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Preface to the second edition
No matter how many improvements one makes to a document, it seems that there always
remain more that could still be made. At least this seems to be true of myself, and so it
is that despite all my efforts to make a thesis that was just right, since its submission to
the university I have felt the irresistible desire to make some modifications.

Most noticably, there are two new sections, both called “Remarks” and appearing at
the ends of Chapters 3 and 4. These both contain additional material that has arisen
since the thesis was originally completed, but nonetheless seem to belong here as they
nicely round off a couple of jagged edges that existed before.

Next, there were two places in particular where I personally felt a little dissatisfied
with the explanations that I had originally given, namely a part of the description of
the triality from which H(q) is constructed, and the determination of the compatibility
conditions for line reguli. These have experienced substantial rewriting. The only other
changes have been minor corrections.

For the purposes of cross-referencing, it is perhaps important for me to remark what
has not changed. While page numbers, and to a smaller extent equation numbers, are
different from those in the original submitted thesis, the numbers of chapters, sections,
theorems and other theorem-like environments have remained unaffected. However, this
does not apply, of course, to those that appear within the new “Remarks” sections.

Finally, I would like to thank my examiners, not only for examining the thesis, but
also for the valuable comments that they passed on to me in their reports.
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Preface

The geometries known as generalized polygons were introduced in the celebrated work
of Tits [Tit59]. From there comes the focus of this thesis—the classical generalized
hexagon H(q), known as the split Cayley hexagon, which is taken here to be defined over
a finite field.

Spreads and ovoids of H(q) are sets of lines and points, respectively, with certain prop-
erties that essentially amount to saying that the elements of the set are, in some sense,
scattered evenly over the entire geometry and yet are still quite well spaced out. Anal-
ogous objects in projective spaces and polar spaces, including generalized quadrangles,
have long attracted interest and study, as they still do.

When attempting a study of structures of some type, like spreads and ovoids, one
reasonably natural way to commence is to initially restrict one’s attention to those that
are reasonably symmetric—that is, ones with a lot of automorphisms—and so Bloemen,
Thas and Van Maldeghem [BTVM98] introduced the notion of translation spreads and
ovoids. These are the objects investigated in this thesis.

In Chapter 1, the concepts and results that are necessary for the rest of the work
are provided. After an overview of some background material concerning finite fields and
geometries, structures called m-systems are discussed and a characterization of 1-systems
of the parabolic quadric P6 that lie in a hyperplane of PG(6, q) is given. Next, the
largest part of the chapter introduces the split Cayley hexagon H(q) itself, its geometry,
its coordinatization and its morphisms.

Chapter 2 introduces spreads and ovoids of generalized 2m-gons and then the attention
turns to H(q). Spreads and ovoids of H(q) are given coordinate representations and
then known ones are described. In particular, all the known spreads and ovoids with
the property of being locally hermitian appear—a property that turns out to be closely
related to being translation ([BTVM98]).

The main results and investigations of this thesis appear in Chapter 3, where trans-
lation spreads and ovoids of H(q) are defined. Almost immediately, translation ovoids
are shown to exist only when H(q) is self-dual, so spreads become the primary concern.
In the paper [BTVM98], some general properties of translation spreads of H(q) were
proved, and this chapter extends on them, motivated by their analogy (dual in nature)
with translation ovoids of Q(4, q). In particular, spreads translation with respect to a line
are shown to be characterized by the existence of an appropriate automorphism group
that fixes one line and acts regularly on the rest, and as a consequence, the functions
in the coordinate representation of such a spread are given by linearized polynomials.
Then translation spreads with respect to a line are considered further, leading to their
classification for q = 3h, as well as the classification of those, for odd q, that have all
the underlying field GF (q) as their kernel. The final section of this chapter classifies the
spreads of H(q) that are translation with respect to two disjoint flags.

Finally, Chapter 4 aims to make connections with the generalized quadrangle W (q)
and its dual Q(4, q). The construction of W (q) is described in a manner parallel to
that of H(q) in order to highlight the analogy that exists between them, as well as
to hopefully make the generalized hexagon H(q) a little easier to imagine. As some
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PREFACE

of the work in the previous chapters has its motivation in this analogy, this is made
explicit here with comparable results concerning translation ovoids of Q(4, q) being quoted
from [BTVM98]. Finally, ovoids of Q(4, q) obtained from spreads of H(q) are considered,
and the semiclassical spreads of [BTVM98] arise as translation spreads with the entire
underlying field GF (q) as kernel.
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Chapter 1

Introduction

In this chapter we give definitions, introduce notations and overview some results fun-
damental to the rest of the work. The reader is assumed to be familiar with finite fields
and with projective spaces defined over them. Thorough references for these are the
books [LN97] and [Hir98], respectively.

1.1 Finite fields

While a general familiarity with finite fields is assumed, here we will overview some of
the more significant definitions and results that will be needed later.

The finite field, or Galois field, with q = ph elements, p a prime, is denoted GF (q).
The subfield GF (p) of GF (q) is the prime field and GF (q) can be considered as an h
dimensional vector space over it. For an element a ∈ GF (q), the trace of a is given by

Tr(a) = a + ap + ap2
+ · · ·+ aph−1

.

This is a linear functional from GF (q) onto its prime field.
At times, we will be concerned with when some quadratic polynomial defined

over GF (q) is irreducible. This is covered by the following theorem. Notice that we
shall be using the symbol /� to represent an arbitrary nonsquare element in a field.

Theorem 1.1 (see [Hir98, Section 1.4])
Let f(x) = ax2 + bx + c, a 6= 0, be a quadratic polynomial defined over GF (q). If q is
odd then f is irreducible if and only if the discriminant ∆ is a nonsquare; that is,

∆ = b2 − 4ac = /�.

If q is even then f is irreducible if and only if b 6= 0 and the S-invariant has trace 1;
that is,

Tr
(ac

b2

)

= 1.

�

A consequence of this theorem is the following.
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CHAPTER 1. INTRODUCTION

Corollary 1.2
The quadratic polynomial x2−x+1 in GF (q) is irreducible if and only if q ≡ 2 (mod 3).

Proof For odd q, by the previous theorem the given quadratic is irreducible if and
only if the discriminant ∆ = −3 is a nonsquare. This occurs precisely when h is odd
and −3 is a nonsquare in the prime field GF (p) (see, for example, the discussion at
the beginning of [IR90, Section 11.3]). Now from the quadratic reciprocity theorem
(see [IR90, Theorem 1, Section 5.2]), this is equivalent to the condition that h is odd and
p ≡ 2 (mod 3), or simply, that q ≡ 2 (mod 3).

For even q, the given quadratic is irreducible precisely when Tr(1) = 1. This corre-
sponds to the exponent h being odd (see [Rom95, Theorem 7.1.3]), and this in turn is
equivalent to q ≡ 2 (mod 3). �

The following lemma proves to be useful from time to time.

Lemma 1.3 (see [BTVM98, Lemma 29])
Let f(X) be a degree 4 polynomial over GF (q), with q odd, such that f(x) is a nonsquare
for all x ∈ GF (q). Then f(X) = γg(X)2 for some nonsquare γ ∈ GF (q) and some monic
irreducible quadratic g(X).

Proof Since f(x) takes only nonsquare values, in particular it is never zero, so f(X)
has no linear factor over GF (q). Thus f(X) has either two or four distinct roots in its
splitting field. In the latter case, the curve y2 = f(x) is an elliptic curve (by [NZM91,
Section 5.9], the genus is b(4− 1)/2c = 1) with no solutions in GF (q). By the Hasse-Weil
Theorem (see [HT91, Corollary 2.27]), we then have q + 1 ≤ 2

√
q, which is impossible.

Thus f(X) has two distinct roots in the splitting field so f(X) = γg(X)2 for some
nonzero γ ∈ GF (q) and some monic irreducible quadratic g(X). Finally, since f(x) takes
only nonsquare values, it follows that γ is a nonsquare. �

A linearized polynomial over GF (q) is a polynomial f(x) defined over GF (q) that
has the form

∑m
i=0 αixpi, for some m (see [LN97, Chapter 3, Section 4]). Since for each

polynomial over GF (q) there is a unique polynomial of degree less than q to which it
is equivalent as a function, and here we have xph+i = xpi, each linearized polynomial is
equivalent to a unique linearized polynomial in standard form, which is given by

f(x) =
h−1
∑

i=0

αixpi
,

where the coefficients αi are in GF (q). Since a linearized polynomial is a linear combi-
nation of the field automorphisms x 7→ xpi and the prime field is fixed by each of these,
such a polynomial induces a linear transformation of GF (q) considered as a vector space
over GF (p); that is, a linear operator on GF (q) over GF (p). The converse also holds, so
we have the following theorem.
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1.2. GEOMETRY

Theorem 1.4 (see [Rom95, Theorems 9.4.1 and 9.4.4])
Let f(x) be a linearized polynomial over GF (q). Then the function induced by f(x)
is a linear operator on GF (q) over GF (p). Conversely, every linear operator on GF (q)
over GF (p) can be represented by a unique linearized polynomial in standard form. �

While having a linearized polynomial means that we have a significant restriction on
the exponents that occur in the terms of the polynomial, there is another result that we
will want to use that will enable us to restrict matters considerably further. This result
originates in a paper of Carlitz ([Car60]) but generalizations and related results soon
followed (see for instance [Car62], [McC63], [Gru81] and [Len90]). The form of the result
stated here is essentially that of [Car62].

Theorem 1.5 (Carlitz [Car62])
Let χ be the multiplicative character of order two on GF (q), where q = ph with p an
odd prime, so χ(x) = 1 if x is a square and χ(x) = −1 if x is a nonsquare. Let f be a
function in GF (q) such that, for a fixed choice of e = ±1,

χ
(

f(x)− f(y)
)

= eχ(x− y)

whenever x 6= y. Then f(x) = axpt + b for some t in the range 0 ≤ t < h, and where
a, b ∈ GF (q) with χ(a) = e. �

1.2 Geometry

In this section we define what we shall mean by geometries and some of the various maps
that can exist on and between them. Then some of the more specific types of geometries
that we will encounter are overviewed and related terminology is introduced. Familiarity
with the theory of projective spaces is assumed; necessary information concerning these
can be found in [Hir98].

1.2.1 Geometries and their maps

A geometry Γ is a set, whose elements are the elements of the geometry, together with
an antireflexive symmetric binary relation I on Γ, called the incidence relation, and
an ordered partition Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γr of Γ into nonempty type sets. Elements
are said to be of the same type precisely when they belong to the same type set. The
incidence relation I satisfies the property that no two elements of the same type are
incident; that is, if x, y ∈ Γi then x6 I y (hence the antireflexivity). We will sometimes
write Γ = (Γ1, . . . , Γr, I), or just Γ = (Γ1, . . . , Γr) when the incidence relation is clear.
The number r of different types of elements is called the rank of the geometry. Also, the
geometry is said to be finite if the set Γ is finite.

Incidence between elements is expressed with a variety of phrases such as “is on”,
“passes through”, “is contained in”, and so on. The context will keep matters clear so no
confusion shall arise. Two elements x and y of Γ of the same type that are incident with
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CHAPTER 1. INTRODUCTION

a common element z are said to be coincident with z. If x and y are of a type called
“points” and z is of a type called “lines” then the nomenclature is often emphasized by
saying that x and y are collinear. Similarly, if x and y are lines and z is a point then x
and y are concurrent. Finally, when x and y are two elements of Γ for which there is
a unique element of a specified type that is incident with both of them, we refer to this
element as the element xy of that type.

Let Γ = (Γ1, . . . , Γr, I) and Σ = (Σ1, . . . , Σt, I′) be two geometries. A map, or a
morphism, between them is a function Φ : Γ → Σ that preserves incidence and maps
elements of the same type to elements of the same type; that is, IΦ ⊆ I′ and for each i,
ΓiΦ ⊆ Σj for some j.

Now suppose Γ and Σ have the same rank r. An isomorphism between them is a
bijective morphism Φ : Γ → Σ that preserves the order of the type sets, so ΓiΦ = Σi,
and whose inverse Φ−1 : Σ → Γ is also a morphism of geometries. When an isomorphism
exists, we say that the geometries are isomorphic and we write Γ ∼= Σ. When Γ has a
type called “lines” that is mapped to a type in Σ also called “lines”, an isomorphism is also
called a collineation to emphasize the fact that the property of collinearity is preserved.
When Γ = Σ, an isomorphism is also called an automorphism. Under composition,
the set of all automorphisms of a geometry Γ forms a group, Aut(Γ), called the full
automorphism group of Γ. A subgroup of the full automorphism group is then just
termed an automorphism group. An automorphism of order two is an involution.

An anti-isomorphism is a bijective morphism Φ : Γ → Σ that does not preserve the
order of the type sets, so ΓiΦ = Σiσ for some nontrivial permutation σ of the set {1, . . . , r},
and whose inverse is also a morphism. If the permutation σ has order two then Φ is called
a correlation, or a duality. When a correlation exists, we say that the geometries are
dual. When Γ = Σ, an anti-isomorphism Φ is also called an anti-automorphism. In
this instance, an absolute element is an element x of Γ that is incident with its image
under Φ; that is, such that x I xΦ. If there is a correlation from Γ to itself then we say
that Γ is self-dual. A correlation from Γ to itself that has order two is called a polarity,
and when such a map exists, the geometry Γ is said to be self-polar.

An incidence structure is a rank 2 geometry Γ = (P,L, I). The choice of letters for
the sets here reflects the fact that the two types are usually called “points” and “lines”,
as we shall do unless otherwise explicitly stated. Also, a line in L is often identified with
the set of points in P that are incident with it. With this identification, incidence is then
given by inclusion. A flag is a pair of elements {x, y} in Γ with x I y. If there is a pair
of integers (s, t) such that each line x ∈ L is incident with exactly s + 1 points and each
point y ∈ P is incident with exactly t + 1 lines, then the incidence structure Γ is said to
have order (s, t). If s = t then we just say that Γ has order s.

For any given incidence structure Γ = (P,L, I), there is a unique incidence structure
up to isomorphism that is dual to Γ, namely ΓD = (L,P, I), so the points of one are
the lines of the other, and vice versa. This incidence structure ΓD is called the dual
of Γ. Any statement that pertains to Γ has an equivalent form relating to ΓD obtained
by swapping references to points and lines. This new statement is called the dual of the
original. When Γ is self-dual, so Γ ∼= ΓD, the dual of any statement about Γ is another
statement that also pertains to Γ. This is the principle of duality.
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1.2. GEOMETRY

1.2.2 Graphs

A graph G is an incidence structure (V,E) in which every element e ∈ E is incident
with exactly two elements1 u, v ∈ V , which in turn uniquely determine the edge e. Thus
we can consider E as being a set of unordered pairs from V . The elements of V are
called vertices and the elements of E are called edges. Two vertices, u and v, that are
coincident with a common edge are said to be adjacent and we write u ∼ v.

Graphs are intimately connected with antireflexive symmetric binary relations. In-
deed, the adjacency relation “∼” is such a relation on V , and conversely, given an an-
tireflexive symmetric binary relation ρ on a set V we obtain a graph (V, E) by taking E
to be the set of unordered pairs {x, y} with xρy. In particular, if Γ is a geometry then
its incidence relation gives rise to a graph G with Γ as vertex set. This graph is called
the incidence graph of Γ. Due to the close relationship between an incidence graph G
and its corresponding geometry Γ, we often identify the two structures and so, where no
confusion shall arise, we use the following terminology and notation as freely within the
context of geometries as within that of graphs where they are explicitly defined.

In a graph, a walk is a sequence v0, v1, . . . , vn of vertices in which the vertices of each
successive pair, vi, vi+1, 0 ≤ i < n, are adjacent. Since this walk starts at the vertex v0

and ends at vn, we call this a v0–vn walk and we say that the length of the walk is n
as it has passed along n edges. A path is a walk in which no vertex is repeated and a
cycle is a walk of length at least 3 in which v0 = vn but no other repetition of vertices
occurs. A graph G is said to be connected if there exists a u–v walk for every pair of
vertices u, v in G. In the following sections it will always be assumed that our graphs,
and so our geometries, are connected.

For a pair of vertices u, v in a graph G, the distance d(u, v) between them is the
length of the shortest u–v path. Notice that if w ∼ u then |d(w, v)− d(u, v)| ≤ 1. In
addition, if G is the incidence graph of an incidence structure then d(u, v) is even or odd
according to whether u and v are of the same type or not.2 The diameter of a graph G
is the greatest distance between two of its vertices. The girth of G is the length of the
shortest cycle in G. If no cycles exist then the girth is considered to be infinite.

If there is a u–v path of length d then certainly d(u, v) ≤ d. However, when d is
sufficiently small we can be sure of equality here. This is something that we will use
implicitly quite frequently so we state it here precisely in the form of a lemma.

Lemma 1.6
Let G be a graph with girth g and let u and v be two vertices of G for which there is a
u–v path γ of length d ≤ g/2. Then d(u, v) = d. Furthermore, if d < g/2 then γ is the
unique minimum length u–v path.

Proof Suppose d ≤ g/2 and let δ be another u–v path, this one with length e ≤ d.
Together with all or part of γ, this gives a cycle no longer than d+ e ≤ 2d ≤ g. Since g is
the length of the minimum cycle in G it follows that d = e = g/2. Notice that if d < g/2
then this is a contradiction, so the path γ is unique. Either way, we see that there are
no u–v paths δ shorter than γ so d(u, v) = d. �

1Notice that our graphs consequently never contain loops; that is, they are simple graphs.
2The graph G is a bipartite graph.
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CHAPTER 1. INTRODUCTION

Let u be a vertex of the graph G = (V, E). For an integer i, the sphere with centre u
and radius i is the set

Gi(u) = {v ∈ V | d(u, v) = i}
of vertices of G that are at distance i from u. When G is the incidence graph of a
geometry Γ, we also write Γi(u) for the set Gi(u). Notice that if Γ is an incidence
structure with order (s, t), then |Γ1(u)| = s + 1 or t + 1 for each u ∈ L or P, respectively.

For two vertices u and v of G, with d(u, v) = d, and an integer 0 ≤ i ≤ d, the
distance-i trace of v onto u is the set

uv
[i] = Gi(u) ∩Gd−i(v)

of vertices w of G at distance i from u such that w is on some minimum length u–v path.
The elements of the set uv

[i] are called distance-i projections of v onto u. When there
is a unique minimum length u–v path, say u = u0, u1, . . . , ud = v, the set uv

[i] consists of
only the single element ui, and we denote this unique distance-i projection of v onto u
by v .i u = ui. When i = 1, we just call the element u1 the projection of v onto u and
we write v . u.

1.2.3 Generalized polygons

Let Γ = (P,L, I) be an incidence structure. A cycle of length 2k in Γ is called an
(ordinary) k-gon as it is a cycle with k points and k lines. The geometry Γ is then a
generalized n-gon, or generalized polygon, if the following axioms are satisfied:

(i) Γ contains no ordinary k-gon for 2 ≤ k < n.

(ii) Given any two elements u, v ∈ Γ, there is an ordinary n-gon Σ containing them.

(iii) There is an ordinary (n + 1)-gon in Γ.

Equivalently, the incidence graph of Γ is a connected graph that has diameter n and
girth 2n and is such that each vertex is on at least three edges [VM98, Lemma 1.3.6].
If we exclude the axiom (iii), or equivalently, allow that vertices in the incidence graph
may be on only two edges, then any resulting incidence structure is a weak generalized
polygon. An ordinary n-gon in a (weak) generalized n-gon is called an apartment. We
will say that an apartment is ordered if there is a specific order placed on its elements.
Generalized polygons are a generalization of projective planes, which are generalized
triangles, and they were introduced in [Tit59, §11]. For a thorough introduction to
generalized polygons, see [VM98, Chapter 1].

Let Γ be a finite generalized n-gon. It is a theorem of Feit and Higman [FH64] that
then n = 3, 4, 6 or 8. Also, by [VM98, Corollary 1.5.3], Γ has an order (s, t) with s, t ≥ 2.
We will be primarily concerned with generalized hexagons, and occasionally generalized
quadrangles, for which s = t, so for the sake of brevity we will specialize statements
and results about generalized polygons to these instances. For more general information
concerning generalized polygons, consult the reference [VM98].

In view of previous remarks, it is assumed for the rest of this section that Γ is a finite
generalized n-gon of order s, where n = 4 or 6.
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1.2. GEOMETRY

Let u, v ∈ Γ be two distinct elements and let d = d(u, v). Then d ≤ n, the diameter
of the incidence graph. When d < n, by Lemma 1.6 there is a unique minimum length
u–v path and so, for each i = 0, . . . , d, the distance-i projection v .i u is defined. In
particular, there is the projection v . u which is the unique element incident with u at
distance d− 1 from v; for each of the other elements w I u we have d(w, v) = d + 1.

If on the other hand d(u, v) = n, then the elements u and v are said to be opposite
and, since n is even, the elements u and v are either both points or both lines. In
either case, for each element w I u we have d(w, v) = n − 1. Furthermore, through
each of these elements w I u there is exactly one minimum length u–v path, hence there
are precisely s + 1 minimum length u–v paths in all and the distance-i traces uv

[i], with
0 < i < n, all have size

∣

∣uv
[i]

∣

∣ = s + 1.
Let γ be a length n − 2 path u0, . . . , un−2. A collineation g of Γ that fixes each of

the elements of γ elementwise—that is, the lines are fixed pointwise and the points are
fixed linewise—is called an elation corresponding to the path γ, or a γ-elation. If the
initial and final elements, u0 and un−2, of the path γ are points then we may also say
that g is a point elation. Similarly, if u0 and un−2 are lines then g is a line elation.
Let u 6= u1 be an element incident with u0 and let S = {v I u | v 6= u0} be the set of
elements incident with u but distinct from u0. Then by [VM98, Proposition 4.4.3], the
set E(γ) of γ-elations is a group, called a root group, which acts semiregularly on the
set S (this actually follows from the forthcoming Lemma 1.7). If in addition the root
group E(γ) acts transitively, and therefore regularly, on S then the path γ is called a
Moufang path. If every path of length n − 2 is a Moufang path then the generalized
polygon Γ is called a Moufang polygon.

The generalized polygon Γ is a Tits polygon if it has an automorphism group that
acts transitively on ordered apartments. By [VM98, 5.2.9] and [BVM94], the finite gen-
eralized polygon Γ is a Tits polygon if and only if it is a Moufang polygon.

Now let u and v be two opposite elements of Γ. A collineation g that fixes both
of these elements elementwise, or equivalently, fixes all apartments containing these two
elements, is called a homology for the elements u and v.

Finally, for future reference we state the following result concerning collineations of a
generalized n-gon.

Lemma 1.7 ([VM98, Theorem 4.4.2(v)–(vi)])
Let Σ an apartment in a generalized n-gon Γ and let u and v be two elements of Σ
with d(u, v) coprime to n. Let g be a collineation of Γ fixing Σ. If g also fixes the
elements u and v elementwise then g is the identity. (See Figure 1.1 for an illustration.)

�

OR OR OR
n=4 n=6

=⇒ g = 1

Figure 1.1: A collineation fixing so much must be the identity (Lemma 1.7).
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CHAPTER 1. INTRODUCTION

1.2.4 Quadrics

This section reviews some of the essentials concerning quadrics in a projective
space PG(n, q). For comprehensive details, see the references [Hir98] and [HT91]. In
the following, the notation Πi always represents an i-dimensional subspace of PG(n, q).

A quadric Qn of PG(n, q) is the set of points x = (x0, . . . , xn) that satisfy f(x) = 0,
where f is a quadratic form f(x) =

∑

0≤i,j≤n aijxixj. If f is not projectively equivalent
to (that is, cannot be changed by a linear transformation into) a form in fewer than n+1
variables, then the form f and the quadricQn are said to be nondegenerate. Otherwise,
they are degenerate and Qn is a cone Πn−k−1Qk, for some k < n, which is comprised
of the following: the points of the subspace Πn−k−1, called the vertex; the points of Qk,
which is a nondegenerate quadric in some Πk disjoint from Πn−k−1; and all the points on
lines that join points of Πn−k−1 to points of Qk.

When n is even, all nondegenerate quadrics Qn are projectively equivalent and they
are called parabolic quadrics, which we denote by Pn. In the case that n = 2, a
parabolic quadric P2 is also called a conic. When n is odd, there are exactly two classes
of projectively equivalent nondegenerate quadrics, those that we call hyperbolic quadrics
and denote by Hn, and those that we call elliptic quadrics and denote by En. Canonical
forms for f that give representatives for each of these classes are:

Pn : x2
0 + x1x2 + · · ·+ xn−1xn,

Hn : x0x1 + x2x3 + · · ·+ xn−1xn,
En : g(x0, x1) + x2x3 + · · ·+ xn−1xn,

where g is an irreducible quadratic form (cf. Theorem 1.1).
Let Qn be a nondegenerate quadric with corresponding form f . The bilinear form b

associated with Qn (or f) is given by b(x, y) = f(x + y)− f(x)− f(y). Two points x
and y of PG(n, q) such that b(x, y) = 0 are said to be conjugate with respect to Qn.
If x is such that b(x, x) = 0 then x is self-conjugate. In particular, the points of Qn

are all self-conjugate. A totally isotropic space is a subspace Πk wholly contained in
the quadric, so f(x) = 0 and b(x, y) = 0 for all x, y ∈ Πk. The bilinear form b describes
the geometry of the quadric in the sense that two points on Qn are collinear in Qn if and
only if they are conjugate (see [HT91, Lemma 22.3.1]).

For a point x of PG(n, q), the perp of x with respect to Qn is the set x⊥ =
{y | b(x, y) = 0} of points that are conjugate to x. When, and only when, n and q
are both even, there is a unique point N , called the nucleus, such that N⊥ is the entire
space PG(n, q) (see [HT91, Section 22.3, Corollary 2]). For any other point x, its perp x⊥

is a hyperplane, and when x ∈ Qn this hyperplane is the tangent prime to Qn at x.
For a subspace X = Πk, its perp is the intersection X⊥ =

⋂

x∈X x⊥ of the perps of
the points in X. So long as X does not contain the nucleus (when a nucleus exists), the
perp X⊥ is a subspace Πn−k−1 of dimension n− k− 1. If X is totally isotropic, then X⊥

is the tangent space to Qn at X and X⊥ ∩ Qn is a cone XQn−2k−2, where Qn−2k−2 is
the same type (parabolic, elliptic or hyperbolic) as Qn (see [HT91, Lemma 22.4.5]).

When n and q are not both even, the map X 7→ X⊥ is a polarity of PG(n, q)
(see [HT91, Theorem 22.3.3]).
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1.3. m-SYSTEMS

WhenQn is P2r, E2r+1 orH2r−1, the largest totally isotropic spaces are subspaces Πr−1

of dimension r − 1. These subspaces Πr−1 are the generators of Qn. The geometry of
all totally isotropic spaces on Qn is then a rank r polar space.3 In particular, if x ∈ Qn

is a point and Πr−1 is a generator not containing x, then there is a unique generator Π′
r−1

such that x ∈ Π′
r−1 and the intersection Πr−1 ∩ Π′

r−1 has dimension r − 2. Furthermore,
given a Πr−2 on such a Qn, there are exactly 2, q+1 or q2 +1 generators containing Πr−2,
depending upon whether Qn is hyperbolic, parabolic or elliptic, respectively.

Consider a nondegenerate hyperbolic quadric H2r−1. It has already been noted that
there are exactly two generators on any given Πr−2, but further, the full set of generators
divides into exactly two equivalence classes, where two generators Πr−1 and Π′

r−1 are
considered to be equivalent if the dimension k of their intersection Πr−1 ∩Π′

r−1 = Πk has
the same parity as their own dimension r− 1 (see [HT91, Theorem 22.4.12]). In the case
when r = 2, each equivalence class of lines on H3 is called a regulus and each is the
opposite regulus of the other (see [Hir85, Section 15.1]).

The numbers of points and generators on a nondegenerate quadric are given by [HT91,
Theorems 22.4.6 and 22.5.1]. Specifically, the numbers of points on the nondegenerate
quadrics are

|P2s| = q2s−1 + q2s−2 + · · ·+ q + 1,
|H2s+1| = q2s + · · ·+ qs+1 + 2qs + qs−1 + · · ·+ q + 1,
|E2s+1| = q2s + · · ·+ qs+1 + qs−1 + · · ·+ q + 1,

and the number of generators

on P2s is (q + 1)(q2 + 1) . . . (qs + 1),
on H2s+1 is 2(q + 1)(q2 + 1) . . . (qs + 1),
on E2s+1 is (q2 + 1)(q3 + 1) . . . (qs+1 + 1).

Finally, the number of points on a cone xQk with a point x as vertex is q|Qk|+ 1.

1.3 m-systems

Here we introduce m-systems on quadrics with particular emphasis on those in the
quadric P6 as this is where, as we shall see, the generalized hexagon H(q) lives. The
basic idea behind m-systems is to have a set of m-dimensional spaces that are, in a sense,
spread out apart from each other and all over the quadric. For more details on m-systems,
see the paper [ST94].

Let Q be a nonsingular quadric of rank r ≥ 2. In fact, while it will suffice here to
suppose that Q is a nonsingular quadric, m-systems actually belong in the more general
context of polar spaces (see the footnote 3).

A partial m-system M of Q, with 0 ≤ m < r, is a set {π1, π2, . . . , πk} of totally
isotropic spaces of dimension m such that no generator containing one meets any other.

3The classical reference for polar spaces is [BS74], and a very nice introduction can be found in the
book [Bat97].
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CHAPTER 1. INTRODUCTION

That is, if γ is a generator of Q such that πi ⊆ γ for some element πi of M , then γ∩πj = ∅
for all j 6= i. This is the “spread out” part of the earlier description of where we are
headed.

Upper bounds on the sizes of partial m-systems are found in [ST94], and interestingly,
they are dependent only upon the choice of polar space, not on m. An m-system M is
then defined to be a partial m-system that attains the appropriate upper bound. This
ensures that the elements of M are sufficiently “all over”, as suggested earlier. Thus
when Q is P2n, H2n+1 or E2n−1, an m-system of Q is a partial m-system that contains
|M | = qn + 1 elements.

For a given m-system M , let ˜M =
⋃

π∈M π be the set of points that are incident with
elements of M . Then a generator γ of Q that contains an element π of M meets ˜M in
exactly the (qm+1− 1)/(q− 1) points of π. In general, the number of points in which any
generator γ meets ˜M is independent of the choice of γ.

