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Abstract

In [9], two of us classified line sets in PG(3, q), q odd, that satisfy a certain list
of properties. It was shown there that if q ≥ 7, then each such line set is either the
set of secant lines with respect to a hyperbolic quadric of PG(3, q) or belongs to a
certain “hypothetical family” of line sets (for which no examples were known in [9]).
In the present paper, we achieve two goals. On the one hand, we extend the mentioned
classification result to all odd prime powers q. On the other hand, we study the
hypothetical family of line sets and show that they are related to quadratic sets of the
Klein quadric. This will allow us to show that such line sets exist for every odd prime
power q.

MSC2020: 05B25, 51A50, 51E20
Key words: line sets in projective spaces, secant line, hyperbolic quadric, Klein quadric,
quadratic set

1 Introduction

If Q is a quadric of a projective space PG(n, q), then a line L of PG(n, q) is called an external,
a secant or a tangent line according to as |L ∩ Q| = 0, |L ∩ Q| = 2 or |L ∩ Q| ∈ {1, q + 1}.
From Theorem 1.1 and Lemmas 3.1, 4.4 of [9], the following characterization result for the
set of secant lines to a hyperbolic quadric in PG(3, q) follows.

Proposition 1.1. Let S be a set of lines of PG(3, q), q ≥ 7 odd, for which the following
properties hold:

(P1) There are 1
2
q(q + 1) or q2 lines of S through a given point of PG(3, q). Further, there

exists a point which is contained in 1
2
q(q+ 1) lines of S and a point which is contained

in q2 lines of S.

∗The author would like to thank the National Institute of Science Education and Research, Bhubaneswar,
for the kind hospitality provided during his visit to the School of Mathematical Sciences in January 2020.
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(P2) Every plane π of PG(3, q) contains at least one line of S and one of the following two
cases occurs:

(P2a) every pencil of lines in π contains 0 or q lines of S;

(P2b) every pencil of lines in π contains 1
2
(q − 1), 1

2
(q + 1) or q lines of S.

Then S is one of the following:

(1) the set of all secant lines with respect to a hyperbolic quadric in PG(3, q);

(2) a hypothetical family of 1
2
(q4+q3+2q2) lines such that the set of points that are incident

with q2 lines of S is a line L 6∈ S and the planes π for which (P2a) holds are precisely
the planes containing L.

The question whether line sets as in (2) of Proposition 1.1 can exist remained open in [9].
In this paper, we achieve the following two goals.

(1) We extend Proposition 1.1 to all odd q, i.e. we show that Proposition 1.1 is also valid
for q ∈ {3, 5}.

(2) We study the hypothetical families of 1
2
(q4 + q3 + 2q2) lines of PG(3, q) alluded to in

Proposition 1.1(2). In particular, we show that such line sets exist for every odd prime
power q.

The first goal will be realized in Sections 3 and 4, and the second goal in Sections 5, 6, 7, 8
and 9. In both treatments, we need to make use of an observation about dual conics which
we will derive in the following section.

2 An observation on dual conics

If C is an irreducible conic of PG(2, q), q odd, then every point x of PG(2, q) \ C is contained
in either two or zero tangent lines. The point x is called exterior or interior according to as
the former or the latter case occurs. A dual conic of PG(2, q) is a set of lines of PG(2, q)
forming an irreducible conic in the dual plane PG(2, q)∗ of PG(2, q).

Lemma 2.1. (1) A set of lines of PG(2, q), q odd, is a dual conic if and only if it is the
set of tangent lines with respect to an irreducible conic of PG(2, q).

(2) A set of lines of PG(2, q), q odd, is the set of exterior points with respect to an irre-
ducible conic of PG(2, q)∗ if and only if it is the set of secant lines with respect to an
irreducible conic of PG(2, q).

(3) A set of lines of PG(2, q), q odd, is the set of interior points with respect to an irre-
ducible conic of PG(2, q)∗ if and only if it is the set of external lines with respect to an
irreducible conic of PG(2, q).
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Proof. Suppose C is an irreducible conic in PG(2, q), q odd. There are q+1 tangent lines with
respect to C and no three of these lines are concurrent, i.e. the set C∗ of these tangent lines
is a dual conic by Segre [11] (it is also possible to show this directly by using coordinates).
As each of the q + 1 points of C is contained in a unique tangent line, C is the set of points
of PG(2, q) corresponding to the tangent lines of the dual conic C∗.

Now, a line L of PG(2, q) not belonging to C∗ is a secant line with respect to C if and
only if it contains two points of C, i.e. if and only if L 6∈ C∗ regarded as a point of PG(2, q)∗

is contained in two tangent lines with respect to C∗, in other words if and only if L is an
exterior point with respect to C∗.

By the above, Claims (1), (2) and (3) will be valid if any dual conic C̃∗ of PG(2, q)∗

consists of the tangent lines with respect to a conic of C. But this follows by the same
argument as in the first paragraph of this proof (with C replaced by C̃∗).

3 Sets of class [12(q − 1), 1
2(q + 1), q] in PG(2, q), q odd

Before we can achieve the first goal of this paper, we need to derive some results regarding
certain sets of points in PG(2, 3) and PG(2, 5).

If m1,m2, . . . ,mk are k mutually distinct integers satisfying 0 ≤ m1 < m2 < · · · < mk ≤
q+ 1, then a set of points of PG(2, q) is said to be of class [m1,m2, . . . ,mk] if it meets every
line in either m1, m2, . . ., or mk points.

3.1 Sets of class [1, 2, 3] in PG(2, 3)

If C is an irreducible conic in PG(2, 3) and EC denotes the set of exterior points of PG(2, 3)
with respect to C, then every tangent line meets EC in three points, every secant line meets
EC in one point and every external line meets EC in two points. So, EC is a set of class [1, 2, 3].
Note also that the complement of any set of class [1, 2, 3] in PG(2, 3) is again a set of class
[1, 2, 3].

Lemma 3.1. Every set of class [1, 2, 3] in PG(2, 3) is either the set of exterior points with
respect to an irreducible conic or the complement of such a set. Equivalently, a set of class
[1, 2, 3] in PG(2, 3) is either the set of points on the sides of a triangle except for the vertices,
or the complement of such a set.

Proof. Let X be a set of class [1, 2, 3] in PG(2, 3). Then X is either a set of class [1, 2, 3]
with |X| ≤ 6 or the complement of such a set of points.

Suppose therefore that |X| ≤ 6. If there are no lines intersecting X in three points, then
|X| ≤ 4 and X must be a subset of an irreducible conic, implying that there are lines disjoint
from X, a contradiction.

So, there exists a line L meeting X in precisely three points x1, x2 and x3. Let y denote
the unique point of L, not belonging to X. Through y, there are three lines L1, L2 and L3

distinct from L.
Each of these three lines contains an extra point of X. As |X| ≤ 6, we thus see that

each of these three lines contains precisely one point of X. Put Li ∩ X = {yi} for every
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i ∈ {1, 2, 3}. The points y1, y2, y3 cannot be collinear, otherwise the line containing these
points would be entirely contained in X as this line also contains a point of L \ {y}. Each
yi with i ∈ {1, 2, 3} is now contained in two lines meeting X in exactly three points, namely
the lines yiyj with j ∈ {1, 2, 3} \ {i} and one line meeting X in exactly one point, namely
yiy. So, each yi, i ∈ {1, 2, 3}, is contained in a unique line meeting X in exactly two points.
Repeating the above argument with L replaced by either y1y2 or y1y3, we then also see that
every point of L ∩X is contained in a unique line meeting X in exactly two points.

There are thus three lines U1, U2 and U3 that contain exactly two points of X, resulting
in the 6 points for X. Moreover, any two of these lines intersect in a point outside X. If
U1, U2 and U3 go through the same point, then the fourth line through that point would be
disjoint from X, which is impossible. So, the lines U1, U2 and U3 form a triangle and

X = (U1 ∪ U2 ∪ U3) \ ((U1 ∩ U2) ∪ (U1 ∩ U3) ∪ (U2 ∪ U3)). (∗)

Conversely, every set of 6 points of PG(2, 3) obtained as in (∗) is a set of class [1, 2, 3]. So,
there exists up to isomorphism only one set of class [1, 2, 3] having 6 points. Such a set
of class [1, 2, 3] thus necessarily is the set of exterior points with respect to an irreducible
conic.

3.2 Sets of class [1, 1
2(q + 1), 1

2(q + 3)] in PG(2, q), q ≥ 5 odd

We take the following result from Theorem 4.6 of [7].

