}

UNIVERSITEIT
GENT

Faculteit Wetenschappen
Vakgroep Zuivere Wiskunde en Computeralgebra
Juni 2009

A study of buildings of low rank

Koen Struyve

Promotor : Prof. Dr. H. Van Maldeghem

Co-promotor : Dr. K. Thas

Proefschrift voorgelegd aan
de Faculteit Wetenschappen
tot het behalen van de graad van
Doctor in de Wetenschappen

richting Wiskunde






Preface

As one can see, the title of this thesis is: "A study of buildgs of low rank'. The theory

of buildings is developed in the early '60s by Jacques Tits.hE aim was to study various
important classes of simple groups, such as the simple alggb groups, classical groups,
groups of mixed type and Frobenius-twisted Chevalley grogpn a geometric way.

Why of low rank? Jacques Tits proved two important classi céions for certain classes of
buildings. One for spherical buildings of rank at least 3 in974 ([44]), and one for a ne
buildings of rank at least 4 in 1986 [[47]). The spherical bldings of rank 2 and a ne
buildings of rank 3 cannot be classi ed. However these casi#s not lose their importance
because of this, because they still have strong geometrioperties and have a much richer
behaviour.

We have obtained various characterizations and construotis of such buildings of low
rank. One can nd the results explained in more detail at the bginning of Chapterd2[13
and[4.
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Chapter 1

Preliminaries

In this rst chapter, we de ne buildings and additional conepts needed in the later
chapters.

1.1 Simplicial complexes

The rst thing we will de ne are simplicial complexes, whichis the kind of object buildings
are.

1.1.1 De nitions

A simplicial complexS on a setX is a set of nite subsets ofX such that for each subset
x2 Sandy X, we also have thaty 2 S. We also ask that each singleton oX is in S.
The elements ofX are called thevertices the elements ofS are called simplices. We will
always assume that the order of simplices is bounded.

A maximal simplexof a simplicial complexS on X, is a simplex ofS not contained in a
larger simplex. Two maximal simplices of the same order aralted adjacentif they share
a simplex of order one less.

A type function of a symplicial complexS on X, is a functiont from X to some setl,
such that no two di erent elements which have the same imagendert can be in the same
simplex. The image undet of an element (set) is called theype of that element (set).
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A morphism from a simplicial complexS on X to a simplicial complexS°on X %is a
map from X to X ®which maps simplices inS to simplices inS% A morphism is an
isomorphismif there exists a morphism °from the simplicial complexS°on X °to the
simplicial complexS on X, such that ° is the identity on X. An automorphismis
an isomorphism from a simplicial complex to itself. The autmorphisms of a simplicial
complex form a group: theautomorphism groupof the simplicial complex.

1.1.2 Chamber complexes
A simplicial complex is achamber complexf for each two maximal simplicesC and D

subsequent maximal simplices are adjacent. In this case theximal simplices are called
chambers Note that this implies that all the chambers have the same der. The simplices
of order one less than the chambers are callgdnels

A chamber complex isthin if each panel is in exactly two chambers. It ighick if each
panel lies in at least 3 chambers.

1.1.3 Convexity

two subsequent chambers share at least a panel. Tlength of a gallery is the number of
chambers in the sequence minus one. Tligstance between two chambers is the minimal
length of a gallery between the two chambers.

The product projg A of a simplexA with a simplex B (the order of the simplices matter,

so prog A is not equal projB), is the intersection of all the last chambers in galleries
of minimal length, starting with a chamber containingA, and ending with a chamber

containing B. (The minimal length considered here is the minimal lengthwer all such

possible chambers.)

A sub simplicial complexS°of a simplicial complexS is convex if for every two simplices
A and B in S° the product of A with B is again inS°.

Remark 1.1.1 The notion of product (which can be found in[[1]) is also knowias the
‘projection’ of the simplexA on B. However, we will not use this since it can lead to
confusion with the notion of projection for generalized pgfjons (see Section—1.8.2).



1.2 Geometries 11

1.2 Geometries

A pre incidence geometryis a tuple (X; ;tp;l), where X is called the set ofelements
the set of types tp is a surjective map fromX to , and | the incidence relation
consisting of (unordered) pairs of elements iX such that no such pair has the same

image under the type function.

The function tp is called thetype function. The type of an element is its image under the
type function. Two elements are calledncident if the pair they de ne is an element of
the incidence relation (instead of x;yg 2 I, we will use the notationxly). A ag is a
set of elements such that each two (di erent) elements in theet are incident. It is easily
seen that the set of all ags forms a simplicial complex (catl the ag complex) with a
type function on the set of elements. Theank of a pre incidence geometry is the order
of the set of types.

The type tp(F) of a ag F is the set of types of its elements. A pre incidence geometry
is anincidence geometryif each maximal ag has type . A residueof a ag F is the
geometry obtained by restricting the elements to those distct of F and incident with all
elements off.

A morphism (; ) of one incidence geometryX; ;tp;;l) to another (X% %tp%19
consists of two maps : X ! X%and : ! 9such that for all x;y 2 X it holds that
tpq (x))= (tp(x)) and xly) (x)I° (y). Isomorphisms and automorphisms are then
de ned in the usual way.

In most cases we will give the di erent types speci c names -ush as: points, blocks,
lines, planes, circles, spheres ...In addition we will adopommon linguistic expressions
such aspoints lie on a line, lines go through pointgo describe incidence. Points on a
block (or line) will be calledcollinear, blocks (or lines) through a pointconcurrent. If two
elements are collinear or concurrent, then we say they aagljacent If for two adjacent
elementsx andy there exists a uniquez such that xI zl y, then we will denotez by xy.

Further elaborating this point of view, one often denotes aank 2 incidence geometry as
(P;L;l), whereP (called the points) together with L (called lines, blocks ...) form the
elements, subdivided by type.
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1.3 Coxeter complexes

1.3.1 Coxeter matrices, groups, systems and diagrams

fs1;:::; 5,9 and relations (5is;)™ = e, with e the identity element of W. The Coxeter
systemis the group together with the set of generators:W; S). Note that the elements
in S are involutions.

Remark 1.3.1 Itis possible that Coxeter systems with a di erent number ofgenerators
still give rise to isomorphic Coxeter groups. The followingwo Coxeter matrices are
examples of this: 0 1
1 3 2
@3 1 2A and
2 31

6
. (1.1)

1
6

Most often, instead of using a Coxeter matrix to de ne thingsone uses &oxeter diagram
This diagram consists ofn vertices, one for each generator it5. If for two di erent
generatorss; and s; it holds that m; = 2, then there is nothing drawn between the
associated vertices; ifn; = 3, then one draws a single edge, ify; =4, a double edge. If
m; > 4 one draws an edge and labels it witm; .

The Coxeter system idrreducible if this diagram is connected, andeducibleif it is not.
We will always assume that a Coxeter system is irreducible. e reducible cases can be
viewed as direct products of irreducible cases.

Remark 1.3.2 In the literature triple edges are sometimes used fan; = 5, but also
sometimes form; = 6 (in the context of Lie algebras). In order to avoid confugin, we
will not use triple edges.

1.3.2 Coxeter complexes

group W;. One now obtains a simplicial complex (called th€oxeter complexmodeled
on (W;S)) in the following way.
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The set of vertices consists of all left cosets of sub Coxetgroups W; with jJj =
iSj 1.

The set of simplices consists of all left cosets of sub Coxetgoups W; with J

subset of the coset associated with the vertex.

The Coxeter complex forms a thin chamber complex with as chdrars the left cosets of
the trivial subgroup feg. So the chambers correspond to the elements \&f. The group
W (with left action) forms an automorphism group of this Coxeer complex.

Spherical Coxeter complexes

A spherical Coxeter complexs a Coxeter complex which is nite. If this is the case, the
associated Coxeter groupV can be realized as anite re ection group of a real vector
spaceV, which is a nite group generated by re ections de ned by hyperplanes of the
vector space of dimensiofSj (a hyperplane of a vector space contains the zero vector by
de nition). In addition, the generators S of the Coxeter groupW will correspond to the
generating re ections of the nite re ection group.

The hyperplanes corresponding to the generators i® and their conjugates inW, will
subdivide V in cones corresponding to the chambers of the Coxeter complgsee Sec-
tion L8 for more details). If we consider the intersectioof these cones with the unit
sphere inV, one gets a tesselation of the sphere, whence the name “siglaérCoxeter
complex'.

The (irreducible) spherical Coxeter diagrams corresponty to spherical Coxeter com-
plexes have been classi ed:

An:o—o—o—:::—o—o (n 1)

Ca: o —e— (n 2
Dn:o—o—o—::: L (n 4)
En:o—::: J—o—< (n:6’7'8)
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The subscript n denotes the number of nodes in the diagram. The cagg is sometimes
denoted asB,, the casel,(6) often asG,. This di erence in notation stems from the
theory of (crystallographic) root systems, where these derent notations correspond to
essentially di erent (crystallographic) root systems. Hwever, the Coxeter systems de ned
by the root systems do not exhibit this di erence.

An important notion for spherical Coxeter complexes is opgition. Let (W;S) be a
spherical Coxeter system. The nite groupW has a unique ‘longest' group elememi

(longest in terms of shortest representation as word with tiers the generatorsS). This

element is an involution and is called theopposition involution The induced action as
an automorphism of the corresponding spherical Coxeter guhex can be interpreted as
the point re ection across the centre of the sphere formed kthe complex. Two simplices
of a spherical Coxeter are said to beppositeif they are interchanged by the opposition
involution.

A ne Coxeter complexes

A second interesting class of Coxeter complexes are th@e Coxeter complexes These
are not nite, but the associated Coxeter group contains a rrmal abelian subgroup such
that the corresponding quotient group is nite.

The Coxeter groupW associated to the a ne Coxeter complex can again be realizexs a

group acting on a real a ne space of dimensiof)Sj 1 generated by re ections, but this

time not all the associated hyperplanes share the same poifigdecause of this we now get
a tesselation of the a ne space instead. The normal abeliarubgroup of which we spoke
in the previous paragraph is formed by the elements &¥ corresponding to translations

of the a ne space.

The (a ne) Coxeter diagrams corresponding to a ne Coxeter mmplexes also have been
classi ed:
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Rl: — o

el 0 s
Bn:b—L Ll ——e—e (n 3)

ST

¢4: —o——e——9o—

&,: 6

The subscript n denotes the number of nodes minus one.

1.3.3 Adjacency and roots

Suppose we have again a Coxeter complex modeled &M; 8), and that we have two
chambersC and D sharing a panel. These two chambers correspond to two elernsen
gc and gp in W. As they share a panel they are in the left coset of a subgrod; sg
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for somei. Sogp = gcsi. We then say that these two chambers are-adjacent The
involutory automorphism gcsige ' maps the chambers<C and D to each other.

Now consider the seR of all chambers for which the distance to the chambeg is strictly
less than the distance td. Analogously de neR°as the set of chambers closer 1 than
to C. These two sets partition the set of chambers in the Coxetepmplex. The union of
all the chambers in such a set forms a convex subcomplex of fiexeter complex, which
we shall call aroot. Note that gcsigc ! maps the roots to each other. The simplicial
subcomplex xed by this mapping is called thewall of the root.

1.4 Buildings

A weak buildingis a simplicial complex , with a set A of subcomplexes calledpartments
such that:

(BO) Each apartment is a Coxeter complex.
(B1) Each two simplices of are contained in an apartment.

(B2) If two apartments and © share two simplicesA and B, then there exists an
isomorphism from to © xing the vertices in A and B.

A weak building is a chamber complex; if it is thick, we call ita building. We will always
assume that the Coxeter complex is irreducible - the redudé cases can be thought of
as direct products of irreducible buildings. Theoots of the building are the roots of its
apartments. The type of the Coxeter complexes formed by thepartments, will be called
the type of the building.

One can prove that (weak) buildings are ag complexes of (ugue) geometries of ranksS;.
The types of the elements of this geometry (or equivalentlyhe vertices of the simplicial
complex) correspond to the nodes of the diagram.

Remark 1.4.1 If we only would want to de ne buildings, then due to the thickness
condition one can signi cantly weaken condition (B0O) and oly ask that the apartments
are thin chamber complexes.

The notionsmorphism, isomorphismand automorphismfor buildings are the same for the
associated simplicial complex, but with the added conditiothat apartments are mapped
to apartments.
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1.5 Galleries in buildings

In Section[LT_B we de ned galleries in chamber complexesn& buildings are chamber
complexes, galleries of chambers in buildings are also dedh Note that because of
Axioms [B1] and [B2] of buildings, the notion of-adjacencycan be extended to chambers
in the building, and sharing a panel.

Combining this, one can associate a word with letters the gerators S of the Coxeter
system W;S), by concatenating for each two subsequent chambers in thaltgries the
generators;, if those two chambers are-adjacent. This word can also be interpreted as
a group element ofW.

The following lemma is well-known in the theory of buildinggsee for example[]28, p.
28)):

Lemma 1.5.1 A gallery between two chambers has the shortest length fmesbetween
those two chambers, if and only if the associated word has riiger representation in
the Coxeter groupw.

Also one can prove that this word viewed as group element ¥ does not depend on
which gallery between the two chambers is considered. Thisgpides some sort of distance
function between chambers, th&Veyl distance

Remark 1.5.2 There is another way to de ne buildings, where one of the axios is
exactly the above lemma. In fact,[128] uses this approach, @rthen shows equivalence
with the de nition we used.

1.6 Some interesting cases

There are many types of buildings, in this section we look abse interesting cases.

1.6.1 Rank one

Here the building is just a set, the chambers are the elemen@nd the apartments all the
pairs of elements. On its own this is not an interesting caséut it becomes interesting
and useful if we add some Moufang-like condition, see Seat®.81.
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1.6.2 Rank two

Here the Coxeter group is a ( nite or in nite) dihedral group of order 2m,.

First suppose we are in the nite case, and that we have a dihesd group of order 2.
Then the Coxeter complexes are ag complexes of ordinanggons. The buildings are the
ag complexes of geometries called "generalized polygofvee will often omit "generalized’
if the context is clear).

A generalizedn-gon (n 2 N, n  2) =( P;L;l) is a rank 2 geometry consisting of a
point set P, aline setL (with P\L = ;), and incidence relation| betweenP and L
satisfying the following axioms.

(GP1) Every element is incident with at least three other elments.

Xk =Y, with x; 1Ix; forl i kandwithk n.

(GP3) The sequence in (GP2) is unique whenevér<n.

Note that this de nition is self-dual; it is invariant under interchanging the notions point
and line. If we weaken Axiom (GP1) to "at least two other elenmts’, then we call the
geometry aweak generalizeeh-gon

A path of a generalized polygon is a sequence of elements,such #eth two subsequent
elements are incident. Thdength of such a path and thedistanced between two elements
(not chambers) are now de ned in a similar fashion as for gaities in Sectiol_L.TI3. A
path is closedif the last element of the sequence equals the rst, and isonstammering
if each for each element of the sequence, the two neighbours di erent.

Two elements at maximal distancen are said to beopposite If two elements are not
opposite, then the unique element incident witly closest tox is the projection of x ony.

The apartments correspond to the nonstammering closed pattof length v, i.e. the
ordinary n-gons in the geometry. The stammering closed paths of lenggh will be called
degenerate apartments

A generalized 3-gon is the same as a projective plane. Belowe ¢he smallest building of
type A, (the ag complex of the projective planePG2; 2)), and the smallest building of
type B, (the ag complex of the symplectic quadrangle).
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Now suppose we are in the in nite case. In this case the Coxetdiagram of the building
is of type &4, and the buildings are the trees without endpoints, and sucdthat each vertex
has at least three neighbours. The smallest such building sfown below.

Collineations and dualities

We now take a closer look at the automorphisms of the spherlcank 2 buildings and
the corresponding generalized polygons. These break downtwo classescollineations
which map points to points and lines to lines, andlualities, which map points to lines
and lines to points, both preserving incidence.

A duality from a polygon to itself of order 2 is called golarity. An absoluteelement of

a polarity of a generalized polygon is an element incident thithe image of that element
under the polarity.

The set of absolute points of a polarity of a2-gon forms anovoid of the 2n-gon, which is

a setO of mutually opposite points, such that every element of thergon lies at distance
at most n from a certain element ofO.
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1.6.3 Spherical buildings

Spherical buildings are buildings with spherical (and so ite) Coxeter complexes. Let
be a such a building and a root of it. The root group U is the set of all automorphisms
of the building which xes and all chambers sharing a panel with two di erent chambers
of . One says that the spherical building isMoufang if for each root , the group U
acts transitively on the set of apartments containing . Furthermore it can be shown
that, if this is the case, then the groupU acts sharply transitively on the set of these
apartments.

Now suppose the rank of the building is 3 or greater; then J. T proved in [44] that it
(which are pure geometric objects) satis es the Moufang cdition, and that it can be
classi ed. Roughly speaking such buildings correspond tariee types of groups - classical,
algebraic and mixed groups. This is perhaps the most importaresult in the theory of
buildings.

Spherical Moufang buildings of rank 2, i.e. generalizettgons, only occur fom = 3;4;6
and 8 (seell45][146] and]64]). A consequence of this is thathuildings of typeHs; or Hy
exist, as they would lead to the existence of Moufang generad 5-gons.

Remark 1.6.1 The Moufang property can be de ned for all types of buildingsbut it
is omitted here as we will only need it in the spherical case fwre the de nition is less
elaborate).

Opposition and subapartments

We de ne 2 simplices of a spherical building to b@pposite if they are opposite in an
apartment (a spherical Coxeter complex) which contains tme both. Existence of such an
apartment is implied by (B1), the independence of which ap&ment is chosen by (B2).

1.6.4 A ne buildings

A ne buildings are the buildings with a ne Coxeter complexe s. The more general con-
cept of a ne apartment system will be discussed later on.
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1.7 Residues of buildings

In Section[T.2 we already discussed residues of ags of getiias. As buildings are ag
complexes of geometries, residues of simplices of buildiradgso make sense. These residues
are again buildings, where the corresponding Coxeter diagn will be the diagram of the
original building with the nodes corresponding to the elenrmts of the ag (equivalently
the vertices of the simplex) erased.

1.8 Related objects

1.8.1 Moufang sets

As we have seen above, buildings of rank one are trivial sttuces. But by adding a
Moufang-like condition these become very interesting. Mgrexamples arise from higher
rank buildings.

Let X be a set (withjXj 3), with for eachx 2 X a group U, (we call the root groups
acting on X while xing x. Then (X; (Uy)x2x) is a Moufang setif the following two
conditions are met:

For every x 2 X, Uy acts regularly onX nfxg.

The set of all root groups is normalized by the grou®Y generated by all the root
groups.

The group GY is called thelittle projective group and is obviously 2-transitive. If it is
sharply 2-transitive, we say the Moufang set isnproper, otherwise we call itproper. The
full projective group is the group of all elements of SynX) that leave the set of root
groups invariant.

Geometries de ned by Moufang sets

Let (X; (Ux)x2x ) be a Moufang set as above. For a certaiw 2 X, let V, be a nontrivial

subgroup ofUy such that Vy is a normal subgroup of the stabilizeiG}. For anyy 2 X,

we can now de ne a similar subgroup/, = VZ E G, with g 2 GY such that x9 = y (this

is possible by 2-transitivity). The condition onV, makes it so thatVy is independent of
the choice ofg.
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The Moufang building of rank one de ned orX by (Uy)x.x relative to (Vy)x2x is the rank
2 geometry K; ;2 or 3) with as points the elements ofX, and blocks the subsets
of X of the formfxg[f y'jv 2 Vig. The elementx of such a block is called thgnarl of
the block (in the cases we will consider, the gnarl of a blockilwturn out to be unique).

It is clear that the little projective group will induce automorphisms of this geometry
(X; ;2 or 3). If one shows that all the automorphisms ofX; ) arise in this way, then
the study of the Moufang set will be equivalent with the studyof the geometry (this idea
has been proposed by Tits in([49] and [50], see al5al [61]). IBuesults are obtained in
Chapter[2 for the Ree-Tits Moufang set.

Good candidates for the choice of, are the centers and derived groups of the root groups.

1.8.2 R-Buildings
De nitions

Let (W;S) be a spherical irreducible Coxeter system. S& is presented by the seS of
involutions subject to the relations which specify the ordeof the products of every pair
of involutions (see Sectiom1.312). This group has a naturattion on a real vector space
V of dimension|Sj. Let A be the a ne space associated td/, which we call themodel
space We de ne W to be the group generated byw and the translations of the model
space.

Let Hqy be the set of hyperplanes 0¥ corresponding to the axes of the re ections % and
all their conjugates. LetH be the set of all translates of all elements d¢i,. The elements
of H are calledwalls and the (closed) half spaces they bound are callélf-apartments
or roots. A vector sectoris the intersection of all roots that (1) are bounded by elenms
of Hg, and (2) contain a given pointx that does not belong to any element oHy. The
bounding walls of these roots will be referred to as th&de-wallsof the vector sector. A
vector sector can also be de ned as the topological closuréaconnected component of
V n([H o). Any translate of a vector sector is asector, with corresponding translated
side-walls A sector-facetis an intersection of a given sector with a nite number of its
side-walls. The latter number can be zero, in which case thector-facet is the sector
itself; if this number is one, then we call the sector-facet sector-panel The intersection
of a sector with all its side-walls is a point which is calledhe source of the sector, and of
every sector-facet de ned from it. This source is unique du® the irreducibility of the
Coxeter system.
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An R-building of type (W;S) (also called ana ne apartment system) (de nition by
Jacques Tits as can be found in]28] by Mark Ronan, along witlose historic background)
is an object ( ;F) consisting of a set together with a collectionF of injections of A
into called charts obeying the ve conditions below. The image oA under a chart
f 2 F will be called anapartment, and the image of a sector, half-apartment;:: of A
under a certainf 2 F will be called asector, half-apartment ::: of .

(Al) If w2 W andf 2F,thenf w2F.

(A2) If f;f 92 F,then X = f (f{A))is closed and convex imA, and fjx = f° wijyx
for somew 2 W.

(A3) Any two points of lie in a common apartment.

The last two axioms allow us to de ne a functiond : I R* such that for any
a;b2 A andf 2 F, d(f (a);f (b)) is equal to the Euclidean distance betweea and b in
A.

(A4) Any two sectors contain subsectors lying in a common apanent.

(A59 Givenf 2 F and a point 2 , thereis a retraction : ! f(A) such that the
preimage of isf gand suchthatforeach; 2 : d( (); () d(; ).

Besides the original papel]47] of J. Tits, an important artile is the one of Anne Parreau
([24]). In the latter she describes many structural properés of R-buildings. Also she
introduces some alternative de nitions, including the fdbwing one: we again ask (Al),
(A2), (A3) and (A4) to be satis ed, but replace (A5% by d being a distance function, and

(A5) If we have three apartements, each two apartments of wth share a half-apartment,
then the intersection of all three is nonempty.

We call jSj, which is also equal to dinA , the dimensionof ( ;F). We will usually denote
( ;F) briey by , by slight abuse of notation.

Spherical buildings from  R-buildings

One can associate spherical buildings of typ&\; S) to R-buildings in two ways. The rst
way to do so is to construct the building at in nity. Two sector-facets of will be called
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parallel if the distance between them is bounded. Due to the triangl@équality this is an
equivalence relation. The equivalence classes (nanfedets at in nity ) form a spherical
building ; of type (W;S) called the building at in nity of ( ;F). The chambers of
are the equivalence classes of parallel sectors. An apartihe of corresponds to an
apartment ; of ; in a bijective way. The direction of a facet is the parallel class it
belongs to. Another way to de ne equivalence classes is thalbwing: two sector-facets
are asymptotic if they have a sub sector-facet in common of the same dimensias the
original two. Two asymptotic sector-facets are necessariparallel, for sectors these two
notions are identical.

A second way to construct a spherical building is to look at th “local' structure instead
of the one at innity. Let  be a point of , and F;F°two sector-facets with source .

Then these two facets willlocally coincideif their intersection is a neighbourhood of in

both F and F® This relation forms an equivalence relation de ninggerms of facetsas
equivalence classes (notatior[] ). These germs form a (possibly weak) building [] of
type (W;S), called the residue at  (this notion is di erent, but slightly related to the

previously de ned residues). If is an apartment containing , then[] will be used to
denote the corresponding apartment in []. If we speak about agermin [] without

further specifying which kind of facet it is derived from, wanean a germ of a sector.

The following lemma by Anne Parreau will prove to be an impo#nt tool in our proofs.
Lemma 1.8.1 (Parreau [24],JProposition 1.8) Let x be a chamber of the building at
innity ; and C a sector with source 2 . Then there exists an apartment con-
taining an element of the gernfC] and such that ; containsx.

This has also an interesting corollary.

Corollary 1.8.2 (Parreau [24],_Corollary 1.9) Let be a point of andF; a facet
of the building at in nity. Then there is a unique facetF°2 F; with source .

The unique facet of the previous corollary will be denoted bfF, ) or F .

This introduction of germs allows us to state an additional lkernative de nition from [24],
which replaces (A3) and (A5') by the following stronger veisn of (A3).

(A3") Any two germs lie in a common apartment.

A ne buildings form a special case ofR-buildings; they will be referred to as the “discrete
case' ofR-buildings. The type of the spherical building at in nity of an a ne building is
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the "type of a ne Coxeter system without the tilde', keepingin mind that 1,(6) equalsG,
and B, equalsC, (see Sectioi’L:312). This implies that the types of the pob#e spherical
buildings at in nity of an a ne building are restricted (in p articular only generalized
n-gons withn = 3, 4 or 6 are possible as building at in nity of an a ne buildi ng). For R-
buildings, every type of spherical building at in nity is possible (exceptHs or Hy, as there
do not exist such spherical buildings), by the classical exgples and free constructions
discussed in the next paragraph.

If the dimension of is at least 3, then ; is a spherical Moufang building and, in
principle, is known, see [47]. For the dimension 2 case, soithv a generalizedn-gon at
in nity, there exist free constructions for the discrete cae by M. Ronan in[[2F] (withn = 3,
4 or 6), and nondiscrete constructions for alh by A. Berenstein and M. Kapovich ([6]).
These constructions imply that a classi cation for the dimasion 2 case is impossible.

Also R-buildings can be generalized. They form a special case obuildings, where is
an ordered abelian group. For more information seg! [4].

Trees associated to walls and panels at in nity

With a wall M of an R-building one can associate a direction at in nity (by takirg the
direction of all sector-facets it contains). This directia M, at in nity will be a wall of
the spherical building at in nity.

Let m (respectively ) be a wall (resp. a sector-panel contained in the wath) of the
building at in nity. Let T(m) be the set of all wallsM of the R-building with M; = m,
and T( ) the set of all asymptotic classes of sector-panels in thenadlel class .

One can de ne charts (and so also apartments) frof to T(m) (resp. T( )). First choose
M (resp. D) a wall (resp. a sector-panel contained i) of the model space, such that
there exists some charf such thatf(M); = mandf(D) 2 . One can identify the
model spaceA with the product R M. For every chartg 2 F of the R-building ( ;F)
such that g(M); = m (resp. f (D) 2 ), one de nes a chartg® as follows: ifx 2 R, then
gqr) is the wall g(frg M) (resp. the asymptotic class containingy(frg D)).

These two constructions yieldR-buildings with a rank one building at in nity, such build-
ings are better know asR-trees (or shortly trees when no confusion can arise). The
following theorem shows the connection between the aboveawonstructions.

Theorem 1.8.3 If is a panel in some wallm, then for each asymptotic clas® of
sector-panels with direction , there is a unique wallM in the direction m containing a
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representative ofD. The mapD 7! M is an isomorphism from theR-tree T( ) to the
R-tree T(m).

These constructions will be generalized in Section4112.

CAT(0)-spaces

For now suppose that K; d) is some metric space, not necessarily a@-building. A
geodesids a subset of the metric spacX isometric to a closed interval of real numbers.
The metric space K; d) is ageodesic metric spacd each two points ofX can be connected
by a geodesic. From (A3) it follows thatR-buildings are geodesic metric spaces.

Let x;y and z 2 X be three points in a geodesic metric spac&jd). Because of the
triangle inequality we can nd three points x;y and z in the Euclidean planeR? such
that each pair of points have the same distance as the corresuling pair in X;y;z. The
triangle formed by the three points is called @&omparison triangleof x; y and z. Consider
a point a on a geodesic betweex andy, so we have thatd(x;y) = d(x;a) + d(a;y) (note
that the geodesic, and so also the poird, is not necessarily unique). We now can nd
a point a on the line through x and y such that the pairwise distances irx;y;a are the
same as inx;y;a. If the distance betweenz and a is smaller than the distance between
z and a, we say that the geodesic metric spaceX(d) is a CAT(0)-space. Roughly this
should be thought of as the space having nonpositive curvagu

The metric spaces formed byR-buildings are examples of CAT(0)-spaces. Complete
CAT(0)-spaces completemeaning that all Cauchy sequences converge) have severakeni
properties, such as:

Theorem 1.8.4 A nonempty bounded subset of a complete CAT(0)-spade has an
unique “center'.

The following direct corollary of the above lemma is known ake Bruhat-Tits theorem.

Corollary 1.8.5 Let G be a group of isometries of a complete CAT(0)-spa¢X; d). If
G stabilizes a nonempty bounded subsetXf then G xes some point in X .

Although all discrete R-buildings form complete metric spaces, this is not true ineperal.
We will take a closer look at this problem in Sectiof210.

Remark 1.8.6 The notion of completeness has also another meaning whendiser R-
buildings, in the sense of ‘the complete system of apartmsht However, there will be no
confusion possible as we will not use this other notion in thithesis.
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1.9 Some additional concepts

We end the introduction by de ning two minor concepts which @pear at various chapters
of this thesis.

1.9.1 Tits endomorphisms

Let K be a eld with nite characteristic p. The Frobenius endomorphismis the map
x 7' xP. A Tits endomorphismis then an endomorphism, such that applying it twice
gives the Frobenius endomorphism. When the el is a nite eld of characteristic p,

then every eld element is ap-th power, soKP = K (one says that the eld isperfect). A

nite eld of characteristic p admits a Tits endomorphism if and only if the order oK is

an odd power ofp.

1.9.2 Nets

A net is a rank 2 geometry P;B;I), consisting of pointsP, blocks B and incidence
relation |, such that for each pointp 2 P and blockB 2 B, there exists exactly one block
BCincident with p, parallel with B (where 2 blocks areparallel if the points incident with
the two blocks are either completely the same or disjoint).

It can be shown that the parallelism of blocks in a net forms aequivalence relation,
de ning parallel classes
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Chapter 2

"Rank one' case, or Moufang sets

The Ree groups in characteristic 3 (de ned by Ree in[26]) antheir generalizations over
nonperfect elds (by Tits [42]) provide examples of Moufangets. The root groups of
these Moufang sets have nilpotency class 3. This is a ratheare phenomenon; indeed,
until recently, these were the only known Moufang sets withhis property (a second class
was discovered and constructed in_[23]). Associated witha@aRee group is a geometry
(called aunital in the nite case), where each pair of points lies on exactlyne line (in
the nite case a2 (g*+1;qg+1;1)-design), se€[19]. This geometry can be viewed as the
geometry of involutions in a Ree group, since the blocks am @ne-to-one correspondence
with a conjugacy class of involutions (in the nite case thez is only one conjugacy class).
In this way, Ree groups can be better understood in that se\@rproperties become more
geometric and intuitive through this geometry.

In this chapter we introduce another geometry for each Reeaip, inspired by the general
construction of geometries associated to "wide' Moufangtsgfor this construction see
Section[L.81l) as proposed by Tits in one of his lectures: del here means that the
unipotent subgroups are not abelian. In fact, this construmon is the counterpart for Ree
groups of the inversive planes for Suzuki groups (see alse thext chapter and[[611]). The
structure of the geometries that we will introduce is probaly slightly more involved than
that of the "unitals', but they have the major advantage thatthe automorphism groups of
the corresponding Ree groups are their full automorphism @ups (and this is our Main
Result below), a result that is not yet proved for the unitals This result contributes to
Tits' programme of characterizing all ‘wide' Moufang setsithis way. As an application,
we can show that every collineation of a Moufang hexagon of xed type permuting the
absolute points of a polarity, centralizes that polarity (@, equivalently, also permutes the
absolute lines). This, in turn, means that the set of absolet points of any polarity of
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any Moufang hexagon (necessarily of mixed type) determind®e polarity completely and
unambiguously. Combined with other results of the author [@4]) and H. Van Maldeghem
([59)), this provides the answer to the aformentioned quéash for all Moufang polygons.

The "new' geometries also have a number of interesting comd&iorial properties, but we
will not concentrate on these, though it would be worthwhilgo perform an investigation
in that direction.

