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In recent years there has been an increasing interest in finite projective spaces,
and important applications to practical topics such as coding theory, cryp-
tography and design of experiments have made the field even more attractive.
Pioneering work has been done by B. Segre and each of the four topics of
this paper is related to his work; two classical problems and two recent de-
velopments will be discussed. First I will mention a purely combinatorial
characterization of Hermitian curves in PG(2, q2); here, from the beginning,
the considered pointset is contained in PG(2, q2). A second approach is where
the object is described as an incidence structure satisfying certain proper-
ties; here the geometry is not a priori embedded in a projective space. This
will be illustrated by a characterization of the classical inversive plane in the
odd case. A recent beautiful result in Galois geometry is the discovery of an
infinite class of hemisystems of the Hermitian variety in PG(3, q2), leading to
new interesting classes of incidence structures, graphs and codes; before this
result, just one example for GF(9), due to Segre, was known. An exemplary
example of research combining combinatorics, incidence geometry, Galois ge-
ometry and group theory is the determination of embeddings of generalized
polygons in finite projective spaces. As an illustration I will discuss the em-
bedding of the generalized quadrangle of order (4,2), that is, the Hermitian
variety H(3, 4), in PG(3, K) with K any commutative field.
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1 Introduction

In recent years there has been an increasing interest in finite projective spaces,
and important applications to practical topics such as coding theory, cryp-
tography and design of experiments have made the field even more attractive.
Basic works on the subject are : “Projective Geometries over Finite Fields”,
“Finite Projective Spaces of Three Dimensions” and “General Galois Geome-
tries”, the first two volumes being written by Hirschfeld [1979 with a second
edition in 1998, 1985] and the third volume by Hirschfeld and Thas [1991];
the set of three volumes was conceived as a single entity. I also mention the
“Handbook of Incidence Geometry: Buildings and Foundations”, edited in
1995 by Buekenhout, which covers an enormous amount of material.

In his investigations on graph theory, design theory and finite projective
spaces, the statistician R.C. Bose mainly used purely combinatorial argu-
ments in combination with some linear algebra. Another great pioneer in
finite projective geometry was Beniamino Segre. His celebrated result of
1954 stating that in the projective plane PG(2, q) over the Galois field GF(q)
with q odd, every set of q + 1 points, no three of which are collinear, is a
conic, stimulated the enthusiasm of many young geometers. The work of
Segre and his followers has many links with error-correcting codes and with
maximal distance separable codes, in particular.
Finally, the fundamental and deep work in the last four decades on polar
spaces, generalized polygons, and, more generally, incidence geometry, in the
first place by Tits, but also by Shult, Buekenhout, Kantor and others, gave
a new dimension to finite geometry.

Here I will state some important and elegant results, all related to the
work of B. Segre, say something about the used techniques and mention some
open problems.

2 The geometry of PG(2, q)

First I will consider the geometry of PG(2, q), that is, the projective plane
over the finite field GF(q). It is the purpose to show how classical algebraic
curves can be characterized in purely combinatorial terms. I will illustrate
this with the famous theorem of Segre on conics and with a theorem on
Hermitian curves.

A k-arc of PG(2, q) is a set of k points of PG(2, q) no three of which are
collinear. Then clearly k ≤ q + 2. By Bose [1947], for q odd, k ≤ q + 1.
Further, any nonsingular conic of PG(2, q) is a (q + 1)-arc. It can be shown
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that each (q+ 1)-arc K of PG(2, q), q even, extends to a (q+ 2)-arc K ∪{x}
(see, e.g., Hirschfeld [1998], p.177); the point x, which is uniquely defined
by K, is called the kernel or nucleus of K. The (q + 1)-arcs of PG(2, q) are
called ovals. The following celebrated theorem is due to Segre [1954].

Theorem 1. In PG(2, q), q odd, every oval is a nonsingular conic.

