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Abstract

We construct new examples of sets of points on the Klein quadric
Q1 (5,q), q even, having exactly two intersection sizes 0 and « with
lines on Q*(5,q). By the well-known Pliicker correspondence, these
examples yield new (0, «)-geometries embedded in PG(3,¢q), g even.

1 Preliminaries

A (0,«)-geometry S = (P, L, 1) is a connected partial linear space of or-
der (s,t) (i.e., every line is incident with s + 1 points, while every point is
incident with ¢ + 1 lines) such that for every anti-flag {p, L} the number
of lines through p and intersecting L is 0 or a. The concept of a (0, a)-
geometry, introduced by Debroey, De Clerck and Thas [5, 20], generalizes a
lot of well-studied classes of geometries such as semipartial geometries [8],
partial geometries [2] and generalized quadrangles [16].

A (0, «)-geometry S = (P, L, 1) is fully embedded in PG(n,q) if £ is a
set of lines of PG(n, ¢) not contained in a proper subspace and P is the set of
all points of PG(n, ¢) on the lines of S. In [20] the (0, a)-geometries (o > 1)
fully embedded in PG(n,q), n > 3,q > 2, are classified. For a = 1 as well
as for the (0, «)-geometries with ¢ = 2 a classification of the embeddings is
out of reach as explained for instance in [6, 20]. As for PG(3,q), in [5] it
is proven that if S is a (0, «)-geometry (a > 1) fully embedded in PG(3, q),
q > 2, then every planar pencil of PG(3,¢q) (i.e., the ¢ + 1 lines through a
point in a plane) contains 0 or « lines of §. Conversely one easily verifies
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that a set of lines of PG(3, ¢) which shares 0 or a (o > 1) lines with every
pencil of PG(3, q) yields a (0, «)-geometry fully embedded in PG(3, q).

We can use the well-known Pliicker correspondence, in order to see the
set of lines of the (0, a)-geometry as a set of points on the Klein quadric
Q" (5,9).

For the remainder of the paper we will always assume that a > 1 and
q > 2, and we may conclude that the following objects are equivalent.

o A (0, a)-geometry fully embedded in PG(3, q).

e A set of lines of PG(3,¢) sharing 0 or « lines with every pencil of
PG(3,q).

e A set of points on the Klein quadric Q% (5, ¢) sharing 0 or a points with
every line on QT (5,¢). We call such a set a (0, a)-set on QT (5, q).

A mazimal arc of degree a in PG(2, q) is a set of points such that every
line of PG(2, q) intersects it in 0 or « points. Examples of maximal arcs in
PG(2,2") were first constructed by Denniston [10]. Examples of maximal
arcs in PG(2,2") which are not of Denniston type were constructed by Thas
[18, 19] and by Mathon [15]. Ball, Blokhuis and Mazzocca [1] proved that
maximal arcs of degree 1 < a < ¢ in PG(2, ¢) do not exist if ¢ is odd.

Let K be a (0, a)-set on QT (5,q). Clearly every plane on Q1 (5,q) is ei-
ther disjoint from K or intersects I in a maximal arc of degree o. Consider
the (0, a)-geometry S = (P, L, 1), fully embedded in PG(3, ¢), which corre-
sponds to K. Then every plane of PG(3,¢) contains either no line of S or
qa—q+a lines of S which constitute a dual maximal arc of degree . Similarly
through every point p of PG(3, q) there are either 0 lines of S or g — ¢+ «
lines of § which intersect a plane not containing p in a maximal arc of degree
a. Let 7 be a plane of PG(3, g) containing qo — ¢ + « lines of S, and let d be
such that 7 contains ¢?+¢q+1—d points of S. Then counting the lines of S by
their intersection with m we get that | L] = |K| = (qa — ¢+ a)(¢*+ 1 —d).
We call d the deficiency of the (0, a)-geometry S and of the (0, a)-set .

In this paper we will give an overview of the known examples so far and
we will give new examples, o being any proper divisor of ¢, ¢ even.

2 The known examples

It is clear that the design of all points and lines of PG(3,¢q) is the only
(0,q + 1)-geometry fully embedded in PG(3, q).

On the other hand let S be a (0, ¢)-geometry fully embedded in PG(3, q)
and let II be the set of planes containing at least two lines of S. Then for
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every plane 7 € II, the incidence structure of points and lines of § in 7 is a
dual affine plane, while the incidence structure with point set the set of lines
of § through a fixed point p of & and with line set the set of planes of II
through p is an affine plane. These geometries are classified, there are two
non-isomorphic examples, see for instance [9, 13, 14]. Here we summarize
the result in the terminology of a (0, ¢)-set on the Klein quadric Q" (5, q).

