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1 Constructions of hyperovals of Q+(5, q), q even, from

quadratic sets of type (SC)

Let X be a quadratic set of type (SC) of Q+(5, q), q even. We then define the following
sets of points of Q+(5, q):

• A1 is the set of all points x ∈ X that are contained in a plane of type (S) with
respect to X;

• A2 is the set of all kernels of all conic intersections π∩X, where π is a plane of type
(C) with respect to X.

Note that A1 ⊆ X and A2 ∩X = ∅. Suppose the following hold:

(1) Every plane of Q+(5, q) through a point of A1 has type (S).

(2) Every plane π of Q+(5, q) through a point x ∈ A2 has type (C) and x is the kernel
of the irreducible conic π ∩X of π.

Note that A1 ⊆ X and A2 ∩X = ∅.

Lemma 1.1. No two points of A1 ∪ A2 are collinear in Q+(5, q).

Proof. It suffices to prove that no plane ofQ+(5, q) contains two points of A1∪A2. Suppose
to the contrary that π is a plane of Q+(5, q) containing two distinct points of A1 ∪ A2.

If π has type (S) with respect to X, then by properties (1) and (2), we know that
x1, x2 ∈ A1. As x1, x2 ∈ X ∩ π, we then know that |X ∩ π| ≥ 2, an obvious contradiction.

If π has type (C) with respect to X, then by properties (1) and (2), we know that
x1, x2 ∈ A2. Property (2) also implies that both x1 and x2 must then be equal to the
kernel of the irreducible conic π ∩X of π, again a contradiction.

Lemma 1.2. A1 ∪ A2 is an ovoid of Q+(5, q).

Proof. Let π be an an arbitrary plane of Q+(5, q). By Lemma 1.1, we need to prove that
(A1∪A2)∩π 6= ∅. If π has type (S) with respect to X, then π∩X is a singleton contained
in A1. If π ∩X is an irreducible conic of π, then the kernel of this conic belongs to A2.
In any case, we have (A1 ∪ A2) ∩ π 6= ∅.
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Lemma 1.3. (X \ A1) ∪ A2 is a hyperoval of Q+(5, q).

Proof. As there are planes of type (C), we have A2 6= ∅ and hence also (X \A1)∪A2 6= ∅.
Let π be an arbitrary plane of Q+(5, q). If π is a plane of type (S) containing a unique

point of A1, then (π ∩ X) \ A1 = π ∩ A2 = ∅ by Lemma 1.1, and so π is disjoint from
(X \ A1) ∪ A2. If π is a plane of type (C), then X ∩ π is an irreducible conic of π and
Lemma 1.1 implies that π ∩ A1 = ∅ and π ∩ A2 is a singleton consisting of the kernel k
of the irreducible conic X ∩ π of π. We then have that (X \ A1) ∪ A2 intersects π in the
hyperoval (X ∩ π) ∪ {k} of π.

Lemma 1.4. We have |A2| = q2+1−|A1|, |X| = (q2+1)(q+1)−q|A1| and |(X\A1)∪A2| =
(q2 + 1− |A1|)(q + 2).

Proof. Note that through each point of Q+(5, q) there are exactly 2(q + 1) planes of
Q+(5, q). Property (1) thus implies that the total number of planes of type (S) is equal
to 2(q + 1)|A1|. Hence, the total number of planes of type (C) is equal to 2(q + 1)(q2 +
1)− 2(q + 1)|A1| = 2(q + 1)(q2 + 1− |A1|). By property (2), we then know that

|A2| =
1

2(q + 1)
· 2(q + 1)(q2 + 1− |A1|) = q2 + 1− |A1|.

We then also find that

|X| = 1

2(q + 1)

(
2(q+ 1)|A1| · 1 + 2(q+ 1)(q2 + 1− |A1|) · (q+ 1)

)
= (q2 + 1)(q+ 1)− q|A1|

and
|(X \ A1) ∪ A2| = |X| − |A1|+ |A2| = (q2 + 1− |A1|)(q + 2).

2 A family of hyperovals of size q2(q + 2) of Q+(5, q), q

even

Let V be a 6-dimensional vector space over the finite field Fq = GF(q), q even, and Q
a quadratic form on V such that the set of all points 〈v̄〉 of PG(V ) for which Q(v̄) = 0
is a hyperbolic quadric Q+(5, q) in PG(5, q) := PG(V ). Let B : V × V → Fq denote
the bilinear form associated with Q, i.e. B(v̄1, v̄2) = Q(v̄1 + v̄2) − Q(v̄1) − Q(v̄2) for all
v̄1, v̄2 ∈ V . With B, there is associated a symplectic polarity ζ of PG(5, q). For every
point x ∈ Q+(5, q), xζ is the tangent hyperplane Tx in the point x ∈ Q+(5, q). This
tangent hyperplane Tx intersects Q+(5, q) in a cone of type xQ+(3, q). For every line
L ⊆ Q+(5, q), Lζ intersects Q+(5, q) in the union of two planes through L. So, there
cannot be 3-dimensional subspaces of PG(5, q) that meet Q+(5, q) in a single line K as
this 3-dimensional subspace would otherwise need to coincide with Kζ , but as said above
Kζ ∩Q+(5, q) is the union of two planes.
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Now, let Q−(3, q) be an elliptic quadric obtained by intersecting Q+(5, q) with a 3-
dimensional subspace α. Then αζ is a line. This line is disjoint from Q+(5, q) as for every
point y ∈ αζ ∩ Q+(5, q), we would have Q−(3, q) ⊆ α ⊆ yζ = Ty, which is impossible as
said above.

Let p∗ = 〈v̄∗〉 be an arbitrary point of Q−(3, q) and for every point 〈v̄〉 of PG(V )\Tp∗ ,
we define

A(p) := B(v̄∗, v̄)q−3Q(v̄) ∈ Fq.