Proposition 3.2 ([7]). Let K be a set of class [1, 1
2
(q + 1), 1

2
(q + 3)] in PG(2, q), q odd and

q ≥ 5. Then one of the following cases occurs:

(1) q = 5 and K consists of all points on the sides of a triangle, except the vertices;

(2) K consists of an irreducible conic and its interior points.

3.3 Two consequences

From Lemma 3.1 and Proposition 3.2, the following can be derived.

Corollary 3.3. Let K be a set of class [1
2
(q − 1), 1

2
(q + 1), q] in PG(2, q) where q ∈ {3, 5}.

Then K is one of the following:

(1) the set of exterior points with respect to an irreducible conic;

(2) a set of the form (PG(2, q) \ (L1 ∪L2 ∪L3))∪ (L1 ∩L2)∪ (L1 ∩L3)∪ (L2 ∩L3), where
L1, L2 and L3 are three nonconcurrent lines.

Proof. For q = 3, this is a consequence of Lemma 3.1. For q = 5, this is a consequence of
Proposition 3.2 if we take into account that the complement of a set of class [1, 1

2
(q+1), 1

2
(q+

3)] in PG(2, q), q odd, is a set of class [1
2
(q − 1), 1

2
(q + 1), q].

From Proposition 3.2 and Corollary 3.3, the following can be derived.
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Corollary 3.4. Let X be a set of class [1
2
(q − 1), 1

2
(q + 1), q] in PG(2, q), q odd, having

exactly 1
2
q(q + 1) points. Then there exists an irreducible conic C in PG(2, q) such that X

coincides with the set of points of PG(2, q) that are exterior with respect to C.

Proof. If q ∈ {3, 5}, then one of the cases (1) or (2) of Corollary 3.3 must occur. As
|X| = 1

2
q(q + 1), the former case must occur.

If q ≥ 7, then as the complement of X is a set of class [1, 1
2
(q+1), 1

2
(q+3)], we know from

Proposition 3.2 that X is the set of exterior points with respect to an irreducible conic.

4 Proof of Proposition 1.1 for all odd q

Let S be a family of lines of PG(3, q) with q odd satisfying the properties (P1) and (P2) of
Proposition 1.1. A plane of PG(3, q) is said to be tangent or secant according as it satisfies
the property (P2a) or (P2b). For a given plane π of PG(3, q), we denote by Sπ the set of
lines of S contained in π.

4.1 Recollection of some results from [9]

The following three results are respectively Lemma 2.1, Lemma 2.2 and Corollary 2.3 of [9].
The proofs of these results in [9] work for all odd q.

Lemma 4.1. If π is a tangent plane, then |Sπ| = q2.

Lemma 4.2. Let π be a tangent plane. Then there are exactly q2 + q points in π each of
which is contained in q lines of Sπ. Equivalently, there is only one point of π that is not
contained in any line of Sπ.

For a tangent plane π, we denote by pπ the unique point of π which is contained in no lines
of Sπ (Lemma 4.2) and call it the pole of π.

Corollary 4.3. Let π be a tangent plane. Then the q+ 1 lines of π not contained in Sπ are
precisely the lines of π through the pole pπ.

The following is an immediate consequence of property (P2b).

Lemma 4.4. If π is a secant plane, then Sπ is a set of class [1
2
(q − 1), 1

2
(q + 1), q] in the

dual plane of π.

The following is precisely Lemma 2.5 of [9]. It is a consequence of Proposition 3.2 and
Lemmas 2.1, 4.4, taking into account that the complement of a set of class [1

2
(q−1), 1

2
(q+1), q]

is a set of class [1, 1
2
(q + 1), 1

2
(q + 3)].

Corollary 4.5. If q ≥ 7, then for every secant plane π, the set Sπ consists of all secant lines
with respect to an irreducible conic of π.
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Using Corollary 4.5, the authors of [9] were able to complete the proof of Proposition 1.1
without making further use of the restriction that q ≥ 7. Although they never stated this
explicitly in their paper, the authors of [9] have thus shown the following.

Proposition 4.6. Suppose that for every secant plane π, the set Sπ consists of all secant
lines to an irreducible conic of π. Then S is one of the following:

(1) the set of all secant lines with respect to a hyperbolic quadric in PG(3, q);

(2) a set of 1
2
(q4 + q3 + 2q2) lines such that the set of points that are incident with q2 lines

of S is a line L 6∈ S and the planes π for which (P2a) holds are precisely the planes
containing L.

4.2 Completion of the proof

The following is a consequence of Lemmas 2.1, 4.4 and Corollaries 3.3, 4.5.

Corollary 4.7. One of the following cases occurs for a secant plane π:

(1) Sπ consists of all secant lines with respect to an irreducible conic;

(2) there exist three noncollinear points x1, x2 and x3 such that Sπ consists of the lines
x1x2, x1x3, x2x3 and all lines disjoint from {x1, x2, x3}.

Case (2) cannot occur if q > 5.

If case (1) occurs, then we call π a secant plane of type (1). If case (2) occurs (and so
q ∈ {3, 5}), then we call π a secant plane of type (2). Every point of PG(3, q) is contained in
q2 or 1

2
q(q + 1) lines of S by property (P1). We call a point of PG(3, q) black (respectively

white) if it is contained in q2 (respectively 1
2
q(q + 1)) lines of S.

Lemma 4.8. Suppose x is a black point. Then there exists a unique plane πx through x
such that the lines of S through x are precisely the lines through x not contained in πx. This
plane πx is a tangent plane.

Proof. We will reason in the quotient projective space PG(3, q)x. There are q + 1 lines
through x not belonging to S. Each line of PG(3, q)x contains at least one element of this
collection of q + 1 lines. By Theorem 1 of [2], we then know that the q + 1 lines through x
not belonging to S are the q + 1 lines through x contained in a certain plane πx. As no line
of πx through x belongs to S, πx is a tangent plane.

Consider the map θ between the set of black points and the set of tangent planes mapping
x to πx.

Lemma 4.9. The map θ is injective.

Proof. Let π be a tangent plane. If π = θ(x) for some black point x, then we know that x
necessarily coincides with the pole of π. So, θ is injective.
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Lemma 4.10. (1) The map θ is bijective.

(2) There are no secant planes of type (2).

Proof. Consider now the following numbers:
• B is the number of black points;
• W is the number of white points;
• N1 is the number of tangent planes;
• N2 is the number of secant planes of type (1);
• N3 is the number of secant planes of type (2).

By Lemma 4.9, we have B ≤ N1, with equality if and only if θ is bijective.
We count in two different ways the triples (x, L, π), where x is a point of PG(3, q), L a

line of S through x and π is a plane of PG(3, q) through L.
Counting according to the sequence x, L, π yields that the number A of such triples equals

A =
(
Bq2 +W

q(q + 1)

2

)
(q + 1). (1)

Counting according to the sequence π, L, x yields that the number A of triples also equals

A =
(
N1q

2 +N2
q(q + 1)

2
+N3(q

2 − 2q + 4)
)

(q + 1). (2)

By equations (1) and (2), we find

Bq2 +W
q(q + 1)

2
= N1q

2 +N2
q(q + 1)

2
+N3(q

2 − 2q + 4).

Replacing W by q3 + q2 + q + 1−B and N2 by q3 + q2 + q + 1−N1 −N3, we find

B
q(q − 1)

2
+ (q3 + q2 + q + 1)

q(q + 1)

2
= N1

q(q − 1)

2
+ (q3 + q2 + q + 1)

q(q + 1)

2

+N3

(
q2 − 2q + 4− q(q + 1)

2

)
,

i.e.

B
q(q − 1)

2
= N1

q(q − 1)

2
+N3

(q − 3)(q − 2) + 2

2
.

We thus find that B ≥ N1. Hence, B = N1 and N3 = 0. As B = N1, the map θ must be
bijective.

Theorem 4.11. The conclusion of Proposition 1.1 is valid for all odd prime powers q.

Proof. For q > 5, this was shown in [9], see also Proposition 4.6 and the remark prior to
that proposition. For q ∈ {3, 5}, this now follows from Proposition 4.6, Corollary 4.7 and
Lemma 4.10.

For each prime power q, we denote by H(q) the set of all line sets in PG(3, q) that satisfy the
properties (P1), (P2) of Proposition 1.1 and which correspond to case (2) of that proposition.
The question whether H(q) is non-empty was left open in [9]. In the following sections, we
show that H(q) is non-empty for every odd prime power. We also obtain some classification
results for the line sets in H(q), some of which have been obtained by means of computer
computations.

