Two-intersection sets with respect to lines on the Klein quadric

F. De Clerck N. De Feyter* N. Durante[†]

Abstract

We construct new examples of sets of points on the Klein quadric $Q^+(5,q)$, q even, having exactly two intersection sizes 0 and α with lines on $Q^+(5,q)$. By the well-known Plücker correspondence, these examples yield new $(0,\alpha)$ -geometries embedded in PG(3,q), q even.

1 Preliminaries

A $(0, \alpha)$ -geometry $S = (\mathcal{P}, \mathcal{L}, I)$ is a connected partial linear space of order (s,t) (i.e., every line is incident with s+1 points, while every point is incident with t+1 lines) such that for every anti-flag $\{p, L\}$ the number of lines through p and intersecting L is 0 or α . The concept of a $(0,\alpha)$ -geometry, introduced by Debroey, De Clerck and Thas [5, 20], generalizes a lot of well-studied classes of geometries such as semipartial geometries [8], partial geometries [2] and generalized quadrangles [16].

A $(0, \alpha)$ -geometry $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ is fully embedded in $\mathrm{PG}(n,q)$ if \mathcal{L} is a set of lines of $\mathrm{PG}(n,q)$ not contained in a proper subspace and \mathcal{P} is the set of all points of $\mathrm{PG}(n,q)$ on the lines of \mathcal{S} . In [20] the $(0,\alpha)$ -geometries $(\alpha>1)$ fully embedded in $\mathrm{PG}(n,q)$, n>3,q>2, are classified. For $\alpha=1$ as well as for the $(0,\alpha)$ -geometries with q=2 a classification of the embeddings is out of reach as explained for instance in [6, 20]. As for $\mathrm{PG}(3,q)$, in [5] it is proven that if \mathcal{S} is a $(0,\alpha)$ -geometry $(\alpha>1)$ fully embedded in $\mathrm{PG}(3,q)$, q>2, then every planar pencil of $\mathrm{PG}(3,q)$ (i.e., the q+1 lines through a point in a plane) contains 0 or α lines of \mathcal{S} . Conversely one easily verifies

^{*}This research was supported by a BOF ("Bijzonder Onderzoeksfonds") grant at Ghent University.

[†]This author acknowledges support from the project "Strutture geometriche, Combinatoria e loro applicazioni" of the Italian M.U.R.S.T.

that a set of lines of PG(3, q) which shares 0 or α ($\alpha > 1$) lines with every pencil of PG(3, q) yields a $(0, \alpha)$ -geometry fully embedded in PG(3, q).

We can use the well-known Plücker correspondence, in order to see the set of lines of the $(0, \alpha)$ -geometry as a set of points on the Klein quadric $Q^+(5, q)$.

For the remainder of the paper we will always assume that $\alpha > 1$ and q > 2, and we may conclude that the following objects are equivalent.

- A $(0, \alpha)$ -geometry fully embedded in PG(3, q).
- A set of lines of PG(3,q) sharing 0 or α lines with every pencil of PG(3,q).
- A set of points on the Klein quadric $Q^+(5,q)$ sharing 0 or α points with every line on $Q^+(5,q)$. We call such a set a $(0,\alpha)$ -set on $Q^+(5,q)$.

A maximal arc of degree α in PG(2, q) is a set of points such that every line of PG(2, q) intersects it in 0 or α points. Examples of maximal arcs in PG(2, 2^h) were first constructed by Denniston [10]. Examples of maximal arcs in PG(2, 2^h) which are not of Denniston type were constructed by Thas [18, 19] and by Mathon [15]. Ball, Blokhuis and Mazzocca [1] proved that maximal arcs of degree $1 < \alpha < q$ in PG(2, q) do not exist if q is odd.