Every Ree group is the centralizer of a certain outer involudn of a Dickson group of
type G, over a eld of characteristic 3 admitting a Tits endomorphisn. A geometric way
to see this is to consider the associated Moufang generatizeexagon, which is of mixed
type. Then the outer involution is a polarity, and the associted Ree group acts doubly
transitively on the absolute points of that polarity. That is essentially the way we are
going to de ne and use the Ree groups. These Moufang hexagams calledRee hexagons
in [59] precisely for that reason.

Hence, in order to investigate the Moufang sets associatedthwthe Ree groups, we turn
to the Ree hexagons, which, as follows from our remarks abpeee de ned over a eld of
characteristic 3 admitting a Tits endomorphism , and they allow a polarity . The ab-
solute points under this polarity, together with the automaphisms of the mixed hexagon
commuting with , form the Ree-Tits Moufang set Since we will need an explicit de-
scription of the absolute points of , we will use coordinates. These will be introduced in
SectionZ1. We de ne the Ree geometries in Sectibnl2.3 anatst our main results and
main application in SectionZ# (but we formulate our main rsults also below in rough
terms). The rest of the chapter is then devoted to the proofs.

Since the Ree groups have root groups of nilpotency class 3 lgast, if the base eld
is large enough), the Ree geometries that we will de ne havank 3. This means that
we will have two types of blocks in our geometry. In this chagtr we prove that every
automorphism of such a geometry is an automorphism of the ecesponding Ree group,
by writing down explicitly the automorphisms of this geomety. But we also do slightly
better and prove that the same conclusion holds when resttiicg to one type of blocks.
We call these geometrieguncated Ree geometriesHence, loosely speaking, we may write
our main result as follows:

The full automorphism group of a (truncated) Ree geometry isduced by the
full collineation group of the corresponding Ree hexagon.

The results in this chapter are joint work together with Fabenne Haot and Hendrik Van
Maldeghem, and are accepted for publication ifForum Math.
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2.1 Coordinatization of the Ree hexagon

In this section, we present two coordinatizations of the med hexagons, of which the
Ree hexagons are a special case. These coordinatizations atathe same time serve as
a de nition of these structures. We start with the coordinatzation with respect to one
ag f(1);[1 ]g (which was rst carried out by De Smet and Van Maldeghem for (nite)
generalized hexagons iriJl2]). For a detailed descriptiofi the coordinatization theory
for other generalized polygons we refer t6_[59]. The secondlocdinatization follows in
fact from the natural embedding of the mixed hexagons iIRG(6; K).

2.1.1 Hexagonal sexternary rings for mixed hexagons

In [59] a coordinatization theory with respect to a agf(1 );[1 ]g is described. It is a
generalization of the coordinatization of Hall for gener&ed triangles. Here we explicitly
describe the coordinatization of the mixed hexagon. L& be a eld of characteristic 3.
Let K°be a sub eld of K containing the subeld K2 (soK3® K°% K). We consider a
hexagonal sexternary ringR = (K;K®% 1; 5 3 4) with

g wk;asl;a%1%a%y = alk + |,

o(k;a;l;a% 1% a% = a?k + a%+ aa®
3 a(kala’lba = a%k?+ 19+ K,
C okl a%1%a% = ak+ a%

wherea; a% a2 K and k;[;1°2 K° This de nes the mixed hexagorH(K; K9 as follows.
The points and lines are thei-tuples of elements oK [ K° (i  5) with alternately an
entry in K and one inK% and for points (lines) the last entry is supposed to be i
(K9, except wheni = 0, in which case we denote the point by { ) and the line by [1 ]
(we generally use round brackets for points and square bratk for lines). Incidence is
de ned as follows:

If the number of coordinates of a pointp di ers by at least 2 from the number of
coordinates of a lineL, then p and L are not incident.

If the number i, of coordinates of a pointp di ers by exactly 1 from the numberi,
of coordinates of a linel, then p is incident with L if and only if p and L share the
rst i coordinates, where is the smallest among, and i .
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If i, =i_ 65, then pisincident with L ifand only if p=(1)andL =[1 ].

A point p with coordinates @;; a% 1% a% is incident with a line [k; b; K% I k% (with
b; 2 K and k% k%2 K9 if and only if
8
3 1(k;a; a5 15 a% = k%
o(k;a;1;a51%a%) = B9
3 s(kalhali%a’) = kS
ke lal%1%a% = 1

Suppose now that our eld K (which has characteristic 3) has a Tits endomorphism;
then the speci ¢ choiceK®= K gives aRee hexagon

2.1.2 The embedding of mixed hexagons in PG6; K)

The mixed hexagons (and then also the Ree hexagons) have matuembeddings in
PG6; K). Indeed, H(K; K9 is a substructure of the split Cayley hexagorH(K), which
has itself a natural embedding irPG(6; K) as discovered and described by Tits in]41], see
also Chapter 2 of([59]. All these embeddings afell, meaning that all points of PG(6; K)
incident with a line of the mixed hexagon are points of the med hexagon). Here, we
content ourselves with the table below translating the abavcoordinates to the projective
coordinates. We refer to Chapter 3 ol [%9] for details and pofs.

We write for al°+ a®+ a%+ aa%a®®and forl aa® a2a®

Coordinates inH(K; K9 Coordinates inPG(6; K)
(1) (1,0;0;0;0;0;0)
(& (a;0;0;0,0;0; 1)
(k; b) (b;0;0;0,0;1; k)
(a;1;89 (1 ad10 a0a% &9
(k; b; K> ) (K°+ b k; 1;b;0; P ? k)
(a;1;a%1% a% (; &% a a% ad®1;; 19+ a%%
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Coordinates inH(K; K9 Points generating this line
[1] (1) and (0)
[K] (1) and (k; 0)
[a; 1] (a) and (a;1;0)
[k; b; K9 (k; b and (k; b;0)
[a;1;a%19 (a;1;a% and (a;1;a%1%0)
[k; b; K &, k% (k; b; K &) and (0; k*1, k°+ kk*b)

The subgroup ofPSLy(K) stabilizing H(K; K9 is denoted by G,(K; K9 and is simple (a
mixed group of typeG,, see [[44]).

2.2 The Ree-Tits ovoid

We start from the Ree hexagomd(K; K ), with as above a Tits-endomorphism df. This
hexagon allows a polarity. The absolute points under this parity form an ovoid of the
Ree hexagon - thd&ree-Tits ovoid see Chapter 7 of[59]. We denote the polarity, which we
can choose in such a way that it xes the ags (1 );[1 ]Jgandf (0;0;0;0; 0); [0; O; 0; 0; OJg
and maps the point (1) onto the line [1], by . It has the following actions:

(a;1;a%1%2% =[a;l *;a%;1° *;a%;
kb KK =(k bk B k™),
for all a;a%a%b; 82 K and k; k% k%[;1°2 K .
Now the point (a;1;a%1% a% is absolute for if and only if it is incident with its image.
This leads to the following conditions:
|=a% a*s;
|0: a2 3 4 a0 + a aOO:
Coordinates of the Ree-Tits ovoid in PG6;K). | Instead of using the 5-tuple
(a;a a® ;a%a®*? +al+a a’;a’, we now will use the shorter notation &; a®a° aa.
Note that every triple in K3 now corresponds to a point of the ovoid. Now, fa; a% a%%2 K,
we put
fl(a; aO; a09 — a4+2 aa.00 + a1+ a0 + aOQ + aOl.+ a0a3+ a2a(2;
foa;a®a®= a* +a aa®+ a?a’
3+2

fa(aa®a®= a a%+ a a® + a%% aal:
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So the set of absolute points iPG(6; K) can be described by

P =f(1,0;0;0;0;0;0)g[
f(fu(a;a®a%y; a® a; a%1:f,(a;aa;fs(a;a*a) j a;a®a’®2 Kag:

Compact notation. | As before, we associate the triple (a;a®a’ aa®j with the point
(a;a® a3 ;a%a’? + a + a a%). The set of absolute points under the polarity is now

P=1f(1)g[f (a;a%a% | a;a®a’2 Kg:

On this ovoid there acts a Moufang set. The elements of the rbgroup U; of this
Moufang set ( xing the point (1 )), act as follows on the remaining pointsx; x% x%: the
unipotent element that xes (1 ) and maps (Q0;0) to (y;y%y®Y maps (x;x%x% to

OGxEXY (yryoy = (x+ yix®+ yo+ xy o xP y®e xy® XY oxy ),

and this action can also be seen as the multiplication insidg, , see Chapter 7 of [59].

In this way we obtain the Ree-Tits Moufang set The (simple) Ree groups arise as (simple
subgroups of the) centralizers of polarities in these hexags. More exactly, the Ree group
R(K; ) is de ned as the centralizer inG,(K; K ) of the outer automorphism . This group
is simple ifjKj > 3 and the multiplicative group ofK is generated by all squares together
with 1, seel[26]. In any case, the group generated by the root greup simple, provided
jKj > 3, and it coincides with the derived groupgRYK; ). For jKj =3, R(K; )= R@3) is
isomorphic toP L »(8) and containsPSL,(8) as a simple subgroup of index 3.

We can see the Ree-Tits ovoid and its automorphism group endued in the Ree hexagon
as a representation of the Ree-Tits Moufang set. Hencefortive will denote by P the
Ree-Tits ovoid, and byU,, x 2 P, the root group xing x in the Ree-Tits Moufang set
over the eld K with associated Tits endomorphism .

We will also need the explicit form of a generic element of th@ot group Ug.o.0), Which
we shall briey denote by U,. This is best given by the action on coordinates in the
projective space. Such a generic elemenf}?%)., then looks like (; x%x%are arbitrary

in K):
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X = (Xg X1 X2 X3 X4 X5 Xg) 7!

0 1 fa(x;x%x% fa(x;x%x% x 00 fi;x%x%  x%  «x 1
0 1 X 0 x0 xI* 0 O
0 0 1 0 X 0 0
X 0 X N 1 x90 0 0 &
0 0 0 0 1 0 0
0 x2 x%0  xx© X P 1 0
0 r s x0+ x1* q x 1

where

(o]

Ep: x3  x®  xx% x2x©
q= %00 4 x x0  yx®  x2+ x0 ylt y00 y3+2 :

3r=x% xx%+ x*

T s= x® xM x9 x x%

see Section 9.2.4 of [38].

Remark 2.2.1 An explicit construction (with detailed proofs) of the Ree goup acting
on the Ree hexagon can be found iA[11].

We are now ready to de ne the Ree geometries.

2.3 The Ree geometry

As already mentioned, the Ree groups have root groups of roiegncy class 3 (ifiKj > 3,
see below for a calculation). So applying the constructiom iSection[L.81L using the
subgroups Dy; Uys] and [[Uy; Uc]; Ug], gives us two types of blocks in our geometry, and
blocks of one type are subsets of the others (the last group tise same as the center
Z(U,) when jKj > 3, see further in this section). WhenjKj = 3 the Ree group has
nilpotency class 2, but one can consider similar subgroups above (see below). In order
to distinguish the two types of blocks, we will call the "'smést' onescircles (notation
O), and the othersspheres(notation S). All the blocks, regardless of the type, will be
denoted by B, and the points by P. In this way we have constructed theRee geometry
G=(P;B;2 or 3). We can de ne two further geometries by restricting the sebf blocks.
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We call the geometriescc = (P;C 2 or 3) and G =(P;S;2 or 3) the truncated Ree
geometries

Let us be more concrete now and look for the coordinates of thigcles and spheres which
have (1 ) for gnarl.

We rstclaimthat, if jKj > 3, thenthe groupU? =[U; ; U, ]is preciselyf (0; u% u® j u® u®
2 Kg. Indeed, computing an arbitrary commutator, we get

[(ug; ud; udy; (uz; ud;udg] = (0 uu,  upug;uduy  ugud  ugudt + upuit ):

Noting that (0;x%0) (0;0;x% = (0;x%x%, we only have to show that (9x%0) 2 U?,
for all x°2 K, and that (0;0;x% 2 U?, for all x°°2 K. Putting u; = u%= u3 = ud’=0,
u? = 1 and u, = x%in the above commutator, we see that (@;x% 2 U; . Now let
x°2 K be arbitrary. SincejKj > 3, there exists an element 2 K with t*> t 6 0. Put
k=1t tandlety = x% . Putting u? = ud = u= ul= 0 and (u;uy) = (y;t3),
respectively (U3;uy) = (t y;1), we obtain (Ot3y t3 ;0)2 U? and (Ot y t3y ;0)2 U?.
Multiplying the former with the inverse of the latter, we seethat (0;x%0) 2 U? , proving
our claim.

If jKj =3, then U? has order 3 and coincides with the center (see below). In thimse,
for the construction of the Ree geometry, we will substitutdJ? by the subgroup ofUy,
generated by the elements of order 3, and we will denote it, tviabuse of notation, byU)
(but there will be no confusion possible), since fgKj > 3, the derived group coincides
with the group generated by elements of order 3 (as one can chesasily).

The center ofU; is the subgroupf (0;0;u% j u®°2 Kg. Indeed, this follows from the
explicit form of the multiplication in U; by standard arguments. Since the commutator
of an element (Qu?;udy 2 U2 and (uy;ud;udy 2 U, is
[(0; u2; u); (uz; ug; us] = (05 0; uduy)
= (0;0;u%;
with u®essentially arbitrary, we see that the second group in the noal seriesU =
[U; ;[Uq ; Uy ]] coincides with the centerZ (U; ) when jKj > 3.

When jKj = 3, the group U will be the subgroup consisting only of the identity. Again,
for the construction, we will substitute U%by the subgroupf (0; 0; u% j u®2 Kg of Uy in
this case.

Now, since the circles havingX ) as gnarl are the orbits of a point &;a% a% under the
group f(0; 0;x) j x 2 Kg, union with f(1 )g, these circles are given by

f(a;a5a™ x) jx2 Kg[f (1)g=f(aat)jt2 Kg[f (1)g:
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The spheres with gnarl L ) have the following description:
faja®+ x%a%% x%% ax®j x%x%%2 Kg[f (1 )g= f(a;t®t%j t%t%2 Kg[f (1 )g:

We can now interpret the algebraic description of a circle aha sphere with gnarl ¢ ) in
the corresponding Ree hexagoHd(K; K ). The points at distance 3 from the nonabsolute
line [0;0] are (L ) and all the points of the form (Q 0; a%1%a% with a%1%a%2 K. The
absolute points in this set are exactly the points in the cile with gnarl (1 ) and containing
(0; 0; 0). From this it follows that each circle is the set of absol# points at distance 3 from
a nonabsolute lineM, not going through an absolute point. The unique absolute pat
for which its corresponding absolute line intersectM is the gnarl of the circle. With
similar reasoning, one sees that each sphere is the set ofcdli® points not opposite
some nonabsolute poinp, with p lying on an absolute line. The unique absolute point
at distance 2 fromp is the gnarl of the sphere. Conversely, every such set is actér or
sphere, respectively. It follows now easily that the gnarlfca circle and of a sphere is
unique. These gnarls will play a prominent role in our proofs

As an application we make the following important observagin.

Lemma 2.3.1 A sphere contains only circles with the same gnarl. Also, tlpint set of
a sphere, except for its gnarl, is partitioned by the circlexntained in the sphere.

Proof. Let us consider a sphere and circle, and assume that this spkie gnarl is the
absolute point p while the gnarl of the circle is a di erent absolute pointg. The ags
fp;p g andfq;qg determine a unique apartment containing both ags, and beause
both ags are absolute, will stabilize . Denote the unique line in at distance 2 fro m
g and at distance 3 fromp with L, and the projection ofgonp with r. Let a be a third
absolute point on the circle di erent from both p and qg.

P
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Becausea lies on the circle with gnarlg through p, a lies at distance 3 fromL. Similarly

a also lies at distance 4 front because of the de nition of a sphere. The last statement
implies that a lies at distance 4 from the liner . This line r intersects the lineL, so
the point a and the linesL;r ;a are contained in an ordinary 5-gon, which contradicts
the de nition of a generalized hexagon. This proves the rsassertion.

For the second assertion, we just consider the circles dedhédy the nonabsolute lines of
H(K; K ) through the point de ning the sphere in question.

2.4 Results on Ree geometries

Given the construction of the circles and spheres in the casponding Ree hexagon
H(K;K ), it is clear that every collineation of H(K;K ) that commutes with the po-
larity  induces a collineation of the Ree geometry and its truncatis. Our main results
now say that also the converse holds. More precisely:

Main Result 2.4.1 The full automorphism group of the Ree geometrl@ = (P;B;2
or 3) is the centralizer of in the full collineation group ofH(K; K ).

Likewise, we will show:

Main Result 2.4.2 The full automorphism groups of the truncated Ree geomegi€: =
(P;C2 or 3)and G = (P;S;2 or 3) coincide with the centralizer of in the full
collineation group ofH(K; K ).

As a main consequence we will be able to show:

Main Corollary 2.4.3  The stabilizer of a Ree-Tits ovoid in the full collineationmgup of
H(K; K ) coincides with the centralizer of the corresponding poldyiin the full collineation
group of H(K; K ). Consequently, any polarity is determined by its set of albste points.

The latter was already announced in[59] as Theorem 7.7.9,tlnot proved there. Com-
bined with results in [59] and [[34], one directly obtains:
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Corollary 2.4.4 Each automorphism of a Moufangn-gon with a polarity stabilizing the
set of absolute points of that polarity, also stabilizes tlet of absolute lines and centralizes
that polarity, except if eithern = 3, the projective plane is Pappian, the characteristic
of the underlying eld is 2, and the polarity is not Hermitian (i.e., there is no twisting
eld automorphism), or if n =4 and the generalized quadrangle is the smallest symplectic
quadrangleW(2).

We will now prove these results.

2.5 Auxiliary tools

Before we can begin with the actual proof, we need to introdacsome additional termi-
nology and tools.

2.5.1 The derived geometry at (1)

We de ne the structure G’= (P%B%2 or 3), whereP°= P nf(1 )g, and B%is the set
of blocks ofG going through (1 ), with (1 ) removed. We call this thederived geometry
at (1), inspired by a similar concept in the theory of designs. Inrder to know the

coordinates of the circles throughX ), we rst write down the coordinates of the circles
with gnarl (1 ). As we saw earlier, these are the sets

f(a;at) jt2 Kg[f (1 )g; with a;a°2 K:

Removing the point (1 ) gives us thevertical line L. We now compute the coordi-
nates of the circle with gnarl (Q0;0) through (1 ). The point (1 ) is identi ed with
(1;0;0;0;0; 0;0), so its orbit under Z(Uy) (using the elementsuggigi%q de ned above) is

the set

f(1;2(0; 0;x%; f 5(0; 0; x%%; x°° £ 1(0; 0; x°9; 0; 0) j x*°2 Kg
= f(1;0; x%x%x%;0;0)jx%2 Kg:

Putting x = x®®2 (and hencex®= x 2* ), adding the gnarl and deleting the point ¢ ),
we obtain the setf (x;0; x2* ) j x 2 Kg. The image of this set under §;a%a% 2 U, is
the set

f(a+ x;a+ ax;a® (a® a'* )x x*)jx2Kg;
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which we call the ordinary line Caa0a09 (With gnarl (a;a%a%). Note that unlike the
vertical lines, these are not a ne lines.

Just as we did for circles, we consider the spheres with gnétl ) and the other spheres
through (1 ) separately.

The spheres with gnarl { ) are the setsf(a;t%t% j t%t%°2 Kg[f (1 )g, with a 2 K.
Removing the point (1 ) gives us thevertical plane P,.
The orbit of (1 ) under Ug, using the elementsug2q, is the set
F(L;200;x%x%F: £3(0; x5 x %% x20f 1(0;x% %%, x50) | x%x*2 Kg

= f(Lx9; x%0+ x&Ox%%% 4+ X0+ - x%0) j x%4x%%2 Kg
XOO XOXOO XO XOO
X028 + x @+ ' Y08 4 %@+ * %08 4 50+

K K3x%x%6(0;0 [f(1)g

Note that x®® 6 x%* is equivalent with (x® x% 6 (0;0). Adding (0; 0; 0), the image of
this sphere under §&;a%a% 2 U, is the set

XOO XOXOO_ XO XOO

: 20 08 0,0 :
X08 1 x@+ ' %08 4 y0+ ’ 508 4 xO+ (@a%a’}jK K3 (x3x%6(0:0)

[f (a;a%a%; (1)

Removing the point (1 ) gives us theordinary plane Sia:.a0.209 (With gnarl (a; &% a°%). Again
note that these are not a ne planes, unlike vertical planes.

Notice that points of vertical planes have constant rst coadinate, while the points of
an ordinary line never have constant rst coordinate. This povides an algebraic proof of
LemmalZ31.

2.5.2 Parallelism in the derived structure

We consider the set of pointsx; x% x% as an a ne space in the standard way, and call
the planesa ne planes. We assume that the coordinates are given with respect to a$ia
with axes X;Y; Z.

First we remark that every ordinary line C.a0a09 completely lies in the a ne plane with
equationY = a X +(a° al* ). We say that two ordinary linesC, and C, are parallel if
all vertical lines intersectingC, intersectC, | in that case the two ordinary lines lie in the
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same a ne plane of the aforementioned form | or if there is no vertical line intersecting
both ordinary lines | which implies that the ordinary lines | ie in parallel, but disjoint,
a ne planes of the above form.

We claim that two ordinary lines Ciaac.a9 and Ciypi09 are parallel if and only ifa = b.
Indeed, a vertical line meeting the ordinary lineC,a0.a09 Must lie in the ane plane
Y =aX+(a% a'* ), so any vertical line meeting bothC ;50209 and Cp:ippg must lie in
the intersection of

Y=aX+(a al*);

Y=bX+(P b*):
This has a unique solution if and only ifa 6 b, proving our claim.

We have the following lemma.

Lemma 2.5.1 The gnarls of the ordinary lines of the parallel class @f4.q0.409 are exactly
the points of the vertical planeP,.

Proof. The above says that the set of gnarls of the lines of the paraliclass 0fC 50009 iS
given by f (a;t%t% j t%t%2 Kg, which is exactly P,.

2.5.3 Ree unitals

In SectionZ9, we will use the Ree unitals mentioned in thetmmduction. We do not need

a formal de nition, nor a complete description of them, but mly the following facts about

these geometries (for a proof of these facts or a more detdilgescription, see Chapter 7
of [59]):

the set of points is the same as of the Ree geometries,
two di erent points are joined by exactly one block of the Reeaunital,

the block through (1 ) and (a;0;a%, with a and a®2 K, is given by f(1 )g |
f(a;t;a% at)jt 2 Kg,

the Ree groupR(K; ) acting on the Ree geometries stabilizes the Ree unital (to-
gether with the previous fact, this can be used to de ne the Reunital).

If B is a unital block containing (1 ), then we will call the setB nf(1 )g an a ne unital
block
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2.6 Automorphism group of the Ree geometry

General idea. | We consider an automorphism ' of the Ree geometry. Without loss of
generality we may assume that xes both (1 ) and (0; 0; 0) (because of the 2-transitivity
induced by the Moufang set). We will prove that' must preserve gnarls, and this will
imply that it has to preserve the parallelism we just de ned. We then compute the
algebraic form of' and conclude that it can be extended tdH(K; K ).

Lemma 2.6.1 The automorphism' maps the gnarl of any sphere onto the gnarl of the
image of the sphere, and it maps the gnarl of any circle ontcetignarl of the image of the
circle under' .

Proof. Any automorphism of maps spheres onto spheres and circlestw circles, since
every circle is properly contained in a sphere, but no spheis properly contained in
any circle or sphere. Since the gnarl of a sphere is exactlyetintersection of all circles
contained in it (by Lemma[Z:31), and there are at least two s circles,’ preserves
gnarls of spheres. But then must also preserve the gnarls of these circles.

Since' xes the points (1 ) and (0;0;0), it acts on the derived structure G and the
previous lemma implies that  xes the set of vertical lines. Therefore the pointsg; a° z;)
and (a; &% z,) are mapped on the same vertical line. If we represeht as follows:

(XY 2) T (X Y5 2)5 (XY 2); 9e(X3 Y5 2));

then both g; and g, have to be independent oz, and we write gi(Xx;y;z) = g(X;y),
i=1;2.

The mapping' preserves the parallel relation between ordinary lines,rgie the number
of vertical lines meeting two circles (i.e. none, one or aliy preserved under . This
translates to g; being independent ofy. Indeed, two points @;Yy:;z;) and (a; Y»; z,) being
the gnarls of two parallel ordinary lines are mapped onto twgnarls of parallel ordinary
lines, which implies thatg,(a;y:) = g.(a;y») for every choice fory; and ys,.

The point (0;0;0) is xed by ', so the ane plane Y = 0 | which is the unique a ne
plane containing both C.o.0) and L., and which consists of the union of vertical lines
all meeting Cp.0.0) | is xed by ' . The planeY = c; | which is also a union of vertical
lines | must necessarily be mapped onto a planeY = ¢,. So g(X;c1) = 0(0; ;) for
every choice o 2 K.

It follows that there are two permutations and of K such that (x;y;z) is equal to
(X ;¥ ;08(x;y;2)). Since' preserves gnarls, it maps the ordinary lin€,.,.q onto the
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ordinary line C, 1 .g5(ab:0)- NOW notice that the point (x;y;z) can only be contained
in the ordinary line Cppg if y = b+ a (x a). Expressing that the point (a+ Xx;y;z)
lies on the circleCqyp,q if and only if its image under' lies in Céa;b;c) shows that, for all
a;b;x2 K,

(b+ax) =b +(a) (x+a a): (2.2)

Putting b= 0, and notingthat 0 =0 =0, we seethat@ ) ((x+ a) a)=(ax),
which implies, by substituting this back in Equation (Z1),that (b+ ax) =b +(ax) .
So is additive. Put * =1 . Then we see, by settinga = 1 and b= 0 in Equation (E)
above, that

X = ((x+1) 1); (2.2)

so is additive if and only if (x+1) = x +1 . Plugginginx = m 1 in Equation (Z3)
we have that(m 1) = " (m 1 ). Because of the additivity of we have on the other
handthat(m 1) =m +( 1) = (1+m) 2 1). So is additive as well.

We now have thatx = " x . De ne the bijection :K! "~ K:y7l'y =" 1y (note
that 1 =1). Plugging in these identities in Equation [Z1) yields

(b+ax) =b +(a) x;

for all a;b;x2 K. Putting a =1, we see that is additive; putting b=0 and x =1, we
see that commutes with . Putting b= 0, we see that ky) = xy forx 2 K and
y2 K. If x;y 2 K, then

(xy)) =((xy)) =(xy) =(x) (y) =(x)y) =(xy);

and the injectivity of implies that is an automorphism ofK. Now the action of' on
a point (x;y;z) is given by (x;y;z) =('x ;" y ;as(x;y;2)), for all x;y;z 2 K.

Let us now investigate whatgs(x;y; z) looks like.

The point p with coordinates(a  2;0;a%%(a% a'* )(-2) (2)?* ) lies on bothCaacan
and the ordinary line with gnarl (0; 0; %% &~ 80" &% y 5 its image under lies on
the ordinary line with gnarl (Ca ;" '* a°; gs(a; a% a%j) and on the ordinary line with gnarl

(0;0; gs(0; 0; 8%+ =) *a™ )y This leads to

8 0 1+ 0 0 N 0] R+

2@ 080 BT+ (D)2 )= g@ata® P (& ad &)

.> 0 51+ 0 0 1+ 0y 1+ o1+ N 0

Ba 0% CTIT () )= 00 BTt (@ 1))
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Putting these two equations together we get :

(aO al+ )l+ + a(JL+ s (aO al+ )l+ + a(JL+
az az

gw(a;a®a’y = g 0;0a%%

for every a 2 KnfOg and a%a’2 K. We want to extend this equation to one with
a = 0. To this end, we note that the point (0;a%a" lies on every circle with gnarl
(A;a%+ Al ;2% a%A  A?* ), with A 2 K. We now only considerA 6 0. Then we take
the image under' and obtain that

0:(0;a% a% = gs(A;a%+ AY ;% %A A% ) " (Aa® AT )

We can now use the above expression fgg(a; a%a% for a 6 0 to express gs(0; a% a%
in terms of g3(0; 0; z), for somez 2 K. We rewrite gz(0; a%a% in this form, substitute
a®= B landA = B? , and obtain after a tedious calculation

0:B L a%= g0;0;a° B)+ ?* B :

for all B 2 Knf0g, and all a%°2 K. Substituting B for B, we see thatgs(0; 0; a®°
B) = ¢(0;0;a%°+ B)+ 2* B . We may now puta®= B and obtain nally that
0:(0;0;B) = *2* B . Plugging this into the formulae above forgz(a;a%a%, a 6 0, and
o(0; a% a%, we see thatgs(a;a% a%§ = “2* a%, for all a;a% a®2 K.

L

So the action of' on a point (X;y;z) is given by (X;y;z) = (X ; y ;%" z), with
and commuting automorphisms ofK. This action is the restriction to of the
collineation of H(K; K ) de ned by the following mapping on the points and lines with

ve coordinates:

(a;1;a%1%a% 7! (Ca ;° *31 5 "2 ;72 7310 ;° +1a);
[k;b;kO,bO,kOTﬂ [‘ k :° +1p ;‘2 +3k0;‘ +2b0;‘ +3k00]2

The proof of Main ResulttZZl is complete.

2.7 Automorphism group of the truncated Ree
geometry (&

General idea. |Let G.=(P;C2 or 3) be the truncated Ree geometry, withC the
set of circles. We rst prove that gnarls of circles have to beapped onto gnarls of circles.
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Then we use the result from the previous section to prove thdahe automorphism group
of & is equal to the automorphism group of the Ree geometfs.

We denote by G the derived geometry in (L ) (so the point set isP nf(1 )g and the
blocks are the vertical and ordinary lines, as de ned in Seicn [Z51).

Lemma 2.7.1 The full group G of automorphisms ofG° has two orbits on the lines,
which are the vertical and the ordinary lines.

Proof. It is clear that G acts transitively on both the set of vertical lines and the geof
ordinary lines (asG contains the corresponding Ree group), so we only have to kxie
the possibility of one orbit. We suppose this is the case anadve a contradiction.

Consider, as before, the point se® nf (1 )g as a 3-dimensional a ne space with point set
f(a;a% a%ja; a% a2 Kg. We project it on the 2-dimensional spacé(a; a® 0)ja;a’2 Kg
by the standard projection map @;a%a% 7! (a;a%0). The projection of a vertical line
L 220 is the point (a; & 0), and the projection of an ordinary lineC 440409 is the a ne line
Y =aX+(a al* ). All these a ne lines coming from the projections of ordinay lines
form the line set of a netN , and a parallel class of ordinary lines is projected to a pdtel
class in this net.

Let L be a vertical line andM a vertical or ordinary line disjoint from L. If M is a
vertical line, then the projection ofL and M are two points. If there exists an ordinary
line such that the projection contains both points, then traslating this back to the lines
means that through each point oL there is an (ordinary) line intersectingM (by varying

the third coordinate a%. If, on the other hand, there is no projection of an ordinaryine

containing both points, then there is no (ordinary) line inersecting bothL and M.

If M is an ordinary line, then the projection ofM is a certain a ne line with equation
Y = aX +(a’ a'* ). As no projection of an ordinary line is of the formX = c with
c 2 K a constant, there are points oM through which no (ordinary) line passes which
also intersectsL (because we would have projections of the fortd = c¢). Also, there
obviously are ordinary lines whose projection contains thgrojection of L and intersect
the projection of M. The set of ordinary lines projected to this projection forra a subset
of a parallel class exactly one member of which intersectsthoL and M. We conclude
that there exist lines intersecting bothL and M, but not through each point of M.

In the above two paragraphs we proved that we can tell a ver@ét line from an ordinary
line if one vertical line is given. Using the hypothesis thathere is only one orbit on the
lines, this implies that there is an equivalence relation othe lines which is preserved by
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G. One of the equivalence classes is obviously the set of vemtilines. By transitivity it
follows that through each point ofGthere is exactly one line of a given equivalence class.
We now claim that the other classes are the parallel classesavdinary lines. Indeed, if
an ordinary line Cp.a0009 lies in a certain equivalence class, then all lin€S .40y with

k 2 K lie in this class, because there is a vertical line through @a point of Ca.a0a0
intersecting Ca.a0k). It is implied that two lines are in the same equivalence clasf they
are projected to the same a ne line. Since two intersecting ae lines can be viewed as
the projection of two intersecting ordinary lines, two of tlese subsets are parallel if and
only if the corresponding a ne lines are parallel. This impies that the equivalence classes
are subpartitions of the parallel classes. But since throbgeach point there has to be a
line of each equivalence class, the latter must coincide Wit parallel class.

Now consider the ordinary lineC.o.0) and its parallel class . We can conjugate the center
of U ) to obtain an automorphism 2 G that xes the ordinary lines in , acts freely
on the points of such a line, xes the equivalency classes,camaps (Q0;0) to (1;0; 1).