7



5 Alternative descriptions for the line sets in H(q)
Consider the following properties for a set S of lines of PG(3, q), q odd:

(P3) S is not the set of secant lines with respect to a hyperbolic quadric of PG(3, q).

(P1′) One of the following two cases occurs for a point p of PG(3, q):

(P1a′) there exists a plane π through p such that the lines of S through p are precisely
the lines through p not contained in π;

(P1b′) there exists an irreducible conic Cp in the quotient projective space PG(3, q)p ∼=
PG(2, q) such that the lines of S through p are precisely the points of PG(3, q)p
that are exterior with respect to Cp.

(P2′) One of the following two cases occurs for a plane π of PG(3, q):

(P2a′) there exists a point p in π such that the lines of S in π are precisely the lines in
π not containing p;

(P2b′) there exists an irreducible conic Cπ in π such that the lines of S in π are precisely
the secant lines with respect to Cπ.

(P3′) There exists a line L∗ 6∈ S in PG(3, q) such that the points p of PG(3, q) for which case
(P1a′) occurs are precisely the points on L∗ and the planes π for which case (P2a′)
occurs are precisely the planes through L∗.

We hereby note that property (P3′) is only defined for line sets that also satisfy properties
(P1′) and (P2′).

Recall that the members of H(q) are precisely the line sets satisfying properties (P1),
(P2) and (P3). We now show that the members of H(q) can also be described by means of
the properties (P1′), (P2′) and (P3′).

Proposition 5.1. A set S of lines of PG(3, q), q odd, satisfies properties (P1), (P2) and
(P3) if and only if it satisfies properties (P1′), (P2′) and (P3′).

Proof. Suppose S satisfies properties (P1), (P2) and (P3). By Proposition 1.1, Corollaries
4.3, 4.7 and Lemma 4.10, we then know that the following properties hold:

(1) The set S consists of 1
2
(q4 + q3 + 2q2) lines.

(2) There exists a necessarily unique line L∗ with the property that every point of L∗ is
incident with exactly q2 lines of S and every point not incident with L∗ is incident with
exactly 1

2
q(q + 1) lines of S.

(3) The line L∗ does not belong to S.

(4) Every plane π through L∗ contains a unique point pπ ∈ L∗ with the property that the
lines of S in π are precisely the lines of π not containing the point pπ.
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(5) The map π 7→ pπ defines a bijection between the set of planes through L∗ and the set
of points on L∗.

(6) For every plane π not containing L∗, there exists an irreducible conic Cπ in π such that
the lines of S in π are precisely the lines of π that are secant with respect to Cπ.

For every point x of PG(3, q), let Sx denote the set of lines of S through x. Then Sx is a set
of points of the quotient projective space PG(3, q)x. By the above properties (4) and (5), we
know that the following holds:

(7) If x ∈ L∗, then Sx is the complement of a line of PG(3, q)x.

If x is a point of PG(3, q) \ L∗ and if π is the plane 〈x, L∗〉, then with exception of xpπ all
lines of π through x belong to S. If π′ is another plane through x, then by (P2b) there are
either 1

2
(q − 1), 1

2
(q + 1) or q lines of π′ through x that belong to S. So, Sx is a set of class

[1
2
(q − 1), 1

2
(q + 1), q] of PG(3, q)x. In combination with Corollary 3.4 and property (2), this

implies the following:

(8) If x is a point of PG(3, q) not belonging to L∗, then Sx is the set of exterior points
with respect to an irreducible conic Cx of PG(3, q)x.

Note also that if x is a point of PG(3, q) \L∗ and if π is the plane 〈x, L∗〉, then the fact that
with exception of xpπ all lines of π through x belong to S implies that π is a tangent line of
PG(3, q)x to the conic Cx with tangency point xpπ.

Properties (P1′), (P2′) and (P3′) are consequences of the above properties (3), (4), (6),
(7) and (8).

Conversely, suppose that S satisfies the properties (P1′), (P2′) and (P3′). Let L∗ be the
line of PG(3, q) such that property (P3′) holds.

If x ∈ L∗, then the fact that property (P1a′) holds for x implies that x is incident with
q2 lines of S. If x ∈ PG(3, q)\L∗, then the fact that property (P1b′) holds for x implies that
x is incident with 1

2
q(q + 1) lines of S. We conclude that S satisfies (P1).

If π is a plane through L∗, then the fact that property (P2a′) holds for π implies that
every pencil of lines in π contains 0 or q lines of S. If π is a plane of PG(3, q) not containing
L∗, then the fact that property (P2b′) holds for π implies that every pencil of lines in π
contains 1

2
(q − 1), 1

2
(q + 1) or q lines of S. So, property (P2) holds.

If S were the set of secant lines with respect to a hyperbolic quadric Q+(3, q) of PG(3, q),
then the planes of PG(3, q) for which (P2a′) holds are the tangent planes with respect
to Q+(3, q). As these planes do not intersect in a line (as required by (P3′)), we have a
contradiction. So, property (P3) must hold.

We now give another alternative description of the elements of H(q) by using the so-called
Klein correspondence.

Suppose PG(3, q) = PG(V ), where V is a 4-dimensional vector space over the finite
field Fq, and denote by

∧2 V the second exterior power of V . The map κ which sends
each line L of PG(V ) through two distinct points 〈v̄1〉 and 〈v̄2〉 to the point 〈v̄1 ∧ v̄2〉 of
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PG(5, q) = PG(
∧2 V ) is well-defined. It moreover defines a bijection between the set of lines

of PG(3, q) and the set of points of a hyperbolic quadric in PG(
∧2 V ) which we will denote

by Q+(5, q). The map κ is also called the Klein correspondence and the quadric Q+(5, q) the
Klein quadric. We recall some known properties of the Klein quadric. For more background
information, we refer to [8] and [12].

(1) For every point x of PG(3, q), we denote by Lx the set of lines of PG(3, q) through
x. The set κ(Lx) is a plane of Q+(5, q) which is called a Latin plane.

(2) For every plane π of PG(3, q), we denote by Lπ the set of lines of PG(3, q) contained
in π. The set κ(Lπ) is a plane of Q+(5, q) which is called a Greek plane.

(3) Every plane of Q+(5, q) is either a Latin or Greek plane.
(4) For every incident point-plane pair (x, π) in PG(3, q), let Lx,π denote the line pencil

consisting of all lines through x contained in π. Then κ(Lx,π) = κ(Lx) ∩ κ(Lπ) is a line of
Q+(5, q). Every line of Q+(5, q) can be obtained in this way.

(5) Every automorphism or duality θ of PG(3, q) maps lines to lines and induces an

automorphism θ̃ of Q+(5, q) via the relation κ(Lθ) = κ(L)θ̃ for lines L of PG(3, q). If θ

is an automorphism, then θ̃ maps Latin planes to Latin planes and Greek planes to Greek
planes. If θ is a duality, then θ̃ maps Latin planes to Greek planes and Greek planes to Latin
planes. Conversely, every automorphism of Q+(5, q) is of the form θ̃ for some automorphism
or duality θ of PG(3, q).

(6) If (x, L) is a non-incident point-line pair of Q+(5, q), then either one or all points of
L are collinear with x on the quadric Q+(5, q).

(7) If (x, π) is a non-incident point-plane pair of Q+(5, q), then there is a unique plane
of Q+(5, q) through x intersecting π in a line.

Consider now the following properties for a set X of points of Q+(5, q), q odd:

(P1′′) For a plane π of Q+(5, q), the intersection X ∩ π is either the complement (in π) of a
line Lπ ⊆ π or the set of points in π that are exterior with respect to a (necessarily
unique) irreducible conic Cπ of π.

(P2′′) There exists a point x∗ 6∈ X such that the planes π of Q+(5, q) for which π ∩X is the
complement of a line are precisely the planes through x∗.

(P3′′) If x is a point noncollinear with x∗ on Q+(5, q) and π1, π2 are two planes of Q+(5, q)
through x, then x ∈ Cπ1 if and only if x ∈ Cπ2 .

We hereby note that property (P2′′) is only defined for point sets that also satisfy property
(P1′′) and that property (P3′′) is only defined for point sets that also satisfy properties (P1′′)
and (P2′′). If X satisfies properties (P1′′) and (P2′′), then x∗ ∈ Lπ for every plane π of
Q+(5, q) through x∗.