Let \mathcal{K} be a $(0,\alpha)$ -set on $Q^+(5,q)$. Clearly every plane on $Q^+(5,q)$ is either disjoint from \mathcal{K} or intersects \mathcal{K} in a maximal arc of degree α . Consider the $(0,\alpha)$ -geometry $\mathcal{S}=(\mathcal{P},\mathcal{L},1)$, fully embedded in $\mathrm{PG}(3,q)$, which corresponds to \mathcal{K} . Then every plane of $\mathrm{PG}(3,q)$ contains either no line of \mathcal{S} or $q\alpha-q+\alpha$ lines of \mathcal{S} which constitute a dual maximal arc of degree α . Similarly through every point p of $\mathrm{PG}(3,q)$ there are either 0 lines of \mathcal{S} or $q\alpha-q+\alpha$ lines of \mathcal{S} which intersect a plane not containing p in a maximal arc of degree α . Let π be a plane of $\mathrm{PG}(3,q)$ containing $q\alpha-q+\alpha$ lines of \mathcal{S} , and let d be such that π contains $q^2+q+1-d$ points of \mathcal{S} . Then counting the lines of \mathcal{S} by their intersection with π we get that $|\mathcal{L}|=|\mathcal{K}|=(q\alpha-q+\alpha)(q^2+1-d)$. We call d the deficiency of the $(0,\alpha)$ -geometry \mathcal{S} and of the $(0,\alpha)$ -set \mathcal{K} .

In this paper we will give an overview of the known examples so far and we will give new examples, α being any proper divisor of q, q even.

2 The known examples

It is clear that the design of all points and lines of PG(3, q) is the only (0, q + 1)-geometry fully embedded in PG(3, q).

On the other hand let S be a (0,q)-geometry fully embedded in PG(3,q) and let Π be the set of planes containing at least two lines of S. Then for

every plane $\pi \in \Pi$, the incidence structure of points and lines of \mathcal{S} in π is a dual affine plane, while the incidence structure with point set the set of lines of \mathcal{S} through a fixed point p of \mathcal{S} and with line set the set of planes of Π through p is an affine plane. These geometries are classified, there are two non-isomorphic examples, see for instance [9, 13, 14]. Here we summarize the result in the terminology of a (0, q)-set on the Klein quadric $Q^+(5, q)$.

Theorem 2.1 The points of $Q^+(5,q)$ not on a hyperplane U of PG(5,q), q > 2, are the only (0,q)-sets on $Q^+(5,q)$. If U is a tangent hyperplane, then the deficiency is 1. If U is a secant hyperplane then the deficiency is 0.

Remark

For the (0, q)-set of deficiency 1 the corresponding (0, q)-geometry in PG(3, q) is the well known dual net denoted by H_q^3 . For the (0, q)-set of deficiency 0 the corresponding (0, q)-geometry in PG(3, q) is the semipartial geometry denoted by $\overline{W(3, q)}$. For a detailed description of both examples as (0, q)-geometries embedded in PG(3, q) we refer for instance to [6].

In [1] it is proved that in desarguesian planes of order q, q odd, maximal arcs of degree α , $1 < \alpha < q$, do not exist. Hence we can conclude that if q is odd, no other $(0, \alpha)$ -set, $\alpha > 1$, on the Klein quadric $Q^+(5, q)$ exists. Hence, for other examples we may restrict ourselves to the case q even, $1 < \alpha < q$.

Here is an other example. The points of $Q^+(5,q)$, q even, corresponding to the external lines of a nonsingular hyperbolic quadric in PG(3,q) form a $(0,\alpha)$ -set on $Q^+(5,q)$ with $\alpha=q/2$ and deficiency q+1. The corresponding (0,q/2)-geometry is denoted by $NQ^+(3,q)$.

It was conjectured in [5] that H_q^3 , $\overline{W(3,q)}$ and $NQ^+(3,q)$ are the only $(0,\alpha)$ -geometries, with $\alpha > 1$, fully embedded in PG(3,q), q > 2. This conjecture is false as will be clear from the remainder of the paper.