Let (x;x%x% be an arbitrary point of G:°. This point lies on the ordinary line Cy.xop =
f(t;x%b+ x& t2* )jt2 Kgfort = xwith b:= x%° x% + x?* . As this ordinary
line is an element of , the point (x;x%x% also lies on this line. Hence there exists an
frop(X) 2 K such that (x;x%x% = (fyep(X); X% b+ xFrop(X)  fyop(X)?* ). Notice that
the middle coordinate is always xed.

The vertical line Lyxo = f(x;x%t) j t 2 Kg must be mapped to another vertical line
Lt 0p(x)x0 = f (fyop(x);x%t) j t 2 Kg. From this it follows that the function f is indepen-
dent of the last coordinate. As both the rst and second coolidate are independent of
the last, it follows that induces an automorphism %on the netN , mapping (x; x% 0) to
(fxop(X); X% 0). Now Calso xes every parallel class oN (the parallel class coming from

is even xed linewise), and maps ((0; 0) to (1;0; 0) (because (00;0) =(1;0; 1)). It
IS now easy to see that this implie$op(X) = X + 1. This gives us the following explicit
formula for

COXEXY T (X + 1 x8 X0 xK+ xF o+ xqx+1) (x+1)%)
7V (x+1;x%x% x%+ x* (x+1)%):

The image of the ordinary lineC.1.0 = f(1+ t; 1+t t2* ) jt 2 Kg, using the formula
for ,is:

Cuig = f(t Lt+1; 2 2+t +1)jt2Kg
The latter has to coincide with a certain ordinary lineC .00 = f(1+ s; 3%+ s;2%% (@°
1)s s?* ) js2 Kg (because the parallel class is preserved), witf: a°°2 K. This yields
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the following system of equalities:

8
<t 1=1+s;
t+1= a’+ s;
t2+ t2+t1+ +t:a00+(a0 1)8 82+;

which simpli es to: 8

< s=t+1;
a’=0;
t=a%1 t:

If t = 0 the last equation gives usa®°= 1, but if we uset = 1, we obtain a°°= 1, which is
a contradiction sincea®is a constant. It follows that the hypothesis of one orbit isdlse.

The following corollary follows directly:
Corollary 2.7.2 Gnarls of circles are mapped onto gnarls of circles.

Using the above and Lemm&=Z3.1, one can reconstruct the spFse giving the following
result (which is part of Main ResultlZZ.2):

Corollary 2.7.3 The automorphism group ofx is equal to that ofG.

2.8 Absolute points and lines of polarities in the Ree
hexagon

We now show our Main Corollary in the formulation below. We nte that our proof will not
use the full strength of our results proved so far. Indeed, weill only use Corollary[ZZ.2.
The last few lines of the proof can be deleted if we use Main RétsZZ.Tl.

Corollary 2.8.1 If a collineation of a Moufang hexagon stabilizes the set of all absolute
points of some polarity, then it stabilizes the set of all atiate lines as well.

Proof. By Theorem 7.3.4 and Theorem 7.7.2 di'[b69], any polarity of a Moufang hexagon
is associated to a Ree group, so it is a polarity of the assaeid Ree hexagon.
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As mentioned before, a circleC of the Ree geometry is the set of absolute points at
distance 3 from a lineM, not going through an absolute point. The collineation maps
this set to the set of absolute points at distance 3 frorM , which is again a circle since
M clearly is not incident with any absolute point (as stabilizes the set of absolute
points). It follows that induces an automorphism ofx.. The gnarl of C is the absolute
point x such that the corresponding absolute lin& intersectsM. Corollary 272 now
implies that the absolute line ¢ ) intersectsM . As (x ) also containsx and intersects
M , it follows that (x ) = (x ) . This means that the absolute linex is mapped to
another absolute line. VaryingC we now see that the set of all absolute lines is stabilized

by

2.9 Automorphism group of the truncated Ree ge-
ometry

Gs

General idea. | Let Gs =(P;S;2 or 3) be the truncated Ree geometry withS the
set of spheres. We again prove that gnarls of spheres have ® imapped onto gnarls of
spheres. As a consequence one can recognize certain autpiiems of the Ree geometry
generating the Ree group. Using this the circles can be restmicted giving us the full
Ree geometryG and its automorphism group.

We denote by Gs° the derived geometry in () (so the point set isP nf(1 )g and the
blocks are the vertical and ordinary planes, as de ned in Skon 25.7).

We start with some small observations:
Lemma 2.9.1 A vertical plane and an ordinary plane always intersect.

Proof. By transitivity we can suppose that the vertical plane is gien by
P, = f(a;t%1%j t%1t%°2 Kg; with a2 K
while the ordinary plane can be represented b$.0.0), Which is the set

XOO XCB(OO. XO XOO

. ; 0. ,,0 . -0 .
x02 4+ x@+ 7 %02 4 @+ 500 4 @+ JK K3(X’X96(O’O) [f (010,0)9-

If a=0, then (0;0;0) 2 P4\ Sp.00). If @60, then putting x°=0 and x®= a 2 in the
formula of Sp.0.0) gives the point @;0; a** ), which is also a point ofP,.
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Lemma 2.9.2 The intersection of Py and S.o.) is given by the sef(0;t;0) jt 2 Kg|
f(0;t %t)jt2 KnfOgg.

Proof. Using the representations 0Py = f(0;t;t9 j t;t°2 Kg and S0 =

XOO XCB(OO. XO XOO

. ; 0. ,,0 . - N- .
e e a e 1K K3 0ExT6(0:0) [f 0:0,0g

we see that the points of the intersection are determined byhé equationx® x%%°= 0.
The solutions of this equation are given bx®=0 or x°= x% *. The rst set of solutions
gives usf (0;t;0) j t 2 K g, the secondf (0;t ;t) j t 2 KnfOgg.

Note that Py is the disjoint union of ane unital blocks. Indeed, the ane blocks
f(O;t;b) jt 2 Kg, with b 2 K, partition Py. It is now clear that the intersection of
Sw:0.0) and Py contains exactly one a ne unital block, and all other a ne unital blocks
in Py share exactly one point with that intersection.

Lemma 2.9.3 The ordinary planesS.o.0) and S:a0a0, With a%a%®2 K, intersect.

Proof. Since (Qa%a% 2 U; maps Py to itself and Si.0.0) t0 Si:aca9, it follows from the
paragraph preceding this lemma thaPy\ Sp.a0409 contains an a ne unital block B. But
from that same paragraph also follows thaB shares a point withPo\ S.0.). That point
is hence contained 5.0,y \ S(o:a0a%9.

The above lemmas now allow us to prove the following analogte LemmalZ7Z1.

Lemma 2.9.4 The full group G of automorphisms ofGs® has two orbits on the planes,
which are the vertical and the ordinary planes.

Proof. As with the case of points and circles, it su ces to prove thatthe planes can not
be all in one orbit. So suppose this is the case.

We call two vertical or ordinary planesparallel if they are disjoint or equal. By the
transitivity assumption on the planes and Lemma_2.911, forazh point p (di erent from
(1)) and plane P, there is exactly one plan& parallel to P and containingp. Let $ be
the parallel class containingSy.o.0). BecauseU; preserves parallelism and acts regularly
on the ordinary planes, the stabilizev of $ in U; acts regularly on the planes ir$ and
Saatag 2 $ if and only if (a;a%a%j 2 V.

Let g = (a;a%a% 2 U, be a nontrivial element ofV. Then, in view of LemmalZ3Ba
has to be dierent from 0. But asV is a group,g® = (0;0; a?' ) is also a nontrivial
element ofV, which does have as rst coordinate 0, so the hypothesis idda.
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Lemma 2.9.5 In Gsthe a ne unital blocks are (geometric) invariants.

Proof. We will denote the intersection of a vertical plane through lie point p with the

ordinary plane with gnarl p by W,. The setsW, are invariants of the geometry by virtue
of LemmalZ3H. Lemm& 2912 implies that the a ne unital blo& through p is contained
in W,.

By transitivity, it su ces to construct the a ne unital bloc k B through (0;0;0). Let
P2 W.0.0) be a point di erent from (0; 0; 0). If plies onB, then W.g.0)\ W, containsB
itself and so at least 4 points (agKj > 3). Now supposep 2B, sop=(0;k 1;k) fora
certain k 2 K di erent from 0. Using (0;k *;k) as an element oU; and LemmalZ39D,
we calculate thatW, = f(0;t+ k k) jt2 Kg[f (0;t *+ k % t+k)jt2 KnfOgg.
The intersectionW.0.0)\ W, contains two obvious intersection points on the a ne unital
blocks contained in eitherW.o.) and W,. To look for more intersection points we need
to investigate whether or not it is possible to have (@ '+ k ;t+ k)=(0;s 1;s) for
certain s;t 2 KnfOg. Equality on the third coordinate gives ust + k = s, the second gives
us

s =t '+k t, (t+k) t=t t+k !
t2 = Kk?

If we raise both hand sides of the last equation to the power 2+ then we obtaint = Kk,
implying s = 0, a contradiction.

Hence in this case we have thgiW.0.0)\ Wpj = 2. This allows us to recognize the points
of the a ne unital block through (0 ; 0; 0) as those for whichi\Wq.0,0) \ Wpj > 2.

Lemma 2.9.6 In G, the circles of G are invariants.

Proof. Let p and g be two di erent points of Gs, and let G be the full automorphism
group of Gs. Then we rst want to determine the elements ofG which x p and all the
blocks of the unital through p, within the sphere with gnarl p through g. We will denote
this group by Gy

By 2-transitivity we can suppose thatp = (1 ) and g = (0;0;0). The aim is to prove
that Gy1 ).0.00p = f(0;1;0) j t 2 Kg=: H. Itis easy to see that these automorphisms
satisfy the needed properties and act transitively (even gelarly) on the points of the
a ne unital block B through (0;0;0). Suppose there is another automorphismg which
satis es these properties. Then, possibly by composing \nita suitable element ofH,
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we may assume thatg xes (0;0;0). This implies that the sphere with gnarl (Q0;0)
through (1 ) is also xed. By LemmalZ32 the points (Qk *;k) with k 2 KnfOg are
also xed, so also the blocks through (@0;0) in the sphere with gnarl (Q0; 0) through
(1 ), which makes the situation symmetric in both points. We camalso let the xed
points of the form (G k I;k) play the role of (G 0;0), which yields the xed points
(0;k, *+k, '+ +k, Lki+ky+  +Kk,) with ki 2 KnfOg, by repeating the argument.
Choosingn =3 and k; = Kk, = k3 = k with k 2 KnfOg gives us the xed points (Q0; k)
for all k 2 K.

Interchanging the roles of { ) and (0;0;0), we get the xed points (k;0; k2 ) (to
calculate these observe that (®; k) are the points di erent from (1 ) on the circle with
gnarl (1 ) through (0;0;0), interchanging gives us the points di erent from (Q0; 0) on
the circle with gnarl (0; 0; 0) through (1 )). If we let a xed point (0;0;l) with | 2 K
play the role of (G 0;0), we obtain that all the points of the form (;0;1) with k;I 2 K
are xed points. On each a ne unital block lies a point of this form, so all a ne unital
blocks are xed, and by symmetry also the blocks of the Ree ual through (0;0; 0). It
follows that all points are xed points, and that g is the identity.

The above proves thatGyy,q; is a subgroup of the root grougJ, and hence, iffKj > 3, also
a subgroup of the simple Ree grouBYK; ). The group K generated by all groups of the
form Gy, Is @ normal subgroup of this Ree group (indeed, ¢f is an automorphism ofGs,
then G‘f’p;q[ = Gppe:qe)- S0 by simplicity, K coincides withRYK; ). Now, by [10], the root
groups ofK are the unique unipotent subgroups oK . Hence we can recover these root
groups and consequently also the circles constructed froiimetse root groups.

If jKj = 3, then K is a normal subgroup of the Ree grouf(3) over the eld with 3
elements. But the groupsG,.q do not belong to the simple Ree group. Hence it is easy
to see thatK coincides with the Ree groupR(3) and, as above, we can again recover the
circles.

We have proved :
Corollary 2.9.7 The automorphism group ofss coincides with that ofG.

This completes the proof of Main ResulZZ412.
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Chapter 3

"Rank two' case, or generalized
polygons

During my Ph.D. studies, | obtained various results about geeralized polygons, which
can roughly be put in two categories: mixed quadrangles an@igeralized inversive planes,
and embeddings of quadrangles in buildings of typ&,.

Mixed quadrangles. | In 1974, Jacques Tits [44] introduced what he calledgroups of
mixed type as a certain generalization of algebraic groups. This wativated by the fact
that certain spherical buildings arise from such groups, a@nTits classi ed all spherical
buildings of rank at least three in [44].

Roughly, the groups of mixed type of rank 2 arise when the wéigof the edge of the
rank 2 Coxeter diagram is equal to the characteristic of thenderlying eld. Indeed,
in the commutation relation of the root groups, the weightw of the edge turns up as a
coe cient, and as a power (if the diagram is included in a rank3 diagram, then only
the casesw 2 f 1;2;3g occur). If the corresponding term does not vanish (i.e., ifni
the underlying eld w is not equal to 0), then we are in the generic case where we are
able to distinguish long and short roots (by the commutatiorrelations, but also by the
geometry of the corresponding building). However, iiv = 0, i.e., if the characteristic of
the underlying eld is equal to w, then the commutation relations become much more
symmetric, allowing for diagram automorphisms. If the eldis perfect, not much extra
happens since the symmetry is themp to the eld Frobenius automorphismx 7! x%,
and we only obtain an extra group automorphism (diagram autoorphism). However, if
the eld is not perfect, then this "duality’ is not surjective anymore, and we obtain the
peculiar situation in which the rank 2 geometry “looks' symetric, but isn't. Technically,
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the duality maps the geometryinto itself, but not onto. In other words, the geometry
(building) is isomorphic to the dual of a subgeometry. On thalgebraic level, we obtain
an in nite descending chain of algebraic structures, eachne containing the next one,
and the rst one parameterizing the chambers in a certain pal. Since we have two
di erent types of panels, we have two such chains (which areapped onto each other by
the duality). The strange thing is now that ‘interlacing' slbchains de ne subgeometries
and the corresponding automorphism groups are the groupsrofxed type. If the original
chains consist of elds, then the interlacing chains may caist of elds, too, but also of
vector spaces. The latter only happens fov = 2.

In this chapter, we study the casew = 2 in a geometric way. This is the case where
the Coxeter diagram has a weight 2 edge, hence a double bonded&etrically, this is
the case of the (Moufang) generalized quadrangles. In theldabraically) split case, we
have a symplectic quadrangle over some eld. If K has characteristic 2 and is perfect,
then this generalized quadrangle, denoted by(K), is self-dual. If K has characteristic
2 and is not perfect, then we are in the mixed case. There aredvypes of panels here,
and hence two di erent parametrizations. Any point row is paametrized by K [ flg
while any line pencil is parametrized byK?[flg (here,K? is the eld of squares ofK).
We obtain two chainsk K2 K4 and K2 K* K8 . An interlacing
chain may look likeK® K% K% , with K%a eld satisfying K? K% K. But
we may also substituteK in the rst chain by a vector spacelL over K° contained inK,
and K%in the second chain by a vector spack® over K? contained in K This is the
most general case that can occur. We denote the corresporgliMoufang) quadrangle
by W(K;K%L;L9.

The quadrangleW(K;K%L;L9 has an interesting geometric property. Indeed, all its
points and lines areregular (for precise de nitions, see below). Moreover, the dual ngt
associated with the regular elements also satisfy some réggity properties. In a very
weak form one can say that these dual nets satisfy a certaintilé Desargues Axiom. We
will show that this axiom, together with the regularity of points and lines, characterizes
all quadrangles of mixed type. In order to answer the questioof the geometric di erence
between the cases where both / exactly one / none bfand L°are elds, we consider the
Veblen & Young Axiom in these dual nets. We will show that if a gneralized quadrangle
has enough regular points and lines, and if the dual nets rédal to the regular points
satisfy the Axiom of Veblen & Young, then the quadrangle is ofixed type andL%is a
eld.

These results hold in both the in nite and nite case. But in the nite case there are
no proper mixed quadrangles since a nite eld is always pegtt. All the results of the
present chapter that are also valid in this improper mixed cse are actually well known
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for nite quadrangles, but some of our proofs give rise to atnative arguments. As an
example we mention that Theoreni=3516 immediately implieshat, if a nite generalized
guadrangle of orderg has an ovoid of regular points, then all corresponding prajave
planes are classical.

These results, and the ones in the next subsection, were oioiad in a joint work with
Hendrik Van Maldeghem, se€ [35].

Generalized Suzuki-Tits inversive planes. | Another feature of the mixed quad-
rangles is that certain of them admitpolarities, i.e., dualities of order 2. In this case, the
centralizer of that polarity in the little projective group of the quadrangle is a (general-
ized) Suzuki group. The set of elements xed under a polaritgan be structured to a
geometry which is called generalized inversive plane [61]. The main result of [61] says
that the automorphism groups of these generalized inversilanes are essentially the
(generalized) Suzuki groups. In the present chapter, we uiee above characterizations
of the mixed quadrangles to axiomatize the generalized imgéve planes corresponding to
the generalized Suzuki groups. In the perfect case, this halseady been done by Hendrik
Van Maldeghem in [58]. So we relax the axioms 0f]58] to dealtwihe more general case
of imperfect elds (using the Veblen & Young Axiom) and vecto spaces (using the Little
Desargues Axiom). As a corollary, these new results let usrgilify the characterization
for the perfect case in[[598] by removing one axiom.

Embeddings of quadrangles in buildings of type F4. | The rst examples of
generalized polygons mainly arose asmbeddingsn projective spaces, i.e., the points of
the polygon are some points of a projective space, while thads of the polygon can be
identi ed with some lines of the projective space, and the midence relation is the natural
one. The mixed quadrangles and the hexagons mentioned in thbove subsection and
the previous chapter are examples of such embeddings. If tambedding is "nice’, then
it automatically inherits beautiful symmetry properties from the projective space, see
[13,[18,[32[33["40]. "Nice' could mean that the lines of the lggon through any point
are contained in a certain subspace of the projective spagaane, hyperplane), or that
the points not opposite a given point in the polygon do not spathe entire projective
space, or just a bound on the dimension of the projective spatogether with the fact
that all points of the projective space on any line of the polyon belong to the polygon.
In particular, the previous references contain characterations and classi cations of the
‘nice' embeddings of the Moufang generalized quadranglesiehexagons.

However, not all Moufang polygons admit an embedding as cotsred above. The notable
examples are the exceptional Moufang quadrangles and theiuals, the duals of some
embeddable classical Moufang quadrangles, and the dualstioé exceptional Moufang



56 "Rank two' case, or generalized polygons

hexagons and of the Ree-Tits octagons. These exceptionalygons geometrically come
forward in a di erent way: they do not arise from “forms' of a pojective space, but from
“forms' of buildings of exceptional type and rank at least 4All types arise: Eg; E7; Eg; Fa.
In this chapter, we take a closer look at the situation oF, (called metasymplectic spaces
from a geometric point of view). This case is the least "algetic' of the lot. Similar as
explained above, characteristic 2 is a special case for llirigs of type F, (which contain
an edge of weight 2). This leads to the existence of groups ahdildings of mixed type
with diagram F4, seel([44].

Using this special behaviour one can nd embeddings of cemaVioufang quadrangles and
octagons. This is the starting point. Our goal isto nd a "nie' property of the embedding
of the exceptional Moufang quadrangles in buildings of typE, that guarantees thatany

quadrangle embedded in a building of typd-, with that property, is automatically a

Moufang quadrangle. This property will be denoted by (OV) inSection[3®. Roughly,
we require that the points of the quadrangle are points of theuilding, the lines of the
quadrangle are hyperlines of the building (with natural indence), and (OV) says that
any two noncollinear points of the quadrangle are never cained in a hyperline of the
building. In other words, collinearity in the quadrangle coincides with cohyperliaeity

in the building This very natural property surprisingly is enough to charaterize the
Moufang quadrangles arising from buildings of typ&;,.

The results mentioned in this subsection are accepted for Iplication in European J.
Combin.

3.1 Some further de nitions on generalized
guadrangles

Let =( P;L;I) be a generalized quadrangle and let be an arbitrary point. The set of
points of collinear with x will be denoted byx?. ForasetX P , we denote byX? the
set of points collinear with all points of X, and we abbreviate K?)? by X?? . If yis a
point oppositex, then fx;yg” is called theperp of the pair x;y. The spanof the pair x;y
is the setfx;yg® . If every span containingx is also a perp (of a pair of di erent points,
needless to say), then the poink is calledregular. Dually one de nesregular lines If
X is a regular point, then the geometry , = (x° nfxg;ff x;yg’ : y 6 xg;2 or 3)is
a dual net (associated tox) (see Sectior_1.912) , i.e., it has the property that for evgr
point z 2 x” nfxg and everyblock B = fx;yg’, with y opposite x, there is a unique
point z° 2 B not collinear with z (collinearity in ). If  is a dual a ne plane, then
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we call x a projective point The motivation for this terminology is that the geometry

« = (X?;ff x;yg” 1y 2 Pg;2 or 3)is then a projective plane, called theperp-plane
in X. Projective points have nice properties. For instance, onean easily check thatx
is a projective point if and only if the geometry P nx?;fL 2L :x & Lg[ff x;yg” :
y 6 xg;l or 2 or 3)is a generalized quadrangle if and only if every pair of disict
perps contained inx” meet in a unique point (this construction is known as théPayne
construction, see [[2B]).

Finally we introduce some notions concerning symmetry in geralized quadrangles. A
point x of a generalized quadrangle is called @nter of symmetryif it is regular and if
the group of collineations xing x” pointwise acts transitively on the setf x; yg”® nfxg,
for some, and hence for every, poing oppositex. The dual notion is called anaxis of
symmetry.

3.2 Examples of generalized quadrangles

We introduce some classes of generalized quadrangles whiidhbe of use later on.

3.2.1 Symplectic quadrangles

The prototype class of examples of generalized quadranglssthe class ofsymplectic
quadrangleswhich are de ned as follows. Let be a symplectic polarity in a 3-dimensional
projective spacePG(3;K) over a eld K. If P is the point set of PG3;K), if L is the
set of lines ofPG(3;K) xed by , and if I denotes the incidence relation ilPG(3; K),
then W(K) = (P;L;l) is a generalized quadrangle called theymplectic quadrangle (over
K). All the points of W(K) are regular, even projective. Conversely, Schroth 131] qued
that any generalized quadrangle all points of which are pregtive is isomorphic to a
symplectic quadrangle. In fact, Theorem 6.2.1 of [b4] asterthat, if all points of a
generalized quadrangle are regular and at least one poing iprojective, then all points
are projective and is a symplectic quadrangle. The rst st@ in the proof is to show
that if a point x of is projective, then every opposite (regular) point is aso projective.
We record this step as a separate lemma for later reference.

Lemma 3.2.1 ([59]) Let x;y be two opposite points of a generalized quadranglelf x
is projective andy is regular, theny is projective too.
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The symplectic quadrangle has a lot of symmetry. All points foW(K) are centers of

symmetry. Dually, all lines of W(K) are axes of symmetry if and only ifK has char-

acteristic 2. Also, W(K) is self-dual if and only ifK is a perfect eld with characteris-

tic 2. Moreover, W(K) admits a polarity if and only if there exists a Tits automorghism
K1 K:x7!'x,so() = x2 forall x 2 K (see Sectiofi_L.91).

We now give a description ofV(K) using coordinates (seé[59]). LaWV(K) = (P;L;1) be
the symplectic quadrangle over the eldK. Then we may take forP the following set:
P=1f(1)g[f (a):a2 Kg[f (k;b:k:b2 Kg[f (a;l;a): a;l;a’2 Kg;
and for L the set
L="f[1]g[f [K]:k2Kg[f[al]:a;12 Kg[f [k;b:K]:k;b;K2 Kg;

wherel is a symbol not contained inK, and where incidence is given by

(a; ;91 [a; 11 (@11 ]I (1)1 [K] (k; DI [K; b; KI;
forall a;a®b;k; K12 K, and

a = ak+ b,
(a;1; 91 [k; b; K] 0 KO = a%k+1 2aa®

We clearly see the asymmetry if the characteristic df is unequal to 2. If, on the other
hand, the characteristic ofK is equal to 2, then the two above formulas are equivalent if
squaring is an automorphism, i.e., the Frobenius is surjege, implying the eld is perfect.

3.2.2 Mixed quadrangles

Mixed quadrangles are subquadrangles of the symplectic girangle W(K), for K an im-
perfect eld with characteristic 2 (in the other case the on} (thick) subquadrangles are
symplectic quadrangles over sub elds). Neither the pointeg nor the line set of these
subquadrangles can be given by a nice set of equationsRA(3; K), because the corre-
sponding collineation groups are not algebraic groups. Tlglickest and most elementary
way to de ne the mixed quadrangles is using the coordinated esymplectic quadrangles
introduced above.

So suppos is imperfect and of characteristic 2, and leK? be the sub eld consisting of
all squares. Letk®be a subeld with K2 K% K and let L;L°be subspaces of;K°
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viewed as vector spaces ovéd® K?, respectively, withK? L%and K® L. We consider
the description of W(K) with coordinates as above, and we now restrict tha; a%bto L

and the k; k%1 to L% Then we obtain a subquadrangle that we denote bW(K;K;L;L9

and call amixed quadranglgthe terminology in [51] mentionsindi erent quadrangle, but

we prefer to name the geometries after the groups, as for thgngplectic quadrangle). In
order to have a unique de nition, we also assume that and L° generateK and K° as
a ring. Note that W(K) = W(K; K; K;K) and that W(K; K?;K; K?) is the dual of W(K)

(and this dual is isomorphic to the generalized quadranglerising from a nonsingular
quadratic form of maximal Witt index in a ve-dimensional vector space overK).

It is convenient to also callW(K), with K perfect and of characteristic 2, a mixed quad-
rangle. In this case, we also writdV(K) = W(K; K; K; K).

In general, the dual ofW(K;K®%L; L9 is isomorphic to W(K%K?; L% L?); hence the class
of mixed quadrangles is a self-dual one. Moreover, since pdlints of W(K) are regular,
so are all points of every mixed quadrangle, and hence so aié lmes of it. Notice
that, applying duality twice, the subquadrangleW(K?2; K®; L2 L®) of W(K;K2%L;L9 is
isomorphic toW(K; K% L; L9 itself.

Let us nally mention that all points of a mixed quadrangle ae centers of symmetry, and
all lines are axes of symmetry. Moreover, it follows froni.[BAnd Theorem 21.10 in[I51]
that, if all lines of a generalized quadrangle are axes of symetry, and at least one point
is regular, then is a mixed quadrangle.

3.2.3 Suzuki quadrangles

It is well known, see Theorem 7.3.2 df [59], that a mixed quaaingleW(K; K L; L 9 admits
a polarity if and only if K admits a Tits endomorphism :K ! K and we can choose
K% L;L%such that K= K and L°= L . Hence every polarity inW(K;K%L;L9 is the
restriction of a polarity in W(K; K% K;K9. So the case of. = K is a kind of principal
case. A self-polar mixed quadrangle shall be calledSaizuki quadrangle

Remark 3.2.2 The mixed quadrangles and mixed hexagons have a similar digac
background in the theory of mixed groups, and for this reasamany properties are alike.

3.3 Dual nets

In Section[31, it was mentioned that one can associate a duat to a regular point of
a generalized quadrangle. We now take a closer look at dualtsién order to state the
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results.

Let =( P;L;l) be a dual net. Noncollinear points shall be callegarallel, it is easy
to see that parallelism is an equivalence relation iR. Call the dual parallel classes of
points vertical lines and introduce a new pointl incident with all vertical lines. This
way we create a linear space= ( P;L;T) (a linear spaceis a point-line geometry in which
every pair of distinct points is incident with a unique line) A triangle is a set of three
pairwise intersecting distinct elements ot , but such that all three lines do not have a
point in common. The 3 intersection points are also viewed dmelonging to the triangle.
Two triangles are said to ben perspective from a pointx if there are three di erent lines
through x of each incident with a unique point of each triangle. Considethe following

two conditions:

(LD) For every pair of triangles which are in perspective from the point 1 , and for
which two pairs of corresponding sides meet on a vertical &1/, the third pair of
corresponding sides also meets dh

(VY) Ifaline L meets two sides of a proper triangle in two distinct points,itenL intersects
the third side too.

If we want to x and include the line V of (LD) in our assumptions, we more speci cally
say that the dual net satis es (LD) with respect to the vertical lineV.

The letters (LD) and (VY) stand for Little Desarguesand Veblen-Young respectively.

3.4 Results on mixed quadrangles

A famous conjecture says that every generalized quadrangi elements of which are
regular is isomorphic to a mixed quadrangle (in the form of arpblem, this is Problem 8

in Appendix E of [59]). In the nite case, generalized quadrragles all of whose points are
regular are not classi ed, unless one requires an addition@ondition on the corresponding

dual nets, or on the parameters. In[[39] the condition that tese dual nets satisfy the
Axiom of Veblen-Young does the job. In the present chapter weill classify all generalized
guadrangles with a lot of regular points and lines, and for wth the dual nets associated
to the regular points satisfy the Axiom of Veblen-Young. Pdponing a discussion of what
"a lot' precisely means to Sectioh=33.3 (see Theorems_3.&r®i [35.9), we here state the
weakest form.
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Main Result 3.4.1 A generalized quadrangle is isomorphic to some mixed quadran-
gle W(K; K% L; K9 if and only if all points and lines of are regular and the dual net
associated to each regular point satis es Conditio{\VY) .

In order to include all mixed quadrangles, we have to appeab tCondition (LD).

Main Result 3.4.2 A generalized quadrangle is isomorphic to some mixed quadran-
gle W(K; K% L;L9 if and only if all points and lines of are regular and the dual net
associated to each regular point satis es Conditio(LD) .

3.5 Proofs

General idea. | First we show that under certain assumptions Condition (LD ) follows
from Condition (VY). Then, using a ag consisting of a regula point and line, such that
the point satis es (LD), we construct collineations of the gneralized quadrangle, making
the line into an axis of symmetry. Enough axes of symmetry withen imply that the
quadrangle is a mixed quadrangle.

3.5.1 Dual nets satisfying the axiom of Veblen-Young

Let =( P;L;I)beadual net. As before, we call the dual parallel classespaiints vertical
lines and introduce a new pointl incident with all vertical lines. This way we created
a linear space = ( P;L;T). If two lines L;M intersect in this linear space, we write
L M. LetV be the set of all vertical lines. Our aim is to prove that Condion (LD)
follows from Condition (VY), if there exists at least one pai of nonintersecting lines.

So henceforth we assume that satis es (VY), and that there & at least two noninter-
secting lines in . Clearly, the latter condition is equivakent with being not a dual a ne
plane.

We begin with de ning a projective plane for every pair of inersecting lined_; M . Indeed,
let L;M be two intersecting lines in , and let x be their intersection point. Then we
consider the set of lines intersecting both and M in two distinct points, together with
the set of lines incident withx and meeting some lin&K that intersects L and M in two
distinct points. We denote this set byB . The point set A is de ned to be the set of
points incident with at least one element oB , together with 1 . Now add all vertical
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lines to B by dening B = B [V . If we denote the restriction ofl still by T (slightly
abusing notation), then we claim that . = (A;B;I) is a projective plane.

Indeed, this is in fact a routine check. Let us rst show that wo distinct lines X;Y
always meet. If at least one oK;Y belongs toV, or if both X;Y are incident with X,
then this is trivial. If none of X;Y is incident with x, then this follows directly from
(VY), as by de nition both of X and Y meet both ofL and M. If X is incident with X,
then it intersects some lineK which also intersects both ol. and M in distinct points.
Since we may assum& 6 Y, we may also assume thay;K;L form a proper triangle
(as otherwiseY; K; M form one). Now (VY) implies that X meetsY.

Now we show that two distinct pointsy;z 2 A are joined by exactly one line irB. Indeed,

we clearly may assume that neithey or z coincides withl , and that they are not incident

with the same vertical line. Hence they are incident with a ugque memberX 2 L. We

must show that X 2 B . By de nition, yIY 2B andzlZ 2 B . Suppose thatY|x. Let

K 2 B be such thatK intersectsL;M;Y in three di erent points, and suppose thaty

is not incident with K. Choose an arbitrary pointy®incident with K and not parallel to

y. The line Y joining y and y° meets both ofL and M by (VY). We have shown that we
may assume thatY is not incident with x, and hence neitherZ. Moreover, using (VY),

we can arrange thatY;Z do not meet onL or M (if they do then we may re-chooser/

not incident with the intersections ofZ with L and M). Then X meets two sides of both
the trianglesY; Z;L and Y; Z; M in distinct points, and hence (VY) implies that X meets
both of L and M. If X is not incident with x, then X 2 B by de nition; if xI X, then

with K 2fY;Zg, we see that againrX 2B .

