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Abstract

We construct new examples of sets of points on the Klein quadric
Q+(5, q), q even, having exactly two intersection sizes 0 and α with
lines on Q+(5, q). By the well-known Plücker correspondence, these
examples yield new (0, α)-geometries embedded in PG(3, q), q even.

1 Preliminaries

A (0, α)-geometry S = (P ,L, I ) is a connected partial linear space of or-
der (s, t) (i.e., every line is incident with s + 1 points, while every point is
incident with t + 1 lines) such that for every anti-flag {p, L} the number
of lines through p and intersecting L is 0 or α. The concept of a (0, α)-
geometry, introduced by Debroey, De Clerck and Thas [5, 20], generalizes a
lot of well-studied classes of geometries such as semipartial geometries [8],
partial geometries [2] and generalized quadrangles [16].

A (0, α)-geometry S = (P ,L, I ) is fully embedded in PG(n, q) if L is a
set of lines of PG(n, q) not contained in a proper subspace and P is the set of
all points of PG(n, q) on the lines of S. In [20] the (0, α)-geometries (α > 1)
fully embedded in PG(n, q), n > 3, q > 2, are classified. For α = 1 as well
as for the (0, α)-geometries with q = 2 a classification of the embeddings is
out of reach as explained for instance in [6, 20]. As for PG(3, q), in [5] it
is proven that if S is a (0, α)-geometry (α > 1) fully embedded in PG(3, q),
q > 2, then every planar pencil of PG(3, q) (i.e., the q + 1 lines through a
point in a plane) contains 0 or α lines of S. Conversely one easily verifies
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that a set of lines of PG(3, q) which shares 0 or α (α > 1) lines with every
pencil of PG(3, q) yields a (0, α)-geometry fully embedded in PG(3, q).

We can use the well-known Plücker correspondence, in order to see the
set of lines of the (0, α)-geometry as a set of points on the Klein quadric
Q+(5, q).

For the remainder of the paper we will always assume that α > 1 and
q > 2, and we may conclude that the following objects are equivalent.

• A (0, α)-geometry fully embedded in PG(3, q).

• A set of lines of PG(3, q) sharing 0 or α lines with every pencil of
PG(3, q).

• A set of points on the Klein quadric Q+(5, q) sharing 0 or α points with
every line on Q+(5, q). We call such a set a (0, α)-set on Q+(5, q).

A maximal arc of degree α in PG(2, q) is a set of points such that every
line of PG(2, q) intersects it in 0 or α points. Examples of maximal arcs in
PG(2, 2h) were first constructed by Denniston [10]. Examples of maximal
arcs in PG(2, 2h) which are not of Denniston type were constructed by Thas
[18, 19] and by Mathon [15]. Ball, Blokhuis and Mazzocca [1] proved that
maximal arcs of degree 1 < α < q in PG(2, q) do not exist if q is odd.

Let K be a (0, α)-set on Q+(5, q). Clearly every plane on Q+(5, q) is ei-
ther disjoint from K or intersects K in a maximal arc of degree α. Consider
the (0, α)-geometry S = (P ,L, I ), fully embedded in PG(3, q), which corre-
sponds to K. Then every plane of PG(3, q) contains either no line of S or
qα−q+α lines of S which constitute a dual maximal arc of degree α. Similarly
through every point p of PG(3, q) there are either 0 lines of S or qα− q + α
lines of S which intersect a plane not containing p in a maximal arc of degree
α. Let π be a plane of PG(3, q) containing qα− q +α lines of S, and let d be
such that π contains q2+q+1−d points of S. Then counting the lines of S by
their intersection with π we get that | L | = | K | = (qα− q +α)(q2 +1− d).
We call d the deficiency of the (0, α)-geometry S and of the (0, α)-set K.

In this paper we will give an overview of the known examples so far and
we will give new examples, α being any proper divisor of q, q even.

2 The known examples

It is clear that the design of all points and lines of PG(3, q) is the only
(0, q + 1)-geometry fully embedded in PG(3, q).

On the other hand let S be a (0, q)-geometry fully embedded in PG(3, q)
and let Π be the set of planes containing at least two lines of S. Then for
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every plane π ∈ Π, the incidence structure of points and lines of S in π is a
dual affine plane, while the incidence structure with point set the set of lines
of S through a fixed point p of S and with line set the set of planes of Π
through p is an affine plane. These geometries are classified, there are two
non-isomorphic examples, see for instance [9, 13, 14]. Here we summarize
the result in the terminology of a (0, q)-set on the Klein quadric Q+(5, q).

Theorem 2.1 The points of Q+(5, q) not on a hyperplane U of PG(5, q),
q > 2, are the only (0, q)-sets on Q+(5, q). If U is a tangent hyperplane, then
the deficiency is 1. If U is a secant hyperplane then the deficiency is 0.