For q even, Theorem 1 is valid if and only if q ∈ {2; 4}; see e.g., Thas [1995].
Crucial for the proof of Theorem 1 in Segre’s Lemma of Tangents (see,

e.g., Hirschfeld [1998], p. 179) which we now explain. For any k-arc K with
3 ≤ k ≤ q + 1, choose three of its points as the triangle of reference u0u1u2

of the coordinate system. The lines intersecting K in one point are called
the tangent lines of K. A tangent line of K through one of u0, u1, u2 has
respective equation

X1 − dX2 = 0, X2 − dX0 = 0, X0 − dX1 = 0,

with d 6= 0. We call d the coordinate of such a line. Suppose the t = q+2−k
tangent lines at each of u0, u1, u2 are

X1 − aiX2 = 0, X2 − biX0 = 0, X0 − ciX1 = 0,

i ∈ {1, 2, · · · , t}. Then , relying on the fact that the product of the non-zero
elements of GF(q) is −1, Segre obtains the following

Lemma 2 (Lemma of Tangents). The coordinates ai, bi, ci of the tangent
lines at u0, u1, u2 of a k-arc K through these points satisfy

Πt
i=1aibici = −1.

For an oval K we have t = 1, and so the lemma becomes abc = −1.
Geometrically this means that for q odd the triangles formed by three points
of an oval and the tangent lines at these points are in perspective, and for q
even these tangent lines are concurrent.

A Hermitian arc or unital H of PG(2, q), with q a square, is a set of
q
√
q + 1 points of PG(2, q) such that any line of PG(2, q) intersects H in

either 1 or
√
q+1 points. The lines intersecting H in one point are called the

tangent lines of H. At each of its points H has a unique tangent line. Let S
be a unitary polarity of PG(2, q), q a square. Then the absolute points of ζ,
that is, the points x of PG(2, q) which lie on their image xζ , form a Hermitian
arc. Such a Hermitian arc is called a nonsingular Hermitian curve. For any
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nonsingular Hermitian curve coordinates in PG(2, q) can always be chosen
in such a way that it is represented by the equation

X
√
q+1 +X

√
q+1 +X

√
q+1 = 0.

In 1992 the following theorem was obtained, solving a longstanding con-
jecture on Hermitian curves; see Thas [1992].

Theorem 3. In PG(2, q), q a square, a Hermitian arc H is a nonsingular
Hermitian curve if and only if tangent lines of H at collinear points are
concurrent.

In the proof we combine an argument, similar to Segre’s one in the Lemma
of Tangents, with the same argument applied to the unital Ĥ of the dual
plane consisting of the q

√
q + 1 tangent lines of H. Finally, we rely on the

following characterization due to Lefèvre-Percsy [1982], and independently
to Faina and Korchmáros [1983].

Theorem 4. In PG(2, q), q square and q > 4, a Hermitian arc H is a
nonsingular Hermitian curve if and only if every line of PG(2, q) meeting H
in more than one point meets it in a subline PG(1,

√
q).

Theorems 1 and 3 are purely combinatorial characterizations of algebraic
curves. Finally we give a characterization, due to Hirschfeld, Storme, Thas
and Voloch [1991], in terms of algebraic curves, that is, we will assume from
the beginning that our pointset is an algebraic curve.

Theorem 5. In PG(2, q), q a square and q 6= 4, any algebraic curve of
degree

√
q + 1, without linear components, and with at least q

√
q + 1 points

in PG(2, q), must be a nonsingular Hermitian curve.

In the last part of the proof of Theorem 3 we can also rely on Theorem 5
instead of on Theorem 4; see Thas, Cameron and Blokhuis [1992].

