The two smallest minimal blocking sets of $Q(2n, 3), n \ge 3$

J. De Beule and L. Storme

Abstract

We describe the two smallest minimal blocking sets of Q(2n,3), $n \ge 3$. To obtain these results, we use the characterization of the smallest minimal blocking sets of Q(6,3), different from an ovoid. We also present some geometrical properties of ovoids of Q(6,q), q odd.

1 Introduction

Let $Q(2n,q), n \ge 2$, be the non-singular parabolic quadric in PG(2n,q). An ovoid of the polar space Q(2n,q) is a set of points \mathcal{O} of Q(2n,q), such that every maximal singular subspace (or generator) of Q(2n,q) intersects \mathcal{O} in exactly one point. For Q(2n,q), the generators are spaces of dimension n-1. A blocking set of the polar space Q(2n,q) is a set of points \mathcal{K} of Q(2n,q) such that every generator intersects \mathcal{K} in at least one point. If \mathcal{O} is an ovoid of Q(2n,q), then \mathcal{O} has size q^n+1 . So if \mathcal{K} is a blocking set of Q(2n,q) different from an ovoid, then \mathcal{K} has size q^n+1+r , with r>0. A blocking set \mathcal{K} is called minimal if for every point $p\in\mathcal{K}$, $\mathcal{K}\setminus\{p\}$ is not a blocking set, or equivalently, if for every point $p\in\mathcal{K}$, there is a generator α such that $\alpha\cap\mathcal{K}=\{p\}$.

We suppose in this article that q is odd. We recall known results about ovoids of the parabolic quadric in 4, 6 and 8 dimensions.

Theorem 1 (Ball [1]) Suppose that \mathcal{O} is an ovoid of Q(4,q), $q=p^h$, p prime, $h \geq 1$, then every elliptic quadric $Q^-(3,q)$ of Q(4,q) intersects \mathcal{O} in 1 mod p points.

This result has interesting applications. One of them is the classification of all ovoids of Q(4, q), q prime.

Theorem 2 (Ball et al. [2]) The only ovoids of Q(4,q), q prime, are elliptic quadrics $Q^{-}(3,q)$.

When $q = p^h$, p an odd prime, h > 1, and $q = 2^{2h+1}$, $h \ge 1$, other classes of ovoids of Q(4, q) are known ([9, 12, 15, 16]).

The classification of the ovoids of Q(4,q), q prime, leads to the following theorem, using a result of [10].

Theorem 3 When q is an odd prime, $q \ge 5$, Q(6,q) does not have ovoids.

When $q = 3^h$, $h \ge 1$, Q(6,q) always has ovoids ([9, 13, 14]), and when q is even, then Q(6,q) does not have ovoids ([14]). For all other values of q, the existence or non-existence of ovoids of Q(6,q) is not known, although it is conjectured in [10] that Q(6,q) has ovoids if and only if $q = 3^h$, $h \ge 1$.

Finally, we recall the following theorem about ovoids of higher dimensional parabolic quadrics.

Theorem 4 (Gunawardena and Moorhouse [8]) The parabolic quadric Q(8,q), q odd, does not have ovoids. This implies also that Q(2n,q), q odd, $n \ge 5$, does not have ovoids.

We now recall known results about blocking sets different from ovoids. Suppose that $\alpha \mathcal{B}$ is a cone with vertex the k-dimensional subspace α and base some set \mathcal{B} of points, lying in some subspace π , $\pi \cap \alpha = \emptyset$. Then the truncated cone $\alpha^* \mathcal{B}$ is defined as $\alpha \mathcal{B} \setminus \alpha$, hence, as the set of points of the cone $\alpha \mathcal{B}$ where the points of the vertex α are removed from. If α is the empty subspace, then $\alpha^* \mathcal{B} = \mathcal{B}$.

The case q=3 of the following theorem was proven in [5]. The theorem for q>3 odd prime was proven in [4]. We denote the polarity associated to the quadric by \perp .

Theorem 5 The smallest minimal blocking sets of Q(6,q), q an odd prime, different from an ovoid of Q(6,q), are truncated cones $p^*Q^-(3,q)$, $p \in Q(6,q)$, $Q^-(3,q) \subseteq p^{\perp} \cap Q(6,q)$, and have size $q^3 + q$.