If X is a set of points of Q+(5, q) satisfying (P1′′), (P2′′) and (P3′′), then AX denotes the
union of all lines Lπ for planes π of Q+(5, q) through x∗ and BX denotes the set of all points
x of Q+(5, q) noncollinear with x∗ on Q+(5, q) such that x ∈ Cπ for any plane π of Q+(5, q)
through x. Note that AX ∩BX = ∅ and that X is disjoint from AX ∪BX .
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A set X of points of Q+(5, q) is called a quadratic set if it intersects each plane of Q+(5, q)
in a possible reducible conic of that plane. A quadratic set is said to be of type (LC) if each
plane of Q+(5, q) intersects it in either a line or an irreducible conic. A quadratic set X is
said to be of type (LC∗) if the planes of Q+(5, q) that intersect it in a line are precisely the
planes of Q+(5, q) through a given point of X.

Suppose X is a quadratic set of type (LC∗) of Q+(5, q), q odd, and let x∗ denote the
unique point of X such that the planes of Q+(5, q) intersecting X in a line are precisely the
planes of Q+(5, q) through x∗. For every plane π of Q+(5, q) not containing x∗, we denote
the irreducible conic π ∩X also by Cπ. We call X a nice quadratic set of type (LC∗) if the
following property is satisfied:

If x is a point of Q+(5, q) noncollinear with x∗ and π1, π2 are two planes of
Q+(5, q) through x, then x is an exterior point with respect to the irreducible
conic Cπ1 if and only if it is an exterior point with respect to Cπ2 .

If this is the case, then CX denotes the set of points of Q+(5, q) not contained in X that are
collinear on Q+(5, q) with x∗ and DX denotes the set of all points x of Q+(5, q) noncollinear
with x∗ on Q+(5, q) such that x is an exterior point with respect to Cπ for any plane π
of Q+(5, q) containing the point x. Note that CX ∩ DX = ∅ and that X is disjoint from
CX ∪DX .

Lemma 5.2. Let p be a point and π a plane of PG(3, q), q odd. Let Cp and Cπ be irreducible
conics in respectively PG(3, q)p and π. If θ is a duality of PG(3, q) mapping p to π and Cp to
the dual conic in π consisting of all tangent lines to Cπ (recall Lemma 2.1), then the set of
exterior points of PG(3, q)p with respect to Cp is mapped by θ to the set of secant lines with
respect to Cπ.

Proof. Since there are as many exterior points with respect to Cp as there are secant lines
with respect to Cπ, namely 1

2
q(q + 1), it suffices to prove that θ maps every exterior point

L with respect to Cp to a secant line with respect to Cπ. Note that L is a line through p.
Let α denote a line in PG(3, q)p that contains L and is tangent to Cp. Then α is a plane
through L containing exactly one line that belongs Cp. We denote this line by K. In the
line pencil Lp,α, there is thus one line belonging to Cp, namely K. That implies that the line
pencil (Lp,α)θ = Lαθ,pθ = Lαθ,π only contains one tangent line to Cπ, implying that αθ ∈ Cπ
and Lαθ,pθ \ {Kθ} contains q secant lines with respect to Cπ. In particular, Lθ is a secant
line with respect to Cπ.

The following is an immediate consequence of Lemma 5.2.

Corollary 5.3. Let θ be a duality of PG(3, q) mapping a point p to a plane π. Then a set
S of lines of PG(3, q) satisfies property (P1′) with respect to p if and only if Sθ satisfies
property (P2′) with respect to π. In fact, if property (P1a′) (respectively, (P1b′)) holds for
the point p, then property (P2a′) (respectively, (P2b′)) holds for the plane π.

Proposition 5.4. Let S be a set of lines of PG(3, q), q odd, and X a set of points of
Q+(5, q) such that X = κ(S). Then S satisfies properties (P1′), (P2′) and (P3′) if and only
if X satisfies properties (P1′′) and (P2′′).
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Proof. We show the following:

(A) Property (P1′) holds for a point p of PG(3, q) if and only if property (P1′′) holds for
the Latin plane κ(Lp).

(B) Property (P2′) holds for a plane π of PG(3, q) if and only if property (P1′′) holds for
the Greek plane κ(Lπ).

(C) Property (P2′′) is equivalent with (P3′). The line L∗ of PG(3, q) and the point x∗ of
Q+(5, q) occurring in these properties are related to each other via the Klein corre-
spondence, i.e. x∗ = κ(L∗).

We start by proving (A). Let p be a point of PG(3, q) and π a Latin plane of Q+(5, q) such
that π = κ(Lp). If α is a plane of PG(3, q) through p, then κ maps Lp\Lp,α to κ(Lp)\κ(Lp,α),
i.e. to the complement of the line κ(Lp,α) in π = κ(Lp). So, it suffices to prove that κ maps
the sets of lines of PG(3, q) through p that arise as sets of exterior points with respect to
irreducible conics of PG(3, q)p to sets of points of π that arise as sets of exterior points with
respect to irreducible conics of π.

Let (v̄1, v̄2, v̄3, v̄4) be an ordered basis of V such that p = 〈v̄1〉. Then π = 〈v̄1 ∧ v̄2, v̄1 ∧
v̄3, v̄1 ∧ v̄4〉. There is now a natural bijective correspondence between quadratic forms Q on

〈v̄2, v̄3, v̄4〉 and quadratic forms Q̃ on 〈v̄1 ∧ v̄2, v̄1 ∧ v̄3, v̄1 ∧ v̄4〉 given by

Q̃(λ2 · v̄1 ∧ v̄2 + λ3 · v̄1 ∧ v̄3 + λ4 · v̄1 ∧ v̄4) := Q(λ2v̄2 + λ3v̄3 + λ4v̄4)

for λ2, λ3, λ4 ∈ Fq. Suppose now that Q and Q̃ give rise to irreducible conics which we will
respectively denote by CQ and CQ̃. If we denote by S and N the set of nonzero squares and

nonsquares in Fq, then we denote by T the unique set in {S,N} such that there are 1
2
q(q+1)

points 〈v̄〉 in 〈v̄2, v̄3, v̄4〉 for which Q(v̄) ∈ T . These are then precisely the exterior points of

〈v̄2, v̄3, v̄4〉 with respect to CQ. As Q̃(v̄1 ∧ v̄) = Q(v̄) for all v̄ ∈ 〈v̄2, v̄3, v̄4〉, we then also see

that the set of all points 〈v̄1 ∧ v̄〉 of π for which Q̃(v̄1 ∧ v̄) ∈ T is the set of exterior points
with respect to CQ̃. Now, if we denote by Cp the irreducible conic of PG(3, q)p obtained by
connecting p with all points of CQ, then the map 〈v̄1, v̄〉 7→ 〈v̄1 ∧ v̄〉 = κ(〈v̄1, v̄〉) maps the set
of points of PG(3, q)p that are exterior with respect to Cp to the set of points of π that are
exterior with respect to CQ̃.

We now prove (B). Let θ be an arbitrary duality of PG(3, q). Then there exists a unique

automorphism θ̃ of Q+(5, q) interchanging the Latin and Greek planes such that κ(Lθ) =

κ(L)θ̃ for lines L of PG(3, q).
By Corollary 5.3, S satisfies property (P2′) with respect to π if and only if Sθ satisfies

property (P1′) with respect to the point p := πθ. By (A), we know that this precisely

happens if property (P1′′) holds for the Latin plane κ(Lp) = κ(Lπθ) = κ(Lθπ) = κ(Lπ)θ̃ with

respect to the set κ(Sθ) = κ(S)θ̃, i.e. if and only if property (P1′′) holds for the Greek plane
κ(Lπ) with respect to the set X = κ(S).

Property (P1′′) which we defined above holds for a plane π if precisely one of the following
two properties holds:
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(P1a′′) the intersection π ∩X is the complement (in π) of a line Lπ ⊆ π;

(P1b′′) the intersection π∩X consists of the points in π that are exterior with respect to
a given irreducible conic Cπ of π.

From the discussion above, we know that property (P1a′) holds for a point p of PG(3, q)
if and only if (P1a′′) holds for the Latin plane κ(Lp) and that property (P2a′) holds for a
plane π if and only if property (P1a′′) holds for the Greek plane κ(Lπ). Claim (C) follows
from this and the fact that for every point-line-plane triple (p, L∗, π) of PG(3, q), we have
p ∈ L∗ ⇔ κ(L∗) ∈ κ(Lp) and L∗ ⊆ π ⇔ κ(L∗) ∈ κ(Lπ).

By Propositions 1.1, 5.1 and 5.4, we thus know that every set X of points of Q+(5, q), q
odd, satisfying (P1′′) and (P2′′) has size 1

2
(q4 + q3 + 2q2). This can also be found directly by

double counting the pairs (x, π) with π a plane of Q+(5, q) and x ∈ X ∩ π.

