
Innovations in Incidence Geometry
Volume 00 (XXXX), Pages 000–000
ISSN 1781-6475

Projections of quadrics in finite projective
spaces of odd characteristic
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Abstract

The set of points obtained by projecting a quadric from a point off the
quadric on a hyperplane has many interesting properties. Hirschfeld and
Thas [12, 13] provided a characterization of this set, only by means of its
intersection pattern with lines. However, their result only holds when the
finite field has even order. Here, we extend their result to finite fields of odd
order.
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1 Introduction

Let Qn+1 be a nonsingular quadric in a finite projective space PG(n + 1, q),
n ≥ 1. Consider a point r 6∈ Qn+1, distinct from its nucleus if n + 1 and q are
even, and a hyperplane PG(n, q) not through r. Let Rn be the projection of the
quadric Qn+1 from the point r on the hyperplane PG(n, q). This set has many
nice properties (see Section 2).

A set K of points of PG(n, q) is said to be a set of class [m1, . . . ,mk], 0 ≤ m1 <

. . . < mk ≤ q + 1, if for every line L, |L ∩ K | = mi for some 1 ≤ i ≤ k. It is
said to be a set of type (m1, . . . ,mk) if every mi actually occurs for some line L.
One can similarly define sets of certain class or type with respect to subspaces
of dimension m ≥ 1.

∗This research was supported by a BOF (”Bijzonder Onderzoeksfonds”) grant at Ghent
University.
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If q is even, Rn is a set of class
[
1, 1

2q + 1, q + 1
]

in PG(n, q). Sets of class
[1,m, q + 1], in PG(n, q), q even and q > 4, have been classified. See Tallini
Scafati [18], Hirschfeld and Thas [12, 13] and Glynn [9] for more details. The
case q = 4 is special, see also Hirschfeld and Hubaut [10] and Hirschfeld,
Hubaut and Thas [11]. If m = q

2 + 1, q > 4, then a set of type (1,m, q + 1)
is indeed the projection of a nonsingular quadric.

If q is odd, Rn is a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q). The

purpose of this paper is to prove a characterization of Rn for odd q, simi-
lar to the results in the q even case. In concrete, we classify all sets of class[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), n ≥ 2 and q > 7 odd.

Section 2 provides a general view of the set Rn. Sets of class
[
1, 1

2 (q + 1),
1
2 (q + 3), q + 1

]
in the plane PG(2, q), q odd, were classified in [5]. We state

this result in Section 3. Some of the sets in the plane occur as plane sections
of Rn, others do not. In Section 4, we show that some combinations of plane
sections cannot occur. Section 5 discusses two notions of singularity in sets of
class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
. Next, in Section 6, we cite the classification

of projective Shult spaces by Buekenhout and Lefèvre [3] and Lefèvre-Percsy
[17]. This result can be seen as a characterization of quadrics, and it is used in
this sense in Sections 7 and 8, where we prove our main result.

Main Theorem Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q),

n ≥ 2 and q > 7 odd. Then one of the following cases occurs.

1. K = Rn.

2. K is singular. Either K is the set of all points of PG(n, q), or K is a cone with
vertex an m-space U of PG(n, q), 0 ≤ m ≤ n− 2, and base a nonsingular set
of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n−m− 1)-space V skew to U .

3. K is quasi singular. Then K consists of 1
2 (q + 1) hyperplanes through a

common (n−2)-space U and a nonsingular set, which is of class
[
1, 1

2 (q + 1),
1
2 (q + 3), q + 1

]
in a hyperplane U ′ ⊇ U , U ′ distinct from the 1

2 (q + 1)
hyperplanes contained in K.

4. n = 2 and there is a nondegenerate conic C and a point p ∈ C such that K
is the union of the tangent line L to C at p and the set of internal points of
C.
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2 The set Rn

We recall that Qn+1 is a nonsingular quadric in a finite projective space PG(n +
1, q), n ≥ 1, and that r 6∈ Qn+1 is a point distinct from its nucleus if n + 1 and
q are even. Let Rn be the projection of the quadric Qn+1 from the point r on
a hyperplane PG(n, q) not through r. Let Tn ⊆ Rn be the set of points p of
PG(n, q) such that the line 〈p, r〉 is a tangent to Qn+1, and let Pn = Rn \ Tn.
In the even case Tn is a hyperplane of PG(n, q). For q odd, the tangent lines to
Qn+1 through r are precisely the lines joining r with the points of Qn+1 ∩ r⊥,
where r⊥ is the polar hyperplane of r with respect to Qn+1. We have r 6∈ r⊥,
so we may assume without loss of generality that PG(n, q) = r⊥. Now Tn is the
nonsingular quadric Qn+1 ∩ r⊥.

Assume q 6= 2. A point-line geometry HTn arises naturally from the set Pn.
The points of HTn are the points of Pn and the lines of HTn are the lines of
PG(n, q) which contain q points of Pn or, equivalently, which are the projections
of the lines of Qn+1 that are not contained in r⊥.

A number of interesting graphs and geometries are related to projections of
quadrics. For example, if n is even, the point graph of HTn is a strongly regular
graph. In fact it is the strongly regular graph of Hubaut and Metz [15]. If q = 3,
then the point graph of HTn is a strongly regular graph, also when n is odd.
More precisely, it is the strongly regular graph C.10’ of Hubaut [16]. There
are some constructions of partial geometries and semipartial geometries (for
the definitions, see Bose [2] and Debroey, Thas [6]) which have these strongly
regular graphs as point graphs, see Thas [19], Hirschfeld and Thas [13] and
Delanote [7]. Thas [20] unified and extended these constructions in the concept
of SPG-systems.

We will now focus on the q odd case. The following proposition, the proof
of which is trivial, shows that Rn is a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
.

The set of lines of PG(n, q) containing i points of Rn will be denoted by Li,
i ∈ {1, 1

2 (q + 1), 1
2 (q + 3), q + 1}.

Proposition 2.1. Consider the set Rn in PG(n, q), q odd. Let L be a line of
PG(n, q), and let π = 〈r, L〉. One of the following cases occurs.

1. The plane π intersects Qn+1 in a nondegenerate conic C. Then L is in
L 1

2 (q+1) or L 1
2 (q+3), according as r is an internal or external point of C,

or equivalently, according as L is an external or secant line to Tn.

2. The plane π intersects Qn+1 in two distinct lines L1, L2. Then L ∈ Lq+1 and
L is a tangent line to Tn, the point of tangency being the point L1 ∩ L2.
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3. The plane π intersects Qn+1 in a point p. Then L ∈ L1 and L is a tangent
line to Tn, the point of tangency being the point p.

4. The plane π intersects Qn+1 in the line L. Then L ∈ Lq+1 and L ⊆ Tn.

If n + 1 = 2m + 1, either Q2m+1 = Q+(2m + 1, q) is a hyperbolic quadric
or Q2m+1 = Q−(2m + 1, q) is an elliptic quadric. In either case the orthogonal
group of Q2m+1 acts transitively on the points off Q2m+1 (see Hirschfeld and
Thas [14], Theorem 22.6.6), and so the set R2m is uniquely determined. We
write R2m = R+

2m if Q2m+1 = Q+(2m + 1, q) and R2m = R−
2m if Q2m+1 =

Q−(2m + 1, q). In either case, the quadric T2m = Q2m+1 ∩ PG(2m, q) is a non-
singular parabolic quadric.

If n+1 = 2m, thenQ2m = Q(2m, q) is a parabolic quadric. Here however, the
orthogonal group of Q2m has two orbits on the points off Q2m. If the point r is
such that the quadric T2m−1 = Q2m ∩ PG(2m− 1, q) is a nonsingular hyperbolic
quadric, then we write R2m−1 = R+

2m−1. If the quadric T2m−1 is a nonsingular
elliptic quadric, then we write R2m−1 = R−

2m−1.

Proposition 2.2. If q is odd, the number of points of the set Rn is as follows.

|R±
2m | = | P±2m | + | T2m | =

1
2
qm(qm ± 1) +

q2m − 1
q − 1

,

|R±
2m−1 | = | P±2m−1 | + | T ±2m−1 | =

1
2
qm−1(qm ∓ 1) +

(qm−1 ± 1)(qm ∓ 1)
q − 1

.

Proof. This follows from the fact that |Q(2n, q) | = (q2n−1)/(q−1), |Q+(2n+
1, q) | = (qn + 1)(qn+1 − 1)/(q − 1), and |Q−(2n + 1, q) | = (qn − 1)(qn+1 +
1)/(q − 1).

Choose a basis in PG(n, q) and let Tn : F (X) = 0, with X = (X0, . . . , Xn).
Let S(q) = {x2 |x ∈ GF(q)} be the set of squares and N(q) = GF(q) \ S(q) be the
set of nonsquares. Let Pn = PG(n, q) \ Rn and Rn = Tn ∪ Pn.

Theorem 2.3. Pn = {p(x) |F (x) ∈ S} with either S = S(q) \ {0} or S = N(q).

If n = 2m, then P+
2m = {p(x) |F (x) ∈ S(q) \ {0}}, P−2m = {p(x) |F (x) ∈

N(q)}, P+
2m = P−2m and P−2m = P+

2m.

If n = 2m− 1, then P?
2m−1 is projectively equivalent to P?

2m−1 and there exists
a projectivity which fixes T ?

2m−1 and interchanges P?
2m−1 and P?

2m−1, ? ∈ {+,−}.

Proof. Extend the basis of PG(n, q) to a basis of PG(n + 1, q) such that PG(n, q) :
Xn+1 = 0 and r(0, . . . , 0, 1). PutQn+1 : F ′(X, Xn+1) = 0. AsQn+1∩PG(n, q) =
Tn and as r is the pole of PG(n, q),

F ′(X, Xn+1) = X2
n+1 + zF (X)
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for some z 6= 0. A point p(x, 0) 6∈ Tn of PG(n, q) is in Pn if and only if there is
a point p′(x, xn+1) on the line 〈p, r〉 such that p′ ∈ Qn+1. Hence p ∈ Pn if and
only if there is an xn+1 ∈ GF(q) such that x2

n+1 = −zF (x). The first statement
follows.