When q>3 is an odd prime, this theorem generalizes to the following theorem.

Theorem 6 ([5]) The smallest minimal blocking sets of Q(2n,q), q>3 prime, $n \ge 4$, are truncated cones $\pi_{n-3}^*Q^-(3,q)$, $\pi_{n-3} \subseteq Q(2n,q)$, $Q^-(3,q) \subseteq \pi_{n-3}^{\perp} \cap Q(2n,q)$, and have size $q^n + q^{n-2}$.

Ovoids of Q(6, q) can be used to construct smaller examples in higher dimension. For q = 3, the following result is known.

Theorem 7 ([5]) The smallest minimal blocking sets of Q(2n, q = 3), $n \ge 4$, are truncated cones $\pi_{n-4}^*\mathcal{O}$, \mathcal{O} an ovoid of Q(6, q = 3), $\mathcal{O} \subset \pi_{n-4}^{\perp}, \pi_{n-4} \subset Q(2n, q)$, and have size $q^n + q^{n-3}$.

Theorems 6 and 7 express the difference between q>3 odd prime and q=3. Furthermore, considering $Q(2n,q=3),\ n\geqslant 4$, it is clear that a truncated cone $\pi_{n-3}^*Q^-(3,q)$, contained in Q(2n,q), constitutes a minimal blocking set of size q^n+q^{n-2} . We show in this article that minimal blocking sets of Q(2n,3) of size $k,\ q^n+q^{n-3}< k< q^n+q^{n-2}$ do not exist, and we characterize the minimal blocking sets of Q(2n,q=3) of size q^n+q^{n-2} , as described in the following theorem. Finally, we show that minimal blocking sets of $Q(2n,q=3),\ n\geqslant 3$, of size $q^n+q^{n-2}+1$ do not exist.

Theorem 8 The minimal blocking sets of Q(2n, q = 3), $n \ge 3$, of size at most $q^n + q^{n-2}$, are truncated cones $\pi_{n-4}^* \mathcal{O}$, $\pi_{n-4} \subseteq Q(2n,3)$, $\pi_{n-4}^{\perp} \cap Q(2n,q = 3) = \pi_{n-4}Q(6,q = 3)$, \mathcal{O} an ovoid of Q(6,3), and $\pi_{n-3}^* \mathcal{O}^-(3,q = 3)$, $\pi_{n-3} \subseteq Q(2n,3)$, $\pi_{n-3}^{\perp} \cap Q(2n,q = 3) = \pi_{n-3}Q(4,q = 3)$, $Q^-(3,q = 3) \subseteq Q(4,q = 3)$. Furthermore, a minimal blocking set of size $q^n + q^{n-2} + 1$ of Q(2n, q = 3) does not exist.

Before presenting the proof of this theorem, we first mention some geometrical properties of ovoids of Q(6, q), q odd.

2 Geometrical results on ovoids of Q(6, q), q odd

For the next three lemmas, we suppose that Q(6,q) has ovoids. This implies that q is odd, since Q(6,q), q even, does not have ovoids [14], and this hypothesis is satisfied when $q=3^h$, $h \geqslant 1$. Denote an ovoid of Q(6,q) by \mathcal{O} .

Lemma 1 The ovoid \mathcal{O} spans the 6-dimensional space PG(6,q).

Proof. Let $\Omega = \langle \mathcal{O} \rangle$.

It is impossible that $\Omega \cap \mathrm{Q}(6,q)$ is a singular quadric. For, assume that $\langle \mathcal{O} \rangle \cap \mathrm{Q}(6,q) = \pi_s Q$, a cone with vertex π_s , an s-dimensional subspace, $s \geqslant 0$, and with base Q, a non-singular quadric of dimension at most 4. Then π_s projects \mathcal{O} onto an ovoid of Q. However, no non-singular quadric of dimension at most four has ovoids of size $q^3 + 1$.