Note that this is well-defined as

B(v̄∗, λv̄)q−3Q(λv̄) = λq−1B(v̄∗, v̄)Q(v̄) = B(v̄∗, v̄)Q(v̄)

for all (λ, v̄) ∈ F∗q × V .
Now, consider a point p ∈ Q+(5, q) \ Q−(3, q) not collinear with p∗ on the quadric

Q+(5, q), i.e. not contained in the tangent hyperplane Tp∗ at p∗ ∈ Q+(5, q). As the line
αζ is disjoint from Q+(5, q), we have p 6∈ αζ and so α is not contained in pζ = Tp. So,
Tp intersects α in a plane βp not containing p∗. If βp ⊆ α is a tangent plane to the
elliptic quadric Q−(3, q) with tangency point u, then the 3-dimensional subspace 〈p, βp〉
would intersect Q+(5, q) in the line pu, an impossibility. So, β intersects Q−(3, q) in an
irreducible conic Cp of βp with kernel kp. The tangent lines through kp contained in α are
precisely the lines through kp contained in βp. As p∗ 6∈ βp, kpp∗ is not a tangent line and
so kp 6∈ Tp∗ . We then define B(p) := A(kp).

For every λ ∈ F∗q, let Hλ be the set (Q−(3, q) \ {p∗}) ∪ Gλ, where Gλ is the set of all
points p ∈ Q+(5, q) \ (Q−(3, q) ∪ Tp∗) for which B(p) = λ. We prove the following.

Theorem 2.1. For every λ ∈ F∗q, Hλ is a hyperoval of size q2(q+ 2) of Q+(5, q). In fact,
if γ is a plane of Q+(5, q) then γ ∩ Hλ = ∅ if p∗ ∈ γ and γ ∩ Hλ is a hyperoval of γ if
p∗ 6∈ γ.

Proof. Let γ be a plane of Q+(5, q) through p∗. Then γ is disjoint from both Q−(3, q)\{p∗}
and Gλ and so is disjoint from Hλ.

Let γ be a plane of Q+(5, q) not containing p∗. Then γ intersects Q−(3, q) \ {p∗} in a
point x. For every p ∈ γ \ {x}, the irreducible conic Cp = Tp ∩α∩Q−(3, q) of βp = Tp ∩α
contains x and so the kernel kp of this irreducible conic is contained in the tangent plane
πx through x to the elliptic quadric Q−(3, q). We show that the map

p 7→ kp if p ∈ γ \ {x}, x 7→ x,

defines an isomorphism between the planes γ and πx. This follows from the following
observations:

(i) For every y ∈ γ, Ty contains γ. The map y 7→ Ty defines an isomorphism between
the projective plane γ and the dual projective plane of the quotient projective space
PG(5, q)γ (whose points and lines are the 3-dimensional and 4-dimensional subspaces
of PG(5, q) through γ).
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(ii) Because of (i), the map y 7→ Ty ∩ α defines an isomorphism between the projective
plane γ and the dual projective plane of the quotient space αx (whose points and
lines are the lines and planes of α through x).

(iii) The map which associates with each tangent plane ω ⊆ α with respect to Q−(3, q)
its tangency point and with each secant plane ω′ ⊆ α with respect to Q−(3, q) the
kernel of the irreducible conic ω′ ∩ Q−(3, q) is induced by a duality of α (which is
even a symplectic polarity of α). This duality maps πx to x.

Now, let G′λ denote the set of all points p ∈ πx \ {x} for which A(p) = λ. In view of the
above isomorphism between γ and πx, we need to prove that {x} ∪ G′λ is a hyperoval of
πx, or equivalently |L ∩ G′λ| = 1 for every line L of πx through x and |K ∩ G′λ| ∈ {0, 2}
for every line K of πx not containing x.

The line L intersects Tp∗ in a point 〈w̄2〉. If we put x = 〈w̄1〉, then L \ ({x} ∪ Tp∗)
consists of all points of the form 〈w̄2 + µw̄1〉 with µ ∈ F∗q. Note that

B(v̄∗, w̄2 + µw̄1)q−3Q(w̄2 + µw̄1) = B(v̄∗, w̄1)q−3µq−3Q(w̄2) =
Q(w̄2)B(v̄∗, w̄1)q−3

µ2
.

As every element of Fq is a square and Q(w̄2)B(v̄∗, w̄1)q−3 6= 0, there is a unique µ ∈ F∗q
for which Q(w̄2)B(v̄∗,w̄1)q−3

µ2
= λ.

Again the line K contains a point 〈w̄2〉 of Tp∗ , and we denote by 〈w̄1〉 any other point
of K. As πx ∩Q+(5, q) = {x}, B(w̄1, w̄2) 6= 0. The points of K \ Tp∗ are then the points
〈w̄1 + µw̄2〉 with µ ∈ Fq. Note then that

B(v̄∗, w̄1 + µw̄2)q−3Q(w̄1 + µw̄2) = B(v̄∗, w̄1)q−3(Q(w̄1) + µB(w̄1, w̄2) + µ2Q(w̄2)).

This value is equal to λ if and only if

Q(w̄2)µ2 +B(w̄1, w̄2)µ+Q(w̄1)− λ

B(v̄∗, w̄1)q−3
= 0.

As B(w̄1, w̄2) 6= 0 and Q(w̄2) 6= 0, this equation in µ ∈ Fq has 0 or 2 solutions.
Since every plane of Q+(5, q) intersects Hλ in either the empty set or a hyperoval of

that plane, Hλ must be a hyperoval of Q+(5, q).
As there are 2(q + 1) planes of Q+(5, q) disjoint from Hλ and 2q2(q + 1) planes of

Q+(5, q) meeting Hλ in exactly q + 2 points, the fact that each point of Q+(5, q) is
contained in 2(q + 1) planes of Q+(5, q) then implies that

|Hλ| =
2(q + 1) · 0 + 2q2(q + 1) · (q + 2)

2(q + 1)
= q2(q + 2).
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Some special cases

(1) The case q = 2. Then Fq = F2 = {0, 1} and λ = 1. In this case, H1 = (Q−(3, q) \
{p∗}) ∪ G1 is precisely the complement of Tp∗ ∩ Q+(5, 2). This is obviously a hyperoval
of Q+(5, 2). In fact, the hyperovals of Q+(5, q) are precisely the complements of the
geometric hyperplanes of Q+(5, 2), and there are two such geometric hyperplanes, the
intersections of Q+(5, 2) with the tangent hyperplanes and the intersections of Q+(5, 2)
with the nontangent hyperplanes.

(2) The case q = 4. Then we obtain a hyperoval of size 96 of Q+(5, 4). This hyperoval
was found in [7] by means of a backtrack search. A computer free construction was left
as an open problem in [7].