Let n = 2m. Then without loss of generality we may assume that

F (X) = X2
0 + X1X2 + . . . + X2m−1X2m.

If Q2m+1 = Q+(2m + 1, q) is a hyperbolic quadric, then since

F ′(X, X2m+1) = X2
2m+1 + z(X2

0 + X1X2 + . . . + X2m−1X2m),

the polynomial X2
2m+1 + zX2

0 is reducible. So −z ∈ S(q) \ {0}, and so P+
n =

{p(x) |F (x) ∈ S(q) \ {0}}. If Q2m+1 = Q−(2m + 1, q) is an elliptic quadric,
then the polynomial X2

2m+1 + zX2
0 is irreducible. So −z ∈ N(q), and so P−n =

{p(x) |F (x) ∈ N(q)}.
Let n = 2m − 1 and consider R?

2m−1, ? ∈ {+,−}. Consider the pencil of
quadrics of PG(2m, q)

P = {Qz
2m : X2

2m + zF (X) = 0 | z ∈ GF(q) ∪ {∞}}.

We have shown thatQ2m = Qz
2m for some z 6∈ {0,∞}. For every z ∈ GF(q)\{0},

Qz
2m ∩ PG(2m − 1, q) = T ?

2m−1 and the projection of Qz
2m \ T ?

2m−1 from r on
PG(2m− 1, q) is either P?

2m−1 or P?
2m−1.

Every element of the orthogonal group PGO?(2m, q) of T ?
2m−1 can be ex-

tended to a projectivity of PG(2m, q) which fixes the point r, and hence fixes
the pencil P . Hence {T ?

2m−1,P?
2m−1,P?

2m−1} is an imprimitive partition of
PG(2m − 1, q) for the group PGO?(2m, q). As PGO?(2m, q) acts transitively on
the points off T ?

2m−1, there is a projectivity which fixes T ?
2m−1 and interchanges

P?
2m−1 and P?

2m−1.

Proposition 2.4. Consider the graph Γn on the points of PG(n, q) off Tn, two
points being adjacent if they determine a tangent line to Tn. If Qn+1 contains
lines, then Pn is the vertex set of a connected component of Γn.

Proof. Proposition 2.1 says that if a line L of PG(n, q) is tangent to Tn at a point
p and contains a point p′ of Pn, then 〈r, L〉 ∩ Qn+1 consists of two distinct lines
intersecting at p, so L \ {p} ⊆ Pn. It follows that if p′ ∈ Pn, then the connected
component of p′ in Γn is contained in Pn. As Qn+1 contains lines, the geometry
HTn is connected. So Pn contains only one connected component of Γn.

Corollary 2.5. It easily follows from Theorem 2.3 and Proposition 2.4, that, as-
suming n ≥ 3, the graph Γn has exactly two connected components, the vertex sets
of which are Pn and Pn.
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Proposition 2.6. Let n = 2m be even. Let ϕ be the orthogonal polarity of T2m.
Then P+

2m is the set of all points p such that pϕ ∩ T2m is a nonsingular hyperbolic
quadric, and P−2m is the set of all points p such that pϕ ∩ T2m is a nonsingular
elliptic quadric.

Proof. Let ϕ′ be the polarity of Q2m+1. Let p 6∈ T2m be a point of PG(2m, q)
and let L = 〈p, r〉. Then pϕ = Lϕ′

and L is a secant to Q2m+1 if and only if
Lϕ′ ∩Q2m+1 = pϕ ∩ T2m is of the same type as Q2m+1.

3 The projective plane

The sets of class
[
0, 1

2 (q − 1), 1
2 (q + 1), q

]
in the projective plane PG(2, q), q >

3, were determined in [5]. Notice that for q = 3, such a set is simply the
complement of a blocking set. By taking complements, we obtain the following
result.

Theorem 3.1. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in the plane

π = PG(2, q), q > 3. Then K is of one of the following types.

Type I. There is a nondegenerate conic Cπ such that K is the union of Cπ and its
internal points. So K = R−

2 and K is a set of type
(
1, 1

2 (q + 1), 1
2 (q + 3)

)
.

Type II. There is a nondegenerate conic Cπ and a point pπ ∈ Cπ such that K is
the union of the tangent line Lπ to Cπ at pπ and the set of internal points of
Cπ. Here K is a set of type

(
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

)
.

Type III. There is a nondegenerate conic Cπ such that K is the union of Cπ and its
external points. SoK = R+

2 andK is a set of type
(

1
2 (q + 1), 1

2 (q + 3), q + 1
)
.

Type IV. K is the union of either 1
2 (q+1) or 1

2 (q+3) distinct lines through a given
point pπ. Here K is a set of type

(
1, 1

2 (q + 1), q + 1
)

or
(
1, 1

2 (q + 3), q + 1),
respectively.

Type V. K consists of the points on 1
2 (q + 1) lines through a given point pπ and

1
2 (q−1) or 1

2 (q+1) points, distinct from pπ and not on these lines, which are
on a line Lπ through pπ. HereK is a set of type

(
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

)
.

Type VI. K consists of the points on a line Lπ. Here K is a set of type (1, q + 1).

Type VII. Every point of π is a point of K. Here K is a set of type (q + 1).

Type VIII. q = 5 and K is the set of points on three nonconcurrent lines, except
the points of intersection. Here K is a set of type (1, 3, 4).
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Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), n ≥ 3 and

q > 3, and let π be a plane of PG(n, q). Then clearly π ∩ K is a set of class[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in π. We say that π is a plane of type I, II. . . if π∩K

is of type I, II. . . , respectively.

If a plane of type IV consists of 1
2 (q + 1) lines, then we call it a plane of type

IVa; otherwise we call it a plane of type IVb. If π is a plane of type V and the
line Lπ contains 1

2 (q − 1) points of K, other than pπ, then we say that π is a
plane of type Va; otherwise π is said to be a plane of type Vb. If π is a plane of
type IV or V, then the point pπ is also called the vertex of π.

For every i ∈ {1, 1
2 (q+1), 1

2 (q+3), q+1}, let Li denote the set of lines L such
that |L ∩ K | = i. Table 1 gives useful information on the sets which occur in
Theorem 3.1.

The following proposition, the proof of which is trivial, tells which types of
planes can occur in the set Rn.

Proposition 3.2. Let Qn+1 be a nonsingular quadric in a finite projective space
PG(n + 1, q), n ≥ 1, q odd. Let Rn be the projection of the quadric Qn+1 from
a point r 6∈ Qn+1 on a hyperplane PG(n, q), not through r. Let π be a plane of
PG(n, q), let p be a point of Rn, not in π, and let W = 〈p, π〉. One of the following
cases occurs.

1. If W ∩Qn+1 is a nonsingular elliptic quadric, then π∩Tn is a nondegenerate
conic C, and π is of type I, with Cπ = C.

2. If W ∩Qn+1 is a nonsingular hyperbolic quadric, then π∩Tn is a nondegen-
erate conic C, and π is of type III, with Cπ = C.

3. If W ∩ Qn+1 is a quadratic cone, then π ∩ Tn is either the union of two
distinct lines or a single point p. In the first case, π is of type IVb, and in the
second case π is of type IVa with vertex p.

4. If W ∩Qn+1 is the union of two planes π1, π2, then π∩Tn is the line π1 ∩π2

and π is of type VII.

5. If W ∩Qn+1 is a line L, then π ∩ Tn = L and π is of type VI.

6. If W ∩Qn+1 is the plane π, then π ⊆ Tn is of type VII.

4 The projective line

Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), n ≥ 3, q > 3.
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π | K ∩ π | p L1 L 1
2 (q+1) L 1

2 (q+3) Lq+1

I 1
2q2 + 1

2q + 1 p ∈ Cπ 1 0 q 0
internal to Cπ 0 q+1

2
q+1
2

0
external to Cπ 2 q−1

2
q−1
2 0

II 1
2q2 + 1

2q + 1 p = pπ 0 q 0 1
p ∈ Lπ \ {pπ} 1 q−1

2
q−1
2

1
internal to Cπ 0 q+1

2
q+1
2

0
p ∈ Cπ \ pπ 1 q 0 0

external, p 6∈ Lπ 2 q−1
2

q−1
2 0

III 1
2q2 + 3

2q + 1 p ∈ Cπ 0 0 q 1
external to Cπ 0 q−1

2
q−1
2

2
internal to Cπ 0 q+1

2
q+1
2 0

IVa 1
2q2 + 1

2q + 1 p = pπ
q+1
2

0 0 q+1
2

p 6= pπ 0 q 0 1
p 6∈ K 1 q 0 0

IVb 1
2q2 + 3

2q + 1 p = pπ
q−1
2

0 0 q+3
2

p 6= pπ 0 0 q 1
p 6∈ K 1 0 q 0

Va 1
2q2 + q + 1

2 p = pπ
q−1
2

1 0 q+1
2

p ∈ Lπ \ {pπ} 0 1 q 0
p 6∈ Lπ 0 q+1

2
q−1
2

1
p ∈ Lπ 0 q + 1 0 0
p 6∈ Lπ 1 q+1

2
q−1
2 0

Vb 1
2q2 + q + 3

2 p = pπ
q−1
2

0 1 q+1
2

p ∈ Lπ \ {pπ} 0 0 q + 1 0
p 6∈ Lπ 0 q−1

2
q+1
2

1
p ∈ Lπ 0 q 1 0
p 6∈ Lπ 1 q−1

2
q+1
2 0

VI q + 1 p ∈ Lπ q 0 0 1
p 6∈ Lπ q + 1 0 0 0

VII q2 + q + 1 p 0 0 0 q + 1
VIII 12 p 1 4 1 0

p = pi
π 4 0 2 0

p 6= pi
π 3 3 0 0

Table 1: For each type of plane π, the number of points of K in π is given.
Also, for all points p ∈ π, the number of lines of Li in π through p are given,
i ∈ {1, 1

2 (q + 1), 1
2 (q + 3), q + 1}. The points p ∈ K are printed in bold.
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Proposition 4.1. Let π be a plane of type I or III. A line L ⊆ π is a line of L 1
2 (q+1)

if and only if L is an external line to the conic Cπ. In this case L ∩ K = R−
1 . On

the other hand L ∈ L 1
2 (q+3) if and only if L is a secant line to Cπ. In this case

L ∩ K = R+
1 , with T1 = L ∩ Cπ.

