of
2 and the latter only for the prime powers of the form 22m+1 for positive integers m. One
can refer to [11, Section 16.4] for more on Suzuki-Tits ovoids. By [10, 14, 15, 16], every
ovoid of W (q) is an elliptic quadric if q ∈ {2, 4, 16}, and either an elliptic quadric or a
Suzuki-Tits ovoid if q ∈ {8, 32}. However, classifying all ovoids of W (q) for other even q
is still an open problem.

In the q odd case, not much is known for the minimum size T ε-blocking sets in PG(3, q).
In PG(3, 3), by [9, Theorem 1.1], there is no T +-blocking set of size 10 and there are
exactly two T +-blocking sets of size 11 up to isomorphisms. By means of the computer
algebra systems GAP [22] and Sage [18], it was proved that there exist no T +-blocking
sets in PG(3, q) of size q2 + 1 for each odd prime power q ≤ 13, see [9, Theorem 1.2]. We
generalize this result to all odd primes and prove the following.

Theorem 1.1. If q is an odd prime, then there are no T +-blocking sets in PG(3, q) of
size q2 + 1.

For every odd q, the quadric Q−(3, q) itself is an example of a T −-blocking set in
PG(3, q) of size q2 + 1. We prove the following result for all odd primes.

1An ovoid of a point-line geometry is a set of points meeting each line in a unique point.
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Theorem 1.2. Suppose that q is an odd prime. If B is a T −-blocking set in PG(3, q) of
size q2 + 1, then B = Q−(3, q).

When q = 3, Theorem 1.2 implies that Q−(3, 3) is the only minimal T −-blocking set
in PG(3, 3) of size 10. By means of the computer algebra systems GAP [22] and Sage
[18], we are able to show the following.

Theorem 1.3. Suppose that q = 3. Then there are no minimal T −-blocking sets in
PG(3, 3) of size 11. Up to isomorphisms, there are 8 minimal T −-blocking sets in PG(3, 3)
of size 12.

We also provide geometrical constructions of the eight mutually nonisomorphic mini-
mal T −-blocking sets of size 12 in PG(3, 3).

2 Some useful facts

Let V be an (n+1)-dimensional vector space over Fq, where q is odd and n ≥ 2. Consider
in the associated projective space PG(n, q) = PG(V ) a nonsingular quadric Q = Q(n)
described by a quadratic form Q on V . Let B denote the bilinear form associated with Q,
i.e. B(x̄, ȳ) = Q(x̄ + ȳ)−Q(x̄)−Q(ȳ) for all x̄, ȳ ∈ V . Note that Q can be of parabolic,
hyperbolic or elliptic type. We denote by ζ the orthogonal polarity of PG(n, q) naturally
associated with Q. The following lemma is well-known, see e.g. [12].

Lemma 2.1. One of the following cases occurs for a plane π of PG(n, q) not contained
in Q:

(I) π ∩Q is a singleton;

(II) π ∩Q is a line;

(III) π ∩Q is the union of two distinct (intersecting) lines;

(IV) π ∩Q is an irreducible conic in π.

Let S (respectively, N) denote the set of all points 〈x̄〉 of PG(n, q) \ Q for which Q(x̄) is
a nonzero square (respectively, a nonsquare) in Fq. The sets S and N are well-defined. If
λ ∈ F∗q and x̄ ∈ V \ {0̄}, then Q(x̄) is a (non)square if and only if Q(λx̄) = λ2 ·Q(x̄) is a
(non)square.

Lemma 2.2. If 〈x̄〉 and 〈ȳ〉 are two distinct points of PG(n, q) \ Q on a tangent line to
Q, then Q(x̄) ·Q(ȳ) is a nonzero square.

Proof. Let 〈z̄〉 denote the tangency point. If we take λ1, λ2 ∈ F∗q such that ȳ = λ1z̄+λ2x̄,
then Q(ȳ) = λ21 · Q(z̄) + λ22 · Q(x̄) + λ1λ2 · B(z̄, x̄) = λ22 · Q(x̄) and so the claim of the
lemma holds.

Lemma 2.3. If L is a secant line to Q, then q−1
2

points of L \ Q belong to S and the

remaining q−1
2

points of L \ Q belong to N .
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Proof. Put L∩Q = {〈x̄〉, 〈ȳ〉}. As L is a secant line, we have B(x̄, ȳ) 6= 0. Then the q−1
points of L \ Q are the q − 1 points 〈x̄+ λȳ〉, λ ∈ F∗q. Clearly,

Q(x̄+ λȳ) = Q(x̄) + λ2Q(ȳ) + λ ·B(x̄, ȳ) = λ ·B(x̄, ȳ)

takes all values of F∗q as λ ranges over all elements of F∗q. Since q−1
2

of these values

are nonzero squares and the other q−1
2

values are nonsquares, the claim of the lemma
holds.

Lemma 2.4. Let µ be a nonsquare in Fq. Then there are a, b ∈ Fq such that a2−µb2 = µ.

Proof. There are q+1
2

squares in Fq and so there are q+1
2

elements of the form µ + µb2,
b ∈ Fq. One of these elements must therefore also be a square. The claim follows.

Lemma 2.5. If L is an external line to Q, then q+1
2

points of L belong to S and the

remaining q+1
2

points belong to N .

Proof. We choose linearly independent vectors ē1, ē2 ∈ V such that 〈ē1〉, 〈ē2〉 ∈ L and
B(ē1, ē2) = 0. Then there exists a λ ∈ F∗q and a nonsquare µ ∈ F∗q such that f(X1, X2) :=
Q(X1ē1 + X2ē2) = λ(X2

1 − µX2
2 ), where (X1, X2) ∈ F2

q. For every η ∈ F∗q, let Nη denote
the number of (X1, X2) ∈ F2

q \ {(0, 0)} for which f(X1, X2) = η.
As f(kX1, kX2) = k2f(X1, X2) for every k ∈ F∗q and every (X1, X2) ∈ F2

q, we have
Nη1 = Nη2 if η1, η2 ∈ F∗q with η1

η2
a square. Thus if η1, η2 are both nonzero squares or both

nonsquares, then Nη1 = Nη2 .
By Lemma 2.4, we can take a, b ∈ Fq such that a2 − µb2 = µ. We then have f(aX1 +

µbX2, bX1 + aX2) = µf(X1, X2). This implies that f(X1, X2) = 1 if and only if f(aX1 +
µbX2, bX1+aX2) = µ. As the map Fq×Fq → Fq×Fq; (X1, X2) 7→ (aX1+µbX2, bX1+aX2)
is bijective, we thus have N1 = Nµ. Combining this with the previous paragraph, we see

that Nη is constant for all η ∈ F∗q, necessarily equal to m = q2−1
q−1 = q + 1.