A first counterexample has been given by Ebert, Metsch and Szőnyi [11]. A k-cap in PG(n,q) is a set of k points, no three on a line. It is called maximal if it is not contained in a larger cap. Quite some research has been done on caps in PG(5,q) that are contained in the Klein quadric $Q^+(5,q)$. Since the maximum size of a cap in PG(2,q) is q+1 if q is odd and q+2 if q is even, a cap in $Q^+(5,q)$ has size at most $(q+1)(q^2+1)$ if q is odd and at most $(q+2)(q^2+1)$ if q is even. Glynn [12] constructs a cap of size $(q+1)(q^2+1)$ in $Q^+(5,q)$ for any prime power q (see also [17]). Ebert, Metsch and Szőnyi construct caps of size $q^3+2q^2+1=(q+2)(q^2+1)-q-1$ in $Q^+(5,q)$ for q even. They show that a cap in $Q^+(5,q)$, q even, of size q^3+2q^2+1 is either maximal in $Q^+(5,q)$ and is then a (0,2)-set of deficiency 1 together with one extra point, or it is contained in a cap of size $(q+2)(q^2+1)$. One easily

verifies that caps of size $(q+2)(q^2+1)$ in $Q^+(5,q)$, q even, and (0,2)-sets of deficiency 0 are equivalent. A cap of size $(q+2)(q^2+1)$ is only known to exist for q=2.

The construction of Ebert, Metsch and Szőnyi is as follows. Let Σ be a 3-space intersecting $Q^+(5,q)$ in a nonsingular elliptic quadric E. Let $L=\Sigma^\beta$ where β is the symplectic polarity associated with $Q^+(5,q)$. Then the line L is external to $Q^+(5,q)$. Consider an ovoid O in Σ which has the same set of tangent lines as E. Let K be the intersection of $Q^+(5,q)$ with the cone with vertex L and base $E \cup O$. Then K is a cap of size $(q+1) \mid O \setminus E \mid +q^2+1$ which is maximal in $Q^+(5,q)$ [11], and $K \setminus (E \cap O)$ is a (0,2)-set in $Q^+(5,q)$ of deficiency $|E \cap O|$.

We have the following possibilities for O. The ovoid O can be an elliptic quadric. Then E and O intersect in either one point or q+1 points which form a conic in a plane of Σ (Types 1(i) and 3(g)(ii) in Table 2 of [3]). We will denote the corresponding (0,2)-set by \mathcal{E}_1 if $|E \cap O| = 1$ and by \mathcal{E}_{q+1} if $|E \cap O| = q+1$. On the other hand when q is an odd power of 2 the ovoid O can be a Suzuki-Tits ovoid. Then E and O intersect in $q \pm \sqrt{2q} + 1$ points and both intersection sizes do occur [7]. We will denote the corresponding (0,2)-set by $\mathcal{T}_{q-\sqrt{2q}+1}$ if $|E \cap O| = q - \sqrt{2q} + 1$ and by $\mathcal{T}_{q+\sqrt{2q}+1}$ if $|E \cap O| = q + \sqrt{2q} + 1$.

3 Unions of elliptic quadrics

Consider a (0,2)-set $\mathcal{K} \in \{\mathcal{E}_1, \mathcal{E}_{q+1}\}$ in $Q^+(5,q)$, $q=2^h$. Let Π be a hyperplane containing Σ and let $p=\Pi \cap L$, where $L=\Sigma^{\beta}$. Then Π intersects $Q^+(5,q)$ in a nonsingular parabolic quadric Q(4,q) with nucleus p. Since \mathcal{K} is the intersection of $Q^+(5,q)$ with the cone with vertex L and base the symmetric difference $E \triangle O$ we find that $\mathcal{K} \cap \Pi$ is the intersection of Q(4,q) with the cone with vertex p and base $E \triangle O$.