Theorem 1.8 (Shult and Thas, [ST94])
Let M be an m-system of the nondegenerate quadric Q and let γ be any generator of Q.
Then |γ ∩ ˜M | = (qm+1 − 1)/(q − 1). �

Notice that a 0-system is a set M of points such that every generator of Q contains
exactly one point of M , and an (r − 1)-system is a set of generators that partitions the
set of points of Q. A 0-system is also called an ovoid of Q and an (r − 1)-system is
also called a spread of Q. The concept of m-system is actually a generalization of these
spreads and ovoids.

We will be most interested in the quadric P6, which has rank 3. In addition to ovoids
and spreads, or 0-systems and 2-systems, there are 1-systems, which are sets of lines onP6.
Let Π be a hyperplane in PG(6, q) that meets P6 in a nonsingular elliptic quadric E5.
By [ST94, Theorem 9], any spread of this E5 is also a 1-system of the P6. In this way, we
see that P6 always has 1-systems since the quadric E5 always has spreads [Tha83].

Let M be such a 1-system of P6 that is also a spread of an E5 and so is contained
in a hyperplane Π. Then every generator γ of P6 meets Π, and therefore ˜M , in a set
of q + 1 collinear points. This property characterizes 1-systems of P6 arising this way, as
we demonstrate in our following theorem.

Theorem 1.9
Let M be a 1-system of P6 with the property that for every generator γ of P6, the
intersection γ ∩ ˜M is a line of the quadric. Then M is contained in a hyperplane and so
is a spread of an E5.

Proof Let L be a line on the quadric P6 and let γ be any generator containing L.
Let K = γ ∩ ˜M be the set of points in which γ meets the lines of the 1-system M . By
the given property of M , the set K is a line so L and K are two lines in a common
plane γ. Hence either L = K, in which case we have L ⊆ ˜M , or |L ∩ ˜M | = |L ∩K| = 1.
Thus the set ˜M satisfies the conditions of the theorem of [Pen92] which then asserts that
˜M = Π ∩ P6 for some hyperplane Π. Now the result follows from the fact that the only
hyperplane section of P6 with |˜M | = (q + 1)(q3 + 1) points is an elliptic quadric. �
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1.3. m-SYSTEMS

This characterizes 1-systems of P6 that are spreads of an E5 as those that meet every
generator in q + 1 collinear points. However, we actually only need M to have this
property in relation to a much smaller collection of generators for us to be able to reach
this same conclusion. Before giving this refinement of the previous theorem, we prove
our following lemma.

Lemma 1.10
Let A be a set of points in P4 and let K, L ⊂ A be two nonintersecting lines on the
quadric. Suppose that for each point x ∈ A, the lines K .x and L.x of P4 through x and
concurrent with K and L, respectively, are also contained within A. Then either A = H3

or A = P4.

Proof Since K,L ⊂ A are nonintersecting lines, they generate a 3-dimensional
space Π that meets the P4 in a nondegenerate hyperbolic quadric H3 (use [HT91, The-
orem 22.8.3]). By the given property, all the lines of H3 that meet both K and L are
contained within A as well, so the whole of H3 is contained in A. If there is no point
of A outside of Π then A = H3.

Suppose now that there is a point w ∈ A that is not contained in H3. Let x be any
other point of P4 not in H3. We will show that x is in A as well.

K L

y

x

w
Π′

K1

x.K

w.K

(a) Case x . K 6= w . K

K

L

y

x

w

y.K

w.K

(b) Case x . K = w . K

Figure 1.2: Diagrams for proof of Lemma 1.10.

There are two cases to consider; see Figure 1.2 for diagrams. First suppose the points
x.K and w.K are distinct. Let K1 = K.w be the unique line in P4 on w that meets the
line K. Then by the given property, we have K1 ⊂ A. Since w is not in Π, the lines K1

and L are skew so they also generate a 3-dimensional space Π′ 6= Π that meets P4 in a
nondegenerate hyperbolic quadric H′

3. Since K1 ⊂ A and L ⊂ A, as with H3, the whole
of H′

3 is contained in A. Now the line K . x meets the hyperplane Π′ in a point y, which
is then an element of H′

3 and therefore of A. Since x lies on the line K . x = K . y, it
follows that x ∈ A.

Now suppose x . K = w . K. This is illustrated in Figure 1.2(b). Let y be a point on
the line L . x such that y 6= x and y 6= x . L. Then y . K 6= w . K, since otherwise we
would have a triangle on the points x, y and y . K = w . K = x . K in the generalized
quadrangle P4. So y is a point of the type that we have already considered, and as such,
we have y ∈ A. Since x is on the line L . x = L . y, it now follows that x ∈ A. �
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We are now prepared to prove our promised refinement of Theorem 1.9.

Theorem 1.11
Let M be a 1-system of P6. Suppose there are two lines K and L of M such that for
every generator γ of P6 meeting at least one of them, the intersection γ ∩ ˜M is a line of
the quadric. Then M is contained in a hyperplane and so is a spread of an E5.

Proof Let π be the 3-dimensional space generated by K and L. Then π∩P6 in a non-
degenerate hyperbolic quadric H3 (consider the table of sections in [HT91, Section 22.8]).
By the given property of M , all the points of this H3 belong to ˜M . In addition to K
and L, there are q3 − 1 more lines in M but only (q + 1)(q − 1) more points in H3, so
there is a line N ∈ M that does not meet π. Let Π be the 5-dimensional space generated
by N and π. Suppose there is a generator γ of P6 containing N and contained within Π.
Then γ meets π in a point, which we have already seen belongs to ˜M . Thus γ is a
generator on one element of M meeting another, contrary to M being a 1-system. So
there are no generators of P6 on N contained within Π and we deduce that Π meets P6

in an elliptic quadric E5 (again, see the table in [HT91, Section 22.8]).
Let n be a point on N and let π0 be the 4-dimensional space generated by π and n.

Since π0∩E5 contains the skew lines K and L, it follows that π0 meets E5, and therefore P6,
in a parabolic quadric P4. Let A = ˜M ∩ π0 be the set of points of P4 that are on lines
of M . Then K,L ⊂ A and n ∈ A, so A 6= H3. Consider a point x ∈ A and let L1 = L. x
be the line in P4 through x and intersecting L. Let γ be a generator of P6 on the line L1.
Since γ meets L, its intersection with ˜M is a line. The point x is in ˜M so the line in
which γ meets ˜M is the line L1. Hence L1 ⊂ A. Similarly, the line K . x is contained
in A. Thus the set A satisfies the conditions of Lemma 1.10 so A, and therefore ˜M as
well, contains all the points of P4.

Letting n range over all the points of N shows that all the points of E5 belong to ˜M .
Finally, since |˜M | = |E5| it now follows that ˜M = E5 so M is contained in the hyperplane Π
and it is a spread of E5. �

1.4 The generalized hexagon H(q)

In this section, the generalized hexagon H(q) is described—its construction, some of its
geometric properties and its automorphisms. For the most part, the following and further
details can be found in the book [VM98].

1.4.1 Construction

Here we will describe in reasonable detail the construction due to Tits [Tit59] of the
generalized hexagon H(q) from a triality. The reader who is already familiar with gen-
eralized quadrangles may find it helpful to compare the construction in this section with
the parallel construction of the symplectic quadrangle W (q) described in Section 4.1.

12



1.4. THE GENERALIZED HEXAGON H(q)

To begin, let H7 be the nondegenerate hyperbolic quadric in PG(7, q) given by4

X0X4 + X1X5 + X2X6 −X3X7 = 0. (1.1)

We start by defining a rank 4 geometry Γ = (P (0),P(1),P(2),L, I) embedded in this
quadric.5 Let L be the set of lines onH7 and let P(0) be the set of points on it. By [HT91,
Theorem 22.4.12], the generators of H7, which are 3-dimensional projective subspaces,
fall into two equivalence classes, where two generators x and y are considered to be equiv-
alent if their intersection x ∩ y is empty, a line, or the whole subspace x = y. Let P (1)

and P(2) be these equivalence classes. In this geometry Γ, the elements of the sets P(i) are
called “i-points”, or just “points”, and those of L are “lines”. Incidence between elements
of different types is given by inclusion except between elements of P(1) and P (2), where a
1-point x and a 2-point y are incident if, as projective subspaces, their intersection x∩ y
is a plane.

The number of i-points is the same for each i = 0, 1, 2, and since the 0-points, as
points of PG(7, q), already have a natural labelling with homogeneous coordinates, we
can label the elements of P(1) and P(2) with similar coordinates. This is done in such a
way that incidence between points of different types is given by the trilinear form6

T (x, y, z) =

∣

∣

∣

∣

∣

∣

x0 x1 x2

y0 y1 y2

z0 z1 z2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x4 x5 x6

y4 y5 y6

z4 z5 z6

∣

∣

∣

∣

∣

∣

− x3(z0y4 + z1y5 + z2y6) + x7(y0z4 + y1z5 + y2z6)
− y3(x0z4 + x1z5 + x2z6) + y7(z0x4 + z1x5 + z2x6)
− z3(y0x4 + y1x5 + y2x6) + z7(x0y4 + x1y5 + x2y6)
+ x3y3z3 − x7y7z7.

(1.2)

In particular, the 0-point x = (x0, x1, . . . , x7) and the 1-point y = (y0, y1, . . . , y7) are
incident in Γ if and only if T (x, y, z) ≡ 0 as a function in the third parameter z; and
similarly for other combinations of points of different types, where the first parameter
of the trilinear form corresponds to 0-points, the second to 1-points and the third to
2-points. Notice that exactly which generator of H7 is the 1-point y = (y0, y1, . . . , y7)
is readily determined by putting this value of y into T (x, y, z) and then requiring that
all the coefficients of the zi be zero. The resulting equations in the xi then determine
the corresponding generator. For a 2-point z = (z0, z1, . . . , z7), the equations for the
corresponding generator of H7 are found similarly.

Let θ be the map that sends each point of P (i) to the point of P (i+1) (addition
modulo 3) that has the same coordinates (Figure 1.3). Since T (x, y, z) is preserved by
cyclic permutations of the three parameters, this map θ preserves incidence between
different types of points. Now consider a 0-point x and two distinct collinear 1-points y
and z. The 1-points y and z are incident with a uniquely determined common line yz,

4The choice of a minus sign before the last term is made in order to go directly to the desired
representation of H(q), unlike the standard references where a reflection is performed in the final step.

5This will actually be an instance of an oriflamme geometry (see [Asc86, Chapter 7]).
6This appears in [Car38, p51]. Alternatively, see [Tit59, 3.2] or [VM98, 2.4.6].

13



CHAPTER 1. INTRODUCTION

P(0)

P(1) P(2)

L

θ

θ θ

θ3 = 1

Figure 1.3: The triality θ

which is their intersection y ∩ z as projective subspaces. The 0-point x is then incident
with the line yz if and only if x ∈ y ∩ z, or equivalently, if and only if x I y and x I z. In
a similar manner, it can be verified that for any three points x, y and z, where y and z
are of the same type as each other but of a different type from x, then x I y and x I z
if and only if x I yz. It now follows from the fact that θ preserves incidence between
different types of points that θ also preserves incidence between points and lines, where
a line yz is mapped to the line (yz)θ = yθzθ. Explicity, if x I yz then x I y and x I z,
which after applying θ becomes xθ I yθ and xθ I zθ, and so xθ I (yz)θ. Therefore θ is an
anti-automorphism of the geometry Γ.

An anti-automorphism of Γ with order 3 is called a triality.7 In particular, the
map θ described above is a triality. Recall that an absolute element is one that is
incident with its image, so here an absolute 0-point x is one that lies in the 3-dimensional
projective subspace that is the 1-point xθ, and the absolute lines are those that are
fixed by θ. By [Tit59, 4.3.1–2] (see [VM98, Theorem 2.4.8]), the incidence structure
obtained by taking these absolute 0-points and absolute lines of Γ with respect to θ
is a generalized hexagon of order q. This is what we define to be the split Cayley
hexagon H(q). As explained in [VM98, 2.4.9], this name derives from an alternative
method of construction using a split Cayley algebra (see [Sch62a] and [Sch62b]). To
obtain the usual representation of H(q) from here requires a little tedious work and so
it is generally not done. For this reason, an independent demonstration of the steps
involved is recorded here in detail.

In order to help keep things reasonably brief and to make use of the algebra of
vectors of a three dimensional space (see for instance [Chi78]), for an ordered 8-tuple
x = (x0, x1, x2, x3, x4, x5, x6, x7), let

x̄ = (x0, x1, x2), x̃ = (x4, x5, x6), x′ = x3 and x′′ = x7.

Then the equation (1.1) of the quadric H7 can be rewritten

x̄ · x̃− x′x′′ = 0 (1.3)

and two points x and y on the quadric are collinear if and only if

x̄ · ỹ + x̃ · ȳ − x′y′′ − x′′y′ = 0. (1.4)
7See [Car38, p54], where the principle of triality is introduced in analogy with the principle of duality

as discussed in [Car25]. Also, the trialities that admit absolute points are classified in [Tit59].
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1.4. THE GENERALIZED HEXAGON H(q)

Also, the trilinear form (1.2) can now be written as

T (x, y, z) =z̄ · (x̄× ȳ − x′ỹ + x̃y′′) + z̃ · (x̃× ỹ + x′′ȳ − x̄y′)
− z′(x̃ · ȳ − x′y′) + z′′(x̄ · ỹ − x′′y′′).

(1.5)

A 0-point x is a point of H(q) if and only if it is absolute with respect to θ; that is,
if and only if x I xθ. Thus the points of H(q) are precisely those points of H7 for which
T (x, x, z) ≡ 0 as a function of z. From (1.3) and (1.5) we have

T (x, x, z) = (x′ − x′′)(−z̄ · x̃− z̃ · x̄ + x′z′ + x′′z′′)

and this is identically zero as a function of z if and only if 8

x′ = x′′. (1.6)

Notice that this equation determines a hyperplane of PG(7, q) that intersects H7 in a
nondegenerate parabolic quadric P6, so the points of H(q) are exactly the points of
this P6.

Now we identify the lines of H(q). To begin, notice that the points on an absolute
line ` are necessarily absolute themselves, for if x I ` then xθ I `θ = `, or as projective
subspaces, x ∈ ` ⊂ xθ, so x I xθ.

Consider a line xy where x and y are absolute points such that x I yθ. Notice that
then x ∈ xθ ∩ yθ. Since also y I yθ, we have xy ⊂ yθ, or equivalently xy I yθ. Then
(xy)θ I yθ2, and since (xy)θ is a line and yθ2 is a 3-dimensional projective subspace, we
have yθ2 ⊃ (xy)θ = xθ ∩ yθ 3 x. Hence yθ2 I x, from which we have y I xθ. Thus also
xy ⊂ xθ and it follows that xy = (xy)θ, so the line xy is absolute. Conversely, if the
line xy is absolute then xy = (xy)θ = xθ ∩ yθ, and in particular, x I yθ.

Hence the absolute lines are precisely those lines xy where x and y are absolute
and x I yθ. In other words, they are the lines xy where x and y are in the hyperplane
given by (1.6) and T (x, y, z) ≡ 0 as a function of z. For this latter condition to be
satisfied, we see from (1.5) together with (1.6) that in particular we need

x̄× ȳ − x′ỹ + x̃y′ = 0 and x̃× ỹ + x′ȳ − x̄y′ = 0. (1.7)

In fact, given a line xy where x and y are absolute, the conditions in (1.7) are sufficient
to ensure that the line is absolute. To see this, we need only show that the two remaining
coefficients, x̃ · ȳ−x′y′ and x̄ · ỹ−x′′y′′, in (1.5) vanish when these conditions are satisfied.
Even further, we need only show that the former of these vanishes as then the other
follows immediately from (1.4) and (1.6).9

Suppose first that x̄ = 0. Then from (1.3) and (1.6), we have x′ = x′′ = 0. Substitution
into (1.4) now gives x̃ · ȳ = 0, hence x̃ · ȳ − x′y′ = 0 as required.

Now suppose that x̄ 6= 0. To begin, notice that

(x̃ · ȳ − x′y′)x̄ = (x̃ · ȳ)x̄− x′2ȳ − x′(−x′ȳ + x̄y′). (1.8)

8See also [Tit59, 5.22].
9This is essentially the observation of Dickson [Dic01]; see [Tit59, 8.1.4].
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By (1.3) and (1.6), we have x′2 = x̃ · x̄, and from (1.7) we have −x′ȳ + x̄y′ = x̃ × ỹ.
Thus, with the help of the identities a × (b × c) = (a · c)b − (a · b)c and a × a = 0, the
equation (1.8) becomes

(x̃ · ȳ − x′y′)x̄ = (x̃ · ȳ)x̄− (x̃ · x̄)ȳ − x′(x̃× ỹ)
= x̃× (x̄× ȳ)− x′(x̃× ỹ) + y′(x̃× x̃)
= x̃× (x̄× ȳ − x′ỹ + x̃y′)
= 0,

where the final step has followed from (1.7). Since x̄ 6= 0, it follows that x̃ · ȳ − x′y′ = 0.
Hence the absolute lines are precisely those lines xy of the quadric P6 that satisfy

the conditions in (1.7). Finally, we remove from these conditions the reference to the
points x and y on the line by rewriting them in terms of the Plücker coordinates of a
line. In general, if w = (w0, . . . , wn) and z = (z0, . . . , zn) are two points in a projective
space PG(n, q), the Plücker coordinates of the line wz are the

(n+1
2

)

values pij =
∣

∣

wi wj
zi zj

∣

∣.
These are a special case of Grassmann coordinates, which apply to subspaces in general.
Details concerning these can be found in [HT91, Section 24.1].

In the former of the two conditions in (1.7), we have x̄ × ȳ = (p12, p20, p01) and
x′ỹ − x̃y′ = (p34, p35, p36), and in the latter, −x̃ × ỹ = (p65, p46, p54) and x′ȳ − x̄y′ =
(p30, p31, p32). Also, substituting (1.6) into (1.1) yields the equation of the quadric P6 in
which H(q) is embedded.

Thus the points of the generalized hexagon H(q) are the points of the nondegenerate
parabolic quadric P6 given by

X0X4 + X1X5 + X2X6 = X3
2 (1.9)

and the lines are the lines on this quadric whose Plücker coordinates satisfy

p12 = p34, p20 = p35, p01 = p36,
p65 = p30, p46 = p31, p54 = p32.

(1.10)

1.4.2 Geometry

While we considered generalized polygons in Section 1.2.3, here we consider further this
particular generalized hexagon, H(q). Lemmas 1.12–1.18 are elementary results following
from the natural embedding of H(q) in P6 and belonging mostly to folklore. Explicitly
or implicitly, they can mostly be found in [Tit59, §4], [VM98, Section 2.4] and [Ron80].
Throughout, we shall assume Γ = H(q) is given by the standard representation in the
quadric P6 as given at the end of the previous section. Thus points and lines of H(q) will
be regarded equally freely as points and lines of P6, although the context shall be made
clear when confusion seems a possibility. In particular, since not all lines of P6 are lines
of H(q), the distinction will be made by referring to those that are as H(q)-lines.

Let x and y be two collinear points in P6 and let θ be the triality described in
Section 1.4.1. Recall from page 15 that the line xy of P6 is an H(q)-line if and only
if y ∈ xθ. But xθ, as a 3-space on H7, meets P6 in a plane π which is then a generator
of P6. So xy is an H(q)-line if and only if y ∈ π. We call this plane π the H(q)-plane
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of x. Since there are q + 1 lines through x in π and all q + 1 points on each of these lines
are also points of H(q), this demonstrates that H(q) does indeed have order q. Notice
that the same plane π cannot also be the H(q)-plane of y as then H(q) would contain
triangles on points x, y and z, where z is any point of π not on the line xy. Thus the
points on an H(q)-line have distinct H(q)-planes. Since there are q + 1 points on a line
and there are also q + 1 generators of P6 on a line, we have the following result.

Lemma 1.12
Let ` be an H(q)-line. Then the generators of P6 on ` are precisely the H(q)-planes of
the points on `. �

The following frequently used theorem also appears in the proof of [Yan76, Theo-
rem 1.1], where the author shows that his “hyperbolic” and “singular” lines correspond
to the lines of P6.

Theorem 1.13
Two points of H(q) are opposite if and only if they are not collinear in the quadric P6.

Proof Let x and y be two points of H(q). Then d(x, y) = 2, 4, or 6. Certainly, if
d(x, y) = 2 then x and y are collinear in H(q) and therefore also in P6. Also, if d(x, y) = 4,
then x and y are both collinear in H(q) with the point z = x .2 y, so they are both in
the H(q)-plane of z and are therefore collinear in P6.

Now suppose that x and y are collinear in P6. If the line xy is an H(q)-line then
d(x, y) = 2. Suppose then that xy is not an H(q)-line, so then y does not lie in the
H(q)-plane πx of x. Recall from Section 1.2.4 that if w is a point of a nondegenerate
quadric Qn of rank r and Π is a generator not containing w, then there is a unique
generator Π′ containing w such that Π′ ∩ Π has dimension r − 2. Consequently, there is
a unique generator π of P6 containing y and such that π ∩ πx is a line `. Since x and y
are collinear in P6, we have x ∈ π, so ` is a line in πx through x. It follows that ` is
an H(q)-line so, by Lemma 1.12, the plane π is the H(q)-plane of some point z ∈ `.
Hence yz is also an H(q)-line as it is a line through z contained in its H(q)-plane, and
therefore d(x, y) = 4. �

Corollary 1.14
Let ` be a line of P6 that is not an H(q)-line. Then there is a unique H(q)-plane
containing `.

Proof Let x, y ∈ ` be two points. By the previous theorem, we have d(x, y) = 4 so
the point z = x .2 y is the unique point whose H(q)-plane contains both x and y. �

Next is a theorem regarding lines that is comparable to Theorem 1.13.

Theorem 1.15
Two lines of H(q) are opposite if and only if every generator of P6 containing one is
disjoint from the other.
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Proof Let ` and m be two H(q)-lines. Notice that the union of the generators of P6

containing ` is simply `⊥ ∩ P6. By Lemma 1.12, these generators are the H(q)-planes of
the points on `, so `⊥ ∩m is the set of points y on m with d(y, x) ≤ 2 for some x I `.
Hence the points of `⊥ ∩m are precisely those points on m with d(y, `) ≤ 3. Thus every
generator on ` is disjoint from m if and only if d(y, `) = 5 for every y I m, or equivalently,
the lines ` and m are opposite. �

Let x and y be opposite points in H(q). Then the distance-1 trace xy
[1] is the

sphere Γ1(x), and we have already seen the structure of this in P6—it is a pencil of lines
in a generator, the H(q)-plane. Now we consider the structures in P6 of the distance-2
and distance-3 traces.

Lemma 1.16
Let x be a point of H(q) and let π be its H(q)-plane. Then the distance-2 traces xy

[2] for
points y opposite x, are precisely the lines of π not containing x.

Proof Let ` be a line of π not containing x, so d(z, x) = 2 for each z ∈ `. Let π′ be
another generator of P6 through ` and consider a point y ∈ π′ \ `. By Corollary 1.14, the
generator π′ is not an H(q)-plane so, by Lemma 1.12, there are no H(q)-lines in π′. It
now follows from Theorem 1.13 that d(z, y) = 4 for each z ∈ `. Thus ` = xy

[2].
Suppose now that y is a point opposite x. Then certainly y is not in π so there is a

unique generator π′ containing y such that π′ ∩ π is a line `. By Theorem 1.13, the line `
does not contain x so from the previous paragraph we have xy

[2] = `. �

Lemma 1.17
Let x and y be opposite points in H(q). Then the distance-3 trace xy

[3] is a regulus on
the quadric P6.

Proof By Lemma 1.16, the distance-2 traces ` = xy
[2] and m = yx

[2] are lines of P6 and,
since they have no point in common, they generate a 3-space Π3. Also, each point z ∈ `
is collinear with some point, namely y .2 z, in m. Thus the intersection Π3 ∩ P6 is a
nondegenerate hyperbolic quadric H3. Finally, the lines of the distance-3 trace xy

[3] are
the lines of P6, and hence of H3, that intersect ` and m, and so are the lines of a regulus.

�

Lemma 1.18
Let ` and m be opposite lines in H(q). Then the distance-3 trace `m

[3] is a conic on the
quadric P6.

Proof Let Π3 be the 3-space generated by the lines ` and m. Then Π⊥
3 is a plane

disjoint from Π3 that meets P6 in a conic C. From Theorem 1.13, the points of C are
at distance at most 4 from the points of ` and m, so we conclude that they are all at
distance 3 from each of these lines. �

From Lemma 1.17, the distance-3 trace xy
[3] for two opposite points x and y is a

regulus on P6 and we distinguish it from others by calling this a line regulus, since it
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is comprised of lines of the hexagon. Also, a regulus is uniquely determined by two of
its lines, and we denote the unique line regulus containing the opposite lines ` and m
by R(`,m).

Similarly, a distance-3 trace `m
[3] for two opposite lines ` and m is uniquely determined

by two of its points, say x and y, for, by the proof of Lemma 1.18, it is the conic contained
in the plane Π⊥

3 , where Π3 is the 3-space containing the line regulus xy
[3]. Because of the

dual relationship with line reguli, we call this a point regulus and we denote the unique
point regulus containing two opposite points x and y byR(x, y). Also, a point regulus in a
plane Π2 and line regulus in a 3-space Π3 such that Π2 = Π⊥

3 are called complementary.
Notice that there is a unique regulus on P6 containing two given opposite lines `

and m of H(q) so there can never be any uncertainty about which regulus is the line
regulus R(`,m). However, given two opposite points x and y of H(q), there are numerous
conics on P6 that contain x and y, while only one of them is the point regulus R(x, y).
It is with this in mind that we provide our following geometric description of precisely
which conic is the appropriate one.

Lemma 1.19
Let x and y be two opposite points of H(q) and let πx and πy be their H(q)-planes. Then
π⊥x ∩ π⊥y is a point P of PG(6, q) not on P6 and the point regulus R(x, y) is contained in
the plane determined by the three points x, y and P .

Proof Since x and y are opposite, the H(q)-planes πx and πy are disjoint, so their
tangent spaces π⊥x and π⊥y meet in a point P of PG(6, q) that is not on P6. In addition,
the points x, y and P are not collinear since the line xP is tangent to P6. Let Π3 be
the 3-space that contains the complementary line regulus xy

[3], so then Π⊥
3 is the plane

containing the point regulus R(x, y). We have only to show that P ∈ Π⊥
3 .

Let ` and m be the distance-2 traces xy
[2] and yx

[2], respectively, from x and y onto each
other. By Lemma 1.16, these are lines of P6 in the planes πx and πy. Furthermore, `
and m are lines of the regulus opposite to the line regulus in Π3 so they generate this
subspace. Thus, Π⊥

3 = `⊥ ∩m⊥ ⊃ π⊥x ∩ π⊥y = {P}. �

By [VM98, Lemma 1.5.4], the numbers of points and lines in H(q) are

|P| = |L| = q5 + q4 + q3 + q2 + q + 1, (1.11)

which is indeed seen to be equal to the number of points on the quadric P6, and the
number of elements opposite a given element x is

|Γ6(x)| = q5. (1.12)

In view of Theorem 1.13, it is quite easy to see the truth of (1.12) for points. For a
point x, the intersection x⊥∩P6 of the tangent prime at x with P6 is a quadric cone xP4,
the points of which, by the theorem, are precisely the points y with d(x, y) ≤ 4. The
quadric cone has q4 + q3 + q2 + q + 1 points and this, together with (1.11), readily gives
the result.

Finally, we shall see that the case q = 3h plays a special rôle when dealing with H(q).
The reason for this lies essentially in the following very important theorem.
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Σ

(∞)

(0)

(0,0,0)

(0,0,0,0,0)

(0,0,0,0)

(0,0)

[∞]

[0,0] [0,0,0,0]

[0,0,0,0,0]

[0,0,0][0]

Figure 1.4: Labelling the hat-rack

Theorem 1.20 (see [VM98, Corollary 7.3.5])
The generalized hexagon H(q) is self-dual if and only if q = 3h and it is self-polar if and
only if q = 32e+1. �

Although we do not prove Theorem 1.20 here, a demonstration of the truth of the “if”
parts, due originally to Tits [Tit61, Section 5], commences on page 28 in Section 1.4.4
after coordinatization and morphisms of H(q) have been discussed.

1.4.3 Coordinates

Coordinatization of generalized polygons is done in a manner that generalizes the usual
way in which projective planes are coordinatized [Hal43]. The general theory is discussed
in [VM98, Chapter 3], and for generalized hexagons in particular, see also [DeSVM93].
Here we will only describe the essential points needed for us to be able to work with the
coordinates.

To begin, let Σ be an apartment in the split Cayley hexagon Γ = H(q). In order
to distinguish between coordinates for points and coordinates for lines, we use parenthe-
ses “( )” for points and brackets “[ ]” for lines. With this in mind, label the elements
of Σ as in Figure 1.4. This, now ordered, apartment Σ is called the hat-rack of the
coordinatization. By [Tit73] (see also [VM98, Theorem 4.5.6]), the split Cayley hexagon
is a Moufang hexagon. Hence it is also a Tits hexagon and the group of automorphisms
of H(q) acts transitively on ordered apartments. In particular, this means that the final
coordinatization is dependent neither upon the choice of Σ nor on precisely where we
start the labelling of the elements of Σ according to Figure 1.4. This will be a very con-
venient fact, analogous to being able to freely choose an origin and a pair of axes when
working in the Euclidean plane.

Next, the points other than (∞) and (0) that are incident with the line [∞] are
labelled (a), where a ranges over the nonzero elements of GF (q). Likewise, the remain-
ing lines incident with (∞) are labelled [k], where k ranges over the nonzero elements
of GF (q). Now following the coordinatization process described in [VM98, Section 3.2],
the coordinates of all the remaining elements of H(q) are determined. The resulting coor-
dinatization places the points, as well as the lines, in one-to-one correspondence with the
set of all i-tuples of elements from GF (q), where 0 ≤ i ≤ 5 and we consider a 0-tuple to

20



1.4. THE GENERALIZED HEXAGON H(q)

simply be one consisting of the single special symbol ∞. Notice that there are qi i-tuples
for each i, so in all, for 0 ≤ i ≤ 5 there are q5 + q4 + · · ·+ q + 1 i-tuples, which is indeed
equal to the number of points and the number of lines in H(q) as seen in (1.11).