Proof. Proposition 3.2 says that if π is of type I, then π ∩K = R−
2 , and if π is of

type III, then π ∩ K = R+
2 . Hence Proposition 2.1 applies.

Proposition 4.2. Let π be a plane of type II. A line L ⊆ π is a line of L 1
2 (q+1) if

and only if L is a secant line to the conic Cπ. In this case L∩K = P+
1 ∪{p}, where

T1 = L ∩ Cπ and p = L ∩ Lπ. On the other hand L ∈ L 1
2 (q+3) if and only if L is

an external line to Cπ. In this case L ∩ K = R−
1 ∪ {p}, with p = L ∩ Lπ.

Proof. Note that, when we delete from the set π ∩ K the line Lπ and add the
conic Cπ, then we obtain a set of type I. So we can apply Proposition 4.1.

One can wonder whether the line sections as given in Propositions 4.1 and
4.2 can be projectively equivalent. This question has been discussed (in another
context) for instance by J. C. Fisher [8], who proves that R−

1 and P+
1 are pro-

jectively equivalent if and only if q ≤ 7. This implies that when q > 7, planes of
type II cannot occur together with planes of type I or III, as we will prove in the
next theorem.

Theorem 4.3. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q), q

odd. If there is a plane π1 of type I or III, and a plane π2 of type II, then q ≤ 7.

Proof. Suppose that there are such planes π1, π2, and that q > 7. Let L = π1∩π2.
Let p ∈ L be a point that is not on the conic Cπ1 . It follows from Table 1
that there are two lines L1, L2 ∈ L 1

2 (q+1) through p, distinct from L, such that
Li ⊆ πi, i = 1, 2. Consider the plane π = 〈L1, L2〉. By Proposition 4.1, L1 ∩ K
and L2 ∩K are projectively equivalent if π is of type I or III. The same holds if π

is of type IV or V (note that π cannot be of type VI, VII or VIII as it contains lines
of L 1

2 (q+1) and as q > 7). By Proposition 4.1, L1 ∩ K is projectively equivalent
to R−

1 , and by Proposition 4.2, L2 ∩ K is projectively equivalent to P+
1 ∪ {p′}

for some point p′ 6∈ P+
1 . As we assume q > 7, by the result of Fisher, L1 ∩ K

and L2 ∩ K are not projectively equivalent, so π is of type II. But then L1 ∩ K
is projectively equivalent to P+

1 ∪ {p′} for some point p′ 6∈ P+
1 . This contradicts

again the result of Fisher.
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5 (Quasi) singularity

Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), n ≥ 3, q odd and

q > 7. For every point p ∈ K, let Ap be the set of lines L ∈ L 1
2 (q+1) ∪ L 1

2 (q+3)

through p. The set K is called singular if it has a singular point, that is, a point
p such that Ap is empty. The set S of all singular points is always the point set
of a subspace of PG(n, q). Indeed, let p, r ∈ S. Then every line through p or
r is in L1 ∪ Lq+1. By Table 1, every plane through L = 〈p, r〉 is of type VI or
VII. Hence L ⊆ S. So S is the point set of an m-space U of PG(n, q). It follows
that if K is singular, then either m = n, so K is the point set of PG(n, q), or
0 ≤ m ≤ n−2 and K is a cone with vertex U and base a nonsingular set of class[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n−m− 1)-space V skew to U .

A point p ∈ K is called a quasi singular point if Ap 6= ∅ and Ap is contained in
a hyperplane of PG(n, q). The set K is called quasi singular if it is not singular
and has a quasi singular point.

Lemma 5.1. LetK1 andK2 be sets of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(2, q),

q odd and q > 5, such that K1 6= K2 and there is a line L such that K1\L = K2\L.
Then there are lines L = L0, . . . , L 1

2 (q+1) through a point p and distinct sets K′1
and K′2 with p ∈ K′i ⊆ L0 and | K′i | ∈ {1, 1

2 (q + 1), 1
2 (q + 3), q + 1}, i = 1, 2, such

that Ki = L1 ∪ . . . ∪ L 1
2 (q+1) ∪ K′i, i = 1, 2.

Proof. Let Lj
i be the set of lines M such that |M ∩ Kj | = i, i ∈ {1, q + 1},

j ∈ {1, 2}. Let M 6= L be a line of PG(2, q). Since the symmetric difference
K1 4K2 ⊆ L, (M ∩ K1)4 (M ∩ K2) contains at most one point. So if M ∈ L1

i ,
then also M ∈ L2

i , and moreover M ∩K1 = M ∩K2, i = 1, q +1. Using this and
Theorem 3.1, it is an easy exercise to prove the lemma.

Proposition 5.2. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q odd and q > 5. If K has a quasi singular point p, then K consists of the
union of 1

2 (q + 1) planes through a line L 3 p, together with a set of class[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a plane π through L.

Proof. Let π be a plane through p containing the lines of Ap. Then K \ π is a
cone with vertex p and base a set X in a plane π′ 63 p. As p is nonsingular, there
exist lines L1, L2 in π, not through p, such that the projections X1 and X2 of the
sets L1 ∩K and L2 ∩K, respectively, from the point p on the line L′ = π′ ∩π are
distinct. Let πi 6= π be a plane through Li, i = 1, 2. As X ∪ Xi is the projection
of πi ∩ K from p on π′, X ∪ Xi is a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in

π′, i = 1, 2. However X1 6= X2. It follows from Lemma 5.1 that there are lines
M0(= π ∩ π′), . . . ,M 1

2 (q+1) in π′ through a point p′ and distinct sets X ′
1 and
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X ′
2 with p′ ∈ X ′

i ⊆ M0 and | X ′
i | ∈ {1, 1

2 (q + 1), 1
2 (q + 3), q + 1}, such that

X ∪ Xi = M1 ∪ . . . ∪M 1
2 (q+1) ∪ X ′

i , i = 1, 2.

Let M ⊆ π′ be a line through p′, distinct from M0. Then M ∩ (X ∪ X1) =
M ∩ (X ∪ X2), whence M 6⊆ π. Hence the plane 〈p, M〉 is a plane of type VII
if M = Mi, for some 1 ≤ i ≤ 1

2 (q + 1), and a plane of type VI otherwise. So K
consists of the planes 〈p,Mi〉, 1 ≤ i ≤ 1

2 (q + 1), and a set of points in the plane
〈p, M0〉.

Corollary 5.3. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q), q

odd and q > 5. IfK is quasi singular, thenK consists of the union of 1
2 (q+1) planes

through a line L, together with a nonsingular set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a plane π through L.

Proof. Indeed, the set π ∩ K is nonsingular since otherwise the set K would be
singular.

6 Projective Shult spaces

We are now almost ready to begin with the actual characterization of projections
of quadrics. But in order to characterize projections of quadrics, we clearly
need some characterization of quadrics. A very strong result in this sense is the
classification of projective Shult spaces.

A Shult space S [4] is a partial linear space with the property that for every
anti-flag {p, L}, the number α(p, L) of lines of S through p intersecting L is ei-
ther 1 or |L | , where |L | denotes the number of points on L. If the case |L |
does not occur, then S is called a generalized quadrangle (note that this defini-
tion includes the degenerate geometries where one line contains all points or
all lines contain a common point, which are usually not regarded as generalized
quadrangles). The radical of a Shult space S is the set of points of S which are
collinear with all points of S. A Shult space is said to be degenerate if its radical
is not empty.

A Shult space S is said to be fully embedded in a projective space PG(n, q),
n ≥ 2, if the lines of S are lines of the projective space, if the points of S are
all the points of PG(n, q) on the lines of S and if incidence is determined by the
projective space.

The Shult spaces fully embedded in PG(n, q) are completely classified. Pro-
jective generalized quadrangle (i.e., fully embedded in a projective space) were
classified by Buekenhout and Lefèvre [3], and general projective Shult spaces
by Lefèvre-Percsy [17].
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Theorem 6.1 ([3, 17]). Let S be a Shult space fully embedded in PG(n, q). Then
one of the following cases occurs.

1. S is the geometry of all points and all lines of PG(n, q). The radical is
PG(n, q) itself.

2. The point set of S is the union of k subspaces of dimension m + 1 through a
given m-space U , k > 1, 0 ≤ m ≤ n− 2. The line set is the set of all lines in
these (m + 1)-spaces. The radical of S is U .

3. S is formed by the points and lines of a quadric Q (of projective index at
least one) of PG(n, q), n ≥ 3. The radical of S is the space of all singular
points of Q.

4. q is a square and S is formed by the points and the lines of a Hermitian
variety H (of projective index at least one) of PG(n, q), n ≥ 3. The radical of
S is the space of all singular points of H.

5. The points of S are the points of PG(n, q). There is an m-space U and an
(n − m − 1)-space W skew to U , with m ≥ −1, n − m − 1 ≥ 3 and odd,
and a symplectic polarity β in W , such that the line set is the set of all lines
in the (m + 2)-spaces joining U to a line of W which is totally isotropic with
respect to β. The radical of S is U .

7 Projective three-space

In this section, we classify all sets of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7.