Remark

For the (0, q)-set of deficiency 1 the corresponding (0, q)-geometry in PG(3, q)
is the well known dual net denoted by H3

q . For the (0, q)-set of deficiency
0 the corresponding (0, q)-geometry in PG(3, q) is the semipartial geometry
denoted by W (3, q). For a detailed description of both examples as (0, q)-
geometries embedded in PG(3, q) we refer for instance to [6].

In [1] it is proved that in desarguesian planes of order q, q odd, maximal
arcs of degree α, 1 < α < q, do not exist. Hence we can conclude that if q is
odd, no other (0, α)-set, α > 1, on the Klein quadric Q+(5, q) exists. Hence,
for other examples we may restrict ourselves to the case q even, 1 < α < q.

Here is an other example. The points of Q+(5, q), q even, corresponding
to the external lines of a nonsingular hyperbolic quadric in PG(3, q) form a
(0, α)-set on Q+(5, q) with α = q/2 and deficiency q + 1. The corresponding
(0, q/2)-geometry is denoted by NQ+(3, q).

It was conjectured in [5] that H3
q , W (3, q) and NQ+(3, q) are the only

(0, α)-geometries, with α > 1, fully embedded in PG(3, q), q > 2. This
conjecture is false as will be clear from the remainder of the paper.

A first counterexample has been given by Ebert, Metsch and Szőnyi [11].
A k-cap in PG(n, q) is a set of k points, no three on a line. It is called
maximal if it is not contained in a larger cap. Quite some research has been
done on caps in PG(5, q) that are contained in the Klein quadric Q+(5, q).
Since the maximum size of a cap in PG(2, q) is q+1 if q is odd and q+2 if q is
even, a cap in Q+(5, q) has size at most (q+1)(q2 +1) if q is odd and at most
(q + 2)(q2 + 1) if q is even. Glynn [12] constructs a cap of size (q + 1)(q2 + 1)
in Q+(5, q) for any prime power q (see also [17]). Ebert, Metsch and Szőnyi
construct caps of size q3 + 2q2 + 1 = (q + 2)(q2 + 1)− q − 1 in Q+(5, q) for q
even. They show that a cap in Q+(5, q), q even, of size q3 + 2q2 + 1 is either
maximal in Q+(5, q) and is then a (0, 2)-set of deficiency 1 together with one
extra point, or it is contained in a cap of size (q + 2)(q2 + 1). One easily
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verifies that caps of size (q + 2)(q2 + 1) in Q+(5, q), q even, and (0, 2)-sets
of deficiency 0 are equivalent. A cap of size (q + 2)(q2 + 1) is only known to
exist for q = 2.

The construction of Ebert, Metsch and Szőnyi is as follows. Let Σ be a
3-space intersecting Q+(5, q) in a nonsingular elliptic quadric E. Let L = Σβ

where β is the symplectic polarity associated with Q+(5, q). Then the line L
is external to Q+(5, q). Consider an ovoid O in Σ which has the same set of
tangent lines as E. Let K be the intersection of Q+(5, q) with the cone with
vertex L and base E ∪ O. Then K is a cap of size (q + 1) |O \ E | + q2 + 1
which is maximal in Q+(5, q) [11], and K \ (E ∩O) is a (0, 2)-set in Q+(5, q)
of deficiency |E ∩O | .

We have the following possibilities for O. The ovoid O can be an elliptic
quadric. Then E and O intersect in either one point or q + 1 points which
form a conic in a plane of Σ (Types 1(i) and 3(g)(ii) in Table 2 of [3]).
We will denote the corresponding (0, 2)-set by E1 if |E ∩ O | = 1 and by
Eq+1 if |E ∩ O | = q + 1. On the other hand when q is an odd power
of 2 the ovoid O can be a Suzuki-Tits ovoid. Then E and O intersect in
q ±

√
2q + 1 points and both intersection sizes do occur [7]. We will denote

the corresponding (0, 2)-set by Tq−
√

2q+1 if |E ∩ O | = q −
√

2q + 1 and by
Tq+

√
2q+1 if |E ∩O | = q +

√
2q + 1.

3 Unions of elliptic quadrics

Consider a (0, 2)-set K ∈ {E1, Eq+1} in Q+(5, q), q = 2h. Let Π be a hyper-
plane containing Σ and let p = Π ∩ L, where L = Σβ. Then Π intersects
Q+(5, q) in a nonsingular parabolic quadric Q(4, q) with nucleus p. Since
K is the intersection of Q+(5, q) with the cone with vertex L and base the
symmetric difference E 4O we find that K∩Π is the intersection of Q(4, q)
with the cone with vertex p and base E 4O.

