On hyperovals of $Q^{+}(5, q), q$ even

Bart De Bruyn

June 24, 2023

1 Constructions of hyperovals of $Q^{+}(5, q), q$ even, from quadratic sets of type (SC)

Let X be a quadratic set of type (SC) of $Q^{+}(5, q), q$ even. We then define the following sets of points of $Q^{+}(5, q)$:

- A_{1} is the set of all points $x \in X$ that are contained in a plane of type (S) with respect to X;
- A_{2} is the set of all kernels of all conic intersections $\pi \cap X$, where π is a plane of type (C) with respect to X.

Note that $A_{1} \subseteq X$ and $A_{2} \cap X=\emptyset$. Suppose the following hold:
(1) Every plane of $Q^{+}(5, q)$ through a point of A_{1} has type (S).
(2) Every plane π of $Q^{+}(5, q)$ through a point $x \in A_{2}$ has type (C) and x is the kernel of the irreducible conic $\pi \cap X$ of π.

Note that $A_{1} \subseteq X$ and $A_{2} \cap X=\emptyset$.
Lemma 1.1. No two points of $A_{1} \cup A_{2}$ are collinear in $Q^{+}(5, q)$.
Proof. It suffices to prove that no plane of $Q^{+}(5, q)$ contains two points of $A_{1} \cup A_{2}$. Suppose to the contrary that π is a plane of $Q^{+}(5, q)$ containing two distinct points of $A_{1} \cup A_{2}$.

If π has type (S) with respect to X, then by properties (1) and (2), we know that $x_{1}, x_{2} \in A_{1}$. As $x_{1}, x_{2} \in X \cap \pi$, we then know that $|X \cap \pi| \geq 2$, an obvious contradiction.

If π has type (C) with respect to X, then by properties (1) and (2), we know that $x_{1}, x_{2} \in A_{2}$. Property (2) also implies that both x_{1} and x_{2} must then be equal to the kernel of the irreducible conic $\pi \cap X$ of π, again a contradiction.

Lemma 1.2. $A_{1} \cup A_{2}$ is an ovoid of $Q^{+}(5, q)$.
Proof. Let π be an an arbitrary plane of $Q^{+}(5, q)$. By Lemma 1.1, we need to prove that $\left(A_{1} \cup A_{2}\right) \cap \pi \neq \emptyset$. If π has type (S) with respect to X, then $\pi \cap X$ is a singleton contained in A_{1}. If $\pi \cap X$ is an irreducible conic of π, then the kernel of this conic belongs to A_{2}. In any case, we have $\left(A_{1} \cup A_{2}\right) \cap \pi \neq \emptyset$.

Lemma 1.3. $\left(X \backslash A_{1}\right) \cup A_{2}$ is a hyperoval of $Q^{+}(5, q)$.
Proof. As there are planes of type (C), we have $A_{2} \neq \emptyset$ and hence also $\left(X \backslash A_{1}\right) \cup A_{2} \neq \emptyset$.
Let π be an arbitrary plane of $Q^{+}(5, q)$. If π is a plane of type (S) containing a unique point of A_{1}, then $(\pi \cap X) \backslash A_{1}=\pi \cap A_{2}=\emptyset$ by Lemma 1.1, and so π is disjoint from $\left(X \backslash A_{1}\right) \cup A_{2}$. If π is a plane of type (C), then $X \cap \pi$ is an irreducible conic of π and Lemma 1.1 implies that $\pi \cap A_{1}=\emptyset$ and $\pi \cap A_{2}$ is a singleton consisting of the kernel k of the irreducible conic $X \cap \pi$ of π. We then have that $\left(X \backslash A_{1}\right) \cup A_{2}$ intersects π in the hyperoval $(X \cap \pi) \cup\{k\}$ of π.

Lemma 1.4. We have $\left|A_{2}\right|=q^{2}+1-\left|A_{1}\right|,|X|=\left(q^{2}+1\right)(q+1)-q\left|A_{1}\right|$ and $\left|\left(X \backslash A_{1}\right) \cup A_{2}\right|=$ $\left(q^{2}+1-\left|A_{1}\right|\right)(q+2)$.

Proof. Note that through each point of $Q^{+}(5, q)$ there are exactly $2(q+1)$ planes of $Q^{+}(5, q)$. Property (1) thus implies that the total number of planes of type (S) is equal to $2(q+1)\left|A_{1}\right|$. Hence, the total number of planes of type (C) is equal to $2(q+1)\left(q^{2}+\right.$ 1) $-2(q+1)\left|A_{1}\right|=2(q+1)\left(q^{2}+1-\left|A_{1}\right|\right)$. By property (2), we then know that

$$
\left|A_{2}\right|=\frac{1}{2(q+1)} \cdot 2(q+1)\left(q^{2}+1-\left|A_{1}\right|\right)=q^{2}+1-\left|A_{1}\right| .
$$

We then also find that

$$
|X|=\frac{1}{2(q+1)}\left(2(q+1)\left|A_{1}\right| \cdot 1+2(q+1)\left(q^{2}+1-\left|A_{1}\right|\right) \cdot(q+1)\right)=\left(q^{2}+1\right)(q+1)-q\left|A_{1}\right|
$$

and

$$
\left|\left(X \backslash A_{1}\right) \cup A_{2}\right|=|X|-\left|A_{1}\right|+\left|A_{2}\right|=\left(q^{2}+1-\left|A_{1}\right|\right)(q+2) .
$$

2 A family of hyperovals of size $q^{2}(q+2)$ of $Q^{+}(5, q), q$ even

Let V be a 6 -dimensional vector space over the finite field $\mathbb{F}_{q}=\operatorname{GF}(q), q$ even, and Q a quadratic form on V such that the set of all points $\langle\bar{v}\rangle$ of $\operatorname{PG}(V)$ for which $Q(\bar{v})=0$ is a hyperbolic quadric $Q^{+}(5, q)$ in $\mathrm{PG}(5, q):=\mathrm{PG}(V)$. Let $B: V \times V \rightarrow \mathbb{F}_{q}$ denote the bilinear form associated with Q, i.e. $B\left(\bar{v}_{1}, \bar{v}_{2}\right)=Q\left(\bar{v}_{1}+\bar{v}_{2}\right)-Q\left(\bar{v}_{1}\right)-Q\left(\bar{v}_{2}\right)$ for all $\bar{v}_{1}, \bar{v}_{2} \in V$. With B, there is associated a symplectic polarity ζ of $\operatorname{PG}(5, q)$. For every point $x \in Q^{+}(5, q), x^{\zeta}$ is the tangent hyperplane T_{x} in the point $x \in Q^{+}(5, q)$. This tangent hyperplane T_{x} intersects $Q^{+}(5, q)$ in a cone of type $x Q^{+}(3, q)$. For every line $L \subseteq Q^{+}(5, q), L^{\zeta}$ intersects $Q^{+}(5, q)$ in the union of two planes through L. So, there cannot be 3-dimensional subspaces of $\operatorname{PG}(5, q)$ that meet $Q^{+}(5, q)$ in a single line K as this 3-dimensional subspace would otherwise need to coincide with K^{ζ}, but as said above $K^{\zeta} \cap Q^{+}(5, q)$ is the union of two planes.

Now, let $Q^{-}(3, q)$ be an elliptic quadric obtained by intersecting $Q^{+}(5, q)$ with a 3dimensional subspace α. Then α^{ζ} is a line. This line is disjoint from $Q^{+}(5, q)$ as for every point $y \in \alpha^{\zeta} \cap Q^{+}(5, q)$, we would have $Q^{-}(3, q) \subseteq \alpha \subseteq y^{\zeta}=T_{y}$, which is impossible as said above.

Let $p^{*}=\left\langle\bar{v}^{*}\right\rangle$ be an arbitrary point of $Q^{-}(3, q)$ and for every point $\langle\bar{v}\rangle$ of $\mathrm{PG}(V) \backslash T_{p^{*}}$, we define

$$
A(p):=B\left(\bar{v}^{*}, \bar{v}\right)^{q-3} Q(\bar{v}) \in \mathbb{F}_{q} .
$$

Note that this is well-defined as

$$
B\left(\bar{v}^{*}, \lambda \bar{v}\right)^{q-3} Q(\lambda \bar{v})=\lambda^{q-1} B\left(\bar{v}^{*}, \bar{v}\right) Q(\bar{v})=B\left(\bar{v}^{*}, \bar{v}\right) Q(\bar{v})
$$

for all $(\lambda, \bar{v}) \in \mathbb{F}_{q}^{*} \times V$.
Now, consider a point $p \in Q^{+}(5, q) \backslash Q^{-}(3, q)$ not collinear with p^{*} on the quadric $Q^{+}(5, q)$, i.e. not contained in the tangent hyperplane $T_{p^{*}}$ at $p^{*} \in Q^{+}(5, q)$. As the line α^{ζ} is disjoint from $Q^{+}(5, q)$, we have $p \notin \alpha^{\zeta}$ and so α is not contained in $p^{\zeta}=T_{p}$. So, T_{p} intersects α in a plane β_{p} not containing p^{*}. If $\beta_{p} \subseteq \alpha$ is a tangent plane to the elliptic quadric $Q^{-}(3, q)$ with tangency point u, then the 3 -dimensional subspace $\left\langle p, \beta_{p}\right\rangle$ would intersect $Q^{+}(5, q)$ in the line $p u$, an impossibility. So, β intersects $Q^{-}(3, q)$ in an irreducible conic \mathcal{C}_{p} of β_{p} with kernel k_{p}. The tangent lines through k_{p} contained in α are precisely the lines through k_{p} contained in β_{p}. As $p^{*} \notin \beta_{p}, k_{p} p^{*}$ is not a tangent line and so $k_{p} \notin T_{p^{*}}$. We then define $B(p):=A\left(k_{p}\right)$.