Proposition 7.1. There are no sets of class
[
1, 1

2 (q + 1), 1
2 (q + 3)

]
in PG(3, q),

q > 5. A set of class
[
1
2 (q + 1), 1

2 (q + 3), q + 1
]

in PG(3, q), q > 3, is necessarily
the set of all points of PG(3, q).

Proof. Suppose that K is a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3)

]
in PG(3, q), q > 5.

By Theorem 3.1 and Table 1, every plane is of type I. Counting the number of
points of K in the planes through a line L1 ∈ L1 and in the planes through a
line L2 ∈ L 1

2 (q+1) yields a contradiction.

Suppose that K is a set of class
[
1
2 (q + 1), 1

2 (q + 3), q + 1
]

in PG(3, q), q > 3.
By Theorem 3.1 and Table 1, every plane is of type III or VII. Suppose there is
a plane of type III. Counting the number of points of K in the planes through
a line L1 ∈ L 1

2 (q+1) and in the planes through a line L2 ∈ L 1
2 (q+3) yields a

contradiction. So every plane is of type VII.
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Lemma 7.2. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q), q

odd and q > 5. If there is a point p and a plane π through p such that the set A′p
of lines of Ap, not in π, has at most q elements, then K is (quasi) singular.

Proof. If A′p is empty, then p is (quasi) singular, so we are done. Assume M ∈
A′p. Suppose that π contains at least two lines of Ap. By Table 1, π contains
at least q − 1 lines of Ap. Analogously, for every line L′ ∈ Ap in π, the plane
〈M,L′〉 contains at least q − 3 lines of A′p, distinct from M . So q ≥ |A′p | ≥
1 + (q − 1)(q − 3), a contradiction.

Hence π contains at most one line of Ap. So | Ap | ≤ q+1. If | Ap | ≥ 2, then
we can choose a plane π′ which contains at least two lines of Ap. Now Ap ⊆ π′,
otherwise we obtain again a contradiction. So K is quasi singular. If | Ap | < 2
then clearly K is (quasi) singular.

Proposition 7.3. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q odd and q > 5. If there are two distinct planes π0, π1 of type VI or VII, then K is
(quasi) singular.

Proof. Let L0 = π0 ∩ π1. Consider a plane π2 6= πi, i = 0, 1, through L0. By
Table 1, there is a line L ∈ L1∪Lq+1 in π2, distinct from L0. Let p = L0∩L. Let
π be a plane through L, distinct from π2. Then π contains three lines L, π ∩ π0,
π ∩ π1 ∈ L1 ∪ Lq+1 through p. It follows from Table 1 that π is of type IV or V,
with pπ = p, or of type VI or VII. So π contains at most one line of Ap. Hence
the set A′p of lines of Ap, not in π2 has at most q elements. By Lemma 7.2, we
are done.

Proposition 7.4. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q odd and q > 5. If there is a plane π0 of type VI, then K is (quasi) singular.

Proof. By Proposition 7.3, we may assume that there are no planes of type VI
or VII, distinct from π0. Let L0 ⊆ π0 be a line of L1. Every plane through L0 is
of type I, II, IV or V. Suppose that there are distinct planes π1, π2 of type I or II
through L0. Then there is a point p ∈ L0, p 6∈ K, which is not on Cπi , i = 1, 2.
Hence there are distinct lines L1, L2 ∈ L1 through p, with L0 6= Li ⊆ πi, i = 1, 2.
The plane π = 〈L1, L2〉 contains three lines π ∩ π0, L1, L2 ∈ L1. Hence π is of
type VI, a contradiction.

So there is at most one plane of type I or II through L0, and the other planes
through L0 are of type IV or V. If π is a plane of type IV or V through L0, then
clearly pπ is the unique point p of K on L0. So there is at most one line of Ap in
π. By Lemma 7.2, K is (quasi) singular.
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Lemma 7.5. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q), q >

5. Suppose that there are intersecting lines L1 ∈ L1 and L2 ∈ Lq+1 such that
neither L1 nor L2 is on a plane of type VI or VII. Then if π = 〈L1, L2〉,

| K | =
1
2
q3 +

1
2
q2 + | K ∩ π | ,

every plane through L1 is of type I, II or IVa, and every plane through L2 is of type
III or IVb.

Proof. Let π′ 6= π be a plane containing L1 or L2. As π′ is not of type VI, VII or
VIII, Table 1 yields

1
2
q2 +

1
2
q + 1 ≤ |K ∩ π′ | ≤ 1

2
q2 +

3
2
q + 1.

Counting the points of K in the planes through L1 yields

| K | ≥ q(
1
2
q2 +

1
2
q) + | K ∩ π | ,

with equality if and only if every plane π′ 6= π through L1 contains precisely
1
2q2 + 1

2q + 1 points. Counting the points of K in the planes through L2 yields

| K | ≤ q(
1
2
q2 +

1
2
q) + | K ∩ π | ,

with equality if and only if every plane π′ 6= π through L2 contains precisely
1
2q2 + 3

2q + 1 points. The lemma follows.

Theorem 7.6. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7. If there is a plane of type VII, then K is (quasi) singular.

Proof. Suppose there is a plane π0 of type VII, and that K is not (quasi) singular.
By Proposition 7.3, there are no planes of type VI, and π0 is the only plane of
type VII. As q > 7, there are no planes of type VIII. As every plane contains a
line of Lq+1, there are no planes of type I. Suppose that there are no planes
of type IV or V. By Theorem 4.3, either every plane π 6= π0 is of type II, or
every plane π 6= π0 is of type III. In the first case, the complement of K \ π0 is a
set of class

[
1
2 (q + 1), 1

2 (q + 3), q + 1
]
, which contradicts Proposition 7.1. In the

second case, K is a set of class
[
1
2 (q + 1), 1

2 (q + 3), q + 1
]
, a contradiction. So

there is a plane of type IV or V.

For every plane π of type IV or V, Lemma 7.5 says that | K | = 1
2q3 + 1

2q2 +
| K ∩ π | . So any two planes of type IV or V contain the same number of points
of K.
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Let p ∈ π0, and let Bp be the set of lines L ∈ L1 ∪ Lq+1 through p such that
L 6⊆ π0. Suppose that Bp contains three noncoplanar lines L1, L2, L3. Then the
planes πij = 〈Li, Lj〉, 1 ≤ i < j ≤ 3, are planes of type IV or V. Without loss of
generality, we may assume that L1 ∈ L1 and L2 ∈ Lq+1. Indeed, if L1, L2, L3 ∈
L1 then we may replace L2 with a line L′2 ⊆ π12 of Lq+1. If L1, L2, L3 ∈ Lq+1,
an analogous reasoning applies. Now by Lemma 7.5, the plane π13 is of type
IVa, and the plane π23 is of type IVb. But then | K ∩ π13 | 6= | K ∩ π23 | , a
contradiction. So Bp does not contain three noncoplanar lines.

Let π be a plane of type IV or V, and consider two lines L1 ∈ L1 and L2 ∈
Lq+1 of π, where L2 6= π∩π0. Denote the vertex of π by p. By Lemma 7.5, every
plane π′ 6= π through L1 is of type II or IVa, and every plane π′ 6= π through
L2 is of type III or IVb. Suppose that there is a plane π′ 6= π through L1 or L2

which is of type IV. As π′∩π0 ∈ Lq+1, p is the vertex of π′. But then Bp contains
three noncoplanar lines, a contradiction. So every plane π′ 6= π through L1 is
of type II, and every plane π′ 6= π through L2 is of type III. But this contradicts
Theorem 4.3.

Theorem 7.7. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7. If there is a plane of type V, then K is (quasi) singular.

Proof. Suppose that π0 is a plane of type V and that K is not (quasi) singular.
By Proposition 7.4 and Theorem 7.6, there are no planes of type VI or VII. As
q > 7 there are no planes of type VIII.

We use the notation of Theorem 3.1. Let p0 = pπ0 and let L0 = Lπ0 . Consider
a line L1 ∈ L1 of π0. Suppose there is a line L ∈ Lq+1 such that p0 ∈ L 6⊆ π0.
Then by Lemma 7.5, every plane π 6= 〈L1, L〉 through L1 is of type I, II or IVa,
a contradiction since π0 is of type V. So there is no such line L. On the other
hand Lemma 7.5 says that every plane π 6= π0 through L1 is of type I, II or IVa.
As π does not contain any line of Lq+1 (such a line would have to intersect π0

in p0), π is of type I. Since L1 ∩K = {p0}, p0 ∈ Cπ. As this holds for every plane
π 6= π0 through L1, Table 1 yields that every line L such that p0 ∈ L 6⊆ π0, is a
line of L 1

2 (q+3).

Consider a plane π 6= π0 through L0. Every line L 6= L0 in π through p0 is
in L 1

2 (q+3), and L0 ∈ L 1
2 (q+1) ∪ L 1

2 (q+3). It follows from Table 1 that π is of
type V, and that p0 ∈ Lπ, but p0 6= pπ. Suppose Lπ 6= L0. Then, analogously,
every plane through Lπ is a plane of type V, so in particular the plane 〈Lπ, L1〉
is of type V. But every plane through the line L1, except π0, is of type I, a
contradiction. So Lπ = L0 and p0 6= pπ. So every plane through L0 is of type
V and for any two planes π, π′ through L0, Lπ = Lπ′ = L0 and pπ 6= pπ′ . But
L0 contains at most 1

2 (q + 3) points of K, a contradiction. We conclude that K
is (quasi) singular.
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In the following theorem, we use a result on ovoids of PG(3, q). A cap in
PG(n, q), is a set of points, no three on a line. A cap in PG(3, q), q > 2, contains
at most q2 + 1 points. If a cap of PG(3, q), q > 2, contains q2 + 1 points, then it
is called an ovoid. Barlotti [1] showed that every ovoid of PG(3, q), q odd, is a
nonsingular elliptic quadric.

Theorem 7.8. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7. If there is a plane of type IVa but no planes of type V, VI or VII, then
K = R−

3 .