As there are q−1
2

nonzero squares and q−1
2

nonsquares in F∗q, the fact that Q(v̄) ·Q(w̄) ∈
S for all v̄, w̄ ∈ V \{0̄} such that 〈v̄〉 = 〈w̄〉 ∈ PG(n, q)\Q implies that |L∩S| = |L∩N | =
m· q−1

2

q−1 = q+1
2

.

We define the following equivalence relation R on PG(n, q) \ Q:

If u, v ∈ PG(n, q) \ Q, then (u, v) ∈ R if there exist points x0, x1, . . . , xk ∈
PG(n, q) \Q for some k ∈ N such that x0 = u, xk = v and xi−1xi is a tangent
line for every i ∈ {1, 2, . . . , k}.

The following is an immediate consequence of Lemma 2.2.

Corollary 2.6. If C is an equivalence class for R, then either C ⊆ S or C ⊆ N .

Lemma 2.7. The following hold:
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(1) If n = 2 and if E (respectively, I) denotes the set of exterior (respectively, interior)
points of PG(2, q) with respect to the irreducible conic Q, then {S,N} = {E , I}.
The equivalence classes of R are then E and the singletons contained in I.

(2) If n ≥ 3, then S and N are the only equivalence classes for R.

Proof. Suppose first that n = 2. The fact that no interior point is contained in a tangent
line then implies that the singletons contained in I are equivalence classes. If x, y ∈ E ,
then by considering a common point of E on tangent lines through respectively x and y,
we see that (x, y) ∈ R, implying that also E is an equivalence class. The fact that E is an
equivalence class implies by Corollary 2.6 that E ⊆ A, where A is either S or N . In order
to complete the proof of the first claim of the lemma, it suffices to prove that no point
u ∈ I belongs to A. If we take a secant line L through u, then L contains q−1

2
exterior

points which all belong to A. By Lemma 2.3, we know that |L ∩ A| = q−1
2

, and so the
interior point u cannot belong to A.

Suppose next that n ≥ 3. Let A be either S or N . By Corollary 2.6, it suffices to
prove that if x, y are two distinct elements of A, then (x, y) ∈ R. This is clearly the case
if the line xy is tangent to Q. So, we may suppose that xy is not a tangent line. Then
xyζ intersects Q in a nonsingular quadric Q(n− 2) of xyζ ([12]). No plane through xy is
of Type II as xy is not a tangent line (see Lemma 2.1). Through xy, there is no Type III
plane if xy is an external line and no Type I plane if xy is a secant line. The planes of
Type I and III through xy are the planes 〈u, xy〉, where u ∈ xyζ ∩Q = Q(n−2), and each
such plane contains a unique tangent line through x, namely ux. Now, xζ intersects Q in
a nonsingular quadric Q(n − 1) of xζ and the tangent lines through x are precisely the
lines xv, where v ∈ Q(n− 1). As n ≥ 3 and Q(n− 1) contains Q(n− 2) as a hyperplane
section, we have |Q(n−1)| > |Q(n−2)| ([12]) and so there exists a tangent line L through
x for which π := 〈xy, L〉 is a plane of type IV, i.e. π ∩ Q is an irreducible conic Cπ in
π. Let E (respectively, I) denote the set of points of π that are exterior (respectively,
interior) with respect to Cπ. By construction of π, we know that x ∈ E . By the first claim
of the lemma, we know that x, y ∈ A∩ π ∈ {S ∩ π,N ∩ π} = {E , I}. So, both x, y belong
to E . The first claim of the lemma then implies that (x, y) ∈ R.

In the case that n is even and that Q is a parabolic quadric of PG(n, q), we denote by H
(respectively, E) the set of all points y of PG(n, q) \ Q for which yζ ∩ Q is a hyperbolic
(respectively, elliptic) quadric of yζ .

Lemma 2.8. If n is even and L is a tangent line not entirely contained in Q, then L \Q
is contained in either H or E.

Proof. If n = 2, then we have L\Q ⊆ H since all points of L\Q are exterior with respect
to Q. So, we may assume n ≥ 4.

Let x ∈ L denote the tangency point and Tx the tangent hyperplane in the point x.
Let α be a hyperplane of Tx not containing x. Then α ∩ Q is a parabolic quadric of α,
and Tx ∩ Q is the cone with kernel x and base α ∩ Q. Put L ∩ α = {y}. As y /∈ α ∩ Q,
β := yζ is a hyperplane through x intersecting α ∩ Q in a hyperbolic or elliptic quadric.
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So, Lζ∩Q = xyζ∩Q = xζ∩yζ∩Q is a cone with kernel x and base a hyperbolic or elliptic
quadric in α ∩ β. So, all nontangent hyperplanes through Lζ intersect Q in quadrics of
the same type. These nontangent hyperplanes are precisely the hyperplanes zζ , where
z ∈ L \ {x}.

From Lemmas 2.7 and 2.8, we derive

Corollary 2.9. If n is even and Q is a parabolic quadric of PG(n, q), then {H,E} =
{S,N}.

From Lemma 2.7, we also derive the following.

Corollary 2.10. If θ is a collineation of PG(n, q) stabilizing Q, then either θ stabilizes
S and N , or interchanges S and N .

If n is even, then the fact that {S,N} = {H,E} implies that every collineation of PG(n, q)
that stabilizes Q also stabilizes each of S and N . This conclusion is not valid if n is odd.

Lemma 2.11. If n ≥ 3 is odd, then there exists a collineation of PG(n, q) stabilizing Q
and mapping S to N .

Proof. Let µ be a given nonsquare in Fq. IfQ is a hyperbolic quadric with equationX0X1+
X2X3+· · ·+Xn−1Xn = 0 with respect to some reference system, then (X0, X1, . . . , Xn) 7→
(X0, µX1, X2, µX3, . . . , Xn−1, µXn) defines the required collineation.

Suppose therefore that Q is an elliptic quadric with equation X0X1+· · ·+Xn−3Xn−2+
X2
n−1 − µX2

n = 0 with respect to some reference system. By Lemma 2.4, we can take
a, b ∈ Fq such that a2 − µb2 = µ. Straightforward calculations show that the map

(X0, X1, . . . , Xn) 7→ (X0, µX1, . . . , Xn−3, µXn−2, aXn−1 + µbXn, bXn−1 + aXn)

defines the required collineation.