We now give an algebraic description of the hyperovals. Let ω ∈ Fq such that the
polynomial X2+ωX+1 ∈ Fq[X] is irreducible. We choose a coordinate system in PG(5, q)
such that Q+(5, q) consists of all points (X1, X2, X3, X4, X5, X6) satisfying X1X2+X3X4+
X5X6 = 0. We suppose that Q−(3, q) is the elliptic quadric obtained by intersecting
Q+(5, q) with the 3-dimensional subspace α with equations X5 = X6, X4 = X3 + ωX5.
Let p∗ be the point (1, 0, 0, 0, 0, 0) of Q−(3, q). If p = (y1, y2, y3, y4, y5, y6) is a point of
Q+(5, q) \ (Q−(3, q) ∪ Tp∗), then Tp ∩ α has equations

X6 = X5, X4 = X3 + ωX5,

y2X1+y1X2+y4X3+y3X4+y6X5+y5X6 = y2X1+y1X2+(y3+y4)X3+(y5+y6+ωy3)X5 = 0.

The point p′ = (ωy1, ωy2, y5 + y6 + ωy3, y5 + y6 + ωy4, y3 + y4, y3 + y4) belongs to Tp ∩ α.
Moreover, (p′)ζ ∩ α has equations

X6 = X5, X4 = X3 + ωX5,

ωy1X2 + ωy2X1 + (y5 + y6 + ωy3)X4 + (y5 + y6 + ωy4)X3 + (y3 + y4)X6 + (y3 + y4)X5

= ω
(
y2X1 + y1X2 + (y3 + y4)X3 + (y5 + y6 + ωy3)X5

)
= 0.

So, Tp ∩ α = Tp′ ∩ α and p′ = kp.
We thus see that Hλ consists of all points (X1, X2, . . . , X6) of Q+(5, q) satisfying

• X6 = X5 and X4 = X3 + ωX5, with exception of (1, 0, 0, 0, 0, 0),

• (X5 +X6, X3 +X4 +ωX5) 6= (0, 0), X2 6= 0 and (ωX2)q−3((ωX1)(ωX2)+ (X5 +X6 +
ωX3)(X5 +X6 + ωX4) + (X3 +X4)2) = λ.

The latter equation is equivalent with

λω2X2
2 +X3

3 +X2
4 +X2

5 +X2
6 + ω2X5X6 + ω(X3 +X4)(X5 +X6) = 0. (1)

The hyperoval Hλ is thus obtained from a quadratic set of type (SC) by adding an elliptic
quadric Q−(3, q) and removing a point p∗. In fact, if we denote by X the quadratic set of
Q+(5, q) that arises by intersecting Q+(5, q) with the quadric with equation (1), then by
the above, we know that the following hold:
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• Every plane of Q+(5, q) through p∗ intersects X in {p∗}.

• Every plane of Q+(5, q) not containing p∗ intersects X in an irreducible conic. More-
over, the kernels of all the irreducible conics that arise in this way are precisely the
points of Q−(3, q) \ {p∗}.

We thus see that X is a quadratic set of type (SC) satisfying the properties (1) and (2)
of the previous section. Using the notation of the previous section, we have

A1 = {p∗},
A2 = Q−(3, q) \ {p∗}.

The hyperoval thus arises as described in the previous section.

3 Constructions of hyperovals of Q+(5, q), q even, from

ovoids of W (q)

Let Q+(5, q) be a hyperbolic quadric in PG(5, q), q even. Let ζ be the symplectic polarity
naturally associated to Q+(5, q).

Let Π be a 3-dimensional subspace of PG(5, q) intersecting Q+(5, q) in an elliptic
quadric Q−(3, q), and let p be a point of Q−(3, q).

Let W (q) denote the symplectic generalized quadrangle whose points are the points
of Π and whose lines are the lines of Π that are tangent to Q−(3, q). Let O be an ovoid
of W (q) distinct from Q−(3, q).

For every point x of Π, denote by πx the plane of Π through x containing all lines of
W (q) through x. If x 6∈ Q−(3, q), then πx intersects Q−(3, q) and hence also Q+(5, q) in
an irreducible conic, implying that πζx also intersects Q+(5, q) in an irreducible conic of
πζx. We denote this irreducible conic of πζx by Cx. We also define:

HO :=
( ⋃
x∈O\Q−(3,q)

Cx
)
∪
(
Q−(3, q) \O

)
.

Put L∗ := Πζ . Then Π and L∗ are disjoint, as well as Q+(5, q) and L∗. There are
two types of planes through L∗: planes intersecting Π in a point of Q−(3, q) and planes
intersecting Π in a point not belonging to Q−(3, q). The former planes intersect Q+(5, q)
in a singleton and the latter planes intersect Q+(5, q) in an irreducible conic.

Lemma 3.1. For every point x of Π \Q−(3, q), we have Cx = 〈L∗, x〉 ∩Q+(5, q).

Proof. Since πx ⊆ xζ , we have x ∈ πζx. As πx ⊆ Π, we have L∗ = Πζ ⊆ πζx. So, πζx = 〈L∗, x〉
and Cx = 〈L∗, x〉 ∩Q+(5, q).

Theorem 3.2. HO is a hyperoval of Q+(5, q) containing ((q2 + 1)−|O∩Q−(3, q)|)(q+ 2)
points. The planes of Q+(5, q) that are disjoint from HO are precisely the planes containing
a point of O ∩Q−(3, q).
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Proof. The proof will happen in several steps.

Step 1: If x ∈ O \ Q−(3, q) and y ∈ Cx, then the tangent hyperplane Ty at the point y
with respect to Q+(5, q) intersects Π in the plane πx.
Proof. Since y ∈ πζx, we have πx ⊆ yζ = Ty. As Ty ∩Q+(5, q) is a cone of type yQ+(3, q)
and Π ∩ Q+(5, q) = Q−(3, q), the hyperplane Ty cannot contain Π and so must intersect
Π in the plane πx.

Step 2: For every x ∈ O \Q−(3, q), Cx is disjoint from Q−(3, q).
Proof. The irreducible conic Cx is contained in the plane 〈L∗, x〉 and 〈L∗, x〉 intersects
Π in the point x which does not belong to Q−(3, q).