Proof. As q > 7, there are no planes of type VIII, so every plane is of type I, II, III
or IV. Let ΠIVa and ΠIVb be the sets of planes of type IVa and IVb, respectively.

Let π ∈ ΠIVa. Consider two lines L1 ∈ L1 and L2 ∈ Lq+1 in π. Then Lemma
7.5 says that

| K | =
1
2
q3 + q2 +

1
2
q + 1.

Now ΠIVb = ∅, since otherwise we would have that | K | = 1
2q3 + q2 + 3

2q + 1,
a contradiction. As ΠIVb = ∅, Lemma 7.5 says that every plane π′ 6= π through
L2 is of type III. By Theorem 4.3, there are no planes of type II. Lemma 7.5 says
that every plane π′ 6= π through L1 is of type I or IVa. Note that this holds for
any plane π of type IVa and any two lines L1 ∈ L1 and L2 ∈ Lq+1 in π.

Let p0 be the vertex of a plane π0 ∈ ΠIVa. Suppose there is a plane π 6= π0

of type IVa which intersects π0 in a line L1 ∈ L1. Then p0 ∈ L1 and p0 is the
vertex of π. Let L be a line of Lq+1 in π, let L′1 6= L1 be a line of L1 in π0 and
let π′ = 〈L,L′1〉. Consider L′1 and a line L2 ∈ Lq+1 in π0. Then by Lemma 7.5,
π′ is a plane of type I or IVa. As π′ contains the line L ∈ Lq+1, it is of type
IVa. Consider the lines L and L1. Then by Lemma 7.5, π′ is a plane of type III,
a contradiction. We conclude that every plane π which intersects π0 in a line
L1 ∈ L1 is of type I. Furthermore since L1 ∩ K = {p0}, p0 ∈ Cπ. It follows that
every line L such that p0 ∈ L 6⊆ π0 is in L 1

2 (q+3). As we have shown, a plane π

intersecting π0 in a line L2 ∈ Lq+1 is of type III. Since every line L 6= L2 through
p0 in π is a line of L 1

2 (q+3), Table 1 yields that p0 ∈ Cπ.

Let PIVa be the set of points p0 such that there is a plane π0 ∈ ΠIVa with
vertex p0. Let p0 ∈ PIVa and π0 ∈ ΠIVa such that p0 is the vertex of π0. As every
plane π 6= π0 through p0 intersects π0 in a line of L1 or Lq+1, π0 is the only
plane of type IVa through p0. So a point of PIVa is on exactly one plane of type
IVa, and conversely, a plane of type IVa contains exactly one point of PIVa.

Consider a plane π of type III and a line L ∈ Lq+1 in π. Then L is a tangent
line to Cπ. Let p be the point of tangency. As every plane of PG(3, q) is of type
I, III or IVa, every plane through L is of type III or IVa. Counting the points of
K in the planes through L yields that there is exactly one plane π′ of type IVa
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through L. As the vertex of π′ has to be on the conic Cπ, it is the point p. It
follows that L ∩ PIVa = {p}. Hence π ∩ PIVa = Cπ. As π is an arbitrary plane
of type III, we also have π′ ∩ PIVa = Cπ′ for each of the q − 1 other planes π′ of
type III through the line L. As L ∈ Lq+1, L is a tangent line of the conic Cπ′ , for
every such plane π′. It follows that | PIVa | = q2 + 1.

Suppose that PIVa contains three distinct collinear points p1, p2, p3. Let L be
the line containing p1, p2, p3, and let L′ 6= L be a line of Lq+1 through p1. Then
the plane π = 〈L,L′〉 is of type III or IVa. Suppose that π is of type IVa. Then π is
the unique plane of type IVa through p1, and p1 is the vertex of π. But the same
holds for p2 and p3, a contradiction. So π is of type III. Hence π ∩ PIVa = Cπ.
But then the nondegenerate conic Cπ contains three distinct collinear points p1,
p2, p3, a contradiction. It follows that PIVa is a cap. Since | PIVa | = q2 +1, PIVa

is an ovoid of PG(3, q). By Barlotti [1], PIVa is a nonsingular elliptic quadric.

Let p1, p2 ∈ K \ PIVa. Then L = 〈p1, p2〉 contains at least 1
2 (q + 1) points of

K. Suppose there is no plane of type III through L. Then every plane through
L is of type I or IVa. So | K | ≤ 1

2q3 + 1
2 (q + 1), a contradiction. Hence there is

a plane π of type III through L. As we have shown, π ∩ PIVa = Cπ. It follows
that there is a path from p1 to p2 in the graph Γ on the points off PIVa, two
points being adjacent if they are on a tangent line to PIVa. By Proposition 2.2,
| K | = |R−

3 | . Proposition 2.4 implies that K = R−
3 .

Theorem 7.9. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7. If there is a plane of type IVb but no planes of type V, VI or VII, then
K = R+

3 .

Proof. As q > 7, every plane is of type I, II, III or IV. Let ΠIVa and ΠIVb be the
sets of planes of type IVa and IVb, respectively.

Let π ∈ ΠIVb. Consider two lines L1 ∈ L1 and L2 ∈ Lq+1 in π. Then Lemma
7.5 says that

| K | =
1
2
q3 + q2 +

3
2
q + 1.

Now ΠIVa = ∅, since otherwise we would have that | K | = 1
2q3 + q2 + 1

2q + 1, a
contradiction.

Suppose there is a plane π of type II. Let L be the unique line of Lq+1 in π.
As every plane π′ 6= π through L contains at most 1

2q2 + 3
2q + 1 points of K,

| K | ≤ 1
2q3 + q2 + 1

2q + 1, a contradiction. So only planes of type I, III or IVb
can occur.

Let π0 ∈ ΠIVb, and let p0 be the vertex of π0. By Lemma 7.5, every plane π

which intersects π0 in a line L1 ∈ L1, is a plane of type I. Since L1 ∩ K = {p0},
p0 ∈ Cπ. This means that every line L such that p0 ∈ L 6⊆ π0, is a line of
L 1

2 (q+3). By Lemma 7.5, every plane π′ which intersects π0 in a line L2 ∈ Lq+1,
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is a plane of type III or IVb. If π′ is a plane of type III, then since every line
L 6= L2 through p0 in π′ is a line of L 1

2 (q+3), Table 1 says that p0 ∈ Cπ′ .

Let PIVb be the set of points p0 such that there is a plane π0 ∈ ΠIVb with
vertex p0. We have shown that for every plane π of type I or III, π ∩PIVb ⊆ Cπ.
Let π be a plane of type I, and let p ∈ Cπ. Let L be the unique line of L1 in π

through p. If every plane through L is of type I, then | K | = 1
2q3 +q2 + 1

2q +1, a
contradiction. So there is a plane π′ of type III or IVb through L. Since L ∈ L1,
π′ is of type IVb. Since L ∩ K = {p}, p is the vertex of π. So π ∩ PIVb = Cπ.

Let π0 ∈ ΠIVb, and let p0 be the vertex of π0. Let L be a line of π0 not
containing p0. Then L ∈ L 1

2 (q+3). If none of the planes through L is of type
I, then | K | = 1

2q3 + 3
2q2 + q + 1, a contradiction. So let π be a plane of type

I through L. By Table 1, L is a secant line of Cπ. So L contains exactly two
points of PIVb. As this holds for every line L of π0, not through p0, it follows
that π0 ∩ PIVb consists of the points of two distinct lines through p0.

Consider the point-line geometry S = (PIVb,L, I), where L is the set of lines
which are contained in PIVb, and I is the natural incidence. Clearly S is fully
embedded in PG(3, q). We have shown that if π is a plane of type I, then PIVb ∩
π = Cπ, if π is a plane of type III, then PIVb ∩π ⊆ Cπ, and if π is a plane of type
IVb, then PIVb ∩ π is the union of two distinct lines. Hence for every anti-flag
{p, L} of S, there is precisely one line of S through p which intersects L. Every
line of S contains q + 1 points. If L is a line of S, then every plane through L is
of type IVb, so there are exactly q + 1 lines of S which intersect L. Since every
point of L is on at least two lines of S (every point of PIVb is the vertex of some
plane of type IVb), it follows that every point of L is on exactly two lines of
S. So S is a generalized quadrangle of order (q, 1), fully embedded in PG(3, q),
from which follows (see for instance Theorem 6.1) that PIVb is a nonsingular
hyperbolic quadric.

Consider the complement K′ of K in PG(3, q), and let p1, p2 ∈ K′. Then the
line L = 〈p1, p2〉 contains at most 1

2 (q + 3) points of K. Suppose there is no
plane of type I through L. Then every plane through L contains 1

2q2 + 3
2q + 1

points of K, so | K | ≥ 1
2q3 + 3

2q2 + q + 1, a contradiction. Hence there is a
plane π of type I through L. As we have shown, π ∩ PIVb = Cπ. It follows
that there is a path from p1 to p2 in the graph Γ on the points off PIVa, two
points being adjacent if they are on a tangent line to PIVa. So K′ is contained
in a connected components of Γ. By Theorem 2.3 and Proposition 2.4, Γ has
two connected components, both projectively equivalent to P+

3 . By Proposition
2.2, | K′ | = | P+

3 | , so these connected components are K′ and K\PIVb. Hence
K = R+

3 .

Proposition 7.10. A set K of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q), q >
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7, always has a plane of type IV, V, VI or VII.

Proof. Suppose that only planes of type I, II or III occur. If there is a plane of
type II, then by Theorem 4.3, every plane of PG(3, q) is of type II. Consider a line
L1 ∈ L1 and a line L2 ∈ Lq+1. Counting the points of K in the planes through
the lines L1 and L2, respectively, yields

1 + (q + 1)(
1
2
q2 +

1
2
q) = | K | = q + 1 + (q + 1)(

1
2
q2 − 1

2
q),

a contradiction. So every plane is of type I or III. By Proposition 7.1, there is at
least one plane of each type. So there is a line L1 ∈ L1 and a line L2 ∈ Lq+1.
Since no plane containing L1 is of type III, and no plane containing L2 is of type
I, we find that

1 + (q + 1)(
1
2
q2 +

1
2
q) = | K | = q + 1 + (q + 1)(

1
2
q2 +

1
2
q),

a contradiction.