Clearly _wm = Lomofor L% M Odistinct nonvertical lines of .\ . Hence if two projec-
tive planes of this form share two nonvertical lines, then iy coincide.

If we now remove from . the point 1 and the vertical lines, then we obtain a dual
a ne plane. Our assumptions and the existence and uniqueng®f the projective plane
constructed above now implies that the dual of is a subplaneovered net in the sense
of Johnson [17]. It follows from the latter paper that we candentify P with the points of

a projective spaceP minus a subspacé&V of codimension 2, and. can be identi ed with
the lines of P that do not intersect W. Our hypothesis that is not a dual a ne plane
implies that the dimension ofP is at least 3, and hence it is a Desarguesian projective
space.

Now if a pair of triangles is in perspective fromlL , and if two pairs of corresponding
sides meet, then inP, this means that the two triangles are also in perspectivedm a

point (because two corresponding pairs of sides must lie ihg same plane), and so by
Desargues' theorem, also the third pair of correspondingdsis meets, and this intersection
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point is collinear with the two others. This shows (LD).
Hence we have proved the following theorem.

Theorem 3.5.1 A dual net which is not a dual ane plane satis es (VY) only if it
satis es (LD).

One of our crucial tools to characterize the mixed quadrangg is Property (LD) for the
nets associated to the regular points of some generalizechdtangle , which we now know
to hold if (VY) is satis ed for these dual nets in the case theyare not dual a ne planes.
In dual a ne planes (VY) holds trivially, but (LD) is not nece ssarily true. A su cient
condition for (LD) is that the corresponding projective plae is a Moufang plane. And
that is exactly what we are going to prove in the case that theeperalized quadrangle
contains “enough' projective points.

3.5.2 Generalized quadrangles with a lot of projective poin ts

In this section we concentrate on generalized quadranglesttwa number of projective
points. In fact, we only need one projective point and a set aktgular points. More
precisely, let be a generalized quadrangle and lgD be a set of regular points of . We
assume the following two conditions o1®.

(PP) At least one member ofO is a projective point.

(TP) If x;y are opposite points of , thenjf x;yg’ \ Oj 6= 1.

Our aim is to prove that, under these assumptions, all pointef O are projective and
every corresponding perp-plane is a Moufang projective ple. We will need the following
characterization of Moufang projective planes by H. Van Mdeghem [[6D]. In a projec-
tive plane, a lineL is called anaxis of transitivity if the pointwise stabilizer of L acts
transitively on the points not incident with L.

Theorem 3.5.2 ([60]) A projective plane is a Moufang plane if and only if each link
is an axis of transitivity.

Henceforth is a generalized quadrangle withO a set of regular points of satisfying
(PP) and (TP).

We start with proving that all elements of O are projective.
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Lemma 3.5.3 Every element ofO is a projective point of .

Proof. We know that there is at least one pointp 2 O which is projective. Letq be any
other element of O. If g is oppositep, then Lemmal[3Z1l implies thatq is projective.

Now supposey p. Let x;y be opposite points collinear tg such that x is incident with

the line pg but x 6 g. Then p 2 f x;yg?, implying by (TP) that some other element
p°2 Onf pg also belongs td x;yg?. Clearly, p°is oppositep and therefore is a projective
point. But pYis also oppositeq and hence Lemmd& 3211 implies that is projective.

The lemma is proved.

We now prove a lemma that will generate collineations of thegop-planes ,, forp2 O.

Lemma 3.5.4 Let p;q2 O, with p oppositeq. Then the following function ., de nes
an isomorphism between, and g :
(i) Apoint x of |, is mapped to the block @ of  consisting of all the points collinear
with both x and g.

(i) Ablock of ,is mapped to the point P4 of  collinear with g and with all points
of

Proof. First we show that . is well de ned by proving that for each block of |,
there is indeed a unique pointa ¢ collinear with all points of . We may assume
that 6 fp;ag°, as otherwisea = qis easily seen to be that unique point. Since, is
projective, there is a unique pointr 2 f p; g’ \ . Now a is necessarily the unique point
on the line rg which is collinear with any point of nfrg.

The de nition of ., now easily implies that, ifx 2 , with x pand a block of ,

then ra 2 xra, Also, the inverse mapping is apparently given byqp, hence g is

bijective and so de nes an isomorphism from, to the dual of .

Note that we can writex s = fg;xg’ and ra = ?? \ g°,with x pand a block of
b

We now consider three di erent pointsp; p2; ps 2 O, with ps opposite bothp; and p,. By

the previous lemma, we can combineg,,.,, and ., t0 an isomorphism =, o. pip,
between ,, and ,. Let us calculate the image of a poink of ,, under

X = X PiPs PPz = (fx; pSQ?) P32 = fx: p3g?’? \ p;
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If we apply this to a point a in fp;; pg?, then, sincea 2 f a;p:g”” \ p;, we see that
a = a (note the independence ofi;). We also havep, = fpy;p:g°”° \ p;.

Now let p be another point of Onfp;; p.g opposite both p;; p,. We obtain a di erent
isomorphism °:= [ .0 0., between the two perp-planes ,, and p,. This allows us
to construct a collineation := ! %of ,,. Using the independence mentioned in the
above paragraph we see thatp:; p.g° is xed pointwise under the action of . Choose
points x;y in p, dierent from p, and not contained inf p;; p.g”. We can chooseys 2 O
in such a way that p, = x (this is possible since the sparfip;;xg®>’ contains at least
two points of O, and we can choos@; as one of these points di erent fromp,; then
P, = fppsg®™ \ po = fpi;xg® \ ps = x). Analogously, we can choosp 2 O in such
a way that p, = y. Combining this we obtainx = x *°=p, °=y.

Consequently, the pointwise stabilizer of p;; p.g’ in the collineation group of ,, acts
transitively on all the other points of the plane, possibly xcept p,. But if p, was xed by
this stabilizer, then the orbits of the other points would cenpletely lie on lines through
p2, which is impossible by the transitivity already shown. Sohe pointwise stabilizer of
fp.; p20° is transitive on all points of the perp-plane , except for the points off p;; p.g’

itself. Hencef py; p.g? is an axis of transitivity in the projective plane ,.

We can even do better.
Lemma 3.5.5 Each block of ,, is an axis of transitivity.

Proof. Let be a block of ,, not incident with p,, so that is a perpfpy;xg® with x
a point of opposite p,. The spanfp,;xg®’ is a perp and containgp,, hence it contains
a second pointp; 2 O. This implies = fp,;psg’ and the assertion follows from our
previous discussion.

The blocks through p, can now be mapped to blocks not througtp, by the pointwise
stabilizers of the blocks not containingp,. So the blocks throughp, are also axes of
transitivity.

Now TheoremZZ 5P implies that p,, and hence all perp-planes of points i@, are Moufang
projective planes, and in particular satisfy Condition (LD.

Hence, in this section, we have shown the following theorem.

Theorem 3.5.6 Let be a generalized quadrangle and IBtbe a subset of regular points
of satisfying (PP) and (TP). Then all points of O are projective and all corresponding
perp-planes are Moufang projective planes, and satisfy, jparticular, (LD).
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3.5.3 Quadrangles with regular points satisfying (LD)

In this section, we will prove Main ResultC3Z1l and Main ResuBZ2A. They will follow
from Theorem[3ZXR1l, Theoreni=3H5.6 and the following lemma.

Lemma 3.5.7 Let = ( P;L;l) be a generalized quadrangle containing a afp;Lg

consisting of a regular lineL and a regular pointp such that the dual net associated o

satis es (LD) with respect to the vertical line de ned by.. Then L is an axis of symmetry
for

Proof. First of all we notice that if there are only three lines throgh each pointin , then
regularity of a point implies that there are also exactly thee points on each line. Such a
generalized quadrangle is always isomorphic W(2), in which the assertion clearly holds.
So we may assume that there are at least four lines through éagoint.

Let M be a line throughp di erent from L. Let a;a’be two points incident with M but
di erent from p. We will gradually construct a collineation mapping a to a° xing L
pointwise, and xing all lines meetingL.

Lines intersecting L

For these linesN we setN = N.

Points collinear to pnoton L

Let N be a line throughp di erent from both L and M, and let q be a point onN di erent
from p; then we de ne the image ofp under as follows. The perp in , through a and
g intersectsL in a point b. Then q is the intersection point ofN with the perp through
a®= a and b. This way the image ofa de nes the image of a pointq collinear with p,
but not with a. We denote this as:a! g The image of a pointc on M is de ned by
g! c, for some pointq p not collinear to c.

To show that is well de ned, we have to prove that combining! bwith b! ¢ (we will

abbreviate this bya! b! c¢) wherebis not collinear with either a or ¢, is independent
of the choice ofb. So suppose; b; cand d are four points inp’ not on L such that both

b and d are not collinear with eithera or c.
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(i) If ais not collinear with c, thena! b! cis equivalent witha! c. Indeed, this
follows directly from the condition (LD) applied to the trianglesa; b;canda ;b ;c
(where is dened usinga! b! c¢). Similarly, a! d! cis equivalent with
a! cand the result follows.

(i) Suppose thata is collinear with c. If bis not collinear with d thena! b! cis
equivalent witha! b! d! cwhichinits turnis equivalent with a! d! c Ifb
and d are collinear then we can choose a poietcollinear with p but not with a or
b and not onL (because there are at least four lines through a point in ). fien
a! b! cisequivalent witha! b! e! c,a! e! canda! d! chy using
the previous arguments.

It is important to note that  preserves the perps in .

Lines and points opposite L or p

Let N be a line oppositeL, and let plAlgN. Then we dene N to be the unique
line incident with q in the (line) span containingL and N. The image of a pointt
incident with N is de ned as the intersection point ofN with the unique line K through
t intersecting L (these lines indeed intersect because of the regularity b). The only
thing left to show is that t is well de ned. If t is collinear with p then this is clear, so
supposet 6 p. The lines throught de ne a perp in , which will be mapped to another
perp by while xing the intersection point r of K and L of the perp. The images of
all the lines throught must meetK. Since they also must contain a point of the perp
fp;t g°, we see that they are all incident witht . Hencet is well de ned. It is now also
clear that and its inverse preserve incidence, and hence it is a symmetBincea and a°
were basically arbitrary, it follows that L is an axis of symmetry, and the lemma follows.

We are now ready to prove slightly more general results than &ih Results[3.41]l and"3.212.

Theorem 3.5.8 A generalized quadrangle= ( P;L;I) is a mixed quadrangle if and only
if there is a subselO P of points and a nonempty subseé® L of lines satisfying the
following conditions.

(i) All points of O and all lines ofS are regular.

(i) Every (line) span containing a line ofS contains at least two lines of.
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(iii ) Every element ofS is incident with some element oD.

(iv) The dual net associated to each regular poirtof O satis es (LD) with respect to a
vertical line given by some element & incident with x.

In particular, if all elements of are regular and(iv) holds, then is a mixed quadrangle.

Proof. Fix a line L of S. By (iii ), there is a regular pointp incident with L with the
property that, by (iv), the associated dual net satis es (LD). Lemm&-35l7 implgethat
L is an axis of symmetry. Likewise, every element & is an axis of symmetry. LetM be
an arbitrary line oppositeL. The spanfL; M ¢g’” contains some elemen 2 SnflLg, by
(ii). Sincel is an axis of symmetry, there is a collineation mapping to M. SinceK is
an axis of symmetry, so isM. Hence all lines oppositd., and likewise all lines opposite
K, are axes of symmetry. It is easy to see that for each elemeMitof fL;K g’ there is a
line opposite all ofL;K; N . We conclude that all lines of are axes of symmetry. Since
we have at least one regular point, we can conclude that is a ixed quadrangle (see
Section[ZZP).

Theorem 3.5.9 A generalized quadrangle= ( P;L;I) is isomorphic to a mixed quad-
rangle W(K; K% L; K9 if and only if there is a subsetD P of points and a nonempty
subsetS L of lines satisfying the following conditions.

(1) All points of O and all lines ofS are regular.

(i) Every span containing a point ofO contains at least two points 0.
(i )° Every (line) span containing a line ofS contains at least two lines ofS.
(iii ) Every element ofS is incident with some element o0D.

(iv) The dual net associated to each regular point &f satis es (VY).

In particular, if all elements of are regular and(iv) holds, then is isomorphic to a
mixed quadrangleV(K; K% L; K9).

Proof. If none of the points of O are projective, then TheorenT=35]11 implies that, to-
gether with (iv), each dual net associated to a regular point dD satis es (LD). From
Theorem 3538 we infer that is isomorphic to a mixed quadragle W(K;K?%L;L9.
We now show thatL® = K% Assume, by way of contradiction, thatL® 6 K® Then
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we can choose elementk; k°® 2 K° such that kk® 2 L% One easily calculates that
in the coordinate representation ofW(K;KC%L;L9, the perp Tax = f(1);(a;l;a%g’
consists of the point @) together with the points (x;ax + a9, x 2 L% Now we con-
sider the perpsToo = f(O)g [f (x;0) : x 2 L9 and Tox = f(O)g[f (x;1) : x 2 LY,
which both meet the perpsTio = f(1)g[f (X;x) : X 2 LY and T 141y 1kqk 1+1) 1 =
f((k *+1) Hg[f (x;(k *+1) x+(k *+1) k9 :x 2 L% By (VY), the latter two
perps must intersect. Hence there must exist 2 L% such that

x=(k *+1) x+(k *+1) K

which is equivalent with kk®= x 2 L° a contradiction.

If at least one point of O is projective, then by TheoremZ3.516 and Assumptionii(), all
points of O are projective, and all corresponding perp-planes are Mauify and satisfy
(LD). Since they also satisfy (VY), the result now again fotbws from Theoren{"3.518 and
the computation performed in the previous paragraph.

3.6 Results on generalized Suzuki-Tits
inversive planes

Let be a polarity in a Suzuki quadrangle and leD be the set of its absolute points,
which forms an ovoid of the Suzuki quadrangle - the so-call&@lzuki-Tits ovoid Viewed
as a subset of points o0PQ(3; K), it is also an ovoid in the sense of Tits[[43] (which is a
set of pointsO in PG(3; K), such that for each pointp 2 O there is a plane for which the
intersection with O only containsp, while all lines throughp not in the plane intersectO
in exactly two points).

First consider the case where the elK is perfect, so that the Suzuki quadrangle is in fact
a symplectic quadrangle. With each ovoid oPG(3;K) corresponds aninversive plane
l.e. a rank 2 geometry consisting of a set of points and a set adfcles, which are the
intersections of planes ilPG(3; K) with O containing more than one point, and provided
with the natural incidence relation. It satis es the following axioms.

[MP1 Each 3 di erent points are contained in exactly one ctle.

[MP2] For each circleC and each pair of pointsx;y with x 2 C andy 2 C, there exists
an unique circleC® which containsy and touchesC in x.
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(‘Touching' circles are circles that meet in a unique point.) Another wato construct
the circles would be taking for each nonabsolute point of thguadrangle the points ofO
collinear to it.

The inversive planes arising from the (perfect) Suzuki-T# ovoids have been characterized
by a set of axioms by H. Van Maldeghem i [%8]. We will generaé this result below.

We now turn to the general case, not demanding perfectnessyamore. Here we de ne
the set of circles as follows. Acircle is the set of points ofO collinear to some point
not contained in O. If we denote the family of circles byC, then we obtain a geometry
(0O;C 2 or 3). Thesegeneralized inversive planesatisfy the following axioms.

[MP1] Each 3 di erent points are contained in at most one cire.

[MP2] For each circleC and for every pair of pointsx;y 2 P with x 2 C andy 2 C, there
exists a unique circleC®which containsy and touchesC in X.

[CH1] There exist no 3 circles which are pairwise touching i erent points.

[CH2] For each circleC and every pair of pointsx;y 2 C, we have the following three
possibilities: no circle containingx;y touchesC, one circle does, or all circles do.

Remark 3.6.1 The circles in the nonperfect case also can be realized asnglantersec-
tions, but not all plane intersections containing more tharone point give rise to circles.

There are a lot of geometries that satisfy the above axioms.oFinstance every inversive
plane obtained from an ovoid of a projective 3-space over aldewith characteristic 2.
In order to further distinguish the geometries correspondg to the polarities in Suzuki
quadrangles, we use the observation that each cirdehas a very special point, which we
denote by@ Cand call thegnarl of the circle. Indeed, ifC is the set of points ofO collinear
with the point x 2 O, then there is a unique absolute line incident withx and hence a
unique point @ Cof C such that the line joining @ Cwith x is absolute. Alternatively, @C
is the unique point of C incident with x .

The function @has the following properties.

[ST1] For each pair of pointsx;y there exists a unique circleC which containsx and such
that @C= .

[ST2] For each circleC and point x 2 C, there is at most one circleC® which contains
both of x and @C and such that@€2 C.
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[TR] Let C be an arbitrary circle, and letx;y 2 C (@08 x 6 y 6 @Q. Let D be a circle
through @C8 @D For each circleE di erent from C, containing both x and @C
and intersectingD in two distinct points @C; zwe consider the circleE through
z and touching C in @C We also consider the circl&e containing y, touching E
in @C Then E \ E is contained in a circleD° through @ Cwhich is essentially
independent ofE.

If K is perfect, we have an inversive plane, and this allows us tmpose a stronger version
of [MP1].

[MP1] Each 3 di erent points are contained in exactly one ctle.

Remark 3.6.2 As the terminology of gnarl suggests, generalized inversi\planes are
examples of the geometries de ned by Moufang sets described Section[I.81. The
Moufang set in question acts on the Suzuki-Tits ovoid, and isalled accordingly the
Suzuki-Tits Moufang set It is in some way the characteristic 2 counterpart of the Ree
Tits Moufang set.

The properties mentioned so far characterize the generad inversive planes arising from
polarities in mixed quadrangles.

Main Result 3.6.3 Let P be a set andC a set of distinguished subsets Bf all containing
at least 3 elements. Also suppose thereisa m@ C!P suchthat8C2C: @C2 C.
We call the elements ofC circles and if two of them have only one point in common,
we say they touch at that point. Ther(P;C @ satis es the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2]and [TR], if and only if P can be embedded in a self-polar
mixed quadrangleV(K;K%L;L9 as the set of absolute points of a polarity. The setC
corresponds to the family of sets of absolute points collamevith a nonabsolute point, and
the map@maps a circle onto its gnarl, i.e., @G with C = x? \P , is the unique point of
P incident with x .

If we want to restrict to self-polar mixed quadrangles of typ W(K; K% K; K9, then we
may introduce the following alternative axiom (where we clh set of pointscocircular if
they belong to a common circle).

[F] Let x be an arbitrary point, and let X1; X»; X3 be three points pairwise cocircular
with x, but not all cocircular with x. If a point y is cocircular with x and x;, and
also with x en x,, but if y; X; X1; X, are not cocircular, theny; x; xz are cocircular.
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And we will show:

Main Result 3.6.4 Let P a set andC a set of distinguished subsets &f all containing
at least 3 elements. Also suppose thereisam@ C!P suchthat8C2C: @C2 C.
We call the elements ofC circles and if two of them have only one point in common,
we say they touch at that point. Ther(P;C @ satis es the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2]and [F], if and only if P can be embedded in a self-polar
mixed quadrangleN(K; K% K; K9 as the set of absolute points of a polarity. The setC
corresponds to the family of sets of absolute points collamevith a nonabsolute point, and
the map @maps a circle onto its gnarl, i.e., @G with C = x? \P , is the unique point of
P incident with x .

As mentioned before, ifK is perfect, then this is an inversive plane which allows us to
impose a stronger version of [MP1], which was denoted as [MP1Using this axiom
instead of [MP1] allows us to improve upon the characterizan given in [58], by deleting
one axiom.

Main Result 3.6.5 Let P a set andC a set of distinguished subsets &f all containing
at least 3 elements. Also suppose there isa m@ C ! P such that8C 2 C: @C2 C.
We call the elements oC circles and if two of them have only one point in common, we
say they touch at that point. Thern(P; C, @ satis es the conditions[MP1'], [MP2], [CH1],
[CHZ2], [ST1]and [STZ2], if and only if P can be embedded in a projective spaP&(3;K),
for some perfect eldK of characteristic 2 admitting a Tits automorphism , such that
P is the set of absolute points of a polarity of a certain sympte quadrangleW(K) in
PG(3; K) and the set of circles oP is equal to the set of plane sections &f in PG(3; K).

3.7 Proofs

General idea. | Using the axioms, we construct a generalized quadrangle tim the
generalized inversive plane. Using the results from Secti@ 5.3, we then show this is a
mixed quadrangle, satisfying the desired properties.

In this section, we generalize the main theorem di‘[58] to aklf-polar mixed quadran-
gles. It will turn out that we need exactly the more general fon in the previous Main
Results[3:40l and—3.412 in order to prove Main Resulls=3.5.8&3.6.3.

Let P be a set andC a distinguished set of subsets ¢t all containing at least 3 elements.
Also we have a map@: C ! P such that8C 2 C: @C2 C. We call the elements ofC
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circles and if two of them have only one point in common, we say thepuch at that point
The element @ Cof a circle C will be called the gnarl of C. We assume that P;C, @
satis es the conditions [MP1], [MP2], [CH1], [CH2], [ST1][ST2] and [TR].

First, we will prove some further properties using these axms. All these lemmas are
copies or reformulations of lemmas in 58], with similar pafs, although [MP1] and [STZ2]
here are slightly weaker than the corresponding axioms indp We mention them without
proof.

Lemma 3.7.1 Suppose we have 3 dierent circle€;D and E. If C and E both touch
D at some pointx, then C toucheskE at x.

Lemma 3.7.2 For every circle C and every pointx not contained in C there exists a
unique circleD with @D2 C, @08 @Dand containing both ofx and @C

Lemma 3.7.3 If a circle C touchesD at @D then @C= @D

We now proceed with constructing a geometry = (P ;L ;1) out of (P;C @. This is
also similar to the perfect case iri 58], but since it is cruadifor the rest, we repeat it here.

We identify both P and L with the union of P and C. To avoid confusing the elements
of P with those of L , we put a subscriptp or | to denote to which set it belongs, i.e.,
forall x 2 P and all C 2 C, we havex,;C, 2 P and x;;C; 2 L. A point x,, X 2P, is
incident with y;, y 2 P, if and only if x = y. A point x,, X 2 P, is incident with the line
Ci, C 2 C, if and only if C, is incident with x; if and only if @C= x. Finally, the point
Cp, C 2 C, is incident with Dy, D 2 C, if and only if @C2 D, @D2 C and @Cé8 @D
This new geometry obviously admits a polarity :P $L :C, 7! C;x, 7! x;C 7!
Cp; Xi 7! Xp. The absolute ags are of the fornt x,; x,g with x 2 P.

The following lemma tells us when two points are collinear in
Lemma 3.7.4 For all x;y 2P and C;D 2 C, the following holds.

(i) The point x, is collinear with the pointy, if and only if x = y.
(ii) The point x, is collinear with the pointC, if and only if x 2 C.

(iii ) The point C, is collinear with the pointD, if and only if C and D touch each other.

Also, two di erent elements of P are incident with at most one element of .
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Proof.

(i) Supposex,l Cily,; then, by de nition, x = @C= .

(i) If x, is collinear with C,, then Xx,1 X1 C,, or there is anE 2 C such that x| E;I C,,.
In the rst case we havex = @Q2 C; in the second case& = @D2 C. Suppose how
that x 2 C. If x = @C then Xpl X1 C, and sox, is collinear with C,. If x 6 @C
then there is a unique circle D with gnarix through C by [ST1], sox,l DI C,.

(iii) If Col z1 Dy, with z 2 P, then the claim follows from [ST1]. Suppose tha€,l E|l Dy,
with E 2 C. Then @E2 C\ D, and sinceD 6 C, we have@D6 @C Clearly, also
@C8 @E6 @D Since@C; @R E, the result follows from [ST2].

Conversely, supposé€ and D touch. If they touch at @C then by Lemmal37Z3B,
@C= @Dand C,l (@il Dp,. So we can assume that they touch at a poink

di erent from @ Cand di erent from @D Let E be the circle containing@ Dand so
that @E= x, and assume by way of contradiction that@ C2=E. By Lemma[3 72
there exists a circleF containing @Cand x, and with @F2 E. Our assumption
implies F 6 E. We claim that either D = F or F touchesD at x. Indeed, if not,
then D and F share some pointy 6 x. Note that y 2 E as otherwiseF and D

coincide with E, a contradiction. But then both D and F have their gnarl onE,

contain the gnarl ofE and contain a further pointy 2 E. Lemmal3_Z.2 implies that
D = F. Our claim follows. Now by Lemm&a_3.7]1F touchesC at x, contradicting

@C2 F\ C. So we have thatC,l E|I Dp.

Our goal now is to show that is a Suzuki quadrangle. First we pve that is a
generalized quadrangle.

Lemma 3.7.5 There are no three di erent, pairwise collinear points inP unless they
are all incident with the same line.

Proof. First suppose one of the points is of the form, with x 2 P ; then the other points
must be of the formC, and D, (C;D 2 C) with x = C\ D. If x = @Cthen x = @Dand
all the points are incident with the line x;. If x 6 @C then C,l E|I D, with E 2 C and
hence@E= x. But then also Xl E|.

Now suppose we have three points of the for@,; D, and E, with C;D;E 2 C. By
collinearity, the circlesC;D and E all have to touch each other. Axiom [CH1] implies
that they touch in one common pointx. SoC,; D, and E, are all collinear with x,. By
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the rst part of the proof we obtain that C,;Dpy; X, lie on one lineF, and Cp; Ep; X, lie
one lineG, (F;G 2 C). Both F, and G, contain C, and x,, so, by the last assertion of
LemmalZZ#%,C,; D, and E,, all are incident with F| = G;.

Lemma 3.7.6 A pointin P and alineinL lie at distance at most3 from each other.

Proof. We prove that for any point X and any line M not incident with X, there is a
point on M collinear with X .

Case 1. First supposeX = x, and M =y, with x;y 2 P;x 6 y. Condition [ST1] tells
us that there is a circle C with gnarlx trough y. Now C, is collinear with y, (by
Lemmal3Z#) and incident withx, (since @C= Xx).

Case 2. Secondly suppose = xp andM = C;, with x 2P, C2L,and @C8 x. If x2 C
then the point Dy, with D the circle with gnarl x through @C is incident with C,
and collinear with Xp.

If x is not on C, then by Lemmal3. 7P there exists a circl® through x sharing
two distinct points (namely, @Cand @D with C. The point D, is now onC; and
collinear with Xp.

Case 3. Taking duality in account, there is one case left to esider, whereX = C, and
M = Dy, with C;D 2 L and C, not incident with D, in . The rst possibility is
that @C= @D Then C, is collinear with (@@, which is incident with D;.

Now suppose that@Cé @D2 C. Then the point (@D, is collinear with C, and
lies onD,. The case where@ C2 D is the dual of the case just handled.

So we may assume that® C2=D; @D2=C. By Axiom [MP2] and the fact that a
circle contains 3 or more points, there are at least two cie$C,; and C, with gnarl
@ Dand touchingC. By Axiom [CH1] these two circles have a second poirté @D
in common. Due to [CHZ2] all circles throughx and @ Dtouch C. So we can consider
the circle E, guaranteed to exist by Lemmd=3.712, which contains the twogmnts
@D; x and has its gnarl onD. This circle E touchesC, henceE, is collinear with
C, and is incident with D;.

Now we want to apply TheoremZZ5]9. Hence we have to nd a suitée set of regular
points and regular lines. We will consider the set of absolatpoints and absolute lines of
with respect to the polarity = mentioned above.
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Lemma 3.7.7 The absolute points and lines of are regular.

Proof. Because of the polarity , we only need to prove that when three di erent points
fU;V; Wg are collinear with two noncollinear pointsX;Y , with X = X, for somex 2 P,
then each point collinear withU and V is also collinear withW.

SinceU andV are two noncollinear points collinear withx,,, we may write, by Lemma 37},
U=C, V=D, withC;D2C,x2C\ D, and with C and D not touching each other.
The latter condition implies that C and D share an additional pointy 6 x. Theny, is
collinear with both C, and D,. We setW = E,, with E2Candx 2 E. If Y = y,, then
y 2 E. The points collinear with C, and D, are, besidex, andy,, all points Fj, with F
a circle touching bothC and D. But by Condition [CHZ2], the circle E also touches~, so
E, is collinear with Fp.

If Y 6 y,, then it is one of theF, above, and the assertion follows anyway.
Note that the previous proof immediately implies the followng lemma.

Lemma 3.7.8 Every span of containing an absolute point of contains exactly two
absolute points. Also the dual holds.

In view of the two previous lemmas, it only remains to check Qulition (iv) of Theo-
rem[35.9 in order to prove that is a mixed quadrangle. Therfore we have to look at
the dual net corresponding to a regular poink,, x 2 P . In view of the previous results,
one can easily give the following description of the dual net, . The points are the
circles containingx and the blocks are the points di erent fromx, with incidence given
by containment. The circles with gnarlx correspond to a class of parallel points given by
the line x; = x, of the quadrangle . Then the following observations are imrediate.

Lemma 3.7.9 (i) With the above notation,(P;C, @ satis es Condition [TR] if and
only if for each pointx 2 P, the dual net , satis es Axiom (LD) with respect to
the parallel class of points given by the ling of

(ii) With the above notation,(P; C, @ satis es Condition [F] if and only if for each point
X 2 P, the dual net ,  satis es Axiom (VY).

Putting together the last four lemmas, Main Resultd=3613 ah36.4 follow from Theo-
rem[358 and-3519, respectively.

If we substitute Condition [MP1] by Condition [MP1", then the dual net Xp is clearly
a dual a ne plane, so Axiom (VY), or the equivalent Condition [F], is trivially true.
Whence Main ResulttCI€b holds (the other direction of thathteorem being contained
in [58]).
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3.8 Metasymplectic spaces

We use the following de nition of metasymplectic spaces[{# p. 79]): ametasymplectic
spaceM is a rank 4 geometry with four types of elements, callgabints, lines, planesand
hyperlines and a (symmetric) incidence relation satisfying the fourxd@oms listed below.

(M1) The residue of any ag of type f point, lineg or f plane, hyperlingy is a projective
plane.

(M2) The residue of any ag of typef point, planeg, fline, hyperlineg or fline, planeg is
a generalized digon.

(M3) The residue of any ag of typef point, hyperlineg is a generalized quadrangle.

(M4) Two distinct nonpoint elements have di erent sets of pmts incident with them.

Using (M1) to (M4), one can prove that the dual property of (M4 is satis ed as well,
making the de nition self-dual. The ag complexes of these mtasymplectic spaces form
the buildings of type F4. Note that these axioms imply thickness because generatize
polygons are thick by de nition.

Remark 3.8.1 Instead of the notion "hyperline', some authors use the terrsymplecton'.

3.8.1 Embeddings of quadrangles in the metasymplectic spac e

We consider embeddings of the following kind: given a metasplectic spaceM together
with a set P of points of M and a setH of hyperlines ofM , the incidence relation de ned
on them by taking the restriction of the incidence relation M , de nes a generalized
quadrangle . We then say that the quadrangle is point-hyperline embeddedn M .

Examples of such embeddings are constructed by Hendrik VanaMeghem and Bernhard
Mahlherr in [2I]. There it is shown that the exceptional Modang quadrangles of typd,
and certain mixed quadrangles appear as xed point struct@s of involutions of metasym-
plectic spaces over elds with characteristic 2. As the sulugdrangles of a point-hyperline
embedded quadrangle will also be point-hyperline embeddeatthogonal and symplectic
quadrangles also appear. All these quadrangles are Moufaangd share the property that
no two points of the quadrangle are collinear in the metasynigctic space.
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Embeddings will be denotedmproper if all hyperlines in H incident with a certain point
in P always share a line. By substituting each point with its assmated line in this case,
it follows that we can view the quadrangle embedded by’ liseand hyperlines.

We now construct an example of an improper embedding. L&p; Lg be an incident point-
line pair of a metasymplectic spacé/ which is de ned over some eld containing the
nite eld of four elements. The residue of this ag forms a pojective plane, containing

a sub projective plane isomorphic td?G(2;4). The symplectic quadranglew(2) can be
embedded in this plane (see€][7]). Returning to our metasynsatic spaceM , we have
embeddedW(2) in M "by' planes and hyperlines. Now choose for each plane of this
embedding a point incident with the plane, producing a poirhyperline embedding. If
the eld which de nes the metasymplectic space is ‘large engh', it is clear that the
choices can be made such that no two collinear points of the aglrangle are collinear in
the metasymplectic space.