Theorem 2.1 The points of Q1 (5,q) not on a hyperplane U of PG(5,q),
q > 2, are the only (0, q)-sets on Q1 (5,q). If U is a tangent hyperplane, then
the deficiency is 1. If U is a secant hyperplane then the deficiency is 0.

Remark

For the (0, g)-set of deficiency 1 the corresponding (0, ¢)-geometry in PG(3, q)
is the well known dual net denoted by H, 3. For the (0, q)-set of deficiency
0 the corresponding (0, ¢)-geometry in PG(3, ¢) is the semipartial geometry
denoted by W (3,q). For a detailed description of both examples as (0, q)-
geometries embedded in PG(3, ¢) we refer for instance to [6].

In [1] it is proved that in desarguesian planes of order ¢, ¢ odd, maximal
arcs of degree a, 1 < o < ¢, do not exist. Hence we can conclude that if ¢ is
odd, no other (0, a)-set, @ > 1, on the Klein quadric Q" (5, ¢) exists. Hence,
for other examples we may restrict ourselves to the case q even, 1 < a < q.

Here is an other example. The points of QT (5, q), g even, corresponding
to the external lines of a nonsingular hyperbolic quadric in PG(3, ¢) form a
(0, )-set on QT (5, q) with o = ¢/2 and deficiency ¢ + 1. The corresponding
(0, q/2)-geometry is denoted by NQ™ (3, q).

It was conjectured in [5] that H3, W (3,q) and NQ*(3,¢) are the only
(0, @)-geometries, with « > 1, fully embedded in PG(3,q), ¢ > 2. This
conjecture is false as will be clear from the remainder of the paper.

A first counterexample has been given by Ebert, Metsch and Szényi [11].
A k-cap in PG(n,q) is a set of k points, no three on a line. It is called
maximal if it is not contained in a larger cap. Quite some research has been
done on caps in PG(5,q) that are contained in the Klein quadric Q* (5, q).
Since the maximum size of a cap in PG(2, ¢) is ¢+ 1 if ¢ is odd and ¢+2 if ¢ is
even, a cap in Q7 (5, ¢) has size at most (¢+1)(¢*+1) if ¢ is odd and at most
(q+2)(¢*+1) if ¢ is even. Glynn [12] constructs a cap of size (¢ + 1)(¢* +1)
in QT (5,q) for any prime power ¢ (see also [17]). Ebert, Metsch and Szényi
construct caps of size ¢* +2¢° +1 = (¢ +2)(¢* +1) —q¢—1in Q7 (5,q) for ¢
even. They show that a cap in QT (5, q), ¢ even, of size ¢° + 2¢® + 1 is either
maximal in @7 (5, ¢) and is then a (0, 2)-set of deficiency 1 together with one
extra point, or it is contained in a cap of size (¢ + 2)(¢*> + 1). One easily
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verifies that caps of size (¢ + 2)(¢*> + 1) in Q% (5,q), ¢ even, and (0, 2)-sets
of deficiency 0 are equivalent. A cap of size (¢ + 2)(¢> + 1) is only known to
exist for ¢ = 2.

The construction of Ebert, Metsch and Szényi is as follows. Let X be a
3-space intersecting Q" (5, ¢) in a nonsingular elliptic quadric E. Let L = 7
where (3 is the symplectic polarity associated with Q* (5, ¢). Then the line L
is external to QT (5, ¢). Consider an ovoid O in ¥ which has the same set of
tangent lines as E. Let K be the intersection of Q*(5,¢) with the cone with
vertex L and base £ U O. Then K is a cap of size (¢ + 1) |O\ E| +¢*+ 1
which is maximal in Q7 (5,¢) [11], and £\ (ENO) is a (0, 2)-set in QT (5, q)
of deficiency |ENO|.

We have the following possibilities for O. The ovoid O can be an elliptic
quadric. Then E and O intersect in either one point or ¢ + 1 points which
form a conic in a plane of ¥ (Types 1(i) and 3(g)(ii) in Table 2 of [3]).
We will denote the corresponding (0,2)-set by & if |ENO| = 1 and by
Em if |[ENO| = g+ 1. On the other hand when ¢ is an odd power
of 2 the ovoid O can be a Suzuki-Tits ovoid. Then E and O intersect in
q £ /2q + 1 points and both intersection sizes do occur [7]. We will denote
the corresponding (0,2)-set by 7, 571 if |[ENO| = q—+/2¢+ 1 and by
Toryogr if |ENO| =q+2¢+ 1.