Following [VM98, Section 3.2], the coordinates of an element are assigned in such a
manner so as to essentially describe a path to it from the flag {(∞), [∞]}. To be precise,
there is the path

[k, b, k′, b′, k′′] I (k, b, k′, b′) I [k, b, k′] I (k, b) I [k] I (∞) I
[∞] I (a) I [a, `] I (a, `, a′) I [a, `, a′, `′] I (a, `, a′, `′, a′′)

(1.13)

for any choice of a, `, a′, `′, a′′, k, b, k′, b′, k′′ ∈ GF (q). Thus incidence between a point and
a line when one has fewer than five coordinates is easily recognized; for example, the
lines incident with the point (a, `, a′) are precisely the lines [a, `, a′, `′], where `′ ranges
over all of GF (q), together with the line [a, `]. All that remains is to be able to identify
when a point and a line are incident when they each have five coordinates. This depends
upon exactly how the points incident with [∞] receive their coordinates (a) and how the
lines [k] are labelled, too. For the assignment of these coordinates that we choose to use,
the resulting coordinatization is such that a point (a, `, a′, `′, a′′) and a line [k, b, k′, b′, k′′]
are incident if and only if

b = −ak + a′′,

k′ = a3k2 + `′ − `k − 3a2a′′k − 3a′a′′ + 3aa′′2,
b′ = a2k + a′ − 2aa′′,
k′′ = a3k + `− 3a′′a2 + 3aa′;

(1.14a)

or equivalently, they are incident if and only if

` = −a3k + k′′ − 3a2b− 3ab′,
a′ = a2k + b′ + 2ab,
`′ = a3k2 + k′ + kk′′ + 3a2kb + 3bb′ + 3ab2,

a′′ = ak + b.

(1.14b)

These relations can be found in [VM98, 3.5.1].
The relations in (1.14a) and (1.14b) contain many terms with the coefficient 3, mean-

ing that they become considerably more simple when the underlying field has character-
istic 3, reflecting the special rôle played by these fields as indicated by Theorem 1.20.
Explicitly stated, we have that when q = 3h, a point (a, `, a′, `′, a′′) and a line [k, b, k′, b′, k′′]
are incident if and only if

b = −ak + a′′,
k′ = a3k2 + `′ − `k,
b′ = a2k + a′ + aa′′,
k′′ = a3k + `;

(1.15a)
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POINTS
Coordinates in H(q) Coordinates in PG(6, q)

(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, `, a′) (−`− aa′, 1, 0,−a, 0, a2,−a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − kb′)
(a, `, a′, `′, a′′) (−a`′ + a′2 + `a′′ + aa′a′′,−a′′,−a,−a′ + aa′′,

1, ` + 2aa′ − a2a′′,−`′ + a′a′′)

LINES
Coordinates in H(q) Coordinates in PG(6, q)

[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1,−k)〉

[a, `] 〈(a, 0, 0, 0, 0, 0, 1), (−`, 1, 0,−a, 0, a2, 0)〉
[k, b, k′] 〈(b, 0, 0, 0, 0, 1,−k), (k′, k, 1, b, 0, 0, b2)〉

[a, `, a′, `′] 〈(−`− aa′, 1, 0,−a, 0, a2,−a′),
(−a`′ + a′2, 0,−a,−a′, 1, ` + 2aa′,−`′)〉

[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1, b, 0, b′, b2 − kb′),
(b′2 + bk′′,−b, 0,−b′, 1, k′′,−kk′′ − k′ − 2bb′)〉

Table 1.5: Coordinatization of H(q)

or equivalently, they are incident if and only if

` = −a3k + k′′,
a′ = a2k + b′ − ab,
`′ = a3k2 + k′ + kk′′,
a′′ = ak + b.

(1.15b)

Consider the standard representation of H(q) in the quadric P6 as derived in Sec-
tion 1.4.1. For a particular choice of hat-rack (without loss of generality) and a subsequent
choice for the points (a) and lines [k] that leads to the relations of (1.14a) and (1.14b)
for determining incidence, the resulting correspondence between coordinates in H(q) and
coordinates in PG(6, q) is given in Table 1.5. This table is quoted from [VM98, 3.5.1].
Notice that the line determined by points x and y in PG(6, q) is indicated in the table
by 〈x, y〉. Also, no confusion can arise between coordinates for points in H(q) and coordi-
nates in PG(6, q) as in the coordinatization of H(q), a point has at most five coordinates,
while in PG(6, q), coordinates are always seven in number.

From [VM98, 3.2.4], the relations in (1.14a) and (1.14b) for incidence determine the
generalized hexagon H(q) in a unique way. Consequently, since we will always be using
a coordinatization for which these are the appropriate relations, we can, and will, always
assume that the correspondence between coordinates in H(q) and coordinates in PG(6, q)
is actually the one given in Table 1.5.
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Now let us consider the problem of identifying when two elements are opposite. The
points opposite (∞), and similarly the lines opposite [∞], are exactly those with five
coordinates. Since we will be concerned primarily with sets of mutually opposite elements
and we can always choose our hat-rack in such a manner that one of these elements is
the one labelled with ∞, it will suffice for us to consider only the problem of identifying
when two elements, each with five coordinates, are opposite.

Lemma 1.21
The two points (a, `, a′, `′, a′′) and (A,L, A′, L′, A′′) of H(q) are opposite if and only if

(a′′∆a + ∆a′)(A′′∆a + ∆a′)−∆a∆`′ + ∆a′′∆`− 3∆a(a′A′′ − a′′A′) 6= 0,

where ∆x = x−X.

Proof We use coordinates in PG(6, q) as given by Table 1.5. Then the corresponding
coordinates for the points (a, `, a′, `′, a′′) and (A,L, A′, L′, A′′) are

(−a`′ + a′2 + `a′′ + aa′a′′,−a′′,−a,−a′ + aa′′, 1, ` + 2aa′ − a2a′′,−`′ + a′a′′)

and

(−AL′ + A′2 + LA′′ + AA′A′′,−A′′,−A,−A′ + AA′′, 1, L + 2AA′ − A2A′′,−L′ + A′A′′),

respectively. From the equation for P6 given in (1.9), its associated bilinear form is

b(x, y) = x0y4 + x4y0 + x1y5 + x5y1 + x2y6 + x6y2 − 2x3y3. (1.16)

By Theorem 1.13, points are opposite in H(q) if and only if they are not collinear in P6 and
this, in turn, corresponds to the bilinear form b not being equal to zero. So substituting
their coordinates into b, the given points are opposite if and only if

− a`′ + a′2 + `a′′ + aa′a′′ − AL′ + A′2 + LA′′ + AA′A′′

− a′′L− 2a′′AA′ + a′′A2A′′ − `A′′ − 2aa′A′′ + a2a′′A′′

+ aL′ − aA′A′′ + `′A− a′a′′A− 2(a′ − aa′′)(A′ − AA′′) 6= 0

which, after rearrangement, is the inequality in the statement of the lemma. �

Lemma 1.22
The two lines [k, b, k′, b′, k′′] and [K, B, K ′, B′, K ′′] of H(q) are opposite if and only if

(∆b2 −∆k∆b′)(∆b′2 + ∆b∆k′′)−
(−k′′∆k −∆k′ + ∆b∆b′ − 3b′∆b)(K ′′∆k + ∆k′ + ∆b∆b′ + 3B′∆b) 6= 0,

where ∆x = x−X.
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Proof We use coordinates in PG(6, q) as given by Table 1.5. Then the line
[k, b, k′, b′, k′′] is generated by the two points

(k′ + bb′, k, 1, b, 0, b′, b2 − kb′),

(b′2 + bk′′,−b, 0,−b′, 1, k′′,−kk′′ − k′ − 2bb′).

Using the bilinear form associated with P6 as given in (1.16), the perp of this line with
respect to P6 is then given by the equations

b′X1 +(b2 − kb′)X2 −2bX3 +(k′ + bb′)X4 +kX5 +X6 = 0,
X0 +k′′X1 +(−kk′′ − k′ − 2bb′)X2 +2b′X3 +(b′2 + bk′′)X4 −bX5 = 0.

(1.17)

Similarly, the line [K, B, K ′, B′, K ′′] is generated by the two points

(K ′ + BB′, K, 1, B, 0, B′, B2 −KB′),

(B′2 + BK ′′,−B, 0,−B′, 1, K ′′,−KK ′′ −K ′ − 2BB′),

or equivalently, is given by the system of equations

X0 −(K ′ + BB′)X2 −(B′2 + BK ′′)X4 = 0,
X1 −KX2 +BX4 = 0,

−BX2 +X3 +B′X4 = 0,
−B′X2 −K ′′X4 +X5 = 0,

−(B2 −KB′)X2 −(−KK ′′ −K ′ − 2BB′)X4 +X6 = 0.

(1.18)

Now by Theorem 1.15, the given lines are opposite in H(q) if and only if the equations
in (1.17) and (1.18) have no nonzero solution in common. This is equivalent to the
condition that the matrix





















0 b′ b2 − kb′ −2b k′ + bb′ k 1
1 k′′ −kk′′ − k′ − 2bb′ 2b′ b′2 + bk′′ −b 0
1 0 −K ′ −BB′ 0 −B′2 −BK ′′ 0 0
0 1 −K 0 B 0 0
0 0 −B 1 B′ 0 0
0 0 −B′ 0 −K ′′ 1 0
0 0 −B2 + KB′ 0 KK ′′ + K ′ + 2BB′ 0 1





















should be nonsingular. Performing the row operations R1 := R1−b′R4 +2bR5−kR6−R7

and R2 := R2 − R3 − k′′R4 − 2b′R5 + bR6 reveals that this, in turn, is equivalent to the
2× 2 determinant

∣

∣

∣

∣

∆b2 −∆k∆b′ K ′′∆k + ∆k′ + ∆b∆b′ + 3B′∆b
−k′′∆k −∆k′ + ∆b∆b′ − 3b′∆b ∆b′2 + ∆b∆k′′

∣

∣

∣

∣

being nonzero. Expanding this determinant gives the desired result. �

Now we identify, in terms of coordinates, the line reguli and point reguli of H(q) that
contain the line [∞] and the point (∞), respectively. Let us consider the line reguli first.
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Let L = [k, b, k′, b′, k′′] be a line opposite [∞]. From (1.13) and (1.14b), the
points (k, b) and (0, k′′, b′) are the distance-2 projections of L onto the points (∞)
and (0), respectively, which are incident with [∞]. Similarly, the distance-2 projections
of M = [K,B,K ′, B′, K ′′] onto (∞) and (0) are (K,B) and (0, K ′′, B′). Now these two
lines L and M determine the same line regulus with [∞] if and only if their distance-3
traces onto [∞], the complementary point reguli, are equal. Since a point regulus is
uniquely determined by just two of its points, this in turn corresponds to (k, b) = (K,B)
and (0, k′′, b′) = (0, K ′′, B′). Thus, representing the line regulus determined by [∞] and L
by [[k, b, b′, k′′]], we have

[[k, b, b′, k′′]] = R
(

[∞], [k, b, k′, b′, k′′]
)

=
{

[∞]
}

∪
{

[k, b, x, b′, k′′] |x ∈ GF (q)
}

. (1.19)

Now let (a, `, a′, `′, a′′) be a point opposite (∞). From (1.13) and (1.14a), the
distance-2 projections of this point onto the lines [∞] and [0], which are incident
with (∞), are [a, `] and

[

0, a′′, `′ − 3a′a′′ + 3aa′′2
]

, respectively. Similarly to the case
for lines, we then have that this point and another point [A,L, A′, L′, A′′] determine
the same point regulus with (∞) if and only if A = a, L = `, A′′ = a′′ and
L′ − 3A′A′′ + 3AA′′2 = `′ − 3a′a′′ + 3aa′′2. Substituting the first three of these into
the fourth and solving for L′, we have L′ = `′ + 3(A′ − a′)a′′. Representing the point
regulus determined by (∞) and (a, `, 0, `′, a′′) by ((a, `, `′, a′′)), we then have

((a, `, `′, a′′)) =
{

(∞)
}

∪
{

(a, `, x, `′ + 3a′′x, a′′) | x ∈ GF (q)
}

, (1.20)

and
R

(

(∞), (a, `, a′, `′, a′′)
)

= ((a, `, `′ − 3a′a′′, a′′)).

1.4.4 Morphisms

With the coordinatization of H(q) introduced in the previous section, together with the
natural embedding of H(q) in the quadric P6 as seen in Section 1.4.1, we are now in a
position to explicitly describe its automorphisms and anti-automorphisms.

To begin, since there is a unique minimum length x–y path when d(x, y) ≤ 5, if we
are given the images of the two elements x and y under the action of some automorphism
or anti-automorphism g, then we know the images of all the other elements on the path.
Consequently, if g fixes the flag {(∞), [∞]}, it suffices for us to just explicitly state the
action of g on elements with five coordinates; the images of the remaining elements then
follow from (1.13). When we give the action of an automorphism or anti-automorphism
just by stating its action on elements with five coordinates, it will be understood that
the flag {(∞), [∞]} is fixed so the entire action does indeed follow.

By [VM98, Proposition 4.6.6], each collineation of H(q) is induced by a unique
semilinear transformation of the projective space PG(6, q) via the natural embedding
of H(q) in P6 discussed in Section 1.4.1. Also, the group Aut(H(q)) ∩ PGL(7, q) of
those collineations of H(q) that are induced by linear transformations of PG(6, q) is the
Chevalley group G2(q), known as Dickson’s group.10 By [VM98, Theorem 8.3.2(i)], this
automorphism group G2(q) is the group generated by all the elations of H(q).

10In fact, the split Cayley hexagon belongs to the root system of type G2, in the sense of [VM98, 5.4.1]
(see [VM98, Theorem 5.4.6]), and in the literature it is also known as the G2-hexagon.
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Let Σ be an apartment of H(q) and let G be the group generated by all elations
corresponding to paths in Σ. Consider an arbitrary path γ of length 4 in H(q) and
let the set S be defined as in the definition of Moufang paths on page 7. By [VM98,
Lemma 5.2.8], the group G contains a subgroup of γ-elations acting transitively on S.
But we have seen that the group E(γ) of all γ-elations acts semiregularly on S (this
actually follows from Lemma 1.7), so E(γ) 6 G. Since γ was arbitrary, it follows that G
contains all elations. Thus it is actually sufficient to take just the elations corresponding
to the paths on a fixed apartment in order to generate the automorphism group G2(q).

Let g be a collineation of H(q) in G2(q). Then g is induced by a unique linear trans-
formation of PG(6, q) and we denote the matrix that represents it by [g] (remembering
that we always assume the correspondence between coordinates of H(q) and coordinates
of PG(6, q) to be the one given by Table 1.5). We will also refer to [g] as the matrix
corresponding to g. In the following, morphisms of H(q) act on the right, while points
of PG(6, q) are considered as being represented by 7 × 1 matrices so the matrix multi-
plication is carried out on their left. Consequently, if f, g ∈ G2(q) are two collineations
of H(q) with corresponding matrices [f ] and [g], respectively, then the composition fg
of f followed by g is induced by the linear transformation represented by the matrix
[fg] = [g][f ].

Given the action of a collineation g, to obtain the matrix [g] we first identify the
images of the six points of the hat-rack, which give all but the central column of [g]
up to multiplication by nonzero factors. The remaining column is then obtained by
considering the image of some other point like (−1, 0, 0), whose coordinates in PG(6, q)
are (0, 1, 0, 1, 0, 1, 0). Finally, the actual factors by which the columns are multiplied
is determined by considering the action on one more appropriately chosen11 point, such
as (0, 1), and keeping in mind that the equations in (1.9) and (1.10) must remain satisfied.

Conversely, if we are given a matrix [g] corresponding to a collineation g of H(q)
that fixes the flag {(∞), [∞]}, then we can easily write down the action of g explicitly
in terms of the coordinates of H(q). As remarked earlier, since the flag {(∞), [∞]} is
fixed, it suffices for us to consider only the elements with five coordinates. For a point
(a, `, a′, `′, a′′), we multiply its coordinates in PG(6, q) by the matrix [g] to obtain the
coordinates (x0, x1, x2, x3, 1, x5, x6) in PG(6, q) of its image. Then in the coordinates
of H(q), the image is

(−x2, x5 + x1x2
2 − 2x2x3,−x3 + x1x2,−x6 − x2

1x2 + x1x3,−x1).

For a line [k, b, k′, b′, k′′], we obtain the first four coordinates of the image by identifying
the image of the point (k, b, k′, b′) as in the previous paragraph. Then to obtain the fifth
coordinate, we consider the projection [0, k′′] of [k, b, k′, b′, k′′] onto the point (0), whose
image we already know from the previous paragraph.

Considering the Plücker coordinate conditions in (1.10), the linear transformation of

11By “appropriately chosen” we mean that the two points considered in addition to the points of the
hat-rack must be such that a collineation stabilizing the hat-rack elementwise is uniquely determined by
the images of these two points. The explicit forms of such collineations is given in (1.21).
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PG(6, q) given by the matrix12

M =





















0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0





















is readily checked to preserve the set of lines of H(q) and so induces a collineation µ. From
Table 1.5, we see that µ fixes the apartment Σ that is the hat-rack of the coordinatization,
while mapping the flag {(∞), [0]} to the flag {(0), [∞]}. This is a 60◦ clockwise rotation of
the hat-rack as illustrated in Figure 1.4. Now, together with µ, we will have a complete set
of generators of G2(q) once we have the point elations corresponding to one path in Σ and
the line elations corresponding to another, since all other elations corresponding to paths
in Σ are obtained from these through conjugation by µ. This is what we do now, quoting
the following elations and their corresponding matrices from [VM98, Appendix D].

Let γP be the path (∞), [∞], (0), [0, 0], (0, 0, 0) in Σ. The elations E(γP , δ) correspond-
ing to this path are given by

E(γP , δ) :

{

(a, `, a′, `′, a′′) 7→ (a, `− 3a2δ, a′ + 2aδ, `′ + 3aδ2 + 3a′δ, a′′ + δ)
[k, b, k′, b′, k′′] 7→ [k, b + δ, k′, b′, k′′],

where δ is any element of GF (q). The corresponding matrices [E(γP , δ)] are

MP (δ) =





















1 0 0 0 0 δ 0
0 1 0 0 −δ 0 0
0 0 1 0 0 0 0
0 0 δ 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 δ2 2δ 0 0 1





















.

Let γL be the path [∞], (∞), [0], (0, 0), [0, 0, 0] in Σ. The elations E(γL, δ) correspond-
ing to this path are given by

E(γL, δ) :

{

(a, `, a′, `′, a′′) 7→ (a, ` + δ, a′, `′, a′′)
[k, b, k′, b′, k′′] 7→ [k, b, k′ − kδ, b′, k′′ + δ],

12This is a correction of the matrix provided in [VM98, Appendix D].
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where δ is any element of GF (q). The corresponding matrices [E(γL, δ)] are

ML(δ) =





















1 −δ 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 δ 1 0
0 0 0 0 0 0 1





















.

Let γ be a length 4 path in Σ so γ = γXµk, for some integer k and where X is
either the symbol P or L. Then the γ-elations are E(γ, δ) = µ−kE(γX, δ)µk, which have
corresponding matrices [E(γ, δ)] = MkMX(δ)M−k.

It will also be convenient to have the explicit form of homologies at our disposal.
All the homologies for elements u and v, where {u, v} ranges over all pairs of oppo-
site elements in the hat-rack Σ, generate an automorphism group that leaves Σ fixed
elementwise. In fact, by [VM98, Proposition 4.6.6(v)], this automorphism group is the
elementwise stabilizer in G2(q) of Σ, also called the torus in G2(q) for Σ. Quoting again
from [VM98, Appendix D], a general element of the torus in G2(q) for Σ is given by

T (α, β) :

{

(a, `, a′, `′, a′′) 7→ (αa, α3β`, α2βa′, α3β2`′, αβa′′)
[k, b, k′, b′, k′′] 7→ [βk, αβb, α3β2k′, α2βb′, α3βk′′],

(1.21)

where α, β ∈ GF (q) are nonzero elements of the field, and the corresponding matrix
for T (α, β) is

MT (α, β) =





















α4β2 0 0 0 0 0 0
0 αβ 0 0 0 0 0
0 0 α 0 0 0 0
0 0 0 α2β 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 α3β 0
0 0 0 0 0 0 α3β2





















.

While the collineations E(γX, δ) and µ generate the group G2(q) of collineations
that are induced by projective linear transformations, we know from [VM98, Proposi-
tion 4.6.6] that we obtain the full automorphism group Aut(H(q)) once we also include
the collineations induced by automorphisms of the field GF (q). Specifically, for each field
automorphism ψ, there is a collineation of H(q), which we shall also call ψ, whose action
is given by

ψ :

{
(

a, `, a′, `′, a′′
)

7→
(

aψ, `ψ, a′ψ, `′ψ, a′′ψ
)

[

k, b, k′, b′, k′′
]

7→
[

kψ, bψ, k′ψ, b′ψ, k′′ψ
]

.

This is readily seen to preserve incidence as given in (1.13), (1.14a) and (1.14b), so this
is indeed a collineation.

Now we are in a position to see the truth of the “if” parts of Theorem 1.20 by
explicitly showing a duality and a polarity for the relevant cases. Suppose q = 3h so
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incidence in H(q) is given by (1.13) together with (1.15a) and (1.15b). Also, the map
σ : x 7→ x3 is an automorphism of GF (q) called the Frobenius automorphism. Define
a map ϕ of H(q) by

ϕ :

{
(

a, `, a′, `′, a′′
)

7→
[

a3, `, a′3, `′, a′′3
]

[

k, b, k′, b′, k′′
]

7→
(

k, b3, k′, b′3, k′′
)

.
(1.22)

Incidence as given in (1.13) is certainly preserved so all that remains is to consider
incidence between points and lines with five coordinates. Now the point (a, `, a′, `′, a′′)
and the line [k, b, k′, b′, k′′] are incident if and only if the conditions in (1.15a) are satisfied.
Applying the Frobenius automorphism to the first and third equations there, we then have
that these elements are incident if and only if

(b3) = −k3(a3) + (a′′3),
k′ = k2(a3) + `′ − k`,

(b′3) = k3(a3)2 + (a′3) + (a3)(a′′3),
k′′ = k(a3) + `.

But these are precisely the conditions in (1.15b) for the line [a3, `, a′3, `′, a′′3] and the
point (k, b3, k′, b′3, k′′) to be incident. Thus the map ϕ preserves incidence and it is there-
fore a duality of H(q). Notice that ϕ2 = σ, the collineation induced by the Frobenius
automorphism σ of GF (q).

Now suppose that q = 32e+1. The map θ : x 7→ x3e+1 is then an automorphism
of GF (q), called the Tits automorphism, that satisfies θ2 = σ. The collineation
of H(q) induced by θ then satisfies θ−2ϕ2 = 1. Thus we compose the inverse with ϕ to
obtain the correlation

ρ = ϕθ−1 = θ−1ϕ :

{
(

a, `, a′, `′, a′′
)

7→
[

aθ, `θ−1

, a′θ, `′θ
−1

, a′′θ
]

[

k, b, k′, b′, k′′
]

7→
(

kθ−1

, bθ, k′θ
−1

, b′θ, k′′θ
−1)

,
(1.23)

which then has order 2 and is therefore a polarity.
Finally, we identify certain subgroups of G2(q).
Let {x, y} be a flag in H(q). For each z 6= x incident with y, let

Uz = {w ∈ H(q) | d(w, x) = 6 and w . y = z}

be the set of elements opposite x and at distance 4 from z. We call this the z-projection
set for the flag {x, y}. Since each element w opposite x has a unique projection onto y, the
z-projection sets partition the set Γ6(x) of elements opposite x. In addition, since H(q) is
a Moufang hexagon, the root group corresponding to a length 4 path x, y′, . . . , with y′ 6= y,
acts transitively on the set of elements z 6= x incident with y, so the z-projection sets
all have the same size. Finally, since there are q elements z 6= x incident with y and q5

elements opposite x, we have |Uz| = q4.
For a flag {x, y} in H(q), let G{x,y} be the group of collineations that fix both elements

of the flag elementwise. For an element x of H(q), let Gx =
〈

G{x,y}
∣

∣ y I x
〉

be the
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group generated by all collineations that fix x, as well as some element incident with x,
elementwise.

The following result concerning these groups is due to Weiss. Here we state it in our
current context.

Theorem 1.23 (Weiss [Wei79, Lemmas 1 and 2])
Let {x, y} be a flag and let γ be a length 4 path x, z, . . . with z 6= y. Then the groups E(γ)
and G{x,y′}, with y′ 6= y, and therefore Gx as well, all induce the same regular permutation
group on the set Γ1(y) \ {x} of elements distinct from x that are incident with y. �

Let x0, x1, . . . , x8 be a path with (x4, x5) = (x, y), and for 0 ≤ i ≤ 4, let γi be the path
xi, xi+1, . . . , xi+4. Then G{x,y} = E(γ1)E(γ2)E(γ3)E(γ4) by [VM98, Lemma 5.2.3(i)].
Also, by [VM98, Lemma 5.2.4(ii)], H = E(γ0)G{x,y} is a group that acts regularly on
the set Γ6(x) of elements opposite x. Notice that the root group E(γ0) is a subgroup
of G{x,x3}, which is one of the generators of Gx, so H 6 Gx.

Now suppose g ∈ Gx fixes some element w opposite x. Since x is fixed elementwise,
every apartment on x and w is fixed. In particular, the element w . y is fixed, so
by Theorem 1.23, y is fixed elementwise, and then from Lemma 1.7, g is the identity.
Thus Gx acts semiregularly on Γ6(x). It now follows that Gx = H and |Gx| = q5. In
addition, the group G{x,y}, as a subgroup of Gx, acts regularly on Uz and |G{x,y}| = q4.

Now we explicitly identify the groups when {x, y} is the flag {(∞), [∞]}. To begin,
we have just seen that

G(∞) = E(γPµ−2)G{(∞),[∞]} = E(γPµ−2)E(γL)E(γPµ−1)E(γLµ)E(γP )

and

G[∞] = E(γLµ2)G{(∞),[∞]} = E(γLµ2)E(γP )E(γLµ)E(γPµ−1)E(γL).

Thus a general element g of G(∞) has corresponding matrix

[g] = MP (w)
(

MML(y)M−1)(M−1MP (v)M
)

ML(x)
(

M−2MP (u)M2)

=





















1 u2w − x− 2uv y + vw 2uw − 2v v2 + uy + wx + uvw w −u
0 1 0 0 −w 0 0
0 0 1 0 u 0 0
0 u w 1 uw − v 0 0
0 0 0 0 1 0 0
0 u2 v 2u x + uv 1 0
0 2uw − v w2 2w uw2 − y − 2vw 0 1





















where u, v, w, x and y are arbitrary elements from GF (q). From here, the action of g is
found to be

(a, `, a′, `′, a′′) 7→ (a− u, ` + x− 3av + 3uv − 3a2w − 3u2w + 6auw,
a′ + v + 2aw − 2uw, `′ + y + 3aw2 − 3uw2 + 3a′w + 3vw, a′′ + w)

[k, b, k′, b′, k′′] 7→ [k, b + w + ku, k′ + y − kx− k2u3 − 3b2u− 3bku2 − 3bv − 3kuv,
b′ + v + ku2 + 2bu, k′′ + x− ku3 − 3bu2 − 3b′u].
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Since G(∞) acts regularly on the set of points opposite (∞), for each point (A,L, A′, L′, A′′)
there is a unique collineation in G(∞) that maps the point (0, 0, 0, 0, 0) onto it. We denote
this collineation by Ψ(A,L,A′, L′, A′′). From the action given above, we find u = −A,
w = A′′, v = A′ − 2AA′′, x = L + 3AA′ − 3A2A′′ and y = L′ + 3AA′′2 − 3A′A′′ so the
action of Ψ(A, L,A′, L′, A′′) is finally given by
(

a, `, a′, `′, a′′
)

7→
(

a + A, ` + L− 3aA′ − 3a2A′′, a′ + A′ + 2aA′′,

`′ + L′ + 3a′A′′ + 3aA′′2, a′′ + A′′)

[

k, b, k′, b′, k′′
]

7→
[

k, b + A′′ − kA, k′ + L′ − kL + k2A3 − 3bA′ + 3b2A− 3bkA2 − 3A′A′′

− 3kA2A′′ + 3AA′′2 + 6bAA′′, b′ + A′ + kA2 − 2bA− 2AA′′,

k′′ + L + kA3 − 3bA2 + 3b′A− 3A2A′′ + 3AA′]. (1.24)

Similarly, a general element h of G[∞] has corresponding matrix

[h] = ML(z)
(

M−1MP (v)M
)(

MML(y)M−1)MP (u)
(

M2ML(x)M−2)

=





















1 −z y + xz − 2uv −2v v2 + uz u 0
0 1 −x 0 −u 0 0
0 0 1 0 0 0 0
0 0 u 1 −v 0 0
0 0 0 0 1 0 0
0 0 v 0 z 1 0
0 −v u2 + vx 2u uv − y x 1





















where u, v, x, y and z are arbitrary elements from GF (q). Following the notation
of [BTVM98], we denote the unique element of G[∞] that maps the line [0, 0, 0, 0, 0] to
the line [K,B,K ′, B′, K ′′] by Θ[K,B,K ′, B′, K ′′]. Then, from the matrix above, we find
x = −K, u = B, v = B′, z = K ′′ and y = K ′ + KK ′′ + 3BB′ and the action of
Θ[K, B, K ′, B′, K ′′] is given by

(

a, `, a′, `′, a′′
)

7→
(

a, ` + K ′′ − a3K − 3a2B − 3aB′, a′ + B′ + a2K + 2aB,
`′ + K ′ + KK ′′ + `K + a3K2 + 3BB′ + 3aa′K + 3aB2

+ 3a′B + 3a2KB, a′′ + B + aK
)

[

k, b, k′, b′, k′′
]

7→
[

k + K, b + B, k′ + K ′ − kK ′′ − 3bB′, b′ + B′, k′′ + K ′′]. (1.25)

Finally, the group G{(∞),[∞]} is

G{(∞),[∞]} =
{

Ψ(0, L, A′, L′, A′′)
∣

∣ L,A′, L′, A′′ ∈ GF (q)
}

=
{

Θ[0, B, K ′, B′, K ′′]
∣

∣ B, K ′, B′, K ′′ ∈ GF (q)
}

,

where Ψ(0, L, A′, L′, A′′) = Θ[0, A′′, L′ − 3A′A′′, A′, L].
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Chapter 2

Spreads and Ovoids

In this chapter, spreads and ovoids of a generalized 2m-gon are defined and some general
facts about them are given. Following that, our attention is restricted to the case of H(q)
where there is a correspondence with certain m-systems of the embedding quadric. For
ease of investigation, spreads and ovoids are represented in terms of coordinates and then
certain known ones are described.

