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Preface

As one can see, the title of this thesis is: ‘A study of buildings of low rank’. The theory
of buildings is developed in the early ’60s by Jacques Tits. The aim was to study various
important classes of simple groups, such as the simple algebraic groups, classical groups,
groups of mixed type and Frobenius-twisted Chevalley groups in a geometric way.

Why of low rank? Jacques Tits proved two important classifications for certain classes of
buildings. One for spherical buildings of rank at least 3 in 1974 ([44]), and one for affine
buildings of rank at least 4 in 1986 ([47]). The spherical buildings of rank 2 and affine
buildings of rank 3 cannot be classified. However these cases do not lose their importance
because of this, because they still have strong geometric properties and have a much richer
behaviour.

We have obtained various characterizations and constructions of such buildings of low
rank. One can find the results explained in more detail at the beginning of Chapters 2, 3
and 4.

I want to end this preface with some words of thanks. First of all, I would like to thank
my supervisor Hendrik Van Maldeghem. He suggested me lots of interesting mathemat-
ical problems, while at the same time he gave me the freedom to work on problems I
liked. Another person who deserves special thanks is my co-supervisor Koen Thas for his
interest in my activities, the many mathematical discussions, reading my manuscripts,
and improving my mathematical writing skills. For other non-mathematical things he
was a great help and friend too the past years.

I also thank my family, my friends and my colleagues for pleasant times on many occasions.
I especially give thanks to my parents for supporting me in what I am doing, and Jeroen
Schillewaert, whom I shared an office with during the last three years, for being a great
friend and providing a healthy competition in many areas.

Finally, I acknowledge the Fund for Scientific Research - Flanders (FWO - Vlaanderen)
for financial support and making this Ph.D. possible.



4



Contents

1 Preliminaries 9

1.1 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Chamber complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Coxeter complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Coxeter matrices, groups, systems and diagrams . . . . . . . . . . . 12

1.3.2 Coxeter complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Adjacency and roots . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Galleries in buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Some interesting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.1 Rank one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.2 Rank two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.3 Spherical buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.4 Affine buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Residues of buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Related objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



6 CONTENTS

1.8.1 Moufang sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8.2 R-Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Some additional concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.9.1 Tits endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.9.2 Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 ‘Rank one’ case, or Moufang sets 29

2.1 Coordinatization of the Ree hexagon . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Hexagonal sexternary rings for mixed hexagons . . . . . . . . . . . 31

2.1.2 The embedding of mixed hexagons in PG(6,K) . . . . . . . . . . . . 32

2.2 The Ree-Tits ovoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The Ree geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Results on Ree geometries . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Auxiliary tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.1 The derived geometry at (∞) . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 Parallelism in the derived structure . . . . . . . . . . . . . . . . . . 40

2.5.3 Ree unitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Automorphism group of the Ree geometry . . . . . . . . . . . . . . . . . . 42

2.7 Automorphism group of the truncated Ree geometry GC . . . . . . . . . . . 44

2.8 Absolute points and lines of polarities in the Ree hexagon . . . . . . . . . . 47

2.9 Automorphism group of the truncated Ree geometry GS . . . . . . . . . . . 48

3 ‘Rank two’ case, or generalized polygons 53

3.1 Some further definitions on generalized quadrangles . . . . . . . . . . . . . 56

3.2 Examples of generalized quadrangles . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Symplectic quadrangles . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Mixed quadrangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Suzuki quadrangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



CONTENTS 7

3.3 Dual nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Results on mixed quadrangles . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Dual nets satisfying the axiom of Veblen-Young . . . . . . . . . . . 61

3.5.2 Generalized quadrangles with a lot of projective points . . . . . . . 63

3.5.3 Quadrangles with regular points satisfying (LD) . . . . . . . . . . . 66

3.6 Results on generalized Suzuki-tits inversive planes . . . . . . . . . . 69

3.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Metasymplectic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8.1 Embeddings of quadrangles in the metasymplectic space . . . . . . 77

3.9 Results on embedded quadrangles in metasymplectic spaces . . . 78

3.10 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.10.1 Further concepts and some lemmas about metasymplectic spaces . . 79

3.10.2 Embedding apartments . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10.3 Embedding quadrangles . . . . . . . . . . . . . . . . . . . . . . . . 83

4 ‘Rank three’ case, or two-dimensional R-buildings 85

4.1 Two-dimensional R-buildings . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Polygons with valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Results on 2-dimensional R-buildings and polygons with valuation 91

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 The discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Ultrametric projective planes . . . . . . . . . . . . . . . . . . . . . 92

4.4.3 Examples and constructions . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Proof of Main Result 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Proof of Main Result 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Proof of Main Result 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Proof of Main Result 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



8 CONTENTS

4.8.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8.2 n = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8.3 n = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8.4 n = 6 and the valuation is discrete . . . . . . . . . . . . . . . . . . 120

4.8.5 What about n = 5 and the nondiscrete case for n = 6? . . . . . . . 121

4.8.6 Some first observations . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.8.7 Structural properties of the set of translated valuations . . . . . . . 122

4.8.8 Apartments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.9 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8.10 Existence of apartments containing two valuations . . . . . . . . . . 126

4.8.11 Building the affine apartment system . . . . . . . . . . . . . . . . . 128

4.9 Proof of Application 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.10 A condition on the completeness of R-buildings . . . . . . . . . . . 130

4.11 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.12 Generalizations of R-trees related to walls and panels at infinity . 133

4.13 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.14 Subbuildings corresponding to fixbuildings at infinity . . . . . . . . 135

4.15 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Nederlandstalige samenvatting 139

A.1 Inleiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 Simpliciale complexen . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.2 Gebouwen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1.3 Interessante gevallen . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Resultaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.1 Rang 1: Moufangverzamelingen . . . . . . . . . . . . . . . . . . . . 144

A.2.2 Rang 2: Veralgemeende vierhoeken . . . . . . . . . . . . . . . . . . 144

A.2.3 Rang 3: 2-Dimensionale R-gebouwen . . . . . . . . . . . . . . . . . 146



Chapter 1

Preliminaries

In this first chapter, we define buildings and additional concepts needed in the later
chapters.

1.1 Simplicial complexes

The first thing we will define are simplicial complexes, which is the kind of object buildings
are.

1.1.1 Definitions

A simplicial complex S on a set X is a set of finite subsets of X such that for each subset
x ∈ S and y ⊂ x, we also have that y ∈ S. We also ask that each singleton of X is in S.
The elements of X are called the vertices, the elements of S are called simplices. We will
always assume that the order of simplices is bounded.

A maximal simplex of a simplicial complex S on X, is a simplex of S not contained in a
larger simplex. Two maximal simplices of the same order are called adjacent if they share
a simplex of order one less.

A type function of a symplicial complex S on X, is a function t from X to some set I,
such that no two different elements which have the same image under t can be in the same
simplex. The image under t of an element (set) is called the type of that element (set).
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A morphism from a simplicial complex S on X to a simplicial complex S ′ on X ′ is a
map φ from X to X ′ which maps simplices in S to simplices in S ′. A morphism φ is an
isomorphism if there exists a morphism φ′ from the simplicial complex S ′ on X ′ to the
simplicial complex S on X, such that φ′ ◦ φ is the identity on X. An automorphism is
an isomorphism from a simplicial complex to itself. The automorphisms of a simplicial
complex form a group: the automorphism group of the simplicial complex.

1.1.2 Chamber complexes

A simplicial complex is a chamber complex if for each two maximal simplices C and D
there is a sequence (C0 = C,C1, . . . , Ci = D) of maximal simplices, such that each two
subsequent maximal simplices are adjacent. In this case the maximal simplices are called
chambers. Note that this implies that all the chambers have the same order. The simplices
of order one less than the chambers are called panels.

A chamber complex is thin if each panel is in exactly two chambers. It is thick if each
panel lies in at least 3 chambers.

1.1.3 Convexity

A gallery in a chamber complex is a sequence of chambers (C0, C1, . . . , Ci), such that each
two subsequent chambers share at least a panel. The length of a gallery is the number of
chambers in the sequence minus one. The distance between two chambers is the minimal
length of a gallery between the two chambers.

The product projBA of a simplex A with a simplex B (the order of the simplices matter,
so projBA is not equal projAB), is the intersection of all the last chambers in galleries
of minimal length, starting with a chamber containing A, and ending with a chamber
containing B. (The minimal length considered here is the minimal length over all such
possible chambers.)

A sub simplicial complex S ′ of a simplicial complex S is convex, if for every two simplices
A and B in S ′, the product of A with B is again in S ′.

Remark 1.1.1 The notion of product (which can be found in [1]) is also known as the
‘projection’ of the simplex A on B. However, we will not use this since it can lead to
confusion with the notion of projection for generalized polygons (see Section 1.6.2).
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1.2 Geometries

A pre incidence geometry is a tuple (X,∆, tp, I), where X is called the set of elements,
∆ the set of types, tp is a surjective map from X to ∆, and I the incidence relation,
consisting of (unordered) pairs of elements in X such that no such pair has the same
image under the type function.

The function tp is called the type function. The type of an element is its image under the
type function. Two elements are called incident if the pair they define is an element of
the incidence relation (instead of {x, y} ∈ I, we will use the notation xIy). A flag is a
set of elements such that each two (different) elements in the set are incident. It is easily
seen that the set of all flags forms a simplicial complex (called the flag complex ) with a
type function on the set of elements. The rank of a pre incidence geometry is the order
of the set of types.

The type tp(F ) of a flag F is the set of types of its elements. A pre incidence geometry
is an incidence geometry if each maximal flag has type ∆. A residue of a flag F is the
geometry obtained by restricting the elements to those distinct of F and incident with all
elements of F .

A morphism (φ, ψ) of one incidence geometry (X,∆, tp, , I) to another (X ′,∆′, tp′, I′)
consists of two maps φ : X → X ′ and ψ : ∆ → ∆′ such that for all x, y ∈ X it holds that
tp′(φ(x)) = ψ(tp(x)) and xIy ⇒ φ(x)I′φ(y). Isomorphisms and automorphisms are then
defined in the usual way.

In most cases we will give the different types specific names - such as: points, blocks,
lines, planes, circles, spheres . . . In addition we will adopt common linguistic expressions
such as points lie on a line, lines go through points to describe incidence. Points on a
block (or line) will be called collinear, blocks (or lines) through a point concurrent. If two
elements are collinear or concurrent, then we say they are adjacent. If for two adjacent
elements x and y there exists a unique z such that xIzIy, then we will denote z by xy.

Further elaborating this point of view, one often denotes a rank 2 incidence geometry as
(P,L, I), where P (called the points) together with L (called lines, blocks . . . ) form the
elements, subdivided by type.
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1.3 Coxeter complexes

1.3.1 Coxeter matrices, groups, systems and diagrams

A Coxeter matrix is an n × n-matrix M such that mii = 1 for i ∈ {1, . . . , n} and mij =
mji ∈ {2, 3, . . . ,+∞} for i, j ∈ {1, . . . , n} and i 6= j.

The Coxeter group arising from this matrix M is the group W with generators S =
{s1, . . . , sn} and relations (sisj)

mij = e, with e the identity element of W . The Coxeter
system is the group together with the set of generators: (W,S). Note that the elements
in S are involutions.

Remark 1.3.1 It is possible that Coxeter systems with a different number of generators
still give rise to isomorphic Coxeter groups. The following two Coxeter matrices are
examples of this: 


1 3 2
3 1 2
2 3 1



 and

(
1 6
6 1

)
. (1.1)

Most often, instead of using a Coxeter matrix to define things, one uses a Coxeter diagram.
This diagram consists of n vertices, one for each generator in S. If for two different
generators si and sj it holds that mij = 2, then there is nothing drawn between the
associated vertices; if mij = 3, then one draws a single edge, if mij = 4, a double edge. If
mij > 4 one draws an edge and labels it with mij .

The Coxeter system is irreducible if this diagram is connected, and reducible if it is not.
We will always assume that a Coxeter system is irreducible. The reducible cases can be
viewed as direct products of irreducible cases.

Remark 1.3.2 In the literature triple edges are sometimes used for mij = 5, but also
sometimes for mij = 6 (in the context of Lie algebras). In order to avoid confusion, we
will not use triple edges.

1.3.2 Coxeter complexes

Let J be a subset of {1, . . . , n}; the generators sj with j ∈ J generate a sub Coxeter
group WJ . One now obtains a simplicial complex (called the Coxeter complex modeled
on (W,S)) in the following way.
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• The set of vertices consists of all left cosets of sub Coxeter groups WJ with |J | =
|S| − 1.

• The set of simplices consists of all left cosets of sub Coxeter groups WJ with J ⊆
{1, . . . , n}. A vertex lies in a simplex if the coset associated with the simplex is a
subset of the coset associated with the vertex.

The Coxeter complex forms a thin chamber complex with as chambers the left cosets of
the trivial subgroup {e}. So the chambers correspond to the elements of W . The group
W (with left action) forms an automorphism group of this Coxeter complex.

Spherical Coxeter complexes

A spherical Coxeter complex is a Coxeter complex which is finite. If this is the case, the
associated Coxeter group W can be realized as a finite reflection group of a real vector
space V , which is a finite group generated by reflections defined by hyperplanes of the
vector space of dimension |S| (a hyperplane of a vector space contains the zero vector by
definition). In addition, the generators S of the Coxeter group W will correspond to the
generating reflections of the finite reflection group.

The hyperplanes corresponding to the generators in S and their conjugates in W , will
subdivide V in cones corresponding to the chambers of the Coxeter complex (see Sec-
tion 1.8.2 for more details). If we consider the intersection of these cones with the unit
sphere in V , one gets a tesselation of the sphere, whence the name ‘spherical Coxeter
complex’.

The (irreducible) spherical Coxeter diagrams corresponding to spherical Coxeter com-
plexes have been classified:

• An: . . . (n ≥ 1)

• Cn: . . . (n ≥ 2)

• Dn: . . . (n ≥ 4)

• En: . . . (n = 6, 7, 8)
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• F4:

• H3:
5

• H4:
5

• I2(m):
m

(m ≥ 5)

The subscript n denotes the number of nodes in the diagram. The case Cn is sometimes
denoted as Bn, the case I2(6) often as G2. This difference in notation stems from the
theory of (crystallographic) root systems, where these different notations correspond to
essentially different (crystallographic) root systems. However, the Coxeter systems defined
by the root systems do not exhibit this difference.

An important notion for spherical Coxeter complexes is opposition. Let (W,S) be a
spherical Coxeter system. The finite group W has a unique ‘longest’ group element w0

(longest in terms of shortest representation as word with letters the generators S). This
element is an involution and is called the opposition involution. The induced action as
an automorphism of the corresponding spherical Coxeter simplex can be interpreted as
the point reflection across the centre of the sphere formed by the complex. Two simplices
of a spherical Coxeter are said to be opposite if they are interchanged by the opposition
involution.

Affine Coxeter complexes

A second interesting class of Coxeter complexes are the affine Coxeter complexes. These
are not finite, but the associated Coxeter group contains a normal abelian subgroup such
that the corresponding quotient group is finite.

The Coxeter group W associated to the affine Coxeter complex can again be realized as a
group acting on a real affine space of dimension |S| − 1 generated by reflections, but this
time not all the associated hyperplanes share the same point. Because of this we now get
a tesselation of the affine space instead. The normal abelian subgroup of which we spoke
in the previous paragraph is formed by the elements of W corresponding to translations
of the affine space.

The (affine) Coxeter diagrams corresponding to affine Coxeter complexes also have been
classified:
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• Ã1:
∞

• Ãn: . . . (n ≥ 2)

• B̃n: . . . (n ≥ 3)

• C̃n: . . . (n ≥ 2)

• D̃n: . . . (n ≥ 4)

• Ẽ6:

• Ẽ7:

• Ẽ8:

• F̃4:

• G̃2:
6

The subscript n denotes the number of nodes minus one.

1.3.3 Adjacency and roots

Suppose we have again a Coxeter complex modeled on (W,S), and that we have two
chambers C and D sharing a panel. These two chambers correspond to two elements
gC and gD in W . As they share a panel they are in the left coset of a subgroup {e, si}
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for some i. So gD = gCsi. We then say that these two chambers are i-adjacent. The
involutory automorphism gCsigC

−1 maps the chambers C and D to each other.

Now consider the set R of all chambers for which the distance to the chamber C is strictly
less than the distance to D. Analogously define R′ as the set of chambers closer to D than
to C. These two sets partition the set of chambers in the Coxeter complex. The union of
all the chambers in such a set forms a convex subcomplex of the Coxeter complex, which
we shall call a root. Note that gCsigC

−1 maps the roots to each other. The simplicial
subcomplex fixed by this mapping is called the wall of the root.

1.4 Buildings

A weak building is a simplicial complex Λ, with a set A of subcomplexes called apartments,
such that:

(B0) Each apartment is a Coxeter complex.

(B1) Each two simplices of Λ are contained in an apartment.

(B2) If two apartments Σ and Σ′ share two simplices A and B, then there exists an
isomorphism from Σ to Σ′ fixing the vertices in A and B.

A weak building is a chamber complex; if it is thick, we call it a building. We will always
assume that the Coxeter complex is irreducible - the reducible cases can be thought of
as direct products of irreducible buildings. The roots of the building are the roots of its
apartments. The type of the Coxeter complexes formed by the apartments, will be called
the type of the building.

One can prove that (weak) buildings are flag complexes of (unique) geometries of rank |S|.
The types of the elements of this geometry (or equivalently the vertices of the simplicial
complex) correspond to the nodes of the diagram.

Remark 1.4.1 If we only would want to define buildings, then due to the thickness
condition one can significantly weaken condition (B0) and only ask that the apartments
are thin chamber complexes.

The notions morphism, isomorphism and automorphism for buildings are the same for the
associated simplicial complex, but with the added condition that apartments are mapped
to apartments.
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1.5 Galleries in buildings

In Section 1.1.3 we defined galleries in chamber complexes. Since buildings are chamber
complexes, galleries of chambers in buildings are also defined. Note that because of
Axioms [B1] and [B2] of buildings, the notion of i-adjacency can be extended to chambers
in the building, and sharing a panel.

Combining this, one can associate a word with letters the generators S of the Coxeter
system (W,S), by concatenating for each two subsequent chambers in the galleries the
generator si, if those two chambers are i-adjacent. This word can also be interpreted as
a group element of W .

The following lemma is well-known in the theory of buildings (see for example [28, p.
28]):

Lemma 1.5.1 A gallery between two chambers has the shortest length possible between
those two chambers, if and only if the associated word has no shorter representation in
the Coxeter group W .

Also one can prove that this word viewed as group element of W does not depend on
which gallery between the two chambers is considered. This provides some sort of distance
function between chambers, the Weyl distance.

Remark 1.5.2 There is another way to define buildings, where one of the axioms is
exactly the above lemma. In fact, [28] uses this approach, and then shows equivalence
with the definition we used.

1.6 Some interesting cases

There are many types of buildings, in this section we look at some interesting cases.

1.6.1 Rank one

Here the building is just a set, the chambers are the elements, and the apartments all the
pairs of elements. On its own this is not an interesting case, but it becomes interesting
and useful if we add some Moufang-like condition, see Section 1.8.1.
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1.6.2 Rank two

Here the Coxeter group is a (finite or infinite) dihedral group of order 2m12.

First suppose we are in the finite case, and that we have a dihedral group of order 2n.
Then the Coxeter complexes are flag complexes of ordinary n-gons. The buildings are the
flag complexes of geometries called ‘generalized polygons’ (we will often omit ‘generalized’
if the context is clear).

A generalized n-gon (n ∈ N, n ≥ 2) Γ = (P,L, I) is a rank 2 geometry consisting of a
point set P, a line set L (with P ∩ L = ∅), and incidence relation I between P and L
satisfying the following axioms.

(GP1) Every element is incident with at least three other elements.

(GP2) For every pair of elements x, y ∈ P ∪L, there exists a sequence x0 = x, x1, . . . , xk−1,
xk = y, with xi−1Ixi for 1 ≤ i ≤ k and with k ≤ n.

(GP3) The sequence in (GP2) is unique whenever k < n.

Note that this definition is self-dual; it is invariant under interchanging the notions point
and line. If we weaken Axiom (GP1) to ‘at least two other elements’, then we call the
geometry a weak generalized n-gon.

A path of a generalized polygon is a sequence of elements,such that each two subsequent
elements are incident. The length of such a path and the distance d between two elements
(not chambers) are now defined in a similar fashion as for galleries in Section 1.1.3. A
path is closed if the last element of the sequence equals the first, and is nonstammering
if each for each element of the sequence, the two neighbours are different.

Two elements at maximal distance n are said to be opposite. If two elements are not
opposite, then the unique element incident with y closest to x is the projection of x on y.

The apartments correspond to the nonstammering closed paths of length 2n, i.e. the
ordinary n-gons in the geometry. The stammering closed paths of length 2n will be called
degenerate apartments.

A generalized 3-gon is the same as a projective plane. Below are the smallest building of
type A2 (the flag complex of the projective plane PG(2, 2)), and the smallest building of
type B2 (the flag complex of the symplectic quadrangle 2).
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Now suppose we are in the infinite case. In this case the Coxeter diagram of the building
is of type Ã1, and the buildings are the trees without endpoints, and such that each vertex
has at least three neighbours. The smallest such building is shown below.

Collineations and dualities

We now take a closer look at the automorphisms of the spherical rank 2 buildings and
the corresponding generalized polygons. These break down in two classes, collineations,
which map points to points and lines to lines, and dualities, which map points to lines
and lines to points, both preserving incidence.

A duality from a polygon to itself of order 2 is called a polarity. An absolute element of
a polarity of a generalized polygon is an element incident with the image of that element
under the polarity.

The set of absolute points of a polarity of a 2n-gon forms an ovoid of the 2n-gon, which is
a set O of mutually opposite points, such that every element of the 2n-gon lies at distance
at most n from a certain element of O.
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1.6.3 Spherical buildings

Spherical buildings are buildings with spherical (and so finite) Coxeter complexes. Let Λ
be a such a building and α a root of it. The root group Uα is the set of all automorphisms
of the building which fixes α and all chambers sharing a panel with two different chambers
of α. One says that the spherical building is Moufang if for each root α, the group Uα

acts transitively on the set of apartments containing α. Furthermore it can be shown
that, if this is the case, then the group Uα acts sharply transitively on the set of these
apartments.

Now suppose the rank of the building is 3 or greater; then J. Tits proved in [44] that it
(which are pure geometric objects) satisfies the Moufang condition, and that it can be
classified. Roughly speaking such buildings correspond to three types of groups - classical,
algebraic and mixed groups. This is perhaps the most important result in the theory of
buildings.

Spherical Moufang buildings of rank 2, i.e. generalized n-gons, only occur for n = 3, 4, 6
and 8 (see [45], [46] and [64]). A consequence of this is that no buildings of type H3 or H4

exist, as they would lead to the existence of Moufang generalized 5-gons.

Remark 1.6.1 The Moufang property can be defined for all types of buildings, but it
is omitted here as we will only need it in the spherical case (where the definition is less
elaborate).

Opposition and subapartments

We define 2 simplices of a spherical building to be opposite if they are opposite in an
apartment (a spherical Coxeter complex) which contains them both. Existence of such an
apartment is implied by (B1), the independence of which apartment is chosen by (B2).

1.6.4 Affine buildings

Affine buildings are the buildings with affine Coxeter complexes. The more general con-
cept of affine apartment system will be discussed later on.
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1.7 Residues of buildings

In Section 1.2 we already discussed residues of flags of geometries. As buildings are flag
complexes of geometries, residues of simplices of buildings also make sense. These residues
are again buildings, where the corresponding Coxeter diagram will be the diagram of the
original building with the nodes corresponding to the elements of the flag (equivalently
the vertices of the simplex) erased.

1.8 Related objects

1.8.1 Moufang sets

As we have seen above, buildings of rank one are trivial structures. But by adding a
Moufang-like condition these become very interesting. Many examples arise from higher
rank buildings.

Let X be a set (with |X| ≥ 3), with for each x ∈ X a group Ux (we call the root groups)
acting on X while fixing x. Then (X, (Ux)x∈X) is a Moufang set if the following two
conditions are met:

• For every x ∈ X, Ux acts regularly on X\{x}.

• The set of all root groups is normalized by the group G† generated by all the root
groups.

The group G† is called the little projective group, and is obviously 2-transitive. If it is
sharply 2-transitive, we say the Moufang set is improper, otherwise we call it proper. The
full projective group is the group of all elements of Sym(X) that leave the set of root
groups invariant.

Geometries defined by Moufang sets

Let (X, (Ux)x∈X) be a Moufang set as above. For a certain x ∈ X, let Vx be a nontrivial
subgroup of Ux such that Vx is a normal subgroup of the stabilizer G†

x. For any y ∈ X,
we can now define a similar subgroup Vy = V g

x EG†
y, with g ∈ G† such that xg = y (this

is possible by 2-transitivity). The condition on Vx makes it so that Vy is independent of
the choice of g.
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The Moufang building of rank one defined on X by (Ux)x∈X relative to (Vx)x∈X is the rank
2 geometry (X,Λ,∈ or ∋) with as points the elements of X, and blocks Λ the subsets
of X of the form {x} ∪ {yv|v ∈ Vx}. The element x of such a block is called the gnarl of
the block (in the cases we will consider, the gnarl of a block will turn out to be unique).

It is clear that the little projective group will induce automorphisms of this geometry
(X,Λ,∈ or ∋). If one shows that all the automorphisms of (X,Λ) arise in this way, then
the study of the Moufang set will be equivalent with the study of the geometry (this idea
has been proposed by Tits in [49] and [50], see also [61]). Such results are obtained in
Chapter 2 for the Ree-Tits Moufang set.

Good candidates for the choice of Vx are the centers and derived groups of the root groups.

1.8.2 R-Buildings

Definitions

Let (W,S) be a spherical irreducible Coxeter system. So W is presented by the set S of
involutions subject to the relations which specify the order of the products of every pair
of involutions (see Section 1.3.2). This group has a natural action on a real vector space
V of dimension |S|. Let A be the affine space associated to V , which we call the model
space. We define W to be the group generated by W and the translations of the model
space.

Let H0 be the set of hyperplanes of V corresponding to the axes of the reflections in S and
all their conjugates. Let H be the set of all translates of all elements of H0. The elements
of H are called walls and the (closed) half spaces they bound are called half-apartments
or roots. A vector sector is the intersection of all roots that (1) are bounded by elements
of H0, and (2) contain a given point x that does not belong to any element of H0. The
bounding walls of these roots will be referred to as the side-walls of the vector sector. A
vector sector can also be defined as the topological closure of a connected component of
V \ (∪H0). Any translate of a vector sector is a sector, with corresponding translated
side-walls. A sector-facet is an intersection of a given sector with a finite number of its
side-walls. The latter number can be zero, in which case the sector-facet is the sector
itself; if this number is one, then we call the sector-facet a sector-panel. The intersection
of a sector with all its side-walls is a point which is called the source of the sector, and of
every sector-facet defined from it. This source is unique due to the irreducibility of the
Coxeter system.



1.8 Related objects 23

An R-building of type (W,S) (also called an affine apartment system) (definition by
Jacques Tits as can be found in [28] by Mark Ronan, along with some historic background)
is an object (Λ,F) consisting of a set Λ together with a collection F of injections of A
into Λ called charts obeying the five conditions below. The image of A under a chart
f ∈ F will be called an apartment, and the image of a sector, half-apartment, . . . of A
under a certain f ∈ F will be called a sector, half-apartment, . . . of Λ.

(A1) If w ∈W and f ∈ F , then f ◦ w ∈ F .

(A2) If f, f ′ ∈ F , then X = f−1(f ′(A)) is closed and convex in A, and f |X = f ′ ◦ w|X
for some w ∈W .

(A3) Any two points of Λ lie in a common apartment.

The last two axioms allow us to define a function d : Λ × Λ → R
+ such that for any

a, b ∈ A and f ∈ F , d(f(a), f(b)) is equal to the Euclidean distance between a and b in
A.

(A4) Any two sectors contain subsectors lying in a common apartment.

(A5′) Given f ∈ F and a point α ∈ Λ, there is a retraction ρ : Λ → f(A) such that the
preimage of α is {α} and such that for each β, γ ∈ Λ : d(ρ(β), ρ(γ)) ≤ d(β, γ).

Besides the original paper [47] of J. Tits, an important article is the one of Anne Parreau
([24]). In the latter she describes many structural properties of R-buildings. Also she
introduces some alternative definitions, including the following one: we again ask (A1),
(A2), (A3) and (A4) to be satisfied, but replace (A5′) by d being a distance function, and

(A5) If we have three apartements, each two apartments of which share a half-apartment,
then the intersection of all three is nonempty.

We call |S|, which is also equal to dimA, the dimension of (Λ,F). We will usually denote
(Λ,F) briefly by Λ, by slight abuse of notation.

Spherical buildings from R-buildings

One can associate spherical buildings of type (W,S) to R-buildings in two ways. The first
way to do so is to construct the building at infinity. Two sector-facets of Λ will be called
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parallel if the distance between them is bounded. Due to the triangle inequality this is an
equivalence relation. The equivalence classes (named facets at infinity) form a spherical
building Λ∞ of type (W,S) called the building at infinity of (Λ,F). The chambers of Λ∞

are the equivalence classes of parallel sectors. An apartment Σ of Λ corresponds to an
apartment Σ∞ of Λ∞ in a bijective way. The direction of a facet is the parallel class it
belongs to. Another way to define equivalence classes is the following: two sector-facets
are asymptotic if they have a sub sector-facet in common of the same dimension as the
original two. Two asymptotic sector-facets are necessarily parallel, for sectors these two
notions are identical.

A second way to construct a spherical building is to look at the ‘local’ structure instead
of the one at infinity. Let α be a point of Λ, and F, F ′ two sector-facets with source α.
Then these two facets will locally coincide if their intersection is a neighbourhood of α in
both F and F ′. This relation forms an equivalence relation defining germs of facets as
equivalence classes (notation [F ]α). These germs form a (possibly weak) building [Λ]α of
type (W,S), called the residue at α (this notion is different, but slightly related to the
previously defined residues). If Σ is an apartment containing α, then [Σ]α will be used to
denote the corresponding apartment in [Λ]α. If we speak about a germ in [Λ]α without
further specifying which kind of facet it is derived from, we mean a germ of a sector.

The following lemma by Anne Parreau will prove to be an important tool in our proofs.

Lemma 1.8.1 (Parreau [24], Proposition 1.8) Let x be a chamber of the building at
infinity Λ∞ and C a sector with source α ∈ Λ. Then there exists an apartment Σ con-
taining an element of the germ [C]α and such that Σ∞ contains x.

This has also an interesting corollary.

Corollary 1.8.2 (Parreau [24], Corollary 1.9) Let α be a point of Λ and F∞ a facet
of the building at infinity. Then there is a unique facet F ′ ∈ F∞ with source α.

The unique facet of the previous corollary will be denoted by (F∞)α or Fα.

This introduction of germs allows us to state an additional alternative definition from [24],
which replaces (A3) and (A5’) by the following stronger version of (A3).

(A3’) Any two germs lie in a common apartment.

Affine buildings form a special case of R-buildings; they will be referred to as the ‘discrete
case’ of R-buildings. The type of the spherical building at infinity of an affine building is
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the ‘type of affine Coxeter system without the tilde’, keeping in mind that I2(6) equals G2

and Bn equals Cn (see Section 1.3.2). This implies that the types of the possible spherical
buildings at infinity of an affine building are restricted (in particular only generalized
n-gons with n = 3, 4 or 6 are possible as building at infinity of an affine building). For R-
buildings, every type of spherical building at infinity is possible (except H3 or H4, as there
do not exist such spherical buildings), by the classical examples and free constructions
discussed in the next paragraph.

If the dimension of Λ is at least 3, then Λ∞ is a spherical Moufang building and, in
principle, Λ is known, see [47]. For the dimension 2 case, so with a generalized n-gon at
infinity, there exist free constructions for the discrete case by M. Ronan in [27] (with n = 3,
4 or 6), and nondiscrete constructions for all n by A. Berenstein and M. Kapovich ([6]).
These constructions imply that a classification for the dimension 2 case is impossible.

Also R-buildings can be generalized. They form a special case of Λ-buildings, where Λ is
an ordered abelian group. For more information see [4].

Trees associated to walls and panels at infinity

With a wall M of an R-building one can associate a direction at infinity (by taking the
direction of all sector-facets it contains). This direction M∞ at infinity will be a wall of
the spherical building at infinity.

Let m (respectively π) be a wall (resp. a sector-panel contained in the wall m) of the
building at infinity. Let T (m) be the set of all walls M of the R-building with M∞ = m,
and T (π) the set of all asymptotic classes of sector-panels in the parallel class π.

One can define charts (and so also apartments) from R to T (m) (resp. T (π)). First choose
M (resp. D) a wall (resp. a sector-panel contained in M) of the model space, such that
there exists some chart f such that f(M)∞ = m and f(D) ∈ π. One can identify the
model space A with the product R ×M . For every chart g ∈ F of the R-building (Λ,F)
such that g(M)∞ = m (resp. f(D) ∈ π), one defines a chart g′ as follows: if x ∈ R, then
g′(r) is the wall g({r} ×M) (resp. the asymptotic class containing g({r} ×D)).

These two constructions yield R-buildings with a rank one building at infinity, such build-
ings are better know as R-trees (or shortly trees when no confusion can arise). The
following theorem shows the connection between the above two constructions.

Theorem 1.8.3 If π is a panel in some wall m, then for each asymptotic class D of
sector-panels with direction π, there is a unique wall M in the direction m containing a
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representative of D. The map D 7→ M is an isomorphism from the R-tree T (π) to the
R-tree T (m).

These constructions will be generalized in Section 4.12.

CAT(0)-spaces

For now suppose that (X, d) is some metric space, not necessarily an R-building. A
geodesic is a subset of the metric space X isometric to a closed interval of real numbers.
The metric space (X, d) is a geodesic metric space if each two points of X can be connected
by a geodesic. From (A3) it follows that R-buildings are geodesic metric spaces.

Let x, y and z ∈ X be three points in a geodesic metric space (X, d). Because of the
triangle inequality we can find three points x̄, ȳ and z̄ in the Euclidean plane R

2 such
that each pair of points have the same distance as the corresponding pair in x, y, z. The
triangle formed by the three points is called a comparison triangle of x, y and z. Consider
a point a on a geodesic between x and y, so we have that d(x, y) = d(x, a) + d(a, y) (note
that the geodesic, and so also the point a, is not necessarily unique). We now can find
a point ā on the line through x̄ and ȳ such that the pairwise distances in x̄, ȳ, ā are the
same as in x, y, a. If the distance between z and a is smaller than the distance between
z̄ and ā, we say that the geodesic metric space (X, d) is a CAT(0)-space. Roughly this
should be thought of as the space having nonpositive curvature.