The projection of Q(4,q) from p on Σ yields an isomorphism from the classical generalized quadrangle Q(4,q) to the classical generalized quadrangle W(q) consisting of the points of Σ and the lines of Σ that are tangent to E. This isomorphism induces a bijection from the set of ovoids of Q(4,q) to the set of ovoids of W(q). Since the ovoid O has the same set of tangent lines as E, it is an ovoid of the generalized quadrangle W(q). Hence O is the projection from p on Σ of an ovoid \overline{O} of Q(4,q). So $K \cap \Pi$ is the symmetric difference $E \triangle \overline{O}$. Since O is a nonsingular elliptic quadric in Σ , \overline{O} is a nonsingular elliptic quadric in a 3-space $\overline{\Sigma} \subseteq \Pi$. Now Σ and $\overline{\Sigma}$ intersect in a plane $\overline{\pi}$ and we may also write $K \cap \Pi = Q(4,q) \cap (\Sigma \cup \overline{\Sigma}) \setminus \overline{\pi}$.

From the definition of \mathcal{E}_1 and \mathcal{E}_{q+1} it follows that there is exactly one

plane $\pi \subseteq \Sigma$ such that $\pi \cap Q(4,q) = E \cap O$. Indeed, if $\mathcal{K} = \mathcal{E}_1$ then E and O intersect in exactly one point and π is the unique tangent plane in Σ to E at this point. If $\mathcal{K} = \mathcal{E}_{q+1}$ then E and O intersect in a nondegenerate conic and π is the ambient plane of this conic. We prove that $\overline{\pi} = \pi$. Since O is the projection of \overline{O} from p on Σ , $E \cap \overline{O} = E \cap O$. Since $\overline{O} = \overline{\Sigma} \cap Q(4,q)$, $\overline{\pi} \cap Q(4,q) = \Sigma \cap \overline{\Sigma} \cap Q(4,q) = \Sigma \cap \overline{O} = E \cap \overline{O} = E \cap O$. So $\overline{\pi}$ is a plane in Σ such that $\overline{\pi} \cap Q(4,q) = E \cap O$. This means that $\overline{\pi} = \pi$.

So $K \cap \Pi$ is the symmetric difference of elliptic quadrics E and \overline{O} on Q(4,q) with ambient 3-spaces Σ and $\overline{\Sigma}$ intersecting in the plane π . Since this holds for all hyperplanes Π containing Σ we conclude that there exist 3-spaces $\Sigma_0 = \Sigma, \Sigma_1, \ldots, \Sigma_{q+1}$ mutually intersecting in the plane π , such that each intersects $Q^+(5,q)$ in an elliptic quadric and such that

$$\mathcal{K} = Q^+(5,q) \cap (\Sigma_0 \cup \Sigma_1 \cup \ldots \cup \Sigma_{q+1}) \setminus \pi.$$

What remains to be verified is the position of the 3-spaces Σ_i . Consider a plane π' spanned by L and a point $r \in O \setminus E$. One verifies in the respective cases $\mathcal{K} = \mathcal{E}_1$ and $\mathcal{K} = \mathcal{E}_{q+1}$ that $\pi \cap O = \pi \cap E = E \cap O$, so $r \notin \pi$. Hence π' is skew to π . We determine the points of intersection of Σ_i , $i = 0, \ldots, q+1$, with π' . Clearly $\Sigma_0 \cap \pi' = \Sigma \cap \pi' = r$. Let $i \in \{1, \ldots, q+1\}$ and let $p_i \in L$ be such that $\Sigma_i \subseteq \langle p_i, \Sigma \rangle$. Let r_i be the unique point of $Q^+(5, q)$ on the line $\langle p_i, r \rangle$. Since $r \in O \setminus E$, r_i is a point of \mathcal{K} and hence of Σ_i . But also $r_i \in \pi'$, so $\Sigma_i \cap \pi' = r_i$. Repeating this reasoning for all points p_i on L we see that the 3-spaces Σ_i , $i = 1, \ldots, q+1$, intersect π' in the points of the nondegenerate conic $C' = \pi' \cap Q^+(5, q)$ and that Σ intersects π' in the point r which is the nucleus of the conic C'. We have now proven the following theorem which completely determines the structure of the (0, 2)-sets \mathcal{E}_1 and \mathcal{E}_{q+1} .