2.1 General introduction

The general idea behind spreads and ovoids is that of trying to select elements such that
they are spread out over the geometry and as far apart from each other as possible. The
farthest that two elements of a generalized 2m-gon can be from each other is opposite
each other, so this is what we require. Next, in order that these elements be, in some
sense, spread out well over the whole geometry we also ask that no other element of the
geometry should be too far away from the spread or ovoid. Recall that this motivation is
the same as that which underlies m′-systems of polar spaces and, in fact, for appropriate
values of m′ these were called spreads and ovoids as well. It is perhaps not surprising then
that there is a connection between the spreads and ovoids of H(q) and the m′-systems of
the underlying quadric P6. We now state matters more precisely.

A spread of a generalized 2m-gon Γ is a set S of mutually opposite lines such that
each element of Γ is at distance at most m from some line of S. Dually, an ovoid of a
generalized 2m-gon Γ is a set O of mutually opposite points such that each element of Γ
is at distance at most m from some point of O.

Rather than always referring back to this definition when dealing with spreads and
ovoids, the following two results provide useful characterizations of them. Although
stated specifically for spreads, these apply just as well for ovoids by dualization.

Lemma 2.1 ([VM98, Lemma 7.2.2])
Let S be a set of lines of a generalized 2m-gon Γ. Then S is a spread if and only if,
for m even, every point, and for m odd, every line of Γ lies at distance less than m from
a unique element of S. Moreover, if the lines in S are mutually opposite, then we can
replace “a unique” with “some”. �
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Lemma 2.2 ([VM98, Proposition 7.2.3])
A set S of mutually opposite lines in a finite generalized 2m-gon of order s is a spread if
and only if |S| = sm + 1. �

Let Γ be a generalized 2m-gon of order s and let S be a spread of Γ. Let L ∈ S be
some fixed line of S and let x I L be a point incident with it. We will write S+ for the
set S \ {L}. Now for elements z of Γ such that d = d(x, z) ≤ m and z . x 6= L, let

Vz = Vz(L, x) =
{

K ∈ S+
∣

∣ K .d x = z
}

(2.1)

be the set of lines in S whose minimum length paths to x pass via z. If z = x then Vz = S+

and if z I x then Vz = S ∩Uz, where Uz is the z-projection set for the flag {L, x}. We will
call the set Vz the spread projection set for z. Dually, we define the ovoid projection
sets Vz for an ovoid O and a flag {x, L} where x ∈ O. The following result and its proof,
stated here for spreads, dualize for ovoids.

Lemma 2.3
Let S be a spread of a generalized 2m-gon Γ of order s and let {L, x} be a flag in Γ
with L ∈ S. Let z be an element of Γ with d = d(x, z) ≤ m and z . x 6= L. Then
|Vz(L, x)| = sm−d.

Proof We use a backward induction on the value of d. Notice that since all the lines
K ∈ Vz are at distance 2m− 1 from x, we have d(K, z) = 2m− 1− d.

Suppose d = m. Since z is at distance m + 1 from L, if its distance from some other
line of S is less than m, then it must in fact be m − 1. Consequently, Vz is exactly the
set of lines of S at distance less than m from z. By Lemma 2.1 we now have |Vz| = 1.

Now suppose d < m and the result holds for d+ 1. Let A = Γ1(z) \ {L. z} be the set
of q elements u 6= L incident with z that are at distance d+1 from x. Then Vz =

⋃

u∈A Vu.
Also, for each K ∈ Vz the projection K . z is a uniquely determined element of A since
d(K, z) < 2m. Hence the sets Vu, for u ∈ A, form a partition of the set Vz and therefore
|Vz| =

∑

u∈A |Vu| = sm−d. �

Notice that this has actually provided a proof of the “only if” part of Lemma 2.2.
Consider now the generalized hexagon H(q). By Lemma 2.2, spreads and ovoids

of H(q) contain precisely q3 + 1 elements, which is also the number of elements in an
m-system of the underlying quadric P6. In fact, m-systems of P6 they are, as we shall see
now. For the ovoid case m = 0, see [Tha81], and for the spread case m = 1, see [ST94].

First we consider an ovoid O of the generalized hexagon H(q). The points of O are
mutually opposite so by Theorem 1.13, no two of them are collinear in the quadric. Thus
any generator of P6 containing a given point of O does not contain any other point of O.
Since by the dual of Lemma 2.2 the set O is the right size, it follows that O is a 0-system,
or an ovoid, of the quadric P6. Conversely, if O is an ovoid of P6 then for each point x
of H(q), by Theorem 1.8 its H(q)-plane contains a unique point of O, or equivalently,
it is at distance at most 2 in H(q) from a unique point of O. Therefore, by the dual of
Lemma 2.1, O is an ovoid of H(q).

Notice also that the H(q)-planes of the points of an ovoid O of H(q) are mutually
disjoint as a point common to two H(q)-planes would be at distance 2 from the two
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corresponding points of O. Since there is the right number of them, these H(q)-planes
form a 2-system, or a spread, of the quadric P6.

Now consider a spread S of the generalized hexagon H(q). The lines of S are mutually
opposite, so by Theorem 1.15, no generator of P6 on one line of S meets any other line
of S. Since S contains the right number of lines by Lemma 2.2, it follows that S is a
1-system of P6.

We summarize this in the following lemma.

Lemma 2.4
Let O be a set of points of H(q), or equivalently, of P6, and let S be a set of lines of H(q).
If S is a spread of H(q) then it is also a 1-system of the quadric P6. The set O is an ovoid
of H(q) if and only if it is an ovoid of P6. If O is an ovoid of H(q) then the H(q)-planes
of its points form a spread of P6. �

2.2 Coordinates for spreads and ovoids

Let S be a spread of H(q) and let the hat-rack of the coordinatization be chosen such
that the lines [∞] and [0, 0, 0, 0, 0] are lines of S. The lines of S opposite [∞] then each
have five coordinates and we write S+ for the set of these lines. Thus S = S+ ∪ {[∞]}
and we have

S+ =
{

[x, y, z, f, g]
∣

∣ x, y, z, f, g ∈ GF (q), subject to some constraints
}

. (2.2)

We can endeavour to say something about the constraints mentioned above by noting
that not only are the lines [x, y, z, f, g] opposite [∞], but they are also opposite each
other. By Lemma 1.22, the lines [x, y, z, f, g] and [x, y, Z, F,G] are opposite if and only
if z 6= Z. Thus the ordered triples (x, y, z) in (2.2) are distinct for the lines of S+, or
in other words, the lines of S+ are uniquely determined by their triples (x, y, z). There
are exactly q3 such triples and exactly q3 lines in S+, so it follows that every ordered
triple (x, y, z) determines a unique line of the spread. Thus the spread S takes the form

S =
{

[∞]
}

∪
{

[x, y, z, f(x, y, z), g(x, y, z)]
∣

∣ x, y, z ∈ GF (q)
}

, (2.3)

where f and g are functions dependent upon x, y and z, with f(0, 0, 0) = g(0, 0, 0) = 0.
Notice that the representation (2.3) also follows from Lemma 2.3 which tells us that
the spread projection set V[x,y,z]([∞], (∞)) contains exactly one element for each ordered
triple (x, y, z).

Now we repeat these steps for an ovoid O of H(q). Suppose first, without loss of
generality, that the hat-rack of the coordinatization is chosen such that the points (∞)
and (0, 0, 0, 0, 0) are points of O. Then setting O+ = O \ {(∞)}, we have

O+ =
{

(x, y, z, f, g)
∣

∣ x, y, z, f, g ∈ GF (q), subject to some constraints
}

. (2.4)

By Lemma 1.21, the points (x, y, z, f, g) and (x, Y, z, F,G) are opposite if and only if
(g−G)(y−Y ) 6= 0, thus similarly to the case for spreads, we have that the ovoid O takes
the form

O =
{

(∞)
}

∪
{

(x, y, z, f(x, y, z), g(x, y, z))
∣

∣ x, y, z ∈ GF (q)
}

(2.5)
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where f(0, 0, 0) = g(0, 0, 0) = 0. As in the case of spreads, this also follows from
Lemma 2.3.

We have just used the fact that (g − G)(y − Y ) 6= 0 implies y 6= Y , but this also
means of course that g 6= G. Thus there is also a one-to-one correspondence between the
points of O+ and the ordered triples (x, z, g) in (2.4). After renaming the variables, an
alternative coordinate representation of the ovoid O is then

O =
{

(∞)
}

∪
{

(x, f(x, y, z), z, g(x, y, z), y)
∣

∣ x, y, z ∈ GF (q)
}

, (2.6)

where again f and g are functions such that f(0, 0, 0) = g(0, 0, 0) = 0.
The smallest split Cayley hexagon is H(2) and one might expect that its structure

is sufficiently trivial that it cannot have much variety in spreads or ovoids. In fact, we
know from [Tha81] that H(2) does not have any ovoids. For the case of spreads, we now
use coordinates for our proof of the following result from folklore.

Theorem 2.5
The generalized hexagon H(2) has a unique spread up to isomorphism.

Proof Let us suppose that S is a spread of H(2) as given by (2.3) with f(0, 0, 0) =
g(0, 0, 0) = 0. Applying the collineation Ψ(1, 0, 0, 0, 0) (see page 31), we obtain another
(possibly identical) spread

S ′ =
{

[∞]
}

∪
{

[x, y, z, F (x, y, z), G(x, y, z)]
∣

∣ x, y, z ∈ GF (2)
}

,

where F (x, y, z) = f(x, x + y, z + x + y + xy) + x and G(x, y, z) = f(x, x + y, z + x +
y + xy) + g(x, x + y, z + x + y + xy) + y. In particular, F (0, 0, 0) = G(0, 0, 0) = 0 also so
whatever properties we find must be satisfied by S, f and g must also be satisfied by S ′,
F and G.

From Lemma 1.22 taken in the context of GF (2), the condition for two lines
[k, b, k′, b′, k′′] and [K, B, K ′, B′, K ′′] to be opposite is

(∆b + ∆k∆b′)(∆b′ + ∆b∆k′′) + (∆k′ + k′′∆k + B′∆b)(∆k′ + K ′′∆k + b′∆b) = 1. (2.7)

Let us refer to the line [x, y, z, f(x, y, z), g(x, y, z)] of S as `(x, y, z). The lines `(1, 0, 0),
`(0, 1, 0) and `(1, 1, 0) are opposite `(0, 0, 0) so we use the condition in (2.7) to obtain

f(1, 0, 0) = 1, (2.8)
f(0, 1, 0) + g(0, 1, 0) = 1, (2.9)

g(1, 1, 0) = 1. (2.10)

Since these must also hold true for F and G, we then have

f(1, 1, 1) = 0, (2.11)
g(0, 1, 1) = 0, (2.12)

f(1, 0, 1) + g(1, 0, 1) = 0. (2.13)

The lines `(1, 0, 0) and `(0, 1, 0) are opposite so, using (2.8) and (2.9),

f(0, 1, 0) = 1 and g(0, 1, 0) = 0, (2.14)
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and by considering F (0, 1, 0) = 1 we also have

f(0, 1, 1) = 1. (2.15)

The lines `(1, 0, 0) and `(0, 1, 1) are opposite so, using (2.8), (2.12) and (2.15),

g(1, 0, 0) = 1, (2.16)

and then also G(1, 0, 0) = 1 so, using (2.11), we have

g(1, 1, 1) = 1. (2.17)

Considering the lines `(1, 1, 0) and `(0, 1, 1) and using (2.10), (2.12) and (2.15), we have

f(1, 1, 0) = 0, (2.18)

which taken in the context of S ′, together with (2.13), leads to

f(1, 0, 1) = 1 and g(1, 0, 1) = 1. (2.19)

Finally, since `(0, 0, 1) is opposite `(1, 0, 1), using (2.19) we have

f(0, 0, 1) + g(0, 0, 1) = 0,

and applying this relation to F and G gives us

f(0, 0, 1) = 0 and g(0, 0, 1) = 0. (2.20)

x y z f(x, y, z) g(x, y, z) by equations
0 0 0 0 0 initial assumption
0 0 1 0 0 (2.20)
0 1 0 1 0 (2.14)
0 1 1 1 0 (2.12) and (2.15)
1 0 0 1 1 (2.8) and (2.16)
1 0 1 1 1 (2.19)
1 1 0 0 1 (2.10) and (2.18)
1 1 1 0 1 (2.11) and (2.17)

Table 2.1: The functions f and g

Thus the functions f and g are uniquely determined for a spread S containing the
lines [∞] and [0, 0, 0, 0, 0]. In particular, we have found that f and g necessarily take
values as listed in Table 2.1. It is now easy to see that f(x, y, z) = x+y and g(x, y, z) = x,
so S =

{

[∞]
}

∪
{

[x, y, z, x + y, x]
∣

∣ x, y, z ∈ GF (2)
}

. �
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2.3 Hermitian spreads and ovoids

In this section we will describe the hermitian spreads of the generalized hexagon H(q),
which exist for all values of q, and then by dualizing when q = 3h we will obtain the
hermitian ovoids.

2.3.1 Hermitian spreads
We describe here the construction of the hermitian spreads given in [Tha80]. Let P6

be the embedding quadric of the generalized hexagon H(q) and let Π be a hyperplane
of PG(6, q) that meets P6 in an elliptic quadric Π ∩ P6 = E5. Let S be the set of lines
of H(q) that lie within Π and so are on the quadric E5. We shall see that this set of lines
is a spread of H(q).

Since E5 does not contain any planes, it follows from Theorem 1.15 that S is a set of
mutually opposite lines. Now let M be a line of H(q) that is not in the set S. Let x be
the unique point in which this line meets the hyperplane Π and let π be the H(q)-plane
of x. This plane π meets Π in a line L and since this is a line through x lying in the
H(q)-plane of x it follows that L is a line of the generalized hexagon H(q). Therefore L
is a line of S with d(L,M) = 2. Hence every line of H(q) is at distance at most 2 from
some line of S so it follows from Lemma 2.1 that S is a spread of H(q). Such a spread S
that is comprised of the lines of H(q) that lie in a hyperplane meeting P6 in an elliptic
quadric E5 is called a hermitian spread.

The reason for the name of this spread is made clearer by an alternative construction
that is described in [VM96]. The hexagon H(q) is embedded in H(q2) and θ is taken to
be an involution of H(q2) that fixes H(q) pointwise. If L and M are two opposite lines
of H(q) and p I L is a point of H(q2) such that p 6= pθ, then by [Ron80, Theorem 6.12] there
is a unique weak subhexagon Γ′ of H(q2) with order (1, q2) that contains p and pθ.M . The
set S of lines of Γ′ that are fixed by θ then form the spread. But Γ′ is isomorphic to the
incidence graph of PG(2, q2), so for each line of S there corresponds a flag in PG(2, q2),
and these are the points of a hermitian curve together with their corresponding tangents.

Consider two lines L and M of a hermitian spread S with defining hyperplane Π. Since
the lines L and M are in Π, the 3-dimensional space that they generate, and therefore
the line regulus R(L, M), is also contained within Π. Thus the lines of R(L,M) are all
lines of the spread S as well.

Let π be a generator of the quadric P6. Letting S̃ be the set of points that are incident
with lines of S, we then have π ∩ S̃ = π ∩Π, which is a line. Notice that S is actually a
1-system of E5 so this is an instance of what we have already seen earlier in Theorem 1.9.
Conversely, from that theorem we have that if S is a spread of H(q) with the property
that every generator of P6 meets the point set S̃ in a line, then S lies in a hyperplane Π
that meets the P6 in an elliptic quadric E5, so S is a hermitian spread. We state a slightly
refined version of this in our next theorem.

Theorem 2.6
Let S be a spread of H(q) and let S̃ be the set of points incident with the lines of S.
Then the intersection π∩S̃ is a line for every H(q)-plane π if and only if S is a hermitian
spread.
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Proof We have already seen that if S is a hermitian spread then it has this property.
Suppose then that S is a spread of H(q) for which this intersection property holds. Let π
be any generator of P6. By Lemma 2.4, S is a 1-system of P6 so from Theorem 1.8
the plane π meets S̃ in exactly q + 1 points. Let x and y be two of these points. By
Lemma 1.12 and Corollary 1.14, there is an H(q)-plane π′ on the line xy of P6. But π′

meets S̃ in a line and so, since the points x and y belong to S̃, the intersection π′ ∩ S̃ is
the line xy. Hence the plane π, which also contains the points x and y, meets S̃ in the
line xy as well. It now follows from Theorem 1.9 that S is contained in a hyperplane and
so is a hermitian spread. �

So we see that the hermitian spreads are characterized by the property of meeting the
full set of H(q)-planes in lines. A natural way to try to improve on such a characterization
is to reduce the number of H(q)-planes from all to just some.

Theorem 2.7
Let S be a spread of H(q) and let S̃ be the set of points on the lines of S. Let L and M
be two lines of S. Then the intersection π∩ S̃ is a line for every H(q)-plane π that meets
either L or M if and only if S is a hermitian spread.
Proof The reverse implication, that hermitian spreads satisfy this property, is a con-
sequence of the previous theorem. Suppose then that S is a spread with the given
property. As in the proof of Theorem 2.6, the spread S then has this property not only
for H(q)-planes meeting either L or M , but for all generators of P6 that meet one of
these lines. It now follows from Theorem 1.11 that S lies in a hyperplane and so is a
hermitian spread. �

2.3.2 Coordinates

Now we will find a coordinate respresentation for the hermitian spreads. Without loss
of generality, we assume that the lines [∞] and [0, 0, 0, 0, 0] are included in the spread.
In particular, every hermitian spread of H(q) is isomorphic in H(q) to one that contains
these two lines. The defining hyperplane Π then has the form νX1 − µX3 + λX5 = 0.
Recall from (1.9) that the quadric P6 in which H(q) is embedded is given by the equation
X0X4 +X1X5 +X2X6−X2

3 = 0. If λ = 0, the hyperplane νX1−µX3 = 0 intersects P6 in
the quadric with equation νX0X4 + νX2X6 + (µX5 − νX3)X3 = 0, which is hyperbolic,
not elliptic. Thus λ 6= 0. Hence we may suppose that Π is given by the equation

νX1 − µX3 + X5 = 0. (2.21)

Let us denote the hermitian spread obtained from the hyperplane Π by SH(µ, ν).
The intersection of Π with P6 is given by the equation

X0X4 + X2X6 −
(

νX2
1 − µX1X3 + X2

3

)

= 0,

which is an elliptic quadric if and only if the polynomial f(x) = x2−µx+ν is irreducible.
If q is odd, this means that the discriminant µ2 − 4ν is a nonsquare, so for each choice
of µ there are (q − 1)/2 choices for ν. If q is even, then f(x) is irreducible precisely
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when µ 6= 0 and the trace of ν/µ2 is 1. For each of the q − 1 choices of µ there are
then q/2 choices for ν. Either way, we see that there are q(q − 1)/2 hermitian spreads
containing two given opposite lines.

Let [k, b, k′, b′, k′′] be a line of H(q). This line belongs to the spread SH(µ, ν) if and
only if it lies within the hyperplane Π. Using the coordinates in PG(6, q), this is seen to
be true precisely when the following two equations hold:

νk − µb + b′ = 0
−νb + µb′ + k′′ = 0.

(2.22)

Solving these for b′ and k′′, we have from (2.3) that

SH(µ, ν) =
{

[∞]
}

∪
{

[x, y, z,−νx + µy, µνx− (µ2 − ν)y]
∣

∣ x, y, z ∈ GF (q)
}

=
⋃

x,y∈GF (q)

[[

x, y,−νx + µy, µνx− (µ2 − ν)y
]]

, (2.23)

where the latter expresses the spread as a union of line reguli.
Notice that if γ = µ2 − ν 6= 0 then we can solve the equations (2.22) for b and b′.

This certainly is true when the polynomial g(x) = x2 − µx + µ2 is reducible as then
the irreducibility of f(x) = x2 − µx + ν assures us that g(x) 6= f(x) and so µ2 6= ν.
Equivalently, we know γ 6= 0 when (1/µ2)g(µx) = x2 − x + 1 is reducible, and by
Corollary 1.2, this occurs precisely when q 6≡ 2 (mod 3). Consequently, whenever γ =
µ2 − ν 6= 0, we can also represent the spread as

SH(µ, ν) =
{

[∞]
}

∪
{

[x, γ−1(µνx− y), z, γ−1(ν2x− µy), y]
∣

∣ x, y, z ∈ GF (q)
}

=
⋃

x,y∈GF (q)

[[

x, γ−1(µνx− y), γ−1(ν2x− µy), y
]]

, (2.24)

and in particular, this is always so when q 6≡ 2 (mod 3).

2.3.3 Uniqueness

We have already remarked that every hermitian spread of H(q) is isomorphic in H(q) to
some SH(µ, ν) where f(x) = x2− µx + ν is irreducible. Now we will explicitly describe a
group of collineations of H(q) that acts transitively on the set of all these spreads SH(µ, ν)
to show that, in fact, the hermitian spreads are all isomorphic in H(q).

Let ϕ(y, K) = E(γP µ̃−2, K)T (y, 1) be the composition of the elation E(γP µ̃−2, K)
followed by the generalized homology T (y, 1), where here µ̃ represents the collineation
corresponding to the matrix M on page 27. The parameter K is then any element
of GF (q) and y is any nonzero element. This collineation fixes (∞) and [∞] and its
action is given by

(

a, `, a′, `′, a′′
)

7→
(

ya− yK, y3`, y2a′, y3`′, ya′′
)

[

k, b, k′, b′, k′′
]

7→
[

k, y(b + kK), y3(k′ − k2K3 − 3b2K − 3bkK2),

y2(b′ + kK2 + 2bK), y3(k′′ − kK3 − 3bK2 − 3b′K)
]

.
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These collineations form a group G with composition given by

ϕ(y, K)ϕ(z, L) = ϕ(yz,K + y−1L).

By considering the action on the point (0, 0, 0, 0, 1), it readily follows that we have
ϕ(y,K) = ϕ(z, L) if and only if (y, K) = (z, L), so these collineations are distinct.
Therefore |G| = q(q − 1).

Let Π be the hyperplane given by the equation (2.21), which then determines the
hermitian spread SH(µ, ν) with f(x) = x2−µx+ν the associated irreducible polynomial.
Working in PG(6, q), the hyperplane Π is mapped by ϕ(y, K) to the hyperplane whose
equation is

y2f(−K)X1 − y(µ + 2K)X3 + X5 = 0.

Thus ϕ(y, K) fixes Π, and therefore SH(µ, ν) as well, if and only if

µ = y(µ + 2K) and ν = y2f(−K). (2.25)

Upon expanding f(−K), eliminating y and then factoring again, this becomes

(µ2 − 4ν)(µ + K)K = 0.

When q is odd, the factor µ2 − 4ν is the discriminant of f(x), and when q is even, it is
just µ2. In both cases, this factor is nonzero so we conclude that either K = 0 or K = −µ.
Substituting these values, in turn, into the former equation of (2.25) and solving for y
we find that ϕ(1, 0) and ϕ(−1,−µ) are the only collineations in G that stabilize the
hermitian ovoid SH(µ, ν). These are certainly distinct, as when q is odd −1 6= 1 and
when q is even µ 6= 0.

The number of spreads in the orbit of SH(µ, ν) under the action of G is given by the
quotient of the order of the group G and the order of the stabilizer in G of SH(µ, ν), and
thus it is q(q − 1)/2. This is also the total number of hermitian spreads on the lines [∞]
and [0, 0, 0, 0, 0] so it follows that G acts transitively on the set of all these hermitian
spreads. This proves the following fact which, although well known and often implicitly
used, seems rarely to be stated or demonstrated explicitly.

Theorem 2.8
The hermitian spreads of the generalized hexagon H(q) are isomorphic. �

In view of this theorem, we will frequently just write SH for an arbitrary representative
in the single equivalence class of all hermitian spreads. Hence we will take such expressions
as S = SH to mean that S is a hermitian spread.

2.3.4 Hermitian ovoids

Let us now turn our attention to ovoids. The following only applies when q = 3h so
that H(q) is self-dual. We define a hermitian ovoid to be an ovoid that is the dual of
a hermitian spread. Recall that for any two lines L and M of a hermitian spread S, all
the lines of the line regulus R(L, M) are also in S. Dualizing, for any two points x and y
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of a hermitian ovoid O, all the points of the point regulus R(x, y) are also in O. Also,
the dual of Theorem 2.8 asserts that all hermitian ovoids are isomorphic. Similarly to
the case of spreads above, we will use OH to indicate an arbitrary hermitian ovoid and
such expressions as O = OH will be interpreted to mean that O is a hermitian ovoid.

To obtain a coordinate representation for the hermitian ovoids, we apply the duality
given in (1.22) to the representation of SH(µ, ν) that we found in (2.24), which certainly
does apply since q 6≡ 2 (mod 3). The resulting hermitian ovoid we denote by OH(µ3, ν3).
Notice that this duality maps the lines [∞] and [0, 0, 0, 0, 0] to the points (∞) and
(0, 0, 0, 0, 0) respectively, so the hermitian ovoids OH(µ3, ν3) are those containing these
two points. Thus the hermitian ovoids containing the points (∞) and (0, 0, 0, 0, 0) are

OH(µ, ν) =
{

(∞)
}

∪
{

(x, γ−1(µνx3 − y3), z, γ−1(ν2x3 − µy3), y)
∣

∣ x, y, z ∈ GF (q)
}

=
⋃

x,y∈GF (q)

((

x, γ−1(µνx3 − y3), γ−1(ν2x3 − µy3), y
))

, (2.26)

where γ = µ2 − ν is the discriminant of the irreducible polynomial f(x) = x2 − µx + ν
and so is a nonsquare, and the latter representation expresses the ovoid as the union of
point reguli.

Finally, we apply the duality to the collineations ϕ(y,K) to obtain collineations
ψ(y3, K3) which form a group of order q(q− 1) that acts transitively on the set of hermi-
tian ovoids OH(µ, ν). After relabelling, we then have ψ(y, K) = E(γLµ2, K)T (1, y) and
its action is given by

(

a, `, a′, `′, a′′
)

7→
(

a, y(` + a3K), y(a′ − a2K), y2(`′ + a3K2 − `K), y(a′′ − aK)
)

[

k, b, k′, b′, k′′
]

7→
[

yk − yK, yb, y2k′, yb′, yk′′
]

.

2.4 Ree-Tits spreads and ovoids

Let ρ be a polarity of the generalized hexagon H(q), so by Theorem 1.20 the order
is q = 32e+1. Let S be the set of absolute lines and O the set of absolute points of ρ.
By [CPT76] (see also [VM98, Proposition 7.2.5]), the set S is a spread of H(q) and this
is known as a Ree-Tits spread. Similarly, the set O is an ovoid called a Ree-Tits
ovoid. By [VM98, Lemma 7.7.1 and Theorem 7.7.2], all spreads obtained in this way are
isomorphic in H(q) and likewise all such ovoids are isomorphic. We will write SR for an
arbitrary Ree-Tits spread and OR for a Ree-Tits ovoid. Thus such statements as S = SR

will be interpreted as meaning that S is a Ree-Tits spread.
We now find a coordinate representation for a Ree-Tits spread S. We use the polarity ρ

arising from the Tits automorphism θ as given in (1.23). In particular, we then have
[

k, b, k′, b′, k′′
]ρ =

(

kθ−1
, bθ, k′θ

−1
, b′θ, k′′θ

−1)

. Notice that [∞]ρ = (∞) so [∞] is a line of S
and the other lines of S then each have five coordinates. Since the characteristic is 3, we
use the relations for incidence given in (1.15a) to find that the line [k, b, k′, b′, k′′] is an
absolute line precisely when

b = k′′θ
−1

− k1+θ−1

and b′ = k′θ
−1

+ kθ−1

k′′θ
−1

+ k1+2θ−1

.
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Thus

S =
{

[∞]
}

∪
{[

k, k′′θ
−1

− k1+θ−1

, k′,

k′θ
−1

+ kθ−1

k′′θ
−1

+ k1+2θ−1

, k′′
] ∣

∣ k, k′, k′′ ∈ GF (q)
}

. (2.27)

Either by repeating the same steps for ovoids or by applying the duality given in (1.22),
we similarly find that a Ree-Tits ovoid O is given by

O =
{(

∞
)}

∪
{(

a, a′′θ− a3+θ, a′, a′θ+ aθa′′θ+ a3+2θ, a′′
) ∣

∣ a, a′, a′′ ∈ GF (q)
}

.

This is identical to the representation given in [VM98, §7.7.5] of a Ree-Tits ovoid.

2.5 Locally hermitian spreads and ovoids

Here we will consider spreads and ovoids that, from the standpoint of a single line or
point, seem somewhat similar to the hermitian spreads and ovoids. Since hermitian
spreads exist for all values of q, whereas the hermitian ovoids only exist for q = 3h,
spreads seem to be the more natural context for exploring the concept of being locally
hermitian, so it is with spreads that we shall start. After defining precisely what is
meant by a locally hermitian spread, some general properties of these spreads will be
given, including a coordinate condition to help us recognize when we have such a spread,
and then the known ones for q 6= 3h will be described. Finally, locally hermitian ovoids
will be discussed and the known ones will be given, and hence, the remaining known
locally hermitian spreads will be given as well.

2.5.1 Locally hermitian spreads

Let S be a hermitian spread. Recall that for any pair of lines L and M in S, all the
lines of the line regulus R(L, M) are also included in S. Also recall that for each line K
in R(L,M), the line regulus R(L,K) is the same as R(L,M). Thus in particular, if we
fix the line L then S is the union of q2 distinct line reguli on L. This essentially describes
what a hermitian spread “looks like” from a line.

Now let S be any spread of H(q) and let L be one of its lines. We say that S is
locally hermitian with respect to the line L if, for every other line M of S, all the lines
of R(L,M) are also in S. Thus the spread S is the union of q2 distinct line reguli on L
and from this line it essentially looks like a hermitian spread.

In the above, while providing the motivation for the concept of locally hermitian, we
have seen that a hermitian spread is locally hermitian with respect to each of its lines. In
fact, hermitian spreads are characterized by this property of being locally hermitian with
respect to every line, but one can do much better. Here we provide an independent proof
of the following theorem that uses only the geometry of the embedding quadric of H(q).

43



CHAPTER 2. SPREADS AND OVOIDS

Theorem 2.9 (Bloemen, Thas, Van Maldeghem [BTVM98, Theorem 9])
A spread of H(q) that is locally hermitian with respect to two distinct lines is hermitian.