The metric spaces formed by R-buildings are examples of CAT(0)-spaces. Complete
CAT(0)-spaces (complete meaning that all Cauchy sequences converge) have several nice
properties, such as:

Theorem 1.8.4 A nonempty bounded subset of a complete CAT(0)-space X has an
unique ‘center’.

The following direct corollary of the above lemma is known as the Bruhat-Tits theorem.

Corollary 1.8.5 Let G be a group of isometries of a complete CAT(0)-space (X, d). If
G stabilizes a nonempty bounded subset of X, then G fixes some point in X.

Although all discrete R-buildings form complete metric spaces, this is not true in general.
We will take a closer look at this problem in Section 4.10.

Remark 1.8.6 The notion of completeness has also another meaning when used for R-
buildings, in the sense of ‘the complete system of apartments’. However, there will be no
confusion possible as we will not use this other notion in this thesis.
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1.9 Some additional concepts

We end the introduction by defining two minor concepts which appear at various chapters
of this thesis.

1.9.1 Tits endomorphisms

Let K be a field with finite characteristic p. The Frobenius endomorphism is the map
x 7→ xp. A Tits endomorphism is then an endomorphism, such that applying it twice
gives the Frobenius endomorphism. When the field K is a finite field of characteristic p,
then every field element is a p-th power, so K

p = K (one says that the field is perfect). A
finite field of characteristic p admits a Tits endomorphism if and only if the order of K is
an odd power of p.

1.9.2 Nets

A net is a rank 2 geometry (P,B, I), consisting of points P, blocks B and incidence
relation I, such that for each point p ∈ P and block B ∈ B, there exists exactly one block
B′ incident with p, parallel with B (where 2 blocks are parallel if the points incident with
the two blocks are either completely the same or disjoint).

It can be shown that the parallelism of blocks in a net forms an equivalence relation,
defining parallel classes.
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Chapter 2

‘Rank one’ case, or Moufang sets

The Ree groups in characteristic 3 (defined by Ree in [26]) and their generalizations over
nonperfect fields (by Tits [42]) provide examples of Moufang sets. The root groups of
these Moufang sets have nilpotency class 3. This is a rather rare phenomenon; indeed,
until recently, these were the only known Moufang sets with this property (a second class
was discovered and constructed in [23]). Associated with each Ree group is a geometry
(called a unital in the finite case), where each pair of points lies on exactly one line (in
the finite case a 2− (q3 +1, q+1, 1)-design), see [19]. This geometry can be viewed as the
geometry of involutions in a Ree group, since the blocks are in one-to-one correspondence
with a conjugacy class of involutions (in the finite case there is only one conjugacy class).
In this way, Ree groups can be better understood in that several properties become more
geometric and intuitive through this geometry.

In this chapter we introduce another geometry for each Ree group, inspired by the general
construction of geometries associated to ‘wide’ Moufang sets (for this construction see
Section 1.8.1) as proposed by Tits in one of his lectures: ‘wide’ here means that the
unipotent subgroups are not abelian. In fact, this construction is the counterpart for Ree
groups of the inversive planes for Suzuki groups (see also the next chapter and [61]). The
structure of the geometries that we will introduce is probably slightly more involved than
that of the ‘unitals’, but they have the major advantage that the automorphism groups of
the corresponding Ree groups are their full automorphism groups (and this is our Main
Result below), a result that is not yet proved for the unitals. This result contributes to
Tits’ programme of characterizing all ‘wide’ Moufang sets in this way. As an application,
we can show that every collineation of a Moufang hexagon of mixed type permuting the
absolute points of a polarity, centralizes that polarity (or, equivalently, also permutes the
absolute lines). This, in turn, means that the set of absolute points of any polarity of
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any Moufang hexagon (necessarily of mixed type) determines the polarity completely and
unambiguously. Combined with other results of the author ([34]) and H. Van Maldeghem
([59]), this provides the answer to the aformentioned question for all Moufang polygons.

The ‘new’ geometries also have a number of interesting combinatorial properties, but we
will not concentrate on these, though it would be worthwhile to perform an investigation
in that direction.

Every Ree group is the centralizer of a certain outer involution of a Dickson group of
type G2 over a field of characteristic 3 admitting a Tits endomorphism. A geometric way
to see this is to consider the associated Moufang generalized hexagon, which is of mixed
type. Then the outer involution is a polarity, and the associated Ree group acts doubly
transitively on the absolute points of that polarity. That is essentially the way we are
going to define and use the Ree groups. These Moufang hexagons are called Ree hexagons
in [59] precisely for that reason.

Hence, in order to investigate the Moufang sets associated with the Ree groups, we turn
to the Ree hexagons, which, as follows from our remarks above, are defined over a field of
characteristic 3 admitting a Tits endomorphism θ, and they allow a polarity ρ. The ab-
solute points under this polarity, together with the automorphisms of the mixed hexagon
commuting with ρ, form the Ree-Tits Moufang set. Since we will need an explicit de-
scription of the absolute points of ρ, we will use coordinates. These will be introduced in
Section 2.1. We define the Ree geometries in Section 2.3 and state our main results and
main application in Section 2.4 (but we formulate our main results also below in rough
terms). The rest of the chapter is then devoted to the proofs.

Since the Ree groups have root groups of nilpotency class 3 (at least, if the base field
is large enough), the Ree geometries that we will define have rank 3. This means that
we will have two types of blocks in our geometry. In this chapter we prove that every
automorphism of such a geometry is an automorphism of the corresponding Ree group,
by writing down explicitly the automorphisms of this geometry. But we also do slightly
better and prove that the same conclusion holds when restricting to one type of blocks.
We call these geometries truncated Ree geometries. Hence, loosely speaking, we may write
our main result as follows:

The full automorphism group of a (truncated) Ree geometry is induced by the
full collineation group of the corresponding Ree hexagon.

The results in this chapter are joint work together with Fabienne Haot and Hendrik Van
Maldeghem, and are accepted for publication in Forum Math.
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2.1 Coordinatization of the Ree hexagon

In this section, we present two coordinatizations of the mixed hexagons, of which the
Ree hexagons are a special case. These coordinatizations can at the same time serve as
a definition of these structures. We start with the coordinatization with respect to one
flag {(∞), [∞]} (which was first carried out by De Smet and Van Maldeghem for (finite)
generalized hexagons in [12]). For a detailed description of the coordinatization theory
for other generalized polygons we refer to [59]. The second coordinatization follows in
fact from the natural embedding of the mixed hexagons in PG(6,K).

2.1.1 Hexagonal sexternary rings for mixed hexagons

In [59] a coordinatization theory with respect to a flag {(∞), [∞]} is described. It is a
generalization of the coordinatization of Hall for generalized triangles. Here we explicitly
describe the coordinatization of the mixed hexagon. Let K be a field of characteristic 3.
Let K

′ be a subfield of K containing the subfield K
3 (so K

3 ≤ K
′ ≤ K). We consider a

hexagonal sexternary ring R = (K,K′,Ψ1,Ψ2,Ψ3,Ψ4) with





Ψ1(k, a, l, a
′, l′, a′′) = a3k + l,

Ψ2(k, a, l, a
′, l′, a′′) = a2k + a′ + aa′′,

Ψ3(k, a, l, a
′, l′, a′′) = a3k2 + l′ + kl,

Ψ4(k, a, l, a
′, l′, a′′) = −ak + a′′,

where a, a′, a′′ ∈ K and k, l, l′ ∈ K
′. This defines the mixed hexagon H(K,K′) as follows.

The points and lines are the i-tuples of elements of K ∪ K
′ (i ≤ 5) with alternately an

entry in K and one in K
′, and for points (lines) the last entry is supposed to be in K

(K′), except when i = 0, in which case we denote the point by (∞) and the line by [∞]
(we generally use round brackets for points and square brackets for lines). Incidence is
defined as follows:

• If the number of coordinates of a point p differs by at least 2 from the number of
coordinates of a line L, then p and L are not incident.

• If the number ip of coordinates of a point p differs by exactly 1 from the number iL
of coordinates of a line L, then p is incident with L if and only if p and L share the
first i coordinates, where i is the smallest among ip and iL.



32 ‘Rank one’ case, or Moufang sets

• If ip = iL 6= 5, then p is incident with L if and only if p = (∞) and L = [∞].

• A point p with coordinates (a, l, a′, l′, a′′) is incident with a line [k, b, k′, b′, k′′] (with
b, b′ ∈ K and k′, k′′ ∈ K

′) if and only if





Ψ1(k, a, l, a
′, l′, a′′) = k′′,

Ψ2(k, a, l, a
′, l′, a′′) = b′′,

Ψ3(k, a, l, a
′, l′, a′′) = k′,

Ψ4(k, a, l, a
′, l′, a′′) = b′.

Suppose now that our field K (which has characteristic 3) has a Tits endomorphism θ;
then the specific choice K

′ = K
θ gives a Ree hexagon.

2.1.2 The embedding of mixed hexagons in PG(6,K)

The mixed hexagons (and then also the Ree hexagons) have natural embeddings in
PG(6,K). Indeed, H(K,K′) is a substructure of the split Cayley hexagon H(K), which
has itself a natural embedding in PG(6,K) as discovered and described by Tits in [41], see
also Chapter 2 of [59]. All these embeddings are full, meaning that all points of PG(6,K)
incident with a line of the mixed hexagon are points of the mixed hexagon). Here, we
content ourselves with the table below translating the above coordinates to the projective
coordinates. We refer to Chapter 3 of [59] for details and proofs.

We write α for −al′ + a′2 + a′′l + aa′a′′ and β for l − aa′ − a2a′′.

Coordinates in H(K,K′) Coordinates in PG(6,K)
(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)
(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)
(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l′, a′′) (α,−a′′,−a,−a′ + aa′′, 1, β,−l′ + a′a′′)
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Coordinates in H(K,K′) Points generating this line
[∞] (∞) and (0)
[k] (∞) and (k, 0)
[a, l] (a) and (a, l, 0)
[k, b, k′] (k, b) and (k, b, 0)
[a, l, a′, l′] (a, l, a′) and (a, l, a′, l′, 0)
[k, b, k′, b′, k′′] (k, b, k′, b′) and (0, k′′, b′, k′ + kk′′, b)

The subgroup of PSL7(K) stabilizing H(K,K′) is denoted by G2(K,K
′) and is simple (a

mixed group of type G2, see [44]).

2.2 The Ree-Tits ovoid

We start from the Ree hexagon H(K,Kθ), with θ as above a Tits-endomorphism of K. This
hexagon allows a polarity. The absolute points under this polarity form an ovoid of the
Ree hexagon - the Ree-Tits ovoid, see Chapter 7 of [59]. We denote the polarity, which we
can choose in such a way that it fixes the flags {(∞), [∞]} and {(0, 0, 0, 0, 0), [0, 0, 0, 0, 0]}
and maps the point (1) onto the line [1], by ρ. It has the following actions:

(a, l, a′, l′, a′′)
ρ

= [aθ, lθ
−1

, a′θ, l′θ
−1

, a′′θ];

[k, b, k′, b′, k′′]
ρ

= (kθ−1

, bθ, k′θ
−1

, b′θ, k′′θ
−1

),

for all a, a′, a′′, b, b′ ∈ K and k, k′, k′′, l, l′ ∈ K
θ.

Now the point (a, l, a′, l′, a′′) is absolute for ρ if and only if it is incident with its image.
This leads to the following conditions:

{
l = a′′θ − aθ+3,

l′ = a2θ+3 + a′θ + aθa′′θ.

Coordinates of the Ree-Tits ovoid in PG(6,K). — Instead of using the 5-tuple
(a, a′′θ−a3+θ, a′, a3+2θ+a′θ+aθa′′θ, a′′), we now will use the shorter notation (a, a′′, a′−aa′′).
Note that every triple in K

3 now corresponds to a point of the ovoid. Now, for a, a′, a′′ ∈ K,
we put

f1(a, a
′, a′′) = −a4+2θ − aa′′θ + a1+θa′θ + a′′2 + a′1+θ − a′a3+θ − a2a′2,

f2(a, a
′, a′′) = −a3+θ + a′θ − aa′′ + a2a′,

f3(a, a
′, a′′) = −a3+2θ − a′′θ + aθa′θ + a′a′′ + aa′2.
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So the set of absolute points in PG(6,K) can be described by

P ={(1, 0, 0, 0, 0, 0, 0)}∪
{(f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)) | a, a′, a′′ ∈ K}.

Compact notation. — As before, we associate the triple (a, a′′, a′−aa′′) with the point
(a, a′′θ − a3+θ, a′, a3+2θ + a′θ + aθa′′θ). The set of absolute points under the polarity is now

P = {(∞)} ∪ {(a, a′, a′′) | a, a′, a′′ ∈ K}.

On this ovoid there acts a Moufang set. The elements of the root group U∞ of this
Moufang set (fixing the point (∞)), act as follows on the remaining points (x, x′, x′′): the
unipotent element that fixes (∞) and maps (0, 0, 0) to (y, y′, y′′) maps (x, x′, x′′) to

(x, x′, x′′) · (y, y′, y′′) = (x+ y, x′ + y′ + xyθ, x′′ + y′′ + xy′ − x′y − xyθ+1),

and this action can also be seen as the multiplication inside U∞, see Chapter 7 of [59].

In this way we obtain the Ree-Tits Moufang set. The (simple) Ree groups arise as (simple
subgroups of the) centralizers of polarities in these hexagons. More exactly, the Ree group
R(K, θ) is defined as the centralizer in G2(K,K

θ) of the outer automorphism ρ. This group
is simple if |K| > 3 and the multiplicative group of K is generated by all squares together
with −1, see [26]. In any case, the group generated by the root groups is simple, provided
|K| > 3, and it coincides with the derived group R′(K, θ). For |K| = 3, R(K, θ) = R(3) is
isomorphic to PΓL2(8) and contains PSL2(8) as a simple subgroup of index 3.

We can see the Ree-Tits ovoid and its automorphism group embedded in the Ree hexagon
as a representation of the Ree-Tits Moufang set. Henceforth, we will denote by P the
Ree-Tits ovoid, and by Ux, x ∈ P, the root group fixing x in the Ree-Tits Moufang set
over the field K with associated Tits endomorphism θ.

We will also need the explicit form of a generic element of the root group U(0,0,0), which
we shall briefly denote by U0. This is best given by the action on coordinates in the
projective space. Such a generic element u

(0,0,0)
(x,x′,x′′) then looks like (x, x′, x′′ are arbitrary

in K):
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x̄ = (x0 x1 x2 x3 x4 x5 x6) 7→

x̄ ·




1 f2(x, x′, x′′) f3(x, x′, x′′) x′′ f1(x, x′, x′′) −x′ −x

0 1 −xθ 0 x′ − x1+θ 0 0
0 0 1 0 x 0 0
0 −x x′ 1 −x′′ 0 0
0 0 0 0 1 0 0
0 x2 −x′′ − xx′ x p 1 0
0 r s −x′ + x1+θ q xθ 1




,

where 




p = x3+θ − x′θ − xx′′ − x2x′,

q = x′′θ + xθx′θ − xx′2 − x2+θx′ − x1+θx′′ − x3+2θ,

r = x′′ − xx′ + x2+θ,

s = x′2 − x1+θx′ − xθx′′,

see Section 9.2.4 of [38].

Remark 2.2.1 An explicit construction (with detailed proofs) of the Ree group acting
on the Ree hexagon can be found in [11].

We are now ready to define the Ree geometries.

2.3 The Ree geometry

As already mentioned, the Ree groups have root groups of nilpotency class 3 (if |K| > 3,
see below for a calculation). So applying the construction in Section 1.8.1 using the
subgroups [Ux, Ux] and [[Ux, Ux], Ux], gives us two types of blocks in our geometry, and
blocks of one type are subsets of the others (the last group is the same as the center
Z(Ux) when |K| > 3, see further in this section). When |K| = 3 the Ree group has
nilpotency class 2, but one can consider similar subgroups as above (see below). In order
to distinguish the two types of blocks, we will call the ‘smallest’ ones circles (notation
C), and the others spheres (notation S). All the blocks, regardless of the type, will be
denoted by B, and the points by P. In this way we have constructed the Ree geometry
G = (P,B,∈ or ∋). We can define two further geometries by restricting the set of blocks.
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We call the geometries GC = (P, C,∈ or ∋) and GS = (P,S,∈ or ∋) the truncated Ree
geometries.

Let us be more concrete now and look for the coordinates of the circles and spheres which
have (∞) for gnarl.

We first claim that, if |K| > 3, then the group U ′
∞ = [U∞, U∞] is precisely {(0, u′, u′′) | u′, u′′

∈ K}. Indeed, computing an arbitrary commutator, we get

[(u1, u
′
1, u

′′
1), (u2, u

′
2, u

′′
2)] = (0, u1u

θ
2 − u2u

θ
1, u

′
1u2 − u1u

′
2 − u1u

1+θ
2 + u2u

1+θ
1 ).

Noting that (0, x′, 0) · (0, 0, x′′) = (0, x′, x′′), we only have to show that (0, x′, 0) ∈ U ′
∞,

for all x′ ∈ K, and that (0, 0, x′′) ∈ U ′
∞, for all x′′ ∈ K. Putting u1 = u′′1 = u′2 = u′′2 = 0,

u′1 = 1 and u2 = x′′ in the above commutator, we see that (0, 0, x′′) ∈ U∞. Now let
x′ ∈ K be arbitrary. Since |K| > 3, there exists an element t ∈ K with t3 − t 6= 0. Put
k = t3 − t and let y = x′k−θ. Putting u′1 = u′2 = u′′1 = u′′2 = 0 and (u1, u2) = (y, t3),
respectively (u1, u2) = (tθy, 1), we obtain (0, t3θy−t3yθ, 0) ∈ U ′

∞ and (0, tθy−t3yθ, 0) ∈ U ′
∞.

Multiplying the former with the inverse of the latter, we see that (0, x′, 0) ∈ U ′
∞, proving

our claim.

If |K| = 3, then U ′
∞ has order 3 and coincides with the center (see below). In this case,

for the construction of the Ree geometry, we will substitute U ′
x by the subgroup of Ux

generated by the elements of order 3, and we will denote it, with abuse of notation, by U ′
x

(but there will be no confusion possible), since for |K| > 3, the derived group coincides
with the group generated by elements of order 3 (as one can check easily).

The center of U∞ is the subgroup {(0, 0, u′′) | u′′ ∈ K}. Indeed, this follows from the
explicit form of the multiplication in U∞ by standard arguments. Since the commutator
of an element (0, u′1, u

′′
1) ∈ U ′

∞ and (u2, u
′
2, u

′′
2) ∈ U∞ is

[(0, u′1, u
′′
1), (u2, u

′
2, u

′′
2)] = (0, 0, u′1u2)

= (0, 0, u′′),

with u′′ essentially arbitrary, we see that the second group in the normal series U ′′
∞ =

[U∞, [U∞, U∞]] coincides with the center Z(U∞) when |K| > 3.

When |K| = 3, the group U ′′
∞ will be the subgroup consisting only of the identity. Again,

for the construction, we will substitute U ′′
x by the subgroup {(0, 0, u′′) | u′′ ∈ K} of Ux in

this case.

Now, since the circles having (∞) as gnarl are the orbits of a point (a, a′, a′′) under the
group {(0, 0, x) | x ∈ K}, union with {(∞)}, these circles are given by

{(a, a′, a′′ + x) | x ∈ K} ∪ {(∞)} = {(a, a′, t) | t ∈ K} ∪ {(∞)}.
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The spheres with gnarl (∞) have the following description:

{a, a′ + x′, a′′ + x′′ + ax′ | x′, x′′ ∈ K} ∪ {(∞)} = {(a, t′, t′′) | t′, t′′ ∈ K} ∪ {(∞)}.

We can now interpret the algebraic description of a circle and a sphere with gnarl (∞) in
the corresponding Ree hexagon H(K,Kθ). The points at distance 3 from the nonabsolute
line [0, 0] are (∞) and all the points of the form (0, 0, a′, l′, a′′) with a′, l′, a′′ ∈ K. The
absolute points in this set are exactly the points in the circle with gnarl (∞) and containing
(0, 0, 0). From this it follows that each circle is the set of absolute points at distance 3 from
a nonabsolute line M , not going through an absolute point. The unique absolute point
for which its corresponding absolute line intersects M is the gnarl of the circle. With
similar reasoning, one sees that each sphere is the set of absolute points not opposite
some nonabsolute point p, with p lying on an absolute line. The unique absolute point
at distance 2 from p is the gnarl of the sphere. Conversely, every such set is a circle or
sphere, respectively. It follows now easily that the gnarl of a circle and of a sphere is
unique. These gnarls will play a prominent role in our proofs.

As an application we make the following important observation.

Lemma 2.3.1 A sphere contains only circles with the same gnarl. Also, the point set of
a sphere, except for its gnarl, is partitioned by the circles contained in the sphere.

Proof. Let us consider a sphere and circle, and assume that this sphere’s gnarl is the
absolute point p while the gnarl of the circle is a different absolute point q. The flags
{p, pρ} and {q, qρ} determine a unique apartment Σ containing both flags, and because
both flags are absolute, ρ will stabilize Σ. Denote the unique line in Σ at distance 2 from
qρ and at distance 3 from p with L, and the projection of q on pρ with r. Let a be a third
absolute point on the circle different from both p and q.

p

pρ rρ

r

a

q
qρ

Laρ
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Because a lies on the circle with gnarl q through p, a lies at distance 3 from L. Similarly
a also lies at distance 4 from r because of the definition of a sphere. The last statement
implies that aρ lies at distance 4 from the line rρ. This line rρ intersects the line L, so
the point a and the lines L, rρ, aρ are contained in an ordinary 5-gon, which contradicts
the definition of a generalized hexagon. This proves the first assertion.

For the second assertion, we just consider the circles defined by the nonabsolute lines of
H(K,Kθ) through the point defining the sphere in question. �

2.4 Results on Ree geometries

Given the construction of the circles and spheres in the corresponding Ree hexagon
H(K,Kθ), it is clear that every collineation of H(K,Kθ) that commutes with the po-
larity ρ induces a collineation of the Ree geometry and its truncations. Our main results
now say that also the converse holds. More precisely:

Main Result 2.4.1 The full automorphism group of the Ree geometry G = (P,B,∈
or ∋) is the centralizer of ρ in the full collineation group of H(K,Kθ).

Likewise, we will show:

Main Result 2.4.2 The full automorphism groups of the truncated Ree geometries GC =
(P, C,∈ or ∋) and GS = (P,S,∈ or ∋) coincide with the centralizer of ρ in the full
collineation group of H(K,Kθ).

As a main consequence we will be able to show:

Main Corollary 2.4.3 The stabilizer of a Ree-Tits ovoid in the full collineation group of
H(K,Kθ) coincides with the centralizer of the corresponding polarity in the full collineation
group of H(K,Kθ). Consequently, any polarity is determined by its set of absolute points.

The latter was already announced in [59] as Theorem 7.7.9, but not proved there. Com-
bined with results in [59] and [34], one directly obtains:
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Corollary 2.4.4 Each automorphism of a Moufang n-gon with a polarity stabilizing the
set of absolute points of that polarity, also stabilizes the set of absolute lines and centralizes
that polarity, except if either n = 3, the projective plane is Pappian, the characteristic
of the underlying field is 2, and the polarity is not Hermitian (i.e., there is no twisting
field automorphism), or if n = 4 and the generalized quadrangle is the smallest symplectic
quadrangle W(2).

We will now prove these results.

2.5 Auxiliary tools

Before we can begin with the actual proof, we need to introduce some additional termi-
nology and tools.

2.5.1 The derived geometry at (∞)

We define the structure G′ = (P ′,B′,∈ or ∋), where P ′ = P \ {(∞)}, and B′ is the set
of blocks of G going through (∞), with (∞) removed. We call this the derived geometry
at (∞), inspired by a similar concept in the theory of designs. In order to know the
coordinates of the circles through (∞), we first write down the coordinates of the circles
with gnarl (∞). As we saw earlier, these are the sets

{(a, a′, t) | t ∈ K} ∪ {(∞)}, with a, a′ ∈ K.

Removing the point (∞) gives us the vertical line La,a′ . We now compute the coordi-
nates of the circle with gnarl (0, 0, 0) through (∞). The point (∞) is identified with

(1, 0, 0, 0, 0, 0, 0), so its orbit under Z(U0) (using the elements u
(0,0,0)
(0,0,x′′) defined above) is

the set

{(1, f2(0, 0, x
′′), f3(0, 0, x

′′), x′′, f1(0, 0, x
′′), 0, 0) | x′′ ∈ K}

= {(1, 0,−x′′θ, x′′, x′′2, 0, 0) | x′′ ∈ K}.

Putting x = x′′−2−θ (and hence x′′ = x−2+θ), adding the gnarl and deleting the point (∞),
we obtain the set {(x, 0,−x2+θ) | x ∈ K}. The image of this set under (a, a′, a′′) ∈ U∞ is
the set

{(a+ x, a′ + aθx, a′′ + (a′ − a1+θ)x− x2+θ) | x ∈ K},
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which we call the ordinary line C(a,a′,a′′) (with gnarl (a, a′, a′′)). Note that unlike the
vertical lines, these are not affine lines.

Just as we did for circles, we consider the spheres with gnarl (∞) and the other spheres
through (∞) separately.

The spheres with gnarl (∞) are the sets {(a, t′, t′′) | t′, t′′ ∈ K} ∪ {(∞)}, with a ∈ K.
Removing the point (∞) gives us the vertical plane Pa.

The orbit of (∞) under U ′
0, using the elements u

(0,0,0)
(0,x′,x′′), is the set

{(1, f2(0, x
′,x′′), f3(0, x

′, x′′), x′′, f1(0, x
′, x′′),−x′, 0) | x′, x′′ ∈ K}

= {(1, x′θ ,−x′′θ + x′x′′, x′′, x′′2 + x′1+θ,−x′, 0) | x′, x′′ ∈ K}

=

{(
x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ

x′′2 + x′1+θ
,

−x′′

x′′2 + x′1+θ

)
| K × K ∋ (x′, x′′) 6= (0, 0)

}
∪ {(∞)}.

Note that x′′2 6= −x′1+θ is equivalent with (x′, x′′) 6= (0, 0). Adding (0, 0, 0), the image of
this sphere under (a, a′, a′′) ∈ U∞ is the set

{(
x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ

x′′2 + x′1+θ
,

−x′′

x′′2 + x′1+θ

)
· (a, a′, a′′) | K × K ∋ (x′, x′′) 6= (0, 0)

}

∪ {(a, a′, a′′), (∞)}.

Removing the point (∞) gives us the ordinary plane S(a,a′,a′′) (with gnarl (a, a′, a′′)). Again
note that these are not affine planes, unlike vertical planes.

Notice that points of vertical planes have constant first coordinate, while the points of
an ordinary line never have constant first coordinate. This provides an algebraic proof of
Lemma 2.3.1.

2.5.2 Parallelism in the derived structure

We consider the set of points (x, x′, x′′) as an affine space in the standard way, and call
the planes affine planes. We assume that the coordinates are given with respect to a basis
with axes X, Y, Z.

First we remark that every ordinary line C(a,a′,a′′) completely lies in the affine plane with
equation Y = aθX + (a′ − a1+θ). We say that two ordinary lines C1 and C2 are parallel if
all vertical lines intersecting C1 intersect C2 — in that case the two ordinary lines lie in the
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same affine plane of the aforementioned form — or if there is no vertical line intersecting
both ordinary lines — which implies that the ordinary lines lie in parallel, but disjoint,
affine planes of the above form.

We claim that two ordinary lines C(a,a′,a′′) and C(b,b′,b′′) are parallel if and only if a = b.
Indeed, a vertical line meeting the ordinary line C(a,a′,a′′) must lie in the affine plane
Y = aθX + (a′ − a1+θ), so any vertical line meeting both C(a,a′,a′′) and C(b,b′,b′′) must lie in
the intersection of {

Y = aθX + (a′ − a1+θ),

Y = bθX + (b′ − b1+θ).

This has a unique solution if and only if a 6= b, proving our claim.

We have the following lemma.

Lemma 2.5.1 The gnarls of the ordinary lines of the parallel class of C(a,a′,a′′) are exactly
the points of the vertical plane Pa.

Proof. The above says that the set of gnarls of the lines of the parallel class of C(a,a′,a′′) is
given by {(a, t′, t′′) | t′, t′′ ∈ K}, which is exactly Pa. �

2.5.3 Ree unitals

In Section 2.9, we will use the Ree unitals mentioned in the introduction. We do not need
a formal definition, nor a complete description of them, but only the following facts about
these geometries (for a proof of these facts or a more detailed description, see Chapter 7
of [59]):

• the set of points is the same as of the Ree geometries,

• two different points are joined by exactly one block of the Ree unital,

• the block through (∞) and (a, 0, a′′), with a and a′′ ∈ K, is given by {(∞)} ∪
{(a, t, a′′ − at)|t ∈ K},

• the Ree group R(K, θ) acting on the Ree geometries stabilizes the Ree unital (to-
gether with the previous fact, this can be used to define the Ree unital).

If B is a unital block containing (∞), then we will call the set B \ {(∞)} an affine unital
block.



42 ‘Rank one’ case, or Moufang sets

2.6 Automorphism group of the Ree geometry

General idea. — We consider an automorphism ϕ of the Ree geometry. Without loss of
generality we may assume that ϕ fixes both (∞) and (0, 0, 0) (because of the 2-transitivity
induced by the Moufang set). We will prove that ϕ must preserve gnarls, and this will
imply that it has to preserve the parallelism we just defined. We then compute the
algebraic form of ϕ and conclude that it can be extended to H(K,Kθ).

Lemma 2.6.1 The automorphism ϕ maps the gnarl of any sphere onto the gnarl of the
image of the sphere, and it maps the gnarl of any circle onto the gnarl of the image of the
circle under ϕ.

Proof. Any automorphism of ∆ maps spheres onto spheres and circles onto circles, since
every circle is properly contained in a sphere, but no sphere is properly contained in
any circle or sphere. Since the gnarl of a sphere is exactly the intersection of all circles
contained in it (by Lemma 2.3.1), and there are at least two such circles, ϕ preserves
gnarls of spheres. But then ϕ must also preserve the gnarls of these circles. �

Since ϕ fixes the points (∞) and (0, 0, 0), it acts on the derived structure G′, and the
previous lemma implies that ϕ fixes the set of vertical lines. Therefore the points (a, a′, z1)
and (a, a′, z2) are mapped on the same vertical line. If we represent ϕ as follows:

ϕ : (x, y, z) 7→ (g1(x, y, z), g2(x, y, z), g3(x, y, z)),

then both g1 and g2 have to be independent of z, and we write gi(x, y, z) = gi(x, y),
i = 1, 2.

The mapping ϕ preserves the parallel relation between ordinary lines, since the number
of vertical lines meeting two circles (i.e. none, one or all) is preserved under ϕ. This
translates to g1 being independent of y. Indeed, two points (a, y1, z1) and (a, y2, z2) being
the gnarls of two parallel ordinary lines are mapped onto two gnarls of parallel ordinary
lines, which implies that g1(a, y1) = g1(a, y2) for every choice for y1 and y2.

The point (0, 0, 0) is fixed by ϕ, so the affine plane Y = 0 — which is the unique affine
plane containing both C(0,0,0) and L0,0, and which consists of the union of vertical lines
all meeting C(0,0,0) — is fixed by ϕ. The plane Y = c1 — which is also a union of vertical
lines — must necessarily be mapped onto a plane Y = c2. So g2(x, c1) = g2(0, c1) for
every choice of x ∈ K.

It follows that there are two permutations α and β of K such that (x, y, z)ϕ is equal to
(xα, yβ, g3(x, y, z)). Since ϕ preserves gnarls, it maps the ordinary line C(a,b,c) onto the
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ordinary line C(aα,bβ ,g3(a,b,c)). Now notice that the point (x, y, z) can only be contained
in the ordinary line C(a,b,c) if y = b + aθ(x − a). Expressing that the point (a + x, y, z)
lies on the circle C(a,b,c) if and only if its image under ϕ lies in Cϕ

(a,b,c) shows that, for all
a, b, x ∈ K,

(b+ aθx)β = bβ + (aα)θ((x+ a)α − aα). (2.1)

Putting b = 0, and noting that 0α = 0β = 0, we see that (aα)θ((x + a)α − aα) = (aθx)β,
which implies, by substituting this back in Equation (2.1), that (b+ aθx)β = bβ + (aθx)β.
So β is additive. Put ℓ = 1α. Then we see, by setting a = 1 and b = 0 in Equation (2.1)
above, that

xβ = ℓθ((x+ 1)α − 1α), (2.2)

so α is additive if and only if (x+1)α = xα +1α. Plugging in x = m−1 in Equation (2.2)
we have that (m−1)β = ℓθ(mα −1α). Because of the additivity of β we have on the other
hand that (m− 1)β = mβ + (−1)β = ℓθ((1 +m)α − 2 · 1α). So α is additive as well.

We now have that xβ = ℓθxα. Define the bijection σ : K → ℓ−1
K : y 7→ yσ = ℓ−1yα (note

that 1σ = 1). Plugging in these identities in Equation (2.1) yields

(b+ aθx)σ = bσ + (aσ)θxσ,

for all a, b, x ∈ K. Putting a = 1, we see that σ is additive; putting b = 0 and x = 1, we
see that σ commutes with θ. Putting b = 0, we see that (xy)σ = xσyσ for x ∈ K

θ and
y ∈ K. If x, y ∈ K, then

((xy)σ)θ = ((xy)θ)σ = (xθyθ)σ = (xθ)σ(yθ)σ = (xσ)θ(yσ)θ = (xσyσ)θ,

and the injectivity of θ implies that σ is an automorphism of K. Now the action of ϕ on
a point (x, y, z) is given by (x, y, z)ϕ = (ℓxσ, ℓ1+θyσ, g3(x, y, z)), for all x, y, z ∈ K.

Let us now investigate what g3(x, y, z) looks like.