Remark 3.8.2 All of the known embeddings such that no two points of the quadngle
are collinear in the metasymplectic space, occur in charaetstic 2 or are improper. The
existence of the known proper embeddings originates from atgebraic setting, however
this algebraic setting does not yield such embeddings for @dharacteristic. For this
reason it could be conjectured that these only occur in charteristic 2. More about the
underlying algebraic setting can be found i [%9, App. C].

3.9 Results on embedded quadrangles in
metasymplectic spaces

We now pose the inverse question: when is a point-hyperlinmieedded quadrangle Mou-
fang?

Main Result 3.9.1 Let be a generalized quadrangle point-hyperline embedded in a
metasymplectic spacé , with P the set of points andH the set of lines of the quadran-
gle. Then will be either a Moufang quadrangle, or improperly embeddédthe following
property holds:

(OV) No 2 points of P in the same hyperline oH are collinear in M .
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Remark 3.9.2 It can be shown that the residue of a hyperline forms a polar ape (see
property (M9) in the next section). Condition (OV) then reformulates to: the points of
P in the same hyperline oH form a partial ovoid of the corresponding polar space.

Remark 3.9.3 Note that our de nition of generalized polygon asks that isthick: if
this would not be the case, counterexamples occur.

3.10 Proof

General idea. | We rst investigate what the possibilities are for a single apartment of
the generalized quadrangle to be embedded. Using this, wanahow that the embedding
Is convex (see Section—1.1.3), or improper. Applying a reswf H. Van Maldeghem and
B. Muhlherr, this implies Main Result B91.

Suppose we havéM ; ;P;H as given in the statement of the above result. We do not
require that the property (OV) holds yet.

If we refer to a point or line, we mean a point or line of the me&ymplectic space, unless
explicitly noted otherwise.

3.10.1 Further concepts and some lemmas about
metasymplectic spaces

The following lemma can be found in([59, p. 80] - we will not repduce the proof here.
Lemma 3.10.1 We have the following properties:

(M5) Let x andy be two points ofM . Then one of the following situations occurs:

{ x=y.
{ There is a unique line incident with bothx andy. In this case, we callx and
y collinear.

{ There is a unique hyperline incident with bottkx and y. In this case there is
no line incident with bothx andy, and we callx andy cohyperlineatr

{ There is a unique pointz collinear with bothx and y. In this case we callx
and y almost opposite
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{ There is no point collinear with bothx andy.
(M6) The intersection of two hyperlines is either empty, or goint, or a plane.

(M7) Let x be a point andh a hyperline of M . Then one of the following situations
occurs:

{ x2h.

{ There is a unique lineL in h such thatx is collinear with all points ofL. Every
point y of h which is collinear with all points ofL is cohyperlinear withx and
the unique hyperline containing both also contairls. Every other pointz of h
is almost oppositex and the unique point collinear with both lies oh.

{ There is a unique pointu of h cohyperlinear withx, and the hyperline contain-
ing X and u only hasu in common with h. All points v of h collinear with u
are almost oppositex, and the point collinear with both doesn't lie inh. All
points w of h cohyperlinear withu are oppositex.

(M9) The residue of a hyperline forms a polar space.

Note that the dual statements also hold. Property (M8) givenin [5Y] is omitted as we
will not need it here.

Let W be the spherical Coxeter group of typé&,; this is the group generated by symbols
S1; S2; S3; S and identity element e, with relations (sjs;)™i = e, and m; as given in the
following matrix:

0 1
322

(m_,)=%3142§
l 2 413
2 231

Two maximal ags of a metasymplectic space (which are chamizeof the F4-building)
are s;; Sp; Sz or sy-adjacent respectively, if those two ags dier in a point, line, planeor
hyperline respectively.

We de ne the spherical Coxeter groupWsq.,.34 to be the subgroup ofW generated by
s1; Sz and s;, and analogouslyW; ».3.44 Will be the subgroup generated bys,, s; and s,.

Lemma 3.10.2 The following double cosets are written in such a way that thepresen-
tative is of shortest length:



3.10 Proof 81

Wi 2:3.495152535251 Wi 2:3.49; Wi 1:2:395453525354 Wi 1.2:34;
Wi 1:2:3354535253545152535251 Wi 2:3:49; Wi 2:3:495152535251545352S3S4 Wi 1.2:3¢;

W 2:3.49515253525154535253545152535251 Wi 2:3:49,
W 1:2:3954535253545152535251 5453525354 Wi 1:2:39;

W 2:3.49515253525154535253545152535251545352S3S4 W) 1.2:3¢,

W 1:2:39545352535451 52535251 545352535451 52535251 W 2:3:4.

Proof. By long but straightforward calculations.

The following important theorem by Bernhard Mahlherr and Hendrik Van Maldeghem
([22]) gives us more information about convex subbuildingsee Sectiol L1113 for a de -
nition).

Theorem 3.10.3 A convex subbuilding of a Moufang building is again a Moufabgild-
ing.

Or applied to our case E4-buildings are always Moufang):

Corollary 3.10.4 A convex point-hyperline embedded quadranglein a metasymplectic
spaceM is Moufang.

3.10.2 Embedding apartments

First we investigate how the apartments of the quadrangle arembedded inM . Let
fp;hg;fq;a0 (p;g2 P;h;g 2 H) be 2 chambers of such thatp 2 g;q 2 h and the
hyperlines h and g intersect in a point or plane (these are the only possibiliéis due to
(M6)). Collinearity and opposition will be used relative tothe metasymplectic spaceM
and not the quadrangle , unless stated otherwise.

Lemma 3.10.5 If h and g intersect in a point u, then one of the following holds:

The points p and q are opposite and both are cohyperlinear witi.
The points p and g are almost opposite and at least one point is collinear with

The points p and g are cohyperlinear and both are collinear witl.
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The points p and g are collinear and both are collinear withu.

Proof.

If p and q are opposite then (M7) applied to the pointp and hyperline g tells us
that there is exactly one point ofg cohyperlinear with p; therefore u will be this
point. It now follows that p and g both are cohyperlinear withu.

If p and g are almost opposite, then applying (M7) top and g leaves us with two
possibilities. If there is a unique point (this point will agiin be denoted with u)
of g cohyperlinear with p, then g will be collinear with u. If on the other hand
there is a unique lineL in g of points collinear with p, then the possibility that u
is cohyperlinear with p implies that u is collinear with all points of L and that h
containsL. But h and g intersect in a point and do not have a line in common, so
p is collinear with u.

If pand q are cohyperlinear, then again applying (M7) t@ and g implies that there
is a lineL in g of points collinear with p (the other possibility for cohyperlinearity
would imply that u = g, which is ruled out). If u would be cohyperlinear with
p, then h and g would intersect in a line as explained in the previous pointso p
is collinear with u. Interchanging the roles ofp and q gives that both points are
collinear with u.

In the last case where is collinear with g, Property (M7) implies that p is collinear
with all the points of a line L of g. If u would be cohyperlinear withp then the
unique hyperlineh containing u and p would also containg, which is impossible. It
follows that u is collinear with p and also with g.

Lemma 3.10.6 If h and g intersect in a plane , then p and g are not opposite.

Proof. Supposep and q are opposite. Thenp and g are on distance 3 from each other,
but (M9) gives us that the points on distance 1 fronpin will be on a line of , and the
same holds forg. Two lines in a plane always have at least one point in commosg the
distance betweerp and q is 2, resulting in a contradiction.

Let the points p; g;r; sand hyperlines denoted bypq; gr; rs; spde ne an apartment in .
If the points p and r are opposite then the two lemmas above imply that if two poirg of
the apartment are collinear in , they are cohyperlinear inM . The hyperline pgintersects
gr in a point - the same holds forsp and rs. The other mutual positions can be divided
in 2 possibilities due to the third lemma:
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The hyperlinespg and sp intersect in a point. Then g and s are opposite andqr
and rs also intersect in a point.

The hyperlinespqg and sp intersect in a plane. Thenq and s are not opposite and
gr and rs also intersect in a plane.

We now state a lemma which will be used to ‘reduce' the quadrgle.

Lemma 3.10.7 If each two points in a setX of points in M are collinear, then this set
is contained in a plane.

Proof. Let x 2 X be a point. If we take the residue of this point, we obtain a dua
rank 3 polar space where the linegy with y 2 X nfxg form dual generators. All these
generators intersect in lines of the polar space. If we woulthve a proper ‘triangle' of
these generators and lines, the lines would meet in a singleim. Taking the residue

again of this point, we would have a proper triangle in a quadngle, which is impossible.
So all the generatorsy with y 2 X nfxg share at least one line, and translating this back
to M we obtain that all points are contained in a plane.

3.10.3 Embedding quadrangles
Condition (OV)

From now on suppose that condition (OV) holds. Let be an apatment of . If two
hyperlines of which intersect in share a point, then there has to be an opposite pair of
points (in M ) in , so according to the previous section the other two hypdines in  must
also intersect in a point. Because the projectivity group o& point of our quadrangle is
2-transitive on the (hyper)lines through that point, eithe any two hyperlines inH which
intersect in  share a point, or all hyperlines inH which intersect in share a plane.

In the second case we can replace each pg2 P with a line L, such that all hyperlines
of H through p contain that line (this is possible due to the dual of Lemm&=30.1), so
we obtain a quadrangle consisting of lines and hyperlines i@ no two lines which are
collinear in the quadrangle are contained in one plane (otheise the points corresponding
to the two lines would be collinear inM ), so we are in the improper case.

In the rst case we have that two points of P are cohyperlinear if they are collinear in
, and opposite if they are not. For hyperlines inH we have the dual properties. In the
next section we will show convexity of quadrangles withiM with such properties.
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Convexity of quadrangles

In this section we prove that the embedded quadrangle is caex in M . Herefore we
use that two points of P are cohyperlinear if they are collinear in , and opposite ithey
are not, and the dual properties for hyperlines i, then

The next lemma gives us the needed building blocks for the ted the proof of convexity.

Lemma 3.10.8 Let h be a hyperline ang; g be two cohyperlinear points irh. If we have
a chamberC containing p and h, then there is a shortest gallery with associated word
$15,S35,S; from C to a chamber containingg.

Proof. The residue ot will be a rank 3 polar space withp and q opposite points in it. The
theory of buildings tells us that we can embed the ag€nfhg and f qg of this polar space
in an octahedron (this forms an apartment of the rank 3 polarpmace, see[28]). In this
octahedron it is easily seen that there is a shortest gallewith associated words;S,S3S,S;
from C to a chamber containingg and h. Because this word is a shortest presentation of
the corresponding element in the groupV, this will be a shortest gallery.

Now let A and B be two ags of . It is clear that there exists a shortest galley

in between these ags starting from a chamberC in containing A, to a chamberD
containing B. Using the above lemma (and the dual statement) to 'lift' thé gallery to
a gallery y in M, we obtain galleries from each chamber containinG (now viewed
as ags in M) to a certain chamber containingD (viewed as a ag inM ) with words
consisting of an alternating consecution of the “buildinglbck' s;s,535,s; and the dual
$4535,83S4. Lemmal3I0.R implies that these are also shortest galleyibetween chambers
containing A and chambers containingB in M . Because the galleries can start from
each chamber containindgC, the product of simplexB with simplex A will be completely
contained within C and so also within the subbuilding , hence the embedded quaangle

is convex. Corollary BI04 now implies that the quadrangt is Moufang.



Chapter 4

"Rank three' case, or
two-dimensional R-buildings

The results in this chapter are aboutR-buildings, the rst series of results are about
two-dimensional R-buildings, the others hold for generaR-buildings.

Polygons with valuation. | In 1986, Jacques Tits ([47]) classi ed the a ne build-
ings of rank at least 4. In fact, he also included in his work #h so-calledsysemes
d'appartements or apartment systems Later on people also called themondiscrete a ne
buildings ([28]) or R-buildings Basically, these are building-like structures with one ki
di erence: they are no longer simplicial. Easy examples amR-trees (rank 2 case; these
are trees that continuously branch), or the “buildings' relted to the “parahoric' subgroups
of a Chevalley group over a eld with nondiscrete valuationFrom the geometric point of
view, the case of rank 3 | when the apartments are 2-dimensioal | is very interesting
since nonclassical phenomena occur there.

In [47] Tits associates to evergymmetric apartment system a so-calletuilding at in nity ,
which is a simplicial spherical building, see alsbl[8]. Thamk of this building at in nity is
precisely the dimension of its apartments. Hence, in the drdensional case, generalized
polygons appear. When the apartment system is irreducibléhen this polygon is not
a digon. In the simplicial case, the only generalized polygs that occur are projective
planes, generalized quadrangles and generalized hexagons

In a series of rather long paperd [5Z, 58,154,156, 15], Hendxikn Maldeghem (jointly
with Guy Hanssens in the last quoted paper) investigates inetiail two classes of a ne
buildings (namely, those with projective planes and gendized quadrangles at in nity)
and characterizes the corresponding spherical buildings ia nity. This leads to many
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new examples of such a ne buildings, explicitly de ned and vth knowledge of the au-
tomorphism groups. Originally, the characterization madeise of the notion of adiscrete
valuation on the algebraic structures that coordinatize projective lanes and generalized
quadrangles, but in later papers[]55, 7], the valuation wage ned directly on the ge-
ometry. The hope was that with such a direct de nition, the cae of type &,, which
was the only remaining case, would become treatable with nfuéess e ort. One of the
reasons why it didnot is that, although the paper [55] provides the exact conditio for
a generalized hexagon with valuation, the lack of symmetrynithe formulae prevented
from deducing ageneral formulae independent of the type, and hence from (1) further
generalization to nondiscrete valuations, and (2) composl a type-free proof.

In the present chapter, we start such a type-free approach,hich ought to eventually
lead to a characterization of all irreducible 2-dimensiona ne apartment systems. More
in particular, we rst show how any irreducible 2-dimensioal a ne apartment system
gives rise to a generalized polygon with a speci ¢ valuatioitoy which we mean, with the
terminology of [5%], an explicitly de ned weight sequenceOne of the crucial observations
to achieve this is to slightly modify, or re-scale, the valuson as de ned from a rank 3
a ne building as de ned in [%7]. Indeed, roughly speaking, he valuation between two
elements as de ned in[]57] counted the graph theoretic distae between two vertices
in the simplicial complex related to the a ne building. The purpose was to end up
with a natural number. But taking the Euclidean distance ingead will put much more
symmetry into the picture, and at the same time we will have alosed formula for the
weight sequences. Also the nondiscrete case can clearly beuded in a natural way.
The fact that the discrete case enjoys a characterization as [55] seems to be a happy
coincidence in this viewpoint.

The other question now is, what can we say when we are given angelized polygon with
(nondiscrete) valuation? The rst thing we obtain is that the only weight sequences (for
a de nition see below) that can occur are exactly the ones thaccur for the valuations
of generalized polygons at in nity of two-dimensionaR-buildings. Moreover, ifn = 3;4
we provide a detailed proof for the complete equivalence beten generalizeah-gons with
real valuation and 2-dimensionaR-buildings. As an application we construct classes of
explicit examples of such structures which are not of Bruhatfits type, and which include
locally nite ones. These constructions are similar to the anstructions due to Hendrik
Van Maldeghem in the simplicial case, see52,1%3] 54] 56].

Remarkably, as a byproduct, we obtain that projective plang with valuation are equiva-
lent with ultrametric planes in which all triangles satisfythe sine rule, for an appropriate
though natural de nition for angles between lines.
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In the ideal case, one would like to prove the conjecture thdahe just mentioned equiva-
lence holds for alln 3. However, this seems to be out of reach for now. In our presen
approach, the complications in the proofs seem to grow expamially with the girth. For

n =5, it is just feasible, but too long to include here. Fomn = 6, assuming discreteness
allows for an alternative argument, as we shall see. Noticbdt our proofs forn = 3;4
provide di erent arguments for the simplicial case, which g in fact drastically shorter
and more direct than the original proofs of Hendrik Van Maldghem. One does not need
to go around theHjelmslev geometriesnd the rather complicated axiomatization related
to this (see e.g.[[I5]). These geometries were needed to dethe vertices of the a ne
building. In the present approach, we do no longer have vetgs, but the points of the
apartment system are the di erent valuations that emerge fwm the given one. This simple
idea, however, requires a lot of unavoidable technicalisgo take care of. For example, it
is already fairly technical to prove that the residue of am-gon with valuation is again a
generalizedn-gon. We will do this explicitly for n 6. It will be clear that similar meth-
ods should work in general, but our present approach failsrfthat. So, on the one hand,
the present methods are signi cantly stronger than the old mes developed by Hendrik
Van Maldeghem in the eighties, on the other hand, one needs mmprovement of another
magnitude to prove the full conjecture.

These results are joint work with Hendrik Van Maldeghem and ra contained in two
papers, both accepted for publication, one iddv. Geom, the other in Pure Appl. Math.

Q.

Completeness of R-buildings. | As already indicated in Section L3872 there ex-
ist various results which hold for completeR-buildings. All a ne (discrete) buildings
are complete, but this is not true for generaR-buildings. The question that now rises
is: which R-buildings are complete? Especially for thosR-buildings arising from Tits'
classi cation ([44]) a full answer is something that shoulde aimed at.

In Section[41D we take the rst step to such an answer. We prevthat an R-building is
complete, if and only if all the R-trees corresponding to its walls are complete. The next
step (which we are currently researching) is then to determé which R-trees are complete.
This problem seems to be answerable in algebraic terms forode R-trees coming from
higher-dimensionalR-buildings.

Subbuildings of R-buildings corresponding to xbuildings at in nity. | Just like

the result mentioned in the previous paragraph, this resulis also a research in progress.
The setting is the following: when an automorphism group aston a spherical building,
then the xed structure is in ‘'most’' cases again a (sphericabuilding. Such a statement
is not true for (R-)buildings which are not spherical, because there is no $uthing as
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opposition in these cases.

Consider some a ne building with a group G acting on it, while the xed structure in
is not necessarily again an a ne building, the xed structu re in the spherical building
1 at in nity is most often again a spherical building 9 . If we now return to the nite

part of the a ne building, one might wonder if there exists anembedded a ne building
Owith 9 at in nity.

In Section[4I# we give a positive answer for some, but not,allases using geometric

methods. For one of the steps in the proof we generalize thetioo of trees corresponding

to walls and sector-panels (see Sectibn118.2). This geraation is not entirely unknown,
but a proof doesn't seem to exist in the literature.

These results are joint work with Hendrik Van Maldeghem.

4.1 Two-dimensional R-buildings

As mentioned in Sectio_1.8]2, theR-buildings of dimension at least 3 are known. For
the rst series of results of this chapter we will only deal wh the (unclassi able) R-
buildings of dimension 2, i.e.jSj = 2 and W is the dihedral group of order B, for some
n2 N, n 3. So the building at in nity and the residues are (weak) gerralized n-gons.
The elements of the (weak) generalized polygon at in nity aoespond to sector-panels
of the R-building. So one can discern two classes of sector-panelghie R-building, one
corresponding to thepoints P, the other to the lines L (the choice which type of sector-
panels correspond to the points or lines can be chosen arhitity). Roman letters will be
used for elements of the building at in nity, Greek letters ér points of .

Let x;y be two adjacent elements of ; and 2 ; then we denote the length (measured
with the distance d) of the common part of the sector-panelg andy by u (x;y).

4.2 Polygons with valuation

Now we continue with de ning generalized polygons with valation. Let = ( P;L;1) bea
generalizedn-gon with point set P and line setL, and let u be a function calledvaluation
acting on both pairs of collinear points and pairs of concuent lines, and images irR" |

flg (we use the natural order on this set withl as largest element). Then we call (; u)

an 1) 2 (R*)? 2 if the following conditions are met:
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(U1) On each line there exists a pair of pointg and g such that u(p; g = 0, and dually
for points.

(U2) u(x;y)=1 ifandonly if x = y.

(U3) u(x;y) <u(y;z) implies u(x;z) = u(x;y) if x;y and z are collinear points or con-
current lines.

(U4) Whenever Xgl X1l X5l i1 X = Xg, With X; 2 P [ L, one has
X1 X1

AU(Xi 1;Xj41) = gU(Xi 15 Xj41):
i=1 i=n+1

One direct implication of (U3) is that u is symmetric (by putting x = z). Also remark
that this de nition is self-dual, so whenever a statement iproven, we also have proven
the dual statement. Finally, we note that, due to (U2), Axiom(U4) is trivially satis ed
whenever thex;, 0 i 2n, form a degenerate apartment.

Remark 4.2.1 The dierence with the de nition in [%5] is that in the current one, the
type of the elementx, is arbitrary, while in [b5], X, was required to be a line. On the
other hand, in [55], the image ofi had to be natural or1 . The main result of [55] says
that, in this case, n 2 f 3; 4; 6g, the function u is also a valuation on the duah-gon, and
the weight sequences are uniquely determined up to dualitf.hese weight sequences are,
however, only self-dual iln = 3. Hence, only in the casen = 3, a valuation on ann-gon in
the sense of [55] will be a vaIuatioan)n am-gon in the above sense. However, rescaling the
valuation between lines by a factor 2 (multiplying or dividing according to the weight
sequence) fon = 4 turns the valuation on a 4-gon in the sense of [55] into a vaétion in
the above sense. Similarly for 6-gons. Taking this rescaliirnto account, we see that the
above de nition is essentially a generalization of the de ition in [55]. We will come back
to this in more detail in Section 4.4.1, where we will show hoaur main results relate to
the conjectures stated in [55] and [57].

If we speak about the valuation of a side or cornet in an ordinary n-gon , we mean the
valuation between (respectively) the two corners or sideadident with x in . If we talk
about the valuations in an ordinaryn-gon, then we mean all the valuations of sides and

i 2f12:::;m 1g. Because of (U2) such a path has to be nonstammering. We now
show some preliminary lemmas which we will use to formulatene of the main results.
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Lemma 4.2.2 Given a lineL and a pointpl L, then there exists a pointgl L such that
u(p; 9 =0.

Proof. Due to (U1) there exist two pointsr; sl L such that u(r;s) = 0. Applying (U3) we
obtain that either u(p;r) = 0 or u(p;s) =0, and in each case we have found a suitabtg

Lemma 4.2.3 Each path(xo; X1;:::;Xm) wWithm n+21 and valuation zero is contained
in an ordinary n-gon where all the valuations of corners and sides are zero.

with valuation zero. It is now easily seen that the other valations in the unique ordinary
n-gon containing this path are zero too by (U4).

In order to make notations easier, an ordinary-gon with all valuations zero will be re-
ferred to as anonfoldedn-gon If there are exactly two nonzero valuations in (necessay)l
opposite elements and y of an ordinary n-gon, then this ordinary n-gon will be referred
to as asimply foldedn-gon folded alongk (or y), and two elements in such am-gon at
the same distance fromx (and hence also at the same distance frog) are said to be
folded togetherin that n-gon. The Main Result 4.3.2 will imply thata; = a,+; and that
the valuations in x and y are equal due to (U4).

Two opposite elements in are said to beaesidually oppositeif there is a shortest path
between them with valuation zero. If this is the case, then byU4) all shortest paths
between both elements have valuation zero. ¥ is an element of , then we denote with
[X]opp the set of residually opposite elements to. This set is nonempty due to the previous
lemma. We say that two elementx andy are residually equivalentf [X]opp = [Y]opp. The
equivalence class is denoted bx][=[y]. It is clear that all elements of one equivalence
class share the same type, so these classes can be referreak tesidual points ([P]) or
residual lines([B]) depending on the type. A residual pointf] is said to be incident with
a residual line [] if there arep®2 [p] and L°2 [L] such that p% L° We then write [p]l ,[L].
The geometry ([P];[B];1,) is the residuede ned by u. The distanced, in the incidence
graph of this geometry is called theesidual distance

Remark 4.2.4 Note that we already have de ned a notion of residue, which vgaasso-
ciated to a point of an R-building, in Section 4.1. It follows from Main Result 4.3.1in
the next section, and from the de nition of residues inR-buildings, that for a general-
ized polygon with valuation de ned by a point in a two-dimengnal R-building, the two
notions are essentially the same. From the context it shoulde clear which one is meant.
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4.3 Results on two-dimensional  R-buildings and
polygons with valuation

Main Result 4.3.1 Let ( ;F) be a two-dimensionaR-buildingand 2 . Thenu as
de ned in Section 4.1 de nes a valuation on the generalizettgon at in nity ; , with

with b = jsin(i =n)j.
Main Result 4.3.3 If 3 n 6, the residue de ned by is a (weak) generalizes-gon.

Main Result 4.3.4 If n 2 f3;4g, or if n = 6 and u is discrete, there exists a two-
dimensional R-building ( ;F) such that is isomorphic to the generalized polygon at
in nity of ( ;F) with valuation as in Main Result 4.3.1.

4.4  Applications

We list some applications and corollaries of the main ressilt

4.4.1 The discrete case

Let (U49 be the Condition (U4) with the additional requirement that X, 2 L, and let
=( P;L; 1) be ageneralizedh-gon,n 3. Suppose that ( ;u) satis es (Ul), (U2), (U3)
and (U49, and suppose in addition that the image ofi is in N[flg , the set of natural
numbers, including O, together withl . Then we say that ( ;u) is a generalized polygon
with discrete valuation The main result of [55] says that, in this casen 2 f 3; 4; 6g and

(WS3) If n =3, then (a;;ap;a4;a5) =(1;1;1;1).
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(WS4) If n =4, then (as;az; a5 85,86, a7) = (1;1;1,1;1;1) or (1,2, 1;1; 2, 1).

(1;3,2,31,1,3,2,3,1).

In the cases (WS4) and (WS6), where there are two possibiés, it is proved in [55]
that the weight sequences are dual to one another, i.e., if(u) has one weight sequence,
then, if P is the dual of (obtained from by interchanging the point set and the line
set), then ( P;u) is a polygon with discrete valuation with respect to the otler weight
sequence.

This gave birth to the conjecture that a generalized hexagon is ‘isomorphic' to the
building at in nity of some (thick) a ne building of type &, if and only if there existsu
such that( ;u) is a generalized hexagon with discrete valuation and witheonf the two
above weight sequenced’he Main Results 4.3.1 and 4.3.2 seem to be in contradiction
with this, since, applied to discrete a ne buildings of type &,, there is only one weight

sequence, namely
!

p.}
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and it does not consist of only natural numbers! But the aboveonjecture was evidenced
by the situation for the typesf, and €,, where the valuation measured simplicial distance,
and not Euclidean distance, as in the present approach. In&®, case, this means that,
in view of the fact that the lengths of the papels (of a chambgrcontaining the special
vertex (for terminology, see [47]) have ratio 1 3, to go from the weight sequence of the
present approach to the weight sequences of the discreteuation, we must multiply the
valuation on the point pairs with = 3 (or do this with the valuation on line pairs), and
then take a suitable multiple.

As explained earlier, one can do a similar procedure with tg€,, as is clear from the
above.

4.4.2 Ultrametric projective planes

In this application we explore a surprising link between prective planes with valuations
and some geometric conditions from Euclidean geometry.

Suppose (;u) is a generalized triangle (or projective plane) with valugon. Chooset 2 R
with t > 1. We then can de ne a functiond(p; g) = t Y(™9 2 [0; 1] on pairs of points, and
a similar function\ (L;M ) = arcsin(t “(-M)) 2 [0; =2] on pairs of lines.



4.4 Applications 93

Theorem 4.4.1 A projective plane with a distance functiond on pairs of points valued
in [0; 1] and an angle function\ on pairs of lines valued iNO; = 2], is constructed from a
projective plane with valuation as above, and hence is isaioic to the building at in nity
of someR-building, if and only if the following conditions are ful led.

(M1) d is an ultrametric (this is a metric satisfying the stronger tiangular inequality
d(p;d  max(d(p;r); d(r; a)))-

(M2) Two lines have angle zero if and only if they are equal.
(M3) On each line there are two points on maximal distance 1 fromdaaother.
(M4) Through each point there are two lines with a right € 2) angle.

(M5) The sine rule is ful lled, i.e., if we have a triangle with legths of the sidesA, B
and C and opposing angles, and , then

A B _ C
sin sin sin

The proof is postponed to Section 4.9.

4.4.3 Examples and constructions
n=3

Here we rely on some results for the discrete case. HendrikiMslaldeghem proved in [57]
that the notion of a projective plane with valuation is equialent to one of a planar ternary
ring with valuation. Moreover he also investigated in [52] bw the valuation behaves in
planar ternary rings with extra algebraic properties (neaelds, quasi elds, linear PTRs,
etc.). In particular he proved the following result, the argments of which can be copied
verbatim in the nondiscrete case.

Proposition 4.4.2 A quasi eld with valuation v, which is a unary function with values
in Z[flg gives rise to a planar ternary ring with valuation (and so atsto a projective
plane with valuation, and an a ne apartment system with a prigctive plane at in nity),
if the following three conditions are ful lled:

(V1) v(a)= 1 ifand only if a=0.
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(V2) If v(a) <v(b), thenv(a+ b) = v(a).

(V3) v(ub a)b) = v(a; ap)+ v(b).

We now construct such quasi elds (again inspired by resultsf Hendrik Van Maldeghem
in [52], but now with the function v having values inR[flg ). Let K.. be a eld with

a nondiscrete valuationv in the classical sense (which is in fact the above de nitiorof
quasi elds applied to elds, so (V3) becomew(ab = v(a) + v(b).

Remark 4.4.3 Notice that the classical a ne apartment systems with a (Dearguesian)
projective plane at in nity already appear here by taking gasi elds with valuation which
are (skew) elds.

Now let be a eld automorphism, with nite order, of K, preserving the valuation
V. SO (generates zb nite group of automorphismgs. One can de ne thenorm map
n:K! K:a7! nca . Notice that v(n(a)) = jGjv(a). Let be a map from
the image of the norm mapn to G such that (1) is the unit element of G, and so that
v(a) = v(b) implies (n(a)) = (n(b)).

It follows that one can construct an Ande quasield K.,. by taking the elements of
K with the addition of the eld and a new multiplication K K! K:(ajb 7
a b (@) Moreover, we now show that this quasi eld with the mapv forms a quasi eld
with valuation. We only have to verify (V3) for the new multiplication. First remark that
via b= v(a b®@)=y@+ v(b "@ )= v(a)+ v(b). The last step holds because,
and so all elements o5, preservev.

We now calculatev(a; b a, D). There are two possibilities that can occur.

v(a;) 6 v(a,) - suppose without loss of generality that/(a;) < v (ay). Then

viag b a b=v(as b (4.1)
= v(a1) + v(b) (4.2)
=v(a, ap)+ v(b); (4.3)

where the rst step is true because/(a; b) = v(ay)+ v(b) <v(az)+ v(b) = v(a, b),
(V2), and v( 1) = 0 (which easily follows from the de nition of valuation).
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The other possibility is that v(a;) = v(az). Then

via, b a, b =v(a bM@) g, ph@E)) (4.4)
= v((a @) b M@y (4.5)
= v(a a)+ v(b (@) (4.6)
= V(g a)+ v(b); (4.7)

where the second step holds becaugga;) = v(a,) implies (n(a;)) = (n(ay)).

Combining both cases, we see that (V3) holds for the quasié&lK .. with valuation v.

We now provide some explicit examples of the above situatiohet k be any eld, let M
be a subset oNnfOg generated multiplicatively by a certain set of primes. Nowet K be
the eld of rational functions in t, but allowing all rational powersr=s of t with s2 M.
If k(t) = f (t)=g(t) 2 K with f (t) and g(t) polynomials (also allowing powers of the form
above), we then set/(k(t)) to be the minimal nonvanishing power ot in f (t), minus the
minimal nonvanishing power ot in g(t). One veri es that K together with v forms a eld
with valuation.

Let k be a nite eld with characteristic p and M the set of integer powers op.

Then a suitable choice of is the automorphism that mapsts to (%)f.

Now let k be any eld and M generated by all the odd primes (st is the set of
the odd nonnegative integers). Now one can set to be the automorphism that
mapsts to ( ts)".

All of these examples have a nonclassical projective plantia nity, but have classical
residues. In addition the residues of th&-building are nite when k is nite.

There are also examples where one can choose one residue lstety freely. For a given
planar ternary ring R, one can de ne a "positively valuated ternary ,gnng tg, similarly as

in the discrete case, see [53]. Indeed, one considers thegraseries ., ant" in t where
N is a set of positive integer multiples of a certain rational umber (for di erent power

series, this number may be dierent) anda, 2 R for n 2 N. Since any nite nhumber
of such power series can be thought of as belonging to the sadigcrete version of this
construction, the ternary operation can be copied from [53&nd also the proof of the fact
that we have a positively valuated ternary ring. Now, in comfetely the same way as in
the discrete case, one constructs a projective plane withdndiscrete) valuation out of
this. The residue de ned by this valuation is precisely the pjective plane coordinatized
by R. To the best of our knowledge, these are the rst examples otich nondiscrete
apartment systems with an arbitrary (possibly nite) residue.
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n=4

The construction we will explain here is again inspired by aexample for the discrete
case by Hendrik Van Maldeghem in [54]. We will only sketch whahe coordinatizing
structure with valuation looks like. All proofs for the nit e case still hold here (this is
due to the fact that any nite number of elements in the coordnatizing structure can be
"embedded' in a coordinatizing structure of a discrete cgsdn particular, the reader can
consult [57] for explicit formulae to derive the valuation ba generalized quadrangle from
the valuation of the coordinatizing structure.