Proof Let S be a spread that is locally hermitian with respect to the line L. Let π
be any H(q)-plane that meets L in a point. By Lemma 2.4, S is a 1-system of P6 so
by Theorem 1.8 there is another line M of S meeting π in a point. Let x and y be the
points in which π meets these lines L and M . Since S is locally hermitian with respect
to L, all the lines of the line regulus R(L,M) are in S as well. But R(L,M) is a regulus
in P6 with xy a line of the opposite regulus, so for each point on the line xy there is
a line of R(L,M), and hence S, that is incident with it. Since π was arbitrary among
H(q)-planes meeting L, we see that every such H(q)-plane meets the lines of S in a set
of collinear points. The result now follows from Theorem 2.7. �

Just as this theorem characterizes hermitian spreads, the next result is a similar one
that characterizes locally hermitian spreads. We say that a spread S is point locally
hermitian with respect to a point x incident with a line K of S if, for every pair of
lines L and M of S \ {K} with L .2 x = M .2 x, the points x, x . L and x . M are
collinear in the quadric P6 (see Figure 2.2). For an equivalent description, notice first

K
M L

x

L.2x=M.2x

x.M x.L

Figure 2.2: Point locally hermitian.

that for each line L 6= K of S there is a unique line Lx in the opposite regulus of R(K, L)
that passes through x. Although a line of P6, this line Lx is not a line of H(q). Now S
is point locally hermitian with respect to x if and only if for every line L 6= K in S, the
points of Lx are all incident with lines of S.

The following theorem and proof are a portion of the proof of [BTVM98, Theorem 6].

Theorem 2.10 (Bloemen, Thas, Van Maldeghem [BTVM98, Theorem 6])
A spread S of H(q) that is point locally hermitian with respect to two distinct points on
a common line K is locally hermitian with respect to K.

Proof Suppose S is point locally hermitian with respect to the points x and y on K.
Let L be any other line of S, and let Lx and Ly be the lines of the opposite regulus
of R(K, L) through the points x and y, respectively. Let w be a point on Lx and let M
be the line inR(K, L) through w. This line M meets Ly in a point z. By the point locally
hermitian property, there are lines M ′ and M ′′ of S on the points w and z, but d(w, z) = 2
so we conclude that M ′ = M ′′ = M , which is in the line regulus R(K,L). Since w was
chosen arbitrarily from the points on Lx, all the lines of R(K, L) belong to S. Also, L
was chosen arbitrarily so it follows that S is locally hermitian with respect to K. �
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Now let us consider the coordinates of the lines in a spread S that contains the line [∞]
and is locally hermitian with respect to that line. Suppose [k, b, k′, b′, k′′] is a line of S.
Then all the lines of the line regulus (see (1.19))

[[k, b, b′, k′′]] = R
(

[∞], [k, b, k′, b′, k′′]
)

=
{

[∞]
}

∪
{

[k, b, x, b′, k′′] |x ∈ GF (q)
}

are also in S. In terms of the representation of a spread given in (2.3), this means that
the functions f(x, y, z) and g(x, y, z) are independent of z. Conversely, if these functions
are independent of z then S is locally hermitian. Thus S can be expressed in the form

S =
{

[∞]
}

∪
{

[x, y, z, f(x, y), g(x, y)]
∣

∣ x, y, z ∈ GF (q)
}

=
⋃

x,y∈GF (q)

[[

x, y, f(x, y), g(x, y)
]]

, (2.28)

where f(0, 0) = g(0, 0) = 0 and the second line expresses S as a union of line reguli.
Not any pair of functions f and g will serve to produce a spread and we will now find

conditions under which they do. We say that two line reguli on a common line, sayR(J, L)
and R(J,M), are compatible if each line other than J from either is opposite all the
lines of the other, or in other words, the two line reguli are distinct and the lines of the
set R(J, L) ∪R(J,M) are mutually opposite. Thus two line reguli are compatible when
it seems that they could feasibly belong to a spread.

Let J , L and M be any three pairwise opposite lines in H(q) and suppose that M is
opposite every line of the line regulusR(J, L). Since M does not meet any line ofR(J, L),
these three lines generate a five dimensional subspace Π. Let π be a generator of P6 on M .
By Theorem 1.15, the plane π does not meet any line of R(J, L) either and so does not
meet the three dimensional subspace Π3 generated by J and L at all. Since a plane
in the subspace Π must meet Π3, it follows that no generator of P6 on M is contained
in Π, so Π ∩ P6 is neither a hyperbolic quadric H5 nor a parabolic quadric cone Π0P4.
Consequently, Π meets P6 in a nondegenerate elliptic quadric E5. Now the line regulus
R(J,M) is contained within Π so each of its lines also has the property that no generator
of P6 on it meets any of the lines ofR(J, L); that is,R(J, L) and R(J,M) are compatible.
Thus, in order for two line reguli R(J, L) and R(J,M) to be compatible, it is sufficient
that the one line M be opposite every line of R(J, L).

Let us suppose the common line J is the line [∞] and let L and M be [k, b, k′, b′, k′′]
and [K, B, K ′, B′, K ′′], respectively. In view of the previous paragraph, to know when
the line reguli R(J, L) and R(J,M) are compatible, it is sufficient to only determine
when the line [K, B, 0, B′, K ′′] is opposite every line of R(J, L). In the following, we will
always use the convention that when two variables are represented by the same letter,
one lower case and one upper case, their difference is written as ∆x = x−X. Now from
the opposite line condition of Lemma 1.22, the lines [K, B, 0, B′, K ′′] and [k, b, x, b′, k′′]
are opposite when

x2 + (k′′∆k + K ′′∆k + 3b′∆b + 3B′∆b)x
+ (k′′∆k −∆b∆b′ + 3b′∆b)(K ′′∆k + ∆b∆b′ + 3B′∆b)

+ (∆b2 −∆k∆b′)(∆b′2 + ∆b∆k′′) 6= 0. (2.29)
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As x ranges over all of GF (q), the line [k, b, x, b′, k′′] ranges over all the lines ofR(J, L),
so the line reguli are compatible if and only if this inequality holds for every value of x.
Thus the given line reguli are compatible if and only if the quadratic in x in (2.29) is
irreducible, and hence Theorem 1.1 applies. To help make the following steps a little
clearer, let

A = k′′∆k + 3b′∆b, B = K ′′∆k + 3B′∆b,

C = ∆b∆b′, D = (∆b2 −∆k∆b′)(∆b′2 + ∆b∆k′′).

Then the quadratic in (2.29) can be rewritten as

x2 + (A + B)x + (A− C)(B + C) + D. (2.30)

For odd q, the discriminant is then

(A + B)2 − 4(A− C)(B + C)− 4D
= (A + B)2 − 4AB − 4(A−B)C + 4C2 − 4D
= (A−B)2 − 4(A−B)C + 4C2 − 4D
= (A−B − 2C)2 − 4D.

For even q, notice that the coefficient of x in (2.30) is simply A + B = ∆b∆b′ + ∆k∆k′′.
Next, since x2 + (A + B)x + AB = (x + A)(x + B) is reducible, the irreducibility of the
quadratic in (2.30) is equivalent to the irreducibility of x2+(A+B)x+(A+B)C+C2+D,
and the constant coefficient in this is

(∆b∆b′ + ∆k∆k′′)∆b∆b′ + ∆b2∆b′2 + (∆b2 + ∆k∆b′)(∆b′2 + ∆b∆k′′)

= ∆b2∆b′2 + ∆b3∆k′′ + ∆b′3∆k.

Thus, for odd q, the compatibility condition is

(∆b∆b′ + ∆k∆k′′)2 + 4(∆b′∆k −∆b2)(∆b∆k′′ + ∆b′2) = /�, (2.31a)

and for even q, it is the trace equation

Tr
(

∆b2∆b′2 + ∆b3∆k′′ + ∆b′3∆k
∆k2∆k′′2 + ∆b2∆b′2

)

= 1 (2.31b)

together with the requirement that the expression in the denominator in (2.31b) should
be nonzero.

For an immediate application of these compatibility conditions, we now show that a
locally hermitian spread can sometimes be given a coordinate representation similar to
that for ovoids in (2.6).

Let S be a locally hermitian spread with respect to the line [∞] and let [k, b, k′, b′, k′′]
and [K,B,K ′, B′, K ′′] be two lines of S. Suppose k = K and k′′ = K ′′. For odd q, by
the compatibility condition (2.31a) we have that if the two lines are not in the same line
regulus, then

∆b2∆b′2 − 4∆b2∆b′2 = −3∆b2∆b′2 = /�.
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When −3 is a square, that is, when q 6≡ 2 (mod 3) (see Corollary 1.2), this can never
occur. It follows that for such q, if (k, k′′) = (K,K ′′) then the two lines are in the same
line regulus. If instead q is even, then by (2.31b) we have Tr(1) = 1. If we have further
that q = 22e then in fact Tr(1) = 0 and so again the compatibility condition is not satisfied
when q 6≡ 2 (mod 3). As in the case for q odd, we conclude that the pair (k, k′′) uniquely
determines the line regulus of the spread S to which the line [k, b, k′, b′, k′′] belongs.

It now follows that if q 6≡ 2 (mod 3) then a spread S that is locally hermitian with
respect to the line [∞] can be represented by

S =
{

[∞]
}

∪
{

[x, f(x, y), z, g(x, y), y]
∣

∣ x, y, z ∈ GF (q)
}

=
⋃

x,y∈GF (q)

[[

x, f(x, y), g(x, y), y
]]

(2.32)

where f and g are functions dependent only upon x and y, and the latter representation
expresses S as a union of line reguli.

In addition to the hermitian spreads themselves, there are only two classes of locally
hermitian spreads known and these were both found in [BTVM98]. The first class exists
only for q = 3h, when H(q) is self-dual, and they were discovered by manipulating the
hermitian ovoid in the quadric. To reflect this, we leave their description for the context
of ovoids. It is the other class that we describe presently, although here we use an orig-
inal approach different from that used in [BTVM98] thereby describing an independent
rediscovery of these spreads.

Let q be odd and let S be a locally hermitian spread as represented in (2.28). Notice
from (2.23) that the hermitian spread SH(0,−γ), where γ is a nonsquare, corresponds
to the functions f(x, y) = γx and g(x, y) = −γy. We consider what happens when the
coefficient in f(x, y) is changed to another nonsquare, say a2γ.

We have f(x, y) = a2γx and g(x, y) = −γy with a 6= 0. Substituting into the
compatibility condition (2.31a), we find that

(

a2 − 1
)2γ2x2y2 + 4

(

a2γx2 − y2)(−γy2 + a4γ2x2)

=
(

1− 6a2 − 3a4)γ2x2y2 + 4a6γ3x4 + 4γy4

must be a nonsquare for all values of (x, y) 6= (0, 0). Putting X = 2a3γx2 and Y = 2y2,
this becomes

γ
(1− 6a2 − 3a4

4a3 XY + X2 + Y 2
)

.

If the coefficient of XY inside the brackets is 2, then this is γ(X + Y )2 so we are
certainly guaranteed that this will always be a nonsquare for all (x, y) 6= (0, 0) so long
as we never have X = −Y . But X = −Y is equivalent to

(

y/ax
)2 = −aγ and there

are values of x and y for which this occurs precisely when −a is a nonsquare. Thus we
require that −a be a nonzero square. Now setting the coefficient of XY to 2 and solving
for a we have

1− 6a2 − 3a4

4a3 = 2 ⇔ 3a4 + 8a3 + 6a2 − 1 = 0 ⇔ (a + 1)3(3a− 1) = 0.

47



CHAPTER 2. SPREADS AND OVOIDS

The solution a = −1 is valid as −a is a nonzero square, and this returns us to the
hermitian spread. However, the solution a = 1/3, which is valid only for q ≡ 1 (mod 3)
when−3 is a nonzero square (see Corollary 1.2), gives a new spread. Setting the coefficient
of XY to −2, in which case we require that we never have X = Y , or equivalently, that a
is a nonzero square, leads to the solutions a = 1 and a = −1/3, and so ultimately to the
same spreads.

Thus, apart from the hermitian spread, the only other spread of the sought form is
obtained by setting f(x, y) = 1

9γx when q ≡ 1 (mod 3), and we call this spread S[9] in
accordance with [BTVM98] where it was first discovered; the derivation here, however,
describes an independent rediscovery of the same. Notice that this spread contains the
lines [∞] and [0, 0, 0, 0, 0] and yet does not correspond to any SH(µ, ν), so it certainly is
not a hermitian spread. Also, it is easy to see from the representation given in (2.27) that
that Ree-Tits spread is not locally hermitian with respect to the line [∞]. Since its au-
tomorphism group acts transitively on its lines (in fact, doubly transitively—see [VM98,
Theorem 7.7.6]), it follows that a Ree-Tits spread is not locally hermitian with respect
to any of its lines, so S[9] is not a Ree-Tits spread either.

Thus S[9] is genuinely another spread and it is given by

S[9] =
⋃

x,y∈GF (q)

[[

x, y, 1
9γx,−γy

]]

.

2.5.2 Locally hermitian ovoids

Let O be an ovoid of the generalized hexagon H(q) and let x be some point of O.
Let O+ = O\{x} be the points of O opposite x. Dualizing the notion of locally hermitian
spread, we say that the ovoid O is locally hermitian with respect to the point x if for
every point y in O+, all the points of the point regulus R(x, y) are also in O. Thus O is
the union of q2 point reguli on x.

Two point reguli R(x, y) and R(x, z) on a common point x are compatible if for
each point u ∈ R(x, y) and v ∈ R(x, z), with v 6= x, we have d(u, v) = 6. Thus q2

point reguli on a common point form a locally hermitian ovoid if and only if they are
mutually compatible. In analogy with the conditions for compatibility of line reguli given
in (2.31a) and (2.31b), we now find conditions for the compatibility of point reguli.

Let ((a, `, `′, a′′)) and ((A,L, L′, A′′)) be two point reguli of H(q) on (∞). Recall
from (1.20) that the point regulus ((a, `, `′, a′′)) is

((a, `, `′, a′′)) =
{

(∞)
}

∪
{

(a, `, x, `′ + 3a′′x, a′′) | x ∈ GF (q)
}

.

Keeping the earlier convention that ∆x = x − X, from the opposite point condition in
Lemma 1.21, our point reguli are compatible if and only if

(a′′∆a + ∆x)(A′′∆a + ∆x)−∆a(∆`′ + 3a′′x− 3A′′X) + ∆a′′∆`− 3∆a(xA′′ − a′′X)

is nonzero for all x,X ∈ GF (q). After some rearrangement, this can be expressed as

∆x2 − 2(a′′ + A′′)∆a∆x + a′′A′′∆a2 −∆a∆`′ + ∆a′′∆`,
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which is a quadratic in ∆x. That this must be nonzero for all x,X ∈ GF (q) is now
equivalent to this polynomial being irreducible. This certainly never occurs when q is
even as the coefficient of ∆x is zero, so this constitutes a proof that there are no locally
hermitian ovoids in H(q) when q is even, although we already know from [Tha81] that
there are, in fact, no ovoids at all in this case. Therefore, we assume q is odd. By The-
orem 1.1, the irreducibility of this polynomial, and hence the compatibility of the point
reguli, corresponds to the discriminant being a nonsquare; that is, the compatibility
condition is

∆a2∆a′′2 + ∆a∆`′ −∆a′′∆` + 3a′′A′′∆a2 = /�. (2.33)

Finally, we discuss the known locally hermitian ovoids. When q = 3h, there are
the hermitian ovoids, which are locally hermitian with respect to every one of their
points. The only other known locally hermitian ovoids, discovered by Bloemen, Thas
and Van Maldeghem in [BTVM98], are obtained from these and so exist only for these
values of q. Also, the duals of these ovoids complete the list of known locally hermitian
spreads.

The principle used in [BTVM98] for the construction of new ovoids of H(q) is as
follows. Let O be an ovoid of H(q). Then O is also an ovoid of P6 by Lemma 2.4. Now
if θ is an automorphism of the quadric P6, then the set Oθ is another ovoid of P6 and so,
by Lemma 2.4, it is also an ovoid of H(q). But if θ is chosen so that it does not preserve
the generalized hexagon, then O and Oθ may not be isomorphic in H(q). Applying this
technique to the hermitian ovoids and the Ree-Tits ovoids gave ovoids that were new
in H(q), although not in the quadric. However, since q = 3h for these, a duality was
applied and the new spreads of H(q) thus obtained did provide new 1-systems of P6.
See [BTVM98] for more details. Notice that the map θ might not map point reguli to
point reguli, so many of the new ovoids Oθ obtained from a hermitian ovoid O are not
locally hermitian. Here however, we restrict our attention to those that are.

Let O = OH(µ, ν) be a hermitian ovoid and let θ be the automorphism of P6 whose
matrix is





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 −λ 0 0 1 0
0 λ 0 0 0 0 1





















(2.34)

with λ 6= 0. Considering Plücker coordinates, this map leaves p20 fixed while p35 is not, so
by the definition of the lines of H(q) given in (1.10), the hexagon is not fixed. The image
of a point whose coordinates in the hexagon are (a, `, a′, `′, a′′) is (a, `+aλ, a′, `′+a′′λ, a′′),
thus from the representation of the ovoid OH(µ, ν) in (2.26), the locally hermitian ovoids
obtained are

Oλ(µ, ν) =
⋃

x,y∈GF (q)

((

x, γ−1(µνx3 − y3) + λx, γ−1(ν2x3 − µy3) + λy, y
))

, (2.35)

where f(x) = x2 − µx + ν is an irreducible polynomial with discriminant γ = µ2 − ν.
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As noted in the dual case in Section 2.5.1 on page 48, a Ree-Tits ovoid is not locally
hermitian with respect to any of its points, so these ovoids Oλ(µ, ν) are certainly not
Ree-Tits ovoids. Also, from the representation of the hermitian ovoids containing the
points (∞) and (0, 0, 0, 0, 0) in (2.26), one can see that these ovoids Oλ(µ, ν) are not
hermitian ovoids as long as h > 1 so that x and x3 represent distinct functions in GF (q).
Thus these ovoids are indeed new ovoids for q = 3h with h > 1. We remark that
when h = 1, there is nothing new gained as the ovoidOλ(µ, ν) is identical to the hermitian
ovoid OH(µ + λ, µ2 − µλ − 1). Also, notice that if λ = 0 then the matrix in (2.34) is
the identity and O0(µ, ν) is just the hermitian ovoid OH(µ, ν). We shall refer to the new
ovoids obtained in this way, with λ 6= 0 and h > 1, as the Oλ ovoids.

That it is sufficient to have only considered maps θ as given by (2.34) is the following
theorem from [BTVM98]. Although actually stated there for translation ovoids, the
authors comment after the proof that the theorem also holds for locally hermitian ovoids.

Theorem 2.11 (Bloemen, Thas, Van Maldeghem, [BTVM98, Theorem 21])
If O is a locally hermitian ovoid of H(3h) that is isomorphic in P6 to a hermitian ovoid,
then either O is hermitian or h > 1 and O is an Oλ ovoid. �

Considering the actions of the maps ϕ and ψ in sections 2.3.3 and 2.3.4, but now
observing their effects on the extra terms λx and λy in (2.35), we find

Oλ(µ, ν)ψ(y, K) = Oyλ
(

y(µ + 2K), y2f(−K)
)

,

where f(x) = x2 − µx + ν is the irreducible quadratic associated with Oλ(µ, ν). In
particular, everyOλ ovoid is isomorphic toOλ(0,−γ) for some nonzero λ and nonsquare γ.

The spreads dual to the Oλ ovoids we shall call Sλ spreads. Applying the duality
given in (1.22), those containing the lines [∞] and [0, 0, 0, 0, 0] are found to be

Sλ(µ, ν) =
⋃

x,y∈GF (q)

[[

x, γ−1(µνx− y) + λx1/3, γ−1(ν2x− µy) + λy1/3, y
]]

, (2.36)

where again, γ = µ2 − ν is a nonsquare. These, together with the S[9] spreads and the
hermitian spreads, are all the known locally hermitian spreads.
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Chapter 3

Translation spreads and ovoids

3.1 Introduction

Let T be a spread or an ovoid of H(q). We will define here what it means for T to be
translation, firstly with respect to a flag {x, y} and then with respect to an element x.
In both cases, the element x is an element of T , so x is a line when T is a spread and x
is a point when T is an ovoid.

We begin by considering a partition of the elements of T . Let x be an element
of T and let y be an element of the hexagon that is incident with x, so {x, y} is a flag.
Let T + = T \ {x}. For each of the q elements z 6= x on y, let Vz = Vz(x, y) be the
spread (or ovoid) projection set for z, whose elements are those elements of T that are
at distance four from z, as introduced in Section 2.1 (see Figure 3.1). By Lemma 2.3,
these sets Vz each contain q2 elements and each element w of T + belongs to exactly one
of these sets, namely Vw.y. Thus the sets Vz partition T + into q sets of size q2.

Now we are prepared to define translation spreads and ovoids. The spread or ovoid T
is said to be translation with respect to the flag {x, y} if there is a group G{x,y}
of collineations that stabilize T , that fix each of x and y elementwise, and such that
the group acts transitively on the set Vz for each z 6= x on y. Since x and y are fixed
elementwise by G{x,y}, we have

G{x,y} 6 G{x,y} 6 Gx,

where G{x,y} and Gx are the groups described in Section 1.4.4 starting on page 29 where
we saw that G{x,y} acts regularly on the z-projection sets Uz. In addition, from page 34,
we have Vz ⊂ Uz. Thus the group G{x,y} is uniquely determined and it acts regularly on
the sets Vz. This group G{x,y} is called the associated group of T with respect to the
flag {x, y}. Notice that for two elements u and v of T + there is a collineation g in G{x,y}
such that ug = v if and only if u and v belong to the same set Vz, and this is in turn
equivalent to u . y = v . y.

By the regular action of Gx, the associated group G{x,y} is completely determined by
its action on any one of the sets Vz. Thus if T is a spread given by the representation
in (2.3), for instance, that is translation with respect to the flag {[∞], (∞)}, it is sufficient

51



CHAPTER 3. TRANSLATION SPREADS AND OVOIDS

Vz

z
y

x

Figure 3.1: A spread projection set Vz.

to consider only the set V[0], so we have

G{[∞],(∞)} =
{

Θ[0, y, z, f(0, y, z), g(0, y, z)]
∣

∣ y, z ∈ GF (q)
}

, (3.1)

where the collineations Θ are as introduced in Section 1.4.4 on page 31. A similar
statement holds for an ovoid translation with respect to the flag {(∞), [∞]}.

The spread or ovoid T is called translation with respect to x if it is translation
with respect to the flag {x, y} for each y that is incident with x. The associated group
of T with respect to the element x is

Gx =
〈

G{x,y}

∣

∣

∣ y I x
〉

6 Gx, (3.2)

the group generated by the associated groups with respect to the flags containing x. That
this is a subgroup of Gx follows from the fact that each of the groups G{x,y} is, and as for
those groups, Gx therefore acts semiregularly on the set T + of elements of T opposite x.

Let us now consider the spreads and ovoids that were introduced in Chapter 2. Re-
member that the only known ovoids exist for q = 3h when H(q) is self-dual, so it suffices
to restrict our attention to the spreads. Using (3.1) and the action of the collineations Θ
in G[∞] as given in (1.25), it can be readily checked that all the spreads introduced, SH ,
SR, S[9] and Sλ, given by their coordinate representations in the previous chapter, are
translation with respect to the flag {[∞], (∞)}.

While establishing the coordinate representation for the hermitian spreads, the hat-
rack of the coordinatization was chosen so that [∞] and [0, 0, 0, 0, 0] were any two arbi-
trarily chosen lines of the spread. Also, the point (∞) could have been chosen arbitrarily
from the points incident with [∞], so a hermitian spread SH is actually translation with
respect to every flag {L, x} where L is a line of SH , and therefore, translation with respect
to every one of its lines.

For the Ree-Tits spreads, the coordinatization was chosen arbitrarily among those such
that the flag {[∞], (∞)} was an absolute point-line pair with respect to the polarity, so a
Ree-Tits spread SR is translation with respect to every flag {L,Lρ}, where L is a line of SR

and ρ is the defining polarity. It is easily seen from the coordinate representation that
the spread SR is not locally hermitian, so it follows from the forthcoming Theorem 3.3
that it is not translation with respect to any other flag.
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Finally, the spreads S[9] and Sλ, as given by their coordinate representations in Chap-
ter 2, are translation with respect to the line [∞] (see [BTVM98]). This follows immedi-
ately from the forthcoming Theorem 3.7. Since these spreads are nonhermitian, yet are
locally hermitian with respect to the line [∞], by Theorem 2.9 the automorphism groups
of these spreads must leave [∞] invariant. Thus in particular, they are not translation
with respect to any flag {K, y}, where K 6= [∞].

3.2 General results

Although translation spreads and ovoids were defined dually, the fact remains that argu-
ments pertaining to one might not be able to be dualized to apply to the other. However,
our next theorem lets us know that we will nonetheless not be needing to consider transla-
tion spreads and ovoids separately, as translation ovoids of H(q) exist only when H(q) is
self-dual. In fact, it is conjectured that it is only when H(q) is self-dual that it has ovoids
at all (see the comment at the bottom of page 78), so this theorem supports the conjec-
ture by putting the matter to rest for translation ovoids. Other results in this direction
are the nonexistence of ovoids of H(q) for q even [Tha81], and for q = 5 or 7 [O’KT95].
The following theorem appears in [Off01].

Theorem 3.1
There are no translation ovoids with respect to a flag, and so no translation ovoids with
respect to a point, in H(q) when q is not a power of 3.

Proof Let O be a translation ovoid with respect to a flag. Without loss of generality,
we suppose that the hat-rack of the coordinatization is chosen such that O has the
representation given in (2.6); that is,

O =
{

(∞)
}

∪
{

(x, f(x, y, z), z, g(x, y, z), y)
∣

∣ x, y, z ∈ GF (q)
}

,

where f(0, 0, 0) = g(0, 0, 0) = 0. The group associated with O with respect to the flag
{(∞), [∞]} is then

G{(∞),[∞]} =
{

Ψ(0, f(0, y, z), z, g(0, y, z), y)
∣

∣ y, z ∈ GF (q)
}

.

The action of the collineations Ψ is given in (1.24), and from there we see that the element
Ψ(0, f(0, Y, Z), Z, g(0, Y, Z), Y ) of G{(∞),[∞]} maps the point (0, f(0, y, z), z, g(0, y, z), y)
of O to

(

0, f(0, y, z) + f(0, Y, Z), z + Z, g(0, y, z) + g(0, Y, Z) + 3zY, y + Y
)

.

which must also be a point of O. Therefore, for all y, z, Y, Z ∈ GF (q),

g(0, y + Y, z + Z) = g(0, y, z) + g(0, Y, Z) + 3zY. (3.3)

Putting Y = 0 in (3.3) we get

g(0, y, z + Z) = g(0, y, z) + g(0, 0, Z) (3.4)
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and putting y = 0 in (3.4) gives

g(0, Y, z + Z) = g(0, 0, z) + g(0, Y, Z) + 3zY. (3.5)

Considering (3.4) and (3.5) together now reveals that the term 3zY in (3.5) is identically
zero and hence the characteristic of the field is three. �

By Theorem 3.1, translation ovoids can only exist when H(q) is self-dual, so it suffices
to consider only translation spreads. However, we will state and prove Theorem 3.11 in
the context of ovoids. This is due essentially only to the fact that the functions f(x, y)
and g(x, y) in the coordinate representation (2.35) of the Oλ ovoids seem nicer than the
corresponding functions for the Sλ spreads in (2.36). All other results will be stated and
proven in the context of spreads.

The rest of this section is primarily devoted to breaking Theorem 6 of [BTVM98] into
its constituent components in order to elaborate and extend on them.

We have already noted that the known locally hermitian spreads are translation with
respect to a line. This actually comes as no surprise in light of the following results which
give a strong connection between translation and locally hermitian spreads. The next
lemma and its proof are a portion of the proof of [BTVM98, Theorem 6].

Lemma 3.2 (Bloemen, Thas, Van Maldeghem [BTVM98, Theorem 6])
Let S be a spread of H(q), q 6= 3h, that is translation with respect to a flag {L, x},
where L is a line of S. Then S is point locally hermitian with respect to the point x.

Proof Let K 6= L be a line of S. We need to show that for each point y on the unique
line of the quadric that joins x to K, there is a line M of S incident with it. There
is an apartment of H(q) containing the lines L and K as well as the point x, and we
suppose that this is taken to be the hat-rack of the coordinatization such that {L, x} is
the flag {[∞], (∞)} and K is the line [0, 0, 0, 0, 0]. Then the points y are the points with
coordinates (0, 0, z, 0).

From the representation in (2.3), we have

S =
{

[∞]
}

∪
{

[x, y, z, f(x, y, z), g(x, y, z)]
∣

∣ x, y, z ∈ GF (q)
}

, (3.6)

where f(0, 0, 0) = g(0, 0, 0) = 0, and from (3.1),

G{[∞],(∞)} =
{

Θ[0, y, z, f(0, y, z), g(0, y, z)]
∣

∣ y, z ∈ GF (q)
}

. (3.7)

What we need to show is that f(0, 0, z) = 0 for all values of z.
From (1.25), the collineation Θ[0, Y, Z, f(0, Y, Z), g(0, Y, Z)] of G{[∞],(∞)} maps the

line [0, y, z, f(0, y, z), g(0, y, z)] of S to

[0, y + Y, z + Z − 3yf(0, Y, Z), f(0, y, z) + f(0, Y, Z), g(0, y, z) + g(0, Y, Z)].

This must also be a line of S, so we have

f
(

0, y + Y, z + Z − 3yf(0, Y, Z)
)

= f(0, y, z) + f(0, Y, Z).
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Putting Y = 0 and y = 0 into this in turn, we obtain the two equations

f
(

0, y, z + Z − 3yf(0, 0, Z)
)

= f(0, y, z) + f(0, 0, Z)

and

f(0, Y, z + Z) = f(0, 0, z) + f(0, Y, Z).

Using these two equations alternately, starting with the latter, we find

f(0, y, z) = f(0, y, 0) + f(0, 0, z)

= f
(

0, y, z − 3yf(0, 0, z)
)

= f(0, y, z) + f
(

0, 0,−3yf(0, 0, z)
)

.

Therefore, f
(

0, 0,−3yf(0, 0, z)
)

= 0 for all y, z ∈ GF (q). If f(0, 0, z) 6= 0 for some z, then
by choosing y = −z

3f(0,0,z) we have, to the contrary, that f(0, 0, z) = 0. Hence f(0, 0, z) = 0
for all z and the result follows. �

Notice that the condition q 6= 3h cannot be entirely removable, as at least for the case
when h is odd, the Ree-Tits spreads are examples of spreads that are translation with
respect to a flag and yet are not point locally hermitian. Notice that it is a consequence
of this lemma that if q 6= 3h and S is also translation with respect to another flag on the
same line, then by Theorem 2.10, the spread S is locally hermitian. As it happens, this
much does also hold for q = 3h.