Lemma 2.12. Suppose n is odd. Then there exists an (n + 2)-dimensional vector space
W having V as hyperplane and parabolic quadrics Q1 and Q2 of PG(W ) with associated
orthogonal polarities ζ1 and ζ2 such that the following hold:

(1) Qi ∩ PG(V ) = Q for every i ∈ {1, 2};

(2) for every x ∈ S, xζ1∩Q1 is a hyperbolic quadric of xζ1 and for every y ∈ N , yζ1∩Q1

is an elliptic quadric of yζ1;

(3) for every x ∈ S, xζ2 ∩Q2 is an elliptic quadric of xζ2 and for every y ∈ N , yζ2 ∩Q2

is a hyperbolic quadric of yζ2.
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Proof. Let W = V ⊕ 〈ē〉 be a vector space containing V as a hyperplane, and let µ be a
given nonsquare in Fq.

If Q is of hyperbolic type, then for every (v̄, λ) ∈ V × Fq, we define

Q1(v̄ + λē) := Q(v̄) + λ2, Q2(v̄ + λē) := Q(v̄) + λ2µ.

Then Q1 and Q2 are two quadratic forms of W and the associated nonsingular (parabolic)
quadrics of PG(W ) will respectively be denoted by Q1 and Q2. Obviously, Qi∩PG(V ) =
Q for every i ∈ {1, 2}. If x = 〈v̄〉 ∈ S, then Q1(v̄) ·Q1(ē) = Q(v̄) is a square, implying by
Corollary 2.9 that the quadrics xζ1 ∩Q1 and 〈ē〉ζ1 ∩Q1 = Q have the same type, i.e. both
are hyperbolic. On the other hand, as Q2(v̄) · Q2(ē) = Q(v̄) · µ is a nonsquare, xζ2 ∩ Q2

and 〈ē〉ζ2 ∩ Q2 = Q have different types. i.e. xζ2 ∩ Q2 is of elliptic type. The claims
regarding the point y ∈ N then follow from Corollary 2.9.

The proof is similar if Q is of elliptic type. In this case, we define

Q1(v̄ + λē) := Q(v̄) + λ2µ, Q2(v̄ + λē) := Q(v̄) + λ2.

for every (v̄, λ) ∈ V × Fq.

Lemma 2.13. Suppose n is even. Then Q is of parabolic type. Let L be a secant line to
Q and let x, y ∈ L \ Q such that y ∈ xζ. Then the following hold:

(1) If q ≡ 1 (mod 4), then the hyperplanes xζ and yζ intersect Q in nonsingular quadrics
of the same type (i.e. both hyperbolic or elliptic).

(2) If q ≡ 3 (mod 4), then the hyperplanes xζ and yζ intersect Q in nonsingular quadrics
of different types.

Proof. Choose vectors ē1, ē2 ∈ V such that Q(ē1) = Q(ē2) = 0, B(ē1, ē2) = 1 and L∩Q =
{〈ē1〉, 〈ē2〉}. Then x = 〈ē1 +λē2〉 and y = 〈ē1−λē2〉 for some λ ∈ F∗q. By Corollary 2.9, xζ

and yζ intersectQ in quadrics of the same type if and only if Q(ē1+λē2)·Q(ē1−λē2) = −λ2
is a square. This happens if and only if−1 is a square, i.e. if and only if q ≡ 1 (mod 4).

Lemma 2.14. Suppose n is even. Then Q is of parabolic type. Let L be an external line
to Q, and let x, y ∈ L such that y ∈ xζ. Then the following hold:

(1) If q ≡ 1 (mod 4), then the hyperplanes xζ and yζ intersect Q in nonsingular quadrics
of different types.

(2) If q ≡ 3 (mod 4), then the hyperplanes xζ and yζ intersect Q in nonsingular quadrics
of the same type.

Proof. By Lemma 2.5, we know that there exists an ē1 ∈ V such that 〈ē1〉 ∈ L and
Q(ē1) = 1. Choose ē2 ∈ V such that 〈ē2〉 ∈ L and B(ē1, ē2) = 0. As B(ē1, ē1) = 2Q(ē1) 6=
0, the vectors ē1 and ē2 are linearly independent. Put µ := −Q(ē2). The facts that
Q(Xē1 + Y ē2) = X2 − µY 2 and L ∩ Q = ∅ imply that µ is a nonsquare. As y ∈ xζ , we
have {x, y} = {〈ē1〉, 〈ē2〉}, or x = 〈ē1 + λē2〉 and y = 〈ē1 + 1

λµ
ē2〉 for some λ ∈ F∗q. Since
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Q(ē1) ·Q(ē2) = −µ and Q(ē1 +λē2) ·Q(ē1 + 1
λµ
ē2) = −µ(1−µλ2)2

λ2µ2
, Corollary 2.9 implies that

the hyperplanes xζ and yζ intersect Q in quadrics of the same type if and only if −µ is a
square. This precisely happens if and only if −1 is a nonsquare, i.e. if and only if q ≡ 3
(mod 4).

3 T ε-blocking sets in PG(3, q), ε ∈ {−,+}
Let Qε(3, q), q odd, be embedded as a hyperplane section of a parabolic quadric Q(4, q)
in PG(4, q), and let ζ be the orthogonal polarity of PG(4, q) associated with Q(4, q). Let
Π = PG(3, q) be the hyperplane of PG(4, q) such that Π ∩ Q(4, q) = Qε(3, q), and put
x∗ := Πζ . Let H, respectively E, denote the set of all points y of PG(4, q) \ Q(4, q) for
which yζ ∩Q(4, q) is a hyperbolic, respectively elliptic, quadric in yζ .

We denote by T ε the set of all lines of Π = PG(3, q) that are tangent to Qε(3, q).
Recall that if B is a T ε-blocking set in Π, then |B| ≥ q2 + 1, with equality if and only if
every tangent line L ⊆ Π contains a unique point of B.

3.1 Proof of Theorem 1.2

Here we take ε = −. Put U := E ∩ Π if q ≡ 1 (mod 4) and U := H ∩ Π if q ≡ −1
(mod 4). The following three properties follow from Lemmas 2.3, 2.5, 2.8 and Corollary
2.9:

(A) If L is a line of Π external to Q−(3, q), then |L ∩H| = |L ∩ E| = |L ∩ U | = q+1
2

.