For every $\lambda \in \mathbb{F}_{q}^{*}$, let H_{λ} be the set $\left(Q^{-}(3, q) \backslash\left\{p^{*}\right\}\right) \cup G_{\lambda}$, where G_{λ} is the set of all points $p \in Q^{+}(5, q) \backslash\left(Q^{-}(3, q) \cup T_{p^{*}}\right)$ for which $B(p)=\lambda$. We prove the following.

Theorem 2.1. For every $\lambda \in \mathbb{F}_{q}^{*}$, H_{λ} is a hyperoval of size $q^{2}(q+2)$ of $Q^{+}(5, q)$. In fact, if γ is a plane of $Q^{+}(5, q)$ then $\gamma \cap H_{\lambda}=\emptyset$ if $p^{*} \in \gamma$ and $\gamma \cap H_{\lambda}$ is a hyperoval of γ if $p^{*} \notin \gamma$.

Proof. Let γ be a plane of $Q^{+}(5, q)$ through p^{*}. Then γ is disjoint from both $Q^{-}(3, q) \backslash\left\{p^{*}\right\}$ and G_{λ} and so is disjoint from H_{λ}.

Let γ be a plane of $Q^{+}(5, q)$ not containing p^{*}. Then γ intersects $Q^{-}(3, q) \backslash\left\{p^{*}\right\}$ in a point x. For every $p \in \gamma \backslash\{x\}$, the irreducible conic $\mathcal{C}_{p}=T_{p} \cap \alpha \cap Q^{-}(3, q)$ of $\beta_{p}=T_{p} \cap \alpha$ contains x and so the kernel k_{p} of this irreducible conic is contained in the tangent plane π_{x} through x to the elliptic quadric $Q^{-}(3, q)$. We show that the map

$$
p \mapsto k_{p} \text { if } p \in \gamma \backslash\{x\}, \quad x \mapsto x,
$$

defines an isomorphism between the planes γ and π_{x}. This follows from the following observations:
(i) For every $y \in \gamma, T_{y}$ contains γ. The map $y \mapsto T_{y}$ defines an isomorphism between the projective plane γ and the dual projective plane of the quotient projective space $\mathrm{PG}(5, q)_{\gamma}$ (whose points and lines are the 3-dimensional and 4-dimensional subspaces of $\operatorname{PG}(5, q)$ through $\gamma)$.
(ii) Because of (i), the map $y \mapsto T_{y} \cap \alpha$ defines an isomorphism between the projective plane γ and the dual projective plane of the quotient space α_{x} (whose points and lines are the lines and planes of α through x).
(iii) The map which associates with each tangent plane $\omega \subseteq \alpha$ with respect to $Q^{-}(3, q)$ its tangency point and with each secant plane $\omega^{\prime} \subseteq \alpha$ with respect to $Q^{-}(3, q)$ the kernel of the irreducible conic $\omega^{\prime} \cap Q^{-}(3, q)$ is induced by a duality of α (which is even a symplectic polarity of α). This duality maps π_{x} to x.

Now, let G_{λ}^{\prime} denote the set of all points $p \in \pi_{x} \backslash\{x\}$ for which $A(p)=\lambda$. In view of the above isomorphism between γ and π_{x}, we need to prove that $\{x\} \cup G_{\lambda}^{\prime}$ is a hyperoval of π_{x}, or equivalently $\left|L \cap G_{\lambda}^{\prime}\right|=1$ for every line L of π_{x} through x and $\left|K \cap G_{\lambda}^{\prime}\right| \in\{0,2\}$ for every line K of π_{x} not containing x.

The line L intersects $T_{p^{*}}$ in a point $\left\langle\bar{w}_{2}\right\rangle$. If we put $x=\left\langle\bar{w}_{1}\right\rangle$, then $L \backslash\left(\{x\} \cup T_{p^{*}}\right)$ consists of all points of the form $\left\langle\bar{w}_{2}+\mu \bar{w}_{1}\right\rangle$ with $\mu \in \mathbb{F}_{q}^{*}$. Note that

$$
B\left(\bar{v}^{*}, \bar{w}_{2}+\mu \bar{w}_{1}\right)^{q-3} Q\left(\bar{w}_{2}+\mu \bar{w}_{1}\right)=B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3} \mu^{q-3} Q\left(\bar{w}_{2}\right)=\frac{Q\left(\bar{w}_{2}\right) B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3}}{\mu^{2}} .
$$

As every element of \mathbb{F}_{q} is a square and $Q\left(\bar{w}_{2}\right) B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3} \neq 0$, there is a unique $\mu \in \mathbb{F}_{q}^{*}$ for which $\frac{Q\left(\bar{w}_{2}\right) B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3}}{\mu^{2}}=\lambda$.

Again the line K contains a point $\left\langle\bar{w}_{2}\right\rangle$ of $T_{p^{*}}$, and we denote by $\left\langle\bar{w}_{1}\right\rangle$ any other point of K. As $\pi_{x} \cap Q^{+}(5, q)=\{x\}, B\left(\bar{w}_{1}, \bar{w}_{2}\right) \neq 0$. The points of $K \backslash T_{p^{*}}$ are then the points $\left\langle\bar{w}_{1}+\mu \bar{w}_{2}\right\rangle$ with $\mu \in \mathbb{F}_{q}$. Note then that

$$
B\left(\bar{v}^{*}, \bar{w}_{1}+\mu \bar{w}_{2}\right)^{q-3} Q\left(\bar{w}_{1}+\mu \bar{w}_{2}\right)=B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3}\left(Q\left(\bar{w}_{1}\right)+\mu B\left(\bar{w}_{1}, \bar{w}_{2}\right)+\mu^{2} Q\left(\bar{w}_{2}\right)\right) .
$$

This value is equal to λ if and only if

$$
Q\left(\bar{w}_{2}\right) \mu^{2}+B\left(\bar{w}_{1}, \bar{w}_{2}\right) \mu+Q\left(\bar{w}_{1}\right)-\frac{\lambda}{B\left(\bar{v}^{*}, \bar{w}_{1}\right)^{q-3}}=0 .
$$

As $B\left(\bar{w}_{1}, \bar{w}_{2}\right) \neq 0$ and $Q\left(\bar{w}_{2}\right) \neq 0$, this equation in $\mu \in \mathbb{F}_{q}$ has 0 or 2 solutions.
Since every plane of $Q^{+}(5, q)$ intersects H_{λ} in either the empty set or a hyperoval of that plane, H_{λ} must be a hyperoval of $Q^{+}(5, q)$.

As there are $2(q+1)$ planes of $Q^{+}(5, q)$ disjoint from H_{λ} and $2 q^{2}(q+1)$ planes of $Q^{+}(5, q)$ meeting H_{λ} in exactly $q+2$ points, the fact that each point of $Q^{+}(5, q)$ is contained in $2(q+1)$ planes of $Q^{+}(5, q)$ then implies that

$$
\left|H_{\lambda}\right|=\frac{2(q+1) \cdot 0+2 q^{2}(q+1) \cdot(q+2)}{2(q+1)}=q^{2}(q+2) .
$$

Some special cases

(1) The case $q=2$. Then $\mathbb{F}_{q}=\mathbb{F}_{2}=\{0,1\}$ and $\lambda=1$. In this case, $H_{1}=\left(Q^{-}(3, q) \backslash\right.$ $\left.\left\{p^{*}\right\}\right) \cup G_{1}$ is precisely the complement of $T_{p^{*}} \cap Q^{+}(5,2)$. This is obviously a hyperoval of $Q^{+}(5,2)$. In fact, the hyperovals of $Q^{+}(5, q)$ are precisely the complements of the geometric hyperplanes of $Q^{+}(5,2)$, and there are two such geometric hyperplanes, the intersections of $Q^{+}(5,2)$ with the tangent hyperplanes and the intersections of $Q^{+}(5,2)$ with the nontangent hyperplanes.
(2) The case $q=4$. Then we obtain a hyperoval of size 96 of $Q^{+}(5,4)$. This hyperoval was found in 7 by means of a backtrack search. A computer free construction was left as an open problem in [7].