The point p with coordinates (a− a′

aθ , 0, a′′+(a′−a1+θ)(−a′

aθ )−(−a′

aθ )2+θ) lies on both C(a,a′,a′′)

and the ordinary line with gnarl (0, 0, a′′ + (a1+θ−a′)1+θ+a′1+θ

a2+θ ). So its image under ϕ lies on

the ordinary line with gnarl (ℓaσ, ℓ1+θa′σ, g3(a, a
′, a′′)) and on the ordinary line with gnarl

(0, 0, g3(0, 0, a
′′ + (a1+θ−a′)1+θ+a′1+θ

a2+θ )). This leads to






g3(a − a
′

aθ , 0, a′′ − (a′
−a

1+θ)a′

aθ + ( a
′

aθ )2+θ) = g3(a, a′, a′′) − ℓ2+θ(a
′2

aθ − aa′ − a
′2+θ

a3+2θ )σ,

g3(a − a
′

aθ , 0, a′′ − (a′
−a

1+θ)a′

aθ + ( a
′

aθ )2+θ) = g3(0, 0, a′′ + (a1+θ
−a

′)1+θ+a
′1+θ

a2+θ ) − (ℓ(a − a
′

aθ )σ)2+θ.
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Putting these two equations together we get :

g3(a, a
′, a′′) = g3

(
0, 0, a′′ +

(a′ − a1+θ)1+θ + a′1+θ

a2+θ

)
− ℓ2+θ

(
(a′ − a1+θ)1+θ + a′1+θ

a2+θ

)σ

,

for every a ∈ K\{0} and a′, a′′ ∈ K. We want to extend this equation to one with
a = 0. To this end, we note that the point (0, a′, a′′) lies on every circle with gnarl
(A, a′ +A1+θ, a′′ + a′A−A2+θ), with A ∈ K. We now only consider A 6= 0. Then we take
the image under ϕ and obtain that

g3(0, a
′, a′′) = g3(A, a

′ + A1+θ, a′′ + a′A− A2+θ) − ℓ2+θ(Aa′ − A2+θ)σ.

We can now use the above expression for g3(a, a
′, a′′) for a 6= 0 to express g3(0, a

′, a′′)
in terms of g3(0, 0, z), for some z ∈ K. We rewrite g3(0, a

′, a′′) in this form, substitute
a′ = Bθ−1 and A = B2−θ, and obtain after a tedious calculation

g3(0, B
θ−1, a′′) = g3(0, 0, a

′′ − B) + ℓ2+θBσ,

for all B ∈ K \ {0}, and all a′′ ∈ K. Substituting −B for B, we see that g3(0, 0, a
′′ −

B) = g3(0, 0, a
′′ + B) + ℓ2+θBσ. We may now put a′′ = −B and obtain finally that

g3(0, 0, B) = ℓ2+θBσ. Plugging this into the formulae above for g3(a, a
′, a′′), a 6= 0, and

g2(0, a
′, a′′), we see that g3(a, a

′, a′′) = ℓ2+θa′′σ, for all a, a′, a′′ ∈ K.

So the action of ϕ on a point (x, y, z) is given by (x, y, z)ϕ = (ℓxσ, ℓ1+θyσ, ℓ2+θzσ), with
σ and θ commuting automorphisms of K. This action is the restriction to Ω of the
collineation of H(K,Kθ) defined by the following mapping on the points and lines with
five coordinates:

{
(a, l, a′, l′, a′′) 7→ (ℓaσ, ℓθ+3lσ, ℓθ+2a′σ, ℓ2θ+3l′σ, ℓθ+1a′′σ),

[k, b, k′, b′, k′′] 7→ [ℓθkσ, ℓθ+1bσ, ℓ2θ+3k′σ, ℓθ+2b′σ, ℓθ+3k′′σ].

The proof of Main Result 2.4.1 is complete. �

2.7 Automorphism group of the truncated Ree

geometry GC

General idea. — Let GC = (P, C,∈ or ∋) be the truncated Ree geometry, with C the
set of circles. We first prove that gnarls of circles have to be mapped onto gnarls of circles.
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Then we use the result from the previous section to prove that the automorphism group
of GC is equal to the automorphism group of the Ree geometry G.

We denote by GC
′ the derived geometry in (∞) (so the point set is P \ {(∞)} and the

blocks are the vertical and ordinary lines, as defined in Section 2.5.1).

Lemma 2.7.1 The full group G of automorphisms of GC
′ has two orbits on the lines,

which are the vertical and the ordinary lines.

Proof. It is clear that G acts transitively on both the set of vertical lines and the set of
ordinary lines (as G contains the corresponding Ree group), so we only have to exclude
the possibility of one orbit. We suppose this is the case and derive a contradiction.

Consider, as before, the point set P \{(∞)} as a 3-dimensional affine space with point set
{(a, a′, a′′)|a, a′, a′′ ∈ K}. We project it on the 2-dimensional space {(a, a′, 0)|a, a′ ∈ K}
by the standard projection map (a, a′, a′′) 7→ (a, a′, 0). The projection of a vertical line
La,a′ is the point (a, a′, 0), and the projection of an ordinary line C(a,a′,a′′) is the affine line
Y = aθX+(a′−a1+θ). All these affine lines coming from the projections of ordinary lines
form the line set of a net N , and a parallel class of ordinary lines is projected to a parallel
class in this net.

Let L be a vertical line and M a vertical or ordinary line disjoint from L. If M is a
vertical line, then the projection of L and M are two points. If there exists an ordinary
line such that the projection contains both points, then translating this back to the lines
means that through each point of L there is an (ordinary) line intersecting M (by varying
the third coordinate a′′). If, on the other hand, there is no projection of an ordinary line
containing both points, then there is no (ordinary) line intersecting both L and M .

If M is an ordinary line, then the projection of M is a certain affine line with equation
Y = aθX + (a′ − a1+θ). As no projection of an ordinary line is of the form X = c with
c ∈ K a constant, there are points of M through which no (ordinary) line passes which
also intersects L (because we would have projections of the form X = c). Also, there
obviously are ordinary lines whose projection contains the projection of L and intersect
the projection of M . The set of ordinary lines projected to this projection forms a subset
of a parallel class exactly one member of which intersects both L and M . We conclude
that there exist lines intersecting both L and M , but not through each point of M .

In the above two paragraphs we proved that we can tell a vertical line from an ordinary
line if one vertical line is given. Using the hypothesis that there is only one orbit on the
lines, this implies that there is an equivalence relation on the lines which is preserved by
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G. One of the equivalence classes is obviously the set of vertical lines. By transitivity it
follows that through each point of GC

′ there is exactly one line of a given equivalence class.
We now claim that the other classes are the parallel classes of ordinary lines. Indeed, if
an ordinary line C(a,a′,a′′) lies in a certain equivalence class, then all lines C(a,a′,k) with
k ∈ K lie in this class, because there is a vertical line through each point of C(a,a′,a′′)

intersecting C(a,a′,k). It is implied that two lines are in the same equivalence class if they
are projected to the same affine line. Since two intersecting affine lines can be viewed as
the projection of two intersecting ordinary lines, two of these subsets are parallel if and
only if the corresponding affine lines are parallel. This implies that the equivalence classes
are subpartitions of the parallel classes. But since through each point there has to be a
line of each equivalence class, the latter must coincide with a parallel class.

Now consider the ordinary line C(0,0,0) and its parallel class π. We can conjugate the center
of U(∞) to obtain an automorphism φ ∈ G that fixes the ordinary lines in π, acts freely
on the points of such a line, fixes the equivalency classes, and maps (0, 0, 0) to (1, 0,−1).

Let (x, x′, x′′) be an arbitrary point of GC
′. This point lies on the ordinary line C(0,x′,b) =

{(t, x′, b + x′t − t2+θ) | t ∈ K} for t = x with b := x′′ − x′x + x2+θ. As this ordinary
line is an element of π, the point (x, x′, x′′)φ also lies on this line. Hence there exists an
fx′,b(x) ∈ K such that (x, x′, x′′)φ = (fx′,b(x), x

′, b + x′fx′,b(x) − fx′,b(x)
2+θ). Notice that

the middle coordinate is always fixed.

The vertical line Lx,x′ = {(x, x′, t) | t ∈ K} must be mapped to another vertical line
Lfx′,b(x),x′ = {(fx′,b(x), x

′, t) | t ∈ K}. From this it follows that the function f is indepen-
dent of the last coordinate. As both the first and second coordinate are independent of
the last, it follows that φ induces an automorphism φ′ on the net N , mapping (x, x′, 0) to
(fx′,b(x), x

′, 0). Now φ′ also fixes every parallel class of N (the parallel class coming from
π is even fixed linewise), and maps (0, 0, 0) to (1, 0, 0) (because (0, 0, 0)φ = (1, 0,−1)). It
is now easy to see that this implies fx′,b(x) = x + 1. This gives us the following explicit
formula for φ:

φ : (x, x′, x′′) 7→(x+ 1, x′, x′′ − x′x+ x2+θ + x′(x+ 1) − (x+ 1)2+θ)

7→(x+ 1, x′, x′′ + x′ + x2+θ − (x+ 1)2+θ).

The image of the ordinary line C(1,1,0) = {(1 + t, 1 + t,−t2+θ) | t ∈ K}, using the formula
for φ, is:

Cφ

(1,1,0) = {(t− 1, t+ 1,−t2+θ − t2 + t1+θ + t) | t ∈ K}.
The latter has to coincide with a certain ordinary line C(1,a′,a′′) = {(1+ s, a′ + s, a′′ +(a′−
1)s− s2+θ) | s ∈ K} (because the parallel class is preserved), with a′, a′′ ∈ K. This yields



2.8 Absolute points and lines of polarities in the Ree hexagon 47

the following system of equalities:






t− 1 = 1 + s,
t+ 1 = a′ + s,
−t2+θ − t2 + t1+θ + t = a′′ + (a′ − 1)s− s2+θ,

which simplifies to: 



s = t+ 1,
a′ = 0,
t = a′′ + 1 − tθ.

If t = 0 the last equation gives us a′′ = −1, but if we use t = 1, we obtain a′′ = 1, which is
a contradiction since a′′ is a constant. It follows that the hypothesis of one orbit is false.

�

The following corollary follows directly:

Corollary 2.7.2 Gnarls of circles are mapped onto gnarls of circles.

Using the above and Lemma 2.5.1, one can reconstruct the spheres, giving the following
result (which is part of Main Result 2.4.2):

Corollary 2.7.3 The automorphism group of GC is equal to that of G.

2.8 Absolute points and lines of polarities in the Ree

hexagon

We now show our Main Corollary in the formulation below. We note that our proof will not
use the full strength of our results proved so far. Indeed, we will only use Corollary 2.7.2.
The last few lines of the proof can be deleted if we use Main Result 2.4.1.

Corollary 2.8.1 If a collineation σ of a Moufang hexagon stabilizes the set of all absolute
points of some polarity, then it stabilizes the set of all absolute lines as well.

Proof. By Theorem 7.3.4 and Theorem 7.7.2 of [59], any polarity ρ of a Moufang hexagon
is associated to a Ree group, so it is a polarity of the associated Ree hexagon.



48 ‘Rank one’ case, or Moufang sets

As mentioned before, a circle C of the Ree geometry is the set of absolute points at
distance 3 from a line M , not going through an absolute point. The collineation σ maps
this set to the set of absolute points at distance 3 from Mσ, which is again a circle since
Mσ clearly is not incident with any absolute point (as σ stabilizes the set of absolute
points). It follows that σ induces an automorphism of GC . The gnarl of C is the absolute
point x such that the corresponding absolute line xρ intersects M . Corollary 2.7.2 now
implies that the absolute line (xσ)ρ intersects Mσ. As (xρ)σ also contains xσ and intersects
Mσ, it follows that (xσ)ρ = (xρ)σ. This means that the absolute line xρ is mapped to
another absolute line. Varying C we now see that the set of all absolute lines is stabilized
by σ. �

2.9 Automorphism group of the truncated Ree ge-

ometry

GS

General idea. — Let GS = (P,S,∈ or ∋) be the truncated Ree geometry with S the
set of spheres. We again prove that gnarls of spheres have to be mapped onto gnarls of
spheres. As a consequence one can recognize certain automorphisms of the Ree geometry
generating the Ree group. Using this the circles can be reconstructed giving us the full
Ree geometry G and its automorphism group.

We denote by GS
′ the derived geometry in (∞) (so the point set is P \ {(∞)} and the

blocks are the vertical and ordinary planes, as defined in Section 2.5.1).

We start with some small observations:

Lemma 2.9.1 A vertical plane and an ordinary plane always intersect.

Proof. By transitivity we can suppose that the vertical plane is given by

Pa = {(a, t′, t′′) | t′, t′′ ∈ K}, with a ∈ K

while the ordinary plane can be represented by S(0,0,0), which is the set
{(

x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ
x′′2 + x′1+θ

,
−x′′

x′′2 + x′1+θ

)
| K × K ∋ (x′, x′′) 6= (0, 0)

}
∪ {(0, 0, 0)}.

If a = 0, then (0, 0, 0) ∈ Pa ∩ S(0,0,0). If a 6= 0, then putting x′ = 0 and x′′ = a−2−θ in the
formula of S(0,0,0) gives the point (a, 0,−a2+θ), which is also a point of Pa. �
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Lemma 2.9.2 The intersection of P0 and S(0,0,0) is given by the set {(0, t, 0) | t ∈ K} ∪
{(0, tθ−1, t) | t ∈ K\{0}}.

Proof. Using the representations of P0 = {(0, t, t′) | t, t′ ∈ K} and S(0,0,0) =
{(

x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ
x′′2 + x′1+θ

,
−x′′

x′′2 + x′1+θ

)
| K × K ∋ (x′, x′′) 6= (0, 0)

}
∪ {(0, 0, 0)},

we see that the points of the intersection are determined by the equation x′′θ − x′x′′ = 0.
The solutions of this equation are given by x′′ = 0 or x′ = x′′θ−1. The first set of solutions
gives us {(0, t, 0) | t ∈ K}, the second {(0, tθ−1, t) | t ∈ K\{0}}. �

Note that P0 is the disjoint union of affine unital blocks. Indeed, the affine blocks
{(0, t, b) | t ∈ K}, with b ∈ K, partition P0. It is now clear that the intersection of
S(0,0,0) and P0 contains exactly one affine unital block, and all other affine unital blocks
in P0 share exactly one point with that intersection.

Lemma 2.9.3 The ordinary planes S(0,0,0) and S(0,a′,a′′), with a′, a′′ ∈ K, intersect.

Proof. Since (0, a′, a′′) ∈ U∞ maps P0 to itself and S(0,0,0) to S(0,a′,a′′), it follows from the
paragraph preceding this lemma that P0 ∩S(0,a′,a′′) contains an affine unital block B. But
from that same paragraph also follows that B shares a point with P0∩S(0,0,0). That point
is hence contained in S(0,0,0) ∩ S(0,a′,a′′). �

The above lemmas now allow us to prove the following analogue to Lemma 2.7.1.

Lemma 2.9.4 The full group G of automorphisms of GS
′ has two orbits on the planes,

which are the vertical and the ordinary planes.

Proof. As with the case of points and circles, it suffices to prove that the planes can not
be all in one orbit. So suppose this is the case.

We call two vertical or ordinary planes parallel if they are disjoint or equal. By the
transitivity assumption on the planes and Lemma 2.9.1, for each point p (different from
(∞)) and plane P , there is exactly one plane Q parallel to P and containing p. Let ̟ be
the parallel class containing S(0,0,0). Because U∞ preserves parallelism and acts regularly
on the ordinary planes, the stabilizer V of ̟ in U∞ acts regularly on the planes in ̟ and
S(a,a′,a′′) ∈ ̟ if and only if (a, a′, a′′) ∈ V .

Let g = (a, a′, a′′) ∈ U∞ be a nontrivial element of V . Then, in view of Lemma 2.9.3, a
has to be different from 0. But as V is a group, g3 = (0, 0,−a2+θ) is also a nontrivial
element of V , which does have as first coordinate 0, so the hypothesis is false. �
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Lemma 2.9.5 In GS
′ the affine unital blocks are (geometric) invariants.

Proof. We will denote the intersection of a vertical plane through the point p with the
ordinary plane with gnarl p by Wp. The sets Wp are invariants of the geometry by virtue
of Lemma 2.9.4. Lemma 2.9.2 implies that the affine unital block through p is contained
in Wp.

By transitivity, it suffices to construct the affine unital block B through (0, 0, 0). Let
p ∈W(0,0,0) be a point different from (0, 0, 0). If p lies on B, then W(0,0,0) ∩Wp contains B
itself and so at least 4 points (as |K| > 3). Now suppose p /∈ B, so p = (0, kθ−1, k) for a
certain k ∈ K different from 0. Using (0, kθ−1, k) as an element of U∞ and Lemma 2.9.2,
we calculate that Wp = {(0, t + kθ−1, k) | t ∈ K} ∪ {(0, tθ−1 + kθ−1, t + k) | t ∈ K\{0}}.
The intersection W(0,0,0)∩Wp contains two obvious intersection points on the affine unital
blocks contained in either W(0,0,0) and Wp. To look for more intersection points we need
to investigate whether or not it is possible to have (0, tθ−1 + kθ−1, t+ k) = (0, sθ−1, s) for
certain s, t ∈ K\{0}. Equality on the third coordinate gives us t+k = s, the second gives
us

sθ−1 = tθ−1 + kθ−1 ⇔ (t+ k)θ−1 = tθ−1 + kθ−1

⇔ t2−θ = −k2−θ.

If we raise both hand sides of the last equation to the power 2+θ, then we obtain t = −k,
implying s = 0, a contradiction.

Hence in this case we have that |W(0,0,0) ∩Wp| = 2. This allows us to recognize the points
of the affine unital block through (0, 0, 0) as those for which |W(0,0,0) ∩Wp| > 2. �

Lemma 2.9.6 In GS , the circles of G are invariants.

Proof. Let p and q be two different points of GS , and let G be the full automorphism
group of GS . Then we first want to determine the elements of G which fix p and all the
blocks of the unital through p, within the sphere with gnarl p through q. We will denote
this group by G[p,q[.

By 2-transitivity we can suppose that p = (∞) and q = (0, 0, 0). The aim is to prove
that G[(∞),(0,0,0)[ = {(0, t, 0) | t ∈ K} =: H . It is easy to see that these automorphisms
satisfy the needed properties and act transitively (even regularly) on the points of the
affine unital block B through (0, 0, 0). Suppose there is another automorphism g which
satisfies these properties. Then, possibly by composing with a suitable element of H ,
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we may assume that g fixes (0, 0, 0). This implies that the sphere with gnarl (0, 0, 0)
through (∞) is also fixed. By Lemma 2.9.2 the points (0, kθ−1, k) with k ∈ K\{0} are
also fixed, so also the blocks through (0, 0, 0) in the sphere with gnarl (0, 0, 0) through
(∞), which makes the situation symmetric in both points. We can also let the fixed
points of the form (0, kθ−1, k) play the role of (0, 0, 0), which yields the fixed points
(0, kθ−1

1 +kθ−1
2 + · · ·+kθ−1

n , k1 +k2+ · · ·+kn) with ki ∈ K\{0}, by repeating the argument.
Choosing n = 3 and k1 = −k2 = k3 = k with k ∈ K\{0} gives us the fixed points (0, 0, k)
for all k ∈ K.

Interchanging the roles of (∞) and (0, 0, 0), we get the fixed points (k, 0,−k2+θ) (to
calculate these observe that (0, 0, k) are the points different from (∞) on the circle with
gnarl (∞) through (0, 0, 0), interchanging gives us the points different from (0, 0, 0) on
the circle with gnarl (0, 0, 0) through (∞)). If we let a fixed point (0, 0, l) with l ∈ K

play the role of (0, 0, 0), we obtain that all the points of the form (k, 0, l) with k, l ∈ K
are fixed points. On each affine unital block lies a point of this form, so all affine unital
blocks are fixed, and by symmetry also the blocks of the Ree unital through (0, 0, 0). It
follows that all points are fixed points, and that g is the identity.

The above proves that G[p,q[ is a subgroup of the root group Up and hence, if |K| > 3, also
a subgroup of the simple Ree group R′(K, θ). The group K generated by all groups of the
form G[p,q[ is a normal subgroup of this Ree group (indeed, if g is an automorphism of GS ,
then Gg

[p,q[ = G[pg,qg[). So by simplicity, K coincides with R′(K, θ). Now, by [10], the root
groups of K are the unique unipotent subgroups of K. Hence we can recover these root
groups and consequently also the circles constructed from these root groups.

If |K| = 3, then K is a normal subgroup of the Ree group R(3) over the field with 3
elements. But the groups G[p,q[ do not belong to the simple Ree group. Hence it is easy
to see that K coincides with the Ree group R(3) and, as above, we can again recover the
circles. �

We have proved :

Corollary 2.9.7 The automorphism group of GS coincides with that of G.

This completes the proof of Main Result 2.4.2.
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Chapter 3

‘Rank two’ case, or generalized
polygons

During my Ph.D. studies, I obtained various results about generalized polygons, which
can roughly be put in two categories: mixed quadrangles and generalized inversive planes,
and embeddings of quadrangles in buildings of type F4.

Mixed quadrangles. — In 1974, Jacques Tits [44] introduced what he called groups of
mixed type, as a certain generalization of algebraic groups. This was motivated by the fact
that certain spherical buildings arise from such groups, and Tits classified all spherical
buildings of rank at least three in [44].

Roughly, the groups of mixed type of rank 2 arise when the weight of the edge of the
rank 2 Coxeter diagram is equal to the characteristic of the underlying field. Indeed,
in the commutation relation of the root groups, the weight w of the edge turns up as a
coefficient, and as a power (if the diagram is included in a rank 3 diagram, then only
the cases w ∈ {1, 2, 3} occur). If the corresponding term does not vanish (i.e., if in
the underlying field w is not equal to 0), then we are in the generic case where we are
able to distinguish long and short roots (by the commutation relations, but also by the
geometry of the corresponding building). However, if w = 0, i.e., if the characteristic of
the underlying field is equal to w, then the commutation relations become much more
symmetric, allowing for diagram automorphisms. If the field is perfect, not much extra
happens since the symmetry is then up to the field Frobenius automorphism x 7→ xw,
and we only obtain an extra group automorphism (diagram automorphism). However, if
the field is not perfect, then this ‘duality’ is not surjective anymore, and we obtain the
peculiar situation in which the rank 2 geometry ‘looks’ symmetric, but isn’t. Technically,
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the duality maps the geometry into itself, but not onto. In other words, the geometry
(building) is isomorphic to the dual of a subgeometry. On the algebraic level, we obtain
an infinite descending chain of algebraic structures, each one containing the next one,
and the first one parameterizing the chambers in a certain panel. Since we have two
different types of panels, we have two such chains (which are mapped onto each other by
the duality). The strange thing is now that ‘interlacing’ subchains define subgeometries
and the corresponding automorphism groups are the groups of mixed type. If the original
chains consist of fields, then the interlacing chains may consist of fields, too, but also of
vector spaces. The latter only happens for w = 2.

In this chapter, we study the case w = 2 in a geometric way. This is the case where
the Coxeter diagram has a weight 2 edge, hence a double bond. Geometrically, this is
the case of the (Moufang) generalized quadrangles. In the (algebraically) split case, we
have a symplectic quadrangle over some field K. If K has characteristic 2 and is perfect,
then this generalized quadrangle, denoted by W(K), is self-dual. If K has characteristic
2 and is not perfect, then we are in the mixed case. There are two types of panels here,
and hence two different parametrizations. Any point row is parametrized by K ∪ {∞},
while any line pencil is parametrized by K

2 ∪ {∞} (here, K
2 is the field of squares of K).

We obtain two chains K ⊇ K
2 ⊇ K

4 ⊇ · · · and K
2 ⊇ K

4 ⊇ K
8 ⊇ · · · . An interlacing

chain may look like K
′ ⊇ K

′2 ⊇ K
′4 ⊇ · · · , with K

′ a field satisfying K
2 ⊆ K

′ ⊆ K. But
we may also substitute K in the first chain by a vector space L over K

′ contained in K,
and K

′ in the second chain by a vector space L′ over K
2 contained in K

′. This is the
most general case that can occur. We denote the corresponding (Moufang) quadrangle
by W(K,K′;L,L′).

The quadrangle W(K,K′;L,L′) has an interesting geometric property. Indeed, all its
points and lines are regular (for precise definitions, see below). Moreover, the dual nets
associated with the regular elements also satisfy some regularity properties. In a very
weak form one can say that these dual nets satisfy a certain Little Desargues Axiom. We
will show that this axiom, together with the regularity of points and lines, characterizes
all quadrangles of mixed type. In order to answer the question of the geometric difference
between the cases where both / exactly one / none of L and L′ are fields, we consider the
Veblen & Young Axiom in these dual nets. We will show that if a generalized quadrangle
has enough regular points and lines, and if the dual nets related to the regular points
satisfy the Axiom of Veblen & Young, then the quadrangle is of mixed type and L′ is a
field.

These results hold in both the infinite and finite case. But in the finite case there are
no proper mixed quadrangles since a finite field is always perfect. All the results of the
present chapter that are also valid in this improper mixed case are actually well known
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for finite quadrangles, but some of our proofs give rise to alternative arguments. As an
example we mention that Theorem 3.5.6 immediately implies that, if a finite generalized
quadrangle of order q has an ovoid of regular points, then all corresponding projective
planes are classical.

These results, and the ones in the next subsection, were obtained in a joint work with
Hendrik Van Maldeghem, see [35].

Generalized Suzuki-Tits inversive planes. — Another feature of the mixed quad-
rangles is that certain of them admit polarities, i.e., dualities of order 2. In this case, the
centralizer of that polarity in the little projective group of the quadrangle is a (general-
ized) Suzuki group. The set of elements fixed under a polarity can be structured to a
geometry which is called a generalized inversive plane in [61]. The main result of [61] says
that the automorphism groups of these generalized inversive planes are essentially the
(generalized) Suzuki groups. In the present chapter, we use the above characterizations
of the mixed quadrangles to axiomatize the generalized inversive planes corresponding to
the generalized Suzuki groups. In the perfect case, this has already been done by Hendrik
Van Maldeghem in [58]. So we relax the axioms of [58] to deal with the more general case
of imperfect fields (using the Veblen & Young Axiom) and vector spaces (using the Little
Desargues Axiom). As a corollary, these new results let us simplify the characterization
for the perfect case in [58] by removing one axiom.

Embeddings of quadrangles in buildings of type F4. — The first examples of
generalized polygons mainly arose as embeddings in projective spaces, i.e., the points of
the polygon are some points of a projective space, while the lines of the polygon can be
identified with some lines of the projective space, and the incidence relation is the natural
one. The mixed quadrangles and the hexagons mentioned in the above subsection and
the previous chapter are examples of such embeddings. If the embedding is ‘nice’, then
it automatically inherits beautiful symmetry properties from the projective space, see
[13, 18, 32, 33, 40]. ‘Nice’ could mean that the lines of the polygon through any point
are contained in a certain subspace of the projective space (plane, hyperplane), or that
the points not opposite a given point in the polygon do not span the entire projective
space, or just a bound on the dimension of the projective space together with the fact
that all points of the projective space on any line of the polygon belong to the polygon.
In particular, the previous references contain characterizations and classifications of the
‘nice’ embeddings of the Moufang generalized quadrangles and hexagons.

However, not all Moufang polygons admit an embedding as considered above. The notable
examples are the exceptional Moufang quadrangles and their duals, the duals of some
embeddable classical Moufang quadrangles, and the duals of the exceptional Moufang
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hexagons and of the Ree-Tits octagons. These exceptional polygons geometrically come
forward in a different way: they do not arise from ‘forms’ of a projective space, but from
‘forms’ of buildings of exceptional type and rank at least 4. All types arise: E6,E7,E8, F4.
In this chapter, we take a closer look at the situation of F4 (called metasymplectic spaces
from a geometric point of view). This case is the least ‘algebraic’ of the lot. Similar as
explained above, characteristic 2 is a special case for buildings of type F4 (which contain
an edge of weight 2). This leads to the existence of groups and buildings of mixed type
with diagram F4, see [44].

Using this special behaviour one can find embeddings of certain Moufang quadrangles and
octagons. This is the starting point. Our goal is to find a ‘nice’ property of the embedding
of the exceptional Moufang quadrangles in buildings of type F4 that guarantees that any
quadrangle embedded in a building of type F4 with that property, is automatically a
Moufang quadrangle. This property will be denoted by (OV) in Section 3.9. Roughly,
we require that the points of the quadrangle are points of the building, the lines of the
quadrangle are hyperlines of the building (with natural incidence), and (OV) says that
any two noncollinear points of the quadrangle are never contained in a hyperline of the
building. In other words, collinearity in the quadrangle coincides with cohyperlinearity
in the building. This very natural property surprisingly is enough to characterize the
Moufang quadrangles arising from buildings of type F4.

The results mentioned in this subsection are accepted for publication in European J.
Combin.

3.1 Some further definitions on generalized

quadrangles

Let Γ = (P,L, I) be a generalized quadrangle and let x be an arbitrary point. The set of
points of Γ collinear with x will be denoted by x⊥. For a set X ⊆ P, we denote by X⊥ the
set of points collinear with all points of X, and we abbreviate (X⊥)⊥ by X⊥⊥. If y is a
point opposite x, then {x, y}⊥ is called the perp of the pair x, y. The span of the pair x, y
is the set {x, y}⊥⊥. If every span containing x is also a perp (of a pair of different points,
needless to say), then the point x is called regular. Dually one defines regular lines. If
x is a regular point, then the geometry Γ∗

x = (x⊥ \ {x}, {{x, y}⊥ : y 6∼ x},∈ or ∋) is
a dual net (associated to x) (see Section 1.9.2) , i.e., it has the property that for every
point z ∈ x⊥ \ {x} and every block B = {x, y}⊥, with y opposite x, there is a unique
point z′ ∈ B not collinear with z (collinearity in Γ∗

x). If Γ∗
x is a dual affine plane, then
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we call x a projective point. The motivation for this terminology is that the geometry
Γx = (x⊥, {{x, y}⊥ : y ∈ P},∈ or ∋) is then a projective plane, called the perp-plane
in x. Projective points have nice properties. For instance, one can easily check that x
is a projective point if and only if the geometry (P \ x⊥, {L ∈ L : x 6 I L} ∪ {{x, y}⊥⊥ :
y 6∼ x}, I or ∈ or ∋) is a generalized quadrangle if and only if every pair of distinct
perps contained in x⊥ meet in a unique point (this construction is known as the Payne
construction, see [25]).

Finally we introduce some notions concerning symmetry in generalized quadrangles. A
point x of a generalized quadrangle is called a center of symmetry if it is regular and if
the group of collineations fixing x⊥ pointwise acts transitively on the set {x, y}⊥⊥ \ {x},
for some, and hence for every, point y opposite x. The dual notion is called an axis of
symmetry.

3.2 Examples of generalized quadrangles

We introduce some classes of generalized quadrangles which will be of use later on.

3.2.1 Symplectic quadrangles

The prototype class of examples of generalized quadrangles is the class of symplectic
quadrangles, which are defined as follows. Let ρ be a symplectic polarity in a 3-dimensional
projective space PG(3,K) over a field K. If P is the point set of PG(3,K), if L is the
set of lines of PG(3,K) fixed by ρ, and if I denotes the incidence relation in PG(3,K),
then W(K) = (P,L, I) is a generalized quadrangle called the symplectic quadrangle (over
K). All the points of W(K) are regular, even projective. Conversely, Schroth [31] proved
that any generalized quadrangle all points of which are projective is isomorphic to a
symplectic quadrangle. In fact, Theorem 6.2.1 of [54] asserts that, if all points of a
generalized quadrangle Γ are regular and at least one point is projective, then all points
are projective and Γ is a symplectic quadrangle. The first step in the proof is to show
that if a point x of Γ is projective, then every opposite (regular) point is also projective.
We record this step as a separate lemma for later reference.

Lemma 3.2.1 ([59]) Let x, y be two opposite points of a generalized quadrangle Γ. If x
is projective and y is regular, then y is projective too.
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The symplectic quadrangle has a lot of symmetry. All points of W(K) are centers of
symmetry. Dually, all lines of W(K) are axes of symmetry if and only if K has char-
acteristic 2. Also, W(K) is self-dual if and only if K is a perfect field with characteris-
tic 2. Moreover, W(K) admits a polarity if and only if there exists a Tits automorphism
θ : K −→ K : x 7→ xθ, so (xθ)θ = x2, for all x ∈ K (see Section 1.9.1).

We now give a description of W(K) using coordinates (see [59]). Let W(K) = (P,L, I) be
the symplectic quadrangle over the field K. Then we may take for P the following set:

P = {(∞)} ∪ {(a) : a ∈ K} ∪ {(k, b) : k, b ∈ K} ∪ {(a, l, a′) : a, l, a′ ∈ K},

and for L the set

L = {[∞]} ∪ {[k] : k ∈ K} ∪ {[a, l] : a, l ∈ K} ∪ {[k, b, k′] : k, b, k′ ∈ K},

where ∞ is a symbol not contained in K, and where incidence is given by

(a, l, a′)I[a, l]I(a)I[∞]I(∞)I[k]I(k, b)I[k, b, k′],

for all a, a′, b, k, k′, l ∈ K, and

(a, l, a′)I[k, b, k′] ⇐⇒
{
a′ = ak + b,
k′ = a2k + l − 2aa′.

We clearly see the asymmetry if the characteristic of K is unequal to 2. If, on the other
hand, the characteristic of K is equal to 2, then the two above formulas are equivalent if
squaring is an automorphism, i.e., the Frobenius is surjective, implying the field is perfect.

3.2.2 Mixed quadrangles

Mixed quadrangles are subquadrangles of the symplectic quadrangle W(K), for K an im-
perfect field with characteristic 2 (in the other case the only (thick) subquadrangles are
symplectic quadrangles over subfields). Neither the point set nor the line set of these
subquadrangles can be given by a nice set of equations in PG(3,K), because the corre-
sponding collineation groups are not algebraic groups. The quickest and most elementary
way to define the mixed quadrangles is using the coordinates of symplectic quadrangles
introduced above.

So suppose K is imperfect and of characteristic 2, and let K
2 be the subfield consisting of

all squares. Let K
′ be a subfield with K

2 ⊆ K
′ ⊆ K and let L,L′ be subspaces of K,K′
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viewed as vector spaces over K
′,K2, respectively, with K

2 ⊆ L′ and K
′ ⊆ L. We consider

the description of W(K) with coordinates as above, and we now restrict the a, a′, b to L
and the k, k′, l to L′. Then we obtain a subquadrangle that we denote by W(K,K;L,L′)
and call a mixed quadrangle (the terminology in [51] mentions indifferent quadrangle, but
we prefer to name the geometries after the groups, as for the symplectic quadrangle). In
order to have a unique definition, we also assume that L and L′ generate K and K

′ as
a ring. Note that W(K) = W(K,K; K,K) and that W(K,K2; K,K2) is the dual of W(K)
(and this dual is isomorphic to the generalized quadrangle arising from a nonsingular
quadratic form of maximal Witt index in a five-dimensional vector space over K).

It is convenient to also call W(K), with K perfect and of characteristic 2, a mixed quad-
rangle. In this case, we also write W(K) = W(K,K; K,K).

In general, the dual of W(K,K′;L,L′) is isomorphic to W(K′,K2;L′, L2); hence the class
of mixed quadrangles is a self-dual one. Moreover, since all points of W(K) are regular,
so are all points of every mixed quadrangle, and hence so are all lines of it. Notice
that, applying duality twice, the subquadrangle W(K2,K′2;L2, L′2) of W(K,K′;L,L′) is
isomorphic to W(K,K′;L,L′) itself.