If $\Omega \cap Q(6,q) = Q(4,q)$, then \mathcal{O} must necessarily be an ovoid of Q(4,q); impossible since $|\mathcal{O}| > q^2 + 1$. If $\langle \mathcal{O} \rangle \cap Q(6,q) = Q^+(5,q)$, then \mathcal{O} must be an ovoid of $Q^+(5,q)$; impossible since $|\mathcal{O}| > q^2 + 1$. Finally, $\langle \mathcal{O} \rangle \cap Q(6,q) = Q^-(5,q)$ is impossible, since $Q^-(5,q)$ does not have ovoids [11].

Lemma 2 No elliptic quadric $Q^{-}(3,q)$ is contained in \mathcal{O} .

Proof. Suppose that some $Q^-(3,q) \subseteq \mathcal{O}$. Since \mathcal{O} spans the 6-dimensional space, there is a point $p \in \mathcal{O} \setminus Q^-(3,q)$. The space $\langle p,Q^-(3,q) \rangle$ intersects Q(6,q) in a parabolic quadric Q(4,q), containing at least q^2+2 points of \mathcal{O} , a contradiction, since any Q(4,q) can intersect \mathcal{O} in at most q^2+1 points, the number of points of an ovoid of Q(4,q). \square

The following lemma is an application of Theorem 1.

Lemma 3 The ovoid \mathcal{O} does not contain an ovoid \mathcal{O}' of Q(4,q), with Q(4,q) contained in Q(6,q).

Proof. Suppose the contrary, i.e., suppose that there is some ovoid \mathcal{O}' of $\mathrm{Q}(4,q)\subseteq\mathrm{Q}(6,q)$, with $\mathcal{O}'\subseteq\mathcal{O}$. By the previous lemma, we may suppose that \mathcal{O}' is not an elliptic quadric and hence, $\langle\mathcal{O}'\rangle$ is a 4-dimensional projective space α , such that $\alpha\cap\mathrm{Q}(6,q)=\mathrm{Q}(4,q)$. Since \mathcal{O} spans the 6-dimensional space, we can choose a point $p\in\mathcal{O}\setminus\alpha$. Since α contains an ovoid of $\mathrm{Q}(4,q),\,p\not\in\alpha^\perp$, hence $p^\perp\cap\mathrm{Q}(4,q)=\mathrm{Q}^\pm(3,q),\,$ or $p^\perp\cap\mathrm{Q}(4,q)=r\mathrm{Q}(2,q)$ which is a tangent cone to $\mathrm{Q}(4,q).$ All these 3-dimensional quadrics intersect \mathcal{O}' in 1 mod p points, hence, at least one point $r\in\mathcal{O}'$ belongs to p^\perp , a contradiction. \square

We call a hyperplane α of PG(6, q) hyperbolic, elliptic respectively, if $\alpha \cap Q(6,q) = Q^+(5,q)$, $\alpha \cap Q(6,q) = Q^-(5,q)$ respectively.

Corollary 1 Any hyperbolic hyperplane α has the property that $\langle \alpha \cap \mathcal{O} \rangle = \alpha$.

Proof. Suppose that α is a 5-dimensional subspace such that $\alpha \cap Q(6,q) = Q^+(5,q)$. Then necessarily α intersects \mathcal{O} in an ovoid \mathcal{O}' of $Q^+(5,q)$. Since any ovoid of Q(4,q) is not contained in \mathcal{O} , the ovoid \mathcal{O}' spans the 5-dimensional space α . \square

With the aid of the software package pg [3], we also found the following result for q=3. The software package pg is a package written in the language of the computer algebra system GAP [7]. Checking the mentioned property can be done with a few commands of the package pg.

Lemma 4 Any elliptic hyperplane α of PG(6,3) has the property that $\langle \alpha \cap \mathcal{O} \rangle = \alpha$

We end this section with the following result. It was proven in [2], using Theorem 1.

Theorem 9 (Ball, Govaerts and Storme [2]) Suppose that Q(6,q), $q = p^h$, $h \ge 1$, p an odd prime, has an ovoid \mathcal{O} . Then any elliptic hyperplane intersects \mathcal{O} in 1 mod p points.

3 Small minimal blocking sets of Q(6,3)

We now consider minimal blocking sets, different from ovoids, of Q(6, q). Theorem 5 characterizes the smallest minimal blocking sets of Q(6, q = 3) different from ovoids. We will extend this theorem by excluding the existence of minimal blocking sets of size $q^3 + q + 1$, with q = 3.