Theorem 3.3 (Bloemen, Thas, Van Maldeghem [BTVM98, Theorem 6])
Let S be a spread of H(q) that is translation with respect to two distinct flags {L, x}
and {L, y} on a common line L. Then S is locally hermitian with respect to L.

Proof For q 6= 3h, the result follows from Theorem 2.10 and Lemma 3.2. Suppose then
that q = 3h. Again, this proof is essentially the one from [BTVM98].

Since the generalized hexagon H(q) is self-dual when q = 3h, we have from the coor-
dinate representation of ovoids in (2.6) that we may suppose that S is given by

S =
{

[∞]
}

∪
{

[x, f(x, y, z), z, g(x, y, z), y]
∣

∣ x, y, z ∈ GF (q)
}

,

where f(0, 0, 0) = g(0, 0, 0) = 0. Furthermore, we may suppose that the hat-rack of
the coordinatization has been chosen such that the two flags with respect to which S is
translation are {[∞], (∞)} and {[∞], (0)}. From (1.25), the collineation Θ[k, b, k′, b′, k′′]
maps the line [0, `] to the line [0, ` + k′′], so the lines incident with (0) are fixed if and
only if k′′ = 0. Together with (3.1), we then have

G{[∞],(∞)} =
{

Θ[0, f(0, y, z), z, g(0, y, z), y]
∣

∣ y, z ∈ GF (q)
}

and

G{[∞],(0)} =
{

Θ[x, f(x, 0, z), z, g(x, 0, z), 0]
∣

∣ x, z ∈ GF (q)
}

.
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We need to show that the functions f and g are independent of z. In the following, we
will work only with the function f , but it will be observed that all the same conclusions
apply equally to g.

Applying the collineation Θ[0, f(0, Y, Z), Z, g(0, Y, Z), Y ] from the group G{[∞],(∞)} to
the line [x, f(x, y, z), z, g(x, y, z), y], we get

[x, f(x, y, z) + f(0, Y, Z), z + Z − xY, g(x, y, z) + g(0, Y, Z), y + Y ].

Since this must also be a line of S, this gives

f(x, y, z) + f(0, Y, Z) = f(x, y + Y, z + Z − xY ).

Next we apply Θ[X, f(X, 0, Z), Z, g(X, 0, Z), 0], which belongs to the group G{[∞],(0)}, to
the same line and get

[x + X, f(x, y, z) + f(X, 0, Z), z + Z, g(x, y, z) + g(X, 0, Z), y],

whence we have
f(x, y, z) + f(X, 0, Z) = f(x + X, y, z + Z).

Now using these alternately, starting with the latter, we have

f(x, y, 0) = f(x, 0, 0) + f(0, y, 0)
= f(x, y,−xy)
= f(x, y, 0) + f(0, 0,−xy).

Thus f(0, 0,−xy) = 0 for all x, y ∈ GF (q); that is, f(0, 0, z) = 0 for all z ∈ GF (q).
Finally, f(x, y, z) = f(x, y, 0) + f(0, 0, z) = f(x, y, 0), so the function f , and similarly g,
is independent of z and therefore S is locally hermitian with respect to [∞]. �

The groups G{L,x} are uniquely determined, they act regularly on the sets VK and
they have order q2. On the whole, they are quite managable and we can get our hands on
them fairly well if we need to. However, it is not quite so clear what the groups GL are
like. On their action on S+, we only know that it is semiregular, and as for their orders,
we only know that they are powers of p lying somewhere between q2 and q3 inclusive.
If |GL| = q3 then GL acts regularly on S+ so, since we have S+ and we know GL 6 GL,
we then have GL at least as well as we have the groups G{L,x}. It is with this in mind
that we now proceed to get a firmer grip on these groups GL.

Theorem 3.4 (Bloemen, Thas, Van Maldeghem [BTVM98, Lemma 5])
Let S be a spread of H(q) and let L be a line of S. If a subgroup of GL of order q3

stabilizes S then S is translation with respect to L.

Proof Let x be any point on L. We have only to show that S is translation with
respect to the flag {L, x}.

Let G be the subgroup of GL with |G| = q3 that stabilizes S. The action of GL

on the set of lines opposite L is semiregular, so the action of G is, too. Now since |G|
is equal to the number of lines of S opposite L, it follows that G acts transitively on
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them. Letting K 6= L be a line incident with x, there is then a subgroup H 6 G that
acts transitively on the q2 lines of the set VK . By Theorem 1.23, since the collineations
of H 6 GL fix the line K on x, they fix every line through x and hence H fixes every
such set VK . Noting that the action of H is semiregular since it is a subgroup of GL, we
see that H acts transitively on each of the sets VK . Hence S is translation with respect
to the flag {L, x} with associated group G{L,x} = H. �

The converse of the previous theorem is also true, as we shall see presently. While the
case q 6≡ 2 (mod 3) is treated by [BTVM98, Theorem 6], we add the remaining values
of q in our following theorem.

Theorem 3.5
Let S be a spread of H(q), q = ph, and let L be a line of S. If

(i) q 6≡ 2 (mod 3) and S is translation with respect to two distinct flags on L;

(ii) q ≡ 2 (mod 3), q odd, and S is translation with respect to 2 + 2(q−1)
p−1 distinct flags

on L; or

(iii) q = 22e+1 and S is translation with respect to 2(q + 1)/3 distinct flags on L;

then S is translation with respect to L. Moreover, the stabilizer GL
S of S in GL acts

transitively on S \{L} so |GL
S | = q3, and either GL = GL

S or q = 22e+1 and
[

GL
S : GL

]

= 2.

Proof We know from Theorem 3.3 that if S is translation with respect to two different
flags on L then it is locally hermitian with respect to L. Thus we consider a locally her-
mitian spread S as given by (2.28) that is translation with respect to the flag {[∞], (∞)}.
Thus

S =
⋃

x,y∈GF (q)

[[

x, y, f(x, y), g(x, y)
]]

with f(0, 0) = g(0, 0) = 0, and from (3.1), the associated group for the flag {[∞], (∞)} is

G{[∞],(∞)} =
{

Θ[0, y, z, f(0, y), g(0, y)]
∣

∣ y, z ∈ GF (q)
}

.

What we aim to show is that G{[∞],(∞)} acts transitively on the set of lines not equal
to [∞] that are incident with some point (a) on [∞], although we drop a little short of
this goal when q = 22e+1. Then if S is also translation with respect to the flag {[∞], (a)},
the group G =

〈

G{[∞],(∞)}, G{[∞],(a)}
〉

acts transitively on the set of all q3 lines of S
opposite [∞], so |G| = q3 and S is translation with respect to the line [∞] by Theorem 3.4.
Also, since G 6 G[∞] 6 G[∞]

S and
∣

∣G[∞]
S

∣

∣ ≤ q3 by the regularity of G[∞], we will also have
G[∞] = G[∞]

S = G.
Applying the collineation Θ[0, Y, Z, f(0, Y ), g(0, Y )] in G{[∞],(∞)} to the line regulus

[[

x, y, f(x, y), g(x, y)
]]

of S gives
[[

x, y + Y, f(x, y) + f(0, Y ), g(x, y) + g(0, Y )
]]

,

which must also be a line regulus of S. Thus f(x, y) = f1(x) + f2(y) and g(x, y) =
g1(x) + g2(y), where f2 and g2 are linear operators on GF (q) over GF (p); that is

f2(y + Y ) = f2(y) + f2(Y ) and g2(y + Y ) = g2(y) + g2(Y ).
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The projection of the line [0, y, z, f2(y), g2(y)] of S onto a point (a) is the line [a, ha(y)],
where

ha(y) = −3a2y − 3af2(y) + g2(y)

as given by the incidence equations in (1.14b). For each a ∈ GF (q), let

Ka = kerha = {y ∈ GF (q) |ha(y) = 0}.

Notice that for each a, the function ha is a linear operator of GF (q) over GF (p) since it
is a linear combination of such functions. Thus Ka is a vector space over GF (p) so |Ka|
is a power of p. Now as G{[∞],(∞)} acts transitively on the lines [0, y, z, f2(y), g2(y)], it
acts transitively on the lines [a, ha(y)]. So what we want to show is that for some a, the
function ha(y) is a bijection, or equivalently, that Ka = {0}.

First consider when q = 3h so then ha(y) = g2(y). Applying the compatibility condi-
tion in (2.31a) to the line reguli [[0, y, f2(y), g2(y)]] and [[0, 0, 0, 0]], we have −y3g2(y) = /�
whenever y 6= 0, so in particular, ha(y) 6= 0 whenever y 6= 0. Thus for all a we have
Ka = {0} and hence the result follows.

Suppose now that 3 - q. Treating ha(y) = 0 with y 6= 0 as an equation in a, we have
a quadratic equation. For odd q, the discriminant is

9f2(y)2 + 12yg2(y) = −3
(

−3f2(y)2 − 4yg2(y)
)

, (3.8)

and for even q, the S-invariant is
yg2(y)
f2(y)2 . (3.9)

Since S is a spread, the line reguli [[0, y, f2(y), g2(y)]] and [[0, 0, 0, 0]] are compatible.
From the compatibility condition in (2.31a), for odd q we have

y2f2(y)2 − 4y2(yg2(y) + f2(y)2) = y2(−3f2(y)2 − 4yg2(y)
)

= /�,

and from (2.31b), for even q we have that f2(y) 6= 0 and

Tr
(y2f2(y)2 + y3g2(y)

y2f2(y)2

)

= Tr(1) + Tr
(yg2(y)

f2(y)2

)

= 1.

Thus when q ≡ 1 (mod 3), if q is odd then −3 is a square so the discriminant in (3.8)
is nonsquare, and if q is even then q = 22e and Tr(1) = 0 so the S-invariant in (3.9) has
trace one. In both cases, ha(y) = 0 has no solutions in a for any y 6= 0, thus Ka = {0}
for all a ∈ GF (q) and the result follows for q ≡ 1 (mod 3).

Now suppose q ≡ 2 (mod 3). Then the discriminant in (3.8) is a nonzero square and
the S-invariant in (3.9) has trace zero while f2(y) 6= 0. Therefore, for each y 6= 0 there
are exactly two values, a and b, such that y ∈ Ka and y ∈ Kb.

Let Ni be the number of values of a for which |Ka| = pi, where i = 0, 1, . . . , h. Then
counting the nonzero elements in the sets Ka, remembering that each y 6= 0 belongs to
exactly two of them, we have

(p− 1)N1 + (p2 − 1)N2 + · · ·+ (ph − 1)Nh = 2(q − 1). (3.10)
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Writing N≥a = Na + Na+1 + · · ·+ Nh, equation (3.10) gives us

(p− 1)N≥1 ≤ 2(q − 1) ⇒ N≥1 ≤
2(q − 1)
p− 1

.

Hence if in addition to the flag {[∞], (∞)} we have at least 2(q−1)
p−1 + 1 more flags on [∞]

with respect to which S is translation, then for at least one of these, say {[∞], (a)}, we
will have Ka = {0}. The result now follows for odd q ≡ 2 (mod 3).

Finally, suppose q = 22e+1. From (3.10) we have 3N≥2 ≤ 2(q − 1). The greatest
multiple of 3 not greater than 2(q − 1) is 2(q − 2) so we can tighten this inequality to
give N≥2 ≤ 2(q−2)/3. Thus if, including the flag {[∞], (∞)}, the spread S is translation
with respect to at least 2(q−2)

3 +2 = 2(q +1)/3 flags on [∞], then for at least one of these,
say {[∞], (a)}, we will have |Ka| = 1 or 2. If the group H =

〈

G{[∞],(∞)}, G{[∞],(a)}
〉

has
order q3, as certainly happens when |Ka| = 1, then the result follows as in the previous
cases, so we suppose now that |H| < q3 and that |Ka| = 2.

Notice that G{[∞],(∞)} ∩ G{[∞],(a)} is the set of collineations Θ[0, y, z, f2(y), g2(y)],
with y ∈ Ka and z ∈ GF (q), so this intersection contains 2q elements. Then

|H| ≥
∣

∣G{[∞],(∞)}G{[∞],(a)}
∣

∣ =

∣

∣G{[∞],(∞)}
∣

∣

∣

∣G{[∞],(a)}
∣

∣

∣

∣G{[∞],(∞)} ∩G{[∞],(a)}
∣

∣

=
q2q2

2q
= 1

2q
3,

so we conclude that |H| = q3/2. The orbit of [0, 0, 0, 0, 0] under H is then

S ′ =
{

[x, y, z, f(x, y), g(x, y)]
∣

∣ x ∈ A and y, z ∈ GF (q)
}

for some subset A ⊆ GF (q) of order q/2, and the group H is

H =
{

Θ[x, y, z, f(x, y), g(x, y)]
∣

∣ x ∈ A and y, z ∈ GF (q)
}

.

The collineation Θ[X, 0, 0, f1(X), g1(X)] ∈ H sends the line regulus [[x, 0, f1(x), g1(x)]]
of S to [[x + X, 0, f1(x + X), g1(x + X)]], which is then another line regulus of S. Thus
f1(x + X) = f1(x) + f1(X) for all x ∈ GF (q) and X ∈ A. Also, since the set S ′ is fixed
by H, we have that for x ∈ A and X ∈ A, the sum x + X belongs to A as well, so A is a
subgroup of

(

GF (q), +
)

of index 2. Consequently, if x 6∈ A and X 6∈ A, then x + X ∈ A
so f1(x) = f1

(

(x+X)+X
)

= f1(x+X)+f1(X) and therefore f1(x+X) = f1(x)+f1(X).
Hence f1, and similarly g1, are linear operators of GF (q) over GF (2). It now follows that
the set

{

Θ[x, y, z, f(x, y), g(x, y)]
∣

∣ x, y, z ∈ GF (q)
}

of collineations forms a subgroup
of G[∞] fixing S. Since its order is q3, this subgroup is the stabilizer G[∞]

S of S in G[∞], so
by Theorem 3.4, the spread S is translation with respect to the line [∞]. Also, we have
H 6 G[∞] 6 G[∞]

S so either G[∞] = G[∞]
S or G[∞] = H, in which case

[

G[∞]
S : G[∞]

]

= 2. �

In the previous theorem, the exceptional case when q = 22e+1 is certainly not entirely
removable as at least when e = 0 it does indeed occur. Consider the spread SH(1, 1) =
⋃

x,y[[x, y, x + y, x]]. The collineation Θ[x, y, z, x + y, x] ∈ G[∞]
S maps the line [a, `] to

the line [a, ` + x], so the point (a) is fixed linewise if and only if x = 0. Thus G[∞] =
G{[∞],(0)} = G{[∞],(1)} = G{[∞],(∞)}.
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In view of Theorem 3.5, just as the associated group G{[∞],(∞)} of a spread that is
translation with respect to the flag {[∞], (∞)} is quite accessible, so too is the stabi-
lizer G[∞]

S in G[∞] of a spread that is translation with respect to the line [∞]. Although
this stabilizer is usually identical to the associated group G[∞], the possibility that it is
not when q = 22e+1 makes the associated group potentially bothersome, so the theorem
suggests that the stabilizer in G[∞] is perhaps the more convenient group to work with,
and not the associated group after all. This is made a little clearer by our following
theorem.

Theorem 3.6
A spread S of H(q) is translation with respect to a line L if and only if the stabilizer GL

S
of S in GL has order q3.

Proof This follows from Theorems 3.4 and 3.5. �

The rather strong condition in Theorem 3.6 for a spread S to be translation with
respect to a line L enables us to get a better picture of what S looks like, which we do
in our next theorem.

Theorem 3.7
Let S be a spread of H(q), q = ph, containing the lines [∞] and [0, 0, 0, 0, 0], that is
represented as in either (2.28) or (2.32). Then S is translation with respect to the
line [∞] if and only if the functions of the representation are of the form

f(x, y) =
h−1
∑

i=0

(

f1ixpi
+ f2iypi)

and g(x, y) =
h−1
∑

i=0

(

g1ixpi
+ g2iypi)

,

with the coefficients fni, gni ∈ GF (q).

Proof Let us assume that S is represented as in (2.28). If the representation of (2.32)
is being used, then the same proof works, just swapping the second and last coordinates
of lines and line reguli.

Suppose S is translation with respect to [∞]. By Theorem 3.6, the stabilizer of S
in G[∞] is

G[∞]
S =

{

Θ[x, y, z, f(x, y), g(x, y)]
∣

∣ x, y, z ∈ GF (q)
}

.

The collineation Θ[X,Y, Z, f(X,Y ), g(X,Y )] from G[∞]
S when applied to the line regulus

[[x, y, f(x, y), g(x, y)]] of S, gives the line regulus
[[

x + X, y + Y, f(x, y) + f(X, Y ), g(x, y) + g(X, Y )
]]

.

From here we see that
f(x + X, y + Y ) = f(x, y) + f(X, Y ) and g(x + X, y + Y ) = g(x, y) + g(X,Y ).

Thus the functions f(x, 0), f(0, y), g(x, 0) and g(0, y) are all linear operators of GF (q)
over GF (p), so by Theorem 1.4, the functions f and g take the claimed forms.

Suppose now that f and g are of the forms given in the statement of the theorem.
Then the collineations Θ[x, y, z, f(x, y), g(x, y)] form a group of order q3 fixing S. The
result now follows from Theorem 3.4. �
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3.3 Spreads translation with respect to a line

In this section are two classifications of spreads translation with respect to a line subject
to some condition. First, we consider those translation spreads of H(q), with q odd,
for which an object, which we shall call the kernel, is all of GF (q). Then our attention
turns to the translation spreads of H(3h). Since the hexagon H(3h) is self-dual, this is
equivalent to considering ovoids translation with respect to a point, and this is exactly
what we shall do, essentially because the resulting functions are a little tidier. Of these
two cases, the latter appears in [Off01], and the former we shall see in Theorem 4.5 is
equivalent to [BTVM98, Theorems 30–32].

Let S be a spread of H(q) that contains the lines [∞] and [0, 0, 0, 0, 0] and that is
translation with respect to the line [∞]. Then S can be represented as in (2.28), and
possibly also as in (2.32). Given one of these representations, we define the kernel of S,
denoted kerS, to be the maximal subfield of GF (q) such that for all a ∈ kerS and all
x, y ∈ GF (q), the functions f and g of the representation satisfy

f(ax, ay) = af(x, y) and g(ax, ay) = ag(x, y).

From Theorem 3.7, the functions f(x, 0), f(0, y), g(x, 0) and g(0, y) are then all linear
operators on GF (q) over kerS.

The kernel, kerS, is well-defined in that it is independent of which of the repre-
sentations from (2.28) and (2.32) is used (if the one in (2.32) applies), and also, it is
independent of the choice of hat-rack for the coordinatization, up to the requirement
that S should contain the line [0, 0, 0, 0, 0] and be translation with respect to [∞]. Let
us make it clearer that this is indeed so.

Suppose S can be represented in both the form of (2.28) as well as that of (2.32), so
for some functions f , g, F and G we have

S =
⋃

x,y∈GF (q)

[[

x, y, f(x, y), g(x, y)
]]

=
⋃

x,y∈GF (q)

[[

x, F (x, y), G(x, y), y
]]

.

Then from here we have

f
(

x, F (x, y)
)

= G(x, y), F
(

x, g(x, y)
)

= y,

g
(

x, F (x, y)
)

= y, G
(

x, g(x, y)
)

= f(x, y).

Letting ker1 S be the kernel of S as determined by the former representation of S, which
involves f and g, and letting ker2 S be the kernel arising from the latter with F and G,
we then have that for each a ∈ ker1 S,

F (ax, ay) = F
(

ax, ag(x, F (x, y))
)

= F
(

ax, g(ax, aF (x, y))
)

= aF (x, y).

Hence also,

G(ax, ay) = f
(

ax, F (ax, ay)
)

= f
(

ax, aF (x, y)
)

= af
(

x, F (x, y)
)

= aG(x, y).

Thus ker1 S ⊆ ker2 S. Similarly, the reverse inclusion holds, so ker1 S = ker2 S.
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Now consider the collineations θ that fix [∞] and map some line of S to [0, 0, 0, 0, 0].
What we must show is that kerSθ = kerS.

If θ is induced by an automorphism ψ of the field GF (q), then

Sθ =
⋃

x,y∈GF (q)

[[

xψ, yψ, f(x, y)ψ, g(x, y)ψ]]

,

from which it is readily seen that kerSθ = kerS. By [VM98, Proposition 4.6.6(iv)], we
now need only consider those collineations θ belonging to G2(q).

From (1.11), the number of points in H(q) is (q6 − 1)/(q − 1), and since each point
has q + 1 lines incident with it, the number of flags is (q + 1)(q6− 1)/(q− 1). Since H(q)
is a Moufang polygon with respect to the group G2(q), this group acts transitively on the
set of all flags, so the stabilizer H in G2(q) of the flag {[∞], (∞)} has order

|H| = |G2(q)|
# flags in H(q)

= q6(q − 1)2,

where the order of G2(q) is given in [VM98, Proposition 4.6.7]. It now follows from [VM98,
Proposition 4.6.6(v) and Lemma 5.2.3(iii)] that the group H is generated by the torus for
the hat-rack, together with the root groups for the paths γP , γPµ−1, γPµ−2, γL, γLµ and γLµ2.
In addition, the collineation E(γPµ, δ), with δ 6= 0, fixes the lines [∞] and [0, 0, 0, 0, 0]
while mapping the point (∞) to the point (δ−1). Since H contains E(γPµ−2), by the
Moufang property of H(q), the group H acts transitively on the set Γ1

(

[∞]
)

\
{

(∞)
}

of
points distinct from (∞) that are incident with [∞]. Thus H together with E(γPµ, δ)
generate the stabilizer H ′ of the line [∞] in G2(q), and we therefore need only consider
collineations θ from this collection of generators for H ′.

Let θ ∈ G[∞]. From Theorem 3.5, the stabilizer of S in G[∞] acts regularly on the
lines of S opposite [∞], and since Sθ is to contain the line [0, 0, 0, 0, 0] and the action
of G[∞] is semiregular, it follows that θ fixes S, so certainly, kerSθ = kerS.

Let θ ∈ E(γPµ−2). Then for some δ ∈ GF (q), we have

Sθ =
⋃

x,y∈GF (q)

[[

x, y + δx, f(x, y) + δ2x + 2δy, g(x, y)− δ3x− 3δ2y − 3δf(x, y)
]]

.

From here, we can see that multiplying the first two coordinates of a line regulus in Sθ by
an element a ∈ kerS is equivalent to multiplying x and y by a, and thence the last two
coordinates are multiplied by a as well. Thus kerSθ ⊆ kerS. Using the collineation θ−1,
this argument is reversible, so we conclude that kerSθ = kerS.

Let θ = T (α, β) be an element of the torus for the hat-rack. Then

Sθ =
⋃

x,y∈GF (q)

[[

βx, αβy, α2βf(x, y), α3βg(x, y)
]]

,

from which we see again by the same reasoning that kerSθ = kerS.
Finally, let θ = E(γPµ, δ). Working with the matrices for the collineations given in

Section 1.4.4, we find that

Sθ =
⋃

x,y∈GF (q)

[[

x+δ3g(x, y)− 3δy + 3δ2f(x, y),

y − 2δf(x, y)− δ2g(x, y), f(x, y) + δg(x, y), g(x, y)
]]

,
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and we can see once again that kerSθ = kerS since the coefficients are all simply linear
combinations of x, y, f(x, y) and g(x, y).

Thus we have demonstrated that the definition of kernel introduced here is well-
defined in the sense mentioned above, and for the benefit of future reference we state this
in the form of a theorem.

Theorem 3.8
Given a spread S that is translation with respect to a line, we may choose to represent
it either in the form (2.28), or in the form (2.32) if possible, and then the kernel, kerS,
is independent of which representation is chosen and of the choice of hat-rack, up to the
requirement that S should contain the line [0, 0, 0, 0, 0] and be translation with respect
to the line [∞]. �

Now we give our following classification of translation spreads for which kerS is as
large as possible.

Theorem 3.9
Let S =

⋃

x,y

[[

x, y, f(x, y), g(x, y)
]]

, where f(0, 0) = g(0, 0) = 0, be a translation spread
of H(q), q odd, with kernel kerS = GF (q). Then either S is hermitian or q ≡ 1 (mod 3)
and S is isomorphic to S[9].

Proof The collineation Ψ(A, 0, 0, 0, 0), as described in (1.24) of Section 1.4.4, leaves
the line regulus [[0, 0, 0, 0]] of S fixed, and putting A = f(0, 1)/2, it sends the line regulus
[[

0, 1, f(0, 1), g(0, 1)
]]

of S to a line regulus [[0, 1, 0,−γ]], for some γ ∈ GF (q). Thus
we may assume that f(0, 1) = 0 and we set γ = −g(0, 1). Since [[0, 1, 0,−γ]] is then a
line regulus of S, it is compatible with [[0, 0, 0, 0]], so from the compatibility condition
in (2.31a) we have that γ is a nonsquare.

Consider the line regulus [[1, 0, a, b]] of S, where a = f(1, 0) and b = g(1, 0). This line
regulus is compatible with all the line reguli

[[

0, y, f(0, y), g(0, y)
]]

which, since kerS =
GF (q), are precisely the line reguli [[0, y, 0,−γy]]. From the compatibility condition
in (2.31a), we then have that

4γy4 + 4by3 + (γ2 − 3a2 − 6aγ)y2 + (2γb− 6ab)y + (b2 + 4a3) (3.11)

is a nonsquare for all y ∈ GF (q). By Lemma 1.3, this quartic is then identical to
γ(2y2 + uy + v)2 for some u and v. Equating coefficients gives a system of equations
which leads to

b2 + 4γ2v = γ3 − 3γa2 − 6γ2a
bv = γb− 3ab

γv2 = b2 + 4a3.
(3.12)

If b 6= 0, then from the second of these we have v = γ − 3a. Substituting this into the
two remaining equations and eliminating b2 then gives

−4γ3 + 12aγ2 − 12a2γ + 4a3 = 4(a− γ)3 = 0

so a = γ. But then v = −2γ and the third equation is 4γ3 = b2 + 4γ3, which leads to the
contradiction b = 0.
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Therefore b = 0. From the first and third equations in (3.12) we now have

64γa3 = 16γ(4a3) = 16γ(γv2) = (4γv)2 = (γ2 − 3a2 − 6γa)2

whence we obtain

(γ2 − 3a2 − 6γa)2 − 64γa3 = 9a4 − 28γa3 + 30γ2a2 − 12γ3a + γ4 = (a− γ)3(9a− γ) = 0.

Hence either a = γ or 3 - q and a = γ/9. We already have g(x, y) = xg(1, 0) + yg(0, 1) =
−γy. If a = γ then f(x, y) = xf(1, 0) + yf(0, 1) = xγ so S = SH(0,−γ). Consider now
the case when a = γ/9. The quartic in (3.11) is then

4γy4 +
8γ2y2

27
+

4γ3

272 = 4γ
(

y2 +
γ
27

)2

which is a nonsquare for all y ∈ GF (q) so long as it is never zero. Thus a = γ/9 leads
to a spread if and only if −γ/27 is a nonsquare, or equivalently, −3 is a nonzero square.
From the proof of Corollary 1.2, this occurs precisely when q ≡ 1 (mod 3). Finally,
f(x, y) = xf(1, 0) + yf(0, 1) = −1

9γx, so S = S[9]. �

Corollary 3.10
If S is a spread of H(p), p a prime, that is translation with respect to a line then either S
is hermitian or p ≡ 1 (mod 3) and S is isomorphic to S[9].

Proof For odd p this follows from Theorem 3.9. For p = 2, use Theorem 2.5. �

Theorem 3.11
Let O be an ovoid of H(3h) that is translation with respect to a point. Then O is either
hermitian or an Oλ ovoid.

Proof For h = 1, this follows from the dual of Corollary 3.10, so we suppose hereafter
that h > 1.

By an appropriate choice of coordinates, we may suppose without loss of generality
that O is translation with respect to (∞) and that it also contains the point (0, 0, 0, 0, 0).
By the dual of Theorem 3.3, the ovoid O is then locally hermitian with respect to (∞)
so, using the dual of (2.32), we can express O as the union of point reguli

O =
⋃

x,y∈GF (q)

((

x, f(x, y), g(x, y), y
))

, (3.13)

where f(0, 0) = g(0, 0) = 0. We will show that f and g necessarily take the form of the
functions in the representation (2.35) of the Oλ ovoids. Remember also that if λ = 0
there, then this corresponds to the representation of a hermitian ovoid, as shown in (2.26).

For each y 6= 0, the point regulus ((0, f(0, y), g(0, y), y)) is compatible with the point
regulus ((0, 0, 0, 0)), so from the compatibility condition in (2.33) (remembering that the
characteristic is 3) we have

−yf(0, y) = /�.
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Now from Theorem 1.5, it follows that f(0, y) = −αy3s, where α is a nonsquare in GF (q)
and 0 ≤ s < h. Similarly, the point regulus ((x, f(x, 0), g(x, 0), 0)) is compatible with
((0, 0, 0, 0)), so

xg(x, 0) = /�.

Again, by Theorem 1.5, it follows that g(x, 0) = βx3t, where β is some nonsquare in GF (q)
and 0 ≤ t < h. Now by the dual of Theorem 3.7, the functions f and g take the forms

f(x, y) = f̃(x)− αy3s
=

h−1
∑

i=0

fix3i − αy3s
(3.14)

and

g(x, y) = βx3t
+ g̃(y) = βx3t

+
h−1
∑

i=0

giy3i
. (3.15)

Consider the elation E(γLµ2,−k) = Θ[k, 0, 0, 0, 0], as described in Section 1.4.4. From
the mapping in (1.25), its action on the points opposite (∞) is given by

(

x, `, z, `′, y
)

7−→
(

x, `− kx3, z + kx2, `′ + `k + k2x3, y + kx
)

.