Theorem 7.11. Let K be a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(3, q),

q > 7. Then one of the following cases occurs.

1. K = R−
3 .

2. K = R+
3 .

3. K is (quasi) singular.

Proof. If there is a plane of type V, VI or VII, then K is (quasi) singular by
Theorem 7.7, Proposition 7.4, Theorem 7.6, respectively. If there are no planes
of type V, VI or VII, but there is a plane of type IV, then Theorems 7.8 and 7.9
say that K = R−

3 or K = R+
3 . Finally Proposition 7.10 says that there is always

a plane of type IV, V, VI or VII.

We recall that if K is singular, then either K is the point set of PG(3, q), or
K is a cone with vertex an m-space U of PG(3, q), 0 ≤ m ≤ 1, and base a
nonsingular set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a (3 − m − 1)-space V

skew to U . If K is quasi singular, then by Corollary 5.3, K consists of the union
of 1

2 (q + 1) planes through a line L 3 p, together with a nonsingular set of class[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a plane π through L.
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8 The general result

In this section, we prove the Main Theorem. Note that for n = 2 and n = 3, the
Main Theorem holds by Theorems 3.1 and 7.11, respectively. (When n = 2, a
set of type IV, VI or VII is a singular set, and a set of type V is a quasi singular
set.) The proof for n ≥ 4 goes by induction on the dimension of the projective
space PG(n, q).

Consider the quasi singular set K as in case 3 of the Main Theorem. We say
that the (n− 2)-space U is the vertex of K.

Lemma 8.1. Consider the set R3 in PG(3, q), q odd. For every line L ∈ L 1
2 (q+1) ∪

L 1
2 (q+3), there is a plane of type I containing L.

Proof. The line L ∈ L 1
2 (q+1) ∪ L 1

2 (q+3), so it is secant or external to the nonsin-
gular quadric T3. A plane is of type I or III if and only if it intersects the quadric
T3 in a nondegenerate conic. Note that every plane is of type I, III or IV.

As L is external or secant to T3, there are at most two planes of type IV
through L, and these planes contain at least 1

2q2 + 1
2q +1 points of R3. Suppose

that no plane through L is of type I. Then the other planes through L are of type
III. It follows that

|R3 | ≥ 1
2
(q + 3) + 2

(
1
2
q2 − 1

2

)
+ (q − 1)

(
1
2
q2 + q − 1

2

)
=

1
2
q3 +

3
2
q2 − q + 1.

But this contradicts Proposition 2.2.

Theorem 8.2. Let n ≥ 4, and suppose that the Main Theorem holds in PG(m, q),
q odd and q > 7, for all 2 ≤ m < n. Let K be a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3),

q + 1] in PG(n, q), q odd and q > 7. If there is a plane of type II or V, then every
subspace of dimension 3 ≤ m < n intersects K in a (quasi) singular set.

Proof. If there is an m-space U , 3 < m < n, such that K ∩ U is not (quasi)
singular, then by the Main Theorem K ∩ U = Rm, so U contains a 3-space W

such that K ∩ W is not (quasi) singular. Hence it suffices to show that every
3-space intersects K in a (quasi) singular set.

Suppose there is a plane π of type II or V, and a 3-space W such that K ∩W

is not (quasi) singular. By Theorem 7.11, K ∩W = R3. Note that by Theorem
7.11, and since R3 only has planes of type I, III or IV, every 3-space W ′ through
π intersects K in a (quasi) singular set. So π 6⊆ W .

Assume that π intersects W in a line L ∈ L 1
2 (q+1) ∪ L 1

2 (q+3). By Lemma 8.1,
there is a plane π′ of type I in W through L. Let W ′ = 〈π, π′〉. Then W ′ ∩ K
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is (quasi) singular. Since π′ is of type I, W ′ ∩ K is not quasi singular (indeed,
a quasi singular set in PG(3, q) contains a plane, but π′ ∩ K does not contain
any line). So W ′ ∩ K is singular. But π is of type II or V and π′ is of type I, a
contradiction.

Assume that π intersects W in a line L ∈ L1 ∪ Lq+1. Then either L ⊆ T3 or
L is tangent to T3, where T3 is the nonsingular quadric which corresponds to
K ∩W = R3. In any case there is a plane π′ ⊆ W through L which is tangent
to T3. Hence π′ is of type IV. Let W ′ = 〈π, π′〉. Then W ′ ∩ K is (quasi) singular.
Since L ∈ L1∪Lq+1, the vertex p of π′ is on L. Suppose W ′∩K is singular. Then
p is a singular point. But π ∩ K is nonsingular and p ∈ π, a contradiction. So
W ′ ∩K is quasi singular. Let M be the line of intersection of the 1

2 (q +1) planes
of W ′ contained in K, and let π′′ ⊆ W ′ be the unique plane through M which
is not of type VI or VII. Then π′ 6= π′′ (otherwise K ∩W ′ would be singular), so
M intersects π′ in the vertex p of π′. Let r be a point on the line π′ ∩ π′′, r 6∈ M .
Let L′′ be a line of L 1

2 (q+1) ∪ L 1
2 (q+3) through r in π′′ and L′ a line through r in

π′, L′ 6⊆ π′′. Then 〈L′, L′′〉 is a plane of type V which intersects W in the line
L′ ∈ L 1

2 (q+1) ∪ L 1
2 (q+3). This yields a contradiction.

Assume that π intersects W in a point p. Let L be a line of L 1
2 (q+1) ∪ L 1

2 (q+3)

in W through p, and let W ′ = 〈π, L〉. Then W ′ ∩K is (quasi) singular. If W ′ ∩K
is singular, then it is a cone with vertex a point r 6∈ π and base π ∩ K. Since
L ∈ L 1

2 (q+1) ∪ L 1
2 (q+3), r 6∈ L. So there is a plane π′ of the same type as π

through L in W ′. This yields a contradiction.

So W ′∩K is quasi singular. Hence W ′∩K consists of 1
2 (q+1) planes through

a line M and a nonsingular set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a plane

π′ through M . As L ∈ L 1
2 (q+1) ∪ L 1

2 (q+3), L 6= M . If L ⊆ π′ then every plane
π′′ 6= π′ through L in W ′ is of type V. If L 6⊆ π′ then L ∩M = ∅. Let r = L ∩ π′.
Since π′ ∩ K is nonsingular, there is a line L′ ∈ L 1

2 (q+1) ∪ L 1
2 (q+3) in π′ through

r. Now π′′ = 〈L,L′〉 is a plane of type V. We obtain again a contradiction.

Assume finally that π is skew to W . Let p ∈ W \ K and let W ′ = 〈π, p〉. Then
W ′ ∩ K is (quasi) singular. If W ′ ∩ K is singular, then p is not the vertex since
p 6∈ K. So there is a plane π′ through p in W ′ of the same type as π. This yields
a contradiction.

So W ′ ∩K is quasi singular. Let M be the line of intersection of the planes of
W ′ contained in K. Since p 6∈ K, p 6∈ M . Now a contradiction follows from the
fact that there is a plane of type V through p in W ′.

Theorem 8.3. Let n ≥ 4, and suppose that the Main Theorem holds in PG(m, q),
q odd and q > 7, for all 2 ≤ m < n. Let K be a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3),

q + 1] in PG(n, q), q odd and q > 7. If every subspace of dimension 3 ≤ m < n

intersects K in a (quasi) singular set, then K is (quasi) singular.
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Proof. For every point p ∈ K, let Bp denote the set of lines of L1 ∪Lq+1 through
p. So Bp is the complement of Ap in the set of lines through p.

We may assume that there is a hyperplane U such that K ∩ U is not the
point set of U or an (n − 2)-space. As every subspace of dimension 3 ≤ m < n

is (quasi) singular, K ∩ U is one of the following (note that we use the Main
Theorem).

1. K ∩ U is a cone with vertex an (n− 4)-space and base a plane of type I, II
or III.

2. K ∩ U is a cone with vertex an (n− 3)-space and base a set of 1
2 (q + 1) or

1
2 (q + 3) points on a line.

3. K∩U is quasi singular, or K∩U is a cone with vertex an m-space, 0 ≤ m ≤
n−4, and base a quasi singular set in an (n−m−2)-space skew to this m-
space. In both cases, K∩U consists of 1

2 (q+1) subspaces of dimension n−2
through an (n− 3)-space and a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in

an (n− 2)-space through this (n− 3)-space.

In any case, there is an (n− 2)-space U0 ⊆ U such that there is a set of (n− 3)-
spaces V = {V1, . . . V 1

2 (q+1)} through a common (n − 4)-space W0, and a set
K0 of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n− 3)-space V0 6∈ V through W0,

such that U0 ∩ K = V1 ∪ . . . ∪ V 1
2 (q+1) ∪ K0.

Let p ∈ W0, and consider the quotient space PG(n, q)/p ∼= PG(n− 1, q). Then
U0/p is an (n− 3)-space in PG(n, q)/p, and (U0/p) \ (V0/p) ⊆ Bp.

Let U ′ be a hyperplane through U0. Suppose that U ′∩K is a cone with vertex
an (n− 4)-space W ′ and base a plane of type I, II or III. If W ′ 6⊆ U0 then U0 ∩K
would be a cone with vertex the (n− 5)-space W ′ ∩U0 and base a plane of type
I, II or III, a contradiction. So W ′ ⊆ U0. Hence W ′ = W0. So p ∈ W ′, and
U ′/p ⊆ Bp.

