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Abstract

We describe the two smallest minimal blocking sets of Q(2n, 3), n >
3. To obtain these results, we use the characterization of the smallest
minimal blocking sets of Q(6, 3), different from an ovoid. We also present
some geometrical properties of ovoids of Q(6, q), q odd.

1 Introduction

Let Q(2n, q), n > 2, be the non-singular parabolic quadric in PG(2n, q). An
ovoid of the polar space Q(2n, q) is a set of points O of Q(2n, q), such that every
maximal singular subspace (or generator) of Q(2n, q) intersects O in exactly one
point. For Q(2n, q), the generators are spaces of dimension n − 1. A blocking
set of the polar space Q(2n, q) is a set of points K of Q(2n, q) such that every
generator intersects K in at least one point. If O is an ovoid of Q(2n, q), then
O has size qn + 1. So if K is a blocking set of Q(2n, q) different from an ovoid,
then K has size qn + 1 + r, with r > 0. A blocking set K is called minimal if
for every point p ∈ K, K \ {p} is not a blocking set, or equivalently, if for every
point p ∈ K, there is a generator α such that α ∩ K = {p}.

We suppose in this article that q is odd. We recall known results about
ovoids of the parabolic quadric in 4, 6 and 8 dimensions.

Theorem 1 (Ball [1]) Suppose that O is an ovoid of Q(4, q), q = ph, p prime,
h > 1, then every elliptic quadric Q−(3, q) of Q(4, q) intersects O in 1 mod p
points.

This result has interesting applications. One of them is the classification of
all ovoids of Q(4, q), q prime.

Theorem 2 (Ball et al. [2]) The only ovoids of Q(4, q), q prime, are elliptic
quadrics Q−(3, q).

When q = ph, p an odd prime, h > 1, and q = 22h+1, h ≥ 1, other classes of
ovoids of Q(4, q) are known ([9, 12, 15, 16]).

The classification of the ovoids of Q(4, q), q prime, leads to the following
theorem, using a result of [10].

Theorem 3 When q is an odd prime, q > 5, Q(6, q) does not have ovoids.
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When q = 3h, h > 1, Q(6, q) always has ovoids ([9, 13, 14]), and when
q is even, then Q(6, q) does not have ovoids ([14]). For all other values of q,
the existence or non-existence of ovoids of Q(6, q) is not known, although it is
conjectured in [10] that Q(6, q) has ovoids if and only if q = 3h, h > 1.

Finally, we recall the following theorem about ovoids of higher dimensional
parabolic quadrics.

Theorem 4 (Gunawardena and Moorhouse [8]) The parabolic quadric
Q(8, q), q odd, does not have ovoids. This implies also that Q(2n, q), q odd,
n > 5, does not have ovoids.

We now recall known results about blocking sets different from ovoids. Sup-
pose that αB is a cone with vertex the k-dimensional subspace α and base some
set B of points, lying in some subspace π, π ∩ α = ∅. Then the truncated cone
α∗B is defined as αB \ α, hence, as the set of points of the cone αB where
the points of the vertex α are removed from. If α is the empty subspace, then
α∗B = B.

The case q = 3 of the following theorem was proven in [5]. The theorem for
q > 3 odd prime was proven in [4]. We denote the polarity associated to the
quadric by ⊥.

Theorem 5 The smallest minimal blocking sets of Q(6, q), q an odd prime,
different from an ovoid of Q(6, q), are truncated cones p∗Q−(3, q), p ∈ Q(6, q),
Q−(3, q) ⊆ p⊥ ∩Q(6, q), and have size q3 + q.

When q > 3 is an odd prime, this theorem generalizes to the following
theorem.

Theorem 6 ([5]) The smallest minimal blocking sets of Q(2n, q), q > 3 prime,
n > 4, are truncated cones π∗n−3Q−(3, q), πn−3 ⊆ Q(2n, q), Q−(3, q) ⊆ π⊥n−3 ∩
Q(2n, q), and have size qn + qn−2.

Ovoids of Q(6, q) can be used to construct smaller examples in higher di-
mension. For q = 3, the following result is known.

Theorem 7 ([5]) The smallest minimal blocking sets of Q(2n, q = 3), n > 4,
are truncated cones π∗n−4O, O an ovoid of Q(6, q = 3), O ⊂ π⊥n−4, πn−4 ⊂
Q(2n, q), and have size qn + qn−3.