In particular, this collineation fixes the points (∞) and (0, 0, 0, 0, 0) so the ovoid O is
mapped to another ovoid Ok that also contains these points and that is also translation
with respect to (∞). ThereforeOk also has a representation as given by the dual of (2.32),
say

Ok =
⋃

x,y∈GF (q)

((

x, fk(x, y), gk(x, y), y
))

where, exactly as for the functions f and g, we have

fk(x, y) = f̃k(x)− αky3s(k)
and gk(x, y) = βkx3t(k)

+ g̃k(y),

and f̃k(x) and g̃k(y) are linearized polynomials in standard form.
To express these functions fk and gk in terms of f and g, we explicitly apply the

collineation Θ[k, 0, 0, 0, 0] to O. The point regulus ((x, f(x, y), g(x, y), y)) of O is mapped
to the point regulus

((

x, f(x, y)− kx3, g(x, y) + kf(x, y) + k2x3, y + kx
))

of Ok. Changing y for y − kx in this, we have a point regulus
((

x, f(x, y − kx)− kx3, g(x, y − kx) + kf(x, y − kx) + k2x3, y
))

of Ok. Thus

gk(x, y) = g(x, y − kx) + kf(x, y − kx) + k2x3

= βx3t
+ g̃(y − kx) + kf̃(x)− αky3s

+ αk1+3s
x3s

+ k2x3. (3.16)
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Let δi,j be the function such that δi,j = 1 if i = j and δi,j = 0 if i 6= j. Putting y = 0
in (3.16) and expanding f̃ and g̃ in accordance with (3.14) and (3.15), gives

βkx3t(k)
= βx3t

+ g̃(−kx) + kf̃(x) + αk1+3s
x3s

+ k2x3

= βx3t
+

h−1
∑

i=0

gi(−k)3i
x3i

+
h−1
∑

i=0

fikx3i
+ αk1+3s

x3s
+ k2x3.

Grouping together like powers of x, we then have

βkx3t(k)
=

h−1
∑

i=0

ϕi(k)x3i
, (3.17)

where the coefficient of x3i is

ϕi(k) = δi,tβ − gik3i
+ fik + δi,sαk1+3i

+ δi,1k2, (3.18)

which is a polynomial in k.
Put i = 1 in (3.18) and consider the polynomial

ϕ1(k) = δ1,tβ − g1k3 + f1k + δ1,sαk4 + k2.

The coefficient of k2 is nonzero so ϕ1(k) is certainly not the zero polynomial. Similarly,
putting i = t in (3.18) we have

ϕt(k) = β − gtk3t
+ ftk + δt,sαk1+3t

+ δt,1k2,

which has a nonzero constant term and so is not the zero polynomial either.
Now consider the product ϕ1(k)ϕt(k). Since the individual polynomials are nonzero,

this polynomial is also nonzero. In addition, the degree of this product is at most 4 +
(3t + 1), which is less than q = 3h since t < h and h > 1. It follows that the product
ϕ1(k)ϕt(k) is not identically zero as a function so we can choose k such that neither ϕ1(k)
nor ϕt(k) is zero. But comparing coefficients on each side of (3.17), we see that only one
of the coefficients, namely βk = ϕt(k)(k), is nonzero. Hence t(k) = t = 1.

Similarly, the polynomial

ϕs(k) = δs,1β − gsk3s
+ fsk + αk1+3s

+ δs,1k2,

has a nonzero coefficient of k1+3s and hence is not the zero polynomial, so we can choose k
such that neither ϕ1(k) nor ϕs(k) is zero and we deduce from (3.17) that t(k) = s = 1.

For i 6= 1, we now have from (3.18) that

ϕi(k) = −gik3i
+ fik.

Equating coefficients in (3.17), these ϕi(k) are all identically zero. For i 6= 0, so k3i and k
are distinct powers of k, it follows that gi = fi = 0. When i = 0 however, we have
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ϕ0(k) = (−g0 + f0)k ≡ 0 and we conclude that f0 = g0 = λ, for some λ ∈ GF (q). Hence
the functions f and g take the forms

f(x, y) = λx + f1x3 − αy3

g(x, y) = βx3 + g1y3 + λy.
(3.19)

Finally, since the point regulus ((1, f(1, y), g(1, y), y)) is compatible with the point
regulus ((0, 0, 0, 0)), we have from the compatibility condition in (2.33) that the quartic
polynomial

p(y) = y2 + g(1, y)− yf(1, y) = αy4 + g1y3 + y2 − f1y + β (3.20)

takes a nonsquare value for every x ∈ GF (q). By Lemma 1.3, it now follows that
p(y) = γ−1p0(y)2, where γ = α−1 is a nonsquare and p0(y) = y2 + µy + ν is an irreducible
quadratic. Thus

p(y) = γ−1(y4 − µy3 + (µ2 − ν)y2 − µνy + ν2)

and we equate coefficients with (3.20) to find f1 = γ−1µν, β = γ−1ν2, g1 = −γ−1µ and
γ = α−1 = µ2 − ν. Hence

O =
⋃

x,y∈GF (q)

((

x, γ−1(µνx3 − y3) + λx, γ−1(ν2x3 − µy3) + λy, y
))

,

where γ = µ2 − ν is a nonsquare. When λ = 0, this is the hermitian ovoid OH(µ, ν) as
given in (2.26), and when λ 6= 0, this is the Oλ ovoid Oλ(µ, ν) as given in (2.35). �

We explicitly state the dual of this theorem for spreads.

Corollary 3.12
Let S be a spread of H(3h) that is translation with respect to a line. Then S is either
hermitian or an Sλ spread. �

3.4 Spreads translation with respect to two flags

Theorem 3.5 gives some insight into spreads of the generalized hexagon H(q) that are
translation with respect to more than one flag, where the flags in question are all on
a common line. In this section, we consider the situation where a spread S is transla-
tion with respect to flags on different lines, ultimately providing a classification of such
spreads.

Since we will be concerned primarily with various flags in H(q), let us first introduce
the notion of distance between two flags. Remember that the distance between two
elements of a geometry is simply the distance between the corresponding vertices of an
appropriate graph, namely the incidence graph. In order to define the distance between
two flags, we shall do much the same thing. Unless it is made clear to the contrary, in
this section we shall use the convention that lower case letters represent points and upper
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case letters represent lines, while a point and a line represented by different cases of the
same letter are incident.

Let Γ be an incidence structure. We define a graph G, called the flag incidence
graph. The vertices of G are the flags of Γ and two vertices, F and G, are adjacent
if and only if they are distinct flags of Γ on a common element. Now we define the
distance d(F ,G) between two flags F and G of Γ to be the distance between the cor-
responding vertices in the flag incidence graph G. If the incidence structure Γ is a
generalized n-gon, we say that two flags F and G are opposite if d(F ,G) = n. For the
case that Γ is a generalized hexagon, the relative positions of two flags given the distance
between them is illustrated in Table 3.2.

d(F ,G) {d(x,X), d(y, Y )} Configurations

0 {0}

1 {0, 2}

2 {2}

3 {2, 4}

4 {4}

5 {4, 6}

6 {6}

Table 3.2: Distance between two flags F = {x,X} and G = {y, Y }.

Let S be a spread of H(q) that is translation with respect to two flags, F = {x,X}
and G = {y, Y }, on distinct lines so X 6= Y . Since the lines X and Y are lines of the
spread S, they are opposite, so the distance d(F ,G) between the flags is either 5 or 6.
First we address the case when d(F ,G) = 5.

Theorem 3.13
Let S be a spread of H(q) that is translation with respect to two flags F = {x,X}
and G = {y, Y } with d(F ,G) = 5. Then S is a hermitian spread.

Proof Since d(F ,G) = 5, the distance between their points is d(x, y) = 4, so there is
a unique point k = x .2 y with d(x, k) = 2 and d(y, k) = 2. See Figure 3.3 for a diagram.
Let K be the line xk. Let w be any point on K distinct from both the points x and k,
and then take W to be any line on w other than K. Since d(W,X) = 4, the line W does
not belong to the spread S, so by Lemma 2.1 there is a unique line U of S concurrent
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Figure 3.3: Diagram for the proof of Theorem 3.13.

with W . The spread line U is equal to neither X nor Y as these lines are at distances 4
and 6 respectively from W . Let u be the point in which the lines U and W meet. This
point u is different from the point w since U and X both belong to the spread and are
therefore opposite, while d(w,X) = 3.

Now we essentially repeat this with the rôle of the path (X, x, K, k, ky, y, Y ) being
played by the new path (U, u, W,w,K, x, X). So let t be a point on the line W distinct
from the points u and w, and let T be some line other than W on this point. There is
then a unique line V of the spread S concurrent with T and the point v that is common
to the lines V and T is distinct from t. Just as U was seen to be different from both X
and Y , so too is V different from both U and X. In addition, we have V 6= Y as otherwise
the hexagon H(q) would contain the pentagon (Y, v, T, t,W,w,K, k, ky, y).

So far, we have four distinct spread lines, X, Y , U and V , and the minimum length
paths connecting each of the first three of these to the point k. Now we add the minimum
length path from k to the line V .

The path (v, T, t, W,w, K, k) has length 6 so d(v, k) = 6 and consequently d(V, k) = 5.
Let v′ = k . V . Notice that d(v′, k) = 4 so v′ 6= v. Let L = V . k, which is then not
a line of S since L and V are not opposite. Therefore there is a unique line Z of the
spread S concurrent with L and we set z to be the point in which these two lines meet.
The line Z is different from both X and V as otherwise there would be a triangle in the
hexagon H(q), however Z could possibly be equal to Y .

Now that we have our diagram established, we shall use the given translation prop-
erties of the spread S to find sufficiently many additional ones to be able to deduce the
conclusion of the theorem.

Since S is translation with respect to {x,X} and Y . x = U . x, there is an au-
tomorphism of the spread in the associated group G{x,X} that maps Y to the line U .
Furthermore, since x is fixed by this collineation, y = x . Y is mapped to u = x . U , so
the flag {y, Y } is sent to the flag {u, U}. It follows that S is translation with respect
to {u, U} as well. Similarly, by using an element of the group G{u,U} we can map the
flag {x,X} to {v, V }, so S is also translation with respect to the flag {v, V }.

If Z = Y then z = k . Z = k . Y = y, so S is certainly translation with re-
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spect to the flag {z, Z}, and if on the other hand Z 6= Y , then using G{y,Y } we can
map {x,X} to {z, Z} to see that S is translation with respect to the flag {z, Z}. Now
with a collineation in G{z,Z} we can map {x,X} to {v′, V }, so S is also translation with
respect to the flag {v′, V }.

By Theorem 3.3, the spread S is locally hermitian with respect to V . Now select one
of the flags not containing V with respect to which we know S is translation, say {x,X}.
The associated group G{x,X} does not leave the line V fixed, so there are other lines with
respect to which S is also locally hermitian. It now follows from Theorem 2.9 that S is
a hermitian spread. �

Before we proceed with the case of spreads of H(q) that are translation with respect
to two opposite flags, we introduce some concepts in generalized 2m-gons that we will
want to use later.

Let Γ be a generalized 2m-gon of order q, where m = 2 or 3, and let S and O be a
spread and an ovoid, respectively, of Γ. The set O∪S is an ovoid-spread pairing if for
each element x ∈ O ∪ S there is an element y ∈ O ∪ S such that x I y. By Lemma 2.1,
such an element y is uniquely determined for a given x, so there is a well-defined function
ρ : O∪S → O∪S that maps each element to the unique element of O∪S incident with
it, thus x I xρ. We call this the associated function of the ovoid-spread pairing O∪S.

Our following lemma is a partial analogy of Lemma 2.1 for ovoid-spread pairings.

Lemma 3.14
Let O ∪ S be an ovoid-spread pairing of a generalized 2m-gon Γ. Then for every ele-
ment x ∈ Γ, there is a unique element y ∈ O ∪ S such that d(x, y) < m is minimal.

Proof Let y ∈ O∪S be such that d(x, y) is minimal. Let T ∈ {O,S} be the set whose
elements are, or are not, the same type as x according as m is odd or even, respectively.
Then by Lemma 2.1, there is a unique element z ∈ T such that d(x, z) < m, so if y ∈ T
then y = z and we are done. Suppose then that y 6∈ T . Then y and z are of different
types so d(x, y) < d(x, z) and hence d(x, yρ) ≤ d(x, z), where ρ is the associated function
of O ∪ S. Using Lemma 2.1 again, we then have yρ = z, and therefore y = zρ. �

Let θ be a polarity of Γ. By [VM98, Proposition 7.2.5] (see also [CPT76] for the
case m = 3), the absolute lines of θ form a spread S of Γ and the absolute points form an
ovoid O. Furthermore, since the absolute elements are precisely those for which xθ I x,
O ∪ S is an ovoid-spread pairing and the associated function is simply the restriction
of the polarity θ. Such an ovoid-spread pairing is said to arise from the polarity θ.
For m = 2, any spread S and ovoid O together form an ovoid-spread pairing O ∪ S by
virtue of the fact that the lines of the spread, considered as point sets, partition the set of
points of the generalized quadrangle (a simple count reveals this—there are q2 +1 lines in
the spread by Lemma 2.2, there are q +1 points on each line and there are q3 + q2 + q +1
points in the generalized quadrangle (see [VM98, 1.5.4])). However, for m = 3, the only
known ovoid-spread pairings arise from polarities (see [VM98, 7.2.6]). In particular, the
only known ovoid-spread pairings O∪S of H(q) are those where S and O are a Ree-Tits
spread and a Ree-Tits ovoid, respectively, arising from the same polarity.

Let O ∪ S be an ovoid-spread pairing of Γ and suppose that x, y, z ∈ O ∪ S are
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elements of the same type such that yρ .i x = zρ .i x, for some i. If O ∪ S arises from a
polarity, then we apply this polarity and we also have that y .i xρ = z .i xρ. Motivated
by this, an ovoid-spread pairing O ∪ S is distance-i polar at x if for all y, z ∈ O ∪ S
of the same type as x, we have

yρ .i x = zρ .i x ⇒ y .i xρ = z .i xρ. (3.21)

Since y .0 x = x for all x and y, it is clear that every ovoid-spread pairing is distance-0
polar at each of its elements. Now consider i ≥ m. Let x, y, z ∈ O ∪ S be elements of
the same type such that yρ .i x = zρ .i x = u. Then d(yρ, u) = d(zρ, u) = 2m − i − 1,
so concatenating the minimum length yρ–u and u–zρ paths, we have a yρ–zρ walk of
length 4m − 2i − 2 ≤ 4m − 2m− 2 < 2m. Since yρ and zρ belong to either a spread or
an ovoid, it follows that y = z, so certainly y .i xρ = z .i xρ. Thus every ovoid-spread
pairing O ∪ S is distance-i polar at each of its elements for i ≥ m. Therefore we only
need to consider 1 ≤ i < m.

Lemma 3.15
If O ∪ S is distance-i polar at x then O ∪ S is also distance-i polar at xρ.

Proof Let y ∈ O ∪ S be an element of the same type as x. Consider the spread
and ovoid projection sets A = Vyρ.ix(x

ρ, x) and B = Vy.ixρ(x, xρ). Then A is the set of
elements w ∈ O ∪ S of the same type as xρ such that w .i x = yρ .i x, and B is the set
of elements z ∈ O ∪ S of the same type as x such that z .i xρ = y .i xρ.

Since O ∪ S is distance-i polar at x, for each w ∈ A, the element wρ belongs to B.
But |A| = |B| by Lemma 2.3, so we also have then that for each z ∈ B, the element zρ

is in A; that is, O ∪ S is distance-i polar at xρ. �

The ovoid-spread pairing O∪S is locally polar at x if it is distance-i polar at x for
each 1 ≤ i < m. By Lemma 3.15, O ∪ S is then also locally polar at xρ. We may also
say that it is locally polar at the flag {x, xρ}.

Lemma 3.16
If an ovoid-spread pairing O∪S of Γ is locally polar at each of its elements then it arises
from a polarity.

Proof We extend the associated function ρ to all of Γ and show this is a polarity.
Let w ∈ Γ and let x be the unique element of O ∪ S, by Lemma 3.14, for which

d = d(x,w) < m is minimal. By Lemma 2.3, the set Vw(xρ, x) is nonempty, so we can
choose an element y ∈ O ∪ S such that yρ belongs to this set. Then yρ .d x = w. Now
we define wρ = y .d xρ. To see that this defines a polarity we need to check that it is
well-defined, that it has order two and that it preserves incidence.

Consider another element z ∈ O∪S such that z ∈ Vw(xρ, x). Then zρ.dx = w = yρ.dx
so, since O∪S is locally polar at x, we also have z .d xρ = y .d xρ. Thus ρ is well-defined.

Next, consider the element wρ = y.dxρ. We have d(xρ, wρ) = d < m, so from the proof
of Lemma 3.14, the unique element ofO∪S at minimum distance from wρ is either x or xρ.
But since x and y are opposite, we have wρ . xρ = y . xρ 6= x, so xρ is the unique element
of O ∪ S at minimum distance from wρ and hence (wρ)ρ = yρ .d (xρ)ρ = yρ .d x = w.
Therefore ρ has order two.
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Figure 3.4: This configuration does not occur (Lemma 3.17).

All that remains is to check that incidence is preserved. Let {u, v} be a flag of Γ and
let x be the unique element of O∪S, by Lemma 3.14, with d(u, x) minimal. Relabelling if
necessary, we may suppose d = d(u, x) = d(v, x) + 1 ≤ m. By Lemma 2.3, we can choose
an element y ∈ O ∪ S such that yρ ∈ Vu(xρ, x). Then yρ .d x = u and also yρ .d−1 x = v.

Now if d < m then uρ = y .d xρ, and if d = m then u = yρ .m x = x .m−1 yρ so
uρ = xρ .m−1 y = y .m xρ. Either way, we have uρ = y .d xρ and vρ = y .d−1 xρ, which
are adjacent elements on the minimum length y–xρ path. Thus uρ I vρ and incidence is
therefore preserved. �

We are now prepared to classify those spreads of H(q) that are translation with respect
to two opposite flags. The proof of the classification is broken into a few lemmas, which
we give first.

Lemma 3.17
Let S be a nonhermitian spread of H(q) that is translation with respect to two opposite
flags F = {X, x} and G = {Y, y}. Let V 6= X . y be a line through y. Then there exists
a unique line Z ∈ S such that Z . y = V and Z .2 x = Y .2 x.

Proof By Lemma 2.3, there are exactly q lines Z of S such that Z .2 x = Y .2 x. Also,
there are exactly q lines V 6= X . y incident with y. Thus we need only show either the
existence or the uniqueness property and the other will follow. We show uniqueness. For
the following, see the illustration in Figure 3.4.

If V = Y then Z.y = Y implies that d(Z, Y ) < 6, so necessarily Z = Y. Suppose then
that V 6= Y. Let Z,W ∈ S be distinct lines such that Z .2 x = W .2 x = Y .2 x = t and
Z . y = W . y = V, and let u = x . Y. Then d(Z, t) = 3 and d(t, u) = d(t, Y )− 1 = 2, so
Z .2 u = t. Similarly, W .2 u = t. Now Z . y = W . y so there is a collineation g ∈ G{Y,y}
that maps W to Z. Since g fixes Y pointwise, the point u is fixed and so the point
t = Z .2 u = W .2 u is fixed also.

Consider the image of F under the action of g. Since G{Y,y} acts semiregularly on the
lines of S opposite Y, the line X is certainly not fixed, so Fg is another distinct flag with
respect to which S is translation. The point x ∈ F , which is at distance 2 from the fixed
point t, is mapped to xg, which is then also at distance 2 from t. Thus d(x, xg) = 4. We
now have that S is translation with respect to two flags F and Fg with d(F ,Fg) = 5.
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By Theorem 3.13, such a spread S is hermitian. It follows that if S is nonhermitian then
two such distinct lines Z and W do not exist. This proves the result. �

Lemma 3.18
Let S be a nonhermitian spread of H(q) that is translation with respect to two opposite
flags F = {X, x} and G = {Y, y}. Then for each line W ∈ S there is a unique point w I W
such that S is also translation with respect to the flag {W,w}. Furthermore, the set O
of these points is an ovoid so that O ∪ S is an ovoid-spread pairing.

Proof Let W ∈ S be a line of the spread. If W.y = X.y then there is a collineation g ∈
G{Y,y} such that W = Xg and S is then translation with respect to the flag {W,w},
where w = xg.

Now consider when W . y 6= X . y. By Lemma 3.17, there is a line Z ∈ S such that
Z.y = W .y and Z.2x = Y .2x. Then Z.x = Y .x, so there is a collineation g ∈ G{X,x}
such that Z = Y g. Next, since Z . y = W . y, there is an h ∈ G{Y,y} such that W =
Zh = Y gh. Now S is translation with respect to the flag {W,w}, where w = ygh. This
shows the existence of an appropriate point w on each line W of S.

Suppose now that there are two points w and w′ on a line W such that S is translation
with respect to both flags {W,w} and {W,w′}. By Theorem 3.3, the spread S is then
locally hermitian with respect to W. Furthermore, by their semiregular actions, not
both G{X,x} and G{Y,y} fix W, so S is locally hermitian with respect to other lines as
well. By Theorem 2.9, this implies that S is hermitian. But S is nonhermitian, so the
uniqueness of the point w I W follows. Let O be the set of these points.

Finally, let w, z ∈ O be distinct points. Since they lie on opposite lines, we have
either d(w, z) = 4 or d(w, z) = 6, but S is nonhermitian so from Theorem 3.13, the
points w and z are opposite. Also, since there is exactly one point of O on each line of S
we have |O| = |S| = q3 + 1, so by Lemma 2.2, the set O is an ovoid. �

Let S be a nonhermitian spread of H(q) that is translation with respect to two
opposite flags. By Lemma 3.18, there is an ovoid O arising from S such that O ∪ S is
an ovoid-spread pairing and S is translation with respect to each flag {x, xρ} ∈ O ∪ S,
where ρ is the associated function of O∪S. Let g be a collineation of H(q) that leaves S
fixed and let x be a line of S. Then S is translation with respect to the flag {xg, xρg}
so xρg = (xg)ρ ∈ O, since such a point incident with xg is unique by Lemma 3.18. Hence
any collineation fixing S must also fix O.

Lemma 3.19
Let O∪S be an ovoid-spread pairing of H(q) with associated function ρ. Suppose that S
is translation with respect to the flag {x, xρ} and that the associated group G{x,xρ} of S
with respect to this flag stabilizes O. Then O ∪ S is distance-1 polar at x and at xρ.

Proof Let x be the point in the flag {x, xρ} and let y, z ∈ O be such that yρ.x = zρ.x.
Then there is a collineation g ∈ G{x,xρ} such that yρg = zρ, and since g fixes O, we then
have yg = z. Since also g fixes xρ pointwise, the point y . xρ is fixed and hence

y . xρ = (y . xρ)g = yg . xρg = z . xρ.
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Therefore O ∪ S is distance-1 polar at x, and by Lemma 3.15, it is also distance-1 polar
at xρ. �

Corollary 3.20
The ovoid O in the statement of Lemma 3.19 is also translation with respect to the
flag {x, xρ}, with the same associated group G{x,xρ} as S. In addition, the order of H(q)
is q = 3h.

Proof In proving distance-1 polarity at x, we have shown that the group G{x,xρ}, which
acts transtively on each of the spread projection sets VK , with K I x and K 6= xρ, also
acts transitively on the each of the ovoid projection sets Vk, with k I xρ and k 6= x. The
claim concerning the order of H(q) follows from Theorem 3.1. �

Lemma 3.21
Let O∪S be an ovoid-spread pairing of H(q) with associated function ρ. Suppose that S
is translation with respect to a flag {x, xρ} and that the associated group G{x,xρ} of S
with respect to this flag fixes O. Then O ∪ S is distance-2 polar at x and at xρ.

Proof Let x be the point in the flag {x, xρ} and let y, z ∈ O be such that yρ.2x = zρ.2x.
By Lemma 3.15, it is sufficient to prove the claim for x. Without loss of generality, choose
the hat-rack of the coordinatization such that x = (∞), xρ = [∞], z = (0, 0, 0, 0, 0) and
zρ = [0, 0, 0, 0, 0]. Then by the incidences given in (1.13), yρ .2 x = zρ .2 x = (0, 0) is
equivalent to the condition that the first two coordinates of the line yρ are zero. What
we need to show is that then y .2 xρ = z .2 xρ = [0, 0], or equivalently, that the first two
coordinates of the point y are also zero. From here on, we work only with coordinates,
so the symbols x, y and z are free to be used for elements of the field GF (q).

Let S be given by the coordinate representation in (2.3), so

S =
{

[∞]
}

∪
{

[x, y, z, f(x, y, z), g(x, y, z)]
∣

∣ x, y, z ∈ GF (q)
}

,

and from (3.1), the associated group is

G{[∞],(∞)} =
{

Θ[0, y, z, f(0, y, z), g(0, y, z)]
∣

∣ y, z ∈ GF (q)
}

.

For brevity, let `(x, y, z) be the line of S whose first three coordinates are (x, y, z).
Since O is fixed by the group G{[∞],(∞)}, the point of O that is incident with the line

`(0, 0, z) of S is the image of the point (0, 0, 0, 0, 0) under the action of the collineation
Θ[0, 0, z, f(0, 0, z), g(0, 0, z)], and thus it is the point (0, g(0, 0, z), f(0, 0, z), z, 0). There-
fore, all we need to show is that g(0, 0, z) = 0 for all z.

Suppose there is a Z ∈ GF (q) such that g(0, 0, Z) 6= 0. From Corollary 3.20 we
have q = 3h, so the collineation g = Θ[0, 0, Z, f(0, 0, Z), g(0, 0, Z)] in G{[∞],(∞)} maps
the line `(x, 0, 0) of S to the line `

(

x, 0, Z − xg(0, 0, Z)
)

. Choosing x = Z
g(0,0,Z) , we

have a line `(x, 0, 0) of S that is fixed by g, contradicting the semiregular action of the
group G{[∞],(∞)} on the lines of S opposite [∞]. Therefore g(0, 0, z) = 0 for all z ∈ GF (q)
and the claim is proved. �

Together, these results that we have collected enable us to classify the spreads of H(q)
that are translation with respect to two opposite flags.
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Theorem 3.22
Let S be a spread of H(q) that is translation with respect to two opposite flags. Then S
is either hermitian or a Ree-Tits spread.

Proof Suppose S is nonhermitian. By Lemma 3.18, there is an ovoidO such thatO∪S
is an ovoid-spread pairing and such that S is translation with respect to each flag {x, xρ},
where ρ is the associated function of O∪S. By the comments following Lemma 3.18, the
associated groups G{x,xρ} of S with respect to each of these flags stabilize the ovoid O, so
Lemmas 3.19 and 3.21 apply and therefore O∪S is locally polar at each of its elements.
Finally, by Lemma 3.16, the ovoid-spread pairing O ∪ S arises from a polarity so S is a
Ree-Tits spread and O is the corresponding Ree-Tits ovoid. �

We summarize the results that we have pertaining to spreads that are translation
with respect to two flags in our following theorem.

Theorem 3.23
Let S be a spread of H(q) that is translation with respect to two flags F and G.

(i) If d(F ,G) = 5 then S = SH .

(ii) If d(F ,G) = 6 then S = SH or S = SR.

(iii) If F and G are on a common line L then S is locally hermitian with respect to L.
If q 6≡ 2 (mod 3) then S is translation with respect L. If q = 3h then S = SH

or S = Sλ.

Proof The cases when d(F ,G) = 5 and d(F ,G) = 6 are Theorems 3.13 and 3.22,
respectively. For the case when d(F ,G) = 1, the first part is Theorem 3.3, the second
part is from Theorem 3.5, and the final part is Corollary 3.12. �

3.5 Remarks

In the previous section, the proof of Theorem 3.22 is broken into the sequence of Lem-
mas 3.14–3.21, and for the largest part the proof seems quite pleasing for its use of purely
geometric arguments. However, it is only in Lemma 3.21 that this is a little spoiled by
resorting to the use of coordinates. I am grateful to Hendrik Van Maldeghem for showing
me how to avoid coordinates there as well, making for a completely coordinate free proof
of Theorem 3.22. The key is in the following observation for which I provide a proof us-
ing the geometry of the quadric P6 in which the hexagon H(q) is embedded. A counting
argument can also be used, and this is outlined afterwards.

Theorem 3.24
Let x be a point of H(q) and let y and z be two points opposite x such that their
distance-2 traces xy

[2] and xz
[2] onto x have at least two points in common. Then their

distance-3 traces onto x are either equal or have exactly one line in common; that is,
|xy

[3] ∩ xz
[3]| = 1 or q + 1.
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Proof Notice that if the distance-3 traces xy
[3] and xz

[3] have two lines in common, then
by Lemma 1.17 they are equal, so we have really only to show that they are not disjoint.

Let ` = xy
[2] and R = xy

[3]. Then ` is a line of P6 by Lemma 1.16, and R is a line
regulus. By Lemma 1.18, the complementary point regulus to R is a conic C in a plane π,
and π ∩ ` = ∅ since no element of ` is at distance 3 from the lines of R. Also, the points
of C are at distance at most 4 from the points of ` so π ⊂ `⊥. It follows that `⊥ is spanned
by ` and π so that `⊥ ∩ P6 is the conic cone `C with vertex ` and base C. Thus for any
given generator γ of P6 on `, there is a unique point w of C in γ, and this point then
satisfies xw

[2] = xy
[2] = ` and xw

[3] = xy
[3] = R.

Now consider the point z as in the statement of the theorem. Then xz
[2] = ` and we

let R′ = xz
[3]. As we are really only concerned with the distance-3 trace R′ and not the

point z itself, we may, by the previous paragraph, assume that y and z are in a common
generator γ of P6 on `. Consider a line of γ passing through y and z and let u be the point
in which it meets the line `. Let L ∈ R be the line of the distance-3 trace of y onto x
that is incident with the point u. Then there is a generator γ′ of P6 on L that contains
the points y and u, and so therefore also the point z. This implies that d(z, L) = 3 and
we conclude that L ∈ R′ so the distance-3 traces R and R′ are not disjoint. �

As mentioned previously, Theorem 3.24 can also be demonstrated with a counting
argument, which we outline now. First, one verifies that of the q5 points opposite x,
exactly q3 of them have the same distance-2 trace onto x as does y. Of these, the number
for which a given line L ∈ xy

[3] belongs to the distance-3 trace is q2. Now noting that a
distance-3 trace onto x is a line regulus which is completely determined by two of its q+1
lines, and that in addition to x there are q points in the complementary point regulus,
we determine that the number of points w for which xw

[2] = xy
[2] and |xw

[3] ∩ xy
[3]| > 0 is

(q + 1)q2 − q2 = q3, which is precisely the number of points z such that xz
[2] = xy

[2]. Thus
for all such points z we must have |xz

[3] ∩ xy
[3]| > 0, as required.

With the help of this result, we can now complete the proof of Theorem 3.22 without
the use of coordinates.

Alternative proof of Lemma 3.21 As in the original proof, let x be the point in
the flag {x, xρ} and let y, z ∈ O be distinct points such that yρ .2 x = zρ .2 x = u. We
must show that y .2 xρ = z .2 xρ.

By Lemma 3.19, the distance-2 traces xy
[2] and xz

[2] have a common point y.xρ = z.xρ.
Since u is also a point in common to these two sets, Theorem 3.24 applies so there is a
line ` in xy

[3] ∩ xz
[3].