(B) If L is a line of Π secant to Q−(3, q), then |L ∩H| = |L ∩ E| = |L ∩ U | = q−1
2

.

(C) If L is a line of Π tangent to Q−(3, q), then (|L∩H|, |L∩E|) is either (q, 0) or (0, q).
In particular, every tangent to Q−(3, q) meets U in either 0 or q points.

Note that (x∗)ζ ∩Q(4, q) = Π ∩Q(4, q) = Q−(3, q) is an elliptic quadric. The next result
comes directly from Lemmas 2.13, 2.14 and the definition of the set U .

Lemma 3.1. The following hold:

(1) If L is a secant line to Q(4, q) through x∗, then the unique point in L∩Π belongs to
U .

(2) If L is an external line to Q(4, q) through x∗, then the unique point of L ∩ Π does
not belong to U .

In the sequel, we suppose that B is a T −-blocking set of size q2 + 1 in Π. Then every
tangent line of Π intersects B in a unique point.

Lemma 3.2. If γ ⊆ Π is a tangent plane for which the tangency point is not contained
in B, then |B ∩ γ ∩ U | = q+1

2
.
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Proof. This follows from properties (A), (C) and the fact that each tangent line of γ
through γ ∩Q−(3, q) contains a unique point of B.

Lemma 3.3. If x ∈ B \Q−(3, q) and if γ is a tangent plane through x, then γ ∩Q−(3, q)
is not contained in B.

Proof. If {y} = γ ∩ Q−(3, q), then yx is a tangent line and so cannot contain besides x
extra points of B.

Lemma 3.4. We have |B ∩ U | = q2+1−|B∩Q−(3,q)|
2

.

Proof. We count in two different ways the number of pairs (x, γ) with x ∈ B ∩ U and
γ a tangent plane through x. By Lemma 3.3, we know that γ cannot be a tangent
plane through a point of B ∩ Q−(3, q) and so there are |Q−(3, q)| − |B ∩ Q−(3, q)| =
q2 + 1− |B ∩Q−(3, q)| possibilities for γ. By Lemma 3.2, for each such possibility for γ,
there are q+1

2
possibilities for x . On the other hand, there are |B ∩ U | possibilities for x,

and for given x there are q + 1 possibilities for γ. So,

((q2 + 1)− |B ∩Q−(3, q)|) · q + 1

2
= |B ∩ U | · (q + 1),

from which the claim of the lemma follows.

Proposition 3.5. For every point x ∈ B ∩ U , let Ox be the set of two points of Q(4, q)

on the secant line x∗x (see Lemma 3.1). Then O := (B ∩Q−(3, q))∪
(⋃

x∈B∩U Ox

)
is an

ovoid of Q(4, q).

Proof. By Lemma 3.4, we know that

|O| = |B ∩Q−(3, q)|+ 2 · |B ∩ U | = q2 + 1.

So, it suffices to prove that no two distinct points u1, u2 of O are collinear on Q(4, q). This
is clearly the case if u1, u2 ∈ B ∩Q−(3, q). So, it remains to consider one of the following
three cases:

(1) u1 ∈ B ∩Q−(3, q) and u2 ∈ Ox for some x ∈ B ∩ U ;

(2) u1, u2 ∈ Ox for some x ∈ B ∩ U ;

(3) u1 ∈ Ox1 and u2 ∈ Ox2 for some x1, x2 ∈ B ∩ U with x1 6= x2.

Suppose u1 ∈ B ∩ Q−(3, q) and u2 ∈ Ox with x ∈ B ∩ U are collinear. The tangent
hyperplane Tu1 at the point u1 then contains x∗, u2 and hence also the unique point x in
x∗u2 ∩ Π. But then the tangent line u1x would contain two points of B, namely u1 and
x, which is impossible.

If u1, u2 ∈ Ox for some x ∈ B ∩ U , then u1 and u2 cannot be collinear on Q(4, q) as
they are on the secant line x∗x.
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Suppose u1 ∈ Ox1 and u2 ∈ Ox2 are collinear for some x1, x2 ∈ B ∩ U with x1 6= x2.
In the plane 〈x∗, x1x2〉, the lines u1u2 ⊆ Q(4, q) and x1x2 meet in a point u ∈ Q−(3, q).
The tangent hyperplane Tu at the point u contains x∗, u1, u2 and hence also the points
x1 and x2. But then the tangent line x1x2 through u contains two points of B, namely x1
and x2, a contradiction.

Lemma 3.6. If γ = 〈(B ∩Q−(3, q)) ∪ (B ∩ U)〉 6= Π, then γ is a nontangent plane of Π,
B ∩ Q−(3, q) = γ ∩ Q−(3, q) and B ∩ U is the set of interior points of γ with respect to
the irreducible conic Cγ = γ ∩Q−(3, q).

Proof. By Lemma 3.4, we have

|(B ∩Q−(3, q)) ∪ (B ∩ U)| = q2 + 1 + |B ∩Q−(3, q)|
2

> q + 1, (1)

and so γ is a plane. Equation (1) implies that |B ∩ γ| > q + 1. As each tangent line
contains a unique point of B, γ cannot be a tangent plane. So, γ is a nontangent plane.

For every point x ∈ (γ∩Q−(3, q))\B, the tangent plane Tx ⊆ Π through x to Q−(3, q)
contains q+1

2
≥ 2 points of B∩U (by Lemma 3.2) of which at most 1 is contained in Tx∩γ.

As B ∩ U ⊆ γ, this is impossible. So, γ ∩Q−(3, q) ⊆ B and B ∩Q−(3, q) = γ ∩Q−(3, q).

We conclude by Lemma 3.4 that |B ∩U | = q2−q
2

. As every tangent line contains a unique

point of B, we see that B ∩ U ⊆ γ coincides with the set of q2−q
2

points of γ that are
interior with respect to the irreducible conic γ ∩Q−(3, q).

Lemma 3.7. If B 6= Q−(3, q), then the ovoid O defined in Proposition 3.5 cannot be
contained in a hyperplane of PG(4, q).

Proof. Let π be a hyperplane containing O. As B 6= Q−(3, q), there exists a point
x ∈ B ∩ U (see Lemma 3.4). As π contains Ox, we see that x∗ ∈ π. As O = (B ∩
Q−(3, q)) ∪

(⋃
y∈B∩U Oy

)
⊆ π, we see that (B ∩Q−(3, q)) ∪ (B ∩ U) is contained in the

plane Π ∩ π of Π. By Lemma 3.6, 〈B ∩ Q−(3, q)〉 is a plane γ and B ∩ U is the set of
interior points of γ with respect to the irreducible conic Cγ = γ ∩Q−(3, q) of γ.