Theorems 6 and 7 express the difference between q > 3 odd prime and q = 3.
Furthermore, considering Q(2n, q = 3), n > 4, it is clear that a truncated cone
π∗n−3Q−(3, q), contained in Q(2n, q), constitutes a minimal blocking set of size
qn+ qn−2. We show in this article that minimal blocking sets of Q(2n, 3) of size
k, qn + qn−3 < k < qn + qn−2 do not exist, and we characterize the minimal
blocking sets of Q(2n, q = 3) of size qn + qn−2, as described in the following
theorem. Finally, we show that minimal blocking sets of Q(2n, q = 3), n > 3,
of size qn + qn−2 + 1 do not exist.

Theorem 8 The minimal blocking sets of Q(2n, q = 3), n > 3, of size at most
qn + qn−2, are truncated cones π∗n−4O, πn−4 ⊆ Q(2n, 3), π⊥n−4 ∩ Q(2n, q =
3) = πn−4Q(6, q = 3), O an ovoid of Q(6, 3), and π∗n−3Q−(3, q = 3), πn−3 ⊆
Q(2n, 3), π⊥n−3 ∩ Q(2n, q = 3) = πn−3Q(4, q = 3), Q−(3, q = 3) ⊆ Q(4, q = 3).
Furthermore, a minimal blocking set of size qn + qn−2 + 1 of Q(2n, q = 3) does
not exist.
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Before presenting the proof of this theorem, we first mention some geomet-
rical properties of ovoids of Q(6, q), q odd.

2 Geometrical results on ovoids of Q(6, q), q odd

For the next three lemmas, we suppose that Q(6, q) has ovoids. This implies
that q is odd, since Q(6, q), q even, does not have ovoids [14], and this hypothesis
is satisfied when q = 3h, h > 1. Denote an ovoid of Q(6, q) by O.

Lemma 1 The ovoid O spans the 6-dimensional space PG(6, q).

Proof. Let Ω = 〈O〉.
It is impossible that Ω ∩ Q(6, q) is a singular quadric. For, assume that

〈O〉 ∩Q(6, q) = πsQ, a cone with vertex πs, an s-dimensional subspace, s > 0,
and with base Q, a non-singular quadric of dimension at most 4. Then πs
projects O onto an ovoid of Q. However, no non-singular quadric of dimension
at most four has ovoids of size q3 + 1.

If Ω ∩ Q(6, q) = Q(4, q), then O must necessarily be an ovoid of Q(4, q);
impossible since |O| > q2 + 1. If 〈O〉 ∩ Q(6, q) = Q+(5, q), then O must be an
ovoid of Q+(5, q); impossible since |O| > q2+1. Finally, 〈O〉∩Q(6, q) = Q−(5, q)
is impossible, since Q−(5, q) does not have ovoids [11].

Lemma 2 No elliptic quadric Q−(3, q) is contained in O.

Proof. Suppose that some Q−(3, q) ⊆ O. Since O spans the 6-dimensional
space, there is a point p ∈ O \ Q−(3, q). The space 〈p,Q−(3, q)〉 intersects
Q(6, q) in a parabolic quadric Q(4, q), containing at least q2 + 2 points of O, a
contradiction, since any Q(4, q) can intersect O in at most q2 + 1 points, the
number of points of an ovoid of Q(4, q). �

The following lemma is an application of Theorem 1.

Lemma 3 The ovoid O does not contain an ovoid O′ of Q(4, q), with Q(4, q)
contained in Q(6, q).

Proof. Suppose the contrary, i.e., suppose that there is some ovoid O′ of
Q(4, q) ⊆ Q(6, q), with O′ ⊆ O. By the previous lemma, we may suppose that
O′ is not an elliptic quadric and hence, 〈O′〉 is a 4-dimensional projective space
α, such that α ∩ Q(6, q) = Q(4, q). Since O spans the 6-dimensional space, we
can choose a point p ∈ O\α. Since α contains an ovoid of Q(4, q), p 6∈ α⊥, hence
p⊥ ∩ Q(4, q) = Q±(3, q), or p⊥ ∩ Q(4, q) = rQ(2, q) which is a tangent cone to
Q(4, q). All these 3-dimensional quadrics intersect O′ in 1 mod p points, hence,
at least one point r ∈ O′ belongs to p⊥, a contradiction. �

We call a hyperplane α of PG(6, q) hyperbolic, elliptic respectively, if α ∩
Q(6, q) = Q+(5, q), α ∩Q(6, q) = Q−(5, q) respectively.