We now give an algebraic description of the hyperovals. Let $\omega \in \mathbb{F}_{q}$ such that the polynomial $X^{2}+\omega X+1 \in \mathbb{F}_{q}[X]$ is irreducible. We choose a coordinate system in $\operatorname{PG}(5, q)$ such that $Q^{+}(5, q)$ consists of all points $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ satisfying $X_{1} X_{2}+X_{3} X_{4}+$ $X_{5} X_{6}=0$. We suppose that $Q^{-}(3, q)$ is the elliptic quadric obtained by intersecting $Q^{+}(5, q)$ with the 3 -dimensional subspace α with equations $X_{5}=X_{6}, X_{4}=X_{3}+\omega X_{5}$. Let p^{*} be the point $(1,0,0,0,0,0)$ of $Q^{-}(3, q)$. If $p=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)$ is a point of $Q^{+}(5, q) \backslash\left(Q^{-}(3, q) \cup T_{p^{*}}\right)$, then $T_{p} \cap \alpha$ has equations

$$
\begin{gathered}
X_{6}=X_{5},
\end{gathered} X_{4}=X_{3}+\omega X_{5}, ~ 子 y_{2}, y_{1}+y_{1} X_{2}+\left(y_{3}+y_{4}\right) X_{3}+\left(y_{5}+y_{6}+\omega y_{3}\right) X_{5}=0 .
$$

The point $p^{\prime}=\left(\omega y_{1}, \omega y_{2}, y_{5}+y_{6}+\omega y_{3}, y_{5}+y_{6}+\omega y_{4}, y_{3}+y_{4}, y_{3}+y_{4}\right)$ belongs to $T_{p} \cap \alpha$. Moreover, $\left(p^{\prime}\right)^{\zeta} \cap \alpha$ has equations

$$
\begin{gathered}
X_{6}=X_{5}, \quad X_{4}=X_{3}+\omega X_{5} \\
\omega y_{1} X_{2}+\omega y_{2} X_{1}+\left(y_{5}+y_{6}+\omega y_{3}\right) X_{4}+\left(y_{5}+y_{6}+\omega y_{4}\right) X_{3}+\left(y_{3}+y_{4}\right) X_{6}+\left(y_{3}+y_{4}\right) X_{5} \\
=\omega\left(y_{2} X_{1}+y_{1} X_{2}+\left(y_{3}+y_{4}\right) X_{3}+\left(y_{5}+y_{6}+\omega y_{3}\right) X_{5}\right)=0 .
\end{gathered}
$$

So, $T_{p} \cap \alpha=T_{p^{\prime}} \cap \alpha$ and $p^{\prime}=k_{p}$.
We thus see that H_{λ} consists of all points $\left(X_{1}, X_{2}, \ldots, X_{6}\right)$ of $Q^{+}(5, q)$ satisfying

- $X_{6}=X_{5}$ and $X_{4}=X_{3}+\omega X_{5}$, with exception of $(1,0,0,0,0,0)$,
- $\left(X_{5}+X_{6}, X_{3}+X_{4}+\omega X_{5}\right) \neq(0,0), X_{2} \neq 0$ and $\left(\omega X_{2}\right)^{q-3}\left(\left(\omega X_{1}\right)\left(\omega X_{2}\right)+\left(X_{5}+X_{6}+\right.\right.$ $\left.\left.\omega X_{3}\right)\left(X_{5}+X_{6}+\omega X_{4}\right)+\left(X_{3}+X_{4}\right)^{2}\right)=\lambda$.

The latter equation is equivalent with

$$
\begin{equation*}
\lambda \omega^{2} X_{2}^{2}+X_{3}^{3}+X_{4}^{2}+X_{5}^{2}+X_{6}^{2}+\omega^{2} X_{5} X_{6}+\omega\left(X_{3}+X_{4}\right)\left(X_{5}+X_{6}\right)=0 \tag{1}
\end{equation*}
$$

The hyperoval H_{λ} is thus obtained from a quadratic set of type (SC) by adding an elliptic quadric $Q^{-}(3, q)$ and removing a point p^{*}. In fact, if we denote by X the quadratic set of $Q^{+}(5, q)$ that arises by intersecting $Q^{+}(5, q)$ with the quadric with equation (1), then by the above, we know that the following hold:

- Every plane of $Q^{+}(5, q)$ through p^{*} intersects X in $\left\{p^{*}\right\}$.
- Every plane of $Q^{+}(5, q)$ not containing p^{*} intersects X in an irreducible conic. Moreover, the kernels of all the irreducible conics that arise in this way are precisely the points of $Q^{-}(3, q) \backslash\left\{p^{*}\right\}$.

We thus see that X is a quadratic set of type (SC) satisfying the properties (1) and (2) of the previous section. Using the notation of the previous section, we have

$$
\begin{aligned}
& A_{1}=\left\{p^{*}\right\} \\
& A_{2}=Q^{-}(3, q) \backslash\left\{p^{*}\right\}
\end{aligned}
$$

The hyperoval thus arises as described in the previous section.

3 Constructions of hyperovals of $Q^{+}(5, q), q$ even, from ovoids of $W(q)$

Let $Q^{+}(5, q)$ be a hyperbolic quadric in $\mathrm{PG}(5, q), q$ even. Let ζ be the symplectic polarity naturally associated to $Q^{+}(5, q)$.

Let Π be a 3 -dimensional subspace of $\operatorname{PG}(5, q)$ intersecting $Q^{+}(5, q)$ in an elliptic quadric $Q^{-}(3, q)$, and let p be a point of $Q^{-}(3, q)$.

Let $W(q)$ denote the symplectic generalized quadrangle whose points are the points of Π and whose lines are the lines of Π that are tangent to $Q^{-}(3, q)$. Let O be an ovoid of $W(q)$ distinct from $Q^{-}(3, q)$.

For every point x of Π, denote by π_{x} the plane of Π through x containing all lines of $W(q)$ through x. If $x \notin Q^{-}(3, q)$, then π_{x} intersects $Q^{-}(3, q)$ and hence also $Q^{+}(5, q)$ in an irreducible conic, implying that π_{x}^{ζ} also intersects $Q^{+}(5, q)$ in an irreducible conic of π_{x}^{ζ}. We denote this irreducible conic of π_{x}^{ζ} by \mathcal{C}_{x}. We also define:

$$
H_{O}:=\left(\bigcup_{x \in O \backslash Q^{-}(3, q)} \mathcal{C}_{x}\right) \cup\left(Q^{-}(3, q) \backslash O\right)
$$

Put $L^{*}:=\Pi^{\zeta}$. Then Π and L^{*} are disjoint, as well as $Q^{+}(5, q)$ and L^{*}. There are two types of planes through L^{*} : planes intersecting Π in a point of $Q^{-}(3, q)$ and planes intersecting Π in a point not belonging to $Q^{-}(3, q)$. The former planes intersect $Q^{+}(5, q)$ in a singleton and the latter planes intersect $Q^{+}(5, q)$ in an irreducible conic.

Lemma 3.1. For every point x of $\Pi \backslash Q^{-}(3, q)$, we have $\mathcal{C}_{x}=\left\langle L^{*}, x\right\rangle \cap Q^{+}(5, q)$.
Proof. Since $\pi_{x} \subseteq x^{\zeta}$, we have $x \in \pi_{x}^{\zeta}$. As $\pi_{x} \subseteq \Pi$, we have $L^{*}=\Pi^{\zeta} \subseteq \pi_{x}^{\zeta}$. So, $\pi_{x}^{\zeta}=\left\langle L^{*}, x\right\rangle$ and $\mathcal{C}_{x}=\left\langle L^{*}, x\right\rangle \cap Q^{+}(5, q)$.

Theorem 3.2. H_{O} is a hyperoval of $Q^{+}(5, q)$ containing $\left(\left(q^{2}+1\right)-\left|O \cap Q^{-}(3, q)\right|\right)(q+2)$ points. The planes of $Q^{+}(5, q)$ that are disjoint from H_{O} are precisely the planes containing a point of $O \cap Q^{-}(3, q)$.

Proof. The proof will happen in several steps.
Step 1: If $x \in O \backslash Q^{-}(3, q)$ and $y \in \mathcal{C}_{x}$, then the tangent hyperplane T_{y} at the point y with respect to $Q^{+}(5, q)$ intersects Π in the plane π_{x}.
Proof. Since $y \in \pi_{x}^{\zeta}$, we have $\pi_{x} \subseteq y^{\zeta}=T_{y}$. As $T_{y} \cap Q^{+}(5, q)$ is a cone of type $y Q^{+}(3, q)$ and $\Pi \cap Q^{+}(5, q)=Q^{-}(3, q)$, the hyperplane T_{y} cannot contain Π and so must intersect Π in the plane π_{x}.