Let k = ` . x and let m be the unique line of the spread S that is concurrent with `.
Let g be the unique collineation in G{x,xρ} that maps yρ to zρ. Since g fixes the point x
linewise and k is incident with x, the line ` = y.2k is mapped to z .2k = `, so the line ` is
fixed. Since g stabilizes the spread S, it follows then that g also fixes the spread line m.
Now by the semiregular action of G{x,xρ} on S \ {xρ} together with the fact that g 6= 1,
it follows that m = xρ and ` = y .2 xρ = z .2 xρ, as required. �
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Chapter 4

Connections with Generalized
Quadrangles

Generalized quadrangles are, on the whole, generally more familiar objects and in this
chapter we hope to make the generalized hexagon H(q) a little less mysterious than it
might at first seem by showing some connections that exist between it and generalized
quadrangles. Indeed, much of what we have learnt about H(q) has its motivations lying
in the strong analogy with the symplectic quadrangle W (q). It is this analogy that we
focus on first, and then we consider a connection between spreads of H(q) and ovoids of
the generalized quadrangle Q(4, q), or equivalently, spreads of W (q) since these general-
ized quadrangles are dual. In this chapter, a familiarity with generalized quadrangles is
assumed. For details, see either of the references [PT84] or [VM98].

4.1 Construction of the Symplectic Quadrangle W (q)

In Section 1.4.1, we described the construction of the split Cayley hexagon H(q). With
the aim of making that construction seem a little more natural than it might otherwise,
here we draw on the analogy with the symplectic quadrangle W (q) to provide a parallel
description of its construction.

The essential principle in the construction of H(q) given in Section 1.4.1, is to define
a rank 4 geometry, with three types of points, that then has a three-way symmetry giving
rise to a triality as illustrated in Figure 1.3. The absolute elements of the triality then
make the generalized hexagon H(q). Here, we use a rank 3 geometry, with two types of
points, that has a two-way symmetry and a corresponding polarity. Then W (q) is the
geometry of the absolute elements of the polarity.

To begin, define the rank 3 geometry Γ = (P(0),P(1),L, I), where P(0) and P(1) are
the sets of points and planes, respectively, of the projective space PG(3, q), the set L is
the set of lines of PG(3, q), and incidence is given by the usual incidence in PG(3, q).
Then Γ is really just PG(3, q), but with the planes being considered as a type of point
in order to emphasize the similarity with Section 1.4.1.

As in Section 1.4.1, we label the 0-points (that is, the elements of the set P (0)) with
homogeneous coordinates by simply using their coordinates as points of PG(3, q), and
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P(0) P(1)L

θ

θ θ2 = 1

Figure 4.1: The polarity θ

we want to assign similar coordinates to the 1-points. While previously the assignment
was made such that incidence between points of different types was given by the trilinear
form (1.2), here we do it such that incidence between 0-points and 1-points is given by
the bilinear form

B(x, y) =
∣

∣

∣

∣

x0 x1

y0 y1

∣

∣

∣

∣

−
∣

∣

∣

∣

x2 x3

y2 y3

∣

∣

∣

∣

. (4.1)

Specifically, the 0-point x and the 1-point y are incident if and only if B(x, y) = 0. Thus
the 1-point with coordinates (a, b, c, d) is the plane of PG(3, q) given by the equation
bX0 − aX1 − dX2 + cX3 = 0.

Now the map θ that takes a point of one type to the point of the other with the
same coordinates is a polarity since the bilinear form is preserved (up to sign); that is, if
B(x, y) = 0 then B(y, x) = 0, so if x I y then xθ I yθ. See Figure 4.1 and compare with
Figure 1.3 of Section 1.4.1.

An absolute 0-point is one for which B(x, x) = 0, and it is readily seen from (4.1)
that all 0-points are absolute. Now let x be a point and y another such that x I yθ. Then
also y I xθ. Also, since all points are absolute, we have x I xθ and y I yθ. Thus, in terms
of projective subspaces of PG(3, q), we have x ∈ xθ ∩ yθ and y ∈ xθ ∩ yθ, so the line xy
is absolute since xy = xθ ∩ yθ = xθyθ. Conversely, if xy is absolute then xy = xθyθ so in
particular we have x ∈ yθ, which in Γ means x I yθ. Thus, similarly to that which occurs
in Section 1.4.1, the absolute lines are precisely those lines xy for which B(x, y) = 0.

The absolute 0-points and absolute lines of Γ form a generalized quadrangle of order q
(see [VM98, 2.3.17]) and this is what we know as the symplectic quadrangle W (q).
From the preceding discussion, we have a description of W (q), analogous to that of H(q)
at the end of Section 1.4.1, as being comprised of all the points of PG(3, q) together with
the lines of PG(3, q) whose Plücker coordinates satisfy

p01 = p23.

One can also identify numerous similarities between the geometry of W (q) and that
of H(q) as discussed in Section 1.4.2. For instance, the lines incident with a point x
of W (q) form a pencil in a plane of PG(3, q), namely the plane that is the 1-point xθ

of Γ. Also, Lemmas 1.12 and 1.16, for instance, translate almost unchanged to the case
of W (q). Finally, while the number 3 seems to play a special rôle in the context of H(q),
for the generalized quadrangle W (q) it is the value 2. Indeed, by [Tit62] and [Tha72] (see
also [VM98, Corollary 7.3.5]), W (q) is self-dual if and only if q = 2h and it is self-polar
if and only if q = 22e+1 (cf. Theorem 1.20). In fact, the conjecture referred to on page 53
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POINTS
Coordinates in Q(4, q) Coordinates in PG(4, q)

(∞) (1, 0, 0, 0, 0)
(a) (a, 0, 0, 1, 0)

(k, b) (−b, 1, k,−k2, 0)
(a, `, a′) (−`2 + aa′,−a, `, a′, 1)

LINES
Coordinates in Q(4, q) Coordinates in PG(4, q)

[∞] 〈(1, 0, 0, 0, 0), (0, 0, 0, 1, 0)〉
[k] 〈(1, 0, 0, 0, 0), (0, 1, k,−k2, 0)〉

[a, `] 〈(a, 0, 0, 1, 0), (−`2,−a, `, 0, 1)〉
[k, b, k′] 〈(−b, 1, k,−k2, 0), (−k′2, 0, k′, b− 2kk′, 1)〉

Table 4.2: Coordinatization of Q(4, q)

concerning the nonexistence of ovoids of H(q) when 3 - q arises from the nonexistence of
ovoids of W (q) when 2 - q [Tha73].

In all, the analogy between W (q) and H(q) is quite strong. For further details,
see [VM98] where the analogy is drawn upon and made fairly clear wherever possible. In
particular, see [VM98, 2.4.18] where polarities of PG(3, q) and trialities of the geometry Γ
in Section 1.4.1 are compared.

4.2 Ovoids of Q(4, q)

Now we turn our attention to the generalized quadrangle Q(4, q), whose points and lines
are the totally isotropic spaces on a nondegenerate parabolic quadric P4. This quadrangle
is nothing other than the dual of the symplectic quadrangle W (q) (see [VM98, Proposi-
tion 3.4.13]), so the analogy between W (q) and H(q) carries over to one between Q(4, q)
and H(q) that is dual in nature; we only choose to consider Q(4, q) rather than W (q) for
reasons of convenience.

In this section, we take the quadric P4 of Q(4, q) to be given by the equation

X0X4 + X1X3 + X2
2 = 0.

Also, we use a coordinatization of Q(4, q) that is similar to the coordinatization of H(q)
described in Section 1.4.3 (see [VM98, 3.4.7]). Specifically, the elements of Q(4, q) are
assigned coordinates according to Table 4.2. Then incidence is given by the paths

[k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, `] I (a, `, a′)

together with (a, `, a′) I [k, b, k′] if and only if

b = a′ + ak2 + 2`k
k′ = ` + ak.
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Spreads and ovoids of generalized 2m-gons were defined in Section 2.1, and the defini-
tion of translation spreads and ovoids in Section 3.1 is readily generalized to generalized
2m-gons (see [BTVM98] for details), so we assume a familiarity with these concepts
for Q(4, q). Translation ovoids of Q(4, q) are discussed in [BTVM98, Section 3.2] and
here we essentially repeat some of that, while making comparisons with what we have
learnt about spreads of H(q).

Let O be an ovoid of Q(4, q). By an appropriate choice of coordinates, it may be
supposed that the points (∞) and (0, 0, 0) belong to O so then the ovoid is given by

O =
{

(∞)
}

∪
{

(x, y, f(x, y))
∣

∣ x, y ∈ GF (q)
}

, (4.2)

where f(0, 0) = 0 and ∆y2 6= ∆x∆f whenever (∆x, ∆y) 6= (0, 0)—a condition compara-
ble to the opposite line condition in Lemma 1.22. Compare this with the representation
of spreads of H(q) in (2.3). Concerning translation ovoids, we have the following results.

Theorem 4.1 (Bloemen, Thas, Van Maldeghem [BTVM98, Theorem 12])
If O is a translation ovoid of Q(4, q) with respect to a point x, then the associated
group Gx acts regularly on the set of points O \ {x}. �

Lemma 4.2 (Bloemen, Thas, Van Maldeghem [BTVM98, Lemma 13])
Let O be an ovoid of Q(4, q) and let x be a point of O. If a subgroup of Gx of order q2

stabilizes O then O is translation with respect to x. �

Corollary 4.3 (Bloemen, Thas, Van Maldeghem [BTVM98, Corollary 14])
If O is an ovoid of Q(4, q) containing (∞) and (0, 0, 0) that is represented as in (4.2),
with q = ph, then O is translation with respect to (∞) if and only if

f(x, y) =
h−1
∑

i=0

(

f1ixpi
+ f2iypi)

,

with the coefficients fni ∈ GF (q). �

Lemma 4.2 has a partner in Theorem 3.4 for H(q). One objective in Section 3.2 has
been to likewise identify results for H(q) comparable to Theorem 4.1 and Corollary 4.3.
This has been achieved in Theorems 3.6 and 3.7, where the rôle of the associated group Gx

in Theorem 4.1 has been played instead by the stabilizer GL
S in Theorem 3.6.

Examples of translation ovoids of Q(4, q) are the classical ovoids OE, which are elliptic
quadrics E3. Notice that these are then determined by a hyperplane of PG(4, q) that
meets P4 in an elliptic quadric, which is analogous to the construction of the hermitian
spreads SH of H(q) described in Section 2.3.1. Thus the classical ovoids OE and the
hermitian spreads SH appear to be analogous objects, and indeed, they do share numerous
properties; for instance, both are translation with respect to each of their elements. Just
as we found all hermitian spreads containing the lines [∞] and [0, 0, 0, 0, 0] in Section 2.3.2,
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we also find all classical ovoids of Q(4, q) containing the points (∞) and (0, 0, 0), which
are then

OE(µ, ν) =
{

(∞)
}

∪
{

(x, y,−νx + µy)
∣

∣ x, y ∈ GF (q)
}

, (4.3)

where f(x) = x2 − µx + ν is an irreducible quadratic.
Let O, represented as in (4.2), be translation with respect to the point (∞). Similar

to the definition in Section 3.3 of the kernel of a translation spread of H(q), the kernel
of O, denoted kerO, is defined to be the maximal subfield of GF (q) such that f(ax, ay) =
af(x, y), for all a ∈ kerO and x, y ∈ GF (q). We then have the following classification of
translation ovoids O for which kerO is as large as possible.

Theorem 4.4 (Bloemen, Thas, Van Maldeghem [BTVM98, Corollary 17])
LetO be a translation ovoid of Q(4, q) containing (∞) and (0, 0, 0), represented as in (4.2),
that has kernel kerO = GF (q). Then O is a classical ovoid. �

Illustrating further the relationship between the classical ovoids OE and the hermitian
spreads SH , compare this theorem with the classification in Theorem 3.9 of translation
spreads of H(q) for which the kernel is as large as possible. There however, we also see
the S[9] spreads appear. It was remarked in Section 3.3 that Theorem 3.9 is equivalent
to [BTVM98, Theorems 30–32]. The remainder of this section is devoted to this fact.

Let S be a spread of H(q) that is point locally hermitian with respect to some point x
on a line K ∈ S. For each line L 6= K in S, let Lx be the unique line of P6 that passes
through x and that is concurrent with L. Since K and L are opposite, these lines Lx are
not H(q)-lines. The tangent prime x⊥ meets the quadric P6 in a quadric cone xP4, and
since S is point locally hermitian at x, the line K and the lines Lx meet P4 in a set OS(x)
of exactly q2 +1 points. By Lemma 2.4, S is a 1-system of P6, so from Theorem 1.8, each
generator contains precisely q +1 points that are on lines of S. Since every point on each
line Lx is incident with some line of S, it follows that no two distinct lines Lx and Mx are
coplanar in P6. Similarly, no generator on K meets any other line of S. Consequently,
no two points of OS(x) are collinear. By Lemma 2.2, the set OS(x) is therefore an ovoid
of the generalized quadrangle Q(4, q). In the case that the spread S is locally hermitian
with respect to K, this process was introduced in [BTVM98] as “projection along reguli”.

Now suppose, without loss of generality, that S contains the lines [∞] and [0, 0, 0, 0, 0],
and that the point at which S is point locally hermitian is (∞). Then S is given by

S =
{

[∞]
}

∪
{

[x, y, z, f(x, y), g(x, y, z)]
∣

∣ x, y, z ∈ GF (q)
}

,

for some functions f and g with f(0, 0) = g(0, 0, 0) = 0. Notice that f is independent
of z by the point locally hermitian property.

The tangent prime to P6 at x is given by the equation X4 = 0, and this meets P6 in
the quadric cone xP4, where we may take P4 to be contained in the 4-space Π4 given by
X0 = X4 = 0. Let us choose coordinates within Π4 such that the correspondence with
the coordinates in PG(6, q) is

(0, x1, x2, x3, 0, x5, x6) ←→ (−x6,−x1, x3, x5, x2).
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Then the equation for P4 in terms of the coordinates in Π4 is X0X4 + X1X3 + X2
2 = 0,

so we use the coordinatization of Q(4, q) given in Table 4.2.
Notice that the line [∞] of S meets P4 in the point (0, 0, 0, 0, 0, 0, 1), which in

the coordinates of Π4 is (1, 0, 0, 0, 0), and this is the point (∞) of Q(4, q). Thus
the ovoid OS(∞) of Q(4, q) contains (∞). For a line L =

[

x, y, z, f(x, y), g(x, y, z)
]

of S, the line Lx of P6 is the line passing through the two points (1, 0, 0, 0, 0, 0, 0) and
(

z + yf(x, y), x, 1, y, 0, f(x, y), y2 − xf(x, y)
)

, which correspond to the points (∞) and
(

x, y, z, f(x, y)
)

of H(q), respectively. This line meets Π4 in the point whose coordinates
in Π4 are

(

−y2 + xf(x, y),−x, y, f(x, y), 1), which from Table 4.2 is seen to correspond
to the point

(

x, y, f(x, y)
)

of Q(4, q). Thus the ovoid OS(∞) is given by

OS(∞) =
{

(∞)
}

∪
{

(x, y, f(x, y))
∣

∣ x, y ∈ GF (q)
}

. (4.4)

Suppose now that the spread S is translation with respect to the line [∞]. Then by
Theorem 3.3, S is locally hermitian with respect to [∞], and in particular, it is point
locally hermitian with respect to the point (∞) of H(q). Also, by Theorem 3.7, the
function f has the form

f(x, y) =
h−1
∑

i=0

(

f1ixpi
+ f2iypi)

,

with the coefficients fni ∈ GF (q), so by Corollary 4.3, the ovoid OS(∞) of Q(4, q) is
translation with respect to (∞). Furthermore, we have kerS 6 kerOS(∞).

Consider the case that kerS = GF (q). Then also kerOS(∞) = GF (q) so by Theo-
rem 4.4, the ovoid OS(∞) is a classical ovoid. Since the point (∞) of H(q) could have
been taken to be any point on [∞] and we would still have kerS = GF (q) (see Theo-
rem 3.8), it follows that OS(x) is a classical ovoid for every point x incident with [∞]. In
the terminology of [BTVM98], a locally hermitian spread S with respect to a line L, for
which OS(x) is a classical ovoid for every x I L, is called semiclassical. We are part of
the way to having proved our next theorem.

Theorem 4.5
Let S be a locally hermitian spread of H(q) with respect to the line L. Then the following
are equivalent:

(i) S is semiclassical;

(ii) OS(x) and OS(y) are classical ovoids for two points x 6= y on L;

(iii) S is translation with respect to L and kerS = GF (q).

Proof In the preceding discussion, we have already seen that (iii) implies (i). Also, (i)
implies (ii) by the definition of semiclassical. We have only to show now that (iii) is
implied by (ii).

Without loss of generality, we suppose that the hat-rack of the coordinatization is
chosen such that the two points referred to in (ii) are the points (∞) and (0), and that S
is given by

S =
⋃

x,y∈GF (q)

[[

x, y, f(x, y), g(x, y)
]]

,
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for some functions f and g with f(0, 0) = g(0, 0) = 0. The ovoid OS(∞) is then as
in (4.4). Now we determine the ovoid OS(0) of Q(4, q).

Let Π4 be the 4-space given by X2 = X6 = 0, which is then in the tangent prime
to P6 at the point (0), and let P4 = Π4 ∩P6 be the parabolic quadric for the generalized
quadrangle Q(4, q). Choose coordinates in Π4 such that the correspondence with the
coordinates in PG(6, q) is given by

(x0, x1, 0, x3, x4, x5, 0) ←→ (−x0, x1,−x3,−x5, x4).

Then the equation of P4 in terms of the coordinates of Π4 is X0X4 + X1X3 + X2
2 = 0,

so Table 4.2 is used to assign coordinates in the generalized quadrangle Q(4, q). Notice
that the line [∞] of H(q) meets Π4 in the point (1, 0, 0, 0, 0, 0, 0), which then corresponds
to the point (∞) of Q(4, q).

Next, the projection in H(q) of (0) onto the line
[

x, y, 0, f(x, y), g(x, y)
]

of S is the
point

(

0, g(x, y), f(x, y), xg(x, y)+3yf(x, y), y
)

. The line of P6 through this point and (0)
meets Π4 in the point whose coordinates in Q(4, q) are

(

y, f(x, y),−g(x, y)
)

. Thus

OS(0) =
{

(∞)
}

∪
{

(y, f(x, y),−g(x, y))
∣

∣ x, y ∈ GF (q)
}

. (4.5)

SinceOS(∞) is a classical ovoid, from its representation in (4.4) and the representation
of the classical ovoids in (4.3), the function f(x, y) is linear in x and y. Similarly, the
ovoid OS(0) is classical so the function g(x, y) is linear in y and f(x, y), and therefore,
in x and y. It now follows from Theorem 3.7 that the spread S of H(q) is translation
with respect to the line [∞] and, by the linearity of the functions f and g, the kernel of S
is all of GF (q). �

In view of this theorem, our classification in Theorem 3.9 of the translation spreads S
of H(q) with kerS = GF (q), for q odd, is equivalent to the classification in [BTVM98,
Theorems 30–32] of semiclassical spreads of H(q) for q odd.

When the spread S is the hermitian spread SH(µ, ν), as given in (2.23), the
ovoids OS(∞) and OS(0) of Q(4, q), as shown in (4.4) and (4.5), are both the classical
ovoid OE(µ, ν). Thus, since the hermitian spreads are all isomorphic, if S is any spread
of H(q) that is point locally hermitian with respect to the point (0) and for whichOS(0) is
a classical ovoid, then we may suppose that this is any particular classical ovoid OE(µ, ν)
that we choose by applying an appropriate collineation of H(q). This enables us to give
our following necessary condition for a spread S of H(2h) to be translation with respect
to [∞] and have kerS = GF (2h).

Theorem 4.6
Let q = 2h and let δ be some fixed element of GF (q) with Tr(δ) = 1. Let S be a spread
of H(q) that is translation with respect to [∞] and such that kerS = GF (q). Then S is
isomorphic to a spread of the form

⋃

x,y∈GF (q)

[[

x, y, νx + µy, νx + (µ + δ)y
]]

,

for some µ and ν such that x2 + µx + ν is irreducible.
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Proof By Theorem 4.5, S is semiclassical, and by our previous comments, we may
suppose that the ovoid OS(0) is the classical ovoid OE(1, δ). From the representation
of OS(0) in (4.5) and that of the classical ovoids in (4.3), this amounts to g(x, y) =
f(x, y) + δy. The ovoid OS(∞) is also a classical ovoid OE(µ, ν), for some µ and ν such
that x2 + µx + ν is irreducible, and from (4.4) and (4.3), this gives us f(x, y) = νx + µy.
The result follows. �

4.3 Remarks

As a result of Theorem 4.6, a computer search for semiclassical spreads of H(2h) becomes
feasible for the first few values of the exponent h. Doing this for h ≤ 6 revealed that the
hermitian spread is the unique semiclassical spread when h = 1, 3 or 5; however, for the
even values h = 2, 4, and 6, exactly one extra spread was discovered. From these three
examples, I have identified a new infinite class of spreads which I describe now.

Theorem 4.7
Let q = 22e and let δ be some fixed element of GF (q) with Tr(δ) = 1. Then the set

S =
⋃

x,y∈GF (q)

[[

x, y,
δ3

(δ + 1)2x +
δ

δ + 1
y,

δ3

(δ + 1)2x +
δ2

δ + 1
y
]]

(4.6)

is a nonhermitian semiclassical spread of H(q).

Proof Notice that this set corresponds to the set described in Theorem 4.6 with
µ = δ/(δ + 1) and ν = δ3/(δ + 1)2. From there, if this set S were a hermitian spread
then we would have (µ, ν) = (1, δ), and in particular, this gives µ = 1, which cannot be
true. So S is certainly not a hermitian spread. Also, it is clear from the representation
in (4.6) that if S is a spread then its kernel is kerS = GF (q) so it is semiclassical by
Theorem 4.5.

For the line regulus of S corresponding to the pair (x, y) ∈ GF (q)2 in (4.6), let T (x, y)
be the expression in the compatibility condition in (2.31b) on page 46. To show that S
is a spread, we have then only to show that Tr

(

T (x, y)
)

= 1 for all pairs (x, y) 6= (0, 0).
To begin, since SH(1, δ) certainly is a spread, we have from the compatibility condition

in (2.31b) that

S(x, y) =
A(x, y)
B(x, y)2 (4.7)

has trace equal to 1 for all (x, y) 6= (0, 0), where

A(x, y) = δ3x4 + δ2x3y + (δ2 + δ)x2y2 + (δ + 1)xy3 + δy4,

and

B(x, y) = δx2 + xy + y2.
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After a few messy lines, the function T (x, y) in terms of A(x, y) and B(x, y) is found to
be

T
(x

δ
,

y
δ + 1

)

=
A(x, y) + xy3

(

B(x, y) + x2
)2 . (4.8)

In order to compare T (x, y) more readily with S(x, y), we make a change of variables
so that the denominator in (4.8) is identical to that which appears in (4.7). Since q = 22e,
there is an element θ ∈ GF (q) such that θ2 = θ + 1. Then B(x, θx + y) + x2 = B(x, y),
so we let

T ′(x, y) = T
(x

δ
,
θx + y
δ + 1

)

.

To show that T (x, y) has trace equal to 1 for all nonzero pairs (x, y), we have only to
show the same for T ′(x, y), and since we know that this is so for S(x, y), we can instead
endeavour to show that Tr

(

S(x, y) + T ′(x, y)
)

= 0 for all nonzero pairs (x, y). Now

S(x, y) + T ′(x, y) =
C(x, y)
B(x, y)2

where

C(x, y) = A(x, y) + A(x, θx + y) + x(θx + y)3

= δ2x4 + (δ + δθ)x3y + δθx2y2 + xy3,

and it can be checked by direct substitution that X = δθx2 + xy is a solution of the
quadratic equation X2 + B(x, y)X + C(x, y) = 0 for all nonzero pairs (x, y). Thus this
quadratic is always reducible and so Tr

(

C(x, y)/B(x, y)2
)

= Tr
(

S(x, y) + T ′(x, y)
)

= 0.
It now follows that S is a spread of H(q). �

These new spreads exist only when q ≡ 1 (mod 3) and the original computer search
indicated that these are the only nonhermitian semiclassical spreads for q ≤ 26. So
perhaps there could be a classification of semiclassical spreads for even q that is similar
to the one in Theorem 3.9 for odd q, where these new spreads would appear as an analogue
of the S[9] spreads. Perhaps, further, these spreads and the S[9] spreads can be given a
common description.
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For spreads and ovoids of generalized quadrangles and generalized hexagons, the notion
of being translation with respect to an element or a flag was introduced in the paper
[BTVM98] of Bloemen, Thas and Van Maldeghem. The objective in this thesis has been
to investigate these objects further in the context of the split Cayley hexagon H(q).

Firstly, I have obtained classification results. Theorem 3.1 proves the nonexistence
of translation ovoids of H(q) when 3 - q. The spreads of H(q) that are translation with
respect to a line are classified in Theorem 3.9 subject to the condition that the kernel is
all of GF (q), and in Corollary 3.12 subject to q = 3h. Spreads of H(q) that are translation
with respect to two disjoint flags are classified by Theorems 3.13 and 3.22.

Next, I have developed a number of useful tools. Lemmas 1.21 and 1.22 give co-
ordinate conditions for elements of H(q) to be opposite (the former is also stated and
used in [BTVM98]). Similarly, there are the compatibility conditions for line reguli and
point reguli on pages 46 and 49, respectively. Theorems 3.5 and 3.6 assure us that the
stabilizer GL

S in GL of a spread S that is translation with respect to a line L is certainly
always accessible, whereas the associated group GL might misbehave when q is even.
Consequently, the stabilizer GL

S is perhaps the more convenient group to work with, and
indeed, it is by using this that Theorem 3.7 is obtained, giving the forms of the functions
in a coordinate representation of S. Also, the notion of kernel of a translation spread
of H(q) is defined in analogy with a similar definition in [BTVM98] for translation ovoids
of Q(4, q), followed by the tedious verification that it is in fact well-defined, as stated in
Theorem 3.8.

In addition, many already known things have been worked independently here, in
some cases for completeness, in some others to present a new approach, and in others
for the reason that their explicit demonstrations are difficult or impossible to locate.
For instance, a characterization of 1-systems of P6 that lie in a hyperplane is given
in Theorem 1.11, thereby leading to a new geometric proof of Theorem 2.9. In the
reverse direction, by Theorem 4.5 it follows that the proof of Theorem 3.9 provides an
algebraic proof of results of [BTVM98] that were previously dealt with geometrically.
Also included in this category are the derivations of the representation of H(q) in P6

given in equations (1.9) and (1.10), of the collineations Θ (and Ψ), and of the spread S[9],
as well as the demonstrations of the uniqueness of spreads of H(2) in Theorem 2.5 and
of the hermitian spreads in Section 2.3.3.

As with many things, the successes so far by no means suggest completion and there
are indeed further investigations to be carried out in this direction. These could include:
classifications along the lines of Theorem 3.9, but where the kernel is allowed to be smaller
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than GF (q); bringing Theorem 4.6 to a close by classifying the spreads of H(2h) with
kernel as large as possible; strengthening Theorem 3.1 by loosening the requirement that
the ovoid be translation with respect to a flag, and thereby continue working towards
the proof of the conjecture that H(q) has no ovoids at all when 3 - q; and investigation
of the significance of the notion of local polarity for ovoid-spread pairings in generalized
quadrangles.
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Études Sci. Publ. Math., 2, pages 14–60, 1959.

[Tit61] J. Tits. “Les groupes simples de Suzuki et de Ree”, Séminaire Bourbaki,
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xy
[i], see distance-i trace

Γi(x), see sphere
x⊥, see perp
y .i x, y . x, see distance-i projection
Ψ(a, `, a′, `′, a′′), 31
Θ[k, b, k′, b′, k′′], 31
[[k, b, b′, k′′]], see line regulus
((a, `, `′, a′)), see point regulus

absolute, 4
apartment, 6
associated function, 70
associated group, 51, 52

classical ovoid of Q(4, q), 80
compatibility condition

line reguli, 46
point reguli, 49

compatible
line reguli, 45
point reguli, 48

coordinate representation
locally hermitian spread, 45,47
ovoid, 35–36
spread, 35
translation spread, 60

coordinates
of H(q), 21–22
of Q(4, q), 79–80

cycle, 5

d(x, y), see distance
distance

between elements, 5
between flags, 68

distance-i polar, 71
distance-i projection, 6
distance-i trace, 6

dual, 4
duality, 4

of H(q), 29

E(γ), E(γ, δ), 27–28
En, see elliptic quadric
elation, 7, 27–28

flag, 4

G2(q), 25
generalized polygon, 6
generator, 9
Gx, G{x,y}, 29

Hn, see hyperbolic quadric
hat-rack, 20
hermitian

ovoid, 41
coordinates, 42

spread, 38
coordinates, 40

homology, 7
H(q), 14
H(q)-line, 16
H(q)-plane, 16

kernel, 61

locally hermitian
ovoid, 48
spread, 43

locally polar, 71

map between geometries, 4
morphism, 4

OE, 80
OH , 41
Oλ, 49
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opposite
elements, 7

in H(q), 17,23
flags, 68

OR, 42
order, 4

of generalized polygon, 6
ovoid

of generalized polygon, 33
of quadric, 10

ovoid-spread pairing, 70

Pn, see parabolic quadric
path, 5

γL, 27
γP , 27
Moufang, 7

perp, 8
Plücker coordinates, 16
point locally hermitian, 44
polarity, 4

of H(q), 29
polygon

generalized, 6
Moufang, 7
Tits, 7

projection, see distance-i projection
projection set, 29

spread/ovoid, 34

quadric
elliptic, hyperbolic,parabolic, 8

R(x, y), see regulus, line or point
rank, 3
Ree-Tits spread/ovoid, 42
regulus, 9

complementary, 19
line, 18

compatible, 45
coordinates, 25

opposite, 9
point, 19

compatible, 48
coordinates, 25

root group, 7

S[9], 48
semiclassical, 82
SH , 38
Sλ, 50
sphere, 6
split Cayley hexagon, 14
spread

of generalized polygon, 33
of quadric, 10

SR, 42
m-system, 10

T (α, β), 28
torus, 28
totally isotropic space, 8
translation

ovoid
classification, 64
nonexistence for q = 3h, 53

spread
is locally hermitian, 55
stabilizer in Gx, 60

with respect to a flag, 51
with respect to a line/point, 52

type, 3

Uz, see projection set

Vz, 34

walk, 5
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