Step 3: If x ∈ O \Q−(3, q) and y ∈ Cx, then Ay := Ty ∩Π is a plane of Π that is secant
with respect to Q−(3, q) and the kernel of the irreducible conic Ay ∩ Q−(3, q) coincides
with x.
Proof. By Step 1, we know that Ay = πx. We already know that πx ∩ Q−(3, q) is an
irreducible conic having x as kernel.

Step 4: If x1 and x2 are two distinct points of O \Q−(3, q), then Cx1 and Cx2 are disjoint.
Proof. If y ∈ Cx1 ∩ Cx2 , then by Step 3, both x1 and x2 need to be equal to the kernel
of the irreducible conic Ay ∩Q−(3, q) of Ay.

Step 5: We have |H| = ((q2 + 1)− |O ∩Q−(3, q)|)(q + 2).
Proof. By Steps 2 and 4, we know that |H| = |O \Q−(3, q)| · (q + 1) + |Q−(3, q) \O| =
((q2 + 1)− |O ∩Q−(3, q)|)(q + 2).

Step 6: Every plane π of Q+(5, q) containing a point p of O ∩ Q−(3, q) is disjoint from
HO.
Proof. As p ∈ π ∩O ∩Q−(3, q), the plane π is disjoint from Q−(3, q) \O.

Suppose y ∈ π ∩ Cx for some point x ∈ O \Q−(3, q). The plane πx cannot contain the
point p as otherwise the line px of W (q) would contain two points of O, namely p and
x. Now, {p} ⊆ π ⊆ Ty and Ty intersects Π in the plane πx which does not contain p, an
obvious contradiction.

Step 7: No line L of Q+(5, q) disjoint from Q−(3, q) contains more than two points of
HO.
Proof. If this were not the case, then the line 〈L∗, L〉 of Π would contain at least three
points of O by Lemma 3.1. This is not possible as a line of W (q) contains exactly one
point of O and a hyperbolic line of W (q) contains either 0 or 2 points.

Step 8: Let L be a line of Q+(5, q) containing a (unique) point u of Q−(3, q) \ O. Then
L \ {u} contains a unique point of

⋃
x∈O\Q−(3,q) Cx.

Proof. The 3-dimensional subspace 〈L∗, L〉 intersects Π in a line K through u. As uζ

contains L and L∗, it also contains K and so K is a line of W (q) containing a unique
point x of O\Q−(3, q). The unique point in the intersection 〈L∗, u〉∩L is then by Lemma
3.1 the unique point in L \ {u} contained in

⋃
x∈O\Q−(3,q) Cx.

The following step completes in combination with Step 6 the proof of the theorem.
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Step 9: Every plane π of Q+(5, q) containing a point of Q−(3, q) \O intersects HO in a
hyperoval of π.
Proof. By Step 8, we know that |π ∩ HO| = q + 2. By Steps 7 and 8, we know that
every line of π intersects HO in at most two points. So, π ∩HO must be a hyperoval of
π.

Theorem 3.3. The set

X :=
( ⋃
x∈O\Q−(3,q)

Cx
)
∪
(
O ∩Q−(3, q)

)
is a quadratic set of type (SC) satisfying the properties (1) and (2) of Section 1.

Proof. Suppose π is a plane of Q+(5, q) containing a (necessarily unique) point of O ∩
Q−(3, q). By Step 6 in the proof of Theorem 3.2, we know that π is disjoint from⋃
x∈O\Q−(3,q) Cx and intersects O ∩Q−(3, q) in a singleton.

Suppose π is a plane of Q+(5, q) containing a (necessarily unique) point of Q−(3, q)\O.
By Step 9 in the proof of Theorem 3.2, we know that π is disjoint from O ∩ Q−(3, q)
and intersects

⋃
x∈O\Q−(3,q) Cx in an irreducible conic. Moreover, the kernels of all these

irreducible conics are precisely the points of Q−(3, q) \O.
We thus see that X is a quadratic set of type (SC) satisfying the properties (1) and

(2) of Section 1. In fact, the set A1 defined there is precisely the set O∩Q−(3, q) and the
set A2 defined there is exactly the set Q−(3, q) \O.

Remark. By Section 1, we know that the set (X \ A1) ∪ A2 is a hyperoval of Q+(5, q).
This hyperoval coincides with HO.

Lemma 3.4. We have |O ∩Q−(3, q)| ≤ q2−q
2

.

Proof. By Lemma 3.1 of [3], any hyperoval ofQ+(5, q) contains at least (q+2)(q2+q+2)
2

points.

Applying this here to the hyperoval HO of Q+(5, q), we find that |O ∩ Q−(3, q)| ≤ q2−q
2

by Theorem 3.2.

Some properties

Again, let q = 2h be an even prime power. For every x ∈ Fq, we define Tr(x) :=

x+x2 + · · ·+x2h−1
. Note that for δ ∈ Fq, the polynomial X2 +X + δ is reducible over Fq

if and only if Tr(δ) = 0. Note also that as q is even, every element x ∈ Fq has a unique
square root in Fq, which we will denote by

√
x.

Let Ω denote the set of all quadratic homogeneous polynomials in the variables X1,
X2, X3 and X4. For every matrix A ∈ GL(4,F), let ϕA be the permutation of Ω defined
by

f(X1, X2, X3, X4) 7→ f(X ′1, X
′
2, X

′
3, X

′
4),

where [X ′1X
′
2X

′
3X

′
4] := A · [X1X2X3X4]T .
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Lemma 3.5. Let δ, b1, b2 ∈ F∗q with Tr(δ) = 1, Tr(b1) = Tr(b2) = 0 and b1 6= b2. Then
there exists no A ∈ GL(4,F) such that ϕA maps X1X2 + X2

3 + X3X4 + δX2
4 to X1X2 +

X2
3 +X3X4 +δX2

4 and X1X2 +X2
3 +X3X4 +(δ+b1)X2

4 to X1X2 +X2
3 +X3X4 +(δ+b2)X2

4 .

Proof. The map ϕA must map b1X
2
4 to b2X

2
4 and thus X4 to

√
b2
b1
X4. It follows that for

every η ∈ Fq, ϕA maps X1X2 +X2
3 +X3X4 +(δ+η)X2

4 to X1X2 +X2
3 +X3X4 +(δ+η b2

b1
)X2

4 .
Since ϕA fixes the Witt indices of the nondegenerate quadratic forms in Ω, we must have
that the polynomials Tr(η) and Tr(η b2

b1
) in the variable η ∈ Fq have the same 1

2
log2(q)

(mutually distinct) roots. But as 0 6= b1 6= b2 6= 0, these two polynomials of degree
1
2

log2(q) are distinct and so they cannot have the same roots.