Step 2: For every $x \in O \backslash Q^{-}(3, q), \mathcal{C}_{x}$ is disjoint from $Q^{-}(3, q)$.
Proof. The irreducible conic \mathcal{C}_{x} is contained in the plane $\left\langle L^{*}, x\right\rangle$ and $\left\langle L^{*}, x\right\rangle$ intersects Π in the point x which does not belong to $Q^{-}(3, q)$.
Step 3: If $x \in O \backslash Q^{-}(3, q)$ and $y \in \mathcal{C}_{x}$, then $A_{y}:=T_{y} \cap \Pi$ is a plane of Π that is secant with respect to $Q^{-}(3, q)$ and the kernel of the irreducible conic $A_{y} \cap Q^{-}(3, q)$ coincides with x.
Proof. By Step 1, we know that $A_{y}=\pi_{x}$. We already know that $\pi_{x} \cap Q^{-}(3, q)$ is an irreducible conic having x as kernel.

Step 4: If x_{1} and x_{2} are two distinct points of $O \backslash Q^{-}(3, q)$, then $\mathcal{C}_{x_{1}}$ and $\mathcal{C}_{x_{2}}$ are disjoint. Proof. If $y \in \mathcal{C}_{x_{1}} \cap \mathcal{C}_{x_{2}}$, then by Step 3, both x_{1} and x_{2} need to be equal to the kernel of the irreducible conic $A_{y} \cap Q^{-}(3, q)$ of A_{y}.
Step 5: We have $|H|=\left(\left(q^{2}+1\right)-\left|O \cap Q^{-}(3, q)\right|\right)(q+2)$.
Proof. By Steps 2 and 4, we know that $|H|=\left|O \backslash Q^{-}(3, q)\right| \cdot(q+1)+\left|Q^{-}(3, q) \backslash O\right|=$ $\left(\left(q^{2}+1\right)-\left|O \cap Q^{-}(3, q)\right|\right)(q+2)$.
Step 6: Every plane π of $Q^{+}(5, q)$ containing a point p of $O \cap Q^{-}(3, q)$ is disjoint from H_{O}.
Proof. As $p \in \pi \cap O \cap Q^{-}(3, q)$, the plane π is disjoint from $Q^{-}(3, q) \backslash O$.
Suppose $y \in \pi \cap \mathcal{C}_{x}$ for some point $x \in O \backslash Q^{-}(3, q)$. The plane π_{x} cannot contain the point p as otherwise the line $p x$ of $W(q)$ would contain two points of O, namely p and x. Now, $\{p\} \subseteq \pi \subseteq T_{y}$ and T_{y} intersects Π in the plane π_{x} which does not contain p, an obvious contradiction.

Step 7: No line L of $Q^{+}(5, q)$ disjoint from $Q^{-}(3, q)$ contains more than two points of H_{O}.
Proof. If this were not the case, then the line $\left\langle L^{*}, L\right\rangle$ of Π would contain at least three points of O by Lemma 3.1. This is not possible as a line of $W(q)$ contains exactly one point of O and a hyperbolic line of $W(q)$ contains either 0 or 2 points.
Step 8: Let L be a line of $Q^{+}(5, q)$ containing a (unique) point u of $Q^{-}(3, q) \backslash O$. Then $L \backslash\{u\}$ contains a unique point of $\bigcup_{x \in O \backslash Q^{-(3, q)}} \mathcal{C}_{x}$.
Proof. The 3 -dimensional subspace $\left\langle L^{*}, L\right\rangle$ intersects Π in a line K through u. As u^{ζ} contains L and L^{*}, it also contains K and so K is a line of $W(q)$ containing a unique point x of $O \backslash Q^{-}(3, q)$. The unique point in the intersection $\left\langle L^{*}, u\right\rangle \cap L$ is then by Lemma 3.1 the unique point in $L \backslash\{u\}$ contained in $\bigcup_{x \in O \backslash Q^{-}(3, q)} \mathcal{C}_{x}$.

The following step completes in combination with Step 6 the proof of the theorem.

Step 9: Every plane π of $Q^{+}(5, q)$ containing a point of $Q^{-}(3, q) \backslash O$ intersects H_{O} in a hyperoval of π.
Proof. By Step 8, we know that $\left|\pi \cap H_{O}\right|=q+2$. By Steps 7 and 8, we know that every line of π intersects H_{O} in at most two points. So, $\pi \cap H_{O}$ must be a hyperoval of π.

Theorem 3.3. The set

$$
X:=\left(\bigcup_{x \in O \backslash Q^{-}(3, q)} \mathcal{C}_{x}\right) \cup\left(O \cap Q^{-}(3, q)\right)
$$

is a quadratic set of type (SC) satisfying the properties (1) and (2) of Section 1.
Proof. Suppose π is a plane of $Q^{+}(5, q)$ containing a (necessarily unique) point of $O \cap$ $Q^{-}(3, q)$. By Step 6 in the proof of Theorem 3.2, we know that π is disjoint from $\bigcup_{x \in O \backslash Q^{-}(3, q)} \mathcal{C}_{x}$ and intersects $O \cap Q^{-}(3, q)$ in a singleton.

Suppose π is a plane of $Q^{+}(5, q)$ containing a (necessarily unique) point of $Q^{-}(3, q) \backslash O$. By Step 9 in the proof of Theorem 3.2, we know that π is disjoint from $O \cap Q^{-}(3, q)$ and intersects $\bigcup_{x \in O \backslash Q^{-}(3, q)} \mathcal{C}_{x}$ in an irreducible conic. Moreover, the kernels of all these irreducible conics are precisely the points of $Q^{-}(3, q) \backslash O$.

We thus see that X is a quadratic set of type (SC) satisfying the properties (1) and (2) of Section 11. In fact, the set A_{1} defined there is precisely the set $O \cap Q^{-}(3, q)$ and the set A_{2} defined there is exactly the set $Q^{-}(3, q) \backslash O$.

Remark. By Section 1, we know that the set $\left(X \backslash A_{1}\right) \cup A_{2}$ is a hyperoval of $Q^{+}(5, q)$. This hyperoval coincides with H_{O}.
Lemma 3.4. We have $\left|O \cap Q^{-}(3, q)\right| \leq \frac{q^{2}-q}{2}$.
Proof. By Lemma 3.1 of [3], any hyperoval of $Q^{+}(5, q)$ contains at least $\frac{(q+2)\left(q^{2}+q+2\right)}{2}$ points. Applying this here to the hyperoval H_{O} of $Q^{+}(5, q)$, we find that $\left|O \cap Q^{-}(3, q)\right| \leq \frac{q^{2}-q}{2}$ by Theorem 3.2.

Some properties

Again, let $q=2^{h}$ be an even prime power. For every $x \in \mathbb{F}_{q}$, we define $\operatorname{Tr}(x):=$ $x+x^{2}+\cdots+x^{2^{h-1}}$. Note that for $\delta \in \mathbb{F}_{q}$, the polynomial $X^{2}+X+\delta$ is reducible over \mathbb{F}_{q} if and only if $\operatorname{Tr}(\delta)=0$. Note also that as q is even, every element $x \in \mathbb{F}_{q}$ has a unique square root in \mathbb{F}_{q}, which we will denote by \sqrt{x}.

Let Ω denote the set of all quadratic homogeneous polynomials in the variables X_{1}, X_{2}, X_{3} and X_{4}. For every matrix $A \in G L(4, \mathbb{F})$, let φ_{A} be the permutation of Ω defined by

$$
f\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \mapsto f\left(X_{1}^{\prime}, X_{2}^{\prime}, X_{3}^{\prime}, X_{4}^{\prime}\right)
$$

where $\left[X_{1}^{\prime} X_{2}^{\prime} X_{3}^{\prime} X_{4}^{\prime}\right]:=A \cdot\left[\begin{array}{llll}X_{1} & X_{2} & X_{3} & X_{4}\end{array}\right]^{T}$.

Lemma 3.5. Let $\delta, b_{1}, b_{2} \in \mathbb{F}_{q}^{*}$ with $\operatorname{Tr}(\delta)=1, \operatorname{Tr}\left(b_{1}\right)=\operatorname{Tr}\left(b_{2}\right)=0$ and $b_{1} \neq b_{2}$. Then there exists no $A \in G L(4, \mathbb{F})$ such that φ_{A} maps $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}$ to $X_{1} X_{2}+$ $X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}$ and $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{1}\right) X_{4}^{2}$ to $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{2}\right) X_{4}^{2}$.

Proof. The map φ_{A} must map $b_{1} X_{4}^{2}$ to $b_{2} X_{4}^{2}$ and thus X_{4} to $\sqrt{\frac{b_{2}}{b_{1}}} X_{4}$. It follows that for every $\eta \in \mathbb{F}_{q}, \varphi_{A}$ maps $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+(\delta+\eta) X_{4}^{2}$ to $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+\eta \frac{b_{2}}{b_{1}}\right) X_{4}^{2}$. Since φ_{A} fixes the Witt indices of the nondegenerate quadratic forms in Ω, we must have that the polynomials $\operatorname{Tr}(\eta)$ and $\operatorname{Tr}\left(\eta \frac{b_{2}}{b_{1}}\right)$ in the variable $\eta \in \mathbb{F}_{q}$ have the same $\frac{1}{2} \log _{2}(q)$ (mutually distinct) roots. But as $0 \neq b_{1} \neq b_{2} \neq 0$, these two polynomials of degree $\frac{1}{2} \log _{2}(q)$ are distinct and so they cannot have the same roots.