3 Finite inversive planes

A second approach to characterize geometries is that where the object is
described as an incidence structure satisfying certain properties; here the
geometry is not a priori embedded in a projective space, even the finite field
is in many cases a priori absent. Hence the finite projective space must be
constructed.
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We will give examples concerning circle geometries and designs. A t −
(v, k, λ) design, with v > k > 1, k ≥ t ≥ 1, λ > 0, is a set P with v elements
called points, provided with subsets of size k called blocks, such that any t
distinct points are contained in exactly λ blocks. A 3 − (n2 + 1, n + 1, 1)
design is usually called an inversive plane or Möbius plane of order n; here
the blocks are mostly called circles. An ovoid O of PG(3, q), q > 2, is a set
of q2 + 1 points no three of which are collinear; an ovoid of PG(3, 2) is a set
of 5 points no four of which are coplanar. For properties on ovoids we refer
to Hirschfeld [1985]. If O is an ovoid, then O provided with all intersections
π ∩ O, where π is any plane containing at least 2 (and then automatically
q + 1) points of O, is an inversive plane I(O) of order n. An inversive plane
arising from an ovoid is called egglike. The following famous theorem is due
to Dembowski [1964].

Theorem 6. Each (finite) inversive plane of even order is egglike.

If the ovoid O is an elliptic quadric, then the inversive plane I(O) is called
classical or Miquelian. Barlotti [1955], and, independenly, Panella [1955]
proved that for q odd any ovoid is an elliptic quadric. Hence for q odd any
egglike inversive plane is Miquelian. For odd order no other inversive planes
are known. To the contrary, in the even case Tits [1962] showed that for
any q = 22e+1, with e ≥ 1, there exists an ovoid which is not an elliptic
quadric; these ovoids are called Tits ovoids and are related to the simple
Suzuki groups Sz(q). In fact, for q = 8 Segre [1959] discovered an ovoid
which is not an elliptic quadric, and which was shown to be a Tits ovoid by
Fellegara [1962]. For even order no other nonclassical inversive planes than
the ones associated to the Tits ovoids are known.

For the even case, the following beautiful theorem is due to M.R. Brown
[2000].

Theorem 7. If an ovoid O of PG(3, q), q even, contains a conic section,
then O is an elliptic quadric.

Let I be an inversive plane of order n. For any point x of I, the points
of I different from x, together with the circles containing x (minus x), form
a 2− (n2, n, 1) design, that is, an affine plane of order n. That affine plane is
denoted by Ix, and is called the internal or derived plane of I at x. For an
egglike inversive plane I(O) of order q, each internal plane is Desarguesian,
that is, is the affine plane AG(2, q). The following theorem, due to Thas
[1994], solves a longstanding conjecture on circle geometries.
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Theorem 8. Let I be an inversive plane of odd order n. If for at least one
point x of I the internal plane Ix is Desarguesian, then I is Miquelian.

In the proof of Theorem 8 we first represent I in the plane Ix, where the
circles of I not containing x become conics, by Segre’s famous theorem. Then
the key idea is to use a fundamental result on Minkowski planes (another
type of circle geometries), which in turn depends on the classification of
a particular class of quasifields. As a corollary of Theorem 8 we obtain the
first computer-free proof of the uniqueness (up to isomorphism) of the inverse
plane of order 7.

4 Hemisystems of Hermitian varieties

In this section I will discuss a problem posed by Segre [1965], but only solved
very recently.

Let us consider a nonsingular Hermitian variety H(3, q2) in PG(3, q2).
Coordinates in PG(3, q2) can always be chosen in such a way that H(3, q2)
is represented by the equation

Xq+1
0 +Xq+1

1 +Xq+1
2 +Xq+1

3 = 0.

Each line of H(3, q2) contains q2 + 1 points, and each point of H(3, q2) is on
q + 1 lines of H(3, q2).

Regular systems of H(3, q2) were introduced by Segre [1965], as sets of
lines of H(3, q2) with the property that every point is on a constant number
m of lines of the set, with 0 < m < q + 1. Segre [1965] shows that, if K
exists, then m = (q + 1)/2. In the latter case K consists of (q + 1)(q3 + 1)/2
lines and is called a hemisystem. So, for q even, H(3, q2) admits no regular
system. Another corollary is that H(3, q3) admits no spread (since m 6= 1),
that is, H(3, q2) cannot be partitioned by lines. In fact, the proof of Segre is
restricted to q odd, but Bruen and Hirschfeld [1978] remark that, with their
definition of a quadric permutable with a Hermitian variety, it also holds for
q even.