In the following proposition, we show the equivalence between nice quadratic sets of type
(LC∗) of Q+(5, q), q odd, and sets of points of Q+(5, q) satisfying properties (P1′′), (P2′′)
and (P3′′).

Proposition 5.5. Suppose X is a set of points of Q+(5, q), q odd, satisfying properties (P1′′),
(P2′′), (P3′′) and Y is a nice quadratic set of type (LC∗) of Q+(5, q). Then the following
hold:

• AX ∪BX is a nice quadratic set of type (LC∗).

• CY ∪DY satisfies properties (P1′′), (P2′′) and (P3′′).

• We have Y = AX ∪BX if and only if X = CY ∪DY .

Proof. Suppose the point set of Q+(5, q) can be partitioned in three sets X1, X2 and X3

such that the following three properties are satisfied with respect to a certain point x∗ of
Q+(5, q):

• Every plane π of Q+(5, q) through x∗ is contained in X1 ∪X2. Moreover, π ∩X1 is a
line of π through x∗.

• If π is a plane of Q+(5, q) not containing x∗, then π ∩ X1 is an irreducible conic of
π whose set of exterior points coincides with π ∩ X2 and whose set of interior points
coincides with π ∩X3.

If these properties hold, then we call (X1, X2, X3) a nice triple with respect to x∗. If this is
the case, then x∗ ∈ X1. The following properties obviously hold:

(A) If (X1, X2, X3) is a nice triple with respect to x∗, then X2 satisfies properties (P1′′),
(P2′′) and (P3′′) (with respect to the same point x∗). If this is the case, then AX2 ∪
BX2 = X1 and X3 = Q+(5, q) \ (X1 ∪X2).
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(B) If X2 is a set of points of Q+(5, q) satisfying properties (P1′′), (P2′′) and (P3′′) (with
respect to the same point x∗), then the triple (X1, X2, X3) with X1 := AX2 ∪BX2 and
X3 := Q+(5, q) \ (X1 ∪X2) is a nice triple with respect to x∗.

(C) If (X1, X2, X3) is a nice triple with respect to x∗, then X1 is a nice quadratic set of type
(LC∗) (with respect to the same point x∗). If this is the case, then CX1 ∪ DX1 = X2

and X3 = Q+(5, q) \ (X1 ∪X2).

(D) IfX1 is a nice quadratic set of type (LC∗) with respect to x∗, then the triple (X1, X2, X3)
with X2 := CX1 ∪DX1 and X3 := Q+(5, q) \ (X1 ∪X2) is a nice triple with respect to
x∗.

The claims then follow from the above properties (A), (B), (C) and (D).

6 Examples of quadratic sets of type (LC∗)

With respect to a reference system in PG(5, q), the quadric Q+(5, q) has equation X1X2 +
X3X4 +X5X6 = 0. For all x, y, z ∈ Fq, we define the following sets of points of Q+(5, q):

L(1, x, y, z) := {(α,−zβ + yγ, β, zα− xγ, γ,−yα + xβ) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

L(0, 1, x, y) := {(−α,−yβ + xγ,−xα,−γ,−yα, β) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

L(0, 0, 1, x) := {(0, γ,−α, xβ,−xα,−β) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

L(0, 0, 0, 1) := {(0,−γ, 0, β,−α, 0) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

G(1, x, y, z) := {(yα + zβ, γ,−xα + zγ,−β,−xβ − yγ, α) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

G(0, 1, x, y) := {(−xα− yβ, γ, α, xγ, β, yγ) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

G(0, 0, 1, x) := {(α, 0,−xβ,−γ, β,−xγ) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}},

G(0, 0, 0, 1) := {(α, 0, β, 0, 0, γ) | (α, β, γ) ∈ F3
q \ {(0, 0, 0)}}.

Also, put

L∗ := {L(1, x, y, z), L(0, 1, x, y), L(0, 0, 1, x), L(0, 0, 0, 1) |x, y, z ∈ Fq},
G∗ := {G(1, x, y, z), G(0, 1, x, y), G(0, 0, 1, x), G(0, 0, 0, 1) |x, y, z ∈ Fq}.

The following was proved in Section 2 of [4].

Proposition 6.1. The planes of Q+(5, q) are precisely the elements of L∗ ∪G∗. In fact, the
reference system in PG(5, q) can be chosen in such a way that L∗ is the set of Latin planes
and G∗ is the set of Greek planes.

The verification of the following lemma is straightforward.

Lemma 6.2. Let x, y, z ∈ Fq and let p be the point (1, 0, 0, 0, 0, 0) of Q+(5, q). Then the
following hold:
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• The point p belongs to L(1, x, y, z) if and only if (y, z) = (0, 0).

• The point p belongs to L(0, 1, x, y) if and only if (x, y) = (0, 0).

• The point p never belongs to L(0, 0, 1, x), L(0, 0, 0, 1), G(1, x, y, z) and G(0, 1, x, y).

• The point p always belongs to G(0, 0, 1, x) and G(0, 0, 0, 1).

If q is even, say q = 2h with h ∈ N∗, then we define Tr(x) := x + x2 + x4 + · · · + x2
h−1

for
every x ∈ Fq. The following was proved in Section 6.1 of [4].

Proposition 6.3 ([4]). Let Q be a quadric of PG(5, q), q even, with an equation of the form

X2X5 + a26X2X6 + a33X
2
3 + a44X

2
4 + a66X

2
6 = 0,

where a26, a33, a44, a66 ∈ F∗q with Tr(
a33a44a226

a266
) = 1. Then S := Q ∩ Q+(5, q) is a quadratic

set of type (LC). Moreover, the planes of Q+(5, q) intersecting S in a line are precisely the
planes L(1, x, 0, 0), L(0, 1, 0, 0), G(0, 0, 1, x) and G(0, 0, 0, 1) with x ∈ Fq.

The following was proved in Section 6.6 of [4].

Proposition 6.4 ([4]). Let Q be a quadric of PG(5, q), q odd, defined by an equation of the
form

X2X5 + d1X2X6 + a33X
2
3 + 2a33d2X3X4 + a33d

2
2X

2
4 = 0,

where a33, d1, d2 ∈ F∗q with −d1d2 a non-square in Fq. Then S := Q∩Q+(5, q) is a quadratic
set of type (LC). Moreover, the planes of Q+(5, q) intersecting S in a line are precisely the
planes L(1, x, 0, 0), L(0, 1, 0, 0), G(0, 0, 1, x) and G(0, 0, 0, 1) with x ∈ Fq.

The following is a consequence of Lemma 6.2 and Propositions 6.1, 6.3, 6.4.

Corollary 6.5. The quadratic sets described in Propositions 6.3 and 6.4 are quadratic sets
of type (LC∗) with respect to the point (1, 0, 0, 0, 0, 0).

7 The set H(q) is non-empty

By Propositions 5.1, 5.4 and 5.5, we know that nice quadratic sets of type (LC∗) in Q+(5, q), q
odd, give rise to line sets in H(q). The following theorem provides a method for constructing
nice quadratic sets of type (LC∗).

Theorem 7.1. Let q be odd. Then every quadratic set X of type (LC∗) that arises by
intersecting Q+(5, q) with a quadric Q of the ambient space of PG(5, q) is nice.

Proof. Let V be a 6-dimensional vector space over Fq for which PG(5, q) = PG(V ). Suppose
X = Q+(5, q)∩Q where Q is a quadric of PG(5, q) defined by a quadratic form Q : V → Fq,
i.e.

Q = {〈v̄〉 | v̄ ∈ V \ {0̄} and Q(v̄) = 0}.
Let x∗ be the unique point of Q+(5, q) ∩Q for which the following hold:
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(I) every plane π of Q+(5, q) through x∗ intersects Q in a line Lπ through x∗;

(II) every plane π of Q+(5, q) not containing x∗ intersects Q in an irreducible conic Cπ of
π.

The set PG(5, q) \Q can be partitioned in two subsets S and N such that for a point 〈v̄〉 of
PG(5, q), we have 〈v̄〉 ∈ S if and only if Q(v̄) is a nonzero square and 〈v̄〉 ∈ N if and only if
Q(v̄) is a nonsquare. The following fact holds, see e.g. [5, Section 2].

If L is a line containing a unique point of Q, then L \ Q is contained in either S
or N .

Let U denote the set of points of Q+(5, q) collinear on Q+(5, q) with x∗ but not contained
in Q. We can prove the following.