Lemma 3.6. Let δ, b1, b2 ∈ F∗q with Tr(δ) = 1, Tr(b1) = Tr(b2) = 0 and b1 6= b2. Then
there exists no A ∈ GL(4,F) such that ϕA maps X1X2 +X2

3 +X3X4 + δX2
4 to µ1(X1X2 +

X2
3 +X3X4+δX2

4 ) and X1X2+X2
3 +X3X4+(δ+b1)X2

4 to µ2(X1X2+X2
3 +X3X4+(δ+b2)X2

4 )
for some µ1, µ2 ∈ F∗q.

Proof. Note that the map ϕ√µ·I with µ ∈ F∗q maps each f ∈ Ω to µf . So, without
loss of generality, we may suppose that µ1 = 1. Put µ := µ2. The map ϕA then maps
b1X

2
4 = (

√
b1X4)2 to (µ + 1)(X1X2 + X2

3 + X3X4) + δX2
4 + µ(δ + b2)X2

4 . The latter
polynomial must thus be a square of a linear expression in X1, X2, X3 and X4. This is
only possible when µ = 1. We are then again in the same situation as in the previous
lemma.

Lemma 3.7. Let O1 and O2 be two ovoids of PG(3, q), q even. Let Qi with i ∈ {1, 2}
denote the symplectic generalized quadrangle associated to Oi, i.e. the points of Qi are
the points of PG(3, q) and the lines of Qi are the lines of PG(3, q) intersecting Oi in a
singleton, with incidence being containment. The lines of Qi are those lines of PG(3, q)
that are totally isotropic with respect to a certain symplectic polarity ζi. The following are
then equivalent:

(1) ζ1 = ζ2;

(2) Q1 = Q2;

(3) O1 is an ovoid of Q2;

(4) O2 is an ovoid of Q1.

Proof. The lines of Qi, i ∈ {1, 2}, are precisely those lines of PG(3, q) that are totally
isotropic with respect to ζi. So, if ζ1 = ζ2, then Q1 = Q2.

If x is a point of PG(3, q), then the lines of Qi, i ∈ {1, 2}, through x are precisely
the lines through x contained in xζi . So, if Q1 = Q2, then xζ1 = xζ2 for every point x of
PG(3, q), i.e. ζ1 = ζ2.

We thus see that (1) and (2) are equivalent.
If O1 is an ovoid of Q2, then every line of Q2 intersects O1 in a singleton and so is

a line of Q1. As both Q1 and Q2 have exactly (q + 1)(q2 + 1) lines, we then see that
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Q1 = Q2. Conversely, if Q1 = Q2, then every line of Q2 is a line of Q1 and so meets O1

in a singleton, implying that O1 is an ovoid of Q2.
We thus see that (2) and (3) are equivalent. In a similar way, one can show that (2)

and (4) are equivalent.

Lemma 3.8. Let Q1 and Q2 be two distinct elliptic quadrics in PG(3, q), q even, such that
Q2 is an ovoid of the symplectic generalized quadrangle associated to Q1. Then |Q1 ∩Q2|
is either 1 or q + 1.

Proof. Suppose PG(3, q) = PG(V ), where V is a 4-dimensional vector space over Fq.
Choose an ordered basis (ē1, ē2, ē3, ē4) in V and denote the coordinates of a generic point
of PG(3, q) with respect to this basis by (X1, X2, X3, X4). The quadric Q1 then consists
of all points of PG(3, q) satisfying

∑
1≤i≤j≤4 aijXiXj = 0, where the aij’s are certain

elements in Fq. As the symplectic polarities associated to Q1 and Q2 are the same by
Lemma 3.7, there exist b1, b2, b3, b4 ∈ Fq such that Q2 has equation

∑
1≤i≤j≤4 aijXiXj +

b2
1X

2
1 + b2

2X
2
2 + b2

3X
2
3 + b2

4X
2
4 = 0 with respect to the same reference system. As Q1 6= Q2,

we have (b1, b2, b3, b4) 6= (0, 0, 0, 0). The common points of Q1 and Q2 are now precisely
the points of Q1 contained in the plane with equation b1X1 +b2X2 +b3X3 +b4X4 = 0. This
plane intersects Q1 in either a singleton or an irreducible conic, implying that |Q1∩Q2| ∈
{1, q + 1}.

Lemma 3.9. Let Q be an elliptic quadric in PG(3, q), q even, and denote by W (q) the
symplectic generalized quadrangle associated to Q. Let Qi with i ∈ {1, q + 1} denote the
set of all elliptic quadrics in PG(3, q) that are ovoids of W (q) and intersect Q in exactly
i points. Let G denote the stabilizer of Q inside PΓL(3, q). Then the following hold:

• G acts transitively on the elements of Q1;

• the number of orbits of G on Qq+1 equals the number of orbits of Aut(Fq) on the set
of elements in F∗q with trace equal to 0.

Proof. Let δ be an element in Fq whose trace is equal to 1. Let Q1 and Q2 be two elements
in Qi. As G acts transitively on the set of tangent planes with respect to Q and the set
of secant planes with respect to Q, we may suppose that Q1 ∩Q = Q2 ∩Q = π ∩Q for a
certain plane π of PG(3, q) which is a tangent plane if i = 1 and a secant plane if i = q+1.

Suppose first that i = 1. Then we can take a reference system with respect to which
Q has equation X1X2 + X2

3 + X3X4 + δX2
4 = 0 and π has equation X1 = 0. Since the

symplectic polarities associated to Q, Q1 and Q2 are the same, there exist b2
1, b

2
2 ∈ F∗q such

that Qi with i ∈ {1, 2} has equation b2
iX

2
1 + X1X2 + X2

3 + X3X4 + δX2
4 = 0. Now, the

map (X1, X2, X3, X4) 7→ ( b1
b2
X1,

b2
b1
X2, X3, X4) belongs to G and maps Q1 to Q2.