Lemma 3.6. Let $\delta, b_{1}, b_{2} \in \mathbb{F}_{q}^{*}$ with $\operatorname{Tr}(\delta)=1, \operatorname{Tr}\left(b_{1}\right)=\operatorname{Tr}\left(b_{2}\right)=0$ and $b_{1} \neq b_{2}$. Then there exists no $A \in G L(4, \mathbb{F})$ such that φ_{A} maps $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}$ to $\mu_{1}\left(X_{1} X_{2}+\right.$ $\left.X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}\right)$ and $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{1}\right) X_{4}^{2}$ to $\mu_{2}\left(X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{2}\right) X_{4}^{2}\right)$ for some $\mu_{1}, \mu_{2} \in \mathbb{F}_{q}^{*}$.
Proof. Note that the map $\varphi_{\sqrt{\mu} \cdot I}$ with $\mu \in \mathbb{F}_{q}^{*}$ maps each $f \in \Omega$ to μf. So, without loss of generality, we may suppose that $\mu_{1}=1$. Put $\mu:=\mu_{2}$. The map φ_{A} then maps $b_{1} X_{4}^{2}=\left(\sqrt{b_{1}} X_{4}\right)^{2}$ to $(\mu+1)\left(X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}\right)+\delta X_{4}^{2}+\mu\left(\delta+b_{2}\right) X_{4}^{2}$. The latter polynomial must thus be a square of a linear expression in X_{1}, X_{2}, X_{3} and X_{4}. This is only possible when $\mu=1$. We are then again in the same situation as in the previous lemma.

Lemma 3.7. Let O_{1} and O_{2} be two ovoids of $\operatorname{PG}(3, q)$, q even. Let \mathcal{Q}_{i} with $i \in\{1,2\}$ denote the symplectic generalized quadrangle associated to O_{i}, i.e. the points of \mathcal{Q}_{i} are the points of $\mathrm{PG}(3, q)$ and the lines of \mathcal{Q}_{i} are the lines of $\operatorname{PG}(3, q)$ intersecting O_{i} in a singleton, with incidence being containment. The lines of \mathcal{Q}_{i} are those lines of $\operatorname{PG}(3, q)$ that are totally isotropic with respect to a certain symplectic polarity ζ_{i}. The following are then equivalent:
(1) $\zeta_{1}=\zeta_{2}$;
(2) $\mathcal{Q}_{1}=\mathcal{Q}_{2}$;
(3) O_{1} is an ovoid of \mathcal{Q}_{2};
(4) O_{2} is an ovoid of \mathcal{Q}_{1}.

Proof. The lines of $\mathcal{Q}_{i}, i \in\{1,2\}$, are precisely those lines of $\operatorname{PG}(3, q)$ that are totally isotropic with respect to ζ_{i}. So, if $\zeta_{1}=\zeta_{2}$, then $\mathcal{Q}_{1}=\mathcal{Q}_{2}$.

If x is a point of $\mathrm{PG}(3, q)$, then the lines of $\mathcal{Q}_{i}, i \in\{1,2\}$, through x are precisely the lines through x contained in $x^{\zeta_{i}}$. So, if $\mathcal{Q}_{1}=\mathcal{Q}_{2}$, then $x^{\zeta_{1}}=x^{\zeta_{2}}$ for every point x of $\mathrm{PG}(3, q)$, i.e. $\zeta_{1}=\zeta_{2}$.

We thus see that (1) and (2) are equivalent.
If O_{1} is an ovoid of \mathcal{Q}_{2}, then every line of \mathcal{Q}_{2} intersects O_{1} in a singleton and so is a line of \mathcal{Q}_{1}. As both \mathcal{Q}_{1} and \mathcal{Q}_{2} have exactly $(q+1)\left(q^{2}+1\right)$ lines, we then see that
$\mathcal{Q}_{1}=\mathcal{Q}_{2}$. Conversely, if $\mathcal{Q}_{1}=\mathcal{Q}_{2}$, then every line of \mathcal{Q}_{2} is a line of \mathcal{Q}_{1} and so meets O_{1} in a singleton, implying that O_{1} is an ovoid of \mathcal{Q}_{2}.

We thus see that (2) and (3) are equivalent. In a similar way, one can show that (2) and (4) are equivalent.

Lemma 3.8. Let \mathcal{Q}_{1} and \mathcal{Q}_{2} be two distinct elliptic quadrics in $\operatorname{PG}(3, q)$, q even, such that \mathcal{Q}_{2} is an ovoid of the symplectic generalized quadrangle associated to \mathcal{Q}_{1}. Then $\left|\mathcal{Q}_{1} \cap \mathcal{Q}_{2}\right|$ is either 1 or $q+1$.

Proof. Suppose $\mathrm{PG}(3, q)=\operatorname{PG}(V)$, where V is a 4-dimensional vector space over \mathbb{F}_{q}. Choose an ordered basis ($\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}$) in V and denote the coordinates of a generic point of $\operatorname{PG}(3, q)$ with respect to this basis by $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. The quadric \mathcal{Q}_{1} then consists of all points of $\mathrm{PG}(3, q)$ satisfying $\sum_{1 \leq i \leq j \leq 4} a_{i j} X_{i} X_{j}=0$, where the $a_{i j}$'s are certain elements in \mathbb{F}_{q}. As the symplectic polarities associated to \mathcal{Q}_{1} and \mathcal{Q}_{2} are the same by Lemma 3.7, there exist $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbb{F}_{q}$ such that \mathcal{Q}_{2} has equation $\sum_{1 \leq i \leq j \leq 4} a_{i j} X_{i} X_{j}+$ $b_{1}^{2} X_{1}^{2}+b_{2}^{2} X_{2}^{2}+b_{3}^{2} X_{3}^{2}+b_{4}^{2} X_{4}^{2}=0$ with respect to the same reference system. As $\mathcal{Q}_{1} \neq \mathcal{Q}_{2}$, we have $\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \neq(0,0,0,0)$. The common points of \mathcal{Q}_{1} and \mathcal{Q}_{2} are now precisely the points of \mathcal{Q}_{1} contained in the plane with equation $b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X_{4}=0$. This plane intersects \mathcal{Q}_{1} in either a singleton or an irreducible conic, implying that $\left|\mathcal{Q}_{1} \cap \mathcal{Q}_{2}\right| \in$ $\{1, q+1\}$.

Lemma 3.9. Let Q be an elliptic quadric in $\operatorname{PG}(3, q)$, q even, and denote by $W(q)$ the symplectic generalized quadrangle associated to Q. Let \mathcal{Q}_{i} with $i \in\{1, q+1\}$ denote the set of all elliptic quadrics in $\mathrm{PG}(3, q)$ that are ovoids of $W(q)$ and intersect Q in exactly i points. Let G denote the stabilizer of Q inside $P \Gamma L(3, q)$. Then the following hold:

- G acts transitively on the elements of \mathcal{Q}_{1};
- the number of orbits of G on \mathcal{Q}_{q+1} equals the number of orbits of $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ on the set of elements in \mathbb{F}_{q}^{*} with trace equal to 0 .

Proof. Let δ be an element in \mathbb{F}_{q} whose trace is equal to 1 . Let Q_{1} and Q_{2} be two elements in \mathcal{Q}_{i}. As G acts transitively on the set of tangent planes with respect to Q and the set of secant planes with respect to Q, we may suppose that $Q_{1} \cap Q=Q_{2} \cap Q=\pi \cap Q$ for a certain plane π of $\mathrm{PG}(3, q)$ which is a tangent plane if $i=1$ and a secant plane if $i=q+1$.

Suppose first that $i=1$. Then we can take a reference system with respect to which Q has equation $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}=0$ and π has equation $X_{1}=0$. Since the symplectic polarities associated to Q, Q_{1} and Q_{2} are the same, there exist $b_{1}^{2}, b_{2}^{2} \in \mathbb{F}_{q}^{*}$ such that Q_{i} with $i \in\{1,2\}$ has equation $b_{i}^{2} X_{1}^{2}+X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}=0$. Now, the map $\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \mapsto\left(\frac{b_{1}}{b_{2}} X_{1}, \frac{b_{2}}{b_{1}} X_{2}, X_{3}, X_{4}\right)$ belongs to G and maps Q_{1} to Q_{2}.

Suppose next that $i=q+1$. Then we can take a reference system with respect to which Q has equation $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}=0$ and π has equation $X_{4}=0$. Since the symplectic polarities associated to Q, Q_{1} and Q_{2} are the same, there exist $b_{1}, b_{2} \in \mathbb{F}_{q}^{*}$ whose trace is 0 such that Q_{i} with $i \in\{1,2\}$ has equation $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{i}\right) X_{4}^{2}=0$.