Theorem 3.1 Let $K \in \{\mathcal{E}_1, \mathcal{E}_{q+1}\}$ and let π be the unique plane in Σ such that $\pi \cap Q^+(5,q) = E \cap O$. Then

$$\mathcal{K} = (E \cup O_1 \cup \ldots \cup O_{q+1}) \setminus \pi,$$

where O_i , $1 \leq i \leq q+1$, is a nonsingular 3-dimensional elliptic quadric on $Q^+(5,q)$ such that its ambient space Σ_i intersects Σ in the plane π . In particular the 3-spaces $\Sigma_1, \ldots, \Sigma_{q+1}$ intersect each plane $\pi' = \langle r, L \rangle$ with $L = \Sigma^{\beta}$ and $r \in O \setminus E$ in the points of the nondegenerate conic $C' = \pi' \cap Q^+(5,q)$, while Σ intersects π' in the nucleus r of the conic C'.

Remark

We can apply the same reasoning to the (0,2)-sets $\mathcal{T}_{q\pm\sqrt{2q}+1}$. We find then that $\mathcal{T}_{q\pm\sqrt{2q}+1}$ can be written as

$$(E \cup O_1 \cup \ldots \cup O_{q+1}) \setminus (E \cap O),$$

where O_1, \ldots, O_{q+1} are Suzuki-Tits ovoids in the hyperplanes containing Σ , such that for every $p_i \in L = \Sigma^{\beta}$, there is exactly one $O_i \subseteq \langle p_i, \Sigma \rangle$, and then O is the projection of O_i from p_i on Σ . However this was already known [4].

4 A new construction

The following construction is inspired by Theorem 3.1. Let π be a plane of $\operatorname{PG}(5,q)$, $q=2^h$, which does not contain any line of $Q^+(5,q)$ and let π' be a plane skew to π . Let \mathcal{D} denote the set of points $p \in \pi'$ such that $\langle p, \pi \rangle$ intersects $Q^+(5,q)$ in a nonsingular elliptic quadric, and suppose that A is a maximal arc of degree α in π' such that $A \subseteq \mathcal{D}$. Then we define the set $\mathcal{M}^{\alpha}(A)$ to be the intersection of $Q^+(5,q)$ with the cone with vertex π and base A, minus the points of $Q^+(5,q)$ in π .

Theorem 4.1 The set $\mathcal{M}^{\alpha}(A)$ is a $(0,\alpha)$ -set on $Q^{+}(5,q)$.

Proof. Let L be a line on $Q^+(5,q)$ which intersects the plane π . Then the subspace $\Sigma = \langle L, \pi \rangle$ has dimension 3 and it contains a line of $Q^+(5,q)$. Hence $\Sigma \cap \pi' \notin A$. So there are no points of $\mathcal{M}^{\alpha}(A)$ in Σ and hence also none on L.

Let L be a line on $Q^+(5,q)$ which is skew to π . A point p on L is in $\mathcal{M}^{\alpha}(A)$ if and only if $\langle p,\pi\rangle \cap \pi' \in A$ if and only if the projection of p from π on π' is a point of A. So if L' is the projection of L from π on π' then $|L \cap \mathcal{M}^{\alpha}(A)| = |L' \cap A| \in \{0,\alpha\}$. So every line on $Q^+(5,q)$ intersects $\mathcal{M}^{\alpha}(A)$ in 0 or α points.

Since the plane π does not contain any line of $Q^+(5,q)$, there are two possibilities: either $\pi \cap Q^+(5,q)$ is a single point or it is a nondegenerate conic. In the former case the $(0,\alpha)$ -set has deficiency 1 and it is denoted by $\mathcal{M}_1^{\alpha}(A)$. In the latter case the $(0,\alpha)$ -set has deficiency q+1 and it is denoted by $\mathcal{M}_{q+1}^{\alpha}(A)$.