Let us finally mention that all points of a mixed quadrangle are centers of symmetry, and
all lines are axes of symmetry. Moreover, it follows from [37] and Theorem 21.10 in [51]
that, if all lines of a generalized quadrangle Γ are axes of symmetry, and at least one point
is regular, then Γ is a mixed quadrangle.

3.2.3 Suzuki quadrangles

It is well known, see Theorem 7.3.2 of [59], that a mixed quadrangle W(K,K′;L,L′) admits
a polarity if and only if K admits a Tits endomorphism θ : K −→ K and we can choose
K

′, L, L′ such that K
′ = K

θ and L′ = Lθ. Hence every polarity in W(K,K′;L,L′) is the
restriction of a polarity in W(K,K′; K,K′). So the case of L = K is a kind of principal
case. A self-polar mixed quadrangle shall be called a Suzuki quadrangle.

Remark 3.2.2 The mixed quadrangles and mixed hexagons have a similar algebraic
background in the theory of mixed groups, and for this reason many properties are alike.

3.3 Dual nets

In Section 3.1, it was mentioned that one can associate a dual net to a regular point of
a generalized quadrangle. We now take a closer look at dual nets in order to state the
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results.

Let ∆ = (P,L, I) be a dual net. Noncollinear points shall be called parallel, it is easy
to see that parallelism is an equivalence relation in P. Call the dual parallel classes of
points vertical lines and introduce a new point ∞ incident with all vertical lines. This
way we create a linear space Γ = (P,L, I) (a linear space is a point-line geometry in which
every pair of distinct points is incident with a unique line). A triangle is a set of three
pairwise intersecting distinct elements of L, but such that all three lines do not have a
point in common. The 3 intersection points are also viewed as belonging to the triangle.
Two triangles are said to be in perspective from a point x if there are three different lines
through x of Γ each incident with a unique point of each triangle. Consider the following
two conditions:

(LD) For every pair of triangles which are in perspective from the point ∞, and for
which two pairs of corresponding sides meet on a vertical line V , the third pair of
corresponding sides also meets on V .

(VY) If a line Lmeets two sides of a proper triangle in two distinct points, then L intersects
the third side too.

If we want to fix and include the line V of (LD) in our assumptions, we more specifically
say that the dual net satisfies (LD) with respect to the vertical line V .

The letters (LD) and (VY) stand for Little Desargues and Veblen-Young, respectively.

3.4 Results on mixed quadrangles

A famous conjecture says that every generalized quadrangle all elements of which are
regular is isomorphic to a mixed quadrangle (in the form of a problem, this is Problem 8
in Appendix E of [59]). In the finite case, generalized quadrangles all of whose points are
regular are not classified, unless one requires an additional condition on the corresponding
dual nets, or on the parameters. In [39] the condition that these dual nets satisfy the
Axiom of Veblen-Young does the job. In the present chapter we will classify all generalized
quadrangles with a lot of regular points and lines, and for which the dual nets associated
to the regular points satisfy the Axiom of Veblen-Young. Postponing a discussion of what
‘a lot’ precisely means to Section 3.5.3 (see Theorems 3.5.8 and 3.5.9), we here state the
weakest form.
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Main Result 3.4.1 A generalized quadrangle Γ is isomorphic to some mixed quadran-
gle W(K,K′;L,K′) if and only if all points and lines of Γ are regular and the dual net
associated to each regular point satisfies Condition (VY).

In order to include all mixed quadrangles, we have to appeal to Condition (LD).

Main Result 3.4.2 A generalized quadrangle Γ is isomorphic to some mixed quadran-
gle W(K,K′;L,L′) if and only if all points and lines of Γ are regular and the dual net
associated to each regular point satisfies Condition (LD).

3.5 Proofs

General idea. — First we show that under certain assumptions Condition (LD) follows
from Condition (VY). Then, using a flag consisting of a regular point and line, such that
the point satisfies (LD), we construct collineations of the generalized quadrangle, making
the line into an axis of symmetry. Enough axes of symmetry will then imply that the
quadrangle is a mixed quadrangle.

3.5.1 Dual nets satisfying the axiom of Veblen-Young

Let Γ = (P,L, I) be a dual net. As before, we call the dual parallel classes of points vertical
lines and introduce a new point ∞ incident with all vertical lines. This way we created
a linear space Γ = (P,L, I). If two lines L,M intersect in this linear space, we write
L ∼ M . Let V be the set of all vertical lines. Our aim is to prove that Condition (LD)
follows from Condition (VY), if there exists at least one pair of nonintersecting lines.

So henceforth we assume that Γ satisfies (VY), and that there are at least two noninter-
secting lines in Γ. Clearly, the latter condition is equivalent with Γ being not a dual affine
plane.

We begin with defining a projective plane for every pair of intersecting lines L,M . Indeed,
let L,M be two intersecting lines in Γ, and let x be their intersection point. Then we
consider the set of lines intersecting both L and M in two distinct points, together with
the set of lines incident with x and meeting some line K that intersects L and M in two
distinct points. We denote this set by B∗. The point set A is defined to be the set of
points incident with at least one element of B∗, together with ∞. Now add all vertical
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lines to B∗ by defining B = B∗ ∪ V. If we denote the restriction of I still by I (slightly
abusing notation), then we claim that ∆L,M = (A,B, I) is a projective plane.

Indeed, this is in fact a routine check. Let us first show that two distinct lines X, Y
always meet. If at least one of X, Y belongs to V, or if both X, Y are incident with x,
then this is trivial. If none of X, Y is incident with x, then this follows directly from
(VY), as by definition both of X and Y meet both of L and M . If X is incident with x,
then it intersects some line K which also intersects both of L and M in distinct points.
Since we may assume K 6= Y , we may also assume that Y,K, L form a proper triangle
(as otherwise Y,K,M form one). Now (VY) implies that X meets Y .

Now we show that two distinct points y, z ∈ A are joined by exactly one line in B. Indeed,
we clearly may assume that neither y or z coincides with ∞, and that they are not incident
with the same vertical line. Hence they are incident with a unique member X ∈ L. We
must show that X ∈ B∗. By definition, yIY ∈ B∗ and zIZ ∈ B∗. Suppose that Y Ix. Let
K ∈ B∗ be such that K intersects L,M, Y in three different points, and suppose that y
is not incident with K. Choose an arbitrary point y′ incident with K and not parallel to
y. The line Y ′ joining y and y′ meets both of L and M by (VY). We have shown that we
may assume that Y is not incident with x, and hence neither Z. Moreover, using (VY),
we can arrange that Y, Z do not meet on L or M (if they do then we may re-choose Y
not incident with the intersections of Z with L and M). Then X meets two sides of both
the triangles Y, Z, L and Y, Z,M in distinct points, and hence (VY) implies that X meets
both of L and M . If X is not incident with x, then X ∈ B∗ by definition; if xIX, then
with K ∈ {Y, Z}, we see that again X ∈ B∗.

Clearly ∆L,M = ∆L′,M ′ for L′,M ′ distinct nonvertical lines of ∆L,M . Hence if two projec-
tive planes of this form share two nonvertical lines, then they coincide.

If we now remove from ∆L,M the point ∞ and the vertical lines, then we obtain a dual
affine plane. Our assumptions and the existence and uniqueness of the projective plane
constructed above now implies that the dual of Γ is a subplane covered net in the sense
of Johnson [17]. It follows from the latter paper that we can identify P with the points of
a projective space P minus a subspace W of codimension 2, and L can be identified with
the lines of P that do not intersect W . Our hypothesis that Γ is not a dual affine plane
implies that the dimension of P is at least 3, and hence it is a Desarguesian projective
space.

Now if a pair of triangles is in perspective from ∞, and if two pairs of corresponding
sides meet, then in P, this means that the two triangles are also in perspective from a
point (because two corresponding pairs of sides must lie in the same plane), and so by
Desargues’ theorem, also the third pair of corresponding sides meets, and this intersection
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point is collinear with the two others. This shows (LD).

Hence we have proved the following theorem.

Theorem 3.5.1 A dual net which is not a dual affine plane satisfies (VY) only if it
satisfies (LD).

One of our crucial tools to characterize the mixed quadrangles is Property (LD) for the
nets associated to the regular points of some generalized quadrangle Γ, which we now know
to hold if (VY) is satisfied for these dual nets in the case they are not dual affine planes.
In dual affine planes (VY) holds trivially, but (LD) is not necessarily true. A sufficient
condition for (LD) is that the corresponding projective plane is a Moufang plane. And
that is exactly what we are going to prove in the case that the generalized quadrangle
contains ‘enough’ projective points.

3.5.2 Generalized quadrangles with a lot of projective points

In this section we concentrate on generalized quadrangles with a number of projective
points. In fact, we only need one projective point and a set of regular points. More
precisely, let Γ be a generalized quadrangle and let O be a set of regular points of Γ. We
assume the following two conditions on O.

(PP) At least one member of O is a projective point.

(TP) If x, y are opposite points of Γ, then |{x, y}⊥ ∩O| 6= 1.

Our aim is to prove that, under these assumptions, all points of O are projective and
every corresponding perp-plane is a Moufang projective plane. We will need the following
characterization of Moufang projective planes by H. Van Maldeghem [60]. In a projec-
tive plane, a line L is called an axis of transitivity if the pointwise stabilizer of L acts
transitively on the points not incident with L.

Theorem 3.5.2 ([60]) A projective plane is a Moufang plane if and only if each line L
is an axis of transitivity.

Henceforth Γ is a generalized quadrangle with O a set of regular points of Γ satisfying
(PP) and (TP).

We start with proving that all elements of O are projective.
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Lemma 3.5.3 Every element of O is a projective point of Γ.

Proof. We know that there is at least one point p ∈ O which is projective. Let q be any
other element of O. If q is opposite p, then Lemma 3.2.1 implies that q is projective.
Now suppose q ∼ p. Let x, y be opposite points collinear to p such that x is incident with
the line pq, but x 6= q. Then p ∈ {x, y}⊥, implying by (TP) that some other element
p′ ∈ O \ {p} also belongs to {x, y}⊥. Clearly, p′ is opposite p and therefore is a projective
point. But p′ is also opposite q and hence Lemma 3.2.1 implies that q is projective.

The lemma is proved. �

We now prove a lemma that will generate collineations of the perp-planes Γp, for p ∈ O.

Lemma 3.5.4 Let p, q ∈ O, with p opposite q. Then the following function θp,q defines
an isomorphism between Γp and ΓD

q :

(i) A point x of Γp is mapped to the block xθp,q of Γq consisting of all the points collinear
with both x and q.

(ii) A block α of Γp is mapped to the point αθp,q of Γq collinear with q and with all points
of α.

Proof. First we show that θp,q is well defined by proving that for each block α of Γp,
there is indeed a unique point a ∼ q collinear with all points of α. We may assume
that α 6= {p, q}⊥, as otherwise a = q is easily seen to be that unique point. Since Γp is
projective, there is a unique point r ∈ {p, q}⊥ ∩ α. Now a is necessarily the unique point
on the line rq which is collinear with any point of α \ {r}.
The definition of θp,q now easily implies that, if x ∈ α, with x ∼ p and α a block of Γp,
then αθp,q ∈ xθp,q . Also, the inverse mapping is apparently given by θq,p, hence θp,q is
bijective and so defines an isomorphism from Γp to the dual of Γq. �

Note that we can write xθp,q = {q, x}⊥ and αθp,q = α⊥⊥ ∩ q⊥, with x ∼ p and α a block of
Γp.

We now consider three different points p1, p2, p3 ∈ O, with p3 opposite both p1 and p2. By
the previous lemma, we can combine θp1,p3

and θp3,p2
to an isomorphism φ := θp1,p3

θp3,p2

between Γp1
and Γp2

. Let us calculate the image of a point x of Γp1
under φ:

xφ = xθp1,p3
θp3,p2 = ({x, p3}⊥)θp3,p2 = {x, p3}⊥⊥ ∩ p⊥2 .
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If we apply this to a point a in {p1, p2}⊥, then, since a ∈ {a, p3}⊥⊥ ∩ p⊥2 , we see that
aφ = a (note the independence of p3). We also have pφ

1 = {p1, p3}⊥⊥ ∩ p⊥2 .

Now let p′3 be another point of O\{p1, p2} opposite both p1, p2. We obtain a different
isomorphism φ′ := θp1,p′

3
θp′

3
,p2

between the two perp-planes Γp1
and Γp2

. This allows us
to construct a collineation τ := φ−1φ′ of Γp2

. Using the independence mentioned in the
above paragraph we see that {p1, p2}⊥ is fixed pointwise under the action of τ . Choose
points x, y in Γp2

different from p2 and not contained in {p1, p2}⊥. We can choose p3 ∈ O
in such a way that pφ

1 = x (this is possible since the span {p1, x}⊥⊥ contains at least
two points of O, and we can choose p3 as one of these points different from p1; then
pφ

1 = {p1, p3}⊥⊥ ∩ p⊥2 = {p1, x}⊥⊥ ∩ p⊥2 = x). Analogously, we can choose p′3 ∈ O in such

a way that pφ′

1 = y. Combining this we obtain xτ = xφ−1φ′

= p1
φ′

= y.

Consequently, the pointwise stabilizer of {p1, p2}⊥ in the collineation group of Γp2
acts

transitively on all the other points of the plane, possibly except p2. But if p2 was fixed by
this stabilizer, then the orbits of the other points would completely lie on lines through
p2, which is impossible by the transitivity already shown. So the pointwise stabilizer of
{p1, p2}⊥ is transitive on all points of the perp-plane Γ2 except for the points of {p1, p2}⊥
itself. Hence {p1, p2}⊥ is an axis of transitivity in the projective plane Γp2

.

We can even do better.

Lemma 3.5.5 Each block α of Γp2
is an axis of transitivity.

Proof. Let α be a block of Γp2
not incident with p2, so that α is a perp {p2, x}⊥ with x

a point of Γ opposite p2. The span {p2, x}⊥⊥ is a perp and contains p2, hence it contains
a second point p4 ∈ O. This implies α = {p2, p4}⊥ and the assertion follows from our
previous discussion.

The blocks through p2 can now be mapped to blocks not through p2 by the pointwise
stabilizers of the blocks not containing p2. So the blocks through p2 are also axes of
transitivity. �

Now Theorem 3.5.2 implies that Γp2
, and hence all perp-planes of points in O, are Moufang

projective planes, and in particular satisfy Condition (LD).

Hence, in this section, we have shown the following theorem.

Theorem 3.5.6 Let Γ be a generalized quadrangle and let O be a subset of regular points
of Γ satisfying (PP) and (TP). Then all points of O are projective and all corresponding
perp-planes are Moufang projective planes, and satisfy, in particular, (LD).
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3.5.3 Quadrangles with regular points satisfying (LD)

In this section, we will prove Main Result 3.4.1 and Main Result 3.4.2. They will follow
from Theorem 3.5.1, Theorem 3.5.6 and the following lemma.

Lemma 3.5.7 Let Γ = (P,L, I) be a generalized quadrangle containing a flag {p, L}
consisting of a regular line L and a regular point p such that the dual net associated to p
satisfies (LD) with respect to the vertical line defined by L. Then L is an axis of symmetry
for Γ.

Proof. First of all we notice that if there are only three lines through each point in Γ, then
regularity of a point implies that there are also exactly three points on each line. Such a
generalized quadrangle is always isomorphic to W(2), in which the assertion clearly holds.
So we may assume that there are at least four lines through each point.

Let M be a line through p different from L. Let a, a′ be two points incident with M but
different from p. We will gradually construct a collineation θ mapping a to a′ fixing L
pointwise, and fixing all lines meeting L.

Lines intersecting L

For these lines N we set N θ = N .

Points collinear to p not on L

Let N be a line through p different from both L and M , and let q be a point on N different
from p; then we define the image of p under θ as follows. The perp α in Γ∗

p through a and
q intersects L in a point b. Then qθ is the intersection point of N with the perp through
a′ = aθ and b. This way the image of a defines the image of a point q collinear with p,
but not with a. We denote this as: a → q. The image of a point c on M is defined by
q → c, for some point q ∼ p not collinear to c.

To show that θ is well defined, we have to prove that combining a→ b with b→ c (we will
abbreviate this by a → b → c) where b is not collinear with either a or c, is independent
of the choice of b. So suppose a, b, c and d are four points in p⊥ not on L such that both
b and d are not collinear with either a or c.
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(i) If a is not collinear with c, then a → b → c is equivalent with a → c. Indeed, this
follows directly from the condition (LD) applied to the triangles a, b, c and aθ, bθ, cθ

(where θ is defined using a → b → c). Similarly, a → d → c is equivalent with
a→ c and the result follows.

(ii) Suppose that a is collinear with c. If b is not collinear with d then a → b → c is
equivalent with a→ b→ d→ c which in its turn is equivalent with a→ d→ c. If b
and d are collinear then we can choose a point e collinear with p but not with a or
b and not on L (because there are at least four lines through a point in Γ). Then
a → b → c is equivalent with a → b → e → c, a → e → c and a → d → c by using
the previous arguments.

It is important to note that θ preserves the perps in Γ∗
p.

Lines and points opposite L or p

Let N be a line opposite L, and let pIAIqIN . Then we define N θ to be the unique
line incident with qθ in the (line) span containing L and N . The image of a point t
incident with N is defined as the intersection point of N θ with the unique line K through
t intersecting L (these lines indeed intersect because of the regularity of L). The only
thing left to show is that tθ is well defined. If t is collinear with p then this is clear, so
suppose t 6∼ p. The lines through t define a perp in Γ∗

p, which will be mapped to another
perp by θ while fixing the intersection point r of K and L of the perp. The images of
all the lines through t must meet K. Since they also must contain a point of the perp
{p, tθ}⊥, we see that they are all incident with tθ. Hence tθ is well defined. It is now also
clear that θ and its inverse preserve incidence, and hence it is a symmetry. Since a and a′

were basically arbitrary, it follows that L is an axis of symmetry, and the lemma follows.
�

We are now ready to prove slightly more general results than Main Results 3.4.1 and 3.4.2.

Theorem 3.5.8 A generalized quadrangle Γ = (P,L, I) is a mixed quadrangle if and only
if there is a subset O ⊆ P of points and a nonempty subset S ⊆ L of lines satisfying the
following conditions.

(i) All points of O and all lines of S are regular.

(ii) Every (line) span containing a line of S contains at least two lines of S.
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(iii) Every element of S is incident with some element of O.

(iv) The dual net associated to each regular point x of O satisfies (LD) with respect to a
vertical line given by some element of S incident with x.

In particular, if all elements of Γ are regular and (iv) holds, then Γ is a mixed quadrangle.

Proof. Fix a line L of S. By (iii), there is a regular point p incident with L with the
property that, by (iv), the associated dual net satisfies (LD). Lemma 3.5.7 implies that
L is an axis of symmetry. Likewise, every element of S is an axis of symmetry. Let M be
an arbitrary line opposite L. The span {L,M}⊥⊥ contains some element K ∈ S \{L}, by
(ii). Since L is an axis of symmetry, there is a collineation mapping K to M . Since K is
an axis of symmetry, so is M . Hence all lines opposite L, and likewise all lines opposite
K, are axes of symmetry. It is easy to see that for each element N of {L,K}⊥ there is a
line opposite all of L,K,N . We conclude that all lines of Γ are axes of symmetry. Since
we have at least one regular point, we can conclude that Γ is a mixed quadrangle (see
Section 3.2.2). �

Theorem 3.5.9 A generalized quadrangle Γ = (P,L, I) is isomorphic to a mixed quad-
rangle W(K,K′;L,K′) if and only if there is a subset O ⊆ P of points and a nonempty
subset S ⊆ L of lines satisfying the following conditions.

(i) All points of O and all lines of S are regular.

(ii) Every span containing a point of O contains at least two points of O.

(ii)′ Every (line) span containing a line of S contains at least two lines of S.

(iii) Every element of S is incident with some element of O.

(iv) The dual net associated to each regular point of O satisfies (VY).

In particular, if all elements of Γ are regular and (iv) holds, then Γ is isomorphic to a
mixed quadrangle W(K,K′;L,K′).

Proof. If none of the points of O are projective, then Theorem 3.5.1 implies that, to-
gether with (iv), each dual net associated to a regular point of O satisfies (LD). From
Theorem 3.5.8 we infer that Γ is isomorphic to a mixed quadrangle W(K,K′;L,L′).
We now show that L′ = K

′. Assume, by way of contradiction, that L′ 6= K
′. Then
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we can choose elements k, k′ ∈ K
′ such that kk′ /∈ L′. One easily calculates that

in the coordinate representation of W(K,K′;L,L′), the perp Ta,a′ := {(∞), (a, l, a′)}⊥
consists of the point (a) together with the points (x, ax + a′), x ∈ L′. Now we con-
sider the perps T0,0 = {(0)} ∪ {(x, 0) : x ∈ L′} and T0,1 = {(0)} ∪ {(x, 1) : x ∈ L′},
which both meet the perps T1,0 = {(1)} ∪ {(x, x) : x ∈ L′} and T(k−1+1)−1,k′(k−1+1)−1 =
{((k−1 + 1)−1)} ∪ {(x, (k−1 + 1)−1x + (k−1 + 1)−1k′) : x ∈ L′}. By (VY), the latter two
perps must intersect. Hence there must exist x ∈ L′ such that

x = (k−1 + 1)−1x+ (k−1 + 1)−1k′,

which is equivalent with kk′ = x ∈ L′, a contradiction.

If at least one point of O is projective, then by Theorem 3.5.6 and Assumption (ii), all
points of O are projective, and all corresponding perp-planes are Moufang and satisfy
(LD). Since they also satisfy (VY), the result now again follows from Theorem 3.5.8 and
the computation performed in the previous paragraph. �

3.6 Results on generalized Suzuki-Tits

inversive planes

Let ρ be a polarity in a Suzuki quadrangle and let O be the set of its absolute points,
which forms an ovoid of the Suzuki quadrangle - the so-called Suzuki-Tits ovoid. Viewed
as a subset of points of PG(3,K), it is also an ovoid in the sense of Tits [43] (which is a
set of points O in PG(3,K), such that for each point p ∈ O there is a plane for which the
intersection with O only contains p, while all lines through p not in the plane intersect O
in exactly two points).

First consider the case where the field K is perfect, so that the Suzuki quadrangle is in fact
a symplectic quadrangle. With each ovoid of PG(3,K) corresponds an inversive plane,
i.e. a rank 2 geometry consisting of a set of points and a set of circles, which are the
intersections of planes in PG(3,K) with O containing more than one point, and provided
with the natural incidence relation. It satisfies the following axioms.

[MP1’] Each 3 different points are contained in exactly one circle.

[MP2] For each circle C and each pair of points x, y with x ∈ C and y /∈ C, there exists
an unique circle C ′ which contains y and touches C in x.
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(‘Touching ’ circles are circles that meet in a unique point.) Another way to construct
the circles would be taking for each nonabsolute point of the quadrangle the points of O
collinear to it.

The inversive planes arising from the (perfect) Suzuki-Tits ovoids have been characterized
by a set of axioms by H. Van Maldeghem in [58]. We will generalize this result below.

We now turn to the general case, not demanding perfectness anymore. Here we define
the set of circles as follows. A circle is the set of points of O collinear to some point
not contained in O. If we denote the family of circles by C, then we obtain a geometry
(O, C,∈ or ∋). These generalized inversive planes satisfy the following axioms.

[MP1] Each 3 different points are contained in at most one circle.

[MP2] For each circle C and for every pair of points x, y ∈ P with x ∈ C and y /∈ C, there
exists a unique circle C ′ which contains y and touches C in x.

[CH1] There exist no 3 circles which are pairwise touching in different points.

[CH2] For each circle C and every pair of points x, y /∈ C, we have the following three
possibilities: no circle containing x, y touches C, one circle does, or all circles do.

Remark 3.6.1 The circles in the nonperfect case also can be realized as plane intersec-
tions, but not all plane intersections containing more than one point give rise to circles.

There are a lot of geometries that satisfy the above axioms. For instance every inversive
plane obtained from an ovoid of a projective 3-space over a field with characteristic 2.
In order to further distinguish the geometries corresponding to the polarities in Suzuki
quadrangles, we use the observation that each circle C has a very special point, which we
denote by ∂C and call the gnarl of the circle. Indeed, if C is the set of points of O collinear
with the point x /∈ O, then there is a unique absolute line incident with x and hence a
unique point ∂C of C such that the line joining ∂C with x is absolute. Alternatively, ∂C
is the unique point of C incident with xρ.

The function ∂ has the following properties.

[ST1] For each pair of points x, y there exists a unique circle C which contains x and such
that ∂C = y.

[ST2] For each circle C and point x /∈ C, there is at most one circle C ′ which contains
both of x and ∂C, and such that ∂C ′ ∈ C.
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[TR] Let C be an arbitrary circle, and let x, y ∈ C (∂C 6= x 6= y 6= ∂C). Let D be a circle
through ∂C 6= ∂D. For each circle E different from C, containing both x and ∂C,
and intersecting D in two distinct points ∂C, z, we consider the circle E∗ through
z and touching C in ∂C. We also consider the circle E∗∗ containing y, touching E
in ∂C. Then E∗ ∩ E∗∗ is contained in a circle D′ through ∂C which is essentially
independent of E.

If K is perfect, we have an inversive plane, and this allows us to impose a stronger version
of [MP1].

[MP1’] Each 3 different points are contained in exactly one circle.

Remark 3.6.2 As the terminology of gnarl suggests, generalized inversive planes are
examples of the geometries defined by Moufang sets described in Section 1.8.1. The
Moufang set in question acts on the Suzuki-Tits ovoid, and is called accordingly the
Suzuki-Tits Moufang set. It is in some way the characteristic 2 counterpart of the Ree-
Tits Moufang set.

The properties mentioned so far characterize the generalized inversive planes arising from
polarities in mixed quadrangles.

Main Result 3.6.3 Let P be a set and C a set of distinguished subsets of P all containing
at least 3 elements. Also suppose there is a map ∂ : C → P such that ∀C ∈ C : ∂C ∈ C.
We call the elements of C circles and if two of them have only one point in common,
we say they touch at that point. Then (P, C, ∂) satisfies the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2] and [TR], if and only if P can be embedded in a self-polar
mixed quadrangle W(K,K′;L,L′) as the set of absolute points of a polarity ρ. The set C
corresponds to the family of sets of absolute points collinear with a nonabsolute point, and
the map ∂ maps a circle onto its gnarl, i.e., ∂C, with C = x⊥ ∩ P, is the unique point of
P incident with xρ.

If we want to restrict to self-polar mixed quadrangles of type W(K,K′; K,K′), then we
may introduce the following alternative axiom (where we call a set of points cocircular if
they belong to a common circle).

[F] Let x be an arbitrary point, and let x1, x2, x3 be three points pairwise cocircular
with x, but not all cocircular with x. If a point y is cocircular with x and x1, and
also with x en x2, but if y, x, x1, x2 are not cocircular, then y, x, x3 are cocircular.
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And we will show:

Main Result 3.6.4 Let P a set and C a set of distinguished subsets of P all containing
at least 3 elements. Also suppose there is a map ∂ : C → P such that ∀C ∈ C : ∂C ∈ C.
We call the elements of C circles and if two of them have only one point in common,
we say they touch at that point. Then (P, C, ∂) satisfies the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2] and [F], if and only if P can be embedded in a self-polar
mixed quadrangle W(K,K′; K,K′) as the set of absolute points of a polarity ρ. The set C
corresponds to the family of sets of absolute points collinear with a nonabsolute point, and
the map ∂ maps a circle onto its gnarl, i.e., ∂C, with C = x⊥ ∩P, is the unique point of
P incident with xρ.

As mentioned before, if K is perfect, then this is an inversive plane which allows us to
impose a stronger version of [MP1], which was denoted as [MP1’]. Using this axiom
instead of [MP1] allows us to improve upon the characterization given in [58], by deleting
one axiom.

Main Result 3.6.5 Let P a set and C a set of distinguished subsets of P all containing
at least 3 elements. Also suppose there is a map ∂ : C → P such that ∀C ∈ C : ∂C ∈ C.
We call the elements of C circles and if two of them have only one point in common, we
say they touch at that point. Then (P, C, ∂) satisfies the conditions [MP1’], [MP2], [CH1],
[CH2], [ST1] and [ST2], if and only if P can be embedded in a projective space PG(3,K),
for some perfect field K of characteristic 2 admitting a Tits automorphism θ, such that
P is the set of absolute points of a polarity of a certain symplectic quadrangle W(K) in
PG(3,K) and the set of circles of P is equal to the set of plane sections of P in PG(3,K).

3.7 Proofs

General idea. — Using the axioms, we construct a generalized quadrangle from the
generalized inversive plane. Using the results from Section 3.5.3, we then show this is a
mixed quadrangle, satisfying the desired properties.

In this section, we generalize the main theorem of [58] to all self-polar mixed quadran-
gles. It will turn out that we need exactly the more general form in the previous Main
Results 3.4.1 and 3.4.2 in order to prove Main Results 3.6.3 and 3.6.4.

Let P be a set and C a distinguished set of subsets of P all containing at least 3 elements.
Also we have a map ∂ : C → P such that ∀C ∈ C : ∂C ∈ C. We call the elements of C
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circles and if two of them have only one point in common, we say they touch at that point.
The element ∂C of a circle C will be called the gnarl of C. We assume that (P, C, ∂)
satisfies the conditions [MP1], [MP2], [CH1], [CH2], [ST1], [ST2] and [TR].

First, we will prove some further properties using these axioms. All these lemmas are
copies or reformulations of lemmas in [58], with similar proofs, although [MP1] and [ST2]
here are slightly weaker than the corresponding axioms in [58]. We mention them without
proof.

Lemma 3.7.1 Suppose we have 3 different circles C,D and E. If C and E both touch
D at some point x, then C touches E at x.

Lemma 3.7.2 For every circle C and every point x not contained in C there exists a
unique circle D with ∂D ∈ C, ∂C 6= ∂D and containing both of x and ∂C.

Lemma 3.7.3 If a circle C touches D at ∂D, then ∂C = ∂D.

We now proceed with constructing a geometry Γ = (P∗,L∗, I) out of (P, C, ∂). This is
also similar to the perfect case in [58], but since it is crucial for the rest, we repeat it here.

We identify both P∗ and L∗ with the union of P and C. To avoid confusing the elements
of P∗ with those of L∗, we put a subscript p or l to denote to which set it belongs, i.e.,
for all x ∈ P and all C ∈ C, we have xp, Cp ∈ P and xl, Cl ∈ L. A point xp, x ∈ P, is
incident with yl, y ∈ P, if and only if x = y. A point xp, x ∈ P, is incident with the line
Cl, C ∈ C, if and only if Cp is incident with xl if and only if ∂C = x. Finally, the point
Cp, C ∈ C, is incident with Dl, D ∈ C, if and only if ∂C ∈ D, ∂D ∈ C and ∂C 6= ∂D.
This new geometry Γ obviously admits a polarity ρ : P∗ ↔ L∗ : Cp 7→ Cl, xp 7→ xl, Cl 7→
Cp, xl 7→ xp. The absolute flags are of the form {xp, xl} with x ∈ P.

The following lemma tells us when two points are collinear in Γ.

Lemma 3.7.4 For all x, y ∈ P and C,D ∈ C, the following holds.

(i) The point xp is collinear with the point yp if and only if x = y.

(ii) The point xp is collinear with the point Cp if and only if x ∈ C.

(iii) The point Cp is collinear with the point Dp if and only if C and D touch each other.

Also, two different elements of P∗ are incident with at most one element of L∗.



74 ‘Rank two’ case, or generalized polygons

Proof.

(i) Suppose xpIClIyp; then, by definition, x = ∂C = y.

(ii) If xp is collinear with Cp, then xpIxlICp, or there is an E ∈ C such that xpIElICp.
In the first case we have x = ∂C ∈ C; in the second case x = ∂D ∈ C. Suppose now
that x ∈ C. If x = ∂C, then xpIxlICp and so xp is collinear with Cp. If x 6= ∂C,
then there is a unique circle D with gnarl x through δC by [ST1], so xpIDlICp.

(iii) If CpIzlIDp, with z ∈ P, then the claim follows from [ST1]. Suppose that CpIElIDp,
with E ∈ C. Then ∂E ∈ C ∩D, and since D 6= C, we have ∂D 6= ∂C. Clearly, also
∂C 6= ∂E 6= ∂D. Since ∂C, ∂D ∈ E, the result follows from [ST2].

Conversely, suppose C and D touch. If they touch at ∂C, then by Lemma 3.7.3,
∂C = ∂D and CpI(∂C)lIDp. So we can assume that they touch at a point x
different from ∂C and different from ∂D. Let E be the circle containing ∂D and so
that ∂E = x, and assume by way of contradiction that ∂C /∈ E. By Lemma 3.7.2
there exists a circle F containing ∂C and x, and with ∂F ∈ E. Our assumption
implies F 6= E. We claim that either D = F or F touches D at x. Indeed, if not,
then D and F share some point y 6= x. Note that y /∈ E as otherwise F and D
coincide with E, a contradiction. But then both D and F have their gnarl on E,
contain the gnarl of E and contain a further point y /∈ E. Lemma 3.7.2 implies that
D = F . Our claim follows. Now by Lemma 3.7.1, F touches C at x, contradicting
∂C ∈ F ∩ C. So we have that CpIElIDp. �

Our goal now is to show that Γ is a Suzuki quadrangle. First we prove that Γ is a
generalized quadrangle.

Lemma 3.7.5 There are no three different, pairwise collinear points in P∗ unless they
are all incident with the same line.

Proof. First suppose one of the points is of the form xp with x ∈ P; then the other points
must be of the form Cp and Dp (C,D ∈ C) with x = C ∩D. If x = ∂C, then x = ∂D and
all the points are incident with the line xl. If x 6= ∂C, then CpIElIDp, with E ∈ C and
hence ∂E = x. But then also xpIEl.

Now suppose we have three points of the form Cp, Dp and Ep with C,D,E ∈ C. By
collinearity, the circles C,D and E all have to touch each other. Axiom [CH1] implies
that they touch in one common point x. So Cp, Dp and Ep are all collinear with xp. By
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the first part of the proof we obtain that Cp, Dp, xp lie on one line Fl and Cp, Ep, xp lie
one line Gl (F,G ∈ C). Both Fl and Gl contain Cp and xp, so, by the last assertion of
Lemma 3.7.4, Cp, Dp and Ep all are incident with Fl = Gl. �

Lemma 3.7.6 A point in P∗ and a line in L∗ lie at distance at most 3 from each other.

Proof. We prove that for any point X and any line M not incident with X, there is a
point on M collinear with X.

Case 1. First suppose X = xp and M = yl, with x, y ∈ P, x 6= y. Condition [ST1] tells
us that there is a circle C with gnarl x trough y. Now Cp is collinear with yp (by
Lemma 3.7.4) and incident with xp (since ∂C = x).