Let $\tau \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$. Note that if $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ satisfies $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}=0$, then $\left(X_{1}^{\tau}, X_{2}^{\tau}, X_{3}^{\tau}, X_{4}^{\tau}\right)$ satisfies $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta^{\tau} X_{4}^{2}=0$. As $\operatorname{Tr}\left(\delta+\delta^{\tau}\right)=0$, there
exists a $b \in \mathbb{F}_{q}$ such that $b^{2}+b=\delta+\delta^{\tau}$. Then $X_{1} X_{2}+\left(X_{3}+b X_{4}\right)^{2}+\left(X_{3}+b X_{4}\right) X_{4}+\delta^{\tau} X_{4}^{2}=$ $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\delta X_{4}^{2}$ and $X_{1} X_{2}+\left(X_{3}+b X_{4}\right)^{2}+\left(X_{3}+b X_{4}\right) X_{4}+\left(\delta^{\tau}+b_{1}^{\tau}\right) X_{4}^{2}=$ $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{1}^{\tau}\right) X_{4}^{2}$. So, if b_{1}, b_{2} are elements of \mathbb{F}_{q} with trace 0 , then by Lemma 3.6 and the above there exists an automorphism of $\operatorname{PG}(3, q)$ with associated field automorphism τ stabilizing Q and mapping $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{1}\right) X_{4}^{2}=0$ to $X_{1} X_{2}+X_{3}^{2}+X_{3} X_{4}+\left(\delta+b_{2}\right) X_{4}^{2}=0$ if and only if $b_{2}=b_{1}^{\tau}$. The second claim of the lemma now follows.

Examples:

- if $q=2$, then \mathcal{Q}_{3} is empty;
- if $q \in\{4,8\}$, then G acts transitively on the elements of \mathcal{Q}_{q+1};
- if $q=16$, then G has three orbits on \mathcal{Q}_{17}.

The case where O is a classical ovoid of $W(q)$

For certain values of q even, we know that all ovoids of $W(q)$ are classical, i.e. being an elliptic quadric of the ambient projective space of $W(q)$.

Lemma 3.10. If $q \in\{2,4,16\}$, then every ovoid of $W(q)$ is classical.
Proof. Proofs of these facts are contained in the papers [1, 4, 5, 6].
In this case, we have $\left|O \cap Q^{-}(3, q)\right| \in\{1, q+1\}$ by Lemma 3.8 and so $\left|H_{O}\right| \in\left\{q^{2}(q+\right.$ $\left.2),\left(q^{2}-q\right)(q+2)\right\}$ by Theorem 3.2.

Suppose first that $q=2$. Then by the above $\left(\mathcal{Q}_{3} \neq \emptyset\right)$, we know that the case $\left|O \cap Q^{-}(3, q)\right|=q+1$ cannot occur. So, we then have that $\left|H_{O}\right|=q^{2}(q+2)=16$. For $q=2$, we also know that every hyperoval of $Q^{+}(5,2)$ is the complement of a hyperplane of $Q^{+}(5,2)$. The complement of a $Q(4,2)$-hyperplane of $Q^{+}(5,2)$ contains $35-15=20$ points, while the complement of a $p Q^{+}(3,2)$-hyperplane of $Q^{+}(5,2)$ contains $35-19=16$ points. So, in this case, we know that H_{O} is the complement of a tangent hyperplane intersection of $Q^{+}(5,2)$. We can also derive this in another way.

As $\left|O \cap Q^{-}(3, q)\right|=1$, the intersection $O \cap Q^{-}(3, q)$ is a singleton $\{p\}$. Every plane of $Q^{+}(5, q)$ containing p is disjoint from H_{O}. On the other hand, a plane π of $Q^{+}(5, q)$ not containing p intersects H_{O} in a hyperoval of π, necessarily equal to $\pi \backslash p^{\perp}$. So, H_{O} must be the complement of the quadric of type $p Q^{+}(3,2)$ that arises by intersecting $Q^{+}(5,2)$ with the tangent hyperplane at the point p. Combining this with Lemma 3.10, we thus find.

Lemma 3.11. - Up to isomorphism, there is a unique hyperoval of $Q^{+}(5,2)$ of the form H_{O}, where O is a classical ovoid of $W(q)$.

- Up to isomorphism, there is a unique hyperoval of $Q^{+}(5,2)$ of the form H_{O}, where O is an ovoid of $W(q)$.

Suppose next that $q=4$. The both the cases $\left|O \cap Q^{-}(3, q)\right|=1$ and $\left|Q \cap Q^{-}(3, q)\right|=q+1$ can occur, giving rise to hyperovals of $Q^{+}(5, q)$ with respective sizes $q^{2}(q+2)=96$ and $\left(q^{2}-q\right)(q+2)=72$. These two hyperplanes were already obtained in the paper of Pasechnik [7] by means of computer backtrack searches. By the above and Lemma 3.10, we then know that the following hold.

Lemma 3.12. - Up to isomorphism, there are two hyperovals of $Q^{+}(5, q)$ of the form H_{O}, where O is a classical ovoid of $W(q)$.

- Up to isomorphism, there are two hyperovals of $Q^{+}(5, q)$ of the form H_{O}, where O is an ovoid of $W(q)$.

A hyperoval of $\mathrm{PG}(2, q)$ with q even is called regular if it consists of an irreducible conic union its nucleus. From now on, we suppose that $q \geq 8$.

Lemma 3.13. If H is a regular hyperoval of $\mathrm{PG}(2, q), q$ even, then there exists a unique point $p \in H$ such that $H \backslash\{p\}$ is an irreducible conic.

Proof. By the definition of the notion of a regular hyperoval, we know that there exists at least one such point p. Suppose $H \backslash\left\{p_{1}\right\}$ and $H \backslash\left\{p_{2}\right\}$ are irreducible conics of $\operatorname{PG}(2, q)$ for two points $p_{1}, p_{2} \in H$. Note that an irreducible conic of $\mathrm{PG}(2, q), q$ even, is uniquely determined by five of its points. As $\left|\left(H \backslash\left\{p_{1}\right\}\right) \cap\left(H \backslash\left\{p_{2}\right\}\right)\right| \geq q \geq 5$, we then have that $H \backslash\left\{p_{1}\right\}=H \backslash\left\{p_{2}\right\}$, i.e. $p_{1}=p_{2}$.

Lemma 3.14. Let O be a classical ovoid of $W(q)$ distinct from $Q^{-}(3, q)$ and let π be a plane of $Q^{+}(5, q)$ intersecting H_{O} in a hyperoval of π. Then $\pi \cap H_{O}$ is a regular hyperoval of π. Moreover, the unique point p of $\pi \cap H_{0}$ for which $\left(\pi \cap H_{O}\right) \backslash\{p\}$ is an irreducible conic belongs to $Q^{-}(3, q) \backslash O \subseteq \pi$.

Proof. As $\pi \cap H_{0}$ is a hyperoval of π, π intersects $Q^{-}(3, q) \backslash O$ in a singleton $\{p\}$. By Lemma 3.1 and the definition of H_{O}, the projection A of $\left(\pi \cap H_{O}\right) \backslash\{p\}$ from L^{*} on Π is contained in $O \backslash Q^{-}(3, q)$ and so the plane $\left\langle L^{*}, \pi\right\rangle \cap \Pi$ intersects O in the irreducible conic A. It follows that $\left(\pi \cap H_{O}\right) \backslash\{p\}$ itself must also be an irreducible conic of π. The kernel of this irreducible conic necessarily coincides with $p \in Q^{-}(3, q) \backslash O \subseteq \Pi$.

Lemma 3.15. Let O_{1} and O_{2} be two classical ovoids of $W(q)$ distinct from $Q^{-}(3, q)$. Then the following are equivalent:
(1) the hyperovals $H_{O_{1}}$ and $H_{O_{2}}$ are isomorphic;
(2) there exists an automorphism of Π stabilizing $Q^{-}(3, q)$ mapping O_{1} to O_{2}.

Proof. Suppose there exists an automorphism θ of Π stabilizing $Q^{-}(3, q)$ and mapping O_{1} to O_{2}. Then θ extends to an automorphism $\bar{\theta}$ of $Q^{+}(5, q)$. It is clear that $\bar{\theta}$ maps $H_{O_{1}}$ and $H_{O_{2}}$.

