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Abstract

We generalize and complete Ferri’s characterization of the finite quadric Verone-
sean V4

2 by showing that Ferri’s assumptions also characterize the quadric Verone-
seans in spaces of even characteristic.
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1 Introduction

Let q be a fixed prime power. For any integer k, denote by PG(k, q) the k-dimensional
projective space over the finite (Galois) field GF(q) of q elements. We choose coordi-
nates in PG(2, q) and in PG(5, q). The Veronesean map maps a point of PG(2, q) with
coordinates (x0, x1, x2) onto the point of PG(5, q) with coordinates

(x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2).

The quadric Veronesean V4
2 , is the image of the Veronesean map. The set V4

2 is a cap of
PG(5, q) and has a lot of other nice geometric and combinatorial properties, summarized
in [2]. We also refer to [2] for characterizations of this cap, sometimes called a Verone-
sean cap. In particular, there exists a characterization of V4

2 in terms of the intersection
numbers of a hyperplane which is valid for q odd. It was first considered and proved by
Ferri [1]; the proof in [2] is much shorter because Hirschfeld and Thas make use of the
other characterizations. Also, the proof of Ferri did not work for q = 3; see [1]. Recently,
the authors proved a new characterization of the finite quadric Veroneseans, and they will
use it here to generalize Ferri’s result to all q.

We now prepare the statement of our Main Result.
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2 Main Result

Recall from [2] that the quadric Veronesean V4
2 is a cap K in PG(5, q) satisfying the

following two properties.

(VC1) For every hyperplane π of PG(5, q), we have |π ∩K| = 1, q + 1 or 2q + 1, and there
exists some hyperplane π such that |π ∩ K| = 2q + 1.

(VC2) Any plane of PG(5, q) with four points in K has at least q + 1 points in K.

It is also proved in [2] that these two properties characterize V4
2 for all odd q; Ferri [1] had

proved this for all odd q 6= 3. In the present paper we will prove this for all q. In fact, we
will be able to copy the proof in [2] for the general case (now relying on the Main Results
of [4]) except for q = 4, for which we produce a separate argument.

So we obtain the following general characterization.

Theorem 2.1 Let K be a set of points of PG(5, q), q > 2, satisfying (VC1) and (VC2).
Then K is projectively equivalent with the quadric Veronesean V4

2 in PG(5, q). For q = 2,
a set of points in PG(5, 2) satisfying (VC1) and (VC2) is either a quadric Veronesean or
an elliptic quadric in some subspace PG(3, 2).

3 Proof of the Main Result

We now prove Theorem 2.1.

Let K be a set of points of PG(5, q), q > 2, satisfying (VC1) and (VC2) (see above). We
first prove that K is a (q2 + q + 1)-cap. This follows from the results in [2] if q 6= 4. So
we first deal with the case q = 4.

In the next three lemmas, we assume that q = 4 and that K satisfies (VC1) and (VC2).
We adopt the terminology of [2]: a solid is a 3-dimensional subspace of PG(5, 4), while a
prime is a 4-dimensional subspace of PG(5, 4).

Lemma 3.1 K generates PG(5, 4).

PROOF. By (VC1) the set K does not generate a line. Assume that K generates a plane
π2. By Lemma 25.3.5 of [2] there is a line L of π2 with |L∩K| ∈ {2, 3}. Let π4 be a prime
which contains L but not π2. Then |π4 ∩K| ∈ {2, 3}, contradicting (VC1). Next, assume
that K generates a solid π3. Then |K| = 9 and each plane of π3 has one or five points in K.
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Let p and p′ be distinct points of K. Suppose that the line pp′ = L has b ≥ 2 points in K.
Counting the points of K in the planes of π3 through the line L, we obtain 5(5−b)+b = 9,
whence b = 4. Let L ∩K = {p, p′, p′′, p′′′} and let π2 ∩K = {p, p′, p′′, p′′′, r}, with π2 some
plane of π3 through L. Then the line rp has only 2 6= b points in K, a contradiction.
Finally, assume that K generates a prime π4. By (VC1) we have again |K| = 9 and each
solid π3 of π4 has one or five points in K. Let L be a line having at least 2 points in K, and
let π2 be a plane of π4 containing L. Further, let |L∩K| = a and |π2 ∩K| = b. Counting
the points of K in the solids of π4 containing π2, we obtain 5(5− b)+ b = 9, whence b = 4.
Counting the points of K in the planes of π4 containing L, we obtain 21(4 − a) + a = 9.
Consequently a = 15/4, a contradiction. The lemma is proved. �

Lemma 3.2 K is a cap.

PROOF. Let L be a line. By Lemma 25.3.2 of [2] we have either L ⊆ K or |L ∩K| ≤ 3.

First assume that L ∩ K = {p, p′, p′′}. Choose points r1, r2, r3 on K \ {p, p′, p′′} so that
〈L, r1, r2, r3〉 is a prime π4. Then |π4 ∩ K| = 9. Necessarily 〈L, ri〉 contains five points of
K, i = 1, 2, 3 (use (VC2)). The solid 〈L, r1, r2〉 contains either seven or eight points. If
〈L, r1, r2〉 contains eight points, then it contains the three planes 〈L, ri〉, i = 1, 2, 3, so it
contains nine points, a contradiction. Hence |K ∩ 〈L, r1, r2〉| = 7. Considering the primes
containing 〈L, r1, r2〉 there arises |K| = 17. Now we project K \ L from L onto a solid π3

skew to L. There arises a set K′ of size 7 in π3 which intersects each plane of π3 in either
one or three points. By [3] such a set K′ does not exist.