Suppose next that i = q + 1. Then we can take a reference system with respect to
which Q has equation X1X2 +X2

3 +X3X4 +δX2
4 = 0 and π has equation X4 = 0. Since the

symplectic polarities associated to Q, Q1 and Q2 are the same, there exist b1, b2 ∈ F∗q whose
trace is 0 such that Qi with i ∈ {1, 2} has equation X1X2 +X2

3 +X3X4 + (δ+ bi)X
2
4 = 0.

Let τ ∈ Aut(Fq). Note that if (X1, X2, X3, X4) satisfies X1X2 +X2
3 +X3X4 +δX2

4 = 0,
then (Xτ

1 , X
τ
2 , X

τ
3 , X

τ
4 ) satisfies X1X2 +X2

3 +X3X4 + δτX2
4 = 0. As Tr(δ+ δτ ) = 0, there
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exists a b ∈ Fq such that b2+b = δ+δτ . Then X1X2+(X3+bX4)2+(X3+bX4)X4+δτX2
4 =

X1X2 + X2
3 + X3X4 + δX2

4 and X1X2 + (X3 + bX4)2 + (X3 + bX4)X4 + (δτ + bτ1)X2
4 =

X1X2 + X2
3 + X3X4 + (δ + bτ1)X2

4 . So, if b1, b2 are elements of Fq with trace 0, then by
Lemma 3.6 and the above there exists an automorphism of PG(3, q) with associated field
automorphism τ stabilizing Q and mapping X1X2 + X2

3 + X3X4 + (δ + b1)X2
4 = 0 to

X1X2 + X2
3 + X3X4 + (δ + b2)X2

4 = 0 if and only if b2 = bτ1. The second claim of the
lemma now follows.

Examples:

• if q = 2, then Q3 is empty;

• if q ∈ {4, 8}, then G acts transitively on the elements of Qq+1;

• if q = 16, then G has three orbits on Q17.

The case where O is a classical ovoid of W (q)

For certain values of q even, we know that all ovoids of W (q) are classical, i.e. being an
elliptic quadric of the ambient projective space of W (q).

Lemma 3.10. If q ∈ {2, 4, 16}, then every ovoid of W (q) is classical.

Proof. Proofs of these facts are contained in the papers [1, 4, 5, 6].

In this case, we have |O ∩ Q−(3, q)| ∈ {1, q + 1} by Lemma 3.8 and so |HO| ∈ {q2(q +
2), (q2 − q)(q + 2)} by Theorem 3.2.

Suppose first that q = 2. Then by the above (Q3 6= ∅), we know that the case
|O ∩ Q−(3, q)| = q + 1 cannot occur. So, we then have that |HO| = q2(q + 2) = 16. For
q = 2, we also know that every hyperoval of Q+(5, 2) is the complement of a hyperplane
of Q+(5, 2). The complement of a Q(4, 2)-hyperplane of Q+(5, 2) contains 35 − 15 = 20
points, while the complement of a pQ+(3, 2)-hyperplane of Q+(5, 2) contains 35−19 = 16
points. So, in this case, we know that HO is the complement of a tangent hyperplane
intersection of Q+(5, 2). We can also derive this in another way.

As |O ∩Q−(3, q)| = 1, the intersection O ∩Q−(3, q) is a singleton {p}. Every plane of
Q+(5, q) containing p is disjoint from HO. On the other hand, a plane π of Q+(5, q) not
containing p intersects HO in a hyperoval of π, necessarily equal to π \ p⊥. So, HO must
be the complement of the quadric of type pQ+(3, 2) that arises by intersecting Q+(5, 2)
with the tangent hyperplane at the point p. Combining this with Lemma 3.10, we thus
find.

Lemma 3.11. • Up to isomorphism, there is a unique hyperoval of Q+(5, 2) of the
form HO, where O is a classical ovoid of W (q).

• Up to isomorphism, there is a unique hyperoval of Q+(5, 2) of the form HO, where
O is an ovoid of W (q).
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Suppose next that q = 4. The both the cases |O∩Q−(3, q)| = 1 and |Q∩Q−(3, q)| = q+1
can occur, giving rise to hyperovals of Q+(5, q) with respective sizes q2(q + 2) = 96 and
(q2 − q)(q + 2) = 72. These two hyperplanes were already obtained in the paper of
Pasechnik [7] by means of computer backtrack searches. By the above and Lemma 3.10,
we then know that the following hold.

Lemma 3.12. • Up to isomorphism, there are two hyperovals of Q+(5, q) of the form
HO, where O is a classical ovoid of W (q).

• Up to isomorphism, there are two hyperovals of Q+(5, q) of the form HO, where O
is an ovoid of W (q).

A hyperoval of PG(2, q) with q even is called regular if it consists of an irreducible conic
union its nucleus. From now on, we suppose that q ≥ 8.

Lemma 3.13. If H is a regular hyperoval of PG(2, q), q even, then there exists a unique
point p ∈ H such that H \ {p} is an irreducible conic.

Proof. By the definition of the notion of a regular hyperoval, we know that there exists at
least one such point p. Suppose H \ {p1} and H \ {p2} are irreducible conics of PG(2, q)
for two points p1, p2 ∈ H. Note that an irreducible conic of PG(2, q), q even, is uniquely
determined by five of its points. As |(H \ {p1}) ∩ (H \ {p2})| ≥ q ≥ 5, we then have that
H \ {p1} = H \ {p2}, i.e. p1 = p2.

Lemma 3.14. Let O be a classical ovoid of W (q) distinct from Q−(3, q) and let π be a
plane of Q+(5, q) intersecting HO in a hyperoval of π. Then π∩HO is a regular hyperoval
of π. Moreover, the unique point p of π ∩H0 for which (π ∩HO) \ {p} is an irreducible
conic belongs to Q−(3, q) \O ⊆ π.

Proof. As π ∩ H0 is a hyperoval of π, π intersects Q−(3, q) \ O in a singleton {p}. By
Lemma 3.1 and the definition of HO, the projection A of (π ∩ HO) \ {p} from L∗ on Π
is contained in O \ Q−(3, q) and so the plane 〈L∗, π〉 ∩ Π intersects O in the irreducible
conic A. It follows that (π ∩HO) \ {p} itself must also be an irreducible conic of π. The
kernel of this irreducible conic necessarily coincides with p ∈ Q−(3, q) \O ⊆ Π.