Consider the nite eld k = GHaq) with g=2". Let h; and h, be two natural numbers
such thatqg 1 and 1+2%M+*h2 gre relatively prime (for exampleh = 3, h; = 1 and
h, =0). For i =1;2, let ; be raising to the power 2, fg,rming automorphisms of this
nite eld. Now consider the eld K of Laurent series ,, a,t" in t whereN is a
set of integer multiples of a certain rational number, bouned below (again, for di erent
Laurent series, this number may bg di erent), anda, 2 k for n 2 N. There is a natural
valuation on this eld de ned by v( |,y @t") = m, wherem is the smallest element of
N such that a;, is nonzero (well de ned by the boundedness below). We de ng0) to
bel . One can extend ; fori 2 fxl; 2g to the eld K by

X
( at")i= a t": (4.8)
n2N n2N
The coordinatizing structure is now given by:
Qu(k;a;l;a% = (k H)%a+ a (4.9)
Qa(a; k;b; k) = a2k + K (4.10)

wih k:I: k% a; b; @2 K and v the natural valuation.

For more information about this example and coordinatizingtructures, see [54]. One can
show that this example de nes a generalized quadrangle witvaluation where both the
guadrangle itself and its residue are nonclassical.

These are, to the best of our knowledge, the rst explicitly d ned examples of nondiscrete
R-buildings of this nature.

4.5 Proof of Main Result 4.3.1

General idea. | The hard part of the proof will be showing Axiom (U4). This wi Il be
proven by investigating how the sums occuring in (U4) changehen we "move around'
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the point

The rst lemma deals with the exact shape of the intersectiorof two sectors with the
same source, and sharing a sector-facet.

Lemma 4.5.1 Let C and C°be two sectors with the same sourcewhich share a sector-
facetF. Then the intersection of both is formed by the convex hull Bf and the common
part of the other two sector-facets o€ and C°

Proof. Take any apartment containing C (and so also ). If contains C°then there is
nothing left to prove. If this is not the case then there is a uique apartment 2 atin nity
containing C%and sharing a half-apartment with ; . A remark in [24, p. 10] states that
if two apartments share a half-apartment at in nity, they also do in theR-building itself.
This implies the exact form of the intersection.

If C 8 C° then such an intersection is called ahimney with source ([30]). We refer to
the width of the chimney as the distance between the parallel walls toaring it.

Corollary 4.5.2 Letr;s;t be elements of ; such thatrlslt, and let be a point of ;
then the width of the chimney de ned by the intersection of éhsector containingr and
s , and the one containings andt , equalssin(=n)u (r;t).

Proof. Directly from the de nitions and the previous lemma.

Now let be an arbitrary point of and consider the map u . The Axiom (U1) will be

satis ed because given an element at in nity there is always an apartment containing
X where we then can nd the needed element adjacent to x such that u (x;y) = 0.

The second Axiom (U2) is satis ed trivially and (U3) followsfrom the convexity of sector-
panels.

The main diculty is (U4). Let X and x, be two opposite elements of ; and M :=

X 1
f:R"1 R :I7! sin(i =n )u (Xi 1;Xi+1);
i=1

with 2 (xo) atdistancel from . If we can prove thatf only depends orxg; x, and
then we have proven (U4) and Main Result 4.3.1 (in view of thatt that (U4) is trivially
satis ed in degenerate apartments).
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Before we go on we need the notion of “distance in the residudst x andy be elements
of ; and 2 . Then we de ne the residual distanced (x;y) at to be the distance
between k] and [y] as de ned in the generalizedh-gon [] (a point and an incident
line are at distance 1, two collinear points are at distance, 2. .).

Remark 4.5.3 Similar to residues, the notion residual distance has beersed already
for a di erent object, see Remark 4.2.4 for more informatiombout both notions. Again,
from the context it should be clear what is meant.

The next lemma investigates the local behaviour of the valtians.

Lemma 4.5.4 Let r;s;t be elements of ; such thatrlslt, and a point on (Xo)
with d(; ) = I. Then there exists some > 0 such that for any °on (xo) with
d(; 921+ ], the following holds:

sin(d (s;Xp) =n)
sin(=n)

uo(rit)=u (rt)+ d;; 9

where is a constant equal to
8
< 1 ifd(rnxe)=d(txe)=d(S;X) 1
1 ifd(rnxe)=d(tXe)=d (S;X0) +1;
0 ifd(r;xo) 6 d (t;xo):

Proof. Let C be the sector spanned by ands and C°the one bys andt . Both these
sectors have source. Using Lemma 1.8.1, we can nd apartments and °containing C
and an element of the germx] , and C°and an element of the germxy] , respectively.
Let be the length of the part of &;) included in \ ©° Obviously > 0. Let °be
on (Xo) with d(; 9 2 [l;1 + ]. The sectorsC o and C° . with source °now lie in the
apartments and © respectively.

Using the intersection of both apartments one can easily cailate that the width of the
chimney de ned by r;s andt with source at %is sin(d (s;%o) =n)d(; 9 larger than
the one with source , with as in the table above. Using Corollary 4.5.2 we now obtain
the desired result.

As an immediate consequence of the previous lemma, we sed thas right-continuous.
Left-continuity (and because of this also continuity) can b proved analogously. Using a
similar reasoning one can prove the following lemma and cdlesy, which we will need to
prove a later result.
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Lemma 4.5.5 For any R-building ( ;F) (not necessarily 2-dimensional), andC; and
D; two adjacent chambers at in nity, only diering in the verticesx; andy;, the
function u : I R which maps a point to the length of the common part of the
sector-facetsx andy , is uniformly continuous.

Corollary 4.5.6 For an R-building ( ;F), and two adjacent chamber€; and D; at
in nity, the subset of points of for which[C] =[D] is an open subset of the metric
space de ned on .

Proof. Directly from the above lemma.

Applying Lemma 4.5.4 to the ( nite number of) valuations ocairring in the de nition of
f now implies that for everyl 2 R* there exists some > 0 (the minimum occurring in
the application to each valuation) anda, 2 R such thatf (19 = f (1) + a(I° 1) for every
12 [I;1 + ]. The next step in our proof is to show thata, only depends orxy;x,; and
|. One thing which is directly clear is thata only depends on the distances (Xo; X;)
with i 2 f1;2;:::;ng, and on the point on (xg) with d(; ) = |. Because of this

yi .= d (Xo;Xi), 1 210;1;2;:::;ng. This sequence consists of nonnegative integers such
that two consecutive ones di er by exactly one, and the extmities y, (which equals 0)
andy, are constants. An entry di erent from the extremities with the property that both
neighbours are strictly smaller will be called geak if both neighbours are strictly larger,
then we call the entry avalley. The sequence will determine the, uniquely.

If two sequences produce the sans we will say that they are equivalent We now show
that each sequence is equivalent to the unique sequence with valleys, which will be
called the standard sequenceTherefore we look at the sum of all the y;'s. The number

is clearly an integer and bounded. Consider any sequence alient from the standard
sequence; then it has at least one valley, say at the entsy = m. We now break the
problem down to some di erent cases and show that in each cades given sequence is
equivalent with one obtained from the rst one by replacingy; by y; +2. This equivalent
sequence has a larger sum, and because this sum is an integeria bounded by the sum
obtained from the standard sequence, recursion implies thall sequences are equivalent
to the standard sequence. Note that 2, soj 2 is always well-de ned.

In the following we will denote =n by , for ease of notation.

(i) Case (yj 23y 1Yi:Yi+1:Yj+2) =(m+2;m+1;m;m+1;m). As indicated above, we
show that this is equivalent with (y; 2;Y; 1;yj°; Yi+1:Yj+2) = (M+2;m+1;m+2; m+
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1; m). Indeed, using the expression faa from the de nition of f and Lemma 4.5.4,
we see that we must show

sin n)sin(m n)+sin((j +1) n)sin(m+1) )=
sin(j 1) n)sin((m+1) 5)+sin(j n)sin((m+2) n):
Indeed, we perform the following elementary calculations.
sin( n)sin(m n)+sin((j +1) n)sin(m+1) )
=1=2( cos(f m) n)+cos((j + m) n)+cos((j m) n) cos(f+m+2) ,))
=1=2(cos(f + m) ,) cos(f + m+2) ,));
while
sin( 1) n)sin((m+1) n)+sin(j n)sin((m+2) n)
=1=2( cos(f m 2) n5)+cos((j+m) n)+cos((j m 2),)
cos(f + m+2) n))
=1=2(cos(f + m) ,) cos(f + m+2) ,)):
It follows that the two sequences are equivalent.
(it) Case (y; 22¥ Y)Y+ Yj+2)=(mm+1;m;m+1;m+2). This is analogous to
the previous case.

(i) Case (yj 2:¥i 1:Y;:Yj+1:Yj+2)=(m;m+1;m;m+1;m). Here, we show that this is
equivalent with (y; 2;y; 1; ij; Yi+1;Yj+2) =(m+2;m+1;m+2;m+1;m). Indeed,
as before, we must show that
sin(j 1) p)sin((m+1) ,) sin(j ,)sin(m ,)+sin((j +1) ,)sin((m+1) )

=sin(j n)sin((m+2) ,):
This equality is the same as the one in Case)( but with one term swapped from
side. The same conclusion follows.

(iv) Case (yj 20y 1Y Yj+1:Yj+2) =(m+2;m+1;m;m+1;m+2). Here we must

show that
sin( n)sin(m )= sin(G 1) ,)sin(m+1) ,)
+sin(j n)sin((m+2) ) sin((j +1) n)sin((m+1) ,):

This equality is the same as in Casei() but with m substituted by m 2. Again
the same conclusion follows.
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(v) Case j = n 1. In this case we can reuse the previous arguments by adding an
extra elementxn.1 | X, with correspondingyn+1 = yn 1, and extendingf with an
extra coe cient sin(n =n)u (X, 1;Xn+1) (Which is zero anyway due to sin = 0).

This proves that each sequence is equivalent to the standasgquence, and so that all
sequences are equivalent ara only depends orxg; X,; andl.

We now need an elementary result from analysis, which we pe¥or completeness' sake.

Lemma 4.5.7 If g is a continuous real function de ned overR* such that for every
| 2 R* there is a for which g(19 = g(I) for every1°2 [I;] + ], then g is constant over
R*.

Proof. Dene = fx 2 R"j(9 °> 0)(8x°2 [x  C%x+ 9(g(x) = g(x9)g as the set of
“constant points'. If an interval lies completely in , then g is constant over that interval
because the preimage of the image of an element in such an vt is both open (due to
the de nition of ) and closed (because of the continuity of g) in the connected interval.
It follows also from the continuity of g that this is also true for the closure of an interval
lying completely in . If the set R*n is nonempty, then it has an inmum t. Note
that by assumption, there exists some > 0 such that[Q [ . Hence t> 0 and the
interval [O;t[ lies completely in , implying that g is constant over [Qt]. But we also
know that there exists a °such that g is constant over f;t + 9, so [Qt+ { lies in .
This contradicts the fact that t is an inmum. So = R* and g is constant overR™.

Lemma 4.5.8 There is anl 2 R such thatf (19 =0 if I° .

Proof. Let i be minimal with respect to the propertyd (xo;%;) 6 i. It is clear that, if
2 (Xo) , thend (Xo;x;) = | forj<i (because the sectors spanned by till x; with
source form a part of an apartment and contain those with source). Suppose there is

no 2 (Xp) such that alsod (Xo;X;) = i. In such a case we have that the function

g:R"! R 170 u (X 2;x); with d(; )= 1;

is strictly positive for each 2 (xo) (because a zero value would imply thatl (Xo; X;) =
i). As we know by Lemma 4.5.4, for every2 R* there is a such that

sin((i 1) n)

0 . 0 |+ .
sin . (I 1); for every!”2 [l;1 I:

g(19 = g(l)
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The function g(l) + =™-22)| then complies to the statement of Lemma 4.5.7 and is
constant. But this is impossible since fot large enough, this would imply thatg(l) is
negative. Consequentlyg cannot be strictly positive, yielding that there is a 2 (Xo)

such that alsod (xo;X;) = 1i.

Repeating this process a nite number of times will produceral such thatd (Xo;X,) = n
ifd(; ) |. This implies that u (X 1;Xj+1) is zero foreach 2f1;2;:::;n 1g, which
on its turn implies that f (d(; ))=0.

Let us reiterate what we know about the functionf de ned over R*:

(O) For high enough values it is zero.
(C) The function is continuous.

(P) For every | 2 R* thereisa and ana 2 R such thatf (19 = f(I)+ a(1° 1) for
every°2 [I;1 + ] wherea, depends only on; xy; X, and

Lemma 4.5.9 Two functions satisfying the three conditiongO), (C) and (P) (with the
samea,) are equal overR™.

Proof. Because we know thaf satis es the above conditions, we can assume that one
of the functions isf - let the other bef?® Considerg= f° f; then gis continuous, is
zero for high enough values, and for evely2 R* there is a (the minimum of the two

related to f and f9 such that g(19 = g(l) for every 1°2 [I;| + ]. Lemma 4.5.7 now
implies that g is constant, and so zero oveR™ .

This implies that f and f °are equal.

As g only depends on; Xo; X, and , it is a direct corollary of the previous lemma that
f only depends onxg;x, and , which has previously been said to imply (U4). This
completes the proof of Main Result 4.3.1.

4.6 Proof of Main Result 4.3.2

an+2 ;.. ayn 1), and such that u has nonzero values. Our proof is heavily inspired by a
similar result for the discrete case in [55] by Hendrik Van Mdeghem. In fact, we will
use some of the results (with the proofs remaining valid in thnondiscrete case) obtained
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there, directly in our proof. In particular, and to begin with, it is shown in 3.1 of [55] that

the weight sequence of a given polygon with valuation havingonzero values is unique,
up to a nonzero multiple. As is also exploited in [55], this las consequence that the
weight sequence is symmetric, i.eay = a, i = an+j = @, jfori 2121,2;:::;n  1g.

know that
x 1

au(Xi 1;Xi+1) =

i=1

and also that
Xi-l

a 2U(Xi 1;Xi41) =

i=3

X 1
aGU(Xi 1;Xi+1);

i=n+1

xR+l
a 2U(Xi 1;Xi41):

i=n+3

If one takes the sum of both equations, and simpli es the relfing expression using
a;= a, 1= an+1 = a»,, 1, One obtains

au(Xq; X3) +

X1

= An+2 U(Xn+1; Xne3) +

i=n+3

This implies that

X 1
(& + @& 2Uu(Xi 1;Xi+1)+ & 2U(Xn 1;Xn+1)
i=3

(& + & 2U(Xi 1;Xi+1)+ An 2U(Xon 1;Xon+1):

is also a weight sequence. Hence there exists some posites numberk satisfying

8

:

;.

ka; = ay;
ka, = ag + ay;
=gt ay

Ka (4.11)

Kan 2= ay 1+ @y 3;
ka, 1= an 2:

One notices, by taking the sum of all equations in the systenf equations above, that

Xl

a =2 &

X 1
(a1 + &, 1):
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This implies that 1  k < 2. As a consequence, we can nd an 2 ]0; =3] such that
k=2cos . Also remark thata; = kay 1 & »forj 2f3;n 1g. If we formally set
a = a, = 0, then this is also true forj 2 f 2;,ng. Furthermore we can suppose that
a; = sin

Lemma 4.6.1 Fori 2f0;1;:::;ng we havea; =sin(i ).
Proof. We prove this using induction oni. It is clear that this holds fori =0 and i =1

(by assumption and by de nition of , respectively). So leti 2 such thatg = sinja
forj <i . Then we know that:

a=ka 1 &
=2cos sin[i 1) ] sin[i 2) ]
=sini

The second equality follows from the induction hypothesighe third from the trigono-
metric formula sina+ sin b= 2sin[(a+ b)=2]cos[a@a b)=2].

Lemma 4.6.2 = =n.

Proof. We have thata, = 0, so sinn =0 by the previous lemma. This yields = m =n,

with m 2 Ny smaller than or equal ton=3 (since 2 ]0; =3]). At the same time we have
a>0fori2fl1;:::;n 1g. Lett be the smallest integer greater than or equal ta=m.

Becausen=m t 2n=m (by n=m 3), it holds that tm=n 2 [; 2 ], soa 0. As

t clearly is inf1;2;:::;ng, we obtain that t = n, which implies that m = 1 (because
m2 Ngandn 3)and = =n.

Combining the two previous lemmas, we obtain:

Corollary 4.6.3 Fori 2f0;1;:::;ng, & =sin(i=n), and any other weight sequence of
( ;u) is a multiple of this.

Remark 4.6.4 It is easy to see that allk 2 R satisfying Equation 4.11 are precisely
the eigenvalues of the path grapl, ; of length n 2, consisting ofn 1 vertices.
Moreover, since allg; are positive, it is the unique eigenvalue for which the cooihtes of
the associated eigenvectors have constant sign. This obhsdion can be used to give an
alternative proof of the previous corollary. Doing so, oneess that 2 cosEén) is in fact
the largest eigenvalue oP,, ;.



4.7 Proof of Main Result 4.3.3 105

4.7 Proof of Main Result 4.3.3

By the proof of the previous main result one can suppose fordtproof of the current and
following main result that the weight sequence is given bg = jsin(i =n )j=sin(=n). In
particular, we have thata; = 1.

Let n be a natural number with 3 n 6 for the rest of this section.

P
If x andy are opposite elements, let(x;y) be the sum ir‘:llaiu(xi 1; Xi+1) Where (xo =

the chosen path.

Two elementsx and y are said to bet-residually equivalent if for each elementz the
following are equivalent:

z is oppositex and (x;z) <t;

z is oppositey and (y;z) <t.

Notice that whent = 0, this de nition is trivially ful lled.

Lemma 4.7.1 Two adjacent elementx andy are u(x;y)-residually equivalent, but not
t-residually equivalent witht > u (x;y).

Proof. Let z be an element opposit& with (x;z) < u(x;y). Consider the unique shortest

holds that u(x; X») (X;2) <u(x;y), sou(y;xz) = u(x;x») by (U3). This implies that
y and z are opposite and that (y;z) = (x;z) (the last is easily seen when considering

valuation zero (possible by Lemma 4.2.2).
Corollary 4.7.2 If xlylz, then [x] =[Z] if and only if u(x;z) > 0.

Lemma 4.7.3 Given a closed path , there are at least two sides having the same mini-
mal valuation among all sides in .
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Proof. Let x and y be the two points on a side with minimal valuation, and suppas
all other sides have valuation strictly larger thanu(x;y). Let t be the second smallest
valuation among the sides in . By repeatedly using Lemma 4.1 and going fromx to y
in not using Xy, one proves thatx andy are t-residually equivalent, which contradicts
Lemma 4.7.1.

Lemma 4.7.4 If two elementsx and y are not residually equivalent, but if there exist
al x and bl y which are residually equivalent, then there is an elementesidually opposite
one element off x; yg, but at distancen 2 from the other.

Proof. Without loss of generality, one can suppose that there exssian elementd which
is residually oppositex, but not residually oppositey.

According to Lemma 4.2.2, there exists an elementincident with x such thatu(a; c) = 0.

c. The elementx, ; is residually opposite, and so also opposite,and b. This implies
that d(y;d) = nord(y;d)= n 2. In the second case we are done, SO suppose we are in

the valuation u(y, »;d) has to be non zero. Sx,, », 6 y, » and u(x, 2;¥n 2) =0. The
elementx, , will now be the desired elemenk, because it is residually oppositg, but
at distancen 2 from x.

Lemma 4.7.5 Let be a simply foldedh-gon. If two elementsx andy are folded together
in , then they are residually equivalent.

Proof. Here we need to distinguish between the di erent possibilés forn. Let z be an
element of such that is folded along z.

n = 3. For this case the result follows directly from Corollary4.7.2.

n = 4. Again using Corollary 4.7.2, one only needs to prove thahe two elements
of at distance 2 from z are residually equivalent. Suppose this is not the case.
Using the previous lemma, one can assume without loss of gextigy that there is
an elementa residually oppositex, but at distance 2 fromy.
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Let (X;XzZ;X»; X3;a) be the unique shortest path (which has valuation zero) from
X to a containing xz. Let z° be the element oppositez in . The element Xz is
residually oppositexz® and so also residually oppositgz® due to Corollary 4.7.2.
This implies that the valuations u(y;a) and u(xs;ay) are zero. But as also the
valuations u(xz; x3) and u(x,;a) are zero, (U4) would imply that u(xz;zy) = 0,
which is a contradiction.

n =5. Using Corollary 4.7.2 and the previous lemma, one can asse without loss
of generality that x and y are at distance 2 fromz, and that there exists an element
a residually oppositex, but at distance 3 fromy.

Let (X; XZ; X2; X3; X4; @) be the unique shortest path (which has valuation zero) from
X to a containing xz, and let (y; y1; y»; @) be the shortest path fromy to a. Choose
an elementbl a such that u(b; x;) = O (this is possible due to Lemma 4.2.2). The
elementxz is residually oppositeb, and so alsoyz. All of this implies that the path
(Yz;Y;¥1;Y2; @; b has valuation zero. A consequence is thai(x,; y,) > 0, otherwise
we could have choseb to be y,, leading to a contradiction.
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Let z° be the element oppositez in , and let x%y°be the elements incident with
z° closest tox and y respectively. Nowx° and y° are both residually oppositexs,

implying that the unique shortest path fromyy°to x3 has valuation zero. If we look
in the unique ordinary pentagon containingyy® x; andy,, we see that the valuation
of X3 in this pentagon is nonzero because of (U4) anax4;y,) > 0. By (U3) we

then obtain that the valuation of x3 in the unique ordinary pentagon containingxs,

yy%and z is zero. This contradicts (U4) and the fact that the valuatio of z in this

pentagon is nonzero.

n = 6. Apart from the case handled in Corollary 4.7.2, there aréwo cases to
consider here.

{ The rst case is whenx and y lie at distance 2 or 4 fromz; without loss of
generality one can suppose this to be 2. Similarly to the priwus cases, let

a be an element residually opposite, but at distance 4 fromy. Let x; be
the unique element of at distance 1 fromx and 3 fromz. Now consider the
unique shortest path &; X1; X2; X3; X4; Xs; @) from X to a containing X, and the
unique shortest path §;yi; y2; ys; @) from y to a. Observe thatx, 2 [z]opp. Let
Obe the unique ordinary simply folded hexagon containing, x4, X and yz,
and let b be the element oppositex, in this hexagon. By (U3), the unique
ordinary hexagon containingy, b, y;, and x4 is nonfolded, sau(y; b) is zero and

Xa 2 [y]opp-

Let %be the unique ordinary hexagon containing, y and x3, and %°the

unique ordinary hexagon containingy, b and x;. Let ¢ and c® respectively be
the elements oppositexz in the hexagons and “respectively. Letd and d°
be the projections ofc and ¢, respectively, ony. The hexagon °%s a simply
folded hexagon folded alony (remember that u(y; b was zero). Sou(yz;d

is nonzero, and sai(d; d) is zero. This implies thatc 2 [cYopp, SO also the
element c®oppositeyz in is in [ ¢Jopp. Because the unique path fronc®
to c® containing x, has valuation zero, also the path fronxz to c® containing

x has valuation zero. Saxz 2 [Yopp, Which givesyz 2 [opp, and this is a
contradiction becauseyz and c® are at distance 4 from each other.
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{ The last case to handle is the case whereand y are at distance 3 fromz.
For the nal time, consider an elementa 2 [X]op, at distance 4 fromy. Let x°
and y° be the projections fromz on x and y, respectively, and letx®°and y®
be the elements in at distance 4 fromz and 1 from x andy, respectively.
Let a° be the projection ofx®on a; this element is residually oppositex®, so
it is also residually oppositey® (as shown in the previous case). The unique
shortest path fromy°to a® containing a (and because of this alsg) now has
valuation zero. Leta®be the projection ofy®on a. This element is residually
opposite x% but cannot be residually oppositey®as it is only at distance 4
from y% This contradicts the previous case applied ta®and y®
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Xoo b yOO

Lemma 4.7.6 Letx;y be elements of such that[x]l ;[y]. Then there exists somg°2 [y]
such thatx! y°

Proof. Let F be the set of all ags containing an element o] and one of §]. Let fx%y%Y
be a ag of F such that the sumd of distances ofx° and y°to x is minimal. If d = 1, then
x°= x and xI y° So we may suppose that > 1.

Suppose that the distance ok to y°is one bigger than the distance fronx to x° Let
(Xo= X;X1;::0;% 1= X% X = y9 be the shortest path fromx to y°containingx°(j  n).

valuation zero of lengthn. Consider the unique path ¥° = x;;x%; = % 1;:::;%x%, =
Xi+n) from X; to Xj+, containing x; ;. Then using (U4), we see that this path has valuation
zero. These two paths together form an ordinarm-gon , which is simply folded along
Xi. The previous lemma implies thatxjO 12 [x] and xj0 2 [y]. But the sum of distances to
x of these two incident elements is strictly less thad, contradicting the minimality of d.

The case where the distance of to x°is one bigger than the distance fronx to y is
proven analogously.

The diameter of our new geometry , is clearlyn. In order to prove it is a (weak) general-
izedn-gon we have to show that there is no closed nonstammering paif length less than
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has valuation zero. If 2n < n, we extend this path to a path &3; X%; 112 ;%9 X9 ;0013 X2
with valuation zero, of lengthn (this is possible by Lemma 4.2.2). In each case we have
that x? is residually oppositex$, but not opposite, and so certainly not residually opposite
x3,. Hence we have a contradiction and we have proven the Main Riés4.3.3.

4.8 Proof of Main Result 4.3.4

General idea. | Starting from one valuation u on , we will construct more valuations.
Each of these valuations will correspond to a point of ourR-building. We will use results
from Section 4.5, which prove the current problem in the othredirection. For example,
in that section Lemma 4.5.4 tells us how a valuation should bave when we "move' the
point it is de ned from. We will use this information to construct new valuations.

We now return to our case. Let (;u) be a generalizedh-gon with valuation, x an element
of ,and t 2 R* a positive real number. We want to de ne a new valuatioru¥ ! with

V(x;t) an operator called thetranslation operator (u¥® will be referred to as thet-

translation of u towardsx, and u is t-translated towardsx).

How do we construct this new valuation? Remember that eacheshenty has a certain
residual distanced,(x;y) from x in the residue , de ned by the valuation u. We now
“predict’ the translated residual distanced®(y) from x to y when t-translating u, as it
would be if we were indeed in arR-building (we changed the notation of the residual
distance to an unary function to stress the dependability ok, and the fact that we will
only need distances fronx). This function de ned for t 2 [0;+ 1 [ will be right-continuous
and piecewise constant. First thing one needs to assure hesethat for two incident
elementsy; z, the translated residual distancesi* (y) and d**(z) di er by only one. The
de nition of this function will be referred to as step (C1), the “di erence condition' as
condition (C2).

Because we know how the (translated) residual distances Wwdlbehave if we were in an
R-building, we can use Lemma 4.5.4 to predict how the translatl individual valuations
would behave if we were indeed in an a ne apartment system (iis is done by a trivial
integration of a piecewise constant function). The set of lathese individual valuations
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allows to construct a new “valuation'u¥ ! (we still need to verify this is really a valua-
tion). On the third and fourth page of Section 4.5, it was showthat the weighted sum of

do and d, of Xg and x,, respectively, under the assumption thatly = Xo. The argument in
that section can be extended to show that this weighted sum dends also only ordy and
d, whend, is not zero, by applying the same idea as in Case (v) of that sem if ] =1 is

a valley. Because here the predicted individual valuatiortsehave in the same way as they
would in the a ne apartment system case, this result can be ggied here (also using the
fact that for two incident elements the residual distancesiar only by one) to guarantee
that (U4) will be satis ed by uV®Y. The condition (U2) is trivially satis ed. For more
insight in how u¥ ™Y is constructed, see the example in the section below.

For the other two conditions and positivity of the valuation we will de ne and use the
R-trees associated to elements of .

Choose a pointx in a given tree. We can de ne a valuatiornv acting on the set of pairs
(e;f) of ends (parallel classes of sectors) of this tree as the déim of the intersection of
the two half apartments with boundary x and endse and f . The point x will be called
the base point of the valuation

One property ofv is that for three arbitrary ends e;f; g the inequality v(e;f) <v(f;g)
implies v(e; g = v(e;f). Now, given any binary functionw acting on a setE obeying
this property, one can (re)construct a tree (ifw is already a valuation of a tree, then
we will obtain the same tree) by taking the sef (e;t)je 2 E;t 2 R" g and applying the
equivalence relation

(e;) (f;s), t=sandt w(e;f)

(e;f 2 E ands;t 2 R™). The base point of this tree is the equivalence clasge;0)je 2

Eg=: x. The set of ends of this tree is in natural bijective correspmlence withE and the
valuation in this tree with base pointx coincides withw. (This construction is a special
case of the one of Alperin and Bass in [3].)

It is easily seen that this property is the same as (U3) when westrict u to a point row
or line pencil. So to each line. or point p of we can associate a tree named (L) or
T(p) with a certain base point. The location of this base point Wi play a major role in
the next sections. Other choices of base points yield othealuations of the tree.

We now return to the problem of (U1), (U3) and positivity. Obviously, this will be solved
if we can show that the change in valuations of elements in@dt with an elementy of is
described by changing the base point in the tre€(y). With an eye on the above lemma,
we want to move the base point towards an end corresponding &m elemental y with
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d<t(a) = d*'(y) 1 over alength oft sin(d**(y) =n)=sin( =n), with t a certain translation
length such that the translated residual distances a and y stay the same. In order that
the valuations obtained by this change of base point correspd to the predictions of the
valuations using the above lemma, we need to verify three tigs.

If the valuation of the pair consisting ofa and another elementbl y is going to
decrease (equivalent with saying that'(b) = d*'(y) 1 andd'(y) 6 n), then

this valuation corresponds to the predicted valuation usig the displacement of the
base point in the tree, if the two half-apartments with endsa and b and source the
base point have more in common than only the base point, s§ ! (a; b > 0. (We

refer to this as condition (C3).)

If the valuation of the pair consisting ofa and another elementhbl y is going to
stay the same (equivalent with saying thatd*'(b) = d<'(y) + 1), then we have
correspondence between the two predictions if the base pilies in the apartment
with ends a and b, sou¥®t(a; b = 0. (This will be condition (C4).)

Finally note that if the valuation is going to increase (two éments b;dy with
dt(h) = ds'(c) = d*'(y) + 1), we would need that the base point lies on the
intersection of the apartment with endsa and b, and the one with endsa and c (so
uV™(a; b = uV®H(a;c) = 0). But this is already covered by (C4), so there is no
extra condition needed.

In the next part of the proof (after the example), we consideeach case seperately.

4.8.1 An example

We will illustrate with an example how u¥ ™t will be calculated in practice. Suppose we
are in then = 3 case, and thatx is a point. Let us say we have two pointg, X, di erent
from x, and we want to de neu¥®t(x4;x,). (For the (C1) used here we refer to the next
section.)

Supposeu(x; Xj) = t; and supposeu(Xs; Xp) = t,, with t; >t, > 0 (there are other cases,
but let's rectrict to this one). The residual distances are lazero between these points.
Let L be the line joining X; and x,. Then in the formula of Lemma 4.5.4 equals 1.
Here, we can take = t, (so far, the residual distances toax do not change according to
(C1)), and we obtain

uwVOe(x:x)=t, tfort ty
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From then on, becomes zero untit = t;, since the residual distance tx from x; di ers
from that to X,; to X, it becomes 2 and tax; it is 0. Hence

uVOo(x:x) =0for to<t  tg

Note that, up to now, the residual distance fronx to L was always 1, hence the quotient
of the sines has always been 1. This is going to change in thetearagraph.

Fort t;, equals 1, and the quotient of the sines is still 1, but only for (x;L)
according to (C1), which is by de nition bigger thant,. Hence

uwVO(xix) =t tyforty <t (x;L):
At t = (x;L), the sine ofd(x;L) =3 becomes 0, and so the valuation becomes constant

again:
uV(x;t)(xl; X2) = (x; I_) t, for (X; L) <t

482 n=3

We de ne (C1) and check (C2), (C3) and (C4).