A very short proof of Segre’s result is given by Thas [1981]. It goes as
follows. First he shows that for any regular system K, the graph G with
as vertices the lines of H(3, q2) in K and as adjacency being concurrent, is
strongly regular with parameters v = (q3 + 1)m, k = (q2 + 1)(m − 1), λ =
m − 2 and µ = mq − 2q + m. Since any strongly regular graph satisfies
(v − k − 1)µ = k(k − λ− 1), it follows that m = (q + 1)/2.
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A (finite) partial quadrangle is an incidence structure S = (P,B, I) in
which P and B are disjoint nonempty sets of objects called points and lines,
respectively, and for which I is a symmetric point-line incidence relation
satisfying the following axioms:

(i) each point is incident with 1 + t lines (t ≥ 1) and two distinct points
are incident with at most one line;

(ii) each line is incident with 1 + s points (s ≥ 1) and two distinct lines are
incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there is at most
one pair (y,M) ∈ P ×B for which x I M I y I L.

(iv) the point graph of S, that is, the graph with vertex set P , two distinct
vertices being adjacent if and only if they are incident with a common
line, is strongly regular.

Partial quadrangles were introduced by Cameron [1975]. A (finite) gen-
eralized quadrangle is an incidence structure satisfying (i), (ii) and

(iii)’ if x is a point and L is a line not incident with x, then there is a unique
pair (y,M) ∈ P ×B for which x I M I y I L.

For generalized quadrangles (iv) is automatically satisfied. Generalized
quadrangles were introduced by Tits [1959], and for more details on this topic
we refer to the monographs by Payne and Thas [1984], and Van Maldeghem
[1998].

The points and lines of H(3, q2) form a generalized quadrangle, also de-
noted H(3, q2), with s = q2 and t = q. The points and lines of a nonsingular
elliptic quadric Q(5, q) of PG(5, q) form a generalized quadrangle, also de-
noted Q(5, q), with parameters s = q and t = q2. It is well-known that
the generalized quadrangle H(3, q2) is the dual of the generalized quadran-
gle Q(5, q); see, e.g. 3.2.3 of Payne and Thas [1984]. Let θ be an anti-
isomorphism of H(3, q2) onto Q(5, q).

Consider a hemisystem K of H(3, q2) and its image Kθ on Q(5, q). Let S
be the incidence structure with as points the points of Kθ, as lines the lines
of Q(5, q), and as incidence relation that of Q(5, q). Then, as the graph G
introduced in a foregoing section is strongly regular, the incidence structure
S is a partial quadrangle with s = (q − 1)/2 and t = q2; the parameters of
the point graph G of S are v = (q3 + 1)(q + 1)/2, k = (q2 + 1)(q − 1)/2,
λ = (q − 3)/2 and µ = (q − 1)2/2.
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Next, we intersect Kθ with a hyperplane Π of PG(5, q). Then |Kθ ∩ π| ∈
{(q2 +1)(q+1)/2, 1+(q2 +1)(q−1)/2)}. As Kθ has two intersection numbers
with respect to hyperplanes, it defines a strongly regular graph Ĝ with v̂ = q6

vertices and also a linear projective two-weight code; see Calderbank and
Kantor [1986].

Segre [1965] discovered a hemisystem ofH(3, 9); independently, Hill [1973]
discovered the corresponding set of 56 points on Q(5, 3). The corresponding
graph G is the well-known graph of Gewirtz [1969]. Thas [1995] conjectured
that there are no hemisystems for q > 3. It came as a great surprise when
Penttila and Cossidente [200*] proved the following beautiful result.

Theorem 9. For each odd prime power q the Hermitian variety H(3, q2) has
a hemisystem.

In fact, for several values of q they discovered more than one hemisystem.
As a corollary new strongly regular graphs, new partial quadrangles and

new projective linear two-weight codes arise; these objects are not only new,
but, for q > 3, graphs, codes, partial quadrangles with these parameters were
previously unknown.