Case 2. Secondly suppose X = xp and M = Cl, with x ∈ P, C ∈ L, and ∂C 6= x. If x ∈ C
then the point Dp, with D the circle with gnarl x through ∂C, is incident with Cl

and collinear with xp.

If x is not on C, then by Lemma 3.7.2 there exists a circle D through x sharing
two distinct points (namely, ∂C and ∂D) with C. The point Dp is now on Cl and
collinear with xp.

Case 3. Taking duality in account, there is one case left to consider, where X = Cp and
M = Dl, with C,D ∈ L and Cp not incident with Dl in Γ. The first possibility is
that ∂C = ∂D. Then Cp is collinear with (∂C)p, which is incident with Dl.

Now suppose that ∂C 6= ∂D ∈ C. Then the point (∂D)p is collinear with Cp and
lies on Dl. The case where ∂C ∈ D is the dual of the case just handled.

So we may assume that ∂C /∈ D, ∂D /∈ C. By Axiom [MP2] and the fact that a
circle contains 3 or more points, there are at least two circles C1 and C2 with gnarl
∂D and touching C. By Axiom [CH1] these two circles have a second point x 6= ∂D
in common. Due to [CH2] all circles through x and ∂D touch C. So we can consider
the circle E, guaranteed to exist by Lemma 3.7.2, which contains the two points
∂D, x, and has its gnarl on D. This circle E touches C, hence Ep is collinear with
Cp and is incident with Dl. �

Now we want to apply Theorem 3.5.9. Hence we have to find a suitable set of regular
points and regular lines. We will consider the set of absolute points and absolute lines of
Γ with respect to the polarity ρ mentioned above.
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Lemma 3.7.7 The absolute points and lines of Γ are regular.

Proof. Because of the polarity ρ, we only need to prove that when three different points
{U, V,W} are collinear with two noncollinear points X, Y , with X = xp for some x ∈ P,
then each point collinear with U and V is also collinear with W .

Since U and V are two noncollinear points collinear with xp, we may write, by Lemma 3.7.4,
U = Cp, V = Dp, with C,D ∈ C, x ∈ C ∩D, and with C and D not touching each other.
The latter condition implies that C and D share an additional point y 6= x. Then yp is
collinear with both Cp and Dp. We set W = Ep, with E ∈ C and x ∈ E. If Y = yp, then
y ∈ E. The points collinear with Cp and Dp are, besides xp and yp, all points Fp, with F
a circle touching both C and D. But by Condition [CH2], the circle E also touches F , so
Ep is collinear with Fp.

If Y 6= yp, then it is one of the Fp above, and the assertion follows anyway. �

Note that the previous proof immediately implies the following lemma.

Lemma 3.7.8 Every span of Γ containing an absolute point of ρ contains exactly two
absolute points. Also the dual holds.

In view of the two previous lemmas, it only remains to check Condition (iv) of Theo-
rem 3.5.9 in order to prove that Γ is a mixed quadrangle. Therefore we have to look at
the dual net corresponding to a regular point xp, x ∈ P. In view of the previous results,
one can easily give the following description of the dual net Γ∗

xp
. The points are the

circles containing x and the blocks are the points different from x, with incidence given
by containment. The circles with gnarl x correspond to a class of parallel points given by
the line xl = xρ

p of the quadrangle Γ. Then the following observations are immediate.

Lemma 3.7.9 (i) With the above notation, (P, C, ∂) satisfies Condition [TR] if and
only if for each point x ∈ P, the dual net Γ∗

xp
satisfies Axiom (LD) with respect to

the parallel class of points given by the line xl of Γ.

(ii) With the above notation, (P, C, ∂) satisfies Condition [F] if and only if for each point
x ∈ P, the dual net Γ∗

xp
satisfies Axiom (VY).

Putting together the last four lemmas, Main Results 3.6.3 and 3.6.4 follow from Theo-
rem 3.5.8 and 3.5.9, respectively.

If we substitute Condition [MP1] by Condition [MP1’], then the dual net Γ∗
xp

is clearly
a dual affine plane, so Axiom (VY), or the equivalent Condition [F], is trivially true.
Whence Main Result 3.6.5 holds (the other direction of that theorem being contained
in [58]).
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3.8 Metasymplectic spaces

We use the following definition of metasymplectic spaces ([59, p. 79]): a metasymplectic
space M is a rank 4 geometry with four types of elements, called points, lines, planes and
hyperlines, and a (symmetric) incidence relation satisfying the four axioms listed below.

(M1) The residue of any flag of type {point, line} or {plane, hyperline} is a projective
plane.

(M2) The residue of any flag of type {point, plane}, {line, hyperline} or {line, plane} is
a generalized digon.

(M3) The residue of any flag of type {point, hyperline} is a generalized quadrangle.

(M4) Two distinct nonpoint elements have different sets of points incident with them.

Using (M1) to (M4), one can prove that the dual property of (M4) is satisfied as well,
making the definition self-dual. The flag complexes of these metasymplectic spaces form
the buildings of type F4. Note that these axioms imply thickness because generalized
polygons are thick by definition.

Remark 3.8.1 Instead of the notion ‘hyperline’, some authors use the term ‘symplecton’.

3.8.1 Embeddings of quadrangles in the metasymplectic space

We consider embeddings of the following kind: given a metasymplectic space M together
with a set P of points of M and a set H of hyperlines of M, the incidence relation defined
on them by taking the restriction of the incidence relation of M, defines a generalized
quadrangle Γ. We then say that the quadrangle Γ is point-hyperline embedded in M.

Examples of such embeddings are constructed by Hendrik Van Maldeghem and Bernhard
Mühlherr in [21]. There it is shown that the exceptional Moufang quadrangles of type F4

and certain mixed quadrangles appear as fixed point structures of involutions of metasym-
plectic spaces over fields with characteristic 2. As the subquadrangles of a point-hyperline
embedded quadrangle will also be point-hyperline embedded, orthogonal and symplectic
quadrangles also appear. All these quadrangles are Moufang and share the property that
no two points of the quadrangle are collinear in the metasymplectic space.
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Embeddings will be denoted improper if all hyperlines in H incident with a certain point
in P always share a line. By substituting each point with its associated line in this case,
it follows that we can view the quadrangle embedded ‘by’ lines and hyperlines.

We now construct an example of an improper embedding. Let {p, L} be an incident point-
line pair of a metasymplectic space M which is defined over some field containing the
finite field of four elements. The residue of this flag forms a projective plane, containing
a sub projective plane isomorphic to PG(2, 4). The symplectic quadrangle W(2) can be
embedded in this plane (see [7]). Returning to our metasymplectic space M, we have
embedded W(2) in M ‘by’ planes and hyperlines. Now choose for each plane of this
embedding a point incident with the plane, producing a point-hyperline embedding. If
the field which defines the metasymplectic space is ‘large enough’, it is clear that the
choices can be made such that no two collinear points of the quadrangle are collinear in
the metasymplectic space.

Remark 3.8.2 All of the known embeddings such that no two points of the quadrangle
are collinear in the metasymplectic space, occur in characteristic 2 or are improper. The
existence of the known proper embeddings originates from an algebraic setting, however
this algebraic setting does not yield such embeddings for odd characteristic. For this
reason it could be conjectured that these only occur in characteristic 2. More about the
underlying algebraic setting can be found in [59, App. C].

3.9 Results on embedded quadrangles in

metasymplectic spaces

We now pose the inverse question: when is a point-hyperline embedded quadrangle Mou-
fang?

Main Result 3.9.1 Let Γ be a generalized quadrangle point-hyperline embedded in a
metasymplectic space M, with P the set of points and H the set of lines of the quadran-
gle. Then Γ will be either a Moufang quadrangle, or improperly embedded, if the following
property holds:

(OV) No 2 points of P in the same hyperline of H are collinear in M.
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Remark 3.9.2 It can be shown that the residue of a hyperline forms a polar space (see
property (M9) in the next section). Condition (OV) then reformulates to: the points of
P in the same hyperline of H form a partial ovoid of the corresponding polar space.

Remark 3.9.3 Note that our definition of generalized polygon asks that Γ is thick: if
this would not be the case, counterexamples occur.

3.10 Proof

General idea. — We first investigate what the possibilities are for a single apartment of
the generalized quadrangle to be embedded. Using this, we can show that the embedding
is convex (see Section 1.1.3), or improper. Applying a result of H. Van Maldeghem and
B. Mühlherr, this implies Main Result 3.9.1.

Suppose we have M,Γ,P,H as given in the statement of the above result. We do not
require that the property (OV) holds yet.

If we refer to a point or line, we mean a point or line of the metasymplectic space, unless
explicitly noted otherwise.

3.10.1 Further concepts and some lemmas about
metasymplectic spaces

The following lemma can be found in [59, p. 80] - we will not reproduce the proof here.

Lemma 3.10.1 We have the following properties:

(M5) Let x and y be two points of M. Then one of the following situations occurs:

– x = y.

– There is a unique line incident with both x and y. In this case, we call x and
y collinear.

– There is a unique hyperline incident with both x and y. In this case there is
no line incident with both x and y, and we call x and y cohyperlinear.

– There is a unique point z collinear with both x and y. In this case we call x
and y almost opposite.
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– There is no point collinear with both x and y.

(M6) The intersection of two hyperlines is either empty, or a point, or a plane.

(M7) Let x be a point and h a hyperline of M. Then one of the following situations
occurs:

– x ∈ h.

– There is a unique line L in h such that x is collinear with all points of L. Every
point y of h which is collinear with all points of L is cohyperlinear with x and
the unique hyperline containing both also contains L. Every other point z of h
is almost opposite x and the unique point collinear with both lies on L.

– There is a unique point u of h cohyperlinear with x, and the hyperline contain-
ing x and u only has u in common with h. All points v of h collinear with u
are almost opposite x, and the point collinear with both doesn’t lie in h. All
points w of h cohyperlinear with u are opposite x.

(M9) The residue of a hyperline forms a polar space. �

Note that the dual statements also hold. Property (M8) given in [59] is omitted as we
will not need it here.

Let W be the spherical Coxeter group of type F4; this is the group generated by symbols
s1, s2, s3, s4 and identity element e, with relations (sisj)

mij = e, and mij as given in the
following matrix:

(mij) =




1 3 2 2
3 1 4 2
2 4 1 3
2 2 3 1




Two maximal flags of a metasymplectic space (which are chambers of the F4-building)
are s1, s2, s3 or s4-adjacent respectively, if those two flags differ in a point, line, plane or
hyperline respectively.

We define the spherical Coxeter group W{1,2,3} to be the subgroup of W generated by
s1, s2 and s3, and analogously W{2,3,4} will be the subgroup generated by s2, s3 and s4.

Lemma 3.10.2 The following double cosets are written in such a way that the represen-
tative is of shortest length:
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• W{2,3,4}s1s2s3s2s1W{2,3,4},W{1,2,3}s4s3s2s3s4W{1,2,3};

• W{1,2,3}s4s3s2s3s4s1s2s3s2s1W{2,3,4},W{2,3,4}s1s2s3s2s1s4s3s2s3s4W{1,2,3};

• W{2,3,4}s1s2s3s2s1s4s3s2s3s4s1s2s3s2s1W{2,3,4},
W{1,2,3}s4s3s2s3s4s1s2s3s2s1s4s3s2s3s4W{1,2,3};

• W{2,3,4}s1s2s3s2s1s4s3s2s3s4s1s2s3s2s1s4s3s2s3s4W{1,2,3},
W{1,2,3}s4s3s2s3s4s1s2s3s2s1s4s3s2s3s4s1s2s3s2s1W{2,3,4}.

Proof. By long but straightforward calculations. �

The following important theorem by Bernhard Mühlherr and Hendrik Van Maldeghem
([22]) gives us more information about convex subbuildings (see Section 1.1.3 for a defi-
nition).

Theorem 3.10.3 A convex subbuilding of a Moufang building is again a Moufang build-
ing. �

Or applied to our case (F4-buildings are always Moufang):

Corollary 3.10.4 A convex point-hyperline embedded quadrangle Γ in a metasymplectic
space M is Moufang. �

3.10.2 Embedding apartments

First we investigate how the apartments of the quadrangle are embedded in M. Let
{p, h}, {q, g} (p, q ∈ P, h, g ∈ H) be 2 chambers of Γ such that p /∈ g, q /∈ h and the
hyperlines h and g intersect in a point or plane (these are the only possibilities due to
(M6)). Collinearity and opposition will be used relative to the metasymplectic space M
and not the quadrangle Γ, unless stated otherwise.

Lemma 3.10.5 If h and g intersect in a point u, then one of the following holds:

• The points p and q are opposite and both are cohyperlinear with u.

• The points p and q are almost opposite and at least one point is collinear with u.

• The points p and q are cohyperlinear and both are collinear with u.
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• The points p and q are collinear and both are collinear with u.

Proof.

• If p and q are opposite then (M7) applied to the point p and hyperline g tells us
that there is exactly one point of g cohyperlinear with p; therefore u will be this
point. It now follows that p and q both are cohyperlinear with u.

• If p and q are almost opposite, then applying (M7) to p and g leaves us with two
possibilities. If there is a unique point (this point will again be denoted with u)
of g cohyperlinear with p, then q will be collinear with u. If on the other hand
there is a unique line L in g of points collinear with p, then the possibility that u
is cohyperlinear with p implies that u is collinear with all points of L and that h
contains L. But h and g intersect in a point and do not have a line in common, so
p is collinear with u.

• If p and q are cohyperlinear, then again applying (M7) to p and g implies that there
is a line L in g of points collinear with p (the other possibility for cohyperlinearity
would imply that u = q, which is ruled out). If u would be cohyperlinear with
p, then h and g would intersect in a line as explained in the previous point, so p
is collinear with u. Interchanging the roles of p and q gives that both points are
collinear with u.

• In the last case where p is collinear with q, Property (M7) implies that p is collinear
with all the points of a line L of g. If u would be cohyperlinear with p then the
unique hyperline h containing u and p would also contain q, which is impossible. It
follows that u is collinear with p and also with q. �

Lemma 3.10.6 If h and g intersect in a plane π, then p and q are not opposite.

Proof. Suppose p and q are opposite. Then p and q are on distance 3 from each other,
but (M9) gives us that the points on distance 1 from p in π will be on a line of π, and the
same holds for q. Two lines in a plane always have at least one point in common, so the
distance between p and q is 2, resulting in a contradiction. �

Let the points p, q, r, s and hyperlines denoted by pq, qr, rs, sp define an apartment in Γ.
If the points p and r are opposite then the two lemmas above imply that if two points of
the apartment are collinear in Γ, they are cohyperlinear in M. The hyperline pq intersects
qr in a point - the same holds for sp and rs. The other mutual positions can be divided
in 2 possibilities due to the third lemma:
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• The hyperlines pq and sp intersect in a point. Then q and s are opposite and qr
and rs also intersect in a point.

• The hyperlines pq and sp intersect in a plane. Then q and s are not opposite and
qr and rs also intersect in a plane.

We now state a lemma which will be used to ‘reduce’ the quadrangle.

Lemma 3.10.7 If each two points in a set X of points in M are collinear, then this set
is contained in a plane.

Proof. Let x ∈ X be a point. If we take the residue of this point, we obtain a dual
rank 3 polar space where the lines xy with y ∈ X\{x} form dual generators. All these
generators intersect in lines of the polar space. If we would have a proper ‘triangle’ of
these generators and lines, the lines would meet in a single point. Taking the residue
again of this point, we would have a proper triangle in a quadrangle, which is impossible.
So all the generators xy with y ∈ X\{x} share at least one line, and translating this back
to M we obtain that all points are contained in a plane. �

3.10.3 Embedding quadrangles

Condition (OV)

From now on suppose that condition (OV) holds. Let Σ be an apartment of Γ. If two
hyperlines of Σ which intersect in Γ share a point, then there has to be an opposite pair of
points (in M) in Γ, so according to the previous section the other two hyperlines in Σ must
also intersect in a point. Because the projectivity group of a point of our quadrangle is
2-transitive on the (hyper)lines through that point, either any two hyperlines in H which
intersect in Γ share a point, or all hyperlines in H which intersect in Γ share a plane.

In the second case we can replace each point p ∈ P with a line Lp such that all hyperlines
of H through p contain that line (this is possible due to the dual of Lemma 3.10.7), so
we obtain a quadrangle consisting of lines and hyperlines where no two lines which are
collinear in the quadrangle are contained in one plane (otherwise the points corresponding
to the two lines would be collinear in M), so we are in the improper case.

In the first case we have that two points of P are cohyperlinear if they are collinear in
Γ, and opposite if they are not. For hyperlines in H we have the dual properties. In the
next section we will show convexity of quadrangles within M with such properties.
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Convexity of quadrangles

In this section we prove that the embedded quadrangle Γ is convex in M. Herefore we
use that two points of P are cohyperlinear if they are collinear in Γ, and opposite if they
are not, and the dual properties for hyperlines in H, then

The next lemma gives us the needed building blocks for the rest of the proof of convexity.

Lemma 3.10.8 Let h be a hyperline and p, q be two cohyperlinear points in h. If we have
a chamber C containing p and h, then there is a shortest gallery with associated word
s1s2s3s2s1 from C to a chamber containing q.

Proof. The residue of h will be a rank 3 polar space with p and q opposite points in it. The
theory of buildings tells us that we can embed the flags C\{h} and {q} of this polar space
in an octahedron (this forms an apartment of the rank 3 polar space, see [28]). In this
octahedron it is easily seen that there is a shortest gallery with associated word s1s2s3s2s1

from C to a chamber containing q and h. Because this word is a shortest presentation of
the corresponding element in the group W , this will be a shortest gallery. �

Now let A and B be two flags of Γ. It is clear that there exists a shortest gallery γΓ

in Γ between these flags starting from a chamber C in Γ containing A, to a chamber D
containing B. Using the above lemma (and the dual statement) to ‘lift’ this gallery to
a gallery γM in M, we obtain galleries from each chamber containing C (now viewed
as flags in M) to a certain chamber containing D (viewed as a flag in M) with words
consisting of an alternating consecution of the ‘building block’ s1s2s3s2s1 and the dual
s4s3s2s3s4. Lemma 3.10.2 implies that these are also shortest galleries between chambers
containing A and chambers containing B in M. Because the galleries can start from
each chamber containing C, the product of simplex B with simplex A will be completely
contained within C and so also within the subbuilding Γ, hence the embedded quadrangle
Γ is convex. Corollary 3.10.4 now implies that the quadrangle Γ is Moufang.



Chapter 4

‘Rank three’ case, or
two-dimensional R-buildings

The results in this chapter are about R-buildings, the first series of results are about
two-dimensional R-buildings, the others hold for general R-buildings.

Polygons with valuation. — In 1986, Jacques Tits ([47]) classified the affine build-
ings of rank at least 4. In fact, he also included in his work the so-called systèmes
d’appartements, or apartment systems. Later on people also called them nondiscrete affine
buildings ([28]) or R-buildings. Basically, these are building-like structures with one big
difference: they are no longer simplicial. Easy examples are R-trees (rank 2 case; these
are trees that continuously branch), or the ‘buildings’ related to the ‘parahoric’ subgroups
of a Chevalley group over a field with nondiscrete valuation. From the geometric point of
view, the case of rank 3 — when the apartments are 2-dimensional — is very interesting
since nonclassical phenomena occur there.

In [47] Tits associates to every symmetric apartment system a so-called building at infinity,
which is a simplicial spherical building, see also [8]. The rank of this building at infinity is
precisely the dimension of its apartments. Hence, in the 2-dimensional case, generalized
polygons appear. When the apartment system is irreducible, then this polygon is not
a digon. In the simplicial case, the only generalized polygons that occur are projective
planes, generalized quadrangles and generalized hexagons.

In a series of rather long papers [52, 53, 54, 56, 15], Hendrik Van Maldeghem (jointly
with Guy Hanssens in the last quoted paper) investigates in detail two classes of affine
buildings (namely, those with projective planes and generalized quadrangles at infinity)
and characterizes the corresponding spherical buildings at infinity. This leads to many
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new examples of such affine buildings, explicitly defined and with knowledge of the au-
tomorphism groups. Originally, the characterization made use of the notion of a discrete
valuation on the algebraic structures that coordinatize projective planes and generalized
quadrangles, but in later papers [55, 57], the valuation was defined directly on the ge-

ometry. The hope was that with such a direct definition, the case of type G̃2, which
was the only remaining case, would become treatable with much less effort. One of the
reasons why it did not is that, although the paper [55] provides the exact condition for
a generalized hexagon with valuation, the lack of symmetry in the formulae prevented
from deducing a general formulae independent of the type, and hence from (1) further
generalization to nondiscrete valuations, and (2) composing a type-free proof.

In the present chapter, we start such a type-free approach, which ought to eventually
lead to a characterization of all irreducible 2-dimensional affine apartment systems. More
in particular, we first show how any irreducible 2-dimensional affine apartment system
gives rise to a generalized polygon with a specific valuation, by which we mean, with the
terminology of [55], an explicitly defined weight sequence. One of the crucial observations
to achieve this is to slightly modify, or re-scale, the valuation as defined from a rank 3
affine building as defined in [57]. Indeed, roughly speaking, the valuation between two
elements as defined in [57] counted the graph theoretic distance between two vertices
in the simplicial complex related to the affine building. The purpose was to end up
with a natural number. But taking the Euclidean distance instead will put much more
symmetry into the picture, and at the same time we will have a closed formula for the
weight sequences. Also the nondiscrete case can clearly be included in a natural way.
The fact that the discrete case enjoys a characterization as in [55] seems to be a happy
coincidence in this viewpoint.

The other question now is, what can we say when we are given a generalized polygon with
(nondiscrete) valuation? The first thing we obtain is that the only weight sequences (for
a definition see below) that can occur are exactly the ones that occur for the valuations
of generalized polygons at infinity of two-dimensional R-buildings. Moreover, if n = 3, 4
we provide a detailed proof for the complete equivalence between generalized n-gons with
real valuation and 2-dimensional R-buildings. As an application we construct classes of
explicit examples of such structures which are not of Bruhat-Tits type, and which include
locally finite ones. These constructions are similar to the constructions due to Hendrik
Van Maldeghem in the simplicial case, see [52, 53, 54, 56].

Remarkably, as a byproduct, we obtain that projective planes with valuation are equiva-
lent with ultrametric planes in which all triangles satisfy the sine rule, for an appropriate
though natural definition for angles between lines.
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In the ideal case, one would like to prove the conjecture that the just mentioned equiva-
lence holds for all n ≥ 3. However, this seems to be out of reach for now. In our present
approach, the complications in the proofs seem to grow exponentially with the girth. For
n = 5, it is just feasible, but too long to include here. For n = 6, assuming discreteness
allows for an alternative argument, as we shall see. Notice that our proofs for n = 3, 4
provide different arguments for the simplicial case, which are in fact drastically shorter
and more direct than the original proofs of Hendrik Van Maldeghem. One does not need
to go around the Hjelmslev geometries and the rather complicated axiomatization related
to this (see e.g. [15]). These geometries were needed to define the vertices of the affine
building. In the present approach, we do no longer have vertices, but the points of the
apartment system are the different valuations that emerge from the given one. This simple
idea, however, requires a lot of unavoidable technicalities to take care of. For example, it
is already fairly technical to prove that the residue of an n-gon with valuation is again a
generalized n-gon. We will do this explicitly for n ≤ 6. It will be clear that similar meth-
ods should work in general, but our present approach fails for that. So, on the one hand,
the present methods are significantly stronger than the old ones developed by Hendrik
Van Maldeghem in the eighties, on the other hand, one needs an improvement of another
magnitude to prove the full conjecture.

These results are joint work with Hendrik Van Maldeghem and are contained in two
papers, both accepted for publication, one in Adv. Geom., the other in Pure Appl. Math.
Q.

Completeness of R-buildings. — As already indicated in Section 1.8.2, there ex-
ist various results which hold for complete R-buildings. All affine (discrete) buildings
are complete, but this is not true for general R-buildings. The question that now rises
is: which R-buildings are complete? Especially for those R-buildings arising from Tits’
classification ([47]) a full answer is something that should be aimed at.

In Section 4.10 we take the first step to such an answer. We prove that an R-building is
complete, if and only if all the R-trees corresponding to its walls are complete. The next
step (which we are currently researching) is then to determine which R-trees are complete.
This problem seems to be answerable in algebraic terms for those R-trees coming from
higher-dimensional R-buildings.

Subbuildings of R-buildings corresponding to fixbuildings at infinity. — Just like
the result mentioned in the previous paragraph, this result is also a research in progress.
The setting is the following: when an automorphism group acts on a spherical building,
then the fixed structure is in ‘most’ cases again a (spherical) building. Such a statement
is not true for (R-)buildings which are not spherical, because there is no such thing as
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opposition in these cases.

Consider some affine building Λ with a group G acting on it, while the fixed structure in
Λ is not necessarily again an affine building, the fixed structure in the spherical building
Λ∞ at infinity is most often again a spherical building Λ′

∞. If we now return to the finite
part of the affine building, one might wonder if there exists an embedded affine building
Λ′ with Λ′

∞ at infinity.

In Section 4.14 we give a positive answer for some, but not all, cases using geometric
methods. For one of the steps in the proof we generalize the notion of trees corresponding
to walls and sector-panels (see Section 1.8.2). This generalization is not entirely unknown,
but a proof doesn’t seem to exist in the literature.

These results are joint work with Hendrik Van Maldeghem.

4.1 Two-dimensional R-buildings

As mentioned in Section 1.8.2, the R-buildings of dimension at least 3 are known. For
the first series of results of this chapter we will only deal with the (unclassifiable) R-
buildings of dimension 2, i.e., |S| = 2 and W is the dihedral group of order 2n, for some
n ∈ N, n ≥ 3. So the building at infinity and the residues are (weak) generalized n-gons.
The elements of the (weak) generalized polygon at infinity correspond to sector-panels
of the R-building. So one can discern two classes of sector-panels in the R-building, one
corresponding to the points P , the other to the lines L (the choice which type of sector-
panels correspond to the points or lines can be chosen arbitrarily). Roman letters will be
used for elements of the building at infinity, Greek letters for points of Λ.

Let x, y be two adjacent elements of Λ∞ and α ∈ Λ; then we denote the length (measured
with the distance d) of the common part of the sector-panels xα and yα by uα(x, y).

4.2 Polygons with valuation

Now we continue with defining generalized polygons with valuation. Let Γ = (P, L, I) be a
generalized n-gon with point set P and line set L, and let u be a function called valuation
acting on both pairs of collinear points and pairs of concurrent lines, and images in R

+ ∪
{∞} (we use the natural order on this set with ∞ as largest element). Then we call (Γ, u)
an n-gon with (nondiscrete) valuation and weight sequence (a1, a2, . . . , an−1, an+1, an+2, . . .
a2n−1) ∈ (R+)2n−2 if the following conditions are met:
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(U1) On each line there exists a pair of points p and q such that u(p, q) = 0, and dually
for points.

(U2) u(x, y) = ∞ if and only if x = y.

(U3) u(x, y) < u(y, z) implies u(x, z) = u(x, y) if x, y and z are collinear points or con-
current lines.

(U4) Whenever x0Ix1Ix2I . . . Ix2n = x0, with xi ∈ P ∪ L, one has

n−1∑

i=1

aiu(xi−1, xi+1) =

2n−1∑

i=n+1

aiu(xi−1, xi+1).

One direct implication of (U3) is that u is symmetric (by putting x = z). Also remark
that this definition is self-dual, so whenever a statement is proven, we also have proven
the dual statement. Finally, we note that, due to (U2), Axiom (U4) is trivially satisfied
whenever the xi, 0 ≤ i ≤ 2n, form a degenerate apartment.

Remark 4.2.1 The difference with the definition in [55] is that in the current one, the
type of the element x0 is arbitrary, while in [55], x0 was required to be a line. On the
other hand, in [55], the image of u had to be natural or ∞. The main result of [55] says
that, in this case, n ∈ {3, 4, 6}, the function u is also a valuation on the dual n-gon, and
the weight sequences are uniquely determined up to duality. These weight sequences are,
however, only self-dual if n = 3. Hence, only in the case n = 3, a valuation on an n-gon in
the sense of [55] will be a valuation on an n-gon in the above sense. However, rescaling the
valuation between lines by a factor

√
2 (multiplying or dividing according to the weight

sequence) for n = 4 turns the valuation on a 4-gon in the sense of [55] into a valuation in
the above sense. Similarly for 6-gons. Taking this rescaling into account, we see that the
above definition is essentially a generalization of the definition in [55]. We will come back
to this in more detail in Section 4.4.1, where we will show how our main results relate to
the conjectures stated in [55] and [57].

If we speak about the valuation of a side or corner x in an ordinary n-gon Ω, we mean the
valuation between (respectively) the two corners or sides incident with x in Ω. If we talk
about the valuations in an ordinary n-gon, then we mean all the valuations of sides and
corners. A path (x0, x1, . . . , xm) is said to have valuation zero if u(xi−1, xi+1) = 0 for each
i ∈ {1, 2, . . . , m − 1}. Because of (U2) such a path has to be nonstammering. We now
show some preliminary lemmas which we will use to formulate one of the main results.
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Lemma 4.2.2 Given a line L and a point pIL, then there exists a point qIL such that
u(p, q) = 0.

Proof. Due to (U1) there exist two points r, sIL such that u(r, s) = 0. Applying (U3) we
obtain that either u(p, r) = 0 or u(p, s) = 0, and in each case we have found a suitable q.

�

Lemma 4.2.3 Each path (x0, x1, . . . , xm) with m ≤ n+1 and valuation zero is contained
in an ordinary n-gon Ω where all the valuations of corners and sides are zero.

Proof. Using the previous lemma we can extend the path to a path (x0, x1, . . . , xn, xn+1)
with valuation zero. It is now easily seen that the other valuations in the unique ordinary
n-gon containing this path are zero too by (U4). �

In order to make notations easier, an ordinary n-gon with all valuations zero will be re-
ferred to as a nonfolded n-gon. If there are exactly two nonzero valuations in (necessarily)
opposite elements x and y of an ordinary n-gon, then this ordinary n-gon will be referred
to as a simply folded n-gon folded along x (or y), and two elements in such an n-gon at
the same distance from x (and hence also at the same distance from y) are said to be
folded together in that n-gon. The Main Result 4.3.2 will imply that a1 = an+1 and that
the valuations in x and y are equal due to (U4).

Two opposite elements in Γ are said to be residually opposite if there is a shortest path
between them with valuation zero. If this is the case, then by (U4) all shortest paths
between both elements have valuation zero. If x is an element of Γ, then we denote with
[x]opp the set of residually opposite elements to x. This set is nonempty due to the previous
lemma. We say that two elements x and y are residually equivalent if [x]opp = [y]opp. The
equivalence class is denoted by [x] = [y]. It is clear that all elements of one equivalence
class share the same type, so these classes can be referred to as residual points ([P ]) or
residual lines ([B]) depending on the type. A residual point [p] is said to be incident with
a residual line [L] if there are p′ ∈ [p] and L′ ∈ [L] such that p′IL′. We then write [p]Ir[L].
The geometry Γr([P ], [B], Ir) is the residue defined by u. The distance dr in the incidence
graph of this geometry is called the residual distance.

Remark 4.2.4 Note that we already have defined a notion of residue, which was asso-
ciated to a point of an R-building, in Section 4.1. It follows from Main Result 4.3.1 in
the next section, and from the definition of residues in R-buildings, that for a general-
ized polygon with valuation defined by a point in a two-dimensional R-building, the two
notions are essentially the same. From the context it should be clear which one is meant.
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4.3 Results on two-dimensional R-buildings and

polygons with valuation

Main Result 4.3.1 Let (Λ,F) be a two-dimensional R-building and α ∈ Λ. Then uα as
defined in Section 4.1 defines a valuation on the generalized n-gon at infinity Λ∞, with
weight sequence (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1), where ai = | sin(iπ/n)|.

For the other three main results, let (Γ, u) be a generalized n-gon with (nondiscrete)
valuation and weight sequence (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1).

Main Result 4.3.2 If u has nonzero values, then the weight sequence (a1, a2, . . . , an−1,
an+1, an+2, . . . , a2n−1) is a multiple of the weight sequence (b1, b2, . . . , bn−1, bn+1, . . . , b2n−1)
with bi = | sin(iπ/n)|.

Main Result 4.3.3 If 3 ≤ n ≤ 6, the residue defined by u is a (weak) generalized n-gon.

Main Result 4.3.4 If n ∈ {3, 4}, or if n = 6 and u is discrete, there exists a two-
dimensional R-building (Λ,F) such that Γ is isomorphic to the generalized polygon at
infinity of (Λ,F) with valuation as in Main Result 4.3.1.

4.4 Applications

We list some applications and corollaries of the main results.

4.4.1 The discrete case

Let (U4′) be the Condition (U4) with the additional requirement that x0 ∈ L, and let
Γ = (P, L, I) be a generalized n-gon, n ≥ 3. Suppose that (Γ, u) satisfies (U1), (U2), (U3)
and (U4′), and suppose in addition that the image of u is in N ∪ {∞}, the set of natural
numbers, including 0, together with ∞. Then we say that (Γ, u) is a generalized polygon
with discrete valuation. The main result of [55] says that, in this case, n ∈ {3, 4, 6} and
the weight sequence (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1) can be chosen as follows.

(WS3) If n = 3, then (a1, a2, a4, a5) = (1, 1, 1, 1).
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(WS4) If n = 4, then (a1, a2, a3, a5, a6, a7) = (1, 1, 1, 1, 1, 1) or (1, 2, 1, 1, 2, 1).

(WS6) If n = 6, then (a1, a2, . . . , a5, a7, . . . , a11) = (1, 1, 2, 1, 1, 1, 1, 2, 1, 1) or
(1, 3, 2, 3, 1, 1, 3, 2, 3, 1).

In the cases (WS4) and (WS6), where there are two possibilities, it is proved in [55]
that the weight sequences are dual to one another, i.e., if (Γ, u) has one weight sequence,
then, if ΓD is the dual of Γ (obtained from Γ by interchanging the point set and the line
set), then (ΓD, u) is a polygon with discrete valuation with respect to the other weight
sequence.