Corollary 1 Any hyperbolic hyperplane α has the property that 〈α ∩ O〉 = α.
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Proof. Suppose that α is a 5-dimensional subspace such that α ∩ Q(6, q) =
Q+(5, q). Then necessarily α intersects O in an ovoid O′ of Q+(5, q). Since any
ovoid of Q(4, q) is not contained in O, the ovoid O′ spans the 5-dimensional
space α. �

With the aid of the software package pg [3], we also found the following
result for q = 3. The software package pg is a package written in the language
of the computer algebra system GAP [7]. Checking the mentioned property can
be done with a few commands of the package pg.

Lemma 4 Any elliptic hyperplane α of PG(6, 3) has the property that 〈α∩O〉 =
α.

We end this section with the following result. It was proven in [2], using
Theorem 1.

Theorem 9 (Ball, Govaerts and Storme [2]) Suppose that Q(6, q), q = ph,
h > 1, p an odd prime, has an ovoid O. Then any elliptic hyperplane intersects
O in 1 mod p points.

3 Small minimal blocking sets of Q(6, 3)

We now consider minimal blocking sets, different from ovoids, of Q(6, q). The-
orem 5 characterizes the smallest minimal blocking sets of Q(6, q = 3) different
from ovoids. We will extend this theorem by excluding the existence of minimal
blocking sets of size q3 + q + 1, with q = 3.

We now suppose that K is a minimal blocking set of Q(6, q = 3) of size at
most q3 + q + 1. The next two lemmas can be proven by techniques of [6].

Lemma 5 For every point r ∈ K, |r⊥ ∩ K| 6 q + 1.

Lemma 6 Consider a point r ∈ Q(6, q) \ K, then the points of r⊥ ∩ K are
projected from r onto a minimal blocking set Kr of Q(4, q), with Q(4, q) a base
of the cone r⊥ ∩Q(6, q).

We call a line of Q(2n, q) meeting K in i points an i-secant to K. For the
next lemma, we use the fact that a minimal blocking set of Q(4, 3), different
from an ovoid, contains at least 12 = q2 + q points, with q = 3. This is proven
in e.g. [5].

Lemma 7 There are no lines of Q(6, 3) meeting K in exactly 2 points.

Proof. Suppose that L is a 2-secant to K. Consider a generator π of Q(6, 3)
on L such that π ∩ K = L ∩ K. Count the number of pairs (u, v), u ∈ π \ L,
v ∈ K \ L, u ∈ v⊥. Since the projection of the set of points u⊥ ∩ K from u is
a minimal blocking set of Q(4, 3), and since it cannot be an ovoid of Q(4, 3), it
must contain at least q2 + q points of Q(4, 3). We obtain q2(q2 + 1) as lower
bound for this number. Using the size of K, we find (q3 + q − 1)q = q4 + q2 − q
as upper bound, hence, q2(q2 + 1) 6 q4 + q2 − q, a contradiction. �

Corollary 2 Every generator π of Q(6, q = 3) intersects K in 1 point, or in 3
or 4 collinear points.
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Proof. Since there are no 2-secants to K, 2 points of K in π give rise to 3 or 4
collinear points of K in π. If there would be 3 points of K spanning π, then π
would contain at least 7 points of K, a contradiction with Lemma 5. �

Lemma 8 Suppose that L is a line of Q(6, 3) meeting K in 3 or 4 points.
Suppose that π is a generator of Q(6, 3) on L, then L∩K = π∩K, and |r⊥∩K| 6
q2 + q + 1 for every r ∈ π \ L.

Proof. Let r0 be one of the points of K∩π. Suppose that r ∈ π\L. Then there
exists a generator π′ of Q(6, 3) through r meeting K only in r0. The q2− q lines
of π′ not through r0 or r lie in q generators of Q(6, 3) different from π′. Hence,
at least q3 − q2 points of K lie outside r⊥, and so, |r⊥ ∩ K| 6 q2 + q + 1. �

Lemma 9 Suppose that L is a 3-secant to K, then the point r ∈ L \K only lies
on 3-secants to K and K = r∗O, O an ovoid of Q(4, 3), with Q(4, 3) the base of
the cone r⊥ ∩Q(6, 3).