Conversely, suppose that there exists an automorphism $\bar{\theta}$ of $\mathrm{PG}(5, q)$ stabilizing $Q^{+}(5, q)$ mapping $H_{O_{1}}$ to $H_{O_{2}}$. For every $i \in\{1,2\}$, let Ω_{i} denote the set of all planes π of
$Q^{+}(5, q)$ intersecting $H_{O_{i}}$ in a hyperoval of π. For every $\pi \in \Omega_{i}$, let k_{π} denote the unique point of $\pi \cap H_{O_{i}}$ for which $\left(\pi \cap H_{O_{i}}\right) \backslash\left\{k_{\pi}\right\}$ is an irreducible conic of π. Then $\left\{k_{\pi} \mid \pi \in \Omega_{i}\right\}$ is a set of $\left|Q^{-}(3, q) \backslash O_{i}\right|$ points of π. By Lemma 3.4, we know that $\left|Q^{-}(3, q) \backslash O_{i}\right| \geq q^{2}+1-\frac{q^{2}-q}{2}=\frac{q^{2}+q+2}{2}>q+1$. So, the set $\left\{k_{\pi} \mid \pi \in \Omega_{i}\right\}$ must generate Π. Since $\bar{\theta}$ maps Ω_{1} to Ω_{2}, it maps the set $\left\{k_{\pi} \mid \pi \in \Omega_{1}\right\}$ to the set $\left\{k_{\pi} \mid \pi \in \Omega_{2}\right\}$ and so $\bar{\theta}$ stabilizes Π. Denote by θ the restriction of $\bar{\theta}$ to Π. Then θ stabilizes $Q^{-}(3, q)$. Also, θ maps $\left\{k_{\pi} \mid \pi \in \Omega_{1}\right\}=Q^{-}(3, q) \backslash O_{1}$ to $\left\{k_{\pi} \mid \pi \in \Omega_{2}\right\}=Q^{-}(3, q) \backslash O_{2}$ and so $Q^{-}(3, q) \cap O_{1}$ to $Q^{-}(3, q) \cap O_{2}$. As $\bar{\theta}$ stabilizes $Q^{+}(5, q)$ and Π, it also stabilizes the line L^{*}. Note that $O_{i} \backslash Q^{-}(3, q), i \in\{1,2\}$, is the projection of $H_{O_{i}} \backslash \Pi$ from L^{*} onto Π. Since $\bar{\theta}$ maps $H_{O_{1}} \backslash \pi$ to $H_{O_{2}} \backslash \pi$, it must also map $O_{1} \backslash Q^{-}(3, q)$ to $O_{2} \backslash Q^{-}(3, q)$. All together, we thus have that $\bar{\theta}$ and θ map O_{1} to O_{2}.

The following is a consequence of Lemmas 3.9 and 3.15 .
Corollary 3.16. Let N denote the number of orbits of $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ on the set of all elements of \mathbb{F}_{q}^{*} with trace equal to 0. Then the number of nonisomorphic hyperovals of the form H_{O} where O is a classical ovoid of $W(q)$ is equal to $N+1$.

Corollary 3.17. Suppose $q=16$. The number of nonisomorphic hyperovals of the form H_{O}, where O is an ovoid of $W(q)$ is equal to 4 .

The general case

Let \mathcal{U} denote the set of all planes π of $\operatorname{PG}(5, q)$ such that $\pi \cap H_{O}$ and $\pi \cap Q^{+}(5, q)$ are coinciding irreducible conics of π. We will prove some results that indicate which planes can belong to \mathcal{U}. The following results are useful to that end.

Lemma 3.18. Suppose \bar{O} is a hyperoval of $\mathrm{PG}(2, q), q \geq 8$ even, and X is a subset of size $q-1$ of \bar{O}. Then through every point x of $\mathrm{PG}(2, q) \backslash \bar{O}$, there is a line intersecting X in exactly two points.

Proof. Through x, there are $\frac{q+2}{2}$ lines intersecting \bar{O} in exactly two points. At most three of these lines contain a point of $\bar{O} \backslash O$. So, at least $\frac{q+2}{2}-3=\frac{q-4}{2}>0$ of these lines contain two points of X.

Corollary 3.19. Let X be a set of $q-1$ or q mutually noncollinear points of $\operatorname{PG}(2, q)$, $q \geq 8$ even. Then X is contained in at most one hyperoval of $\operatorname{PG}(2, q)$

In fact, a better result as the one in Corollary 3.19 is known. By Theorem 3 of [8, we know that the following holds.

Corollary 3.20. Let X be a set of $q-1$ or q mutually noncollinear points of $\operatorname{PG}(2, q)$, $q \geq 8$ even. Then X is contained in a unique hyperoval of $\operatorname{PG}(2, q)$

Lemma 3.21. Suppose $\pi \in \mathcal{U}$. Then no point of $\pi \cap \Pi \cap Q^{-}(3, q)$ belongs to O.

Proof. Since $\pi \cap Q^{+}(5, q)$ and $\pi \cap H_{O}$ are the same irreducible conic, we have $\pi \cap Q^{+}(5, q) \cap$ $\Pi=\pi \cap \Pi \cap Q^{-}(3, q)=\pi \cap H_{O} \cap \Pi=\Pi \cap\left(Q^{-}(3, q) \backslash O\right)$, proving the validity of the claim.

Lemma 3.22. A plane π through L^{*} belongs to \mathcal{U} if and only if it intersects Π in a point of $O \backslash Q^{-}(3, q)$.

Proof. If π intersects Π in a point of $Q^{-}(3, q)$, then $\pi \cap Q^{+}(5, q)$ is a singleton and so $\pi \notin \mathcal{U}$.

Suppose $\pi \cap \Pi$ is not contained in $Q^{-}(3, q)$. By the definition of H_{O} and Lemma 3.1 we know that $\pi \cap H_{O}=\emptyset$ if $\pi \cap \Pi$ is not contained in O and $\pi \cap H_{O}$ is an irreducible conic of π if $\pi \cap \Pi$ is contained in O. Moreover, in the latter case, we have that $\pi \cap H_{O}=$ $\pi \cap Q^{+}(5, q)$.

Lemma 3.23. If $q \geq 8$, then a plane π intersecting L^{*} in a singleton can never belong to \mathcal{U}.

Proof. Suppose to the contrary that $\pi \in \mathcal{U}$. Then $\pi \cap Q^{+}(5, q)=\pi \cap H_{O}$ is an irreducible conic \mathcal{C}_{π}.

The points of \mathcal{C}_{π} contained in Π are precisely the points of $(\pi \cap \Pi) \cap Q^{-}(3, q)$. As $\pi \cap \Pi$ is a singleton or a line, there are at most two such points.

Each point of $\mathcal{C}_{\pi} \backslash \Pi$ is by Lemma 3.1 and the definition of H_{O} contained in a plane of the form $\left\langle L^{*}, u\right\rangle$, where $u \in O \backslash Q^{-}(3, q)$. Such a point u necessarily is contained in the line $K:=\left\langle L^{*}, \pi\right\rangle \cap \Pi$. Now, the line K intersects O and hence also $O \backslash Q^{-}(3, q)$ in at most two points. If u is a point of K contained in $O \backslash Q^{-}(3, q)$, then in the three-dimensional subspace $\left\langle L^{*}, \pi\right\rangle$ the intersection of the two planes π and $\left\langle L^{*}, u\right\rangle$ is a line containing at most two points of the irreducible conic \mathcal{C}_{π}. We therefore see that there are at most $2 \cdot 2=4$ points in $\mathcal{C}_{\pi} \backslash \Pi$.

Altogether, we have $\left|\mathcal{C}_{\pi}\right| \leq 6$. But that is in contradiction with the fact that $\left|\mathcal{C}_{\pi}\right|=$ $q+1 \geq 9$.

Lemma 3.24. Suppose O is a nonclassical ovoid and $\pi \cap \Pi$ is disjoint from $\left(Q^{-}(3, q) \backslash\right.$ $O) \cup L^{*}$. Then $\pi \notin \mathcal{U}$.

Proof. Suppose to the contrary that $\pi \cap H_{O}=\pi \cap Q^{+}(5, q)$ is an irreducible conic \mathcal{C}_{π} of π. As π is disjoint from $Q^{-}(3, q) \backslash O$, we see that no point of \mathcal{C}_{π} is contained in Π. Let π^{\prime} be the projection of π from L^{*} to Π. By Lemma 3.1 and the definition of H_{O}, we then see that the projection $\mathcal{C}_{\pi}^{\prime}$ of \mathcal{C}_{π} from L^{*} on Π is an irreducible conic of π^{\prime} contained in $O \backslash Q^{-}(3, q)$. So, $O \cap \pi^{\prime}=\mathcal{C}_{\pi}^{\prime}$. But that is impossible. As O is a nonclassical ovoid of Π, we know by the main result of [2] that $O \cap \pi^{\prime}$ cannot be an irreducible conic.

Lemma 3.25. Suppose $q \geq 8$ and suppose $\pi \cap \Pi$ is disjoint from L^{*} and intersects $Q^{-}(3, q) \backslash O$ in two points. Then $\pi \notin \mathcal{U}$.