3 Unions of elliptic quadrics

Consider a (0,2)-set K € {&,E11} in QT (5,q), ¢ = 2". Let II be a hyper-
plane containing ¥ and let p = II N L, where L = ¥. Then II intersects
Q1 (5,q) in a nonsingular parabolic quadric @Q(4,¢) with nucleus p. Since
K is the intersection of @7 (5,q) with the cone with vertex L and base the
symmetric difference E A O we find that ICN1TI is the intersection of Q(4, q)
with the cone with vertex p and base £ A O.

The projection of Q(4,q) from p on ¥ yields an isomorphism from the
classical generalized quadrangle (4, ¢) to the classical generalized quadran-
gle W(q) consisting of the points of ¥ and the lines of 3 that are tangent
to E. This isomorphism induces a bijection from the set of ovoids of Q(4, q)
to the set of ovoids of W (q). Since the ovoid O has the same set of tangent
lines as F, it is an ovoid of the generalized quadrangle W(q). Hence O is the
projection from p on X of an ovoid O of Q(4,q). So K NI is the symmet-
ric difference E A O. Since O is a nonsingular elliptic quadric in 2, O is a
nonsingular elliptic quadric in a 3-space ¥ C II. Now 3 and ¥ intersect in a
plane 7 and we may also write X NIl = Q(4,¢) N (ZUX) \ 7.

From the definition of & and &gy, it follows that there is exactly one



plane 7 C ¥ such that 7N Q(4,¢) = F N O. Indeed, if £ = & then E and
O intersect in exactly one point and 7 is the unique tangent plane in  to £
at this point. If £ = &,4, then F and O intersect in a nondegenerate conic
and 7 is the ambient plane of this conic. We prove that 7 = 7. Since O is
the projection of O from p on ¥, ENO = ENO. Since O = ¥ N Q(4,q),
TNQM,¢)=YNENQM4,q)=XN0=ENO=FENO. SoT is a plane in
Y such that TN Q(4,q) = ENO. This means that 7 = 7.

So K N1I is the symmetric difference of elliptic quadrics E and O on
Q(4,q) with ambient 3-spaces ¥ and X intersecting in the plane 7. Since
this holds for all hyperplanes Il containing 3 we conclude that there exist
3-spaces Yo = X, X, .. ., 2Xg+1 mutually intersecting in the plane 7, such that
each intersects @7 (5, ¢) in an elliptic quadric and such that

K=Q"(5,9)N(ZoUXiU...UXu41) \ T

What remains to be verified is the position of the 3-spaces ¥;. Consider
a plane 7’ spanned by L and a point » € O\ E. One verifies in the respective
cases =& and K =& that tNO=7NE =ENO, sor ¢m. Hence 7
is skew to m. We determine the points of intersection of ¥;, ¢ =0,...,q+ 1,
with 7. Clearly Yo Na' =YX Na' =r. Leti € {l,...,q+ 1} and let p; € L
be such that ¥; C (p;, ¥). Let r; be the unique point of @7 (5, ¢) on the line
(pi,r). Since r € O\ E, r; is a point of I and hence of ;. But also r; € 7',
so X; N7’ = r;. Repeating this reasoning for all points p; on L we see that the
3-spaces X;, i = 1,...,q + 1, intersect 7’ in the points of the nondegenerate
conic C" = ' NQ*1(5,q) and that ¥ intersects 7" in the point  which is the
nucleus of the conic C’'. We have now proven the following theorem which
completely determines the structure of the (0, 2)-sets & and £ 4.

Theorem 3.1 Let K € {&,E,41} and let ™ be the unique plane in ¥ such
that t N QT (5,q9) = ENO. Then

K=(EUO1U...UOg1)\,

where O;, 1 < 1 < g+ 1, is a nonsingular 3-dimensional elliptic quadric
on Q1 (5,q) such that its ambient space ; intersects ¥ in the plane w. In
particular the 3-spaces X1, . . ., X441 intersect each plane " = (r, L) with L =
Y8 and r € O\ E in the points of the nondegenerate conic C' = 7' NQ* (5, q),
while 3 intersects ' in the nucleus r of the conic C'.

Remark

We can apply the same reasoning to the (0,2)-sets 7, 541 We find then
that 7. 5.1 can be written as

(BEUOLU...UO) \ (ENO),
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where Oy, ..., 0441 are Suzuki-Tits ovoids in the hyperplanes containing 3,
such that for every p; € L = ¥°, there is exactly one O; C (p;, %), and then
O is the projection of O; from p; on 3. However this was already known [4].