Proof. Put K ∩ L = {r1, r2, r3} and r ∈ L \ K. Since |(r⊥1 ∪ r⊥2 ∪ r⊥3 ) ∩ K| 6
3 + 1 + 1 + 1, necessarily |r⊥ ∩ K| > q3 + q + 1 − 6 = q3 − 2 > q2 + q + 1, so,
using the proof of Lemma 8, r does not lie in a generator with 1 point of K, so r
only lies in generators containing at least 3 points of K. Moreover, these 3 or 4
points are collinear with r by Corollary 2 and Lemma 8. If r projects the points
of r⊥ ∩ K onto an ovoid of Q(4, 3), then |K| = q(q2 + 1); else |K| > q(q2 + 2).
Since |K| 6 q3 + q+ 1, necessarily K = r∗O, O an ovoid of Q(4, 3), with Q(4, 3)
the base of the cone r⊥ ∩Q(6, 3). �

Theorem 10 A minimal blocking set K of size |K| 6 q3+q+1, q = 3, of Q(6, 3)
is an ovoid O or a truncated cone r∗O, O an elliptic quadric Q−(3, 3) ⊆ Q(4, 3),
with Q(4, 3) the base of the cone r⊥∩Q(6, 3). In particular, there does not exist
a minimal blocking set of size q3 + q + 1 on Q(6, 3).

Proof. Assume that K is not an ovoid of Q(6, 3), then a line of Q(6, 3) is either
a 1-, 3-, or 4-secant to K. By Lemma 9, we can assume that there is no 3-secant
to K. So a line of Q(6, 3) containing at least 2 points of K contains 4 points
of K. Suppose that L is a 4-secant to K. By Lemma 5, we find that |K| 6 4,
since a point of Q(6, 3) \ L is perpendicular to at least one point of L. But
|K| > q3 + 1, a contradiction. �

4 Small minimal blocking sets of Q(2n, 3)

Consider the parabolic quadric Q(2n, q = 3), n > 4. For this section, we assume
that the following hypothesis is true for Q(2k, 3), k = 3, . . . , n− 1.

The minimal blocking sets of size at most qk + qk−2 + 1 in Q(2k, q = 3)
are truncated cones π∗k−4O, π⊥k−4 ∩ Q(2k, q = 3) = πk−4Q(6, q = 3), O an
ovoid of Q(6, q = 3); and truncated cones π∗k−3Q−(3, q = 3), π⊥k−3 ∩ Q(2k, q =
3) = πk−3Q−(3, q = 3), πi an i-dimensional subspace contained in Q(2k, q = 3).
These examples have respectively size qk + qk−3 and qk + qk−2. This hypothesis
is true for n = 4.

Suppose for this section that K is a minimal blocking set of size at most
qn + qn−2 + 1 of Q(2n, q = 3), n > 4. Since the smallest minimal blocking
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sets of Q(2n, q = 3), n > 4, of size qn + qn−3, are already classified [5], we also
assume that |K| > qn + qn−3 + 1.

The next two lemmas are generalizations of Lemma 5 and Lemma 6. They
can be proven by using techniques of proofs of [5].

Lemma 10 For every point r ∈ K, |r⊥ ∩ K| 6 qn−2 + 1.

Lemma 11 Consider a point r ∈ Q(2n, q) \ K, then the points of r⊥ ∩ K are
projected from r onto a minimal blocking set Kr of Q(2n−2, q), with Q(2n−2, q)
the base of the cone r⊥ ∩Q(2n, q).

Lemma 12 No generator πn−1 of Q(2n, q = 3) intersects K in exactly 2 points.

Proof. Suppose that for some generator πn−1 of Q(2n, q), |πn−1∩K| = 2, where
the two points of πn−1 ∩ K lie on the line L. Count the number of pairs (u, v),
u ∈ πn−1\L, u ∈ v⊥, v ∈ K\πn−1. Since no minimal blocking set of size at most
qn−1 +qn−3 +1 of Q(2n−2, q) has a 2-secant, we find |u⊥∩K| > qn−1 +qn−3 +2.
Hence, the lower bound on the number of pairs is (qn−1 + . . .+q2)(qn−1 +qn−3).
As upper bound, we find (qn + qn−2 − 1)(qn−2 + . . . + q). Necessarily (qn−1 +
. . .+q2)(qn−1+qn−3) 6 (qn+qn−2−1)(qn−2+. . .+q) 6 (qn−1+. . .+q2)(qn−1+
qn−3)− (qn−2 + . . .+ q), a contradiction. �

Corollary 3 No line L of Q(2n, 3) intersects K in exactly 2 points.