The projection of Q(4, q) from p on Σ yields an isomorphism from the
classical generalized quadrangle Q(4, q) to the classical generalized quadran-
gle W (q) consisting of the points of Σ and the lines of Σ that are tangent
to E. This isomorphism induces a bijection from the set of ovoids of Q(4, q)
to the set of ovoids of W (q). Since the ovoid O has the same set of tangent
lines as E, it is an ovoid of the generalized quadrangle W (q). Hence O is the
projection from p on Σ of an ovoid O of Q(4, q). So K ∩ Π is the symmet-
ric difference E 4 O. Since O is a nonsingular elliptic quadric in Σ, O is a
nonsingular elliptic quadric in a 3-space Σ ⊆ Π. Now Σ and Σ intersect in a
plane π and we may also write K ∩ Π = Q(4, q) ∩ (Σ ∪ Σ) \ π.

From the definition of E1 and Eq+1 it follows that there is exactly one
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plane π ⊆ Σ such that π ∩ Q(4, q) = E ∩ O. Indeed, if K = E1 then E and
O intersect in exactly one point and π is the unique tangent plane in Σ to E
at this point. If K = Eq+1 then E and O intersect in a nondegenerate conic
and π is the ambient plane of this conic. We prove that π = π. Since O is
the projection of O from p on Σ, E ∩ O = E ∩ O. Since O = Σ ∩ Q(4, q),
π ∩Q(4, q) = Σ ∩ Σ ∩Q(4, q) = Σ ∩O = E ∩O = E ∩O. So π is a plane in
Σ such that π ∩Q(4, q) = E ∩O. This means that π = π.

So K ∩ Π is the symmetric difference of elliptic quadrics E and O on
Q(4, q) with ambient 3-spaces Σ and Σ intersecting in the plane π. Since
this holds for all hyperplanes Π containing Σ we conclude that there exist
3-spaces Σ0 = Σ, Σ1, . . . , Σq+1 mutually intersecting in the plane π, such that
each intersects Q+(5, q) in an elliptic quadric and such that

K = Q+(5, q) ∩ (Σ0 ∪ Σ1 ∪ . . . ∪ Σq+1) \ π.

What remains to be verified is the position of the 3-spaces Σi. Consider
a plane π′ spanned by L and a point r ∈ O \E. One verifies in the respective
cases K = E1 and K = Eq+1 that π ∩O = π ∩E = E ∩O, so r 6∈ π. Hence π′

is skew to π. We determine the points of intersection of Σi, i = 0, . . . , q + 1,
with π′. Clearly Σ0 ∩ π′ = Σ ∩ π′ = r. Let i ∈ {1, . . . , q + 1} and let pi ∈ L
be such that Σi ⊆ 〈pi, Σ〉. Let ri be the unique point of Q+(5, q) on the line
〈pi, r〉. Since r ∈ O \ E, ri is a point of K and hence of Σi. But also ri ∈ π′,
so Σi∩π′ = ri. Repeating this reasoning for all points pi on L we see that the
3-spaces Σi, i = 1, . . . , q + 1, intersect π′ in the points of the nondegenerate
conic C ′ = π′ ∩Q+(5, q) and that Σ intersects π′ in the point r which is the
nucleus of the conic C ′. We have now proven the following theorem which
completely determines the structure of the (0, 2)-sets E1 and Eq+1.

Theorem 3.1 Let K ∈ {E1, Eq+1} and let π be the unique plane in Σ such
that π ∩Q+(5, q) = E ∩O. Then

K = (E ∪O1 ∪ . . . ∪Oq+1) \ π,

where Oi, 1 ≤ i ≤ q + 1, is a nonsingular 3-dimensional elliptic quadric
on Q+(5, q) such that its ambient space Σi intersects Σ in the plane π. In
particular the 3-spaces Σ1, . . . , Σq+1 intersect each plane π′ = 〈r, L〉 with L =
Σβ and r ∈ O\E in the points of the nondegenerate conic C ′ = π′∩Q+(5, q),
while Σ intersects π′ in the nucleus r of the conic C ′.

Remark

We can apply the same reasoning to the (0, 2)-sets Tq±
√

2q+1. We find then
that Tq±

√
2q+1 can be written as

(E ∪O1 ∪ . . . ∪Oq+1) \ (E ∩O),
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where O1, . . . , Oq+1 are Suzuki-Tits ovoids in the hyperplanes containing Σ,
such that for every pi ∈ L = Σβ, there is exactly one Oi ⊆ 〈pi, Σ〉, and then
O is the projection of Oi from pi on Σ. However this was already known [4].

4 A new construction

The following construction is inspired by Theorem 3.1. Let π be a plane of
PG(5, q), q = 2h, which does not contain any line of Q+(5, q) and let π′ be
a plane skew to π. Let D denote the set of points p ∈ π′ such that 〈p, π〉
intersects Q+(5, q) in a nonsingular elliptic quadric, and suppose that A is
a maximal arc of degree α in π′ such that A ⊆ D. Then we define the set
Mα(A) to be the intersection of Q+(5, q) with the cone with vertex π and
base A, minus the points of Q+(5, q) in π.