Lemma 3.15. Let O1 and O2 be two classical ovoids of W (q) distinct from Q−(3, q).
Then the following are equivalent:

(1) the hyperovals HO1 and HO2 are isomorphic;

(2) there exists an automorphism of Π stabilizing Q−(3, q) mapping O1 to O2.

Proof. Suppose there exists an automorphism θ of Π stabilizing Q−(3, q) and mapping
O1 to O2. Then θ extends to an automorphism θ of Q+(5, q). It is clear that θ maps HO1

and HO2 .
Conversely, suppose that there exists an automorphism θ of PG(5, q) stabilizingQ+(5, q)

mapping HO1 to HO2 . For every i ∈ {1, 2}, let Ωi denote the set of all planes π of
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Q+(5, q) intersecting HOi
in a hyperoval of π. For every π ∈ Ωi, let kπ denote the

unique point of π ∩ HOi
for which (π ∩ HOi

) \ {kπ} is an irreducible conic of π. Then
{kπ | π ∈ Ωi} is a set of |Q−(3, q) \ Oi| points of π. By Lemma 3.4, we know that

|Q−(3, q) \ Oi| ≥ q2 + 1− q2−q
2

= q2+q+2
2

> q + 1. So, the set {kπ |π ∈ Ωi} must generate

Π. Since θ maps Ω1 to Ω2, it maps the set {kπ |π ∈ Ω1} to the set {kπ |π ∈ Ω2} and so
θ stabilizes Π. Denote by θ the restriction of θ to Π. Then θ stabilizes Q−(3, q). Also, θ
maps {kπ |π ∈ Ω1} = Q−(3, q) \O1 to {kπ | π ∈ Ω2} = Q−(3, q) \O2 and so Q−(3, q)∩O1

to Q−(3, q) ∩ O2. As θ stabilizes Q+(5, q) and Π, it also stabilizes the line L∗. Note that
Oi \Q−(3, q), i ∈ {1, 2}, is the projection of HOi

\Π from L∗ onto Π. Since θ maps HO1 \π
to HO2 \ π, it must also map O1 \ Q−(3, q) to O2 \ Q−(3, q). All together, we thus have
that θ and θ map O1 to O2.

The following is a consequence of Lemmas 3.9 and 3.15.

Corollary 3.16. Let N denote the number of orbits of Aut(Fq) on the set of all elements
of F∗q with trace equal to 0. Then the number of nonisomorphic hyperovals of the form HO

where O is a classical ovoid of W (q) is equal to N + 1.

Corollary 3.17. Suppose q = 16. The number of nonisomorphic hyperovals of the form
HO, where O is an ovoid of W (q) is equal to 4.

The general case

Let U denote the set of all planes π of PG(5, q) such that π ∩ HO and π ∩ Q+(5, q) are
coinciding irreducible conics of π. We will prove some results that indicate which planes
can belong to U . The following results are useful to that end.

Lemma 3.18. Suppose O is a hyperoval of PG(2, q), q ≥ 8 even, and X is a subset of
size q − 1 of O. Then through every point x of PG(2, q) \ O, there is a line intersecting
X in exactly two points.

Proof. Through x, there are q+2
2

lines intersecting O in exactly two points. At most three

of these lines contain a point of O\O. So, at least q+2
2
−3 = q−4

2
> 0 of these lines contain

two points of X.

Corollary 3.19. Let X be a set of q − 1 or q mutually noncollinear points of PG(2, q),
q ≥ 8 even. Then X is contained in at most one hyperoval of PG(2, q)

In fact, a better result as the one in Corollary 3.19 is known. By Theorem 3 of [8], we
know that the following holds.

Corollary 3.20. Let X be a set of q − 1 or q mutually noncollinear points of PG(2, q),
q ≥ 8 even. Then X is contained in a unique hyperoval of PG(2, q)

Lemma 3.21. Suppose π ∈ U . Then no point of π ∩ Π ∩Q−(3, q) belongs to O.

13



Proof. Since π∩Q+(5, q) and π∩HO are the same irreducible conic, we have π∩Q+(5, q)∩
Π = π ∩ Π ∩ Q−(3, q) = π ∩ HO ∩ Π = Π ∩ (Q−(3, q) \ O), proving the validity of the
claim.

Lemma 3.22. A plane π through L∗ belongs to U if and only if it intersects Π in a point
of O \Q−(3, q).

Proof. If π intersects Π in a point of Q−(3, q), then π ∩ Q+(5, q) is a singleton and so
π 6∈ U .

Suppose π ∩ Π is not contained in Q−(3, q). By the definition of HO and Lemma 3.1
we know that π ∩ HO = ∅ if π ∩ Π is not contained in O and π ∩ HO is an irreducible
conic of π if π ∩Π is contained in O. Moreover, in the latter case, we have that π ∩HO =
π ∩Q+(5, q).

Lemma 3.23. If q ≥ 8, then a plane π intersecting L∗ in a singleton can never belong to
U .

Proof. Suppose to the contrary that π ∈ U . Then π∩Q+(5, q) = π∩HO is an irreducible
conic Cπ.

The points of Cπ contained in Π are precisely the points of (π ∩ Π) ∩ Q−(3, q). As
π ∩ Π is a singleton or a line, there are at most two such points.

Each point of Cπ \Π is by Lemma 3.1 and the definition of HO contained in a plane of
the form 〈L∗, u〉, where u ∈ O \ Q−(3, q). Such a point u necessarily is contained in the
line K := 〈L∗, π〉∩Π. Now, the line K intersects O and hence also O\Q−(3, q) in at most
two points. If u is a point of K contained in O \Q−(3, q), then in the three-dimensional
subspace 〈L∗, π〉 the intersection of the two planes π and 〈L∗, u〉 is a line containing at
most two points of the irreducible conic Cπ. We therefore see that there are at most
2 · 2 = 4 points in Cπ \ Π.

Altogether, we have |Cπ| ≤ 6. But that is in contradiction with the fact that |Cπ| =
q + 1 ≥ 9.

Lemma 3.24. Suppose O is a nonclassical ovoid and π ∩ Π is disjoint from (Q−(3, q) \
O) ∪ L∗. Then π 6∈ U .