(C1)
If d(x;y) =0, then d*(y)=0for t 2 [0;+1 [.
If d(x;y) =1, then d*(y)=1for t 2 [0;+1 [.
If d(x;y) =2, then

{ d¥(y)=0for t2 [u(y)L,
{ d¥(y)=2for t2 [ueGy)+1 [

If d(x;y) =3, then

{ d*(y)=1for t2[0; (x;y)l,
{ d*(y)=3for t2 [ (x;y);+1 [.
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(C2)

Let y and z be a pair of incident elements. Without loss of generality @ncan suppose
that d(x;y)+1 = d(x;z). The only not completely trivial cases are wheré(x;y) =2 and
d®* (y) = 0. This happens whent 2 [0; u(x; y)[, so alsot < (x;z) = u(x;y)+ u(y; z), and
sod™ (z) = 1. We conclude that (C2) is satis ed.

(C3)

Let againy be an element, witha; btwo elements incident withy, such that d*t(a) + 1 =
d<t(b) +1 = d“'(y). The only cases for which we need to verify thanV*!(a; k) > 0 are
d'(y)=1or 2.

If d(x;y) = 1, then d'(a) +1 = d(h+1 = d*(y) = 1. One can choose
a = X, then d(x;b) = 2, so in this caset 2 [0;u(x;b)[. The following now holds:
uV™a; B = u(x;b) t> 0.

If d(x;y) = 2, then d"™*(y) = 2 for t 2 [u(x;y);+1 [. Assume thata = xy and
d(x;b) = 3. This yields that t 2 [u(x;y); (X;b)[=[u(x;y);u(x;y)+ u(a;b[. One
checks thatuV®V(a; = u(a;h t+ u(x;y) > 0, so (C3) holds here.

If d(x;y) =3, then d™*(y) =1 for t 2 [0; (x;y)[. This case is similar to the case
d(x;y) = 1, but now using Lemma 4.7.3 instead of (U3).

(C4)

Let y be an element, witha;b two elements incident withy, such that d<t(a) + 1 =
dt(bh 1= d(y). We only need to verify that u¥*t(a; b = 0 is when d*"(b) < d<(b)
fort9<t.

If d(x;y) =1, we again choose to play the role ofa. It is clear that the conditions
then tell that t = u(x; b), and u¥®Y(x;b) = u(x;b) t=0.

If d(x;y) =2, then di*(y) =2 for t 2 [u(x;y);+1 [. We choosea to be the element
xXy. The elementblies at distance 3 fronx because of this, and = (x; b). Similarly
to the (C3) case one checks that¥ ! (a;b = u(a;b t+ u(x;y) =0.

If d(x;y) =3, then d*(y) =1 for t 2 [0; (x;y)[. This case is similar to the case
d(x;y) = 1, but now using Lemma 4.7.3 instead of (U3).
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483 n=4

Before we check the conditions, we state some useful lemmas.

Lemma 4.8.1 It is impossible to have an ordinary quadrangle containing exactly two
sides with nonzero valuations, such that opposite elemehtve the same valuation, but
each two corners of a side have di erent valuations.

Proof. Suppose that such a quadrangle does exist. Then lgb; g be corners of such
that u(p;9 > 0, and such that the valuation inp is bigger than the one ing. There
exists anrl pq such that u(p;r) = u(g;r) = 0 (by Lemma 4.2.2 and (U3)). Let © 90
be the ordinary quadrangles sharing a path of length 4 with ad containing r; p and
g, respectively. Denote the element oppositpqin by s. Let p° ¢ and r° be the
projections of, respectivelyp, gandr ons. Because the valuation irp is bigger than inq,
(U4) applied in both %and %yieldsu(r®q® < u(r®pY (because these are the only two
other di erent terms in applying (U4) in both quadrangles),sou(r®q® = u(p®q® > 0 by
(U3).

The valuations of the elementsr and r®in © cannot be equal because the valuation
of gin Cis strictly smaller than the valuation of ¢ in ° So the two corners with
smallest valuation in ©| guaranteed by (the dual of) Lemma 4.7.3 | have to be

in the corgers g and r% Applying (U4) we obtain u(g;d + 2u(qdgr) + u(q;r) =
u(@®r9+ " 2u(r%®r%) + u(r;r9, which implies that u(¢® r% = 0, a contradiction.

Lemma 4.8.2 Let a; bbe two opposite elements. Then there exist two patasxi; X»; X3; b)
and (a;y1;Y2;ys; ) from a to b such thatu(a;x) = u(xz;b), u(a;y,) = u(yz; b and
u(xs;y1) = 0, if and only if for each path(a; z;; z;; z3; b) the equalityu(a; z) = u(zy;b)
holds.

Proof. The implication from right to left is trivial by (U1l). So suppose the left part of
the statement is satis ed.

First remark that (U4) tells us that u(xs;y3) = 0, so the situation is symmetric in a
and b. Suppose thatu(a; z) < u(zy;b); then withoub loss of generality we may assume
at u(xy;z3) = 0 (by (U3)). But then u(x;a) +  2u(Xq;z1) + u(a;z) < u(xg; b +

2u(xs; z3) + u(b; 2), which contradicts (U4).

If for two opposite elementsa and b the situation of the above lemma holds, then we say
that those two points areequidistant
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Lemma 4.8.3 If two opposite pointsx;y are not equidistant, then there exists a path
(x;a;b;c;y from x to y, such thatu(x;b) u(b;y) andu(a;c)=0.

Proof. First note that, if for all paths (x;a%W c%y) from x to y it would happen that

u(x;b%  u(k’y), then Condition (U4) or Lemma 4.8.2 is violated in a quadragle de-
ned by two paths (x;a% . c%y) and (x; a® P9 c™y), where a° and a®are chosen so that
u(a®a% = 0 (which is possible due to (U1)).

So we know the existence of a pathx(a® I ¢ y) with u(x;b%) > u (% y9. If u(@®d =0,

then we are nished, so assume this is not the case. Using Lemm.2.2, we can nda® x
with u(a%a% = 0. Let (x;a% 1 c®y) be the unique shortest path fronx to y containing
a% Lemma 4.7.3 tells us that eitheru(c®c®y = 0 or u(a®c®j = 0. If we are in the rst

case, then applying Lemma 4.7.3 again on the other type of elents in the ordinary
quadrangle leads to a contradiction with Lemma 4.8.1. Sa(a®c®y = 0. Using (U4) one
sees that &; 2% P9c™y) is a path with the desired properties.

We are now ready to check (C1), (C2), (C3) and (C4).

(C1)
If d(x;y) =0, then d*(y)=0for t 2 [0;+1 [.
If d(x;y) =1, then d*(y)=1for t 2 [0;+1 [.
If d(x;y) =2, then
{ d™(y)=0for t 2 [0;u(x;y)L.
{ d>(y)=2for t 2 [u(x;y);+1 [.
If d(x;y) =3, with xlalbl'y then
{ d(y)=1for t2 [ b)+ u(@y)= 2,
{ d*(y)=3for t 2 [u(x;b)+ u(a;y)= 2,+1 [.

If d(x;y) =4, then in the case that there exista; band c such that x| al bl ¢l y, with
u(x; b) 6 u(b;y), let k(x;y) be the minimum of both (this is independent ofa; band
c due to Lemma 4.7.3). In the case thak and y are equidistant, we de nek(x;y)
to be equal to (x;y)=2. Then we have

{ d*(y)=0for t 2 [0;k(x;y)L,
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{ d*(y)=2for t2 [k(xy); (xy) k(YL
{ d*(y)=4fort2[ (xy) k(y);+1[.

(C2)

Let y;z be a pair of incident elements. Without loss of generality ancan suppose that
d(x;y)+ 1= d(x;z). There are three nontrivial cases.

(C3)

d(x;y) = lg,_with d*(y) =0, and d**(z) = 3. This yields t 2 [O;u(x; y)[\ [u(x;y)+
u(xz;z)= 2;+1 [. The last intersection is clearly empty and so this case caat
occur.

d(x;y) = 3, with d™(y) = 1 and d¥*(z) = 4. Let xlalby. This situation oc-
curs whent 2 [O;u(x;b) + u(a;_y): 21\ [ (x;2)  k(x;z);+1 [ As k(x;2)
min(u(x; b); u(b;2) + u(a;y))= 2, the range fort is empty, so this case cannot
occur either.

d(x;y) = 3, with d*(y) = 3 and d};x(@_: 0. Let xlalbly. This happens
whent 2 [0;k(x;z)[\ [u(x;b?)t u(a;y)= 2,+1 [. Again the bound k(x; z)

min(u(x; b);u(b;2) + u(a;y))= 2 leads to a contradiction.

Let againy be an element, witha; btwo elements incident withy, such that d*t(a)+ 1 =
dt (D) +1= d(y).

If d(x;y) = 1, then d™*(y) = 1 for t 2 [0;+1 [. Let a be the elementx. then
d(x;b) = 2, so in this caset 2 [0; u(x; b)[. The following now holds: u¥®t(a; b =
u(x;b) t> 0.

If d(x;y) =2, then d*(y) =2 for t 2 [u(x;y);+1 [. We ma assume thata = xy
and d(x; b) = 3. This yi%IQS that t 2 [u(x;y);u(x;y)+ u(a;bD= 2[. One checks that
uVa;p = u(a;b 2(t  u(x;y)) > 0, so (C3) holds here.

If d(x;y) =3, with xI plqgly then
{ di*(y)=1for t 2 [0;u(x;q) + u(p;y)=IO 2[. We distinguish two subcases.
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If u(x;q) >t, then we choosea = g. The elementb is then at distance 4
from x, with d** =0, hencet 2 [0;k(x;b)[. If u(g;H t, thenu(qg;h =
k(x;b) t which is impossible (remembeu(x;q) >t). As uV®i(q;h =
u(g;B t, Condition (C3) is satis ed here.
The other subcase is whera(x;q) t. Note that d** =2, so d(x; b) = 4.
Sinceu(x;q) tandt<k(x;b), we haveu(q;H = u(x;q) and u(p;y) > O.
We construct a as follows: letr be an element incident withx such that
u(p;r) =0 and let s be an element incident withr such that u(x;s) = 0.
The elementa is the projection ofs ony. Let c be the projection ofb
onr. mmas 4.7.3 and 4.8.1 yieldi(a;s) = u(y;as) = 0, u(r;as) =
(x;a)= 2, aandx are equidistant (by Lemma 4.8.2), andi* (x; a) = 0.
As uVU(a;bh = u(a;h t, we have to prove thatu(a;  k(x;b) in
order to prove (C3).
Let be the unique quadrangle containingb, y, sandr. If band x are
equidistqp& then the valuation ofbin is zero, and (U4) implies u(a; b
u(r;as)= 2 = k(x;b). Finally suppose thatb and x are not equidistant;
then Lemma 4.8.2 implieau(x; s) 6 u(s; 0, and sou(x;s);u(s;0 k(x;b)
(by de nition of k(x;b)). Applying (U4) in tells us now that u(a;b
u(s;0  k(x;b), which we needed to show.

{ d*(y) =3 for t 2 [u(x;q) + u(p;y):p 2;+1 [. Let a beqin this case. This
implies that the elementb will be at distance 4, whiled*'(b) = 2. Sot 2
[k(x;b); (x;b) Kk(x;b)[, which also means thatb and x are not equidistant.
Careful analysis reveals thatV®Y(a;b = (x;b) k(x;b) t, which is strictly
larger than zero because*(b) = 2 implies that t 2 [k(x;b); (x;b) k(x;b)[.

If d(x;y) =4, then di*(y) =2for t 2 [k(x;y); (x;y) k(X;y)[. Notice that x andy
are not equidistant. Let (x;p;Q; a;}) be a path as constructed in Lemma 4.8.3. This
xes our choice ofa. Let (x;r;s;b;y) beptbe unique path fromx tod/_containing b.
One checks thatu¥®!(a; b = u(a; b 2(t  k(xy)h= u(ab 2(t  u(y; ).
The value oft is strictly smaller than u(x;s)+ u(s;b= 2 (becausgj}?x(b) =1). All
we have to check is thauV ™ (a;l) 0 whent = u(x;s)+ u(s; b= 2. Using (U4),
one proves thatuV Y (a; = u(p;r) 0 for this value oft.

This concludes the proof of (C3) in this case.

(C4)

In this case, the condition (C4) can be proved analogously &se proof of (C3).
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4.8.4 n =6 and the valuation is discrete

Here the discreteness allows us to de ne the translations ia much easier way using
recursion. We start with a valuation u where the valuations of one type of elements
are integer multiples of 3, while valuations of the other typ are integer multiples of 3
(with proper rescaling, this is a consequence of the disceeess, see Section 4.4.1). The
valuation u also de nes a residual distqgugei,. We use this as the constant translated
residual distanced' with t 2 [0;1[ or [0, 3=2[, depending on the type ok (notice that
this implies (C1) and (C2)). The condition (C4) is satis ed hecause it is satis ed for
t = 0, and because the valuations in question stay zero. The digteness makes it so
that because (C3) is satis ed fort = 0, it will also be satis ed for t in the ranges above
(because the range is small enough such that the valuation question cannot decrease
to zero).

Let's clarify this with an example rst. Suppose that x isyan element such tgqt the
valuations of that type of element are integer multiples of 3, and letk 2 [0; 3=2].
Applying what is said above, the displacement of the base poiof the trees associated
with an elementy with residual distanced, (x;y) to yield the valuation u¥®k) will be
as given in the following table; all displacements are towds an element which is in the
residue closest to:

| 3]
k| 2K |

n
e

d: (x;y) | 0 J1],
Displacement of base point none| k |

Note that k is small enough so that the displacements do not make the bgseints reach
branching points of the trees, except for the maximal valuk = = 3=2 and d,(x;y) = 3.

In order to satisfy (C3), branching points are not supposeditbe crossed as valuations are
not allowed to decrease to zero (which is what happens at brehing points), except for
the nal point (for a k-translation, (C3) needs only to be checked for valudsin [O; k[).

We can repeat the same procedure on the new valuations we dhtdut with one major
caveat: the valuations are no nice inBeger multiples anymer(because we cak-translate
with k a real number in [Q1] or [G; 3=2] depending on the situation). However, we
can handle this as follows. LeW be a Coxeter group of type&, acting naturally on a
Euclidean a ne plane A. Take a special vertexs. Notice that, with proper rescaling,
the distances froms to all the walls of a parallel class of walls is exactly the ingge set
of the valuations u of the elements incident with a certain type of elements. Let® be a
point of the plane A at distance k from s, on the same wall (with type the element we
have translated to) ass. Due to Lemma 4.5.4 (or by looking at the example above), we
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can again identify distances frons® to all the walls of a parallel class with image sets of
valuations u¥ k) of certain elements as above. (We can no longer identify withtype of
elements; there will be more classes of elements, due to tResidue corresponding with
uV k) peing a weak generalized hexagon.)

We can nowl-translate u¥®k) to an elementy in the same way as above, with small
enough so that we do not “cross' any walls with the correspang displacement of the
point in the plane. The displacement will now happen along #line at angled =n with
the line through s and s% with d the distance in the residue ofi¥ %) from x to y. One
cannot cross the wall because we will have moved some baseigodf trees to branching
points. Note however that "arriving' at a wall is allowed, smne can get across that wall
with the next translation.

This procedure allows us to repeat the construction, obtaing all subsequent translations
of u we want.

Wepagain clarify further with an example. Suppose is as in the above example and ldt

be 3=3. Now suppose thaty is an element which is at distance 2 fromt in the r%sidue
of u¥ k) Wwith the above procedure it follows that wel-translate to y with | 2 [0; 3=3]

(when| = = 3=3, we arrive again in a special point oA). Again we could make a table
and conrm indeecbtr_}at the base points reach branching poistof the tree except for the
maximal valuel =~ 3=3.

485 What about n =5 and the nondiscrete case for n=67?

One could use similar techniques as for the cages 3 and n = 4 to investigate these cases.
The things one would need to prove are mostly quantitative veions of the qualitative
lemmas of the proof of Main Result 4.3.2. However extendindné, already extensive,
complexity of the case studiesy = 3 and n = 4 to these higher cases, would probably
require an extremely extensive case study and a massive nwaniof pages. For this reason
we choose to restrict ourselves to the already handled cases

4.8.6 Some rst observations

Now that we de ned additional valuations, we need to show thiathey form the point set
of an R-building. We need some properties to do so.

Lemma 4.8.4 The residual distance ofk andy in the residue ofu¥ ™t equalsd® (y).
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Proof. This follows from the way we de ned (C1) forn = 3 and n = 4, and from the
construction for the discrete case when = 6.

Lemma 4.8.5 If d'(y) = n, then d<t°(y) = n for everyt® t.

Proof. The only case for which this is not directly clear is1 = 6. Applying the previous
lemma we see that in the residue af¥ ™! the elementsx andy are residually opposite
and that each shortest path between both has valuation zeroBecause of the way we
de ned u¥®t) it follows that the path also has valuation zero foru¥*t. This proves
the lemma.

Corollary 4.8.6 When translating towardsx, the residual distanced! (y) only increases,
up to the point thatd*'(y) = d(x;y).

Proof. Again we only need to prove this whem = 6. Because of the previous lemma and
the fact that the residue is a weak generalized-gon where each element is incident with
at least 2 elements, we see tha“' (y) only increases. It increases td(x;y) because if for
an arbitrary elementz we haved“'(z) = d(x;z) < n, then for an elemental z there exists
t° t such that d*'(a) = d(x; a) (this is due to the displacement of the base point of the
tree associated taz, which happens at a constant rate towards the projection of on z).
Repeating this argument implies thatd*! (y) will eventually becomed(x;y).

4.8.7 Structural properties of the set of translated valuat ions

Let ( u) be the set of all valuations obtained by translatingu a nite number of times.

Lemma 4.8.7 If we know the values of a valuatiom on the pairs of elements incident
with an elementx, and we know that an elemeny is residually oppositex, then we know
the values ofv on the pairs of elements incident witly.

Proof. Let a;Hdy; then (U4) in an n-gon containinga; b; x and y tells us that v(a; b =
v(a® 1), where a® and I are the projections onx of a and b, respectively.

Lemma 4.8.8 Let be ann-gonin , nonfolded for a valuationv 2 ( u), such that all
values ofv in the line pencils of the corners and points on the sides ofare known; then
the values ofv are known entirely.
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Proof. Let x be an element of . Lety be an element of with minimal distance k to x.
Notice that k < n. If k =0, then we know the valuations of pairs of elements incident
with X, so suppos& > 0. Let z be the projection ofx ony. Then there are two ordinary
n-gons containingz and sharing a path of lengthn with . By applying (U3), (U4) at
least one of these twan-gons is nonfolded for the valuatiorv. Let ©be such ann-gon.
The valuations in the line pencils of the corners and pointsnothe sides of °are known
because of the previous lemma. The minimal distance fromto an element of °is now
strictly less than k. So by repeating the above argument one sees that one knowe th
value ofv everywhere.

Corollary 4.8.9 If d™*(y) =0 for all t°2 [0;t[, then u¥®t) = yvot),

Proof. If n = 6, then this follows from the “discrete' construction.

In the other cases, let be a nonfoldedn-gon (for u) containing x. If we can prove that
for each elementz in the relation dtro?x(z) = dtro?y(z) holds for all t° 2 [0;t[, then the
displacements of the base points in the trees corresponditigthe elements of are the
same, so by the previous lemma alse’ <Y = u¥&Y) Moreover, it su ces to prove this
for z equal tox and equal to the element opposit& in because of (C2).

If z = x, then note that, due to the symmetry of the de nitions in (C1), dﬁo?y(x) =0is
equivalent with dtro?X (y) =0 forall t°2 R*, so also fort°2 [0;t[. So the result follows from
the assumption.

If zis oppositex in , note that due to the residual equivalency ofx andy (by Lemma 4.8.4),
we have that (x;z) = (y;2) =0, and sod™(z) = d™Y(z) = n for all t°2 R*.

Remark 4.8.10 It should also be noted that at this point one can prove that tle group
of projectivities of a lineL preserves the tree structure associated with. This allows for
a characterization due to Jacques Tits in the case = 3, which was formulated without
proof in [47].

4.8.8 Apartments
An apartment in our R-building will consist of all valuations in ( u) for which a given

ordinary n-gon is nonfolded. Here, we investigate which valuationsdge a given ordinary
n-gon nonfolded. Later on, this will give us the a ne structure of the apartments.
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Let u be a valuation, and let be a nonfoldedn-gon in containing an elementx. Note
that due to (U4) and multiple use of Lemma 4.2.2, each ag candbembedded in such a
nonfolded n-gon, so results obtained here for single points or ags of @ true for all
points or ags.

Using the de nition of t-translation one easily obtains that a translationV(x;t) moves
the base point of the tree corresponding to an element of along the apartment of
that tree with ends the two elements of incident with y. The new base point lies at
length t sin(d(x;y) =n)=sin( =n) towards the projection ofx ony (note that when this
projection is not de ned, the length will be zero).

Consider the real a ne real two-dimensional spacé\ . One can think of this as a (degen-
erate) a ne apartment system with an ordinary n-gon at in nity. Identify this n-gon with

and let  be a point of A. Now consider the point at distancet on the sector-panel
with source and direction x. We observe that for an elementy of at in nity, the
distance component perpendicular to the direction ty of the original to the new point
Is t sin(d(x; y) =n)=sin( =n), which is exactly the same as above.

Note also that is nonfolded for the valuation u¥ ") and that the displacements of the
base points in the aforementioned trees descril& <Y completely whenu is known, due
to Lemma 4.8.8. So we can identify the points oA with the valuations obtained by
translating u to elements of a certain nonfoldedh-gon for u. This spawns a few direct
consequences.

Corollary 4.8.11 Let x be an element of and lett and s be nonnegative real numbers.
Then

uV v eas) = yVxt+s) (Jocal additivity).
uVxevys) = VsV if x1y (local commutativity).

uV Ve = g if  ,(x;y) = 0 (reversibility).

%522 R* such thatv = uV®i 9V&is)  |n addition, the total sum of lengths of
all the translations does not increase.

Note that the reversibility statement also implies that, ifv 2 ( u), then ( v) = ( u).
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4.8.9 Convexity

The next thing to investigate is how an ordinaryn-gon behaves with respect to trans-
lations towards elements outside . This will allow us to prose the (convexity) condition
(A2) later on.

Lemma 4.8.12 Let be an ordinaryn-gon andx an element not residually equivalent
with any of the elements of . Then cannot be a nonfolded-gon for u¥ ™t with t > 0.

Proof. Consider the closed path Xo;:::;Xon = Xg) that forms. There is an i 2

than the residual distance fromx to x;. We excluded thatx; is residually equivalent to
X, S0 the right derivative (with respect tot) of the valuation u¥™®Y(x; 1;X;+1) is positive
in a certain interval (for t) containing O, where the residual distances ta& in the path
are constant. This implies that is not nonfolded for t in this interval but di erent from
zero. We also know that we can partition [0+ 1 [ in a nite set of intervals with constant
residual distances tox in the path, so repeating the above argument proves the lemma

Lemma 4.8.13 Let fp;Lg be a ag in , let I;m be positive real numbers, and let
be a nonfoldedn-gon. Then, if is nonfolded for the valuationu¥(®DV{Lm) it is also
nonfolded for the valuationsu¥®!9VLm9 for all 122 [0;1] and m°®2 [0;m]. Moreover,
there is a pointp®and lineL%in  such thatu? ™19V LM = yVvEXIVLEM) for a]] 192 [0;1]
and m°2 [O; m].

Proof. For the rst assertion, note that, using Corollary 4.8.6, it follows that if we are

translating to a certain ag fp;Lg, we can rst "use up' that much of the translations top

andL (note that these commute) such that we only end up with valuaons to elements not
residually equivalent to an element of the ordinary-gon. If we now translate further than
this, the apartment loses its nonfoldedness and never regsiit, due to Lemma 4.8.12.
So if for uV®HV{LM) the n-gon is still nonfolded, it has to be that p and L remain

residually equivalent to elements of theé-gon for the whole translation. So if we translate
“less' (1VP1IVLMY with 192 [0;1] and m°2 [0; m]), will still be nonfolded.

The second assertion now follows from Lemma 4.8.12 and Cdtainf 4.8.9 (the element
and L stay residually equivalent with the same pair of incident eiments of then-gon for
the whole translation because of Corollary 4.8.6).
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4.8.10 Existence of apartments containing two valuations

Lemma 4.8.14 Let u be a valuation, andv;w 2 ( u). Then there exists a pointp and
line LIpin , and nonnegative real numberk and | such thatw = vV @KV,

Proof. First remark that w2 ( u) = ( v). Sow can be obtained fromv with a series
of i translations. We prove with induction that this series of tanslations can be reduced
into the desired form.

If i 1thisis trivial. If i > 1 we can reduce the last 1 translations into the desired
form, so we have thatw = vV &KVEDVEM) with yl z and k;I; m 2 R* (note that the last
two translations commute).

We now start a second induction oj = max(d(x;y);d(x;z)). If this is 1, then we are
done because of Corollary 4.8.11. So suppose that 1, and that we can reduce to the
desired form if the maximum is strictly less tharj . Without loss of generality, assume the
maximum in the de nition is reached ford(x; z). Let t be the smallest real positive number
such that the residual distance betweer and z in vV *!) equals the actual distance in .
There exists an elemenk®such that d(x% z) < d(x;z) and x°is residually equivalent with
x for vVt with t9< t (the existence of such ax®will be clari ed below).

If kK t, thenw = W&KVEDHV@EM) = (WESKVDV (@M  and so we are done in this case
by the second induction hypothesis. Ik >t , then

V(xK)V(y:)V(z;m)

W=V V(x;t))V(X:k HV(y:hV (z;m).

= (V
By the de nition of t, there exists a nonfoldech-gon for the valuation vV *! containing
x;y and z. This implies that the last three translations can be reduaktinto the desired
form of two translations towards two incident elements in te path from x to z (by
Corollary 4.8.11). If both of these translations are not toards z, then we are done due
to the second induction hypothesis. If this is not the case #mw = (vV D)V IOV (@m) =
(VW OEDWV V@MY for certain 1° and m® which is again reducable due to the second
induction hypothesis.

All that is left to do is clarify the existence of the elemenix® above. We will only point
out which elements should be chosen &§ the veri cation of the conditions is easily done.
We can assume thad(x;z) 2.

n=3

{ d(x;z) =2; here we setx’= z.
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{ d(x;z) = 3; here we takexq z, such that u(xx%z) = 0. The existence of such
an x°follows from applying Lemma 4.7.3 on a triangle containing; z and two
elements incident withx, constructed by (U1).

n=4

{ d(x;z) =2; here we setx’= z.

{ d(x;z) = 3; let (x;a;b;2 be the unique path of lenght 3 fromx to z. If
u(a; z) = 0, we let xX°beb. If this is not the case then letc be an element incident
with x and such thatu(a; c) = 0. Next construct an elementd incident with ¢
such that u(x; d) = 0. The last two constructions are possible by Lemma 4.2.2.
Finally x°will be the projection ofd on z. Note that x and x° are equidistant
due to Lemmas 4.8.1 and 4.8.2.

{ d(x;z) = 4; if x and z are equidistant, we letx® be z. Otherwise, using
Lemma 4.8.3, we can construct a pathx{ a; b; c; 2 such that u(x;b) u(b;2
and u(a; ©) = 0. Here we letx°be the elementb.

n = 6 and discrete. In this case the existence is guaranteed blget discreteness and
Lemma 4.7.6.

Corollary 4.8.15 If we reduce vV POV LmVENIVLEM) 9 an expression of the form
vV EREITVLEM® then 9% m® |+ m+ 194+ mC

Proof. All the reductions in the proof of the above lemma use Corolg 4.8.11, which
does not increase the sum of the lengths of the translations.

Lemma 4.8.16 For each pair of valuationsv;w 2 ( u) there is an ordinaryn-gon in
which is nonfolded for bothv and w.

Proof. Due to the previous lemma there exists a poinp and lineLlpin , I;m 2 R*

such that w = vW®HV(LM) | et pe an ordinary n-gon in containing p and L such
that is nonfolded for v (these exist because of Lemma 4.2.3). Because bptaAnd L lie
in , translations towards p and L produce valuations for which remains nonfolded. In
particular this holds for w = vV ®HV(LEm),
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4.8.11 Building the a ne apartment system

We end by putting all the pieces together to form an a ne apartment system. Let (u)
be the set of points. Remember that iv 2 ( u), then (u)= ( v).

Let be an ordinary n-gon of . Consider the setA() of all the valuations in ( u)
for which this n-gon is nonfolded. Suppose that two valuationg; and v, are in this set.
Lemma 4.8.14 tells us that there exists a adp;Lgin and k;| 2 R* such thatv, =
vy POVED “As s nonfolded for both v; and v,, Lemma 4.8.13 implies that there exists
a ag fp®L%Gin such that v, = v} PRV we can conclude that all the valuations
in the set A() can be obtained out of each other by translating towards éements of .
This is exactly the set of valuations which has been studied iCorollary 4.8.11. In the
reasoning before the statement of this corollary it was sedhat the valuations can be
interpreted as points ofA. The sector with sourcev 2 ( u) and direction the ag fp;Lg
will be the setfvV®EVEDK.| 2 R g.

This allows us to de ne a chartf .., ,forav2 ( u),and anonfolded n-gon, containing
a ag fp;Lg (the chart is de ned such that a chosen xed sector ofA is mapped to the
sector with sourcev and direction fp;lg). Let F be the collection of all these charts.
Condition (A1) can now easily seen to be true.

The second condition to check is (A2). Lef = f ., andf°= f oyopo 0 be two charts
in F. Let X = f 1(fY{A)). The points (or valuations) which are in the image of both
charts, are those valuations for which both and Care nonfolded. Letv®be a valuation
for which this is the case (if there is not such &% the condition (A2) is trivially satis ed).
Lemma 4.8.13 implies thatX is star convex forf 1(v%). Becausev®is arbitrary in f (X),
one obtains thatX is convex. ThatX is also closed follows from the fact that translations
change the valuations continuously.

Next thing we need to show is the existence ofi@2 W such thatf jx = f° wjx. Consider
both X and the similar setX °= 2 (f (A)). In order to prove the existence of such av
we need to prove thatX can be mapped ontoX °by somew 2 W. Themap =f°?! f

is bijective from X to X2 Let x; and X, be elements ofX. Then their images underf
are two valuationsv; andv,. Because they lie in the same apartmer( ), there is a ag
fq;Mgin and k;l 2 R* such thatv, = v/ @Y™ Byt as these two valuations are
also inA( 9, we know by Lemma 4.8.13 that there exists a ado®> M%Qin °such that
Vo = vy @ROVMED since the lengths of the translations and the type of elemisntowards
the translations happen is invariant, it follows that is distance preserving and preserves
the type of the directions at in nity of A. This implies the existence of the needew.

Condition (A3) is satis ed because of Lemma 4.8.16.
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Now, (A4) can be shown to be true as follows: suppose we haveotsectors related to
two ags fp;Lg andfq; Mg of . These can be embedded in an ordinary-gon . The
apartment A() contains sectors with directions fp;Lg and fq; Mg. This only leaves us
to prove that two sectors related to the same ag always intesect in a subsector. This last
assumption is true because if we have two ordinary-gons and °containing p and L,
it follows from Corollary 4.8.6 that there existl; m 2 R* such that for eachl® I;m® m
the valuation u¥®9V(Lm9 takes only the value zero in both and ° The set of these
valuations forms the desired subsector.

For (A5) we have three ordinaryn-gons , %and % each pair sharing a path of length
n. From (U3) and (U4) we deduce that, if for a valuationv 2 ( u) the ordinary n-gon

is nonfolded, then at least one of ®and ®is nonfolded forv, too. This means that
every point of A() belongs to A( 9 orto A( %, or to both. Since it is easy to see that
the intersection of two apartments is closed, the ses() \ A( 9 andA() \ A( 9 are
not disjoint, proving (A5).

It remains to prove that the "distance' functiond de ned on pairs of valuations by (A1),
(A2) and (A3) is indeed a distance function. (For two valuatbnsv and vV ®PVED | the
distance between both is de ned as the length of the third s&lof a triangle in a Euclidean
plane, where two sides have lengtk and |, and with the angle between both sides=n .)
However, by re-reading the proof in [24x1] of the equivalence of the various de nitions for
a ne apartment systems, one sees that the weaker inequalitg(u; v)  2(d(u; w)+ d(w; v))
also su ces. This inequality is a direct consequence of Cdiary 4.8.15.

So we conclude that the set of points (1), endowed with the set of apartments
fA() j isan ordinary n-gon of g;

forms a 2-dimensional a ne apartment system with the gened&ed n-gon at in nity.