We now suppose that K is a minimal blocking set of Q(6, q = 3) of size at most $q^3 + q + 1$. The next two lemmas can be proven by techniques of [6].

Lemma 5 For every point $r \in \mathcal{K}$, $|r^{\perp} \cap \mathcal{K}| \leq q + 1$.

Lemma 6 Consider a point $r \in Q(6,q) \setminus \mathcal{K}$, then the points of $r^{\perp} \cap \mathcal{K}$ are projected from r onto a minimal blocking set \mathcal{K}_r of Q(4,q), with Q(4,q) a base of the cone $r^{\perp} \cap Q(6,q)$.

We call a line of Q(2n, q) meeting K in i points an i-secant to K. For the next lemma, we use the fact that a minimal blocking set of Q(4,3), different from an ovoid, contains at least $12 = q^2 + q$ points, with q = 3. This is proven in e.g. [5].

Lemma 7 There are no lines of Q(6,3) meeting K in exactly 2 points.

Proof. Suppose that L is a 2-secant to \mathcal{K} . Consider a generator π of Q(6,3) on L such that $\pi \cap \mathcal{K} = L \cap \mathcal{K}$. Count the number of pairs $(u,v), u \in \pi \setminus L$, $v \in \mathcal{K} \setminus L, u \in v^{\perp}$. Since the projection of the set of points $u^{\perp} \cap \mathcal{K}$ from u is a minimal blocking set of Q(4,3), and since it cannot be an ovoid of Q(4,3), it must contain at least $q^2 + q$ points of Q(4,3). We obtain $q^2(q^2 + 1)$ as lower bound for this number. Using the size of \mathcal{K} , we find $(q^3 + q - 1)q = q^4 + q^2 - q$ as upper bound, hence, $q^2(q^2 + 1) \leqslant q^4 + q^2 - q$, a contradiction. \square

Corollary 2 Every generator π of Q(6, q = 3) intersects K in 1 point, or in 3 or 4 collinear points.

Proof. Since there are no 2-secants to \mathcal{K} , 2 points of \mathcal{K} in π give rise to 3 or 4 collinear points of \mathcal{K} in π . If there would be 3 points of \mathcal{K} spanning π , then π would contain at least 7 points of \mathcal{K} , a contradiction with Lemma 5. \square

Lemma 8 Suppose that L is a line of Q(6,3) meeting K in 3 or 4 points. Suppose that π is a generator of Q(6,3) on L, then $L \cap K = \pi \cap K$, and $|r^{\perp} \cap K| \leq q^2 + q + 1$ for every $r \in \pi \setminus L$.

Proof. Let r_0 be one of the points of $\mathcal{K} \cap \pi$. Suppose that $r \in \pi \setminus L$. Then there exists a generator π' of Q(6,3) through r meeting \mathcal{K} only in r_0 . The $q^2 - q$ lines of π' not through r_0 or r lie in q generators of Q(6,3) different from π' . Hence, at least $q^3 - q^2$ points of \mathcal{K} lie outside r^{\perp} , and so, $|r^{\perp} \cap \mathcal{K}| \leq q^2 + q + 1$. \square

Lemma 9 Suppose that L is a 3-secant to K, then the point $r \in L \setminus K$ only lies on 3-secants to K and $K = r^*\mathcal{O}$, \mathcal{O} an ovoid of Q(4,3), with Q(4,3) the base of the cone $r^{\perp} \cap Q(6,3)$.

Proof. Put $\mathcal{K} \cap L = \{r_1, r_2, r_3\}$ and $r \in L \setminus \mathcal{K}$. Since $|(r_1^{\perp} \cup r_2^{\perp} \cup r_3^{\perp}) \cap \mathcal{K}| \leq 3 + 1 + 1 + 1$, necessarily $|r^{\perp} \cap \mathcal{K}| \geq q^3 + q + 1 - 6 = q^3 - 2 > q^2 + q + 1$, so, using the proof of Lemma 8, r does not lie in a generator with 1 point of \mathcal{K} , so r only lies in generators containing at least 3 points of \mathcal{K} . Moreover, these 3 or 4 points are collinear with r by Corollary 2 and Lemma 8. If r projects the points of $r^{\perp} \cap \mathcal{K}$ onto an ovoid of Q(4,3), then $|\mathcal{K}| = q(q^2 + 1)$; else $|\mathcal{K}| \geq q(q^2 + 2)$. Since $|\mathcal{K}| \leq q^3 + q + 1$, necessarily $\mathcal{K} = r^* \mathcal{O}$, \mathcal{O} an ovoid of Q(4,3), with Q(4,3) the base of the cone $r^{\perp} \cap Q(6,3)$. \square