Next, assume that K contains a line L. Choose points r1, r2, r3 ∈ K \ L such that
〈L, r1, r2, r3〉 generates a prime π4. Then |π4 ∩ K| = 9. Let (K ∩ π4) \ L = {r1, r2, r3, r4}.
By the preceding paragraph r4 /∈ 〈L, ri〉, i = 1, 2, 3, as otherwise there is a line containing
exactly three points of K. Now we project K\L from L onto a solid π3 skew to L. There
arises a set K′ which intersects each plane of π3 in either one or four points. By [3] such
a set K′ does not exist.

The lemma is proved. �

Lemma 3.3 The cap K contains exactly 21 points.

PROOF. Put |K| = k. Let π1
4, π

2
4, . . . be the primes of PG(5, 4), and let si be the

number of points of K in πi
4. Counting in two ways the number of ordered pairs (p, πi

4),
with p ∈ K ∩ πi

4, we obtain
1365∑
i=1

si = 341k.
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Counting in two ways the number of ordered triples (p, p′, πi
4), with p, p′ ∈ K ∩ πi

4, and
p 6= p′, we obtain

1365∑
i=1

si(si − 1) = 85k(k − 1).

The set K is a cap; so counting in two ways the number of ordered 4-tuples (p, p′, p′′, πi
4),

with p, p′, p′′ ∈ K ∩ πi
4, and p 6= p′ 6= p′′ 6= p, we obtain

1365∑
i=1

si(si − 1)(si − 2) = 21k(k − 1)(k − 2).

Since si ∈ {1, 5, 9} for all i, we have

1365∑
i=1

(si − 1)(si − 5)(si − 9) = 0.

Hence
1365∑
i=1

si(si − 1)(si − 2)− 12
1365∑
i=1

si(si − 1) + 45
1365∑
i=1

si − 61425 = 0.

We obtain, substituting the previous equalities,

21k(k − 1)(k − 2)− 1020k(k − 1) + 15345k − 61425 = 0.

Hence 7k3 − 361k2 + 5469k − 20475 = 0. It follows that k = 21 or k = 25.

Assume that k = 25. If π3 is a solid which contains a ≥ 6 points of K, then |K| = 25 =
a + 5(9− a), so a = 5, a contradiction. If π2 is a plane which contains at least four points
of K, then π2 contains at least five points of K (by (VC2)), so there exists a solid which
contains at least six points of K, a contradiction. Hence any four points of K are linearly
independent.

Let p be a fixed point of K. Let ci be the number of primes of PG(5, 4) which contain p
and intersect K in i points, i = 1, 5, 9. Counting pairs {p′, π4} with p′ ∈ K, p 6= p′, with
π4 a prime and p, p′ ∈ π4, we obtain 4c5 + 8c9 = 2040. Counting triples {p′, p′′, π4} with
p′, p′′ ∈ K, p 6= p′ 6= p′′ 6= p, with π4 a prime and p, p′, p′′ ∈ π4, we obtain 6c5+28c9 = 5796.
Counting quadruples {p′, p′′, p′′′, π4} with p′, p′′, p′′′ ∈ K, p, p′, p′′, p′′′ distinct, π4 a prime
and p, p′, p′′, p′′′ ∈ π4, we obtain 4c5 + 56c9 = 10120, clearly contradicting the previous
equalities.

So we conclude that k = 21 and the lemma is proved. �

Now it is clear that Lemma 25.3.10 to Lemma 25.3.13 of [2] hold for all q ≥ 3. In
particular, this means that there are exactly q2 + q + 1 planes of PG(5, q) meeting K in

4



an oval (which is a q + 1-arc), and every pair of points of K is contained in exactly one
such plane. Also, two such planes meet in exactly one point, which belongs to K. Let
K be as in Theorem 2.1 and suppose q > 2. By the proof of Theorem 25.3.14 of [2], we
now also have that every three planes of PG(5, q) that intersect K in an oval generate
PG(5, q). By Theorem 1.3 of [4], K either is the quadric Veronesean V4

2 or q = 4 and K is
the unique 2-dimensional dual hyperoval of PG(5, 4). As in the latter case (VC2) is not
satisfied, we proved Theorem 2.1 for all q > 2.

Finally suppose q = 2. We use similar terminology as before. Let π4 be a prime of
PG(5, 2) containing 5 points of K. If these five points generate π4, then, considering the
three primes through a solid contained in π4 and itself containing four points of K, it is
easily seen that |K| = 7 and every six points of K generate PG(5, 2). In this case K is
a skeleton and hence isomorphic to the quadric Veronesean V4

2 . So we may assume that
these five points do not generate π4. Clearly this implies |K| = 5. It is now an easy
exercise to see that K generates a solid and is an elliptic quadric in that solid (because
every plane of that solid contains either one or three points of K).

The proof of Theorem 2.1 is complete.
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