Proof. Suppose to the contrary that $\pi \in \mathcal{U}$. Then $\pi \cap Q^{+}(5, q)=\pi \cap H_{O}$ is an irreducible conic \mathcal{C}_{π} of π. Let x_{1} and x_{2} be the two points of $\pi \cap \Pi$ contained in $Q^{-}(3, q) \backslash O$. Then
$\pi \cap \Pi$ is a line $x_{1} x_{2}$. Let π^{\prime} be the plane of Π that arises as projection of π from L^{*} on Π, and let $\mathcal{C}_{\pi}^{\prime}$ be the irreducible conic of π^{\prime} that arises as projection of \mathcal{C}_{π} from L^{*} on Π. By Lemma 3.1 and the definition of H_{O}, we know that $\mathcal{C}_{\pi}^{\prime} \backslash\left\{x_{1}, x_{2}\right\}$ is a set of $q-1$ points of π^{\prime} contained in $O \backslash Q^{-}(3, q)$. As $q \geq 8$, these $q-1$ points extend in a unique way to a hyperoval \bar{O} of π^{\prime}, and \bar{O} coincides with $\mathcal{C}_{\pi}^{\prime}$ union its nucleus n. The two points of O not contained in $\mathcal{C}_{\pi}^{\prime} \backslash\left\{x_{1}, x_{2}\right\}$ are then contained in $\left\{x_{1}, x_{2}, n\right\}$, in contradiction with the fact that none of x_{1}, x_{2} belong to O.

Lemma 3.26. Suppose $\pi \in \mathcal{U}$ is disjoint from L^{*} and intersects $Q^{-}(3, q) \backslash O$ in a singleton $\{x\}$. Then $\pi \notin \mathcal{U}$.

Proof. Let π^{\prime} be the plane of Π that arises as projection of π from L^{*} on Π, and let $\mathcal{C}_{\pi}^{\prime}$ be the irreducible conic of π^{\prime} that arises as projection of \mathcal{C}_{π} from L^{*} on Π. By Lemma 3.1 and the definition of H_{O}, we know that $\mathcal{C}_{\pi}^{\prime} \backslash\{x\}$ is a set of q points of π^{\prime} contained in $O \backslash Q^{-}(3, q)$. As $q \geq 8$, these q points extend in a unique way to a hyperoval \bar{O} of π^{\prime}, and \bar{O} equals \mathcal{C}_{x}^{\prime} union its nucleus $\{n\}$. As $x \in Q^{-}(3, q) \backslash O$, we have $O \cap \pi^{\prime}=\left(\mathcal{C}_{x} \backslash\{x\}\right) \cup\{n\}$. So, x is the nucleus of the oval $O \cap \pi^{\prime}$ of π and all lines of π^{\prime} through x are tangent to O^{\prime} and hence also to $Q^{-}(3, q)$ by Lemma 3.7. We thus have $\pi^{\prime} \subseteq x^{\zeta}$. As also $L^{*} \subseteq x^{\zeta}$, we have $\pi \subseteq\left\langle L^{*}, \pi^{\prime}\right\rangle \subseteq x^{\zeta}$. But then every line of Π through x is either contained in $Q^{+}(5, q)$ or the singleton $\{x\}$. But that is impossible as $\pi \cap Q^{+}(5, q)$ is an irreducible conic of π.

For every $\pi \in \mathcal{U}$, let k_{π} denote the kernel of the irreducible conic $\pi \cap Q^{+}(5, q)$ of π. Let K denote the subspace of $\operatorname{PG}(5, q)$ generated by all points $k_{\pi}, \pi \in \mathcal{U}$.

Lemma 3.27. The subspace Π is contained in K.
Proof. Let π be a plane of the form $\left\langle L^{*}, x\right\rangle$, where $x \in O \backslash Q^{-}(3, q)$. Then $\Pi=\left(L^{*}\right)^{\zeta} \supseteq$ $\left\langle L^{*}, x\right\rangle^{\zeta}$ and so the kernel of the irreducible conic $\mathcal{C}_{x}=\left\langle L^{*}, x\right\rangle \cap Q^{+}(5, q)$ is contained in π, i.e. equal to x. So, K contains the subspace $\left\langle O \backslash Q^{-}(3, q)\right\rangle$. Now, $\left|O \backslash Q^{-}(3, q)\right|=$ $q^{2}+1-\left|O \cap Q^{-}(3, q)\right| \geq q^{2}+1-\frac{q^{2}-q}{2}=\frac{q^{2}+q+2}{2}>q+1$ by Lemma 3.4. implying that $\left\langle O \backslash Q^{-}(3, q)\right\rangle=\Pi$. So, K contains Π.

Lemma 3.28. Suppose K is 3-dimensional. Then $K \cap Q^{+}(5, q)$ is an elliptic quadric of type $Q^{-}(3, q)$ and so K^{ζ} is a line disjoint from K. Let X_{1} denote the set $K \cap H_{O}$ and let X_{2} denote the projection of $H_{O} \backslash K$ from K^{ζ} onto Π. Then $\Pi=K$ and $O=$ $\left(Q^{-}(3, q) \backslash X_{1}\right) \cup X_{2}$.

Proof. By Lemma 3.27, $K=\Pi$ and so $K \cap Q^{+}(5, q)$ is an elliptic quadric. We have $X_{1}=\Pi \cap H_{O}=Q^{-}(3, q) \backslash O$ and hence $Q^{-}(3, q) \backslash X_{1}=Q^{-}(3, q) \cap O$. By the definition of H_{O}, we also have that $X_{2}=O \backslash Q^{-}(3, q)$. So, $\left(Q^{-}(3, q) \backslash X_{1}\right) \cup X_{2}=O$.

Lemma 3.29. Suppose O is a nonclassical ovoid of $W(q)$. Then $K=\Pi$.
Proof. In view of Lemma 3.27, it suffices to show that each point $k_{\pi}, \pi \in \mathcal{U}$, is contained in Π. As O is a nonclassical ovoid, we have $q \geq 8$. The various lemmas above the imply
that there are two possible types of planes in \mathcal{U}, planes π_{1} through L^{*} and planes π_{2} contained in Π. For the former planes, we have already see in Lemma 3.27 that $k_{\pi_{1}} \in \Pi$. For the latter planes, it is trivial that $k_{\pi_{2}} \in \Pi$.

Lemma 3.30. Let O_{1} and O_{2} be two ovoids of $W(q)$ distinct from $Q^{-}(3, q)$. Then the following are equivalent:
(1) the hyperovals $H_{O_{1}}$ and $H_{O_{2}}$ are isomorphic;
(2) there exists an automorphism of Π stabilizing $Q^{-}(3, q)$ and mapping O_{1} to O_{2}.

Proof. Suppose there exists an automorphism θ of Π stabilizing $Q^{-}(3, q)$ and mapping O_{1} to O_{2}. Then θ extends to an automorphism $\bar{\theta}$ of $Q^{+}(5, q)$. It is clear that $\bar{\theta}$ maps $H_{O_{1}}$ and $H_{O_{2}}$.

Conversely, suppose that there exists an automorphism $\bar{\theta}$ of $\mathrm{PG}(5, q)$ stabilizing $Q^{+}(5, q)$ mapping $H_{O_{1}}$ to $H_{O_{2}}$. For every $i \in\{1,2\}$, let \mathcal{U}_{i} denote the set of all planes π of $\mathrm{PG}(5, q)$ satisfying the following property:
$\pi \cap Q^{+}(5, q)$ is an irreducible conic that is entirely contained in $H_{O_{i}}$.
For every $\pi \in \mathcal{U}_{i}$, let k_{π} denote the kernel of the irreducible conic $\pi \cap Q^{+}(5, q)$ of π. Let K_{i} denote the subspace of $\operatorname{PG}(5, q)$ generated by all points $k_{\pi}, \pi \in \mathcal{U}_{i}$. It is clear that $\bar{\theta}$ maps K_{1} to K_{2}. We distinguish two cases.
(1) Suppose $\operatorname{dim}\left(K_{1}\right)=\operatorname{dim}\left(K_{2}\right)=3$. By Lemma 3.28, we then know that $K_{1}=K_{2}=$ Π and that $\bar{\theta}$ stabilizes Π and that the restriction θ of θ to Π maps O_{1} to O_{2}.
(2) Suppose $\operatorname{dim}\left(K_{1}\right)=\operatorname{dim}\left(K_{2}\right)>3$. By Lemma 3.29, we would then know that O_{1} and O_{2} are classical ovoids of $W(q)$. But then the claim follows from Lemma 3.15 .

References

[1] A. Barlotti. Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. (3) 10 (1955), 498-506.
[2] M. R. Brown. Ovoids of $\mathrm{PG}(3, q), q$ even, with a conic section. J. London Math. Soc. (2) 62 (2000), 569-582.
[3] B. De Bruyn. On hyperovals of polar spaces. Des. Codes Cryptogr. 56 (2010), 183195.
[4] C. M. O'Keefe and T. Penttila. Ovoids of $\operatorname{PG}(3,16)$ are elliptic quadrics. J. Geom. 38 (1990), 95-106.
[5] C. M. O'Keefe and T. Penttila. Ovoids of $\operatorname{PG}(3,16)$ are elliptic quadrics. II. J. Geom. 44 (1992), 140-159.
[6] G. Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. (3) 10 (1955), 507-513.
[7] D. Pasechnik. Extending polar spaces of rank at least 3. J. Combin. Theory Ser. A 72 (1995), 232-242.
[8] J. A. Thas. Projective geometry over a finite field. pp. 295-347 in "Handbook of incidence geometry", North-Holland, Amsterdam, 1995.