Proof. Suppose to the contrary that π ∩HO = π ∩ Q+(5, q) is an irreducible conic Cπ of
π. As π is disjoint from Q−(3, q) \ O, we see that no point of Cπ is contained in Π. Let
π′ be the projection of π from L∗ to Π. By Lemma 3.1 and the definition of HO, we then
see that the projection C ′π of Cπ from L∗ on Π is an irreducible conic of π′ contained in
O \Q−(3, q). So, O ∩ π′ = C ′π. But that is impossible. As O is a nonclassical ovoid of Π,
we know by the main result of [2] that O ∩ π′ cannot be an irreducible conic.

Lemma 3.25. Suppose q ≥ 8 and suppose π ∩ Π is disjoint from L∗ and intersects
Q−(3, q) \O in two points. Then π 6∈ U .

Proof. Suppose to the contrary that π ∈ U . Then π∩Q+(5, q) = π∩HO is an irreducible
conic Cπ of π. Let x1 and x2 be the two points of π ∩ Π contained in Q−(3, q) \O. Then
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π ∩Π is a line x1x2. Let π′ be the plane of Π that arises as projection of π from L∗ on Π,
and let C ′π be the irreducible conic of π′ that arises as projection of Cπ from L∗ on Π. By
Lemma 3.1 and the definition of HO, we know that C ′π \ {x1, x2} is a set of q − 1 points
of π′ contained in O \Q−(3, q). As q ≥ 8, these q − 1 points extend in a unique way to a
hyperoval O of π′, and O coincides with C ′π union its nucleus n. The two points of O not
contained in C ′π \ {x1, x2} are then contained in {x1, x2, n}, in contradiction with the fact
that none of x1, x2 belong to O.

Lemma 3.26. Suppose π ∈ U is disjoint from L∗ and intersects Q−(3, q)\O in a singleton
{x}. Then π 6∈ U .

Proof. Let π′ be the plane of Π that arises as projection of π from L∗ on Π, and let C ′π
be the irreducible conic of π′ that arises as projection of Cπ from L∗ on Π. By Lemma
3.1 and the definition of HO, we know that C ′π \ {x} is a set of q points of π′ contained in
O \Q−(3, q). As q ≥ 8, these q points extend in a unique way to a hyperoval O of π′, and
O equals C ′x union its nucleus {n}. As x ∈ Q−(3, q)\O, we have O∩π′ = (Cx \{x})∪{n}.
So, x is the nucleus of the oval O ∩ π′ of π and all lines of π′ through x are tangent to O′

and hence also to Q−(3, q) by Lemma 3.7. We thus have π′ ⊆ xζ . As also L∗ ⊆ xζ , we
have π ⊆ 〈L∗, π′〉 ⊆ xζ . But then every line of Π through x is either contained in Q+(5, q)
or the singleton {x}. But that is impossible as π ∩ Q+(5, q) is an irreducible conic of
π.

For every π ∈ U , let kπ denote the kernel of the irreducible conic π ∩ Q+(5, q) of π. Let
K denote the subspace of PG(5, q) generated by all points kπ, π ∈ U .

Lemma 3.27. The subspace Π is contained in K.

Proof. Let π be a plane of the form 〈L∗, x〉, where x ∈ O \ Q−(3, q). Then Π = (L∗)ζ ⊇
〈L∗, x〉ζ and so the kernel of the irreducible conic Cx = 〈L∗, x〉 ∩Q+(5, q) is contained in
π, i.e. equal to x. So, K contains the subspace 〈O \ Q−(3, q)〉. Now, |O \ Q−(3, q)| =

q2 + 1 − |O ∩ Q−(3, q)| ≥ q2 + 1 − q2−q
2

= q2+q+2
2

> q + 1 by Lemma 3.4, implying that
〈O \Q−(3, q)〉 = Π. So, K contains Π.

Lemma 3.28. Suppose K is 3-dimensional. Then K ∩ Q+(5, q) is an elliptic quadric
of type Q−(3, q) and so Kζ is a line disjoint from K. Let X1 denote the set K ∩ HO

and let X2 denote the projection of HO \ K from Kζ onto Π. Then Π = K and O =
(Q−(3, q) \X1) ∪X2.

Proof. By Lemma 3.27, K = Π and so K ∩ Q+(5, q) is an elliptic quadric. We have
X1 = Π ∩HO = Q−(3, q) \ O and hence Q−(3, q) \X1 = Q−(3, q) ∩ O. By the definition
of HO, we also have that X2 = O \Q−(3, q). So, (Q−(3, q) \X1) ∪X2 = O.

Lemma 3.29. Suppose O is a nonclassical ovoid of W (q). Then K = Π.

Proof. In view of Lemma 3.27, it suffices to show that each point kπ, π ∈ U , is contained
in Π. As O is a nonclassical ovoid, we have q ≥ 8. The various lemmas above the imply
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that there are two possible types of planes in U , planes π1 through L∗ and planes π2

contained in Π. For the former planes, we have already see in Lemma 3.27 that kπ1 ∈ Π.
For the latter planes, it is trivial that kπ2 ∈ Π.

Lemma 3.30. Let O1 and O2 be two ovoids of W (q) distinct from Q−(3, q). Then the
following are equivalent:

(1) the hyperovals HO1 and HO2 are isomorphic;

(2) there exists an automorphism of Π stabilizing Q−(3, q) and mapping O1 to O2.

Proof. Suppose there exists an automorphism θ of Π stabilizing Q−(3, q) and mapping
O1 to O2. Then θ extends to an automorphism θ of Q+(5, q). It is clear that θ maps HO1

and HO2 .
Conversely, suppose that there exists an automorphism θ of PG(5, q) stabilizingQ+(5, q)

mapping HO1 to HO2 . For every i ∈ {1, 2}, let Ui denote the set of all planes π of PG(5, q)
satisfying the following property:

π ∩Q+(5, q) is an irreducible conic that is entirely contained in HOi
.

For every π ∈ Ui, let kπ denote the kernel of the irreducible conic π ∩Q+(5, q) of π. Let
Ki denote the subspace of PG(5, q) generated by all points kπ, π ∈ Ui. It is clear that θ
maps K1 to K2. We distinguish two cases.

(1) Suppose dim(K1) = dim(K2) = 3. By Lemma 3.28, we then know that K1 = K2 =
Π and that θ stabilizes Π and that the restriction θ of θ to Π maps O1 to O2.

(2) Suppose dim(K1) = dim(K2) > 3. By Lemma 3.29, we would then know that O1

and O2 are classical ovoids of W (q). But then the claim follows from Lemma 3.15.
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