Property 1. The set U is contained in either S or N .
proof. Let G be the point-line geometry whose points and lines are the lines and planes of
Q+(5, q) through x∗, with incidence being containment. Then G is a (q + 1) × (q + 1)-grid
and the set of lines though x∗ contained in Q is an ovoid O of G, i.e. a set of points of G
intersecting each line of G in a singleton.

By the above fact, we know that if x ∈ U , then xx∗ \ {x∗} is contained in either S or N .
So, it suffices to show that if L1 and L2 are two distinct lines through x∗ not contained in
Q, then (L1 ∪ L2) \ {x∗} is contained in either S or N . Since the complement of O inside G
is connected, it suffices to prove this in the case that L1 and L2 are contained in a plane π
of Q+(5, q). As π intersects Q in a line through x∗, every line joining a point x1 ∈ L1 \ {x∗}
with a point x2 ∈ L2 \ {x∗} is a tangent line to Q, implying that {x1, x2} is contained in
either S or N . Hence, also (L1 ∪ L2) \ {x∗} is contained in either S or N . (qed)

Let E ∈ {S,N} such that U ⊆ E and let I denote the other set in {S,N}. The following
property implies that the quadratic set X = Q+(5, q) ∩Q is nice.

Property 2. Let π be a plane of Q+(5, q) not containing x∗. Then π ∩ E consists of all
points in π that are exterior with respect to Cπ and π ∩ I consists of all points in π that are
interior with respect Cπ.
Proof. Let π′ be the unique plane of Q+(5, q) through x∗ meeting π in a line L. Then
π′∩Q is a line of π′ through x∗ that meets L in a point xL. The line L is therefore a tangent
line to the conic Cπ with tangency point xL. All points of L \ {xL} belong to U ⊆ E and are
exterior with respect to Cπ. The claim then follows from the fact that among the sets S ∩ π,
N ∩ π, one corresponds to the set of points of π that are exterior with respect to Cπ and the
other corresponds to the set of points of π that are interior with respect to Cπ, see e.g. [5,
Section 2].

In Proposition 6.4, we constructed for every odd prime power q a family of quadrics of
PG(5, q) which intersect Q+(5, q) in quadratic sets of type (LC∗), see Corollary 6.5. If Q is
such a quadric, then κ−1(CY ∪DY ) with Y := Q+(5, q)∩Q belongs to H(q) by Theorem 7.1
and Propositions 5.1, 5.4, 5.5.
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8 The case of nice prime powers

Let V be a 2-dimensional vector space over the finite field Fq, where q is an odd prime power.
We denote by � the set of nonzero squares in Fq and by � the set of nonsquares in Fq. For
every basis (v̄1, v̄2) of V , we define

P(v̄1, v̄2) := {〈v̄1 + λv̄2〉 |λ ∈ �}.

Then P(v̄1, v̄2) is a set of 1
2
(q − 1) points of the projective line PG(1, q) = PG(V ). We

obviously have that P(v̄1, v̄2) = P(v̄2, v̄1) for every basis (v̄1, v̄2) of V . We also see that if
(v̄1, v̄2) and (v̄′1, v̄

′
2) are two bases of V such that {〈v̄1〉, 〈v̄2〉} = {〈v̄′1〉, 〈v̄′2〉}, then P(v̄1, v̄2)

and P(v̄′1, v̄
′
2) are either equal or disjoint. We say that q is a nice prime power if the following

property holds:

For any two bases (v̄1, v̄2) and (v̄′1, v̄
′
2) of V such that {〈v̄1〉, 〈v̄2〉} 6= {〈v̄′1〉, 〈v̄′2〉},

the sets P(v̄1, v̄2) and P(v̄′1, v̄
′
2) are distinct and not disjoint.

We will now classify all nice odd prime powers. In order to achieve this goal, we first need to
mention another result from the literature. The following proposition is implied by Theorem
2.2 of [3].

Proposition 8.1 ([3]). Let q be a prime power and e a positive divisor of q − 1 distinct
from 1. Then the subgroup of the multiplicative group of Fq consisting of all nonzero eth
powers has e cosets in F∗q which we will denote by C1, C2, . . . , Ce. Let m ∈ N∗. If q >
1
4
(U +

√
U2 + 4em−1m)2 where U =

∑m
h=1

(
m
h

)
(e− 1)h(h− 1), then for all mutually distinct

a1, a2, . . . , am ∈ Fq and for all i1, i2, . . . , im ∈ {1, 2, . . . , e}, there exists a y ∈ Fq such that
y − aj ∈ Cij for every j ∈ {1, 2, . . . ,m}.

Lemma 8.2. If q ≥ 47, then q is a nice prime power.

Proof. Let (v̄1, v̄2) and (v̄′1, v̄
′
2) be two ordered bases of V such that {〈v̄1〉, 〈v̄2〉} 6= {〈v̄′1〉, 〈v̄′2〉}.

Then there exist a, b, c, d ∈ Fq with ad − bc 6= 0 and (a, d) 6= (0, 0) 6= (b, c) such that
v̄′1 = av̄1 + bv̄2 and v̄′2 = cv̄1 + dv̄2. Then

P(v̄1, v̄2) := {〈v̄1 + λv̄2〉 |λ ∈ �},

P(v̄′1, v̄
′
2) := {〈(a+ λc)v̄1 + (b+ λd)v̄2〉 |λ ∈ �}.

Note that (a, b) 6= (0, 0). As P(v̄1, v̄2) = P(v̄2, v̄1), we may without loss of generality suppose
that b 6= 0.

Suppose first that c = 0. Then a, b and d are distinct from 0. As q ≥ 7, there exists by
Proposition 8.1 (with e = m = 2) λ1, λ2 ∈ � such that λ1 + b

d
∈ � and λ2 + b

d
∈ �. It then

follows that P(v̄1, v̄2) 6= P(v̄′1, v̄
′
2) and P(v̄1, v̄2) ∩ P(v̄′1, v̄

′
2) 6= ∅.

The case d = 0 is completely similar. Then a, b and c are distinct from 0. As q ≥ 7, there
exists by Proposition 8.1 (with e = m = 2) λ1, λ2 ∈ � such that λ1 + a

c
∈ � and λ2 + a

c
∈ �.

So, we then also have that P(v̄1, v̄2) 6= P(v̄′1, v̄
′
2) and P(v̄1, v̄2) ∩ P(v̄′1, v̄

′
2) 6= ∅.
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Suppose next that cd 6= 0. As 0 6= b
d
6= a

c
and q ≥ 47, we know by Proposition 8.1 (with

e = 2, m = 3 if a 6= 0 and m = 2 if a = 0) that there exist λ1, λ2 ∈ � such that λ1 + a
c
∈ �,

λ2 + a
c
∈ �, λ1 + b

d
∈ � and λ2 + b

d
∈ �. It then follows that P(v̄1, v̄2) 6= P(v̄′1, v̄

′
2) and

P(v̄1, v̄2) ∩ P(v̄′1, v̄
′
2) 6= ∅.

Proposition 8.3. An odd prime power is nice if and only if it is distinct from 3, 5 and 9.

Proof. By Lemma 8.2, we know that each odd prime power q ≥ 47 is nice. We have verified
by computer that every odd prime power q < 47 distinct from 3, 5 and 9 is nice. We now
show that the prime powers 3, 5 and 9 are not nice. Let (ē1, ē2) be an ordered basis of V .

If q = 3, v̄1 = ē1, v̄2 = ē2 and w̄ = ē1 − ē2, then P(v̄1, w̄) = {〈ē1 + ē2〉} is equal to
P(v̄1, v̄2) = {〈ē1 + ē2〉} and P(v̄2, w̄) = {〈ē1〉} is disjoint from P(v̄1, v̄2).

If q = 5, v̄1 = ē1, v̄2 = ē2, v̄
′
1 = ē1 + 2ē2 and v̄′2 = ē1 + 3ē2, then one computes that

P(v̄′1, v̄
′
2) = {〈ē1〉, 〈ē2〉} is disjoint from P(v̄1, v̄2) = {〈ē1 + ē2〉, 〈ē1 + 4ē2〉}.

If q = 9, we put F9 = F3(α) where α is a root of the irreducible polynomial X2−X−1 ∈
F3[X]. If we put v̄1 = ē1, v̄2 = ē2, v̄

′
1 = ē1 +αē2 and v̄′2 = ē1 +α5ē2, then one computes that

P(v̄′1, v̄
′
2) = {〈ē1〉, 〈ē2〉, 〈ē1 + α3ē2〉, 〈ē1 + α7ē2〉} is disjoint from P(v̄1, v̄2) = {〈ē1 + ē2〉, 〈ē1 +

α2ē2〉, 〈ē1 + α4ē2〉, 〈ē1 + α6ē2〉}.