Theorem 10 A minimal blocking set K of size $|K| \leq q^3 + q + 1$, q = 3, of Q(6,3) is an ovoid \mathcal{O} or a truncated cone $r^*\mathcal{O}$, \mathcal{O} an elliptic quadric $Q^-(3,3) \subseteq Q(4,3)$, with Q(4,3) the base of the cone $r^{\perp} \cap Q(6,3)$. In particular, there does not exist a minimal blocking set of size $q^3 + q + 1$ on Q(6,3).

Proof. Assume that \mathcal{K} is not an ovoid of Q(6,3), then a line of Q(6,3) is either a 1-, 3-, or 4-secant to \mathcal{K} . By Lemma 9, we can assume that there is no 3-secant to \mathcal{K} . So a line of Q(6,3) containing at least 2 points of \mathcal{K} contains 4 points of \mathcal{K} . Suppose that L is a 4-secant to \mathcal{K} . By Lemma 5, we find that $|\mathcal{K}| \leq 4$, since a point of $Q(6,3) \setminus L$ is perpendicular to at least one point of L. But $|\mathcal{K}| > q^3 + 1$, a contradiction. \square

4 Small minimal blocking sets of Q(2n, 3)

Consider the parabolic quadric Q(2n, q = 3), $n \ge 4$. For this section, we assume that the following hypothesis is true for Q(2k, 3), k = 3, ..., n - 1.

The minimal blocking sets of size at most $q^k + q^{k-2} + 1$ in Q(2k, q = 3) are truncated cones $\pi_{k-4}^*\mathcal{O}$, $\pi_{k-4}^{\perp} \cap Q(2k, q = 3) = \pi_{k-4}Q(6, q = 3)$, \mathcal{O} an ovoid of Q(6, q = 3); and truncated cones $\pi_{k-3}^*Q^-(3, q = 3)$, $\pi_{k-3}^{\perp} \cap Q(2k, q = 3) = \pi_{k-3}Q^-(3, q = 3)$, π_i an *i*-dimensional subspace contained in Q(2k, q = 3). These examples have respectively size $q^k + q^{k-3}$ and $q^k + q^{k-2}$. This hypothesis is true for n = 4.

Suppose for this section that K is a minimal blocking set of size at most $q^n + q^{n-2} + 1$ of Q(2n, q = 3), $n \ge 4$. Since the smallest minimal blocking

sets of Q(2n, q = 3), $n \ge 4$, of size $q^n + q^{n-3}$, are already classified [5], we also assume that $|\mathcal{K}| \ge q^n + q^{n-3} + 1$.

The next two lemmas are generalizations of Lemma 5 and Lemma 6. They can be proven by using techniques of proofs of [5].

Lemma 10 For every point $r \in \mathcal{K}$, $|r^{\perp} \cap \mathcal{K}| \leq q^{n-2} + 1$.

Lemma 11 Consider a point $r \in Q(2n,q) \setminus K$, then the points of $r^{\perp} \cap K$ are projected from r onto a minimal blocking set K_r of Q(2n-2,q), with Q(2n-2,q) the base of the cone $r^{\perp} \cap Q(2n,q)$.

Lemma 12 No generator π_{n-1} of Q(2n, q = 3) intersects K in exactly 2 points.