Suppose that K ∩ U ′ is a cone with vertex an (n − 3)-space W ′ and base a
set of 1

2 (q + 1) or 1
2 (q + 3) points on a line. If W ′ ⊆ U0, then either U0 ⊆ K

or U0 ∩ K = W ′, a contradiction. So W ′ 6⊆ U0, and hence W0 = W ′ ∩ U0. So
p ∈ W ′. It follows that U ′/p ⊆ Bp.

Suppose that K∩U ′ consists of 1
2 (q+1) subspaces of dimension n−2 through

an (n− 3)-space V ′ and a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n− 2)-

space U ′′ through V ′. Suppose that V ′ 6⊆ U0. Then clearly W0 = V ′ ∩ U0. If
V ′ ⊆ U0, then necessarily U0 = U ′′. Since V ′ ⊆ K and U0 ∩ K = V1 ∪ . . . ∪
V 1

2 (q+1) ∪ K0, V ′ ∈ V ∪ {V0}, so W0 ⊆ V ′. In any case, W0 ⊆ V ′, and hence
(U ′/p) \ (U ′′/p) ⊆ Bp.
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We conclude that for every hyperplane U ′ through U0, the set (U ′/p) ∩ Ap is
contained in a subspace of codimension zero in U ′/p. Hence

| Ap | ≤ qn−1 − 1
q − 1

. (1)

Suppose that K is not (quasi) singular. Then Ap spans PG(n, q)/p. Let U be
a hyperplane of PG(n, q) containing p such that Ap ∩ (U/p) spans U/p.

If U ∩K is a cone with vertex an (n− 4)-space W and base a plane of type I,
II or III, then p 6∈ W . Let π 3 p be a plane skew to W . Table 1 says that there
are at least q − 1 lines of Ap in π. So | Ap ∩ (U/p) | ≥ qn−2 − qn−3.

If U ∩ K is a cone with vertex an (n − 3)-space V and base a set of 1
2 (q + 1)

or 1
2 (q + 3) points on a line, then p 6∈ V and | Ap ∩ (U/p) | = qn−2.

Suppose that K∩U consists of 1
2 (q+1) subspaces of dimension n−2 through

an (n− 3)-space V and a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n− 2)-

space U ′ through V . Then p 6∈ V and | Ap ∩ (U/p) | ≥ qn−2.

We conclude that | Ap ∩ (U/p) | ≥ qn−2 − qn−3 for every hyperplane such
that Ap ∩ (U/p) spans U/p. Using (1) and the fact that Ap spans PG(n, q)/p, a
contradiction follows easily.

Lemma 8.4. Consider the set Rn in PG(n, q), n ≥ 3, q odd. For every point p of
PG(n, q) and every hyperplane U 3 p, there is a plane π of type I or III, such that
p ∈ π 6⊆ U .

Proof. A plane is of type I or III if and only if it intersects the quadric Tn in a
nondegenerate conic. The lemma follows from the fact that Tn is a nonsingular
quadric.

Lemma 8.5. Let n ≥ 2, and suppose that the Main Theorem holds in PG(m, q), q

odd and q > 7, for all 2 ≤ m ≤ n.

Let K1 and K2 be sets of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), q odd

and q > 7, such that K1 6= K2 and there is a hyperplane U such that K1 \ U =
K2\U . Then there is a set of 1

2 (q+1) hyperplanes U = {U1, . . . U 1
2 (q+1)} through a

common (n−2)-space U ′, and setsK′1 andK′2 of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a hyperplane U0 6∈ U through U ′, such that Kj = U1 ∪ . . . ∪ U 1

2 (q+1) ∪ K′j ,
j = 1, 2.

Proof. If n = 2, the lemma holds by Lemma 5.1. Suppose that the lemma holds
for all 2 ≤ n′ < n.
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Let Lj
i be the set of lines L such that |L ∩ Kj | = i, i ∈ {1, q + 1}, j ∈ {1, 2}.

Clearly a line L 6⊆ U is in L1
i if and only if it is in L2

i , i ∈ {1, q + 1}.
As we assume that the Main Theorem holds for PG(n, q), K1 as well as K2 is

of one of the types described in the Main Theorem.

Suppose that K1 is not (quasi) singular. Then K1 is projectively equivalent
to Rn. Let p ∈ U be a point in the symmetric difference K1 4 K2. By Lemma
8.4, there is a plane π such that p ∈ π 6⊆ U and π ∩ K1 is of type I or III. Let
L = π ∩ U . Then π ∩ K1 6= π ∩ K2, but (π ∩ K1) \ L = (π ∩ K2) \ L. Lemma 5.1
yields a contradiction.

So both K1 and K2 are (quasi) singular. Next, we show that K1 and K2

contain 1
2 (q + 1) hyperplanes through a given (n− 2)-space. We do this for K1.

If K1 is quasi singular, then we are done since we assume the Main Theorem
holds.

Suppose that K1 is singular, and let V be the subspace of singular points.
Clearly K1 6= PG(n, q). So V has dimension m ≤ n− 2. Let p ∈ V , and let L be
a line of L1

1 such that p ∈ L 6⊆ U . Then L ∈ L2
1, so p ∈ K2. Hence V ⊆ K2.

Let V ′ be an (m + 1)-space through V , V ′ 6⊆ U . Then either V ′ ∩ K1 = V or
V ′ ⊆ K1. So every line L ⊆ V ′ is in L1

1∪L1
q+1. It follows that V ′∩K1 = V ′∩K2.

Suppose that V 6⊆ U . Let p ∈ U \ V , and let V ′ = 〈p, V 〉. Then V ′ 6⊆ U , so
V ′ ∩ K1 = V ′ ∩ K2, and so p is not in the symmetric difference K1 4 K2. But
now K1 4K2 = ∅, a contradiction. So V ⊆ U .

Let W be an (n−m−1)-space skew to V , which contains a point p ∈ K14K2.
If n − m − 1 = 1 then K1 consists of some hyperplanes through the (n − 2)-
space V , so we are done. So we may assume 2 ≤ n − m − 1 ≤ n − 1. Let
K′j = Kj ∩W , j = 1, 2. Then K′1 6= K′2, and U ∩W is an (n−m− 2)-space such
that K′1 \ (U ∩ W ) = K′2 \ (U ∩ W ). By the induction hypothesis, K′1 contains
1
2 (q + 1) subspaces of dimension n − m − 2 through a common (n − m − 3)-
subspace, and we are done.

We have shown that there is a set Uj of 1
2 (q + 1) hyperplanes contained in

Kj , all containing a given (n − 2)-space U ′
j , j = 1, 2. In fact it also follows that

there is a set Vj of 1
2 (q − 1) hyperplanes through U ′

j , which intersect Kj in U ′
j

only, j = 1, 2. Let Wj be the unique hyperplane through U ′
j not contained in Uj

or Vj , j = 1, 2. We show that U ′
1 = U ′

2.

Let p be a point of PG(n, q) \ U ′
1. Then the only lines through p which are

possibly in L1
1 or L1

q+1, are the lines joining p to a point of U ′
1.

Let p ∈ U ′
2. Then every line through p, except possibly the lines contained

in W2 but not in U ′
2, is a line of L2

1 or L2
q+1. Hence every line through p, not

contained in W2 or U , is in L1
1 or L1

q+1. If p 6∈ U ′
1, counting the number of lines
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of L1
1 ∪ L1

q+1 through p yields

qn − 1
q − 1

− qn−1 − 1
q − 1

− qn−2 ≤ qn−1 − 1
q − 1

,

a contradiction. So U ′
2 ⊆ U ′

1, whence U ′
1 = U ′

2. The lemma follows.

Theorem 8.6. Let n ≥ 3, and suppose that the Main Theorem holds in PG(m, q),
q odd and q > 7, for all 2 ≤ m < n. Let K be a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3),

q + 1] in PG(n, q), q odd and q > 7. If there is a quasi singular point p, then K
consists of 1

2 (q +1) hyperplanes through a common (n− 2)-space U ′
0 3 p and a set

of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in a hyperplane U0 ⊇ U ′

0, U0 distinct from
the 1

2 (q + 1) hyperplanes contained in K.

Proof. Let U be a hyperplane through p containing the lines ofAp. Then K\U is
a cone with vertex p and base a set X in a hyperplane U ′ 63 p. As p is nonsingular,
there is a line L ∈ Ap in U . Let U1 and U2 be hyperplanes not containing p such
that U1 ∩L ∈ K and U2 ∩L 6∈ K, respectively. Let Vi = Ui ∩U , and let Xi be the
projection of Vi∩K from p on U ′, i = 1, 2. Then Xi∪X is the projection of Ui∩K
from p on U ′, i = 1, 2. Hence Xi∪X is a set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in U ′, i = 1, 2. Let V ′ = U ′ ∩ U . Then X1 ∪ X 6= X2 ∪ X , and (X1 ∪ X ) \ V ′ =
(X2 ∪ X ) \ V ′. So Lemma 8.5 applies: there is a set of 1

2 (q + 1) distinct (n− 2)-
spaces W = {W1, . . . W 1

2 (q+1)} of U ′ through a common (n − 3)-space W ′, and
sets K′1 and K′2 of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n−2)-space W0 6∈ W

of U ′ through W ′, such that Xi ∪ X = W1 ∪ . . . ∪W 1
2 (q+1) ∪ K′i, i = 1, 2.

Suppose that W ′ ⊆ V ′. Consider the point p′ = L ∩ V ′. Then p′ ∈ X1 and
p′ 6∈ X2. As

X1 4X2 = (X1 ∪ X )4 (X2 ∪ X ) = K′1 4K′2,

p′ ∈ K′1 4K′2 and so p′ ∈ W0. So W0 = V ′, whence X = (W1 ∪ . . . ∪W 1
2 (q+1)) \

V ′. So K consists of 1
2 (q + 1) hyperplanes 〈p, W1〉, . . . , 〈p, W 1

2 (q+1)〉 through the
(n− 2)-space U ′

0 = 〈p,W ′〉 and a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in the

hyperplane U0 = U .