All that is left to show is that the construction of Main Resut 4.3.1 applied to the a ne
apartment system de ned on (u) and the point de ned by the valuation u, gives us back
the valuation u on . One has to prove that, if x and y are adjacent, the corresponding
sector-panels with sourceu share a line segment of lengtlu(x;y). This follows from
Corollary 4.8.9 and the fact that, ifx and y are adjacent, one hasl* (y) = 0 if and only
if t 2 [O; u(x;y)l[.

This concludes the proof of Main Result 4.3.4.
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4.9 Proof of Application 4.4.1

Suppose we have a projective plane and a real numbér2 R* nfOg. Also suppose we
are either given a valuationu, or two functions d and \ satisfying the conditions listed
in Theorem 4.4.1. Use the identitiegd(p;g) = t Y®9 and\ L;M = arcsin(t “&M)) to
reconstruct the other function(s).

It is easily seen that Condition (U2) for valuations correspnds to Condition (M2) and
the part\d(p;9 =0, p= ' of Condition (M1).

If we have three pointsp, g andr, then

u(p;d  min(u(p;r);u(r;g)) , d(p;d)  max(d(p;r); d(r;q)):

The left hand side is satis ed for a valuation because of (UZ3nd Lemma 4.7.3; the right
hand side is satis ed for a distance because of (M1). So Conadn (U3) for points on a
line is equivalent with the inequality part of (M1).

Condition (U1) for valuations is equivalent with Conditions (M3) and (M4).
Also Condition (U4) corresponds directly to the sine rule Qudition (M5).

The only part that needs a closer look is how Condition (U3) fovaluations follows from

Conditions (M1) up to (M5) (and the already proven Conditiors (Ul), (U2), (U3) for

points on a line, and (U4)). LetL, M and N be three lines through a pointp. By

(U1), there exist two linesY and Z through p such that u(Y;Z) = 0. Since (Ul) and

(U3) hold for points on a line, Lemma 4.2.2 also holds. So theexistgl Y andrl Z with

u(p; 9 = u(p;r) = 0. We now have for the lineqr that (p;qr) = 0 by (U4). (Note that
is well-de ned because (U4) holds.)

Let I, m and n be the respective projections of, M and N on the linegr . Using (U4)
we see thatu(L;M ) = u(l;m), u(M;N) = u(m;n) and u(L;n) = u(l;n). So Condition
(U3) for the three linesL, M and N follows directly from the same Condition (U3) for
the three pointsl, m and n.

4.10 A condition on the completeness of  R-buildings

As we have discussed in Section 1.8.2, the completeness @& thetric space formed by
an R-building allows us to apply various results for complete CIK0)-spaces. While all
discrete R-buildings are complete, this statement is not true for arltrary R-buildings.
With the next theorem we want to provide a tool to determine wien a certainR-building
forms a complete metric space and when not.
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Main Result 4.10.1 The metric spaceg( ;d) de ned by anR-building ( ;F) is complete
if and only if all of the metric spaces de ned by the trees assated to its walls are
complete.

The guestion as to whether a certaifiR-tree forms a complete metric space seems an easier
guestion, which will hopefully be resolved foR-trees fromR-buildings of dimension three
and higher, using algebraic methods.

Remark 4.10.2 This result is related to a result of Bruhat and Tits ([8]) whee they use
the additional assumption that the building at in nity is Mo ufang.

4.11 Proof

First assume that the metric space (;d) is complete, and letm be a wall of the spherical
building atin nity. Let ( ,)n2n be a Cauchy sequence in the treB(m). The union of the
apartments of the R-building which at in nity contain m form a subsetK isometric
to the direct product of the metric space formed byl (m) and R (see Section 1.8.2).

Using this subsetK , we can ’lift' the Cauchy sequence (),on to @ Cauchy sequence
( nnen in K . As the metric space ( ;d) is complete, this sequence converges to
some point 2 . Our goal is to prove that the point  lies in K, implying that the
sequence (n)n2n COnverges. For this we have to prove that lies in an apartment which
at in nity contains the wall m. Let S; and S? be two opposite maximal sector-panels of
m; if we can prove that the germs of sector-panelS] and [S9 in the residue at are still
opposite, we are done. Equivalent with this last statementsithat for a shortest gallery
from a chamberC; containing S; to a chamberC? containing S? , the corresponding
gallery from [C] to [C9 always is nonstammering. As this is the case for each point of
the sequence (,)n2n, Corollary 4.5.6 implies that this is also the case for. So we have
proven that the metric space de ned by theR-tree T(m) is complete.

We are now left with the other direction to prove. Assume thatall the metric spaces
de ned by the trees corresponding to walls at in nity are complete. Let ( »)n2n be a
Cauchy sequence in the metric space {d). Let ( ;d) be the metric completion of ( ;d).
In this larger metric space the Cauchy sequence {),.n does converge to some point.
Choose some chambeZ; at in nity and consider the sequence of sectorsd | )n2n-

Lemma 4.11.1 Let C and C be two sectors with sources and respectively, and
having the same directiorC, . Then there exists a constank 2 R* depending on the type
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of the R-building, such that there exists a point for which the sectorC is a subsector of
bothC andC ,andd(; );d(; ) kd(; ).

Proof. Embed the sectorC in an apartment , and the sector C in an apartment °.
Let be the point of C \ C closest to (possible because this intersection is a closed
subset of due to Condition (A2)). The sector C is a subsector of bothC and C .

Let D; and D? be the chambers opposit€; in respectively ; and 2. Note that

2D and 2 D° Due tothe way we de ned , we have thatD \ D°= f g. Consider
the retraction r on the apartment centered at the germ of D (see [24, Prop. 1.17]).
This retraction maps the sectorD? to some sectoD ®in , only sharing its source  with
the sectorD . Asr( ) lies in D% it follows that there exists some constank such that
d(; );d(r( ); ) kd(;r ()). Because the retraction does not change distances to
and does not increase the other distances, this implies thesired result.

Corollary 4.11.2 There exists a constank®, such that for each sectoC , and | 2 R*,
there exists a point 2 C with d(; ) = k4, such that for each point at distance at
most| from , the sectorC is a subsector ofC .

Proof. All the sectorsC with d(; )<t,t2 R" and 2 C , contain a common point
which lies at a distancek®® from , with k°®®some constant. The result then follows from
applying the above lemma.

Using Corollary 4.11.2 one can nd a sequence of pointsy(),2n in Which also converges
to the point , and such that ifi <j , then the sectorC | is a subsector ofC ;. In the
completion we obtain a subset isometric to a sector, where the "sources (by applying
Corollaire 2.11 from [24] and its preceding text). Note thathe interior (as it would be
in an apartment) lies in .

Let S; be a sector-panel o€, . The sequence§ . )n2n forms a Cauchy sequence in the
tree T(S; ), contained in a half-line. Using the completeness of thisde, we can extend
this half-line to an apartment, and nd a sectorC? such that[C] , 6 [Cq , foralln 2 N.
Regarding the limit situation in , one obtains a subset isometric to two sectors with the
same ‘source' and sharing a “sector-panel’. Note again that the interioras it would be
in an apartment) lies in because the geodesic in between two points of lies again

in (due to the above corollary).

Repeating the algorithm one can obtain a subsdf of isometric to a half-apartment
with  on its "'wall' M, and such that all points ofK not in M lie in . Considering the
complete wall-treeT (m) where m is the direction at in nity of the walls in K parallel to
M, we see thatk has to lie completely in , proving that 2 , and completeness.
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4.12 Generalizations of R-trees related to walls and
panels at in nity

As already mentioned in Section 1.8.2, we will generalizedmotion of trees associated to
walls and panels at in nity in this section.

We let ( ;F) be an R-building with set of apartmentsA. Let ; be the corresponding
building at in nity with set of apartments A; (in one-to-one correspondence with the
elements ofA). Let S; be a certain simplex at in nity (with a corresponding sectoffacet
S); then its residue at in nity is a (possible weak) sphericabuilding ( 1 )s, -

One can repeat the two constructions from Section 1.8.2, bubw replacing the sector-
panel by the sector-facetS,; , and the wall m by the smallest convex subcompleB of
the sector-facetS; and some opposite sector-fac&? (a set in the R-building with this
subcomplexB at in nity will be referred to as a subspacg

These two constructions yield injections fromR™ (where m is the rank of the residue
of S; ) into sets T(S; ) and T(B). We now claim that the following two constructions
both yield R-buildings with as building at innity (1 )s, , forming a generalization of
Section 1.8.2.

4.13 Proof

Before proving that these two constructions yieldR-buildings we show that they are
equivalent. For this we need a few lemmas. When we use the motiof subsector-facet,
we only mean sector-facets which are subsets of the othertsedacet, and having the
same rank.

Lemma 4.13.1 Let S and S be two sector-facets with the same directioB; and
sources; 2 . Then there exists an apartment containing subsector-faseof both.

Proof. We embedS; in a chamber at innity C; . It follows from (A4) that the two
corresponding sector€ and C have a common subsecto€ with source (note that
there is no uniqueness here). Lat? be a chamber at in nity containing S; and adjacent
to C, , and such that the germs of the sector€ and C° are di erent, and containing
a subsector-facet ofS (to verify the existence of such aC?, consider any apartment
containing C ). Analogously we choose &%° containing a subsector-facet 0§ , with the
additional requirement that C% is adjacent with C? .
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Consider the two sector<C® and C% Let be any apartment containing C°. BecauseC%
is adjacent to this sector, there exists an apartment ° sharing a half-apartment with
and containingC% There is also a third apartment %sharing half-apartments with both
of the previous apartments. As each pair of points in the unioof all three apartments
. %and % lies in at least one of these apartments (by (A5)), we have &t at least one
of these apartments contains subsector-facets of bo#h and S .

Lemma 4.13.2 LetS be a secor-facet, an®? a sector-facet at in nity opposite t0S; .
Then there exists a unique subspace containing b@&p at in nity and a subsector-facet
of S; .

Proof. Let B be some minimal subspace containing bo®? andS; atinnity. Let 2 B
be a point. By the above lemma there exists an apartment cordining subsectors ofs
and S . In particular there exists a sectorC with source on S containing a subsector
of S . The germ of this sector is opposite to some germ of a sec®r containing S°. It
is clear that the apartment de ned by C; and D; contains a desired subspace. Unicity
is trivial.

The above lemma makes clear that the sets of points of the twarstructions are in
one-to-one correspondence with each other. An apartmenbfn the second construction
(using sector-facets) is easily seen to imply an apartment the rst construction (using
subspaces). Conversely, for the rst construction, one seéhat all apartments containing
S; and a subspace in the residue @; at in nity, correspond to one apartment of the
second construction, establishing a one-to-one corresplence.

We now verify (Al)-(A4) and the triangular inequality ( ) for both constructions. The
above implies that we can choose which one of both construars to verify the condition
for.

(Al1),(A2) Directly from the corresponding conditions of the original building and the second
construction.
(A3) From Lemma 4.13.1 using the rst construction.

(A4) Notice that sectors in the second construction are in t sectors of the original
building, so (A4) for the original building gives us a sectowhich can be seen to be
a sector of the rst construction.

(A5) From the second construction and (A5) for the original hilding.
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(4 ) From the second construction and the triangular inequalit for the original building.

As the conditions are all veried, we have proved that these anstructions yield R-
buildings.

4.14 Subbuildings corresponding to xbuildings at
in nity

Let ( ;F) be some a ne building with an automorphism groupG acting on it, xing at
least one point (whenG is nite this is implied by the Bruhat-Tits Theorem 1.8.4). T his
group G also acts on the spherical building ; at in nity. Suppose that the group G acts
type-preservingly on the spherical building ; , such that the xed simplicial complex 9
forms a building, and such that for each xed simplexS; , there also exists an opposite
xed simplex S? .

We do not demand that this new building is of the same rank as &original building.
While the xed structure of an automorphism groupG of a spherical building is in ‘most'
cases again a building, this is no longer the case for genepaildings, in particular for
the xed structure of G in the a ne building .

In this section, we will try to show that, despite the fact tha the xed structure is not
necessarily an a ne building, in many (but not all) cases thé xed structure does contain
an a ne building (% F 9 with the xed subbuilding ¢ as spherical building at in nity.
A list of some cases where the construction works is listed e end of the next section.

Remark 4.14.1 As one can notice from the notations used, we will consider ae build-
ings as being discreteR-buildings. It appears that the proof can be extended to the
nondiscrete case by replacing the induction argument, aneiesidering the completion

of the metric space ( ;d) when it is not complete.

4.15 Proof

Let S; and S? be maximal xed and opposite simplices at in nity, and let B be the
unique apartment of 2 containing both.
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Lemma 4.15.1 There exists at least one xed subspace of tifebuilding such that the
corresponding structure at in nity is B.

Proof. By applying Lemma 4.13.2, knowing that there is at least onexed point and
keeping in mind that if a point and some simplex at in nity is xed, then also all the
points on the unique sector-facet with this source and dirgon are xed.

By the above lemma we know that there is at least one xed subape with B at in nity;
now consider all such xed subspaces. All these subspacesrf@ setF of points of the R-
building T(B). As the original R-building is discrete, thisR-building will also be discrete,
and because of this also complete. The sEtis nonempty and bounded (because of the
maximality of S; and S? ), and has for this reason a unique center due to Theorem 1.8.4
With this unique center corresponds a xed subspace of the igmal R-building with

B at in nity. We will call this subspace the middle xed subspace corresponding tB.
These will form the apartments of the newR-building ° Using the associated structure
at in nity, one can de ne charts on them such that both Conditions (A1) and (A2) are
satis ed (for proving (A2) keep in mind that the original R-building ( ;F) satis es (A2)).

Remark that we can perform a similar construction to obtain aenter using xed asymp-
totic classes instead of xed subspaces (these two notionsean bijective correspondence
due to Lemma 4.13.2). If we look at things this way it followsHhat if two apartments
of 9share a maximal xed simplex at in nity, then the correspondng sector-facets in
both apartments are asymptotic, or equivalently, they shar a subsector-facet. Condition
(A4) now follows from applying the fact that two chambers of auilding lie in a common
apartment of the spherical building ¢ .

The same reasoning combined with convexity shows that if twapartments of °share a
half-apartment at in nity, then the apartments themselves share a half-apartment. The
next condition we handle, and this is the part where the extrassumptions come in,
is Condition (A5). Assume that there exist three apartmentsof © pairwise sharing a
half-apartment, while the intersection of all three is nonmpty. Such a con guration we
will call a triangle con guration. Using the generalization of the “trees corresponding to
walls construction' from Section 4.12, one can obtaintaiangle con guration of subspaces
isometric to the real a ne line. Because the sum of the anglesf a triangle in a CAT(0)-
space is less or equal than, the triangle formed by these subspaces satis es it too. If
vertices of the appropriate type (the residues of rank one &t nity) lie at angles strictly
more than = 3 (considering apartments as spheres), then the con guratn is impossible,
and Condition (A5) has to satis ed.

The triangle inequality is trivially satis ed as it is satis ed for the original R-building.
The only condition one still has to verify is Condition (A3). Note that due to discreteness
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and the apartments we de ned, the structure °is a chamber complex. Supposg; D and
D are three chambers, wher€ and D lie in an apartment of © while D°lies in an
apartment °of ° Using a lemma with a similar statement and proof as Lemma 138 it
follows easily thatC and D°lie in a common apartment of % Repeating this construction
proves (A3).

As we have proven Conditions (A1)-(A5) and the triangle inegglity, the set © forms
indeed anR-building. It is easily seen that ¢ is the building at in nity of  ©

We end with listing some diagrams of embeddings for which werved the aforementioned
condition on the angles (this list is not exhaustive). The digram itself depicts the type
of the building ; , the encircled nodes show how the xbuilding ¢ is embedded. We
group these diagrams per type of the embedded building .

A

ol

P 19

i
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Bijlage A

Nederlandstalige samenvatting

A.1 Inleiding

De titel van deze thesis luidt: "Een studie van gebouwen vaade rang'. De theorie der

gebouwen is ontwikkeld in de vroege jaren 60 door JacquesslitHet doel hiervan was

om een meetkundig instrument te verscha en om de belangrgke klassen van enkelvou-
dige groepen te bestuderen, namelijk de enkelvoudige alggbche groepen, de klassieke
groepen, de groepen van gemengd type en de Frobenius-gedie&hevalley groepen.

Waarom nu van lage rang? Jacques Tits bewees twee belangrilassi caties van be-
paalde klassen van gebouwen. Die van de sferische gebouveanrang minstens 3 in 1974
([44]), en die van de a ene gebouwen van rang minstens 4 in 18§[47]). Als men echter
de sferische gebouwen van rang 2 en de a ene gebouwen van ranhgekijkt, dan is een

classi catie onmogelijk. Deze gevallen verliezen hierdoechter niet hun belangrijkheid,

omdat ze nog steeds sterke meetkundige eigenschappen haldedoor de extra vrijheid

een veel rijker gedrag vertonen.

Wij hebben verscheidene karakteriseringen en construci®an zulke gebouwen van lage
rang bekomen - deze zijn terug te vinden in Sectie A.2.
A.1.1 Simpliciale complexen

Een simpliciaal complex S gede nieerd op een verzameling is een verzameling van
deelverzamelingen varX zodanig dat als een bepaalde deelverzameling een element is
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van S, dan ook elke deelverzameling ervan. De elementen viAnnoemt men depunten,
die van S de simplexen

Een maximaal simplexis een simplex niet bevat in een groter simplex. Twee maxineal
simplexen zijnadjacent als hun doorsnede een simplex is meteen punt minder dan de 2
maximale simplexen.

Een simpliciaal complex noemt men eekamercomplexals men elke twee maximale sim-
plexen kan verbinden met een keten van adjacente maximalangilexen. De maximale
simplexen noemt men in dit gevakamers Deze de nitie impliceert ook dat elke twee
kamers even groot zijn. Dganelenzijn dan de opeen na grootste simplexen.

Een kamercomplex noemt mewlun als elk paneel in juist twee kamers ligt, ek als het
altijd in minstens drie kamers ligt.

A.1.2 Gebouwen

Gebouwenzijn de dikke kamercomplexerS waarvoor er een verzamelingd van dunne
deel-kamercomplexen bestaatappartementengenoemd), zodat aan volgende twee voor-
waarden voldaan is.

Elke twee kamers liggen in een appartement.

Voor elke twee appartementerA en B bestaat er een isomor sme va\ naar B dat
de doorsnede elementsgewijs vasthoudt.

De orde van de kamers noemt deang van het gebouw.

A.1.3 Interessante gevallen
Rang 1

Een rang 1 gebouw is een verzameling puntef (jXj  3) waarbij de appartementen

de puntenparen zijn. Om deze gevallen meer structuur en b&émis te geven, de nieert

men MoufangverzamelingenHierbij veronderstelt men voor elk elemenk 2 X een groep
(de wortelgroepgenaamd) die regulier werkt op de overige punten vad. Ook eist men

dat de groepGY (de kleine projectieve groepvoortgebracht door alle wortelgroepen de
verzameling van alle wortelgroepen normaliseert.
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Rang 2

De rang twee gevallen kan men opsplitsen in twee categeme De eerste categorie is
waar de appartementen oneindig zijn; deze gebouwen komerei@en met de boomgrafen
zonder eindpunten, en waarbij elke top minstens 3 buren heéefDe appartmenten zijn
hier oneindige lijngrafen.

De tweede categorie (met eindige appartementen) komt overemet de bipartiete grafen
met maximale afstandn en minimale cykels van lengte 12 Meestal kiest meneen van

deze verzamelingen en associeert men daarnmemten met de andererechten en men

zegt dat een punt en een rechténcident zijn als de bijhorende toppen adjacent zijn.
Op deze manier bekomt men een (rang 2) meetkunde die men eemalgemeend@&-hoek

noemt (meestal kortwegn-hoek als er geen verwarring kan optreden). De appartemente
komen in de graaf overeen metrzhoeken, en in de veralgemeendehoek metn-hoeken

(wat de naamgeving verklaart).

Een dualiteit van een veralgemeende veelhoek is een automor sme van hghdrende
gebouw dat punten op rechten afbeeldt en vice versa. Men ndepen dualiteit een
polariteit als ze van orde 2 is. Een punt (rechte) van de veralgemeendelt@ek isabsoluut
als het (ze) incident is met zijn (haar) beeld.

Sferische gebouwen

Sferische gebouwenzijn gebouwen waarbij de appartementen eindige kamercoregen
zijn. De naam komt van het feit dat men in dit geval de apparteranten kan opvatten
als betegelingen van sferen. De mogelijke appartementemkaen classi ceren als volgt
(zonder verder te speci ceren wat de diagrammen betekenen)

An:o—o—o—:::—o—o (n 1)

Cn:o—o—o—::: ———»

Dn:o—o—o—:- L
En:o—:::l—o—< (n:6’7'8)
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Fi: e———e—2
I(m): "6 (m 5)

De sferische gebouwen van rang minstens 3 zijn geclassircedoor Jacques Tits ([44]).
Men kan aantonen dat zeMoufang zijn (wat een bepaalde groep-theoretische voorwaarde
is). Ruwweg komen ze overeen met de volgende groepen:

klassieke groepen,
algebrasche groepen,

gemengde groepen.

Voor sferische gebouwen van rang 2 (de veralgemeende vestka) bestaan er zogenaamde
vrije constructies waardoor een classi catie onmogelijlsi

De gebouwen van typéA, corresponderen meh-dimensionale projectieve ruimtes.

A ene gebouwen

A ene gebouwen zijn gebouwen waarbij de appartementen betegelingen zijaw a ene
Euclidische ruimtes. Dedimensie van de a ene ruimte is de rang van het gebouw min

1. Ook hier kan men de appartementen classi ceren (opnieuverzder er dieper op in te
gaan):

@no=o—--:—0=o

JL
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Bs:

e L

?4: —eo——e¢——9o —o

% 6

Met een a en gebouw kan men een zogenaangkbouw op oneindigssoceren, en dit is

dan een sferisch gebouw waarbij de rang 1 lager is dan de raram \het oorspronkelijk

gebouw. Gebruik makende van deze constructie en de clasatie van de sferische ge-
bouwen van rang minstens 3, kon Jacques Tits de a ene gebouw&an rang minstens 4
classi ceren ([47]).

Deze classi catie was niet beperkt tot de a ene gebouwen, nsa omvatte ook de R-
gebouwen met dimensie minstens 3, die niet-discrete vemabgeningen zijn van aene
gebouwen. Deze structuren hebben ook a ene ruimtes als app@menten, en tevens een
sferisch gebouw op oneindig.

Voor het rang 3 (of equivalent dimensie 2) geval bestaan ogomw vrije constructies (door
Mark Ronan [27]), en is classi catie dus uitgesloten.

De rang 2 gevallen komen overeen met de bomen uit de voorgaarskctie. De 1-
dimensionaleR-gebouwen zijn de zogenaamd®-bomen die niet-discrete veralgemeningen
zZijn van bomen.

A.2 Resultaten

De resultaten kan men ruwweg opdelen in drie categoeie.
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A.2.1 Rang 1: Moufangverzamelingen

Merk op dat de de nitie van een Moufangverzameling een puurgep-theoretische de nitie

is, in tegenstelling tot de de nitie van gebouwen. Als de weelgroepen niet commutatief
zijn, kan men echter toch een randg meetkunde de nieren op de punten van de Mouf-
angverzameling, waarbik de nilpotentieklasse is van de wortelgroepen. De fundamete

vraag is dan: is de automor smegroep van de Moufangverzanmg gelijk aan die van de
meetkunde?

In dit hoofdstuk bestuderen we ddRee-Tits MoufangverzamelingenDe punten van zo een
Moufangverzameling zijn de absolute punten van een polagit van de Ree zeshoekDe
wortelgroepen zijn van nilpotentie klasse 3, wat zeldzaans want opesn andere, recent
ontdekte, klasse ([23]) na, zijn de wortelgroepen van alle@ere gekende Moufangverza-
melingen van lagere nilpotentieklasse.

Men bekomt dus voor Ree-Tits Moufangverzamelingen rang 3 gtkundes,Ree meetkun-
desgenaamd, waarvan we de elementgrunten, cirkels en sferen noemen. We zijn er in
geslaagd aan te tonen dat de automor smegroep van deze magille (en van deelmeet-
kundes waarbij men enkel punten en cirkels, of punten en séer beschouwt), inderdaad
de automor smegroep van de Moufangverzameling is.

Een interessant gevolg hiervan is dat als een automor smervale Ree zeshoek de absolute
punten stabiliseert, ook de absolute rechten gestabilisdeworden.

Deze resultaten zijn bekomen in samenwerking met Fabienneasét en Hendrik Van Mal-
deghem.

A.2.2 Rang 2. Veralgemeende vierhoeken

Gemengde vierhoeken. | Een paar niet-collineaire punten p en g van een veralge-
meende vierhoek noemt meregulier, als voor elk puntr dat collineair is met twee punten
die beide collineair zijn met zowep en g, alle punten collineair met zowelp en q ook
collineair zijn metr. Een punt p is regulier als alle mogelijke niet-collineaire puntenparen
met p erin regulier zijn. Met een regulier punt kan men een bepaadneetkunde - een
duaal net- assoceren. Analoog de nieert men reguliere rechten.

Een bepaalde klasse van Moufang veralgemeende vierhoeksrde klasse vargemengde
vierhoeken Dit zijn de enige gekende vierhoeken waarvan alle punten egchten regulier
zijn. Men vermoedt dat deze de enige zijn.
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Wij bewezen een zwakkere versie van dit vermoeden. Ruwwegédo we aan dat als een
veralgemeende vierhoek "genoeg’ reguliere punten en rechbevat, en als de duale netten
corresponderend met de reguliere punten voldoen aan h&tioma van Veblen en Young
(een rechte die twee zijden van een driehoek snijdt, maar hia een hoekpunt, snijdt ook

de derde zijde) de vierhoek een gemengde vierhoek is.

Deze resultaten en die uit de volgende paragraaf zijn bekomm samenwerking met Van
Maldeghem.

Veralgemeende Suzuki-Tits inversieve vlakken. | Bepaalde gemengde vierhoe-

ken laten polariteiten toe. De absolute punten hiervan kan en opnieuw opvatten als een
Moufangverzameling, en de bijhorende meetkundes noemt mesralgemeende Suzuki-Tits
inversieve vlakken Als een toepassing op de karakterisering van gemengde kiazken

hebben we een karakterisering voor (perfecte) Suzuki-Tiigversieve vlakken van Hen-
drik Van Maldeghem ([61]) uitgebreid naar het niet-perfe@ geval, en de oorspronkelijke
karakterisering voor het perfecte geval vereenvoudigd.

Inbeddingen van veralgemeende vierhoeken in gebouwen van t ype F4. | De
eerste voorbeelden van veralgemeende veelhoeken onstoridma allemaal alsinbeddin-
genin projectieve ruimtes (die corresponderen met gebouwennvéype A,). Hierbij zijn
de punten van de veelhoek punten van de projectieve ruimten €le rechten van de veel-
hoek rechten van de projectieve ruimte waarbij de inciderdide natuurlijke is. Als deze
inbedding aan bepaalde "'mooie’ voorwaarden voldoet (bv. lalrechten van de veelhoek
door een punt liggen in een bepaalde deelruimte), dan erft deralgemeende veelhoek
symmetrie-eigenschappen over van de projectieve ruimteaardoor men classi caties en
karakteriseringen van bepaalde Moufangvierhoeken kan ogigen.

Echter niet alle Moufang veralgemeende veelhoeken kan memooi' inbedden in een pro-
jectieve ruimte. Bijvoorbeeld de zogenaamdexceptionele veralgemeende vierhoek van
type F,4 is niet op deze manier inbedbaar in een projectieve ruimte,aar wel in een ge-
bouw van type F,. Deze gebouwen kan men opvatten als rang 4 meetkundes yamten,
rechten vlakken en hyperrechten metasymplectische ruimteggenoemd. De vierhoeken
kan men dan inbedden door middel van punten en hyperrechtei®ok bv. de gemengde
vierhoeken kan men op deze manier inbedden.

Wij hebben aangetoond dat als een veralgemeende vierhoegahed is in een metasym-
plectische ruimte door middel van punten en hyperrechten, aarbij twee punten op de-
zelfde rechte in de vierhoek nooit opeen rechte liggen vade metasymplectische ruimte,
dan ofwel de vierhoek Moufang is, ofwel dat de inbedding "@atrd’ is.
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A.2.3 Rang 3: 2-Dimensionale R-gebouwen

Veelhoeken met valuatie. | Zoals reeds vermeld hebben a ene gebouwen (en hun
veralgemening alsR-gebouwen) een sferisch gebouw op oneindig. Als de rang vanh d
gebouw op oneindig minstens drie is kan men het gebouw op kg en het a en gebouw
(of R-gebouw) zelf classi ceren. Als de rang van het gebouw op amg#ig echter 2 is (dus
een veralgemeende veelhoek), is een classi catie onmgkeli

Men kan zich wel afvragen welke veralgemeende veelhoekenagsven op oneindig zijn van
eenR-gebouw. Hendrik Van Maldeghem voerde voor dit doeleralgemeende veelhoeken
met (discrete) valuatiein ([55]), en bewees dat een veralgemeendéoek metn 2 f 3;4g
een discrete valuatie toelaat als en slechts als de veelhdwit gebouw op oneindig is van
een (discreet) a en gebouw van typef, of type €,.

Wij hebben de de nitie van veelhoek met valuatie uitgebreidhaar het niet-discrete geval,
als volgt:

Zij =( P;L; 1) een veralgemeenda-hoek met puntenP, rechtenL en incidentiel, en
Zij u een functie, devaluatie genaamd, werkend op de paren collineaire punten en paren
snijdende rechten, waarbij de beelden iR* [flg liggen. Dan noemen we (;u) eenn-

(R*)?" 2 als de volgende condities voldaan zijn.

(U1) Op elke rechte ligt er een paar punterp en g zodat u(p; g = 0, en analoog voor
rechten door een punt.

(U2) u(x;y)= 1 als en slechts alx = .

(U3) u(x;y) <u(y;z) impliceert dat u(x;z) = u(x;y) als x;y en z collineaire punten of
snijdende rechten zijn.

(U4) Telkens alsxgl X1l X5l :::1X2, = Xo, met X; 2 P [ L, heeft men:
X1 x1
au(Xi 1;Xi+1) = QuU(Xi 1;Xi+1):
i=1 i=n+1

Wij zijn er in geslaagd aan te tonen dat enerzijds de veelhoap oneindig van een 2-
dimensionaal gebouw altijd een veelhoek met valuatie is, emderzijds dat eenn-hoek
(met n = 3;4) met valuatie het gebouw op oneindig is van een 2-dimensaai gebouw.
Het resterende discrete geval, zeshoeken met discrete wadie en gebouwen van typé,,
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hebben we ook opgelost. Tevens is aangetoond dat er voor etkenaar een mogelijke
gewichtreeks is (op veelvouden en valuaties die overal wdamul hebben na).

Als toepassing van deze karakterisering hebben we versdagie veelhoeken met valuatie
(en dus ook de bijhorenddr-gebouwen) geconstrueerd.

Deze resultaten zijn bekomen in samenwerking met Hendrik WaMlaldeghem.

Volledigheid van R-gebouwen. | Een metrische ruimte noemt men volledig als elke
Cauchyrij convergeert. Net zoals we een appartement van eBRrgebouw kunnen opvatten
als een a ene Euclidische ruimte, kunnen we eeR-gebouw opvatten als een metrische
ruimte bestaande uit aan elkaar gevoegde a ene Euclidischeiimtes. Als deze metrische
ruimte volledig is, dan zijn er bepaalde resultaten van togssing, bv. de Bruhat-Tits
xpuntstelling. Een (discreet) a en gebouw levert altijd e en volledige metrische ruimte
op, een niet-discreeR-gebouw niet altijd.

Het doel is nu na te gaan welkdk-gebouwen precies volledig zijn. In deze thesis nemen
we een stap in de richting van een antwoord. We herleiden deaay tot de vraag wel-
ke R-bomen er volledig zijn. Deze nieuwe vraag hopen we dan algebch te kunnen
beantwoorden.

Deelgebouwen van R-gebouwen corresponderende met xgebouwen op onein-

dig. | Als een groep werkt op een sferisch gebouw, dan is in de meesgevallen de
xstructuur opnieuw een (sferisch) gebouw. Voor algemenesgouwen (en dus ook a ene
gebouwen) geldt dit niet.

Veronderstel dat een groejs op een a en gebouw werkt; alhoewel de xstructuur van
G in niet noodzakelijk terug een gebouw is, is de xstructuurin het sferisch gebouw

1 op oneindig dit meestal wel. Wij bewezen nu dat de xstructuuin het R-gebouw
in bepaalde gevallen wel een deelgebouw bevat met de xsttuor in  ; als gebouw op
oneindig.

Deze resultaten zijn bekomen in samenwerking met Hendrik Wavlaldeghem.
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