Proof. Suppose that L is a 2-secant to K. By the minimality of K and
Lemma 10, there exists a generator πn−1 on L such that L ∩ K = πn−1 ∩ K, a
contradiction. � .

Lemma 13 Suppose that πn−1 is a generator of Q(2n, q) such that |πn−1∩K| =
1. For every r ∈ πn−1 \ K, we have that |r⊥ ∩ K| 6 qn−1 + qn−2 + 1.

Proof. Denote the unique point in πn−1∩K by s. The qn−1−qn−2 hyperplanes
of πn−1, not through r or s, all lie in q generators, different from πn−1, all
containing at least one point of K. So at least (qn−1 − qn−2)q points lie in
K \ r⊥; so |r⊥ ∩ K| 6 qn−1 + qn−2 + 1. �

Lemma 14 Suppose that r 6∈ K, and suppose that L is a line of Q(2n, 3) through
r such that |L ∩ K| = 1. Then |r⊥ ∩ K| 6 qn−1 + qn−2 + 1.

Proof. Consider a generator through the line 〈r, s〉, s ∈ L∩K, only containing
the point s ∈ K. Such a generator exists; or else |s⊥ ∩ K| > qn−2 + 2. The
preceding lemma proves the assertion. � .

Lemma 15 There does not exist a line of Q(2n, 3) intersecting K in 4 points.

Proof. Suppose that L is a line of Q(2n, 3) meeting K in 4 points. By
Lemma 10, we find that |K| 6 4(qn−2 + 1) = (q + 1)(qn−2 + 1) = qn−1 +
qn−2 + q + 1 < qn + 1, a contradiction. �

Theorem 11 The minimal blocking sets of Q(2n, q = 3), n > 3, of size at most
qn + qn−2 + 1, are truncated cones π∗n−4O, π⊥n−4 ∩Q(2n, q = 3) = πn−4Q(6, q =
3), O an ovoid of Q(6, 3), and π∗n−3Q−(3, q = 3), π⊥n−3 ∩ Q(2n, q = 3) =
πn−3Q(4, q = 3), Q−(3, q = 3) ⊆ Q(4, q = 3). Furthermore, a minimal blocking
set of size qn + qn−2 + 1 of Q(2n, q = 3) does not exist.
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Proof. Suppose that L is a line of Q(2n, 3), which also is a 3-secant to K.
Put L ∩ K = {r1, r2, r3} and r ∈ L \ K. Then |(r⊥1 ∪ r⊥2 ∪ r⊥3 ) ∩ K| 6 qn−2 +
1 + 2(qn−2 − 2) 6 qn−1 − 3. So |r⊥ ∩ K| > qn + qn−3 + 1 − (qn−1 − 3) =
2qn−1 + qn−3 + 4 > qn−1 + qn−2 + 1. So every generator through r meets K
in at least 3 points, hence |r⊥ ∩ K| > 3(qn−1 + 1). The projection of r⊥ ∩ K
from r contains at least qn−1 + qn−4 points; so since r lies on 3-secants to
the projected points, necessarily |r⊥ ∩ K| > 3(qn−1 + qn−4), by the induction
hypothesis. The induction hypothesis implies also that r⊥∩K is projected onto a
truncated cone π∗n−5O, O an ovoid of Q(6, q), or a truncated cone π∗n−4Q−(3, q),
since the projection of K ∩ r⊥ must be a minimal blocking set of the base
Q(2n − 2, 3) of the cone r⊥ ∩ Q(2n, 3). It follows that |r⊥ ∩ K| = qn + qn−3

or, respectively, qn + qn−2. Hence, r⊥ ∩ K contains a truncated cone π∗n−4O,
π⊥n−4 ∩ Q(2n, q = 3) = πn−4Q(6, q), O an ovoid of Q(6, q), or, respectively
a truncated cone π∗n−3Q−(3, q). Since these structures are minimal blocking
sets of Q(2n, q = 3), we conclude that K is necessarily equal to one of these
structures. �
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