This gave birth to the conjecture that a generalized hexagon Γ is ‘isomorphic’ to the
building at infinity of some (thick) affine building of type G̃2 if and only if there exists u
such that (Γ, u) is a generalized hexagon with discrete valuation and with one of the two
above weight sequences. The Main Results 4.3.1 and 4.3.2 seem to be in contradiction
with this, since, applied to discrete affine buildings of type G̃2, there is only one weight
sequence, namely

(a1, a2, . . . , a5, a7, . . . , a11) =

(
1

2
,

√
3

2
, 1,

√
3

2
,
1

2
,
1

2
,

√
3

2
, 1,

√
3

2
,
1

2

)
,

and it does not consist of only natural numbers! But the above conjecture was evidenced
by the situation for the types Ã2 and C̃2, where the valuation measured simplicial distance,
and not Euclidean distance, as in the present approach. In the G̃2 case, this means that,
in view of the fact that the lengths of the panels (of a chamber) containing the special
vertex (for terminology, see [47]) have ratio 1 :

√
3, to go from the weight sequence of the

present approach to the weight sequences of the discrete valuation, we must multiply the
valuation on the point pairs with

√
3 (or do this with the valuation on line pairs), and

then take a suitable multiple.

As explained earlier, one can do a similar procedure with type C̃2, as is clear from the
above.

4.4.2 Ultrametric projective planes

In this application we explore a surprising link between projective planes with valuations
and some geometric conditions from Euclidean geometry.

Suppose (Γ, u) is a generalized triangle (or projective plane) with valuation. Choose t ∈ R

with t > 1. We then can define a function d(p, q) = t−u(p,q) ∈ [0, 1] on pairs of points, and
a similar function ∠(L,M) = arcsin(t−u(L,M)) ∈ [0, π/2] on pairs of lines.
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Theorem 4.4.1 A projective plane Γ with a distance function d on pairs of points valued
in [0, 1] and an angle function ∠ on pairs of lines valued in [0, π/2], is constructed from a
projective plane with valuation as above, and hence is isomorphic to the building at infinity
of some R-building, if and only if the following conditions are fulfilled.

(M1) d is an ultrametric (this is a metric satisfying the stronger triangular inequality
d(p, q) ≤ max(d(p, r), d(r, q))).

(M2) Two lines have angle zero if and only if they are equal.

(M3) On each line there are two points on maximal distance 1 from each other.

(M4) Through each point there are two lines with a right (π/2) angle.

(M5) The sine rule is fulfilled, i.e., if we have a triangle with lengths of the sides A, B
and C and opposing angles α, β and γ, then

A

sinα
=

B

sin β
=

C

sin γ
.

The proof is postponed to Section 4.9.

4.4.3 Examples and constructions

n = 3

Here we rely on some results for the discrete case. Hendrik Van Maldeghem proved in [57]
that the notion of a projective plane with valuation is equivalent to one of a planar ternary
ring with valuation. Moreover he also investigated in [52] how the valuation behaves in
planar ternary rings with extra algebraic properties (nearfields, quasifields, linear PTRs,
etc.). In particular he proved the following result, the arguments of which can be copied
verbatim in the nondiscrete case.

Proposition 4.4.2 A quasifield with valuation v, which is a unary function with values
in Z∪ {∞} gives rise to a planar ternary ring with valuation (and so also to a projective
plane with valuation, and an affine apartment system with a projective plane at infinity),
if the following three conditions are fulfilled:

(V1) v(a) = ∞ if and only if a = 0.
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(V2) If v(a) < v(b), then v(a+ b) = v(a).

(V3) v(a1b− a2b) = v(a1 − a2) + v(b).

We now construct such quasifields (again inspired by results of Hendrik Van Maldeghem
in [52], but now with the function v having values in R ∪ {∞}). Let K+,· be a field with
a nondiscrete valuation v in the classical sense (which is in fact the above definition for
quasifields applied to fields, so (V3) becomes v(ab) = v(a) + v(b)).

Remark 4.4.3 Notice that the classical affine apartment systems with a (Desarguesian)
projective plane at infinity already appear here by taking quasifields with valuation which
are (skew) fields.

Now let α be a field automorphism, with finite order, of K, preserving the valuation
v. So α generates a finite group of automorphisms G. One can define the norm map
n : K → K : a 7→ ∏

α′∈G a
α′

. Notice that v(n(a)) = |G|v(a). Let σ be a map from
the image of the norm map n to G such that σ(1) is the unit element of G, and so that
v(a) = v(b) implies σ(n(a)) = σ(n(b)).

It follows that one can construct an André quasifield K+,⊙ by taking the elements of
K with the addition of the field and a new multiplication ⊙ : K × K → K : (a, b) 7→
a · bσ(n(a)). Moreover, we now show that this quasifield with the map v forms a quasifield
with valuation. We only have to verify (V3) for the new multiplication. First remark that
v(a⊙ b) = v(a · bσ(n(a))) = v(a) + v(bσ(n(a))) = v(a) + v(b). The last step holds because α,
and so all elements of G, preserve v.

We now calculate v(a1 ⊙ b− a2 ⊙ b). There are two possibilities that can occur.

• v(a1) 6= v(a2) - suppose without loss of generality that v(a1) < v(a2). Then

v(a1 ⊙ b− a2 ⊙ b) = v(a1 ⊙ b) (4.1)

= v(a1) + v(b) (4.2)

= v(a1 − a2) + v(b), (4.3)

where the first step is true because v(a1⊙b) = v(a1)+v(b) < v(a2)+v(b) = v(a2⊙b),
(V2), and v(−1) = 0 (which easily follows from the definition of valuation).
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• The other possibility is that v(a1) = v(a2). Then

v(a1 ⊙ b− a2 ⊙ b) = v(a1 · bσ(n(a1)) − a2 · bσ(n(a2))) (4.4)

= v((a1 − a2) · bσ(n(a1))) (4.5)

= v(a1 − a2) + v(bσ(n(a1))) (4.6)

= v(a1 − a2) + v(b), (4.7)

where the second step holds because v(a1) = v(a2) implies σ(n(a1)) = σ(n(a2)).

Combining both cases, we see that (V3) holds for the quasifield K+,⊙ with valuation v.

We now provide some explicit examples of the above situation. Let k be any field, let M
be a subset of N\{0} generated multiplicatively by a certain set of primes. Now let K be
the field of rational functions in t, but allowing all rational powers r/s of t with s ∈ M .
If k(t) = f(t)/g(t) ∈ K with f(t) and g(t) polynomials (also allowing powers of the form
above), we then set v(k(t)) to be the minimal nonvanishing power of t in f(t), minus the
minimal nonvanishing power of t in g(t). One verifies that K together with v forms a field
with valuation.

• Let k be a finite field with characteristic p and M the set of integer powers of p.
Then a suitable choice of α is the automorphism that maps t

r
s to ( t1/s

1+t1/s )
r.

• Now let k be any field and M generated by all the odd primes (so M is the set of
the odd nonnegative integers). Now one can set α to be the automorphism that

maps t
r
s to (−t 1

s )r.

All of these examples have a nonclassical projective plane at infinity, but have classical
residues. In addition the residues of the R-building are finite when k is finite.

There are also examples where one can choose one residue completely freely. For a given
planar ternary ring R, one can define a ‘positively valuated ternary ring’ R{t}, similarly as
in the discrete case, see [53]. Indeed, one considers the power series

∑
n∈N ant

n in t where
N is a set of positive integer multiples of a certain rational number (for different power
series, this number may be different) and an ∈ R for n ∈ N . Since any finite number
of such power series can be thought of as belonging to the same discrete version of this
construction, the ternary operation can be copied from [53], and also the proof of the fact
that we have a positively valuated ternary ring. Now, in completely the same way as in
the discrete case, one constructs a projective plane with (nondiscrete) valuation out of
this. The residue defined by this valuation is precisely the projective plane coordinatized
by R. To the best of our knowledge, these are the first examples of such nondiscrete
apartment systems with an arbitrary (possibly finite) residue.
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n = 4

The construction we will explain here is again inspired by an example for the discrete
case by Hendrik Van Maldeghem in [54]. We will only sketch what the coordinatizing
structure with valuation looks like. All proofs for the finite case still hold here (this is
due to the fact that any finite number of elements in the coordinatizing structure can be
‘embedded’ in a coordinatizing structure of a discrete case). In particular, the reader can
consult [57] for explicit formulae to derive the valuation of a generalized quadrangle from
the valuation of the coordinatizing structure.

Consider the finite field k = GF(q) with q = 2h. Let h1 and h2 be two natural numbers
such that q − 1 and −1 + 21+h1+h2 are relatively prime (for example h = 3, h1 = 1 and
h2 = 0). For i = 1, 2, let θi be raising to the power 2hi, forming automorphisms of this
finite field. Now consider the field K of Laurent series

∑
n∈N ant

n in t where N is a
set of integer multiples of a certain rational number, bounded below (again, for different
Laurent series, this number may be different), and an ∈ k for n ∈ N . There is a natural
valuation on this field defined by v(

∑
n∈N ant

n) = m, where m is the smallest element of
N such that am is nonzero (well defined by the boundedness below). We define v(0) to
be ∞. One can extend θi for i ∈ {1, 2} to the field K by

(
∑

n∈N

ant
n)θi =

∑

n∈N

aθi
n t

n. (4.8)

The coordinatizing structure is now given by:

Q1(k, a, l, a
′) = (kθ1)2.a+ a′, (4.9)

Q2(a, k, b, k
′) = aθ2 .k + k′, (4.10)

wih k, l, k′, a, b, a′ ∈ K and v the natural valuation.

For more information about this example and coordinatizing structures, see [54]. One can
show that this example defines a generalized quadrangle with valuation where both the
quadrangle itself and its residue are nonclassical.

These are, to the best of our knowledge, the first explicitly defined examples of nondiscrete
R-buildings of this nature.

4.5 Proof of Main Result 4.3.1

General idea. — The hard part of the proof will be showing Axiom (U4). This will be
proven by investigating how the sums occuring in (U4) change when we ‘move around’
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the point α.

The first lemma deals with the exact shape of the intersection of two sectors with the
same source, and sharing a sector-facet.

Lemma 4.5.1 Let C and C ′ be two sectors with the same source τ which share a sector-
facet F . Then the intersection of both is formed by the convex hull of F and the common
part of the other two sector-facets of C and C ′.

Proof. Take any apartment Σ containing C (and so also τ). If Σ contains C ′ then there is
nothing left to prove. If this is not the case then there is a unique apartment Σ′

∞ at infinity
containing C ′ and sharing a half-apartment with Σ∞. A remark in [24, p. 10] states that
if two apartments share a half-apartment at infinity, they also do in the R-building itself.
This implies the exact form of the intersection. �

If C 6= C ′, then such an intersection is called a chimney with source τ ([30]). We refer to
the width of the chimney as the distance between the parallel walls bordering it.

Corollary 4.5.2 Let r, s, t be elements of Λ∞ such that rIsIt, and let τ be a point of Λ;
then the width of the chimney defined by the intersection of the sector containing rτ and
sτ , and the one containing sτ and tτ , equals sin(π/n)uτ(r, t).

Proof. Directly from the definitions and the previous lemma. �

Now let α be an arbitrary point of Λ and consider the map uα. The Axiom (U1) will be
satisfied because given an element x at infinity there is always an apartment containing
xα where we then can find the needed element y adjacent to x such that uα(x, y) = 0.
The second Axiom (U2) is satisfied trivially and (U3) follows from the convexity of sector-
panels.

The main difficulty is (U4). Let x0 and xn be two opposite elements of Λ∞ and M :=
(x0, x1, . . . , xn) ∈ (P ∪ B)n+1 such that x0Ix1I . . . Ixn. We define the function

f : R
+ → R

+ : l 7→
n−1∑

i=1

sin(iπ/n)uβ(xi−1, xi+1),

with β ∈ (x0)α at distance l from α. If we can prove that f only depends on x0, xn and α,
then we have proven (U4) and Main Result 4.3.1 (in view of the fact that (U4) is trivially
satisfied in degenerate apartments).
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Before we go on we need the notion of ‘distance in the residues’. Let x and y be elements
of Λ∞ and β ∈ Λ. Then we define the residual distance dβ(x, y) at β to be the distance
between [x]β and [y]β as defined in the generalized n-gon [Λ]β (a point and an incident
line are at distance 1, two collinear points are at distance 2, . . . ).

Remark 4.5.3 Similar to residues, the notion residual distance has been used already
for a different object, see Remark 4.2.4 for more information about both notions. Again,
from the context it should be clear what is meant.

The next lemma investigates the local behaviour of the valuations.

Lemma 4.5.4 Let r, s, t be elements of Λ∞ such that rIsIt, and β a point on (x0)α

with d(α, β) = l. Then there exists some δ > 0 such that for any β ′ on (x0)α with
d(α, β ′) ∈ [l, l + δ], the following holds:

uβ′(r, t) = uβ(r, t) + ǫ
sin(dβ(s, x0)π/n)

sin(π/n)
d(β, β ′),

where ǫ is a constant equal to





−1 if dβ(r, x0) = dβ(t, x0) = dβ(s, x0) − 1,
1 if dβ(r, x0) = dβ(t, x0) = dβ(s, x0) + 1,
0 if dβ(r, x0) 6= dβ(t, x0).

Proof. Let C be the sector spanned by rβ and sβ and C ′ the one by sβ and tβ. Both these
sectors have source β. Using Lemma 1.8.1, we can find apartments Σ and Σ′ containing C
and an element of the germ [x0]β, and C ′ and an element of the germ [x0]β , respectively.
Let δ be the length of the part of (x0)β included in Σ ∩ Σ′. Obviously δ > 0. Let β ′ be
on (x0)α with d(α, β ′) ∈ [l, l + δ]. The sectors Cβ′ and C ′

β′ with source β ′ now lie in the
apartments Σ and Σ′, respectively.

Using the intersection of both apartments one can easily calculate that the width of the
chimney defined by r, s and t with source at β ′ is ǫ sin(dβ(s, x0)π/n)d(β, β ′) larger than
the one with source β, with ǫ as in the table above. Using Corollary 4.5.2 we now obtain
the desired result. �

As an immediate consequence of the previous lemma, we see that f is right-continuous.
Left-continuity (and because of this also continuity) can be proved analogously. Using a
similar reasoning one can prove the following lemma and corollary, which we will need to
prove a later result.
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Lemma 4.5.5 For any R-building (Λ,F) (not necessarily 2-dimensional), and C∞ and
D∞ two adjacent chambers at infinity, only differing in the vertices x∞ and y∞, the
function u : Λ → R which maps a point α to the length of the common part of the
sector-facets xα and yα, is uniformly continuous. �

Corollary 4.5.6 For an R-building (Λ,F), and two adjacent chambers C∞ and D∞ at
infinity, the subset of points α of Λ for which [C]α = [D]α is an open subset of the metric
space defined on Λ.

Proof. Directly from the above lemma. �

Applying Lemma 4.5.4 to the (finite number of) valuations occurring in the definition of
f now implies that for every l ∈ R

+ there exists some δ̄ > 0 (the minimum occurring in
the application to each valuation) and al ∈ R such that f(l′) = f(l) + al(l

′ − l) for every
l′ ∈ [l, l + δ̄]. The next step in our proof is to show that al only depends on x0, xn, α and
l. One thing which is directly clear is that al only depends on the distances dβ(x0, xi)
with i ∈ {1, 2, . . . , n}, and on the point β on (x0)α with d(α, β) = l. Because of this
we can reduce this combinatorially as follows. Define the sequence (y0, y1, . . . , yn), with
yi := dβ(x0, xi), i ∈ {0, 1, 2, . . . , n}. This sequence consists of nonnegative integers such
that two consecutive ones differ by exactly one, and the extremities y0 (which equals 0)
and yn are constants. An entry different from the extremities with the property that both
neighbours are strictly smaller will be called a peak ; if both neighbours are strictly larger,
then we call the entry a valley. The sequence will determine the al uniquely.

If two sequences produce the same al we will say that they are equivalent. We now show
that each sequence is equivalent to the unique sequence with no valleys, which will be
called the standard sequence. Therefore we look at the sum χ of all the yi’s. The number
χ is clearly an integer and bounded. Consider any sequence different from the standard
sequence; then it has at least one valley, say at the entry yj = m. We now break the
problem down to some different cases and show that in each case the given sequence is
equivalent with one obtained from the first one by replacing yj by yj +2. This equivalent
sequence has a larger sum, and because this sum is an integer and is bounded by the sum
obtained from the standard sequence, recursion implies that all sequences are equivalent
to the standard sequence. Note that j ≥ 2, so j − 2 is always well-defined.

In the following we will denote π/n by πn for ease of notation.

(i) Case (yj−2, yj−1, yj, yj+1, yj+2) = (m+2, m+1, m,m+1, m). As indicated above, we
show that this is equivalent with (yj−2, yj−1, y

′
j, yj+1, yj+2) = (m+2, m+1, m+2, m+
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1, m). Indeed, using the expression for al from the definition of f and Lemma 4.5.4,
we see that we must show

− sin(jπn) sin(mπn) + sin((j + 1)πn) sin((m+ 1)πn) =

− sin((j − 1)πn) sin((m+ 1)πn) + sin(jπn) sin((m+ 2)πn).

Indeed, we perform the following elementary calculations.

− sin(jπn) sin(mπn) + sin((j + 1)πn) sin((m+ 1)πn)

= 1/2(− cos((j −m)πn) + cos((j +m)πn) + cos((j −m)πn) − cos((j +m+ 2)πn))

= 1/2(cos((j +m)πn) − cos((j +m+ 2)πn)),

while

− sin((j − 1)πn) sin((m+ 1)πn) + sin(jπn) sin((m+ 2)πn)

= 1/2(− cos((j −m− 2)πn) + cos((j +m)πn) + cos((j −m− 2)πn)

− cos((j +m+ 2)πn))

= 1/2(cos((j +m)πn) − cos((j +m+ 2)πn)).

It follows that the two sequences are equivalent.

(ii) Case (yj−2, yj−1, yj, yj+1, yj+2) = (m,m+ 1, m,m+ 1, m+ 2). This is analogous to
the previous case.

(iii) Case (yj−2, yj−1, yj, yj+1, yj+2) = (m,m+1, m,m+1, m). Here, we show that this is
equivalent with (yj−2, yj−1, y

′
j, yj+1, yj+2) = (m+ 2, m+ 1, m+ 2, m+ 1, m). Indeed,

as before, we must show that

sin((j − 1)πn) sin((m+ 1)πn) − sin(jπn) sin(mπn) + sin((j + 1)πn) sin((m+ 1)πn)

= sin(jπn) sin((m+ 2)πn).

This equality is the same as the one in Case (i), but with one term swapped from
side. The same conclusion follows.

(iv) Case (yj−2, yj−1, yj, yj+1, yj+2) = (m + 2, m + 1, m,m + 1, m + 2). Here we must
show that

− sin(jπn) sin(mπn) = − sin((j − 1)πn) sin((m+ 1)πn)

+ sin(jπn) sin((m+ 2)πn) − sin((j + 1)πn) sin((m+ 1)πn).

This equality is the same as in Case (iii) but with m substituted by −m−2. Again
the same conclusion follows.
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(v) Case j = n − 1. In this case we can reuse the previous arguments by adding an
extra element xn+1Ixn with corresponding yn+1 := yn ± 1, and extending f with an
extra coefficient sin(nπ/n)uβ(xn−1, xn+1) (which is zero anyway due to sin π = 0).

This proves that each sequence is equivalent to the standard sequence, and so that all
sequences are equivalent and al only depends on x0, xn, α and l.

We now need an elementary result from analysis, which we prove for completeness’ sake.

Lemma 4.5.7 If g is a continuous real function defined over R
+ such that for every

l ∈ R
+ there is a δ for which g(l′) = g(l) for every l′ ∈ [l, l + δ], then g is constant over

R
+.

Proof. Define Ψ := {x ∈ R
+|(∃δ′ > 0)(∀x′ ∈ [x − δ′, x + δ′])(g(x) = g(x′))} as the set of

‘constant points’. If an interval lies completely in Ψ, then g is constant over that interval
because the preimage of the image of an element in such an interval is both open (due to
the definition of Ψ) and closed (because of the continuity of g) in the connected interval.
It follows also from the continuity of g that this is also true for the closure of an interval
lying completely in Ψ. If the set R

+\Ψ is nonempty, then it has an infimum t. Note
that by assumption, there exists some δ > 0 such that [0, δ[ ⊆ Ψ. Hence t > 0 and the
interval [0, t[ lies completely in Ψ, implying that g is constant over [0, t]. But we also
know that there exists a δ′ such that g is constant over [t, t + δ′], so [0, t + δ′[ lies in Ψ.
This contradicts the fact that t is an infimum. So Ψ = R

+ and g is constant over R
+. �

Lemma 4.5.8 There is an l ∈ R
+ such that f(l′) = 0 if l′ ≥ l.

Proof. Let i be minimal with respect to the property dα(x0, xi) 6= i. It is clear that, if
β ∈ (x0)α, then dβ(x0, xj) = j for j < i (because the sectors spanned by x0 till xj with
source α form a part of an apartment and contain those with source β). Suppose there is
no β ∈ (x0)α such that also dβ(x0, xi) = i. In such a case we have that the function

g : R
+ → R

+ : l 7→ uβ(xi−2, xi), with d(β, α) = l,

is strictly positive for each β ∈ (x0)α (because a zero value would imply that dβ(x0, xi) =
i). As we know by Lemma 4.5.4, for every l ∈ R

+ there is a δ such that

g(l′) = g(l) − sin((i− 1)πn)

sin πn

(l′ − l), for every l′ ∈ [l, l + δ].
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The function g(l) + sin((i−1)πn)
sinπn

l then complies to the statement of Lemma 4.5.7 and is
constant. But this is impossible since for l large enough, this would imply that g(l) is
negative. Consequently g cannot be strictly positive, yielding that there is a β ∈ (x0)α

such that also dβ(x0, xi) = i.

Repeating this process a finite number of times will produce an l such that dβ(x0, xn) = n
if d(β, α) ≥ l. This implies that uβ(xi−1, xi+1) is zero for each i ∈ {1, 2, . . . , n− 1}, which
on its turn implies that f(d(β, α)) = 0. �

Let us reiterate what we know about the function f defined over R
+:

(O) For high enough values it is zero.

(C) The function is continuous.

(P) For every l ∈ R
+ there is a δ̄ and an al ∈ R such that f(l′) = f(l) + al(l

′ − l) for
every l′ ∈ [l, l + δ̄] where al depends only on l, x0, xn and α.

Lemma 4.5.9 Two functions satisfying the three conditions (O), (C) and (P) (with the
same al) are equal over R

+.

Proof. Because we know that f satisfies the above conditions, we can assume that one
of the functions is f - let the other be f ′. Consider g = f ′ − f ; then g is continuous, is
zero for high enough values, and for every l ∈ R

+ there is a δ (the minimum of the two
δ̄ related to f and f ′) such that g(l′) = g(l) for every l′ ∈ [l, l + δ]. Lemma 4.5.7 now
implies that g is constant, and so zero over R

+.

This implies that f and f ′ are equal. �

As al only depends on l, x0, xn and α, it is a direct corollary of the previous lemma that
f only depends on x0, xn and α, which has previously been said to imply (U4). This
completes the proof of Main Result 4.3.1.

4.6 Proof of Main Result 4.3.2

We start with a polygon Γ with valuation u, with weight sequence (a1, a2, . . . , an−1, an+1,
an+2, . . . a2n−1), and such that u has nonzero values. Our proof is heavily inspired by a
similar result for the discrete case in [55] by Hendrik Van Maldeghem. In fact, we will
use some of the results (with the proofs remaining valid in the nondiscrete case) obtained



4.6 Proof of Main Result 4.3.2 103

there, directly in our proof. In particular, and to begin with, it is shown in 3.1 of [55] that
the weight sequence of a given polygon with valuation having nonzero values is unique,
up to a nonzero multiple. As is also exploited in [55], this has as consequence that the
weight sequence is symmetric, i.e., ai = an−i = an+i = a2n−i for i ∈ {1, 2, . . . , n− 1}.
Now let (x0, x1, . . . , x2n = x0) be any closed path of length 2n in Γ. Because of (U4) we
know that

n−1∑

i=1

aiu(xi−1, xi+1) =
2n−1∑

i=n+1

aiu(xi−1, xi+1),

and also that
n+1∑

i=3

ai−2u(xi−1, xi+1) =
2n+1∑

i=n+3

ai−2u(xi−1, xi+1).

If one takes the sum of both equations, and simplifies the resulting expression using
a1 = an−1 = an+1 = a2n−1, one obtains

a2u(x1, x3) +
n−1∑

i=3

(ai + ai−2)u(xi−1, xi+1) + an−2u(xn−1, xn+1)

= an+2u(xn+1, xn+3) +

2n−1∑

i=n+3

(ai + ai−2)u(xi−1, xi+1) + a2n−2u(x2n−1, x2n+1).

This implies that

(a2, a3 + a1, a4 + a2, . . . , an−1 + an−3, an−2, an+2, an+3 + an+1, . . . , a2n−1 + a2n−3, a2n−2)

is also a weight sequence. Hence there exists some positive real number k satisfying






ka1 = a2,
ka2 = a3 + a1,
ka3 = a4 + a2,
. . .
kan−2 = an−1 + an−3,
kan−1 = an−2.

(4.11)

One notices, by taking the sum of all equations in the system of equations above, that

k

n−1∑

i=1

ai = 2

n−1∑

i=1

ai − (a1 + an−1).
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This implies that 1 ≤ k < 2. As a consequence, we can find an α ∈ ]0, π/3] such that
k = 2 cosα. Also remark that aj = kaj−1 − aj−2 for j ∈ {3, n − 1}. If we formally set
a0 = an = 0, then this is also true for j ∈ {2, n}. Furthermore we can suppose that
a1 = sinα.

Lemma 4.6.1 For i ∈ {0, 1, . . . , n} we have ai = sin(iα).

Proof. We prove this using induction on i. It is clear that this holds for i = 0 and i = 1
(by assumption and by definition of α, respectively). So let i ≥ 2 such that aj = sin ja
for j < i. Then we know that:

ai = kai−1 − ai−2

= 2 cosα sin[(i− 1)α] − sin[(i− 2)α]

= sin iα

The second equality follows from the induction hypothesis, the third from the trigono-
metric formula sin a+ sin b = 2 sin[(a+ b)/2] cos[(a− b)/2]. �

Lemma 4.6.2 α = π/n.

Proof. We have that an = 0, so sinnα = 0 by the previous lemma. This yields α = mπ/n,
with m ∈ N0 smaller than or equal to n/3 (since α ∈ ]0, π/3]). At the same time we have
ai > 0 for i ∈ {1, . . . , n− 1}. Let t be the smallest integer greater than or equal to n/m.
Because n/m ≤ t ≤ 2n/m (by n/m ≥ 3), it holds that tmπ/n ∈ [π, 2π], so at ≥ 0. As
t clearly is in {1, 2, . . . , n}, we obtain that t = n, which implies that m = 1 (because
m ∈ N0 and n ≥ 3) and α = π/n. �

Combining the two previous lemmas, we obtain:

Corollary 4.6.3 For i ∈ {0, 1, . . . , n}, ai = sin(iπ/n), and any other weight sequence of
(Γ, u) is a multiple of this.

Remark 4.6.4 It is easy to see that all k ∈ R satisfying Equation 4.11 are precisely
the eigenvalues of the path graph Pn−1 of length n − 2, consisting of n − 1 vertices.
Moreover, since all ai are positive, it is the unique eigenvalue for which the coordinates of
the associated eigenvectors have constant sign. This observation can be used to give an
alternative proof of the previous corollary. Doing so, one sees that 2 cos(π/n) is in fact
the largest eigenvalue of Pn−1.
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4.7 Proof of Main Result 4.3.3

By the proof of the previous main result one can suppose for the proof of the current and
following main result that the weight sequence is given by ai = | sin(iπ/n)|/ sin(π/n). In
particular, we have that a1 = 1.

Let n be a natural number with 3 ≤ n ≤ 6 for the rest of this section.

If x and y are opposite elements, let τ(x, y) be the sum
∑n−1

i=1 aiu(xi−1, xi+1) where (x0 =
x, x1, . . . , xn−1, xn = y) is a shortest path from x to y; (U4) guarantees independence of
the chosen path.

Two elements x and y are said to be t-residually equivalent, if for each element z the
following are equivalent:

• z is opposite x and τ(x, z) < t;

• z is opposite y and τ(y, z) < t.

Notice that when t = 0, this definition is trivially fulfilled.

Lemma 4.7.1 Two adjacent elements x and y are u(x, y)-residually equivalent, but not
t-residually equivalent with t > u(x, y).

Proof. Let z be an element opposite x with τ(x, z) < u(x, y). Consider the unique shortest
path (x0 = x, x1 = xy, x2, . . . , xn = z) from x to z containing xy. Because a1 = 1, it
holds that u(x, x2) ≤ τ(x, z) < u(x, y), so u(y, x2) = u(x, x2) by (U3). This implies that
y and z are opposite and that τ(y, z) = τ(x, z) (the last is easily seen when considering
the path (y, x1, x2, . . . , xn = z)).

If t > u(x, y), then consider a path (x, xy, y = y2, . . . , yn) where the path (y2, . . . , yn) has
valuation zero (possible by Lemma 4.2.2). �

Corollary 4.7.2 If xIyIz, then [x] = [z] if and only if u(x, z) > 0.

Lemma 4.7.3 Given a closed path Ψ, there are at least two sides having the same mini-
mal valuation among all sides in Ψ.
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Proof. Let x and y be the two points on a side with minimal valuation, and suppose
all other sides have valuation strictly larger than u(x, y). Let t be the second smallest
valuation among the sides in Ψ. By repeatedly using Lemma 4.7.1 and going from x to y
in Ψ not using xy, one proves that x and y are t-residually equivalent, which contradicts
Lemma 4.7.1. �

Lemma 4.7.4 If two elements x and y are not residually equivalent, but if there exist
aIx and bIy which are residually equivalent, then there is an element z residually opposite
one element of {x, y}, but at distance n− 2 from the other.

Proof. Without loss of generality, one can suppose that there exists an element d which
is residually opposite x, but not residually opposite y.

According to Lemma 4.2.2, there exists an element c incident with x such that u(a, c) = 0.
Let (x = x0, c = x1, . . . , xn−1, d = xn) be the unique shortest path from x to d containing
c. The element xn−1 is residually opposite, and so also opposite, a and b. This implies
that d(y, d) = n or d(y, d) = n− 2. In the second case we are done, so suppose we are in
the first case. Let (y = y0, y1, . . . , yn−2, yn−1 = xn−1, yn = d) be the unique shortest path
from y to d containing xn−1. Because the element xn−1 is residually opposite b, the path
(b, y = y0, y1, . . . , yn−2, yn−1 = xn−1) has valuation zero. As y is not residually opposite d,
the valuation u(yn−2, d) has to be non zero. So xn−2 6= yn−2 and u(xn−2, yn−2) = 0. The
element xn−2 will now be the desired element z, because it is residually opposite y, but
at distance n− 2 from x. �

Lemma 4.7.5 Let Ω be a simply folded n-gon. If two elements x and y are folded together
in Ω, then they are residually equivalent.

Proof. Here we need to distinguish between the different possibilities for n. Let z be an
element of Ω such that Ω is folded along z.

• n = 3. For this case the result follows directly from Corollary 4.7.2.

• n = 4. Again using Corollary 4.7.2, one only needs to prove that the two elements
of Ω at distance 2 from z are residually equivalent. Suppose this is not the case.
Using the previous lemma, one can assume without loss of generality that there is
an element a residually opposite x, but at distance 2 from y.
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Let (x, xz, x2, x3, a) be the unique shortest path (which has valuation zero) from
x to a containing xz. Let z′ be the element opposite z in Ω. The element x3 is
residually opposite xz′, and so also residually opposite yz′ due to Corollary 4.7.2.
This implies that the valuations u(y, a) and u(x3, ay) are zero. But as also the
valuations u(xz, x3) and u(x2, a) are zero, (U4) would imply that u(xz, zy) = 0,
which is a contradiction.

• n = 5. Using Corollary 4.7.2 and the previous lemma, one can assume without loss
of generality that x and y are at distance 2 from z, and that there exists an element
a residually opposite x, but at distance 3 from y.

Let (x, xz, x2, x3, x4, a) be the unique shortest path (which has valuation zero) from
x to a containing xz, and let (y, y1, y2, a) be the shortest path from y to a. Choose
an element bIa such that u(b, x4) = 0 (this is possible due to Lemma 4.2.2). The
element xz is residually opposite b, and so also yz. All of this implies that the path
(yz, y, y1, y2, a, b) has valuation zero. A consequence is that u(x4, y2) > 0, otherwise
we could have chosen b to be y2, leading to a contradiction.
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Let z′ be the element opposite z in Ω, and let x′, y′ be the elements incident with
z′ closest to x and y respectively. Now x′ and y′ are both residually opposite x3,
implying that the unique shortest path from yy′ to x3 has valuation zero. If we look
in the unique ordinary pentagon containing yy′, x3 and y2, we see that the valuation
of x3 in this pentagon is nonzero because of (U4) and u(x4, y2) > 0. By (U3) we
then obtain that the valuation of x3 in the unique ordinary pentagon containing x3,
yy′ and z is zero. This contradicts (U4) and the fact that the valuation of z in this
pentagon is nonzero.

• n = 6. Apart from the case handled in Corollary 4.7.2, there are two cases to
consider here.

– The first case is when x and y lie at distance 2 or 4 from z; without loss of
generality one can suppose this to be 2. Similarly to the previous cases, let
a be an element residually opposite x, but at distance 4 from y. Let x1 be
the unique element of Ω at distance 1 from x and 3 from z. Now consider the
unique shortest path (x, x1, x2, x3, x4, x5, a) from x to a containing x1, and the
unique shortest path (y, y1, y2, y3, a) from y to a. Observe that x4 ∈ [z]opp. Let
Ω′ be the unique ordinary simply folded hexagon containing z, x4, x and yz,
and let b be the element opposite x2 in this hexagon. By (U3), the unique
ordinary hexagon containing y, b, y1, and x4 is nonfolded, so u(y, b) is zero and
x4 ∈ [y]opp.

Let Ω′′ be the unique ordinary hexagon containing z, y and x3, and Ω′′′ the
unique ordinary hexagon containing y, b and x3. Let c and c′ respectively be
the elements opposite xz in the hexagons Ω and Ω′′ respectively. Let d and d′

be the projections of c and c′, respectively, on y. The hexagon Ω′′′ is a simply
folded hexagon folded along y (remember that u(y, b) was zero). So u(yz, d′)
is nonzero, and so u(d, d′) is zero. This implies that c ∈ [c′]opp, so also the
element c′′ opposite yz in Ω is in [c′]opp. Because the unique path from c′′

to c′ containing x2 has valuation zero, also the path from xz to c′ containing
x has valuation zero. So xz ∈ [c′]opp, which gives yz ∈ [c′]opp, and this is a
contradiction because yz and c′ are at distance 4 from each other.
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– The last case to handle is the case where x and y are at distance 3 from z.
For the final time, consider an element a ∈ [x]opp at distance 4 from y. Let x′

and y′ be the projections from z on x and y, respectively, and let x′′ and y′′

be the elements in Ω at distance 4 from z and 1 from x and y, respectively.
Let a′ be the projection of x′′ on a; this element is residually opposite x′, so
it is also residually opposite y′ (as shown in the previous case). The unique
shortest path from y′ to a′ containing a (and because of this also y) now has
valuation zero. Let a′′ be the projection of y′ on a. This element is residually
opposite x′′, but cannot be residually opposite y′′ as it is only at distance 4
from y′′. This contradicts the previous case applied to x′′ and y′′.
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Lemma 4.7.6 Let x, y be elements of Γ such that [x]Ir[y]. Then there exists some y′ ∈ [y]
such that xIy′.