5 Generalized Quadrangles in Projective

Spaces

In 1974 Buekenhout and Lefèvre [1974] published their beautiful theorem
classifying all finite generalized quadrangles fully embedded in PG(d, q). Di-
enst [1980] proved the analogue of the Buekenhout-Lefèvre theorem for in-
finite generalized quadrangles. Weak (or polarized) and lax embeddings of
generalized quadrangles in finite projective spaces were considered by Thas
and Van Maldeghem [1998,2001,200*]. In one of these papers Thas and Van
Maldeghem [2001] overlooked a small, but interesting, case; in this Section 5
I will consider that case.

A lax embedding of a generalized quadrangle S (see Section 4) with
pointset P in a projective space PG(d,K), d ≥ 2 and K a commutative
field, is a monomorphism θ of S into the geometry of points and lines of
PG(d,K) satisfying

(i) the set P θ generates PG(d,K).

In such a case we say that the image Sθ of S is laxly embedded in PG(d,K).
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A weak or polarized embedding in PG(d,K) is a lax embedding which also
satisfies

(ii) for any point x of S, the subspace generated by the set

X = {yθ ‖ y ∈ P is collinear with x}

meets P θ precisely in X, which is equivalent to < X >6=PG(d,K) (here
< X > is the subspace of PG(d,K) generated by the set X).

In such a case we say that the image Sθ of S is weakly or polarizedly embedded
in PG(d,K).

A full embedding in PG(d,K) is a lax embedding with the following ad-
ditional property

(iii) for every line L of S, all points of PG(d,K) on the line Lθ have an
inverse image under θ.

In such a case we say that the image Sθ of S is fully embedded in PG(d,K).
Usually, we simply say that S is laxly, or weakly, or fully embedded in

PG(d,K) without referring to θ, that is, we identify the points and lines of
S with their images in PG(d,K).

Generalized quadrangles were defined in Section 4. If s and t are the
parameters of the finite generalized quadrangle S, then we say that S has
order (s, t); if s = t we say that S has order s. If s > 1 and t > 1 we say
that the generalized quadrangle is thick.

The geometry of points and lines of a nonsingular quadric of projective
index 1, that is, of Witt index 2, in PG(d, q) is a generalized quadrangle
denoted by Q(d, q). Here only the cases d = 3, 4, 5 occur and Q(d, q) has
order (q, qd−3). The geometry of all points of PG(3, q), together with all
totally isotropic lines of a symplectic polarity in PG(3, q), is a generalized
quadrangle of order (q, q) denoted by W (q). The geometry of points and
lines of a nonsingular Hermitian variety of projective index 1 in PG(d, q2) is
a generalized quadrangle H(d, q2) of order (q2, q2d−5); here either d = 3 or
d = 4. Any generalized quadrangle isomorphic to one of these examples is
called classical; the examples themselves are called the natural embeddings
of the classical generalized quadrangles.

The following beautiful theorem is due to Buekenhout and Lefèvre [1974].

Theorem 10. If S is a generalized quadrangle fully embedded in PG(d, q),
then S is one of the natural embeddings of the classical generalized quadran-
gles.
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Thas and Van Maldeghem [1998] determined all thick generalized quad-
rangles weakly embedded in PG(d, q). Only clasical quadrangles show up. It
should be mentioned that alle weak embeddings in PG(3, q) of thick general-
ized quadrangles were classified by Lefèvre-Percsy [1981] although she used a
stronger definition for “weak embedding”. For thick generalized quadrangles
“being fully or weakly embedded” in PG(d, q) characterizes the finite clas-
sical generalized quadrangles amongst the others. This is no longer true for
laxly embedded generalized quadrangles. To handle laxly embedded general-
ized quadrangles completely different combinatorial and geometric methods
are needed than in the full and the weak case. Also, these last methods do
not work in the case of laxly embedded generalized quadrangles in the plane.
By projection every generalized quadrangle which admits an embedding in
some projective space admits a lax embedding in a plane. This makes the
classification in dimension 2 very hard and probably impossible. Hence we
restrict our attention to the case d ≥ 3. In Thas and Van Maldeghem [2001]
there are two theorems on these lax embeddings with in total a proof of 35
pages. In the first theorem they prove that if a generalized quadrangle S
of order (s, t), with s > 1, is laxly embedded in PG(d, q), then d ≤ 5; for
d ∈ {3, 4, 5} and several infinite classes of (s, t) they prove that S is classical.
In the second theorem they determine the generalized quadrangles S of order
(s, t) which are laxly embedded in PG(d, q), with d ≥ 3, and isomorphic to
one of Q(5, s), Q(4, s), H(4, s), H(3, s) or the dual of H(4, t). In this theorem
the authors overlooked a class of lax embeddings of H(3, 4), which is up to
isomorphism the unique generalized quadrangle of order (4, 2), in PG(3, q).
As the solution of this problem is particularly nice and elegant, and related
to the work of Segre [1942,1949,1951], I will state it here; this is again joint
work of Thas and Van Maldeghem [200*].