Now, put Π = PG(3, q) = PG(V ) for some 4-dimensional vector space V over Fq and
let Q be the quadratic form on V describing the quadric Q−(3, q) ⊆ PG(3, q). Let S
(respectively, N) denote the set of all points 〈v̄〉 of PG(3, q) such that Q(v̄) is a nonzero
square (respectively, a nonsquare). By Corollary 2.9 and Lemma 2.12, the parabolic
quadric Q(4, q) could have chosen such that U = S but also such that U = N . So, we see
that both B ∩S and B ∩N should be equal to the set of interior points of γ with respect
to Cγ. This is clearly impossible.

The following proposition proves Theorem 1.2.

Proposition 3.8. If q is a prime, then B = Q−(3, q).

Proof. If q is a prime, then every ovoid of Q(4, q) is an elliptic quadric by [1, Corollary
1] and thus contained in a hyperplane of PG(4, q). The claim then follows from Lemma
3.7.
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3.2 Proof of Theorem 1.1

Here we take ε = +. The lines of T + intersect Q+(3, q) in either 1 or q + 1 points. Let B
be a T +-blocking set in Π of size q2 + 1. Then every line of T + intersects B in precisely
one point. In order to prove Theorem 1.1, we can almost literally take the above proof
given in Section 3.1 for the elliptic quadric Q−(3, q). The only differences are as follows.

(1) The quadric Q−(3, q) must now be replaced by Q+(3, q) (ε = +).
(2) The set U must be defined as follows: U := H∩Π if q ≡ 1 (mod 4) and U := E∩Π

if q ≡ −1 (mod 4).
(3) In Lemma 3.2, we have the condition |B ∩ γ ∩ U | = q−1

2
and the proof makes use

of properties (B) and (C).
(4) Lemma 3.3 must become: If x ∈ B \Q+(3, q) and γ is a tangent plane through x,

then its tangency point is not contained in B.
(5) In Lemma 3.4, we have the equality |B ∩ U | = q2−q

2
. The proof of Lemma 3.4

must be modified as follows. Considering a set of q + 1 lines partitioning Q+(3, q), we
see that |B ∩ Q+(3, q)| = q + 1. The double counting in the proof of Lemma 3.4 then
becomes ((q + 1)2 − (q + 1)) · q−1

2
= |B ∩ U | · (q + 1), from which it indeed follows that

|B ∩ U | = q2−q
2

.

(6) The equation (1) should become |(B∩Q+(3, q))∪ (B∩U)| = (q+1)+ q2−q
2

> q+1.
To show that B ∩ Q+(3, q) = γ ∩ Q+(3, q) as in the proof of Lemma 3.6, the following
alternative argument is necessary. For every point x ∈ (γ ∩ Q+(3, q)) \ B, the tangent
plane Tx ⊆ Π through x to Q+(3, q) contains two points of B ∩ Q+(3, q) none of which
can be contained in γ. As this is impossible, we must have (γ ∩Q+(3, q)) \B = ∅.

(7) Lemma 3.7 must become: The ovoid O cannot be contained in a hyperplane of

PG(4, q). Note that as |B ∩ U | = q2−q
2

, there always exists a point x ∈ B ∩ U and so the
proof of Lemma 3.7 keeps working.

(8) Since every ovoid of Q(4, q) is an elliptic quadric if q is a prime [1, Corollary 1],
we see that the T +-blocking set B of size q2 + 1 cannot exist if q is a prime.

4 Construction of T −-blocking sets of size 12 in PG(3, 3)

We denote by ζ the orthogonal polarity of PG(3, q), q odd, associated with Q−(3, q). We
have the following facts for every point x of PG(3, q) \ Q−(3, q). The tangent lines of
PG(3, q) through x are the q + 1 lines through x containing a point of the irreducible
conic Cx := xζ ∩ Q−(3, q), the q(q − 1)/2 secant lines through x are the lines through x
intersecting xζ in a point that is interior with respect to Cx, and the q(q + 1)/2 external
lines through x are the lines through x intersecting xζ in a point that is exterior with
respect to Cx. Indeed, if y is one of the q(q + 1)/2 points of xζ that are exterior with
respect to Cx and z ∈ Cx such that zy is a tangent line, then zζ = 〈x, y, z〉 is tangent plane
and so xy is indeed an external line through x.

Let Q be a quadratic form on a 4-dimensional vector space V over Fq defining the
elliptic quadric Q−(3, q) in PG(3, q) = PG(V ). Let S (respectively, N) denote the set of
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all points 〈x̄〉 of PG(3, q) \ Q−(3, q) for which Q(x̄) is a nonzero square (respectively, a
nonsquare) in Fq.

In this section, we construct eight pairwise nonisomorphic T −-blocking sets in PG(3, 3)
of size 12. We denote each constructed blocking set B by Bi∗, where i = |B ∩Q−(3, 3)| ∈
{0, 2, 4, 5, 6, 8} and ∗ is either void or equal to a or b if i ∈ {0, 4}.

4.1 The blocking sets B0a and B8

We start by giving two straightforward constructions for T −-blocking sets of size q2 + q.

Proposition 4.1. For every point x ∈ Q−(3, q), the set B := xζ \ {x} is a T −-blocking
set in PG(3, q) of size q2 + q which is disjoint from Q−(3, q).

Proof. Each tangent line through x is contained in xζ and thus contains q points of B.
Each tangent line through a point y ∈ Q−(3, q) \ {x} meets xζ is a point distinct from
x.

Proposition 4.2. For two distinct points x, y ∈ Q−(3, q), the set B := (Q−(3, q)\{x, y})∪
(xy)ζ is a T −-blocking set of size q2 + q in PG(3, q) meeting Q−(3, q) in q2 − 1 points.

Proof. Each tangent line through a point of Q−(3, q) \ {x, y} meets B. Each tangent line
through x (resp. y) intersects yζ (resp. xζ) in a point belonging to (xy)ζ ⊆ B.

For q = 3, Propositions 4.1 and 4.2 give rise to T −-blocking sets of size 12 in PG(3, 3)
which we will respectively denote by B0a and B8.