Proof. Suppose that for some generator π_{n-1} of Q(2n,q), $|\pi_{n-1}\cap\mathcal{K}|=2$, where the two points of $\pi_{n-1}\cap\mathcal{K}$ lie on the line L. Count the number of pairs (u,v), $u\in\pi_{n-1}\setminus L$, $u\in v^{\perp}$, $v\in\mathcal{K}\setminus\pi_{n-1}$. Since no minimal blocking set of size at most $q^{n-1}+q^{n-3}+1$ of Q(2n-2,q) has a 2-secant, we find $|u^{\perp}\cap\mathcal{K}|\geqslant q^{n-1}+q^{n-3}+2$. Hence, the lower bound on the number of pairs is $(q^{n-1}+\ldots+q^2)(q^{n-1}+q^{n-3})$. As upper bound, we find $(q^n+q^{n-2}-1)(q^{n-2}+\ldots+q)$. Necessarily $(q^{n-1}+\ldots+q^2)(q^{n-1}+q^{n-3})=(q^{n-2}+\ldots+q)$, a contradiction. \square

Corollary 3 No line L of Q(2n,3) intersects K in exactly 2 points.

Proof. Suppose that L is a 2-secant to \mathcal{K} . By the minimality of \mathcal{K} and Lemma 10, there exists a generator π_{n-1} on L such that $L \cap \mathcal{K} = \pi_{n-1} \cap \mathcal{K}$, a contradiction. \square

Lemma 13 Suppose that π_{n-1} is a generator of Q(2n,q) such that $|\pi_{n-1} \cap \mathcal{K}| = 1$. For every $r \in \pi_{n-1} \setminus \mathcal{K}$, we have that $|r^{\perp} \cap \mathcal{K}| \leq q^{n-1} + q^{n-2} + 1$.

Proof. Denote the unique point in $\pi_{n-1} \cap \mathcal{K}$ by s. The $q^{n-1} - q^{n-2}$ hyperplanes of π_{n-1} , not through r or s, all lie in q generators, different from π_{n-1} , all containing at least one point of \mathcal{K} . So at least $(q^{n-1} - q^{n-2})q$ points lie in $\mathcal{K} \setminus r^{\perp}$; so $|r^{\perp} \cap \mathcal{K}| \leq q^{n-1} + q^{n-2} + 1$. \square

Lemma 14 Suppose that $r \notin \mathcal{K}$, and suppose that L is a line of Q(2n,3) through r such that $|L \cap \mathcal{K}| = 1$. Then $|r^{\perp} \cap \mathcal{K}| \leqslant q^{n-1} + q^{n-2} + 1$.

Proof. Consider a generator through the line $\langle r, s \rangle$, $s \in L \cap \mathcal{K}$, only containing the point $s \in \mathcal{K}$. Such a generator exists; or else $|s^{\perp} \cap \mathcal{K}| \geqslant q^{n-2} + 2$. The preceding lemma proves the assertion. \square

Lemma 15 There does not exist a line of Q(2n,3) intersecting K in 4 points.

Proof. Suppose that L is a line of Q(2n,3) meeting \mathcal{K} in 4 points. By Lemma 10, we find that $|\mathcal{K}| \leq 4(q^{n-2}+1) = (q+1)(q^{n-2}+1) = q^{n-1}+q^{n-2}+q+1 < q^n+1$, a contradiction. \square

Theorem 11 The minimal blocking sets of Q(2n, q = 3), n ≥ 3, of size at most $q^n + q^{n-2} + 1$, are truncated cones $\pi_{n-4}^* \mathcal{O}$, $\pi_{n-4}^\perp \cap Q(2n, q = 3) = \pi_{n-4}Q(6, q = 3)$, \mathcal{O} an ovoid of Q(6,3), and $\pi_{n-3}^* Q^-(3, q = 3)$, $\pi_{n-3}^\perp \cap Q(2n, q = 3) = \pi_{n-3}Q(4, q = 3)$, $Q^-(3, q = 3) \subseteq Q(4, q = 3)$. Furthermore, a minimal blocking set of size $q^n + q^{n-2} + 1$ of Q(2n, q = 3) does not exist.