In order to prove that there do exist $(0, \alpha)$ -sets of deficiency 1 and q+1 for every $\alpha \in \{2, 2^2, \dots, 2^{h-1} = q/2\}$ we must show that the set \mathcal{D} in the plane π' contains a maximal arc of degree α for every $\alpha \in \{2, 2^2, \dots, 2^{h-1}\}$, and this for both the case where $\pi \cap Q^+(5, q)$ is a single point and the case where $\pi \cap Q^+(5, q)$ is a nondegenerate conic.

If $\pi \cap Q^+(5,q)$ is a single point p then \mathcal{D} is the set of points of π' which are not on the line $\pi' \cap T_p$, where T_p is the tangent hyperplane to $Q^+(5,q)$ at p. Clearly in this case the set \mathcal{D} contains a maximal arc of degree α for every $\alpha \in \{2, 2^2, \ldots, 2^{h-1}\}$.

If $\pi \cap Q^+(5,q)$ is a nondegenerate conic then the plane π^β also intersects $Q^+(5,q)$ in a nondegenerate conic C. Furthermore β induces an antiautomorphism between the projective plane π^β and the projective plane having as points the 3-spaces through π and as lines the hyperplanes through π . This anti-automorphism is such that a 3-space containing π intersects $Q^+(5,q)$ in a nonsingular elliptic quadric if and only if the corresponding line of π^β is external to the conic C. Hence the set \mathcal{D} in the plane π' is the dual of the set of external lines to a nondegenerate conic. It follows that \mathcal{D} is a Denniston type maximal arc [10] of degree q/2, and hence that \mathcal{D} contains a maximal arc of degree α for every $\alpha \in \{2, 2^2, \dots, 2^{h-1}\}$. We have proven the following theorem.

Theorem 4.2 There exist $(0, \alpha)$ -sets on $Q^+(5, q)$, $q = 2^h$, of deficiency 1 and q + 1 for all $\alpha \in \{2, 2^2, \dots, 2^{h-1}\}$.

Corollary 4.3 There exist $(0, \alpha)$ -geometries fully embedded in PG(3, q), $q = 2^h$, of deficiency 1 and q + 1 for all $\alpha \in \{2, 2^2, \dots, 2^{h-1}\}$.

By Theorem 3.1 the (0,2)-set \mathcal{E}_d , d=1,q+1, is of the form $\mathcal{M}_d^2(H)$ with H a regular hyperoval. Let \mathcal{K} be the (0,q/2)-set corresponding to the (0,q/2)-geometry $\mathrm{NQ}^+(3,q)$, q even. Then \mathcal{K} corresponds to the set of external lines to a nonsingular hyperbolic quadric $Q^+(3,q)$ in $\mathrm{PG}(3,q)$. Let C be the set of points of $Q^+(5,q)$ corresponding to one of the two reguli of lines contained in $Q^+(3,q)$. Then C is a nondegenerate conic in a plane π , and \mathcal{K} is the set of all points of $Q^+(5,q)$ which are not collinear in $Q^+(5,q)$ with any of the points of C. So a point p of $Q^+(5,q)$ is in \mathcal{K} if and only if $p \notin \pi$ and $\langle p, \pi \rangle$ intersects $Q^+(5,q)$ in a nondegenerate elliptic quadric. Hence $\mathrm{NQ}^+(3,q)$ corresponds to the (0,q/2)-set $\mathcal{M}_{q+1}^{q/2}(\mathcal{D})$.

We conclude this paper with a list of all the known distinct examples of $(0, \alpha)$ -sets \mathcal{K} in $Q^+(5, q)$, $\alpha > 1$, q > 2. In this list d is the deficiency of the $(0, \alpha)$ -set \mathcal{K} .

- $\alpha = q + 1$, d = 0, and \mathcal{K} is the set of all points of $Q^+(5,q)$.
- $\alpha = q$, d = 0, and \mathcal{K} corresponds to $\overline{W(3,q)}$.
- $\alpha = q$, d = 1, and K corresponds to H_q^3 .
- $q = 2^h$, $\alpha \in \{2, 2^2, \dots, 2^{h-1}\}$, $d \in \{1, q+1\}$ and $\mathcal{K} = \mathcal{M}_d^{\alpha}(A)$.
- $q = 2^{2h+1}$, $\alpha = 2$, $d = q \pm \sqrt{2q} + 1$, and $\mathcal{K} = \mathcal{T}_{q \pm \sqrt{2q} + 1}$.