4.2 The blocking set B0b

Let L be an external line with respect to Q−(3, q). Then Lζ is a secant line. If we put
Lζ ∩Q−(3, q) = {w1, w2}, then π1 = 〈w1, L〉 and π2 = 〈w2, L〉 are the two tangent planes
through L.

Proposition 4.3. The set B := (π1 ∩ S) ∪ (π2 ∩N) is a T −-blocking set in PG(3, q) of
size q2 + q which is disjoint from Q−(3, q) and contains the line L.

Proof. As the planes π1 and π2 meet in the line L which is disjoint from Q−(3, q), we have

L ⊆ B. By Lemmas 2.2 and 2.5, we also have |B| = q2+q
2

+ q2+q
2

= q2 + q.
Consider now an arbitrary tangent line K with tangency point u. If u ∈ {w1, w2},

then K is contained in either π1 or π2 and so meets L ⊆ B. If u 6∈ {w1, w2}, then K
meets π1 ∩ S if K \ {u} ⊆ S and π2 ∩N if K \ {u} ⊆ N .

For q = 3, Proposition 4.3 gives rise to a T −-blocking set B0b of size 12 in PG(3, 3) disjoint
from Q−(3, 3). As there is no plane of PG(3, 3) containing the points of B0b, we see that
B0a and B0b are not isomorphic as T −-blocking sets.

It is possible to give an entirely geometrical construction for the T −-blocking set
B0b without making any reference to the quadratic form Q that defines Q−(3, 3). Put
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Lζ = {x1, x2, w1, w2}. By Lemma 2.3, precisely one of x1, x2 belongs to S while the other
belongs to N . Assume that we have chosen x1 and x2 in such a way that x1 ∈ S and
x2 ∈ N . Then every tangent line through x1 (respectively, x2) only contains points of
S ∪Q−(3, 3) (respectively, N ∪Q−(3, 3)).

Lemma 4.4. Let i, j ∈ {1, 2}. Then every tangent line through xi meets wζj in a point of

wζj \ (L ∪ {wj}).

Proof. Note that the line xiwj = Lζ is a secant line. If y ∈ L, then yw1, yw2, yx1 and yx2
are the four lines through y contained in the plane 〈y, Lζ〉. As yw1 and yw2 are tangent
lines, yx1 and yx2 cannot be tangent lines.

For j ∈ {1, 2}, let Aj denote the set of four points which are obtained as the intersection

of the tangent lines through xj with wζj . We then have the following.

Corollary 4.5. For q = 3, the T −-blocking set constructed in Proposition 4.3 is precisely
the set L ∪ A1 ∪ A2.

4.3 The blocking set B4a

Suppose here that q ≡ 3 (mod 4). Let π be a nontangent plane, let x ∈ Cπ := π∩Q−(3, q)
and let U,U ∈ {S,N} such that {U,U} = {S,N} and y = 〈v̄〉 := πζ belongs to U .

Proposition 4.6. The set B := Cπ ∪ (π ∩ U) ∪ ((xζ ∩ U) \ {y}) is a T −-blocking set in
PG(3, q) of size q2 + q intersecting Q−(3, q) in a conic.

Proof. We obviously have B ∩ Q−(3, q) = Cπ. If z = 〈w̄〉 is a point of π that is exterior
with respect to Cπ, then the fact that the line yz is disjoint from Q−(3, q) implies that
−Q(v̄) · Q(w̄) is a nonsquare, i.e. Q(v̄) · Q(w̄) is a square. The set π ∩ U thus consists
of all q(q + 1)/2 points of π that are exterior with respect to Cπ and π ∩ U consists of
all q(q − 1)/2 points of π that are interior with respect to Cπ. The set B thus contains

q+1+ q(q−1)
2

+
(
q(q+1)

2
− 1
)

= q2+q points. We show that B is a T −-blocking set. To that

end, consider an arbitrary tangent line K with tangency point u 6∈ Cπ. Then K meets
π ∩ U if K \ {u} ⊆ U and (xζ ∩ U) \ {y} if K \ {u} ⊆ U .

For q = 3, Proposition 4.6 gives rise to a T −-blocking set B4a of size 12 in PG(3, 3) which
intersects Q−(3, 3) in a conic. Note also that the plane π then intersects this T −-blocking
set in exactly ten points.

It is again possible to give an entirely geometrical construction for the T −-blocking
set B4a without making any reference to the quadratic form Q that defines Q−(3, 3). Let
I denote the set of three interior points of π with respect to Cπ, and let T be the line of
π that is tangent to Cπ in the point x.

Proposition 4.7. For q = 3, the T −-blocking set constructed in Proposition 4.6 is pre-
cisely the set Cπ ∪ I ∪ (T \ {x}) ∪ (xy \ {x, y}).
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Proof. In view of what has already been said in the proof of Proposition 4.6, we still must
show that (xζ ∩U)∪{x} = T ∪xy. By Lemmas 2.2 and 2.5, we know that (xζ ∩U)∪{x}
is the union of two lines through x. As π ∩ U consists of all q(q + 1)/2 = 6 points of π
that are exterior with respect to Cπ, we know that the tangent line T is one of these lines.
As y ∈ U , the other line is xy.

4.4 The blocking set B4b

We suppose here that q = 3. Consider a point x ∈ PG(3, 3) \Q−(3, 3). Let I denote the
set of three interior points of xζ with respect to the conic Cx. Fix a point y of xζ that
is exterior to Cx. There is a unique point z of xζ exterior to Cx such that the line yz is
external to Cx. Let L1 and L2 be the two tangent lines through y not contained in xζ and
wi be the tangency point of Li in Q−(3, 3) for i ∈ {1, 2}.

Proposition 4.8. The set B4b := Cx∪I ∪{z}∪ ((L1∪L2) \ {y, w1, w2}) is a T −-blocking
set in PG(3, 3) of size 12 meeting Q−(3, 3) in four points. Further, B4b is not isomorphic
to B4a as T −-blocking set.

Proof. We only need to prove that the tangent lines through any point of xζ \ B4b that
are not contained in xζ must meet B4b. Note that xζ \ B4b consists of five points of xζ

exterior to Cx.
Let u be a point of xζ \B4b and T be a tangent line through u not contained in xζ . If

u = y, then T ∈ {L1, L2} and hence it meets B4b at two points. So assume that u 6= y.
Since both u and y are exterior to Cx and u 6= z, the line uy of xζ must be tangent to Cx.