Suppose that W ′ 6⊆ V ′. Let U ′
0 = 〈p, W ′〉, and let U ′′ be a hyperplane through

U ′
0. If U ′′ ∩ U ′ is an element of W, then (U ′′ ∩ U ′) \ U ⊆ X , so U ′′ \ U ⊆ K,

whence U ′′ ⊆ K. If U ′′ ∩ U ′ 6∈ W ∪ {W0}, then ((U ′′ ∩ U ′) \ U) ∩ X = W ′ \ U ,
so (U ′′ \ U) ∩ K = U ′

0 \ U , whence U ′′ ∩ K = U ′
0. It follows that K consists of

1
2 (q +1) hyperplanes 〈p, W1〉, . . . , 〈p, W 1

2 (q+1)〉 through the (n−2)-space U ′
0 and

a set of class
[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in the hyperplane U0 = 〈p, W0〉.

Theorem 8.7. Let n ≥ 4, and suppose that the Main Theorem holds in PG(m, q),
q odd and q > 7, for all 2 ≤ m < n. Let K be a nonsingular set of class
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[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in PG(n, q), q odd and q > 7. If there are no planes

of type II or V, then either K = R+
n or K = R−

n .

Proof. Consider the set T of points p such that there is a plane π of type I or
III containing p, such that, using the notation of Theorem 3.1, p ∈ Cπ. Then
certainly T 6= ∅. Indeed, T = ∅ would imply that every plane is of type IV, VI or
VII. As the Main Theorem holds in every subspace U of dimension 2 ≤ m < n of
PG(n, q), this means that U ∩K is singular, for every U of dimension 2 ≤ m < n.
Now Theorem 8.3 says that K is (quasi) singular, hence singular as there are
no planes of type V. But we assumed that K is nonsingular, a contradiction. So
there is at least one plane of type I or III, and T 6= ∅.

Suppose that there are two distinct planes π1, π2 of type I or III and a point
p ∈ π1 ∩ π2 such that p ∈ Cπ1 and p 6∈ Cπ2 . Suppose that W = 〈π1, π2〉 is a
3-space. By Theorem 7.11, only the following possibilities can occur.

1. W ∩ K = R3. Then there is a nonsingular quadric T3 in W such that for
every plane π of type I or III in W , Cπ = π ∩ T3 (Proposition 3.2). Clearly
this contradicts our assumptions.

2. W ∩ K is singular. Then W ∩ K is a cone with vertex a point p0 and base
the set π1 ∩ K in the plane π1. It follows that Cπ2 is the intersection of π2

with the cone with vertex p0 and base Cπ1 , a contradiction.

3. W ∩ K is quasi singular. This is impossible as there are no planes of type
V.

In each case, a contradiction follows. So W = 〈π1, π2〉 is a 4-space. By Table 1,
there is a line L ∈ L 1

2 (q+3) such that p ∈ L ⊆ π2. Let W ′ = 〈π1, L〉. By Theorem
7.11, and since there are no planes of type V, only the following possibilities
can occur.

1. W ′ ∩ K = R3. Then Lemma 8.1 says there is a plane π of type I such that
L ⊆ π ⊆ W ′.

2. W ′∩K is a cone with vertex a point p0 and base the set π1∩K in the plane
π1. As L ∈ L 1

2 (q+3), p0 6∈ L. Hence there is a plane π of the same type as
π1 such that L ⊆ π ⊆ W ′.

In each case, there is a plane π of type I or III such that 〈π1, π〉 and 〈π, π2〉
are 3-spaces. Since p ∈ Cπ1 , p ∈ Cπ. Since p 6∈ Cπ2 , p 6∈ Cπ. Again, we
obtain a contradiction. It follows that for every plane π of type I or III, we have
π ∩ T = Cπ.
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We show that for every line L ∈ Lq+1, either L∩T is a single point, or L ⊆ T .
Suppose there is a plane π of type III which contains L. Then L is a tangent line
to Cπ = T ∩ π, so L ∩ T consists of a single point.

Suppose there is a 3-space W ⊇ L such that W ∩ K = R3. Let T3 be the
nonsingular quadric which corresponds to R3. Since for every plane π ⊆ W of
type I or III, we have π ∩ T = Cπ = π ∩ T3 (Proposition 3.2), W ∩ T = T3. As
L ∈ Lq+1, L ∩ T3 ∈ {1, q + 1} (Proposition 2.1). Hence L ∩ T ∈ {1, q + 1}.

Suppose there is no plane of type III through L and no 3-space W ⊇ L such
that W ∩K = R3. As L ∈ Lq+1, there is no plane of type I which contains L. So
every plane through L is of type IV, VI or VII. If every plane through L is of type
VI or VII, then every point of L is singular, a contradiction. Let π ⊇ L be a plane
of type IV, with vertex the point p0 ∈ L. By Theorem 7.11 and since there are
no planes of type V, W ∩ K is singular for every 3-space W ⊇ π. Now for every
3-space W ⊇ π, p0 is in the vertex of W ∩ K. Hence p0 is a singular point of K,
a contradiction. We conclude that |L∩T | ∈ {1, q + 1} for every line L ∈ Lq+1.

Consider the point-line geometry S = (T ,L, I), where L is the set of lines
contained in T . Note that L ⊆ Lq+1. Clearly S is fully embedded in PG(n, q).
We prove that S is a Shult space. Let {p, L} be an anti-flag of S, and let π =
〈p, L〉. Since L ⊆ T , π cannot be of type I or III. Since L ∪ {p} ⊆ T ⊆ K, π

cannot be of type VI. So π is of type IV or VII. Suppose that π is of type IV, and
let p0 be the vertex of π. Then p0 ∈ L, so p 6= p0. Then M = 〈p, p0〉 is the
unique line of Lq+1 in π through p. Since p, p0 ∈ M ∩ T , M ⊆ T , so M ∈ L. It
follows that α(p, L) = 1. Suppose that π is of type VII. Then every line M in π

through p contains at least two points of T , whence M ∈ L. So α(p, L) = q + 1.
It follows that S is a Shult space.

Suppose that T is contained in a hyperplane U of PG(n, q). Let π be a plane
of type I or III. Then π ⊆ U . Let W be a 3-space such that π ⊆ W 6⊆ U . By
Theorem 7.11 and since there are no planes of type V, either W ∩ K = R3 or
W ∩ K is a cone with vertex a point p0 6∈ π and base π ∩ K. In any case, W ∩ T
spans W , so T 6⊆ U , a contradiction.

So S is a Shult space fully embedded in PG(n, q), but not contained in a
hyperplane of PG(n, q). By Theorem 6.1, and since there is a plane which inter-
sects T in a nondegenerate conic, T is either a nonsingular quadric or a singular
quadric, that is, a cone with vertex an m-space U , 0 ≤ m ≤ n − 3, and base a
nonsingular quadric T ′ in an (n −m − 1)-space U ′ skew to U . Suppose that T
is singular. We show that this implies that K is singular.

Let L be a line joining a point p ∈ U with a point r ∈ U ′. As q is odd and T ′
is a nonsingular quadric, there is a plane π with r ∈ π ∈ U ′ such that π ∩U ′ is a
nondegenerate conic. Since π ∩ T ′ = π ∩ T is a nondegenerate conic, and since
every line of Lq+1 contains one or q + 1 points of T , π cannot be of type IV, VI
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or VII. So π is of type I or III, with Cπ = π ∩ T .

Consider the 3-space W = 〈p, π〉. Then W ∩ T is the cone with vertex p and
base the conic π ∩ T ′. Analogously as before, a plane π′ with p 6∈ π′ ⊆ W is of
type I or III, with Cπ′ = π′ ∩T . By Theorem 7.11, W ∩K is a cone with vertex p

and base π∩K. Hence L∩K = {p} if r 6∈ K and L ⊆ K if r ∈ K. Since this holds
for every line L which joins a point of U with a point of U ′, it follows that K is
a cone with vertex U and base K ∩U ′. But we assumed that K is nonsingular, a
contradiction. So T is a nonsingular quadric.

Let L be a tangent line to T at a point p. Let π be a plane containing L,
but not contained in the tangent hyperplane p⊥ to T at p. Then π ∩ T is a
nondegenerate conic. Hence π is of type I or III, with Cπ = π ∩ T . So L is
tangent to Cπ at p, whence L ∈ L1 ∪ Lq+1.

Let p ∈ K \ T , and let Γ be the graph on the points off T , two points being
adjacent if they are on a tangent line to T . As remarked earlier, the graph Γ
has two connected components. As every tangent line to T is in L1 ∪ Lq+1,
the connected component of Γ which contains p is a subset of K. For the same
reason, the other connected component of Γ is either disjoint from K, or also
contained in K. But the second possibility cannot occur as this would imply that
K is the point set of PG(n, q), which is singular. So K consists of T and one of
the two connected components of the graph Γ. By Theorem 2.3, K = Rn.

Proof of the Main Theorem.

Proof. When n = 2 and n = 3, the proof is given by Theorems 3.1 and 7.11,
respectively. Suppose that n ≥ 4 and the theorem holds for all 2 ≤ m < n.

If there are no planes of type II or V, then Theorem 8.7 says that either K
is singular, or K = R+

n or K = R−
n . If there is a plane of type II or V, then

Theorems 8.3 and 8.2 imply that K is either singular or quasi singular. If K is
singular, then either K = PG(n, q), or K is a cone with vertex an m-space U and
base a nonsingular set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in an (n − m − 1)-

space skew to U , 0 ≤ m ≤ n − 2. Finally, Theorem 8.6 says that if K is quasi
singular, then K consists of 1

2 (q + 1) hyperplanes through a common (n − 2)-
space U and a nonsingular set of class

[
1, 1

2 (q + 1), 1
2 (q + 3), q + 1

]
in another

hyperplane through U .
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