References

- [1] S. Ball, A. Blokhuis, and F. Mazzocca. Maximal arcs in Desarguesian planes of odd order do not exist. *Combinatorica*, 17(1):31–41, 1997.
- [2] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. *Pacific J. Math.*, 13:389–419, 1963.
- [3] A. A. Bruen and J. W. P. Hirschfeld. Intersections in projective space. II. Pencils of quadrics. *European J. Combin.*, 9(3):255–270, 1988.
- [4] A. Cossidente. Caps embedded in the Klein quadric. Bull. Belg. Math. Soc. Simon Stevin, 7(1):13–19, 2000.
- [5] F. De Clerck and J. A. Thas. The embedding of $(0, \alpha)$ -geometries in PG(n, q). I. In *Combinatorics '81 (Rome, 1981)*, volume 78 of *North-Holland Math. Stud.*, pages 229–240. North-Holland, Amsterdam, 1983.
- [6] F. De Clerck and H. Van Maldeghem. Some classes of rank 2 geometries. In *Handbook of Incidence Geometry*, pages 433–475. North-Holland, Amsterdam, 1995.
- [7] V. De Smet and H. Van Maldeghem. Intersections of Hermitian and Ree ovoids in the generalized hexagon H(q). J. Combin. Des., 4(1):71-81, 1996.
- [8] I. Debroey and J. A. Thas. On semipartial geometries. *J. Combin. Theory Ser. A*, 25(3):242–250, 1978.
- [9] A. Del Fra and D. Ghinelli. $Af^*.Af$ geometries, the Klein quadric and \mathcal{H}_q^n . Discrete Math., 129(1-3):53–74, 1994. Linear spaces (Capri, 1991).
- [10] R. H. F. Denniston. Some maximal arcs in finite projective planes. *J. Combinatorial Theory*, 6:317–319, 1969.
- [11] G. L. Ebert, K. Metsch, and T. Szőnyi. Caps embedded in Grassmannians. *Geom. Dedicata*, 70(2):181–196, 1998.
- [12] D. G. Glynn. On a set of lines of PG(3,q) corresponding to a maximal cap contained in the Klein quadric of PG(5,q). Geom. Dedicata, 26(3):273-280, 1988.
- [13] M. P. Hale, Jr. Finite geometries which contain dual affine planes. *J. Combin. Theory Ser. A*, 22(1):83–91, 1977.

- [14] J. I. Hall. Classifying copolar spaces and graphs. Quart. J. Math. Oxford Ser. (2), 33(132):421–449, 1982.
- [15] R. Mathon. New maximal arcs in Desarguesian planes. *J. Combin. Theory Ser. A*, 97(2):353–368, 2002.
- [16] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
- [17] L. Storme. On the largest caps contained in the Klein quadric of PG(5,q), q odd. J. Combin. Theory Ser. A, 87(2):357–378, 1999.
- [18] J. A. Thas. Construction of maximal arcs and partial geometries. *Geometriae Dedicata*, 3:61–64, 1974.
- [19] J. A. Thas. Construction of maximal arcs and dual ovals in translation planes. *European J. Combin.*, 1(2):189–192, 1980.
- [20] J. A. Thas, I. Debroey, and F. De Clerck. The embedding of $(0, \alpha)$ -geometries in PG(n, q). II. Discrete Math., 51(3):283–292, 1984.

Frank De Clerck; Nikias De Feyter Department of Pure Mathematics and Computer Algebra Ghent University Krijgslaan 281 - S22 B-9000 Gent Belgium

E-mail: fdc@cage.UGent.be; ndfeyter@cage.UGent.be

E-mail: ndurante@unina.it

Nicola Durante Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università di Napoli "Federico II" Complesso M. S. Angelo, Ed.T Via Cintia I-80126 Napoli Italy