Consider the nontangent plane π := 〈T, uy〉. The point y of π is exterior to the conic
π ∩ Q−(3, 3). So there exists one more tangent line (different from uy) through y in π.
Since π ∩ xζ = uy, it follows that Li is a tangent line of π for some i ∈ {1, 2}. The
tangency points of T and Li are different as π is a nontangent plane. So the lines T and
Li of π intersect in a point of Li \ {y, wi}. Thus T meets B4b in a point of Li \ {y, wi}.

In order to show that B4a and B4b are nonisomorphic, it suffices to show that there is
no plane of PG(3, 3) intersecting B4b in exactly ten points. Suppose to the contrary that
σ is such a plane. As there are two points of B4b outside σ, at least six of the eight points
of xζ ∩ B4b are contained in σ. As any six points of xζ generate xζ , we then have that
σ = xζ . But that is impossible as xζ intersects B4b in only eight points.

4.5 The blocking set B5

We suppose here that q = 3. Consider a point x of PG(3, 3) \ Q−(3, 3) and an external
line E of xζ with respect to the conic Cx. Let e1, e2 be the two points of E exterior to
Cx. Since E is contained in precisely two tangent planes, there are two points w1, w2 of
Q−(3, 3) \ Cx such that wζ1 ∩ w

ζ
2 = E. Put L1 := w2e1 and L2 := w2e2 (which are tangent

lines through w2) and denote by I the set of three interior points of xζ with respect to
Cx.

15



Proposition 4.9. The set B5 := Cx∪I ∪{w1}∪ ((L1∪L2)\{w2, e1, e2}) is a T −-blocking
set in PG(3, 3) of size 12 meeting Q−(3, 3) in five points.

Proof. Put E∩I = {a1, a2} and I = {a1, a2, a3}. We have then E = {a1, a2, e1, e2}. Note
that each of the tangent lines through w2 meets B5. Let R := {w1, w2} ∪ Cx. It is enough
to show that the tangent lines through any of the four points of Q−(3, 3) \R meet B5.

Let y be a point of Q−(3, 3) \R. Then yζ ∩ xζ is an external line of xζ different from
E. So yζ ∩xζ contains two points of I, one of them must be a3 and the other one is ai for
some i ∈ {1, 2}. We have ai ∈ wζ2 ∩ yζ and so M := wζ2 ∩ yζ is an external line through ai
contained in wζ2 with M 6= E. In wζ2, the line M meets L1 and L2. Put M = {ai, b1, b2, z},
where b1 ∈ L1 \ {w2, e1} and b2 ∈ L2 \ {w2, e2}.

Note that the tangent lines through a3 meet Q−(3, 3) in points of Q−(3, 3) \ R. In
particular, ya3 is a tangent line. We thus have tangent lines yai, ya3, yb1 and yb2 through
y meeting B5 in points of {ai, a3, b1, b2}.

In order to complete the proof, it suffices to prove that the tangent line ya3 is different
from the tangent lines yb1 and yb2. If a3 is a point on the tangent line ybj for some
j ∈ {1, 2}, then the points ej and a3 of the nontangent plane π := 〈Lj, ybj〉 are exterior
with respect to the conic π ∩ Q−(3, 3). But this is not possible as the line eja3, being
secant to Cx in xζ , is also a secant line of π with respect to π ∩Q−(3, 3).

4.6 The blocking sets B2 and B6

We suppose here that q = 3. Let L be a secant line and π1 a (nontangent) plane through
L. The line Lζ is disjoint from Q−(3, 3) and meets π1 in a point x1. Put π3 := xζ1, and let
π2 be a plane through L distinct from π1 and π3. The line Lζ meets π2 in a point x2. Put
π4 := xζ2, {x3} := Lζ ∩ π3 and {x4} := Lζ ∩ π4. Then Lζ = {x1, x2, x3, x4} and π1 = xζ3,
π2 = xζ4, π3 = xζ1, π4 = xζ2 are the four (nontangent) planes through L. We denote by Cπi ,
i ∈ {1, 2, 3, 4}, the irreducible conic πi ∩Q−(3, 3) in πi.

Put L \ Q−(3, 3) = {y13, y24}. In the plane πi, i ∈ {1, 2, 3, 4}, there are two tangent
lines through xi (namely the two lines through xi meeting L ∩Q−(3, 3)), one secant line
through xi and one external line through xi. So, for every i ∈ {1, 2, 3, 4}, exactly one
of xiy13, xiy24 is a secant line. Without loss of generality, we may suppose that we have
named the points in L\Q−(3, 3) in such a way that x1y13 is a secant line. As L and y13x1
are two secant lines of π1 through y13, the point y13 must be interior with respect to the
conic Cπ1 . As π1 = xζ3, the line x3y13 must therefore also be a secant line. We have now
found all three secant lines through y13 ∈ PG(3, 3) \Q−(3, 3), namely L, x1y13 and x3y13.
This implies that x2y24 and x4y24 must be secant lines.

Proposition 4.10. The set B6 := (L ∪ x1y13 ∪ x1y24 ∪ x2y13 ∪ x2y24) \ {x1, x2} is a
T −-blocking set in PG(3, 3) of size 12 meeting Q−(3, 3) in six points.

Proof. Obviously, the set B6 has size 12 and meets Q−(3, 3) in exactly six points (namely
the points of L \ {y13, y24}, x1y13 \ {x1, y13} and x2y24 \ {x2, y24}). We need to prove that
a tangent line T with tangency point t meets the set B6. As every point of Cπ1 ∪ Cπ2 is
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contained in B6, we may suppose that t ∈ (Cπ3 ∪Cπ4) \L. Note that π3 = xζ1 and π4 = xζ2.
By symmetry, it thus suffices to consider the case where t ∈ Cπ3 \ L = x3y13 \ {x3, y13}.
As xζ3 = π1 and yζ13 contains x1y24, also tζ contains x1y24 and so tζ = 〈t, x1y24〉. As
x1y24 \ {x1} ⊆ B6, all tangent lines through t meet B6, with the possible exception of the
tangent line tx1. In the plane 〈y13, Lζ〉, as x1y13 ∩ x2y13 = {y13} and x1x3 ∩ x2y13 = {x2},
we have x1t ∩ x2y13 ⊆ x2y13 \ {x2, y13} ⊆ B6 and so the line tx1 also meets B6.

Proposition 4.11. The set B2 := (L ∪ x1y24 ∪ x2y13 ∪ x3y24 ∪ x4y13) \ {x1, x2, x3, x4} is
a T −-blocking set in PG(3, 3) of size 12 meeting Q−(3, 3) in two points.