Proof. Let F be the set of all flags containing an element of [x] and one of [y]. Let {x′, y′}
be a flag of F such that the sum d of distances of x′ and y′ to x is minimal. If d = 1, then
x′ = x and xIy′. So we may suppose that d > 1.

Suppose that the distance of x to y′ is one bigger than the distance from x to x′. Let
(x0 = x, x1, . . . , xj−1 = x′, xj = y′) be the shortest path from x to y′ containing x′ (j ≤ n).
Let i be the smallest integer such that the subpath (xi, . . . , xj−1, xj) has valuation zero.
We have that i ≥ 1 (because otherwise it is impossible that x′ ∈ [x]) and i ≤ j− 1. Using
Lemma 4.2.2 we can extend this subpath to a path (xi, . . . , xj−1, xj, xj+1, . . . , xi+n) with
valuation zero of length n. Consider the unique path (x′i = xi, x

′
i+1 = xi−1, . . . , x

′
i+n =

xi+n) from xi to xi+n containing xi−1. Then using (U4), we see that this path has valuation
zero. These two paths together form an ordinary n-gon Ω, which is simply folded along
xi. The previous lemma implies that x′j−1 ∈ [x] and x′j ∈ [y]. But the sum of distances to
x of these two incident elements is strictly less than d, contradicting the minimality of d.

The case where the distance of x to x′ is one bigger than the distance from x to y is
proven analogously. �

The diameter of our new geometry Γr is clearly n. In order to prove it is a (weak) general-
ized n-gon we have to show that there is no closed nonstammering path of length less than
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2n. So suppose by way of contradiction that we have such a path ([x0], [x1], . . . , [x2m] =
[x0]) with 2 ≤ m < n. The previous lemma allows us to lift the path into a (not necessarily
closed) path (x′0, x

′
1, . . . , x

′
2m) such that [x′i] = [xi].

Due to Corollary 4.7.2 and the fact that the original path was nonstammering, this path
has valuation zero. If 2m < n, we extend this path to a path (x′0, x

′
1, . . . , x

′
2m, x

′
2m+1, . . . , x

′
n)

with valuation zero, of length n (this is possible by Lemma 4.2.2). In each case we have
that x′n is residually opposite x′0, but not opposite, and so certainly not residually opposite
x′2m. Hence we have a contradiction and we have proven the Main Result 4.3.3.

4.8 Proof of Main Result 4.3.4

General idea. — Starting from one valuation u on Γ, we will construct more valuations.
Each of these valuations will correspond to a point of our R-building. We will use results
from Section 4.5, which prove the current problem in the other direction. For example,
in that section Lemma 4.5.4 tells us how a valuation should behave when we ‘move’ the
point it is defined from. We will use this information to construct new valuations.

We now return to our case. Let (Γ, u) be a generalized n-gon with valuation, x an element
of Γ, and t ∈ R

+ a positive real number. We want to define a new valuation uV (x,t) with
V (x, t) an operator called the translation operator (uV (x,t) will be referred to as the t-
translation of u towards x, and u is t-translated towards x).

How do we construct this new valuation? Remember that each element y has a certain
residual distance dr(x, y) from x in the residue Γr defined by the valuation u. We now
‘predict’ the translated residual distance dx,t

r (y) from x to y when t-translating u, as it
would be if we were indeed in an R-building (we changed the notation of the residual
distance to an unary function to stress the dependability of x, and the fact that we will
only need distances from x). This function defined for t ∈ [0,+∞[ will be right-continuous
and piecewise constant. First thing one needs to assure here is that for two incident
elements y, z, the translated residual distances dx,t

r (y) and dx,t
r (z) differ by only one. The

definition of this function will be referred to as step (C1), the ‘difference condition’ as
condition (C2).

Because we know how the (translated) residual distances would behave if we were in an
R-building, we can use Lemma 4.5.4 to predict how the translated individual valuations
would behave if we were indeed in an affine apartment system (this is done by a trivial
integration of a piecewise constant function). The set of all these individual valuations
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allows to construct a new ‘valuation’ uV (x,t) (we still need to verify this is really a valua-
tion). On the third and fourth page of Section 4.5, it was shown that the weighted sum of
the coefficients of t along the path (x0, . . . , xn) depends only on the residual distances of
d0 and dn of x0 and xn respectively, under the assumption that d0 = x0. The argument in
that section can be extended to show that this weighted sum depends also only on d0 and
dn when d0 is not zero, by applying the same idea as in Case (v) of that section if j = 1 is
a valley. Because here the predicted individual valuations behave in the same way as they
would in the affine apartment system case, this result can be applied here (also using the
fact that for two incident elements the residual distances differ only by one) to guarantee
that (U4) will be satisfied by uV (x,t). The condition (U2) is trivially satisfied. For more
insight in how uV (x,t) is constructed, see the example in the section below.

For the other two conditions and positivity of the valuation, we will define and use the
R-trees associated to elements of Γ.

Choose a point x in a given tree. We can define a valuation v acting on the set of pairs
(e, f) of ends (parallel classes of sectors) of this tree as the length of the intersection of
the two half apartments with boundary x and ends e and f . The point x will be called
the base point of the valuation.

One property of v is that for three arbitrary ends e, f, g the inequality v(e, f) < v(f, g)
implies v(e, g) = v(e, f). Now, given any binary function w acting on a set E obeying
this property, one can (re)construct a tree (if w is already a valuation of a tree, then
we will obtain the same tree) by taking the set {(e, t)|e ∈ E, t ∈ R

+} and applying the
equivalence relation

(e, t) ∼ (f, s) ⇔ t = s and t ≤ w(e, f)

(e, f ∈ E and s, t ∈ R
+). The base point of this tree is the equivalence class {(e, 0)|e ∈

E} =: x. The set of ends of this tree is in natural bijective correspondence with E and the
valuation in this tree with base point x coincides with w. (This construction is a special
case of the one of Alperin and Bass in [3].)

It is easily seen that this property is the same as (U3) when we restrict u to a point row
or line pencil. So to each line L or point p of Γ we can associate a tree named T (L) or
T (p) with a certain base point. The location of this base point will play a major role in
the next sections. Other choices of base points yield other valuations of the tree.

We now return to the problem of (U1), (U3) and positivity. Obviously, this will be solved
if we can show that the change in valuations of elements incident with an element y of Γ is
described by changing the base point in the tree T (y). With an eye on the above lemma,
we want to move the base point towards an end corresponding to an element aIy with
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dx,t
r (a) = dx,t

r (y)−1 over a length of t sin(dx,t
r (y)π/n)/ sin(π/n), with t a certain translation

length such that the translated residual distances of a and y stay the same. In order that
the valuations obtained by this change of base point correspond to the predictions of the
valuations using the above lemma, we need to verify three things.

• If the valuation of the pair consisting of a and another element bIy is going to
decrease (equivalent with saying that dx,t

r (b) = dx,t
r (y) − 1 and dx,t

r (y) 6= n), then
this valuation corresponds to the predicted valuation using the displacement of the
base point in the tree, if the two half-apartments with ends a and b and source the
base point have more in common than only the base point, so uV (x,t)(a, b) > 0. (We
refer to this as condition (C3).)

• If the valuation of the pair consisting of a and another element bIy is going to
stay the same (equivalent with saying that dx,t

r (b) = dx,t
r (y) + 1), then we have

correspondence between the two predictions if the base point lies in the apartment
with ends a and b, so uV (x,t)(a, b) = 0. (This will be condition (C4).)

• Finally note that if the valuation is going to increase (two elements b, cIy with
dx,t

r (b) = dx,t
r (c) = dx,t

r (y) + 1), we would need that the base point lies on the
intersection of the apartment with ends a and b, and the one with ends a and c (so
uV (x,t)(a, b) = uV (x,t)(a, c) = 0). But this is already covered by (C4), so there is no
extra condition needed.

In the next part of the proof (after the example), we consider each case seperately.

4.8.1 An example

We will illustrate with an example how uV (x,t) will be calculated in practice. Suppose we
are in the n = 3 case, and that x is a point. Let us say we have two points x1, x2 different
from x, and we want to define uV (x,t)(x1, x2). (For the (C1) used here we refer to the next
section.)

Suppose u(x, xi) = ti and suppose u(x1, x2) = t2, with t1 > t2 > 0 (there are other cases,
but let’s rectrict to this one). The residual distances are all zero between these points.
Let L be the line joining x1 and x2. Then ǫ in the formula of Lemma 4.5.4 equals −1.
Here, we can take δ = t2 (so far, the residual distances to x do not change according to
(C1)), and we obtain

uV (x,t)(x1, x2) = t2 − t for t ≤ t2.
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From then on, ǫ becomes zero until t = t1, since the residual distance to x from x1 differs
from that to x2; to x2 it becomes 2 and to x1 it is 0. Hence

uV (x,t)(x1, x2) = 0 for t2 < t ≤ t1.

Note that, up to now, the residual distance from x to L was always 1, hence the quotient
of the sines has always been 1. This is going to change in the next paragraph.

For t ≥ t1, ǫ equals 1, and the quotient of the sines is still 1, but only for t ≤ τ(x, L)
according to (C1), which is by definition bigger than t1. Hence

uV (x,t)(x1, x2) = t− t1 for t1 < t ≤ τ(x, L).

At t = τ(x, L), the sine of d(x, L)π/3 becomes 0, and so the valuation becomes constant
again:

uV (x,t)(x1, x2) = τ(x, L) − t1 for τ(x, L) < t.

4.8.2 n = 3

We define (C1) and check (C2), (C3) and (C4).

(C1)

• If d(x, y) = 0, then d
t,x
r (y) = 0 for t ∈ [0,+∞[.

• If d(x, y) = 1, then dt,x
r (y) = 1 for t ∈ [0,+∞[.

• If d(x, y) = 2, then

– dt,x
r (y) = 0 for t ∈ [0, u(x, y)[,

– dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[.

• If d(x, y) = 3, then

– d
t,x
r (y) = 1 for t ∈ [0, τ(x, y)[,

– dt,x
r (y) = 3 for t ∈ [τ(x, y),+∞[.
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(C2)

Let y and z be a pair of incident elements. Without loss of generality one can suppose
that d(x, y)+1 = d(x, z). The only not completely trivial cases are where d(x, y) = 2 and
d

t,x
r (y) = 0. This happens when t ∈ [0, u(x, y)[, so also t < τ(x, z) = u(x, y)+ u(y, z), and

so dt,x
r (z) = 1. We conclude that (C2) is satisfied.

(C3)

Let again y be an element, with a, b two elements incident with y, such that d
x,t
r (a) + 1 =

dx,t
r (b) + 1 = dx,t

r (y). The only cases for which we need to verify that uV (x,t)(a, b) > 0 are
dx,t

r (y) = 1 or 2.

• If d(x, y) = 1, then d
x,t
r (a) + 1 = d

x,t
r (b) + 1 = d

t,x
r (y) = 1. One can choose

a = x, then d(x, b) = 2, so in this case t ∈ [0, u(x, b)[. The following now holds:
uV (x,t)(a, b) = u(x, b) − t > 0.

• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. Assume that a = xy and

d(x, b) = 3. This yields that t ∈ [u(x, y), τ(x, b)[= [u(x, y), u(x, y) + u(a, b)[. One
checks that uV (x,t)(a, b) = u(a, b) − t+ u(x, y) > 0, so (C3) holds here.

• If d(x, y) = 3, then dt,x
r (y) = 1 for t ∈ [0, τ(x, y)[. This case is similar to the case

d(x, y) = 1, but now using Lemma 4.7.3 instead of (U3).

(C4)

Let y be an element, with a, b two elements incident with y, such that dx,t
r (a) + 1 =

dx,t
r (b)− 1 = dx,t

r (y). We only need to verify that uV (x,t)(a, b) = 0 is when dx,t′

r (b) < dx,t
r (b)

for t′ < t.

• If d(x, y) = 1, we again choose x to play the role of a. It is clear that the conditions
then tell that t = u(x, b), and uV (x,t)(x, b) = u(x, b) − t = 0.

• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. We choose a to be the element

xy. The element b lies at distance 3 from x because of this, and t = τ(x, b). Similarly
to the (C3) case one checks that uV (x,t)(a, b) = u(a, b) − t+ u(x, y) = 0.

• If d(x, y) = 3, then dt,x
r (y) = 1 for t ∈ [0, τ(x, y)[. This case is similar to the case

d(x, y) = 1, but now using Lemma 4.7.3 instead of (U3).
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4.8.3 n = 4

Before we check the conditions, we state some useful lemmas.

Lemma 4.8.1 It is impossible to have an ordinary quadrangle Ω containing exactly two
sides with nonzero valuations, such that opposite elements have the same valuation, but
each two corners of a side have different valuations.

Proof. Suppose that such a quadrangle Ω does exist. Then let p, q be corners of Ω such
that u(p, q) > 0, and such that the valuation in p is bigger than the one in q. There
exists an rIpq such that u(p, r) = u(q, r) = 0 (by Lemma 4.2.2 and (U3)). Let Ω′, Ω′′

be the ordinary quadrangles sharing a path of length 4 with Ω and containing r, p and
r, q, respectively. Denote the element opposite pq in Ω by s. Let p′, q′ and r′ be the
projections of, respectively, p, q and r on s. Because the valuation in p is bigger than in q,
(U4) applied in both Ω′ and Ω′′ yields u(r′, q′) < u(r′, p′) (because these are the only two
other different terms in applying (U4) in both quadrangles), so u(r′, q′) = u(p′, q′) > 0 by
(U3).

The valuations of the elements r and r′ in Ω′ cannot be equal because the valuation
of q in Ω′ is strictly smaller than the valuation of q′ in Ω′. So the two corners with
smallest valuation in Ω′ — guaranteed by (the dual of) Lemma 4.7.3 — have to be
in the corners q and r′. Applying (U4) we obtain u(q, q′) +

√
2u(qq′, qr) + u(q, r) =

u(q′, r′) +
√

2u(r′q′, r′r) + u(r, r′), which implies that u(q′, r′) = 0, a contradiction. �

Lemma 4.8.2 Let a, b be two opposite elements. Then there exist two paths (a, x1, x2, x3, b)
and (a, y1, y2, y3, b) from a to b such that u(a, x2) = u(x2, b), u(a, y2) = u(y2, b) and
u(x1, y1) = 0, if and only if for each path (a, z1, z2, z3, b) the equality u(a, z2) = u(z2, b)
holds.

Proof. The implication from right to left is trivial by (U1). So suppose the left part of
the statement is satisfied.

First remark that (U4) tells us that u(x3, y3) = 0, so the situation is symmetric in a
and b. Suppose that u(a, z2) < u(z2, b); then without loss of generality we may assume
that u(x1, z1) = 0 (by (U3)). But then u(x2, a) +

√
2u(x1, z1) + u(a, z2) < u(x2, b) +√

2u(x3, z3) + u(b, z2), which contradicts (U4). �

If for two opposite elements a and b the situation of the above lemma holds, then we say
that those two points are equidistant.
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Lemma 4.8.3 If two opposite points x, y are not equidistant, then there exists a path
(x, a, b, c, y) from x to y, such that u(x, b) ≥ u(b, y) and u(a, c) = 0.

Proof. First note that, if for all paths (x, a′, b′, c′, y) from x to y it would happen that
u(x, b′) ≤ u(b′, y), then Condition (U4) or Lemma 4.8.2 is violated in a quadrangle de-
fined by two paths (x, a′, b′, c′, y) and (x, a′′, b′′, c′′, y), where a′ and a′′ are chosen so that
u(a′, a′′) = 0 (which is possible due to (U1)).

So we know the existence of a path (x, a′, b′, c′, y) with u(x, b′) > u(b′, y′). If u(a′, c′) = 0,
then we are finished, so assume this is not the case. Using Lemma 4.2.2, we can find a′′Ix
with u(a′, a′′) = 0. Let (x, a′′, b′′, c′′, y) be the unique shortest path from x to y containing
a′′. Lemma 4.7.3 tells us that either u(c′, c′′) = 0 or u(a′′, c′′) = 0. If we are in the first
case, then applying Lemma 4.7.3 again on the other type of elements in the ordinary
quadrangle leads to a contradiction with Lemma 4.8.1. So u(a′′, c′′) = 0. Using (U4) one
sees that (x, a′′, b′′, c′′, y) is a path with the desired properties. �

We are now ready to check (C1), (C2), (C3) and (C4).

(C1)

• If d(x, y) = 0, then dt,x
r (y) = 0 for t ∈ [0,+∞[.

• If d(x, y) = 1, then d
t,x
r (y) = 1 for t ∈ [0,+∞[.

• If d(x, y) = 2, then

– dt,x
r (y) = 0 for t ∈ [0, u(x, y)[,

– dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[.

• If d(x, y) = 3, with xIaIbIy then

– dt,x
r (y) = 1 for t ∈ [0, u(x, b) + u(a, y)/

√
2[,

– d
t,x
r (y) = 3 for t ∈ [u(x, b) + u(a, y)/

√
2,+∞[.

• If d(x, y) = 4, then in the case that there exist a, b and c such that xIaIbIcIy, with
u(x, b) 6= u(b, y), let k(x, y) be the minimum of both (this is independent of a, b and
c due to Lemma 4.7.3). In the case that x and y are equidistant, we define k(x, y)
to be equal to τ(x, y)/2. Then we have

– dt,x
r (y) = 0 for t ∈ [0, k(x, y)[,
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– dt,x
r (y) = 2 for t ∈ [k(x, y), τ(x, y)− k(x, y)[.

– dt,x
r (y) = 4 for t ∈ [τ(x, y) − k(x, y),+∞[.

(C2)

Let y, z be a pair of incident elements. Without loss of generality one can suppose that
d(x, y) + 1 = d(x, z). There are three nontrivial cases.

• d(x, y) = 2, with dt,x
r (y) = 0, and dt,x

r (z) = 3. This yields t ∈ [0, u(x, y)[∩ [u(x, y) +
u(xz, z)/

√
2,+∞[. The last intersection is clearly empty and so this case cannot

occur.

• d(x, y) = 3, with dt,x
r (y) = 1 and dt,x

r (z) = 4. Let xIaIbIy. This situation oc-
curs when t ∈ [0, u(x, b) + u(a, y)/

√
2[ ∩ [τ(x, z) − k(x, z),+∞[. As k(x, z) ≤

min(u(x, b), u(b, z)) + u(a, y))/
√

2, the range for t is empty, so this case cannot
occur either.

• d(x, y) = 3, with dt,x
r (y) = 3 and dt,x

r (z) = 0. Let xIaIbIy. This happens
when t ∈ [0, k(x, z)[ ∩ [u(x, b) + u(a, y)/

√
2,+∞[. Again the bound k(x, z) ≤

min(u(x, b), u(b, z)) + u(a, y))/
√

2 leads to a contradiction.

(C3)

Let again y be an element, with a, b two elements incident with y, such that dx,t
r (a) + 1 =

dx,t
r (b) + 1 = dx,t

r (y).

• If d(x, y) = 1, then dt,x
r (y) = 1 for t ∈ [0,+∞[. Let a be the element x. then

d(x, b) = 2, so in this case t ∈ [0, u(x, b)[. The following now holds: uV (x,t)(a, b) =
u(x, b) − t > 0.

• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. We may assume that a = xy

and d(x, b) = 3. This yields that t ∈ [u(x, y), u(x, y)+ u(a, b)/
√

2[. One checks that
uV (x,t)(a, b) = u(a, b) −

√
2(t− u(x, y)) > 0, so (C3) holds here.

• If d(x, y) = 3, with xIpIqIy then

– dt,x
r (y) = 1 for t ∈ [0, u(x, q) + u(p, y)/

√
2[. We distinguish two subcases.
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∗ If u(x, q) > t, then we choose a = q. The element b is then at distance 4
from x, with dt,x

r = 0, hence t ∈ [0, k(x, b)[. If u(q, b) ≤ t, then u(q, b) =
k(x, b) ≤ t which is impossible (remember u(x, q) > t). As uV (x,t)(q, b) =
u(q, b) − t, Condition (C3) is satisfied here.

∗ The other subcase is where u(x, q) ≤ t. Note that dt,x
r = 2, so d(x, b) = 4.

Since u(x, q) ≤ t and t < k(x, b), we have u(q, b) = u(x, q) and u(p, y) > 0.
We construct a as follows: let r be an element incident with x such that
u(p, r) = 0 and let s be an element incident with r such that u(x, s) = 0.
The element a is the projection of s on y. Let c be the projection of b
on r. Lemmas 4.7.3 and 4.8.1 yield u(a, s) = u(y, as) = 0, u(r, as) =
τ(x, a)/

√
2, a and x are equidistant (by Lemma 4.8.2), and dt,x

r (x, a) = 0.
As uV (x,t)(a, b) = u(a, b) − t, we have to prove that u(a, b) ≥ k(x, b) in
order to prove (C3).
Let Ω be the unique quadrangle containing b, y, s and r. If b and x are
equidistant, then the valuation of b in Ω is zero, and (U4) implies u(a, b) ≥
u(r, as)/

√
2 = k(x, b). Finally suppose that b and x are not equidistant;

then Lemma 4.8.2 implies u(x, s) 6= u(s, c), and so u(x, s), u(s, c) ≥ k(x, b)
(by definition of k(x, b)). Applying (U4) in Ω tells us now that u(a, b) ≥
u(s, c) ≥ k(x, b), which we needed to show.

– dt,x
r (y) = 3 for t ∈ [u(x, q) + u(p, y)/

√
2,+∞[. Let a be q in this case. This

implies that the element b will be at distance 4, while dx,t
r (b) = 2. So t ∈

[k(x, b), τ(x, b) − k(x, b)[, which also means that b and x are not equidistant.
Careful analysis reveals that uV (x,t)(a, b) = τ(x, b)−k(x, b)−t, which is strictly
larger than zero because dx,t

r (b) = 2 implies that t ∈ [k(x, b), τ(x, b) − k(x, b)[.

• If d(x, y) = 4, then dt,x
r (y) = 2 for t ∈ [k(x, y), τ(x, y)−k(x, y)[. Notice that x and y

are not equidistant. Let (x, p, q, a, y) be a path as constructed in Lemma 4.8.3. This
fixes our choice of a. Let (x, r, s, b, y) be the unique path from x to y containing b.
One checks that uV (x,t)(a, b) = u(a, b) −

√
2(t− k(x, y)) = u(a, b) −

√
2(t− u(y, q)).

The value of t is strictly smaller than u(x, s) + u(s, b)/
√

2 (because dt,x
r (b) = 1). All

we have to check is that uV (x,t)(a, b) ≥ 0 when t = u(x, s)+u(s, b)/
√

2. Using (U4),
one proves that uV (x,t)(a, b) = u(p, r) ≥ 0 for this value of t.

This concludes the proof of (C3) in this case.

(C4)

In this case, the condition (C4) can be proved analogously as the proof of (C3).
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4.8.4 n = 6 and the valuation is discrete

Here the discreteness allows us to define the translations in a much easier way using
recursion. We start with a valuation u where the valuations of one type of elements
are integer multiples of 3, while valuations of the other type are integer multiples of

√
3

(with proper rescaling, this is a consequence of the discreteness, see Section 4.4.1). The
valuation u also defines a residual distance dr. We use this as the constant translated
residual distance dx,t

r with t ∈ [0, 1[ or [0,
√

3/2[, depending on the type of x (notice that
this implies (C1) and (C2)). The condition (C4) is satisfied because it is satisfied for
t = 0, and because the valuations in question stay zero. The discreteness makes it so
that because (C3) is satisfied for t = 0, it will also be satisfied for t in the ranges above
(because the range is small enough such that the valuation in question cannot decrease
to zero).

Let’s clarify this with an example first. Suppose that x is an element such that the
valuations of that type of element are integer multiples of

√
3, and let k ∈ [0,

√
3/2].

Applying what is said above, the displacement of the base point of the trees associated
with an element y with residual distance dr(x, y) to yield the valuation uV (x,k) will be
as given in the following table; all displacements are towards an element which is in the
residue closest to x:

dr(x, y) 0 1 2 3 4 5 6

Displacement of base point none k
√

3k 2k
√

3k k none

Note that k is small enough so that the displacements do not make the base points reach
branching points of the trees, except for the maximal value k =

√
3/2 and dr(x, y) = 3.

In order to satisfy (C3), branching points are not supposed to be crossed as valuations are
not allowed to decrease to zero (which is what happens at branching points), except for
the final point (for a k-translation, (C3) needs only to be checked for values t in [0, k[).

We can repeat the same procedure on the new valuations we obtain but with one major
caveat: the valuations are no nice integer multiples anymore (because we can k-translate
with k a real number in [0, 1] or [0,

√
3/2] depending on the situation). However, we

can handle this as follows. Let W be a Coxeter group of type G̃2 acting naturally on a
Euclidean affine plane A. Take a special vertex s. Notice that, with proper rescaling,
the distances from s to all the walls of a parallel class of walls is exactly the image set
of the valuations u of the elements incident with a certain type of elements. Let s′ be a
point of the plane A at distance k from s, on the same wall (with type the element we
have translated to) as s. Due to Lemma 4.5.4 (or by looking at the example above), we
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can again identify distances from s′ to all the walls of a parallel class with image sets of
valuations uV (x,k) of certain elements as above. (We can no longer identify with a type of
elements; there will be more classes of elements, due to the residue corresponding with
uV (x,k) being a weak generalized hexagon.)

We can now l-translate uV (x,k) to an element y in the same way as above, with l small
enough so that we do not ‘cross’ any walls with the corresponding displacement of the
point in the plane. The displacement will now happen along the line at angle dπ/n with
the line through s and s′, with d the distance in the residue of uV (x,k) from x to y. One
cannot cross the wall because we will have moved some base points of trees to branching
points. Note however that ‘arriving’ at a wall is allowed, so one can get across that wall
with the next translation.

This procedure allows us to repeat the construction, obtaining all subsequent translations
of u we want.

We again clarify further with an example. Suppose x is as in the above example and let t
be

√
3/3. Now suppose that y is an element which is at distance 2 from x in the residue

of uV (x,k). With the above procedure it follows that we l-translate to y with l ∈ [0,
√

3/3]
(when l =

√
3/3, we arrive again in a special point of A). Again we could make a table

and confirm indeed that the base points reach branching points of the tree except for the
maximal value l =

√
3/3.

4.8.5 What about n = 5 and the nondiscrete case for n = 6?

One could use similar techniques as for the cases n = 3 and n = 4 to investigate these cases.
The things one would need to prove are mostly quantitative versions of the qualitative
lemmas of the proof of Main Result 4.3.2. However extending the, already extensive,
complexity of the case studies n = 3 and n = 4 to these higher cases, would probably
require an extremely extensive case study and a massive number of pages. For this reason
we choose to restrict ourselves to the already handled cases.

4.8.6 Some first observations

Now that we defined additional valuations, we need to show that they form the point set
of an R-building. We need some properties to do so.

Lemma 4.8.4 The residual distance of x and y in the residue of uV (x,t) equals dt,x
r (y).
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Proof. This follows from the way we defined (C1) for n = 3 and n = 4, and from the
construction for the discrete case when n = 6. �

Lemma 4.8.5 If d
x,t
r (y) = n, then d

x,t′

r (y) = n for every t′ ≥ t.

Proof. The only case for which this is not directly clear is n = 6. Applying the previous
lemma we see that in the residue of uV (x,t) the elements x and y are residually opposite
and that each shortest path between both has valuation zero. Because of the way we
defined uV (x,t′), it follows that the path also has valuation zero for uV (x,t′). This proves
the lemma. �

Corollary 4.8.6 When translating towards x, the residual distance dx,t
r (y) only increases,

up to the point that dx,t
r (y) = d(x, y).

Proof. Again we only need to prove this when n = 6. Because of the previous lemma and
the fact that the residue is a weak generalized n-gon where each element is incident with
at least 2 elements, we see that dx,t

r (y) only increases. It increases to d(x, y) because if for
an arbitrary element z we have dx,t

r (z) = d(x, z) < n, then for an element aIz there exists
t′ ≥ t such that dx,t

r (a) = d(x, a) (this is due to the displacement of the base point of the
tree associated to z, which happens at a constant rate towards the projection of x on z).
Repeating this argument implies that dx,t

r (y) will eventually become d(x, y). �

4.8.7 Structural properties of the set of translated valuations

Let Λ(u) be the set of all valuations obtained by translating u a finite number of times.

Lemma 4.8.7 If we know the values of a valuation v on the pairs of elements incident
with an element x, and we know that an element y is residually opposite x, then we know
the values of v on the pairs of elements incident with y.

Proof. Let a, bIy; then (U4) in an n-gon containing a, b, x and y tells us that v(a, b) =
v(a′, b′), where a′ and b′ are the projections on x of a and b, respectively. �

Lemma 4.8.8 Let Ω be an n-gon in Γ, nonfolded for a valuation v ∈ Λ(u), such that all
values of v in the line pencils of the corners and points on the sides of Ω are known; then
the values of v are known entirely.
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Proof. Let x be an element of Γ. Let y be an element of Ω with minimal distance k to x.
Notice that k < n. If k = 0, then we know the valuations of pairs of elements incident
with x, so suppose k > 0. Let z be the projection of x on y. Then there are two ordinary
n-gons containing z and sharing a path of length n with Ω. By applying (U3), (U4) at
least one of these two n-gons is nonfolded for the valuation v. Let Ω′ be such an n-gon.
The valuations in the line pencils of the corners and points on the sides of Ω′ are known
because of the previous lemma. The minimal distance from x to an element of Ω′ is now
strictly less than k. So by repeating the above argument one sees that one knows the
value of v everywhere. �

Corollary 4.8.9 If dt′,x
r (y) = 0 for all t′ ∈ [0, t[, then uV (x,t) = uV (y,t).

Proof. If n = 6, then this follows from the ‘discrete’ construction.

In the other cases, let Ω be a nonfolded n-gon (for u) containing x. If we can prove that
for each element z in Ω the relation dt′,x

r (z) = dt′,y
r (z) holds for all t′ ∈ [0, t[, then the

displacements of the base points in the trees corresponding to the elements of Ω are the
same, so by the previous lemma also uV (x,t) = uV (y,t). Moreover, it suffices to prove this
for z equal to x and equal to the element opposite x in Ω because of (C2).

If z = x, then note that, due to the symmetry of the definitions in (C1), dt′,y
r (x) = 0 is

equivalent with d
t′,x
r (y) = 0 for all t′ ∈ R

+, so also for t′ ∈ [0, t[. So the result follows from
the assumption.

If z is opposite x in Ω, note that due to the residual equivalency of x and y (by Lemma 4.8.4),
we have that τ(x, z) = τ(y, z) = 0, and so dt′,x

r (z) = dt′,y
r (z) = n for all t′ ∈ R

+. �

Remark 4.8.10 It should also be noted that at this point one can prove that the group
of projectivities of a line L preserves the tree structure associated with L. This allows for
a characterization due to Jacques Tits in the case n = 3, which was formulated without
proof in [47].

4.8.8 Apartments

An apartment in our R-building will consist of all valuations in Λ(u) for which a given
ordinary n-gon is nonfolded. Here, we investigate which valuations keep a given ordinary
n-gon nonfolded. Later on, this will give us the affine structure of the apartments.
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Let u be a valuation, and let Ω be a nonfolded n-gon in Γ containing an element x. Note
that due to (U4) and multiple use of Lemma 4.2.2, each flag can be embedded in such a
nonfolded n-gon, so results obtained here for single points or flags of Ω are true for all
points or flags.

Using the definition of t-translation one easily obtains that a translation V (x, t) moves
the base point of the tree corresponding to an element y of Ω along the apartment of
that tree with ends the two elements of Ω incident with y. The new base point lies at
length t sin(d(x, y)π/n)/ sin(π/n) towards the projection of x on y (note that when this
projection is not defined, the length will be zero).

Consider the real affine real two-dimensional space A. One can think of this as a (degen-
erate) affine apartment system with an ordinary n-gon at infinity. Identify this n-gon with
Ω and let α be a point of A. Now consider the point at distance t on the sector-panel
with source α and direction x. We observe that for an element y of Ω at infinity, the
distance component perpendicular to the direction to y of the original to the new point
is t sin(d(x, y)π/n)/ sin(π/n), which is exactly the same as above.

Note also that Ω is nonfolded for the valuation uV (x,t), and that the displacements of the
base points in the aforementioned trees describe uV (x,t) completely when u is known, due
to Lemma 4.8.8. So we can identify the points of A with the valuations obtained by
translating u to elements of a certain nonfolded n-gon for u. This spawns a few direct
consequences.

Corollary 4.8.11 Let x be an element of Γ and let t and s be nonnegative real numbers.
Then

• uV (x,t)V (x,s) = uV (x,t+s) (local additivity).

• uV (x,t)V (y,s) = uV (y,s)V (x,t) if xIy (local commutativity).

• uV (x,t)V (y,t) = u if τu(x, y) = 0 (reversibility).

• Let (x0, x1, . . . , xi) (with i ≤ n) be a path with valuation zero for some valuation
u, and suppose that v is a valuation obtained from u by subsequently translating
towards the respective elements of the path. Then there exists a j ∈ {1, . . . , i} and
t′, s′ ∈ R

+ such that v = uV (xj−1,t′)V (xj ,s′). In addition, the total sum of lengths of
all the translations does not increase.

Note that the reversibility statement also implies that, if v ∈ Λ(u), then Λ(v) = Λ(u).
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4.8.9 Convexity

The next thing to investigate is how an ordinary n-gon Ω behaves with respect to trans-
lations towards elements outside Ω. This will allow us to prove the (convexity) condition
(A2) later on.

Lemma 4.8.12 Let Ω be an ordinary n-gon and x an element not residually equivalent
with any of the elements of Ω. Then Ω cannot be a nonfolded n-gon for uV (x,t) with t > 0.

Proof. Consider the closed path (x0, . . . , x2n = x0) that Ω forms. There is an i ∈
{1, . . . , 2n} such that the residual distances from x to xi−1 and xi+1, are both larger
than the residual distance from x to xi. We excluded that xi is residually equivalent to
x, so the right derivative (with respect to t) of the valuation uV (x,t)(xi−1, xi+1) is positive
in a certain interval (for t) containing 0, where the residual distances to x in the path
are constant. This implies that Ω is not nonfolded for t in this interval but different from
zero. We also know that we can partition [0,+∞[ in a finite set of intervals with constant
residual distances to x in the path, so repeating the above argument proves the lemma.