Consider a nonsingular cubic surface F in PG(3, K), K any commutative
field, and assume that S has 27 lines. Then necessarily K 6= GF(q) with
q ∈ {2, 3, 5}; see Chapter 20 of Hirschfeld [1985]. Let S ′ = (P ′, B′, I′) be the
following incidence structure: the elements of P ′ are the 45 tritangent planes
of F (that are the planes which intersect F in 3 lines), the elements of B′

are the 27 lines of F , and a point π ∈ P ′ is incident with a line L ∈ B′ if and
only if L ⊂ π. It is well-known that S ′ is the unique generalized quadrangle
of order (4, 2). Let β be an anti-isomorphism of PG(3, K), let (P ′)β = P and
let (B′)β = B. If I is containment, then S = (P,B, I) is again isomorphic to
H(3, 4), and is contained in the dual surface F̂ of F which again contains
exactly 27 lines. Clearly S is laxly embedded in PG(3, K). An Eckardt
point y of F is a point contained in 3 lines of F , which are then contained
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in the tangent plane of F at y. If x ∈ P , then the 3 lines of S incident
with x are contained in a plane π if and only if πβ

−1
is an Eckhardt point

of F . Thas and Van Maldeghem [200*] show that every lax embeddding in
PG(3, K) of the unique generalized quadrangle of order (4, 2) is of the type
described above. Such a lax embedding is uniquely defined by 5 mutually
skew lines A1, A2, · · · , A5 with a transversal B6 such that each five of the
six lines are linearly independent (in the sense that their Plücker (or line)
coordinates define 5 independent points in PG(5, K)). Such a configuration
exists for every commutative field K except for K = GF(q) with q = 2, 3 or
5; see Chapter 20 of Hirschfeld [1985]. The embedding is weak if and only
if F has 45 Eckhardt points; in such a case GF(4) is a subfield of K, see
Hirschfeld [1985]. Finally, by Thas and Van Maldeghem [1998], in that case
S is a full embedding of that generalized quadrangle in a subspace PG(3, 4)
of PG(3, K), so by Buekenhout and Lefèvre [1974] is the natural embedding
of H(3, 4) in that subspace PG(3, 4). So we have the following theorem

Theorem 11. Let K be any commutative field and let S be a lax embedding
of the unique generalized quadrangle of order (4, 2) in PG(3, K). Then |K| 6=
2, 3, 5 and S arises from a unique nonsingular cubic surface F as explained
above. Also, the embedding is polarized if and only if F admits 45 Eckhardt
points. In that case GF(4) is a subfield of K and S is a natural embedding
of H(3, 4) in a subspace PG(3, 4) of PG(3, K).
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[1995] F. Buekenhout and C. Lefèvre. Generalized quadrangles in projective
spaces. Arch. Math., 25:540-552.

11



[1986] A.R. Calderbank and W.M. Kantor. The geometry of two-weight codes.
Bull. London Math. Soc., 18:97-122.

[1975] P.J. Cameron. Partial quadrangles. Quart. J. Math. Oxford Ser.,
26:61-73.

[200*] A. Cossidente and T. Penttila. In preparation.

[1980] K.J. Dienst. Verallgemeinerte Vierecke in Pappusschen projektiven
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