Lemma 8.4. Let C be an irreducible conic in PG(2, q), q odd, described by a quadratic form
Q of the vector space V (3, q) that defines PG(2, q). Let L be a line of PG(2, q) that is secant
with respect to C. Put L ∩ C = {p1, p2}. Then there exist vectors v̄1, v̄2 ∈ V (3, q) such
that p1 = 〈v̄1〉, p2 = 〈v̄2〉 and the set of points of L that are exterior with respect to C is
{〈v̄1 + λv̄2〉 |λ ∈ �}.

Proof. The quadratic form Q is uniquely determined up to a nonzero factor. So, without
loss of generality, we may suppose that Q is such that the set of points of PG(2, q) that
are exterior with respect to C coincides with {〈v̄〉 | v̄ ∈ V (3, q) and Q(v̄) ∈ �}. For all
ū1, ū2 ∈ V (3, q), we define B(ū1, ū2) = Q(ū1 + ū2) − Q(ū1) − Q(ū2), i.e. B is the bilinear
form on V (3, q) associated withQ. Now, choose v̄1, v̄2 ∈ V (3, q) such that p1 = 〈v̄1〉, p2 = 〈v̄2〉
and B(v̄1, v̄2) ∈ �. Then a point 〈v̄1 + λv̄2〉, λ ∈ F∗q, of L \ {p1, p2} is exterior with respect
to C if and only if

Q(v̄1 + λv̄2) = Q(v̄1) + λ2Q(v̄2) + λ ·B(v̄1, v̄2) = λ ·B(v̄1, v̄2)

is a square, i.e. if and only if λ is a square.

Proposition 8.5. If q is a nice prime power, then every set X of points of Q+(5, q) satisfying
properties (P1′′) and (P2′′) also satisfies property (P3′′).

Proof. Suppose X satisfies properties (P1′′) and (P2′′) with respect to the point x∗. Every
plane π of Q+(5, q) not containing x∗ then intersects X in the set of exterior points with
respect to a unique irreducible conic Cπ. In order to prove that X also satisfies property
(P3′′), we need to prove that for every point x ∈ Q+(5, q) noncollinear with x∗ on Q+(5, q)
and any two planes π1, π2 of Q+(5, q) through x, we have x ∈ Cπ1 if and only if x ∈ Cπ2 .
Note that if π1 ∩ π2 = {x}, then there is a plane π3 of Q+(5, q) through x meeting π1 and π2
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in lines. So, it suffices to prove the claim in the case that π1 ∩ π2 is a line L. There are now
three possibilities according to whether L is a tangent, external or secant line with respect
to Cπ1 :

(1) |L ∩X| = q;

(2) |L ∩X| = 1
2
(q + 1);

(3) |L ∩X| = 1
2
(q − 1).

Suppose case (1) occurs. Then L has precisely q points which are exterior with respect to
Cπ1 (namely the points in L ∩X) and precisely q points which are exterior with respect to
Cπ2 (namely the points in L∩X). The line L is therefore a tangent line to both Cπ1 and Cπ2 .
In both cases, the tangency points coincide with the unique point in L \X. The claim thus
obviously holds in this case.

Suppose case (2) occurs. Then L has precisely 1
2
(q + 1) points which are exterior with

respect to Cπ1 (namely the points in L∩X) and precisely 1
2
(q+ 1) points which are exterior

with respect to Cπ2 (namely the points in L ∩ X). The line L is therefore an external line
to both Cπ1 and Cπ2 . The 1

2
(q + 1) points in L \X are interior with respect to both Cπ1 and

Cπ2 . The claim again holds.
Finally, suppose that case (3) occurs. Then L has precisely 1

2
(q − 1) points which are

exterior with respect to Cπ1 (namely the points in L∩X) and precisely 1
2
(q−1) points which

are exterior with respect to Cπ2 (namely the points in L ∩ X). The line L is therefore a
secant line to both Cπ1 and Cπ2 . By Lemma 8.4, there exist points 〈v̄1〉, 〈w̄1〉, 〈v̄2〉, 〈w̄2〉 on
L such that Cπ1 ∩ L = {〈v̄1〉, 〈w̄1〉}, Cπ2 ∩ L = {〈v̄2〉, 〈w̄2〉} and

L ∩X = {〈v̄1 + λw̄1〉 |λ ∈ �} = {〈v̄2 + λw̄2〉 |λ ∈ �}.

Since q is a nice prime power, we necessarily have {〈v̄1〉, 〈w̄1〉} = {〈v̄2〉, 〈w̄2〉}, i.e. Cπ1 ∩ L =
Cπ2 ∩ L. The claim thus also holds in this case.

The following is a consequence of Propositions 5.1, 5.4, 5.5, 8.3 and 8.5.

Corollary 8.6. Suppose q is an odd prime power distinct from 3, 5 and 9. Then the line
sets belonging to H(q) are precisely the sets of the form κ−1(CY ∪ DY ) where Y is a nice
quadratic set of type (LC∗) of Q+(5, q).

The computer results described in the following section will show that the conclusion of
Corollary 8.6 remains valid for q = 3 (see Corollary 9.7).

9 Some computer classification results

Recall that an ovoid of a point-line geometry is a set of points having a unique point in
common with each line of the geometry. Let x∗ be a point of Q+(5, q) and let L be a set
of lines of Q+(5, q) through x∗ which is an ovoid of the local geometry Gx∗ at the point x∗.
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This local geometry Gx∗ is the point-line geometry whose points and lines are the lines and
planes of Q+(5, q) through x∗, with containment as incidence relation. Note that Gx∗ is a
(q + 1) × (q + 1)-grid and so has (q + 1)! ovoids. If there is some hyperplane Π through x∗

such that L consists of all lines through x∗ contained in the intersection Π ∩Q+(5, q), then
L is called a classical ovoid of Gx∗ .

Put A :=
⋃
L∈L L. Let L1 denote the set of lines of Q+(5, q) not contained in (x∗)⊥ that

contain a (necessarily) unique point of A. Let L2 denote the set of lines of Q+(5, q) not
contained in (x∗)⊥ that are disjoint from A. For every i ∈ {1, 2}, let Si be the point-line
geometry with point set Q+(5, q) \ (x∗)⊥, line set Li and containment as incidence relation.

Lemma 9.1. Suppose q is odd or q ∈ {2, 4}. Then the quadratic sets of type (LC∗) contain-
ing A are precisely the sets of the form A ∪ O, where O is an ovoid of S1 that meets every
line of S2 in at most two points.

Proof. The following obviously holds:

The quadratic sets of type (LC∗) containing A are precisely the sets of the form
A ∪ O where O is a set of points of Q+(5, q) \ (x∗)⊥ such that every plane π of
Q+(5, q) not containing x∗ intersects O ∪ A in an irreducible conic.

Note that an irreducible conic is an example of an oval, i.e. a set of q + 1 points no three
of which are collinear. If q ∈ {2, 4} or if q is odd, then also the converse is true. For these
values of q, every oval of PG(2, q) is necessarily an irreducible conic by Segre [11]. We thus
need to impose that π ∩ (O ∪ A) is set of q + 1 points intersecting each line of π in at most
two points. If we denote the line (x∗)⊥ ∩ π by L and the unique point in L ∩A by xL, then
L must also be a tangent line to the conic π ∩ (O ∪ A) with tangency point xL.

The lines of L1 contained in π are precisely the lines of π through xL distinct from L and
these are secant lines to the conic π∩ (O∪A) and so they must meet O in exactly one point.
As every line of L1 is contained in a plane of Q+(5, q) not containing x∗, we thus see that
every line of L1 must meet O in exactly one point, i.e. O is an ovoid of S1. Note that the
condition that every line of L1 meets O in exactly one point implies that |π∩(O∪A)| = q+1.

The lines of L2 contained in π are precisely the lines in π meeting L in a point distinct
from xL. Each of these lines must meet the conic π ∩ (O ∪ A) and hence O in at most two
points. As every line of L2 is contained in a plane of Q+(5, q) not containing x∗, we thus see
that every line of L2 must meet O in at most two points.

The requirement that every plane π of Q+(5, q) not containing x∗ intersects O ∪ A in
an irreducible conic is thus equivalent with demanding that O is an ovoid of S1 that meets
every line of S2 in at most two points.

Lemma 9.2. Suppose q = 3 and let X be a set of points of Q+(5, 3) satisfying properties
(P1′′) and (P2′′) with respect to x∗ such that A = (x∗)⊥ \X. Then X \ (x∗)⊥ is an ovoid of
S1 that also meets every line of S2 in at most two points.