Theorem 4.1 The set Mα(A) is a (0, α)-set on Q+(5, q).

Proof. Let L be a line on Q+(5, q) which intersects the plane π. Then
the subspace Σ = 〈L, π〉 has dimension 3 and it contains a line of Q+(5, q).
Hence Σ ∩ π′ 6∈ A. So there are no points of Mα(A) in Σ and hence also
none on L.

Let L be a line on Q+(5, q) which is skew to π. A point p on L is in
Mα(A) if and only if 〈p, π〉 ∩ π′ ∈ A if and only if the projection of p from
π on π′ is a point of A. So if L′ is the projection of L from π on π′ then
|L ∩ Mα(A) | = |L′ ∩ A | ∈ {0, α}. So every line on Q+(5, q) intersects
Mα(A) in 0 or α points. 2

Since the plane π does not contain any line of Q+(5, q), there are two
possibilities: either π ∩ Q+(5, q) is a single point or it is a nondegenerate
conic. In the former case the (0, α)-set has deficiency 1 and it is denoted by
Mα

1 (A). In the latter case the (0, α)-set has deficiency q+1 and it is denoted
by Mα

q+1(A).
In order to prove that there do exist (0, α)-sets of deficiency 1 and q + 1

for every α ∈ {2, 22, . . . , 2h−1 = q/2} we must show that the set D in the
plane π′ contains a maximal arc of degree α for every α ∈ {2, 22, . . . , 2h−1},
and this for both the case where π ∩ Q+(5, q) is a single point and the case
where π ∩Q+(5, q) is a nondegenerate conic.

If π ∩Q+(5, q) is a single point p then D is the set of points of π′ which
are not on the line π′ ∩ Tp, where Tp is the tangent hyperplane to Q+(5, q)
at p. Clearly in this case the set D contains a maximal arc of degree α for
every α ∈ {2, 22, . . . , 2h−1}.
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If π ∩ Q+(5, q) is a nondegenerate conic then the plane πβ also inter-
sects Q+(5, q) in a nondegenerate conic C. Furthermore β induces an anti-
automorphism between the projective plane πβ and the projective plane hav-
ing as points the 3-spaces through π and as lines the hyperplanes through
π. This anti-automorphism is such that a 3-space containing π intersects
Q+(5, q) in a nonsingular elliptic quadric if and only if the corresponding
line of πβ is external to the conic C. Hence the set D in the plane π′ is the
dual of the set of external lines to a nondegenerate conic. It follows that D is
a Denniston type maximal arc [10] of degree q/2, and hence that D contains
a maximal arc of degree α for every α ∈ {2, 22, . . . , 2h−1}. We have proven
the following theorem.

Theorem 4.2 There exist (0, α)-sets on Q+(5, q), q = 2h, of deficiency 1
and q + 1 for all α ∈ {2, 22, . . . , 2h−1}.

Corollary 4.3 There exist (0, α)-geometries fully embedded in PG(3, q), q =
2h, of deficiency 1 and q + 1 for all α ∈ {2, 22, . . . , 2h−1}.

By Theorem 3.1 the (0, 2)-set Ed, d = 1, q + 1, is of the form M2
d(H)

with H a regular hyperoval. Let K be the (0, q/2)-set corresponding to
the (0, q/2)-geometry NQ+(3, q), q even. Then K corresponds to the set of
external lines to a nonsingular hyperbolic quadric Q+(3, q) in PG(3, q). Let
C be the set of points of Q+(5, q) corresponding to one of the two reguli of
lines contained in Q+(3, q). Then C is a nondegenerate conic in a plane π,
and K is the set of all points of Q+(5, q) which are not collinear in Q+(5, q)
with any of the points of C. So a point p of Q+(5, q) is in K if and only
if p 6∈ π and 〈p, π〉 intersects Q+(5, q) in a nondegenerate elliptic quadric.

Hence NQ+(3, q) corresponds to the (0, q/2)-set Mq/2
q+1(D).

We conclude this paper with a list of all the known distinct examples of
(0, α)-sets K in Q+(5, q), α > 1, q > 2. In this list d is the deficiency of the
(0, α)-set K.

• α = q + 1, d = 0, and K is the set of all points of Q+(5, q).

• α = q, d = 0, and K corresponds to W (3, q).

• α = q, d = 1, and K corresponds to H3
q .

• q = 2h, α ∈ {2, 22, . . . , 2h−1}, d ∈ {1, q + 1} and K = Mα
d (A).

• q = 22h+1, α = 2, d = q ±
√

2q + 1, and K = Tq±
√

2q+1.
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