Proof. Suppose that L is a line of Q(2n,3), which also is a 3-secant to \mathcal{K} . Put $L \cap \mathcal{K} = \{r_1, r_2, r_3\}$ and $r \in L \setminus \mathcal{K}$. Then $|(r_1^{\perp} \cup r_2^{\perp} \cup r_3^{\perp}) \cap \mathcal{K}| \leqslant q^{n-2} + 1 + 2(q^{n-2} - 2) \leqslant q^{n-1} - 3$. So $|r^{\perp} \cap \mathcal{K}| \geqslant q^n + q^{n-3} + 1 - (q^{n-1} - 3) = 2q^{n-1} + q^{n-3} + 4 > q^{n-1} + q^{n-2} + 1$. So every generator through r meets \mathcal{K} in at least 3 points, hence $|r^{\perp} \cap \mathcal{K}| \geqslant 3(q^{n-1} + 1)$. The projection of $r^{\perp} \cap \mathcal{K}$ from r contains at least $q^{n-1} + q^{n-4}$ points; so since r lies on 3-secants to the projected points, necessarily $|r^{\perp} \cap \mathcal{K}| \geqslant 3(q^{n-1} + q^{n-4})$, by the induction hypothesis. The induction hypothesis implies also that $r^{\perp} \cap \mathcal{K}$ is projected onto a truncated cone $\pi_{n-5}^* \mathcal{O}$, \mathcal{O} an ovoid of Q(6,q), or a truncated cone $\pi_{n-4}^* Q^-(3,q)$, since the projection of $\mathcal{K} \cap r^{\perp}$ must be a minimal blocking set of the base Q(2n-2,3) of the cone $r^{\perp} \cap Q(2n,3)$. It follows that $|r^{\perp} \cap \mathcal{K}| = q^n + q^{n-3}$ or, respectively, $q^n + q^{n-2}$. Hence, $r^{\perp} \cap \mathcal{K}$ contains a truncated cone $\pi_{n-4}^* \mathcal{O}$, $\pi_{n-4}^{\perp} \cap Q(2n,q=3) = \pi_{n-4}Q(6,q)$, \mathcal{O} an ovoid of Q(6,q), or, respectively a truncated cone $\pi_{n-3}^* Q^-(3,q)$. Since these structures are minimal blocking sets of Q(2n,q=3), we conclude that \mathcal{K} is necessarily equal to one of these structures. \square

References

- [1] S. Ball. On ovoids of O(5, q). Adv. Geom., 4(1):1-7, 2004.
- [2] S. Ball, P. Govaerts, and L. Storme. On Ovoids of Parabolic Quadrics. J. London Math. Soc., submitted.
- [3] J. De Beule, P. Govaerts, and L. Storme. *Projective Geometries*, a share package for GAP. (http://cage.ugent.be/~jdebeule/pg)
- [4] J. De Beule and K. Metsch. Small point sets that meet all generators of Q(2n, p), p > 3, p prime. J. Combin. Theory, Ser. A, to appear.
- [5] J. De Beule and L. Storme. On the smallest minimal blocking sets of Q(2n, q), for q an odd prime. Discrete Math., to appear.
- [6] J. De Beule and L. Storme. The smallest minimal blocking sets of Q(6, q), q even. J. Combin. Des., 11(4):290-303, 2003.
- [7] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.3; 2002. (http://www.gap-system.org)
- [8] A. Gunawardena and G. E. Moorhouse. The non-existence of ovoids in $O_9(q)$. European J. Combin., 18(2):171–173, 1997.
- [9] W. M. Kantor. Ovoids and translation planes. Canad. J. Math., 34(5):1195– 1207, 1982.
- [10] C. M. O'Keefe and J. A. Thas. Ovoids of the quadric Q(2n,q). European J. Combin., 16(1):87-92, 1995.
- [11] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.

- [12] T. Penttila and B. Williams. Ovoids of parabolic spaces. *Geom. Dedicata*, 82(1-3):1–19, 2000.
- [13] J. A. Thas. Polar spaces, generalized hexagons and perfect codes. J. Combin. Theory Ser. A, 29(1):87–93, 1980.
- [14] J. A. Thas. Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata*, 10(1-4):135–143, 1981.
- [15] J. A. Thas and S. E. Payne. Spreads and ovoids in finite generalized quadrangles. *Geom. Dedicata*, 52(3):227–253, 1994.
- [16] J. Tits. Ovoides et groupes de Suzuki. Arch. Math., 13:187-198, 1962.

Address of the authors: Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, 9000 Gent, Belgium

- J. De Beule: http://cage.ugent.be/~jdebeule, jdebeule@cage.ugent.be
- L. Storme: http://cage.ugent.be/~ls, ls@cage.ugent.be