4 A new construction

The following construction is inspired by Theorem 3.1. Let m be a plane of
PG(5,q), ¢ = 2", which does not contain any line of Q*(5,¢) and let 7’ be
a plane skew to m. Let D denote the set of points p € " such that (p, )
intersects @7 (5, ¢) in a nonsingular elliptic quadric, and suppose that A is
a maximal arc of degree av in 7’ such that A C D. Then we define the set
M*(A) to be the intersection of Q*(5,¢) with the cone with vertex = and
base A, minus the points of Q1 (5,¢) in 7.

Theorem 4.1 The set M*(A) is a (0,a)-set on Q1 (5,q).

Proof. Let L be a line on Q*(5,¢) which intersects the plane w. Then
the subspace ¥ = (L, 7) has dimension 3 and it contains a line of Q™ (5, q).
Hence X N7’ ¢ A. So there are no points of M*(A) in ¥ and hence also
none on L.

Let L be a line on Q7 (5,¢) which is skew to w. A point p on L is in
M(A) if and only if (p,7) N7’ € A if and only if the projection of p from
m on 7' is a point of A. So if L’ is the projection of L from 7 on 7’ then
ILNAM*(A)| = |[L'NA| € {0,a}. So every line on Q7 (5,q) intersects
M?(A) in 0 or « points. O

Since the plane 7 does not contain any line of Q*(5,¢), there are two
possibilities: either = N Q1 (5,¢) is a single point or it is a nondegenerate
conic. In the former case the (0, «)-set has deficiency 1 and it is denoted by
MG (A). In the latter case the (0, «)-set has deficiency g+ 1 and it is denoted
by Mg\, (A).

In order to prove that there do exist (0, a)-sets of deficiency 1 and ¢ + 1
for every a € {2,22,...,2""1 = ¢/2} we must show that the set D in the
plane 7’ contains a maximal arc of degree « for every a € {2,2%,...,2"1}
and this for both the case where 7 N QT (5, ¢) is a single point and the case
where m N Q1 (5, q) is a nondegenerate conic.

If 7 NQ1(5,q) is a single point p then D is the set of points of 7’ which
are not on the line 7’ N T, where T}, is the tangent hyperplane to Q*(5,q)
at p. Clearly in this case the set D contains a maximal arc of degree o for
every a € {2,2%,..., 271}



If N Q*(5,q) is a nondegenerate conic then the plane 77 also inter-
sects QT (5,¢) in a nondegenerate conic C. Furthermore 3 induces an anti-
automorphism between the projective plane 7 and the projective plane hav-
ing as points the 3-spaces through 7 and as lines the hyperplanes through
7. This anti-automorphism is such that a 3-space containing 7 intersects
Q1 (5,q) in a nonsingular elliptic quadric if and only if the corresponding
line of 7% is external to the conic C. Hence the set D in the plane 7’ is the
dual of the set of external lines to a nondegenerate conic. It follows that D is
a Denniston type maximal arc [10] of degree ¢/2, and hence that D contains
a maximal arc of degree a for every o € {2,2%,...,2""1}. We have proven
the following theorem.

Theorem 4.2 There exist (0,a)-sets on Q*(5,q), ¢ = 2", of deficiency 1
and ¢+ 1 for all o € {2,22,..., 21},

Corollary 4.3 There exist (0, a)-geometries fully embedded in PG(3,q), ¢ =
2" of deficiency 1 and g + 1 for all o € {2,22,... 271}

By Theorem 3.1 the (0,2)-set &;, d = 1,q + 1, is of the form M?3(H)
with H a regular hyperoval. Let K be the (0,q/2)-set corresponding to
the (0,q/2)-geometry NQ*(3,q), ¢ even. Then K corresponds to the set of
external lines to a nonsingular hyperbolic quadric Q*(3,¢) in PG(3,¢q). Let
C' be the set of points of QT (5,¢) corresponding to one of the two reguli of
lines contained in @7 (3,¢). Then C' is a nondegenerate conic in a plane T,
and K is the set of all points of Q*(5,¢) which are not collinear in Q% (5, q)
with any of the points of C'. So a point p of @*(5,¢) is in K if and only
if p & m and (p, ) intersects @T(5,¢) in a nondegenerate elliptic quadric.
Hence NQ™ (3, ¢) corresponds to the (0, q/2)-set Mgfl (D).

We conclude this paper with a list of all the known distinct examples of
(0, )-sets K in @ (5,¢), @ > 1, ¢ > 2. In this list d is the deficiency of the
(0, a)-set K.

e a=¢g+1,d=0, and K is the set of all points of Q7 (5, q).

e a=¢q,d=0, and K corresponds to m

e o =g¢,d=1, and K corresponds to Hq3.

e ¢=2" ae{2,2%...,2"} de {1,¢+ 1} and K = M3(A).

o q=2M1 =2 d=q+2¢+1, and/C:'];ierL
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