Proof. Obviously, the set B2 has size 12 and meets Q−(3, 3) in exactly two points (namely
the points of L∩Q−(3, 3)). We need to prove that a tangent line T with tangency point t
meets the set B2. By symmetry, it suffices to prove this for t ∈ Cπ3 . In fact, we may restrict
to the case where t ∈ Cπ3 \ L = x3y13 \ {x3, y13}. Similarly as in the proof of Proposition
4.10, we know that tζ = 〈t, x1y24〉. As x1y24 \ {x1} ⊆ B2, all tangent lines through t meet
B2, with the possible exception of the tangent line tx1. As x1y13 ∩ x2y13 = {y13} and
x1x3 ∩ x2y13 = {x2}, we have x1t ∩ x2y13 ⊆ x2y13 \ {x2, y13} ⊆ B2 and so the line tx1 also
meets B2.

5 Computer computations

Let Sq be the geometry whose points are the points of PG(3, q) and whose lines are the
lines of PG(3, q) that are tangent to Q−(3, q), with incidence being containment. The
T −-blocking sets of size q2 + 1 in PG(3, q) are precisely the ovoids of the geometry Sq.
If q is even, then Sq is isomorphic to the symplectic generalized quadrangle W (q) whose
ovoids have already been classified for q ≤ 32, see Section 1 for a discussion. Suppose
therefore that q is odd. With the aid of GAP [22] and SageMath [18], we have classified
all ovoids of Sq for q ∈ {3, 5, 7, 9, 11, 13} [5]. We have used similar computer code as in [9]
for computing T +-blocking sets of size q2 + 1. We found that each such ovoid is always
the elliptic quadric Q−(3, q) itself. This corroborates Theorem 1.2 for q ∈ {3, 5, 7, 11, 13}.
For q = 9, our computer results give the following additional result.

Theorem 5.1. If B is a T −-blocking set in PG(3, 9) of size 92 + 1 = 82, then B =
Q−(3, 9).

We would like to pose the following open problem.

Open problem. What is the minimal size of a minimal T −-blocking set of size at least
q2 + 2 in PG(3, q)? How does each such blocking set look like?

For q = 2, it is straightforward to give an answer to the above problem.

Theorem 5.2. Every minimal T −-blocking set of size 22 + 2 = 6 in PG(3, 2) is of the
form π \πζ with π a plane of PG(3, 2) and ζ the symplectic polarity of PG(3, 2) associated
with Q−(3, 2).
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Proof. Consider the generalized quadrangle W (2) ∼= S2. If A is a nonempty set of points
of W (2), then A⊥ denotes the set of all points of W (2) that are collinear with every point
of A. If A is a singleton {x}, then we denote A⊥ also by x⊥. Obviously, x⊥ = xζ .

We thus need to prove that every blocking set of size 6 of W (2) (with respect to its
lines) is of the form x⊥ \ {x} for some point x of W (2). Suppose to the contrary that B
is a blocking set of size 6 of W (2) not of this form.

By [17], the generalized quadrangle W (2) has a spread, i.e. a set of five mutually
disjoint lines. As each line of such a spread contains at least one point of B, we see
that there is some line L containing precisely two points x1 and x2 of B. Let y denote
the third point of L and let L′, L′′ be the two lines through y distinct from L. Putting
L′ = {y, x3, x′3} and L′′ = {y, x4, x′4}, we may without loss of generality assume that
x3, x4 ∈ B. As y⊥ \ {y} is not contained in B, we may without loss of generality assume
that x′3 6∈ B. Denote by x5 and x6 the two points of B \ {x1, x2, x3, x4}.

As each of the two lines through x′3 distinct from L′ is disjoint from L∪L′′ and contains
a point of B, these two lines are x′3x5 and x′3x6. This implies that x′4 6∈ B. Repeating the
above argument with x′3 replaced by x′4, we then see that also x′4x5 and x′4x6 are lines.
We thus have that {x′3, x′4}⊥ = x′3

⊥ ∩ x′4
⊥ = {x5, x6, y} and {x5, x6, y}⊥ = {x′3, x′4, xi}

for some i ∈ {1, 2}. Note that {x5, x6, y} and {x′3, x′4, xi} are lines of PG(3, 2) and that
{x5, x6, y}ζ = {x′3, x′4, xi}. Each of the three lines through xi ∈ B thus contains a point of
B \ {xi}. But then B \ {xi} would also be a blocking set, an obvious contradiction.

With the aid of computer computations [5], we have also solved to above problem for
q = 3. Our results are as follows.

Theorem 5.3. (1) There are no minimal T −-blocking sets of size 11 in PG(3, 3).

(2) Up to isomorphism, there are eight minimal T −-blocking sets of size 12 in PG(3, 3).

The stabilizer of Q−(3, 3) in PGL(4, 3) has 14 = |Q−(3, 3)| + 4 orbits on the (possibly
empty) subsets of Q−(3, 3), with two orbits corresponding to each of the sizes 4, 5 and 6.
If X1, X2, . . . , X14 are given representatives for these orbits, then without loss of generality
we may suppose that the blocking sets have the form Xi ∪ Y , where i ∈ {1, 2, . . . , 14}
and Y ∩Q−(3, 3) = ∅. In order to significantly reduce the total number of cases, we have
made use of this fact in our computer proofs of Theorem 5.3.

Theorem 5.3(1) has the following consequence.

Corollary 5.4. Let X be a T −-blocking set in PG(3, 3) of size 12. If X does not contain
Q−(3, 3), then X is minimal.

Proof. Suppose that X is not minimal. Then, for some x ∈ X, the set X1 = X \ {x}
is a T −-blocking set of size 11. Since there is no minimal T −-blocking set of size 11 in
PG(3, 3), X1 cannot be minimal. So X1 contains a subset X2 which is a T −-blocking set of
size 10. By Theorem 1.2, X2 = Q−(3, 3) and so X contains Q−(3, 3), a contradiction.
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Although it is very likely that one can also prove this by hand, Corollary 5.4 in fact shows
that all eight mutually nonisomorphic T −-blocking sets of size 12 constructed in Section
4 are minimal. Combining this with Theorem 5.3(2), we thus obtain:

Corollary 5.5. The minimal T −-blocking sets of size 12 in PG(3, 3) are precisely the
T −-blocking sets that are isomorphic to one of B0a, B0b, B2, B4a, B4b, B5, B6, B8.
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