Proof. Put Y := X \ (x∗)⊥. We need to prove that |L1 ∩ Y | = 1 and |L2 ∩ Y | ≤ 2 for every
L1 ∈ L1 and every L2 ∈ L2. As every line of L1 ∪L2 is contained in a plane of Q+(5, q) (not
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containing x∗), we may suppose that L1 and L2 are contained in a plane π of Q+(5, q) that
has been chosen arbitrarily. As x∗ 6∈ π, π ∩X is the set of exterior points with respect to a
conic Cπ. Put L := (x∗)⊥ ∩ π and let L ∩ A = {xL}. As L \ {xL} ⊆ X is a set of exterior
points with respect to Cπ, L is tangent to Cπ with tangency point xL ∈ Cπ. The points in π
that are exterior with respect to Cπ are the points in Y ∩ π and the points in L \ {xL}.

The lines of L1 contained in π are precisely the lines of π through xL distinct from L
and as these are secant lines with respect to Cπ, they contain exactly one exterior point with
respect to Cπ, i.e. one point of Y .

The lines of L2 contained in π are precisely the lines of π that meet L in a point distinct
from xL. As L \ {xL} consists of exterior points with respect to Cπ, such a line contains
3− 1 = 2, 2− 1 = 1 or 1− 1 = 0 points of Y depending on whether it is a tangent, external
or secant line with respect to Cπ.

Lemma 9.3. Let A be the full automorphism group of Q+(5, q). Then the following proper-
ties hold:

(1) A acts transitively on the points of Q+(5, q) and Ax∗ acts transitively on the ordered
triples (L1, L2, L3) of three lines of Q+(5, q) through x∗ no two of which are in the same
plane of Q+(5, q).

(2) If L1, L2 and L3 are three lines of Q+(5, q) through x∗ no two of which are in the same
plane of Q+(5, q), then there is a unique classical ovoid of Gx∗ containing L1, L2 and
L3.

(3) Ax∗ acts transitively on the classical ovoids of Gx∗.

(4) If q ∈ {2, 3}, then every ovoid of Gx∗ is classical. If q ≥ 4, then Gx∗ has nonclassical
ovoids.

(5) If q ∈ {4, 5}, then Ax∗ acts transitively on the nonclassical ovoids of Gx∗.

(6) Let q = 5, let L be a classical ovoid of Gx∗ and let π be a plane of Q+(5, 5) not containing

the point x∗. Let x be the unique point in π ∩
(⋃

L∈L L
)

, let T be the line (x∗)⊥ ∩ π
(through x) and let Ω be the set of all irreducible conics of π containing x for which T
is a tangent line. Then the stabilizer of x∗, L and π inside A acts transitively on Ω.

Proof. Properties (1) and (2) are well known properties of the Klein quadric Q+(5, q). Prop-
erty (3) is a consequence of properties (1) and (2).

As to property (4), we note that every set of three lines of Q+(5, q) through x∗ with the
property that no two of them are contained in the same plane of Q+(5, q) extends in a unique
way to a classical ovoid of Gx∗ , while it extends in a unique way to an ovoid of Gx∗ only if
q ∈ {2, 3} (recall that Gx∗ is a (q + 1)× (q + 1)-grid).

We prove property (5) for q = 4. Every set of three lines of Q+(5, q) through x∗ with the
property that no two of them are contained in the same plane of Q+(5, q) extends in two
ways to an ovoid of Gx∗ . By (2) we know that precisely one of these two ovoids is nonclassical.
The claim then follows from (1).
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Property (5) for q = 5 and property (6) have been verified by means of computer com-
putations, see [6].

Lemma 9.4. Let S be the stabilizer of A in the full automorphism group of Q+(5, q).

(1) If q ∈ {2, 3}, then L is a classical ovoid of Gx∗ and there is only one S-orbit of ovoids
of S1 that meet each line of S2 in at most two points.

(2) If q ∈ {4, 5} and L is a classical ovoid of Gx∗, then there is only one S-orbit of ovoids
of S1 that meets each line of S2 in at most two points.

(3) If q ∈ {4, 5} and L is a nonclassical ovoid of Gx∗, then there are no ovoids in S1 that
meet each line of S2 in at most two points.

Proof. Suppose q ∈ {2, 3, 4, 5}. Using the Computer Algebra System GAP [13], we have
implemented computer models of the geometries S1 and S2 for the various cases. By (1),
(3), (4) and (5) of Lemma 9.3, we can take for x∗ any point of Q+(5, q) and for L any
classical/nonclassical ovoid of Gx∗ .

In Section 4 of [1], computer code in SageMath [10] can be found for classifying ovoids
of point-line geometries. With the aid of this code, we have classified all ovoids of S1 for
q ∈ {2, 3, 4}. Subsequently, we determined which of these ovoids also intersect each line of
S2 in at most two points, and showed that either there were no remaining ovoids (case (3) of
the lemma) or that the remaining ovoids were all equivalent under the group S (cases (1) and
(2) of the lemma). In fact, we applied the same procedure for q = 5 with one difference in
the case where L is a classical ovoid. In order to make the computations feasible we assumed
that the ovoid in S1 already contained a fixed set K of five points in a plane π of Q+(5, 5)
not containing x∗ such that K ∪ (A ∩ π) is an irreducible conic of π. By Lemma 9.3(6) we
were allowed to make that assumption. All our computations can be found in [6].

In Propositions 6.3, 6.4 and Corollary 6.5, we showed that Q+(5, q) has quadratic sets of
type (LC∗) for each prime power q. By Lemmas 9.1, 9.3 and 9.4, we now know the following.

Theorem 9.5. If q ∈ {2, 3, 4, 5}, then there is up to isomorphism a unique quadratic set of
type (LC∗) in Q+(5, q).

Theorem 9.6. The set H(3) contains up to isomorphism a unique element.

Proof. Let A denote the full automorphism group of Q+(5, 3) and denote by Ã the subgroup
of index 2 of A consisting of all automorphisms in A that map Latin planes to Latin planes
and Greek planes to Greek planes. As before, let κ denote the Klein correspondence between
the lines of PG(3, 3) and the points of Q+(5, 3).

By Propositions 5.1 and 5.4, we know that the elements of H(3) are precisely the line
sets of the form κ−1(X), where X is a set of points of Q+(5, 3) satisfying Properties (P1′′)
and (P2′′). If X1 and X2 are two such sets of points of Q+(5, 3), then the line sets κ−1(X1)

and κ−1(X2) are isomorphic if and only if X1 and X2 are equivalent under the group Ã.
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By Section 7, we know that Q+(5, 3) has a set of points satisfying Properties (P1′′) and
(P2′′). Indeed, if Y is a quadratic set of type (LC) of Q+(5, 3) as obtained in Proposition
6.4, then by Corollary 6.5, Theorem 7.1 and Proposition 5.5 we know that CY ∪DY satisfies
Properties (P1′′) and (P2′′).

By Lemmas 9.2 and 9.4(1), we then know that Q+(5, 3) has up to isomorphism a unique
set of points of Q+(5, 3) satisfying (P1′′) and (P2′′), i.e. there is a unique A-orbit of sets of
points in Q+(5, 3) satisfying Properties (P1′′) and (P2′′). In order to prove that all elements

in H(3) are isomorphic, we need to prove that there is only one Ã-orbit of such sets of points
of Q+(5, 3).

As there exists up to isomorphism a unique set of points in Q+(5, 3) that satisfies (P1′′)
and (P2′′), we know that each such set has the form CY ∪DY for some quadratic set Y of type

(LC∗). In order to prove that there is only one Ã-orbit of sets of points of Q+(5, 3) satisfying

(P1′′) and (P2′′), it thus suffices to prove that there is only one Ã-orbit of quadratic sets of
type (LC∗). As there is only one A-orbit of quadratic sets of type (LC∗) by Theorem 9.5, it
thus suffices to show that there exists a quadratic set Y of type (LC∗) and an automorphism in

A\Ã that stabilizes Y . If Y is the quadratic set of type (LC∗) as obtained in Proposition 6.4
with a33 = d1 = d2 = 1, then the map (X1, X2, X3, X4, X5, X6) 7→ (X1, X2, X4, X3, X5, X6)

belongs to A \ Ã and indeed stabilizes Y .

Corollary 9.7. Every line set contained in H(3) is of the form κ−1(CY ∪DY ), where Y is
a (necessarily nice) quadratic set of type (LC∗) in Q+(5, 3).
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