�

Lemma 4.8.13 Let {p, L} be a flag in Γ, let l,m be positive real numbers, and let Ω
be a nonfolded n-gon. Then, if Ω is nonfolded for the valuation uV (p,l)V (L,m), it is also
nonfolded for the valuations uV (p,l′)V (L,m′), for all l′ ∈ [0, l] and m′ ∈ [0, m]. Moreover,
there is a point p′ and line L′ in Ω such that uV (p,l′)V (L,m′) = uV (p′,l′)V (L′,m′) for all l′ ∈ [0, l]
and m′ ∈ [0, m].

Proof. For the first assertion, note that, using Corollary 4.8.6, it follows that if we are
translating to a certain flag {p, L}, we can first ‘use up’ that much of the translations to p
and L (note that these commute) such that we only end up with valuations to elements not
residually equivalent to an element of the ordinary n-gon. If we now translate further than
this, the apartment loses its nonfoldedness and never regains it, due to Lemma 4.8.12.
So if for uV (p,l)V (L,m) the n-gon Ω is still nonfolded, it has to be that p and L remain
residually equivalent to elements of the n-gon for the whole translation. So if we translate
‘less’ (uV (p,l′)V (L,m′) with l′ ∈ [0, l] and m′ ∈ [0, m]), Ω will still be nonfolded.

The second assertion now follows from Lemma 4.8.12 and Corollary 4.8.9 (the elements p
and L stay residually equivalent with the same pair of incident elements of the n-gon for
the whole translation because of Corollary 4.8.6). �
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4.8.10 Existence of apartments containing two valuations

Lemma 4.8.14 Let u be a valuation, and v, w ∈ Λ(u). Then there exists a point p and
line LIp in Γ, and nonnegative real numbers k and l such that w = vV (p,k)V (L,l).

Proof. First remark that w ∈ Λ(u) = Λ(v). So w can be obtained from v with a series
of i translations. We prove with induction that this series of translations can be reduced
into the desired form.

If i ≤ 1 this is trivial. If i > 1 we can reduce the last i − 1 translations into the desired
form, so we have that w = vV (x,k)V (y,l)V (z,m) with yIz and k, l,m ∈ R

+ (note that the last
two translations commute).

We now start a second induction on j = max(d(x, y), d(x, z)). If this is 1, then we are
done because of Corollary 4.8.11. So suppose that j > 1, and that we can reduce to the
desired form if the maximum is strictly less than j. Without loss of generality, assume the
maximum in the definition is reached for d(x, z). Let t be the smallest real positive number
such that the residual distance between x and z in vV (x,t) equals the actual distance in Γ.
There exists an element x′ such that d(x′, z) < d(x, z) and x′ is residually equivalent with
x for vV (x,t′), with t′ < t (the existence of such an x′ will be clarified below).

If k ≤ t, then w = vV (x,k)V (y,l)V (z,m) = vV (x′,k)V (y,l)V (z,m), and so we are done in this case
by the second induction hypothesis. If k > t, then

w = vV (x,k)V (y,l)V (z,m) = (vV (x,t))V (x,k−t)V (y,l)V (z,m).

By the definition of t, there exists a nonfolded n-gon for the valuation vV (x,t) containing
x, y and z. This implies that the last three translations can be reduced into the desired
form of two translations towards two incident elements in the path from x to z (by
Corollary 4.8.11). If both of these translations are not towards z, then we are done due
to the second induction hypothesis. If this is not the case then w = (vV (x,t))V (y,l′)V (z,m′) =
(vV (x′,t))V (y,l′)V (z,m′) for certain l′ and m′, which is again reducable due to the second
induction hypothesis.

All that is left to do is clarify the existence of the element x′ above. We will only point
out which elements should be chosen as x′, the verification of the conditions is easily done.
We can assume that d(x, z) ≥ 2.

• n = 3

– d(x, z) = 2; here we set x′ = z.
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– d(x, z) = 3; here we take x′Iz, such that u(xx′, z) = 0. The existence of such
an x′ follows from applying Lemma 4.7.3 on a triangle containing x, z and two
elements incident with x, constructed by (U1).

• n = 4

– d(x, z) = 2; here we set x′ = z.

– d(x, z) = 3; let (x, a, b, z) be the unique path of lenght 3 from x to z. If
u(a, z) = 0, we let x′ be b. If this is not the case then let c be an element incident
with x and such that u(a, c) = 0. Next construct an element d incident with c
such that u(x, d) = 0. The last two constructions are possible by Lemma 4.2.2.
Finally x′ will be the projection of d on z. Note that x and x′ are equidistant
due to Lemmas 4.8.1 and 4.8.2.

– d(x, z) = 4; if x and z are equidistant, we let x′ be z. Otherwise, using
Lemma 4.8.3, we can construct a path (x, a, b, c, z) such that u(x, b) ≥ u(b, z)
and u(a, c) = 0. Here we let x′ be the element b.

• n = 6 and discrete. In this case the existence is guaranteed by the discreteness and
Lemma 4.7.6. �

Corollary 4.8.15 If we reduce vV (p,l)V (L,m)V (p′,l′)V (L′,m′) to an expression of the form
vV (p′′,l′′)V (L′′,m′′), then l′′ +m′′ ≤ l +m+ l′ +m′.

Proof. All the reductions in the proof of the above lemma use Corollary 4.8.11, which
does not increase the sum of the lengths of the translations. �

Lemma 4.8.16 For each pair of valuations v, w ∈ Λ(u) there is an ordinary n-gon Ω in
Γ which is nonfolded for both v and w.

Proof. Due to the previous lemma there exists a point p and line LIp in Γ, l,m ∈ R
+

such that w = vV (p,l)V (L,m). Let Ω be an ordinary n-gon in Γ containing p and L such
that Ω is nonfolded for v (these exist because of Lemma 4.2.3). Because both p and L lie
in Ω, translations towards p and L produce valuations for which Ω remains nonfolded. In
particular this holds for w = vV (p,l)V (L,m). �
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4.8.11 Building the affine apartment system

We end by putting all the pieces together to form an affine apartment system. Let Λ(u)
be the set of points. Remember that if v ∈ Λ(u), then Λ(u) = Λ(v).

Let Ω be an ordinary n-gon of Γ. Consider the set A(Ω) of all the valuations in Λ(u)
for which this n-gon is nonfolded. Suppose that two valuations v1 and v2 are in this set.
Lemma 4.8.14 tells us that there exists a flag {p, L} in Γ and k, l ∈ R

+ such that v2 =

v
V (p,k)V (L,l)
1 . As Ω is nonfolded for both v1 and v2, Lemma 4.8.13 implies that there exists

a flag {p′, L′} in Ω such that v2 = v
V (p′,k)V (L′,l)
1 . We can conclude that all the valuations

in the set A(Ω) can be obtained out of each other by translating towards elements of Ω.
This is exactly the set of valuations which has been studied in Corollary 4.8.11. In the
reasoning before the statement of this corollary it was seen that the valuations can be
interpreted as points of A. The sector with source v ∈ Λ(u) and direction the flag {p, L}
will be the set {vV (p,k)V (L,l)|k, l ∈ R

+}.
This allows us to define a chart fΩ,v,p,L, for a v ∈ Λ(u), and Ω a nonfolded n-gon, containing
a flag {p, L} (the chart is defined such that a chosen fixed sector of A is mapped to the
sector with source v and direction {p, l}). Let F be the collection of all these charts.
Condition (A1) can now easily seen to be true.

The second condition to check is (A2). Let f = fΩ,v,p,L and f ′ = fΩ′,v′,p′,L′ be two charts
in F . Let X = f−1(f ′(A)). The points (or valuations) which are in the image of both
charts, are those valuations for which both Ω and Ω′ are nonfolded. Let v′′ be a valuation
for which this is the case (if there is not such a v′′, the condition (A2) is trivially satisfied).
Lemma 4.8.13 implies that X is star convex for f−1(v′′). Because v′′ is arbitrary in f(X),
one obtains that X is convex. That X is also closed follows from the fact that translations
change the valuations continuously.

Next thing we need to show is the existence of a w ∈W such that f |X = f ′◦w|X. Consider
both X and the similar set X ′ = f ′−1(f(A)). In order to prove the existence of such a w
we need to prove that X can be mapped onto X ′ by some w ∈W . The map φ = f ′−1 ◦ f
is bijective from X to X ′. Let x1 and x2 be elements of X. Then their images under f
are two valuations v1 and v2. Because they lie in the same apartment A(Ω), there is a flag

{q,M} in Ω and k, l ∈ R
+ such that v2 = v

V (q,k)V (M,l)
1 . But as these two valuations are

also in A(Ω′), we know by Lemma 4.8.13 that there exists a flag {q′,M ′} in Ω′ such that

v2 = v
V (q′,k)V (M ′,l)
1 . Since the lengths of the translations and the type of elements towards

the translations happen is invariant, it follows that φ is distance preserving and preserves
the type of the directions at infinity of A. This implies the existence of the needed w.

Condition (A3) is satisfied because of Lemma 4.8.16.
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Now, (A4) can be shown to be true as follows: suppose we have two sectors related to
two flags {p, L} and {q,M} of Γ. These can be embedded in an ordinary n-gon Ω. The
apartment A(Ω) contains sectors with directions {p, L} and {q,M}. This only leaves us
to prove that two sectors related to the same flag always intersect in a subsector. This last
assumption is true because if we have two ordinary n-gons Ω and Ω′ containing p and L,
it follows from Corollary 4.8.6 that there exist l,m ∈ R

+ such that for each l′ ≥ l,m′ ≥ m
the valuation uV (p,l′)V (L,m′) takes only the value zero in both Ω and Ω′. The set of these
valuations forms the desired subsector.

For (A5) we have three ordinary n-gons Ω, Ω′ and Ω′′, each pair sharing a path of length
n. From (U3) and (U4) we deduce that, if for a valuation v ∈ Λ(u) the ordinary n-gon
Ω is nonfolded, then at least one of Ω′ and Ω′′ is nonfolded for v, too. This means that
every point of A(Ω) belongs to A(Ω′) or to A(Ω′′), or to both. Since it is easy to see that
the intersection of two apartments is closed, the sets A(Ω)∩A(Ω′) and A(Ω)∩A(Ω′′) are
not disjoint, proving (A5).

It remains to prove that the ‘distance’ function d defined on pairs of valuations by (A1),
(A2) and (A3) is indeed a distance function. (For two valuations v and vV (p,k)V (L,l), the
distance between both is defined as the length of the third side of a triangle in a Euclidean
plane, where two sides have length k and l, and with the angle between both sides π/n.)
However, by re-reading the proof in [24, §1] of the equivalence of the various definitions for
affine apartment systems, one sees that the weaker inequality d(u, v) ≤ 2(d(u, w)+d(w, v))
also suffices. This inequality is a direct consequence of Corollary 4.8.15.

So we conclude that the set of points Λ(u), endowed with the set of apartments

{A(Ω) | Ω is an ordinary n-gon of Γ},

forms a 2-dimensional affine apartment system with the generalized n-gon Γ at infinity.

All that is left to show is that the construction of Main Result 4.3.1 applied to the affine
apartment system defined on Λ(u) and the point defined by the valuation u, gives us back
the valuation u on Γ. One has to prove that, if x and y are adjacent, the corresponding
sector-panels with source u share a line segment of length u(x, y). This follows from
Corollary 4.8.9 and the fact that, if x and y are adjacent, one has dt,x

r (y) = 0 if and only
if t ∈ [0, u(x, y)[.

This concludes the proof of Main Result 4.3.4.
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4.9 Proof of Application 4.4.1

Suppose we have a projective plane Γ and a real number t ∈ R
+\{0}. Also suppose we

are either given a valuation u, or two functions d and ∠ satisfying the conditions listed
in Theorem 4.4.1. Use the identities d(p, q) = t−u(p,q) and ∠L,M = arcsin(t−u(L,M)) to
reconstruct the other function(s).

It is easily seen that Condition (U2) for valuations corresponds to Condition (M2) and
the part “d(p, q) = 0 ⇔ p = q” of Condition (M1).

If we have three points p, q and r, then

u(p, q) ≥ min(u(p, r), u(r, q)) ⇔ d(p, q) ≤ max(d(p, r), d(r, q)).

The left hand side is satisfied for a valuation because of (U3) and Lemma 4.7.3; the right
hand side is satisfied for a distance because of (M1). So Condition (U3) for points on a
line is equivalent with the inequality part of (M1).

Condition (U1) for valuations is equivalent with Conditions (M3) and (M4).

Also Condition (U4) corresponds directly to the sine rule Condition (M5).

The only part that needs a closer look is how Condition (U3) for valuations follows from
Conditions (M1) up to (M5) (and the already proven Conditions (U1), (U2), (U3) for
points on a line, and (U4)). Let L, M and N be three lines through a point p. By
(U1), there exist two lines Y and Z through p such that u(Y, Z) = 0. Since (U1) and
(U3) hold for points on a line, Lemma 4.2.2 also holds. So there exist qIY and rIZ with
u(p, q) = u(p, r) = 0. We now have for the line qr that τ(p, qr) = 0 by (U4). (Note that
τ is well-defined because (U4) holds.)

Let l, m and n be the respective projections of L, M and N on the line qr . Using (U4)
we see that u(L,M) = u(l,m), u(M,N) = u(m,n) and u(L, n) = u(l, n). So Condition
(U3) for the three lines L, M and N follows directly from the same Condition (U3) for
the three points l, m and n.

4.10 A condition on the completeness of R-buildings

As we have discussed in Section 1.8.2, the completeness of the metric space formed by
an R-building allows us to apply various results for complete CAT(0)-spaces. While all
discrete R-buildings are complete, this statement is not true for arbitrary R-buildings.
With the next theorem we want to provide a tool to determine when a certain R-building
forms a complete metric space and when not.
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Main Result 4.10.1 The metric space (Λ, d) defined by an R-building (Λ,F) is complete
if and only if all of the metric spaces defined by the trees associated to its walls are
complete.

The question as to whether a certain R-tree forms a complete metric space seems an easier
question, which will hopefully be resolved for R-trees from R-buildings of dimension three
and higher, using algebraic methods.

Remark 4.10.2 This result is related to a result of Bruhat and Tits ([8]) where they use
the additional assumption that the building at infinity is Moufang.

4.11 Proof

First assume that the metric space (Λ, d) is complete, and let m be a wall of the spherical
building at infinity. Let (αn)n∈N be a Cauchy sequence in the tree T (m). The union of the
apartments of the R-building which at infinity contain m form a subset K ⊂ Λ isometric
to the direct product of the metric space formed by T (m) and R (see Section 1.8.2).

Using this subset K, we can ‘lift’ the Cauchy sequence (αn)n∈N to a Cauchy sequence
(βn)n∈N in K ⊂ Λ. As the metric space (Λ, d) is complete, this sequence converges to
some point β ∈ Λ. Our goal is to prove that the point β lies in K, implying that the
sequence (αn)n∈N converges. For this we have to prove that β lies in an apartment which
at infinity contains the wall m. Let S∞ and S ′

∞ be two opposite maximal sector-panels of
m; if we can prove that the germs of sector-panels [S]β and [S ′]β in the residue at β are still
opposite, we are done. Equivalent with this last statement is that for a shortest gallery
from a chamber C∞ containing S∞ to a chamber C ′

∞ containing S ′
∞, the corresponding

gallery from [C]β to [C ′]β always is nonstammering. As this is the case for each point of
the sequence (βn)n∈N, Corollary 4.5.6 implies that this is also the case for β. So we have
proven that the metric space defined by the R-tree T (m) is complete.

We are now left with the other direction to prove. Assume that all the metric spaces
defined by the trees corresponding to walls at infinity are complete. Let (αn)n∈N be a
Cauchy sequence in the metric space (Λ, d). Let (Λ̄, d̄) be the metric completion of (Λ, d).
In this larger metric space the Cauchy sequence (αn)n∈N does converge to some point α.
Choose some chamber C∞ at infinity and consider the sequence of sectors (Cαn)n∈N.

Lemma 4.11.1 Let Cβ and Cγ be two sectors with sources β and γ respectively, and
having the same direction C∞. Then there exists a constant k ∈ R

+ depending on the type
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of the R-building, such that there exists a point δ for which the sector Cδ is a subsector of
both Cβ and Cγ, and d(β, δ), d(γ, δ) ≤ kd(β, γ).

Proof. Embed the sector Cβ in an apartment Σ, and the sector Cγ in an apartment Σ′.
Let δ be the point of Cβ ∩ Cγ closest to β (possible because this intersection is a closed
subset of Σ due to Condition (A2)). The sector Cδ is a subsector of both Cβ and Cγ.

Let D∞ and D′
∞ be the chambers opposite C∞ in respectively Σ∞ and Σ′

∞. Note that
β ∈ Dδ and γ ∈ D′

δ. Due to the way we defined δ, we have that Dδ ∩D′
δ = {δ}. Consider

the retraction r on the apartment Σ centered at the germ of Dδ (see [24, Prop. 1.17]).
This retraction maps the sector D′

δ to some sector D′′
δ in Σ, only sharing its source δ with

the sector Dδ. As r(γ) lies in D′′
δ , it follows that there exists some constant k such that

d(β, δ), d(r(γ), δ) ≤ kd(β, r(γ)). Because the retraction does not change distances to δ,
and does not increase the other distances, this implies the desired result. �

Corollary 4.11.2 There exists a constant k′, such that for each sector Cβ, and l ∈ R
+,

there exists a point δ ∈ Cβ with d(β, δ) = k′l, such that for each point γ at distance at
most l from β, the sector Cδ is a subsector of Cγ.

Proof. All the sectors Cρ with d(ρ, β) < t, t ∈ R
+ and ρ ∈ Cβ, contain a common point τ

which lies at a distance k′′t from β, with k′′ some constant. The result then follows from
applying the above lemma. �

Using Corollary 4.11.2 one can find a sequence of points (βn)n∈N in Λ which also converges
to the point α, and such that if i < j, then the sector Cβi

is a subsector of Cβj
. In the

completion Λ̄ we obtain a subset isometric to a sector, where the ‘source’ is α (by applying
Corollaire 2.11 from [24] and its preceding text). Note that the interior (as it would be
in an apartment) lies in Λ.

Let S∞ be a sector-panel of C∞. The sequence (Sβn)n∈N forms a Cauchy sequence in the
tree T (S∞), contained in a half-line. Using the completeness of this tree, we can extend
this half-line to an apartment, and find a sector C ′

∞ such that [C]βn 6= [C ′]βn for all n ∈ N.
Regarding the limit situation in Λ̄, one obtains a subset isometric to two sectors with the
same ‘source’ α and sharing a ‘sector-panel’. Note again that the interior (as it would be
in an apartment) lies in Λ because the geodesic in Λ̄ between two points of Λ lies again
in Λ (due to the above corollary).

Repeating the algorithm one can obtain a subset K of Λ̄ isometric to a half-apartment
with α on its ‘wall’ M , and such that all points of K not in M lie in Λ. Considering the
complete wall-tree T (m) where m is the direction at infinity of the walls in K parallel to
M , we see that K has to lie completely in Λ, proving that α ∈ Λ, and completeness.
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4.12 Generalizations of R-trees related to walls and

panels at infinity

As already mentioned in Section 1.8.2, we will generalize the notion of trees associated to
walls and panels at infinity in this section.

We let (Λ,F) be an R-building with set of apartments A. Let Λ∞ be the corresponding
building at infinity with set of apartments A∞ (in one-to-one correspondence with the
elements of A). Let S∞ be a certain simplex at infinity (with a corresponding sector-facet
S); then its residue at infinity is a (possible weak) spherical building (Λ∞)S∞

.

One can repeat the two constructions from Section 1.8.2, but now replacing the sector-
panel π by the sector-facet S∞, and the wall m by the smallest convex subcomplex B of
the sector-facet S∞ and some opposite sector-facet S ′

∞ (a set in the R-building with this
subcomplex B at infinity will be referred to as a subspace).

These two constructions yield injections from R
m (where m is the rank of the residue

of S∞) into sets T (S∞) and T (B). We now claim that the following two constructions
both yield R-buildings with as building at infinity (Λ∞)S∞

, forming a generalization of
Section 1.8.2.

4.13 Proof

Before proving that these two constructions yield R-buildings we show that they are
equivalent. For this we need a few lemmas. When we use the notion of subsector-facet,
we only mean sector-facets which are subsets of the other sector-facet, and having the
same rank.

Lemma 4.13.1 Let Sα and Sβ be two sector-facets with the same direction S∞ and
sources α, β ∈ Λ. Then there exists an apartment containing subsector-facets of both.

Proof. We embed S∞ in a chamber at infinity C∞. It follows from (A4) that the two
corresponding sectors Cα and Cβ have a common subsector Cγ with source γ (note that
there is no uniqueness here). Let C ′

∞ be a chamber at infinity containing S∞ and adjacent
to C∞, and such that the germs of the sectors Cγ and C ′

γ are different, and containing
a subsector-facet of Sα (to verify the existence of such a C ′

∞, consider any apartment
containing Cα). Analogously we choose a C ′′

∞ containing a subsector-facet of Sβ , with the
additional requirement that C ′′

∞ is adjacent with C ′
∞.
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Consider the two sectors C ′
γ and C ′′

γ . Let Σ be any apartment containing C ′
γ . Because C ′′

γ

is adjacent to this sector, there exists an apartment Σ′ sharing a half-apartment with Σ
and containing C ′′

γ . There is also a third apartment Σ′′ sharing half-apartments with both
of the previous apartments. As each pair of points in the union of all three apartments
Σ, Σ′ and Σ′′, lies in at least one of these apartments (by (A5)), we have that at least one
of these apartments contains subsector-facets of both Sα and Sβ. �

Lemma 4.13.2 Let Sα be a secor-facet, and S ′
∞ a sector-facet at infinity opposite to S∞.

Then there exists a unique subspace containing both S ′
∞ at infinity and a subsector-facet

of S∞.

Proof. Let B be some minimal subspace containing both S ′
∞ and S∞ at infinity. Let β ∈ B

be a point. By the above lemma there exists an apartment Σ containing subsectors of Sα

and Sβ. In particular there exists a sector Cγ with source γ on Sβ containing a subsector
of Sα. The germ of this sector is opposite to some germ of a sector Dγ containing S ′

γ . It
is clear that the apartment defined by C∞ and D∞ contains a desired subspace. Unicity
is trivial. �

The above lemma makes clear that the sets of points of the two constructions are in
one-to-one correspondence with each other. An apartment from the second construction
(using sector-facets) is easily seen to imply an apartment in the first construction (using
subspaces). Conversely, for the first construction, one sees that all apartments containing
S∞ and a subspace in the residue of S∞ at infinity, correspond to one apartment of the
second construction, establishing a one-to-one correspondence.

We now verify (A1)-(A4) and the triangular inequality (∆ ≤) for both constructions. The
above implies that we can choose which one of both constructions to verify the condition
for.

(A1),(A2) Directly from the corresponding conditions of the original building and the second
construction.

(A3) From Lemma 4.13.1 using the first construction.

(A4) Notice that sectors in the second construction are in fact sectors of the original
building, so (A4) for the original building gives us a sector which can be seen to be
a sector of the first construction.

(A5) From the second construction and (A5) for the original building.
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(△ ≤) From the second construction and the triangular inequality for the original building.

As the conditions are all verified, we have proved that these constructions yield R-
buildings.

4.14 Subbuildings corresponding to fixbuildings at

infinity

Let (Λ,F) be some affine building with an automorphism group G acting on it, fixing at
least one point (when G is finite this is implied by the Bruhat-Tits Theorem 1.8.4). This
group G also acts on the spherical building Λ∞ at infinity. Suppose that the group G acts
type-preservingly on the spherical building Λ∞, such that the fixed simplicial complex Λ′

∞

forms a building, and such that for each fixed simplex S∞, there also exists an opposite
fixed simplex S ′

∞.

We do not demand that this new building is of the same rank as the original building.
While the fixed structure of an automorphism group G of a spherical building is in ‘most’
cases again a building, this is no longer the case for general buildings, in particular for
the fixed structure of G in the affine building Λ.

In this section, we will try to show that, despite the fact that the fixed structure is not
necessarily an affine building, in many (but not all) cases this fixed structure does contain
an affine building (Λ′,F ′) with the fixed subbuilding Λ′

∞ as spherical building at infinity.
A list of some cases where the construction works is listed at the end of the next section.

Remark 4.14.1 As one can notice from the notations used, we will consider affine build-
ings as being discrete R-buildings. It appears that the proof can be extended to the
nondiscrete case by replacing the induction argument, and considering the completion Λ̄
of the metric space (Λ, d) when it is not complete.

4.15 Proof

Let S∞ and S ′
∞ be maximal fixed and opposite simplices at infinity, and let B be the

unique apartment of Λ′
∞ containing both.
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Lemma 4.15.1 There exists at least one fixed subspace of the R-building such that the
corresponding structure at infinity is B.

Proof. By applying Lemma 4.13.2, knowing that there is at least one fixed point and
keeping in mind that if a point and some simplex at infinity is fixed, then also all the
points on the unique sector-facet with this source and direction are fixed. �

By the above lemma we know that there is at least one fixed subspace with B at infinity;
now consider all such fixed subspaces. All these subspaces form a set F of points of the R-
building T (B). As the original R-building is discrete, this R-building will also be discrete,
and because of this also complete. The set F is nonempty and bounded (because of the
maximality of S∞ and S ′

∞), and has for this reason a unique center due to Theorem 1.8.4.
With this unique center corresponds a fixed subspace of the original R-building with
B at infinity. We will call this subspace the middle fixed subspace corresponding to B.
These will form the apartments of the new R-building Λ′. Using the associated structure
at infinity, one can define charts on them such that both Conditions (A1) and (A2) are
satisfied (for proving (A2) keep in mind that the original R-building (Λ,F) satisfies (A2)).

Remark that we can perform a similar construction to obtain a center using fixed asymp-
totic classes instead of fixed subspaces (these two notions are in bijective correspondence
due to Lemma 4.13.2). If we look at things this way it follows that if two apartments
of Λ′ share a maximal fixed simplex at infinity, then the corresponding sector-facets in
both apartments are asymptotic, or equivalently, they share a subsector-facet. Condition
(A4) now follows from applying the fact that two chambers of a building lie in a common
apartment of the spherical building Λ′

∞.

The same reasoning combined with convexity shows that if two apartments of Λ′ share a
half-apartment at infinity, then the apartments themselves share a half-apartment. The
next condition we handle, and this is the part where the extra assumptions come in,
is Condition (A5). Assume that there exist three apartments of Λ′ pairwise sharing a
half-apartment, while the intersection of all three is nonempty. Such a configuration we
will call a triangle configuration. Using the generalization of the ‘trees corresponding to
walls construction’ from Section 4.12, one can obtain a triangle configuration of subspaces
isometric to the real affine line. Because the sum of the angles of a triangle in a CAT(0)-
space is less or equal than π, the triangle formed by these subspaces satisfies it too. If
vertices of the appropriate type (the residues of rank one at infinity) lie at angles strictly
more than π/3 (considering apartments as spheres), then the configuration is impossible,
and Condition (A5) has to satisfied.

The triangle inequality is trivially satisfied as it is satisfied for the original R-building.
The only condition one still has to verify is Condition (A3). Note that due to discreteness
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and the apartments we defined, the structure Λ′ is a chamber complex. Suppose C,D and
D′ are three chambers, where C and D lie in an apartment Σ of Λ′, while D′ lies in an
apartment Σ′ of Λ′. Using a lemma with a similar statement and proof as Lemma 1.8.1, it
follows easily that C and D′ lie in a common apartment of Λ′. Repeating this construction
proves (A3).

As we have proven Conditions (A1)-(A5) and the triangle inequality, the set Λ′ forms
indeed an R-building. It is easily seen that Λ′

∞ is the building at infinity of Λ′.

We end with listing some diagrams of embeddings for which we verified the aforementioned
condition on the angles (this list is not exhaustive). The diagram itself depicts the type
of the building Λ∞, the encircled nodes show how the fixbuilding Λ′

∞ is embedded. We
group these diagrams per type of the embedded building Λ′

∞.

• A1:

. . .

. . .

• A2:

• C2:

• G2:
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Bijlage A

Nederlandstalige samenvatting

A.1 Inleiding

De titel van deze thesis luidt: ‘Een studie van gebouwen van lage rang’. De theorie der
gebouwen is ontwikkeld in de vroege jaren 60 door Jacques Tits. Het doel hiervan was
om een meetkundig instrument te verschaffen om de belangrijkste klassen van enkelvou-
dige groepen te bestuderen, namelijk de enkelvoudige algebräısche groepen, de klassieke
groepen, de groepen van gemengd type en de Frobenius-gedraaide Chevalley groepen.

Waarom nu van lage rang? Jacques Tits bewees twee belangrijke classificaties van be-
paalde klassen van gebouwen. Die van de sferische gebouwen van rang minstens 3 in 1974
([44]), en die van de affiene gebouwen van rang minstens 4 in 1986 ([47]). Als men echter
de sferische gebouwen van rang 2 en de affiene gebouwen van rang 3 bekijkt, dan is een
classificatie onmogelijk. Deze gevallen verliezen hierdoor echter niet hun belangrijkheid,
omdat ze nog steeds sterke meetkundige eigenschappen hebben en door de extra vrijheid
een veel rijker gedrag vertonen.

Wij hebben verscheidene karakteriseringen en constructies van zulke gebouwen van lage
rang bekomen - deze zijn terug te vinden in Sectie A.2.

A.1.1 Simpliciale complexen

Een simpliciaal complex S gedefinieerd op een verzameling X is een verzameling van
deelverzamelingen van X zodanig dat als een bepaalde deelverzameling een element is
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van S, dan ook elke deelverzameling ervan. De elementen van X noemt men de punten,
die van S de simplexen.

Een maximaal simplex is een simplex niet bevat in een groter simplex. Twee maximale
simplexen zijn adjacent als hun doorsnede een simplex is met één punt minder dan de 2
maximale simplexen.

Een simpliciaal complex noemt men een kamercomplex als men elke twee maximale sim-
plexen kan verbinden met een keten van adjacente maximale simplexen. De maximale
simplexen noemt men in dit geval kamers. Deze definitie impliceert ook dat elke twee
kamers even groot zijn. De panelen zijn dan de op één na grootste simplexen.

Een kamercomplex noemt men dun als elk paneel in juist twee kamers ligt, en dik als het
altijd in minstens drie kamers ligt.

A.1.2 Gebouwen

Gebouwen zijn de dikke kamercomplexen S waarvoor er een verzameling A van dunne
deel-kamercomplexen bestaat (appartementen genoemd), zodat aan volgende twee voor-
waarden voldaan is.

• Elke twee kamers liggen in een appartement.

• Voor elke twee appartementen A en B bestaat er een isomorfisme van A naar B dat
de doorsnede elementsgewijs vasthoudt.

De orde van de kamers noemt de rang van het gebouw.

A.1.3 Interessante gevallen

Rang 1

Een rang 1 gebouw is een verzameling punten X (|X| ≥ 3) waarbij de appartementen
de puntenparen zijn. Om deze gevallen meer structuur en betekenis te geven, definieert
men Moufangverzamelingen. Hierbij veronderstelt men voor elk element x ∈ X een groep
(de wortelgroep genaamd) die regulier werkt op de overige punten van X. Ook eist men
dat de groep G† (de kleine projectieve groep) voortgebracht door alle wortelgroepen de
verzameling van alle wortelgroepen normaliseert.
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Rang 2

De rang twee gevallen kan men opsplitsen in twee categorieën. De eerste categorie is
waar de appartementen oneindig zijn; deze gebouwen komen overeen met de boomgrafen
zonder eindpunten, en waarbij elke top minstens 3 buren heeft. De appartmenten zijn
hier oneindige lijngrafen.

De tweede categorie (met eindige appartementen) komt overeen met de bipartiete grafen
met maximale afstand n en minimale cykels van lengte 2n. Meestal kiest men één van
deze verzamelingen en associeert men daarmee punten, met de andere rechten, en men
zegt dat een punt en een rechte incident zijn als de bijhorende toppen adjacent zijn.
Op deze manier bekomt men een (rang 2) meetkunde die men een veralgemeende n-hoek
noemt (meestal kortweg n-hoek als er geen verwarring kan optreden). De appartementen
komen in de graaf overeen met 2n-hoeken, en in de veralgemeende n-hoek met n-hoeken
(wat de naamgeving verklaart).

Een dualiteit van een veralgemeende veelhoek is een automorfisme van het bijhorende
gebouw dat punten op rechten afbeeldt en vice versa. Men noemt een dualiteit een
polariteit als ze van orde 2 is. Een punt (rechte) van de veralgemeende veelhoek is absoluut
als het (ze) incident is met zijn (haar) beeld.

Sferische gebouwen

Sferische gebouwen zijn gebouwen waarbij de appartementen eindige kamercomplexen
zijn. De naam komt van het feit dat men in dit geval de appartementen kan opvatten
als betegelingen van sferen. De mogelijke appartementen kan men classificeren als volgt
(zonder verder te specificeren wat de diagrammen betekenen):

• An: . . . (n ≥ 1)

• Cn: . . . (n ≥ 2)

• Dn: . . . (n ≥ 4)

• En: . . . (n = 6, 7, 8)
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• F4:

• I2(m):
m

(m ≥ 5)

De sferische gebouwen van rang minstens 3 zijn geclassificeerd door Jacques Tits ([44]).
Men kan aantonen dat ze Moufang zijn (wat een bepaalde groep-theoretische voorwaarde
is). Ruwweg komen ze overeen met de volgende groepen:

• klassieke groepen,

• algebräısche groepen,

• gemengde groepen.

Voor sferische gebouwen van rang 2 (de veralgemeende veelhoeken) bestaan er zogenaamde
vrije constructies waardoor een classificatie onmogelijk is.

De gebouwen van type An corresponderen met n-dimensionale projectieve ruimtes.

Affiene gebouwen

Affiene gebouwen zijn gebouwen waarbij de appartementen betegelingen zijn van affiene
Euclidische ruimtes. De dimensie van de affiene ruimte is de rang van het gebouw min
1. Ook hier kan men de appartementen classificeren (opnieuw zonder er dieper op in te
gaan):

• Ã1:
∞

• Ãn: . . . (n ≥ 2)

• B̃n: . . . (n ≥ 3)

• C̃n: . . . (n ≥ 2)

• D̃n: . . . (n ≥ 4)
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• Ẽ6:

• Ẽ7:

• Ẽ8:

• F̃4:

• G̃2:
6

Met een affien gebouw kan men een zogenaamd gebouw op oneindig associëren, en dit is
dan een sferisch gebouw waarbij de rang 1 lager is dan de rang van het oorspronkelijk
gebouw. Gebruik makende van deze constructie en de classificatie van de sferische ge-
bouwen van rang minstens 3, kon Jacques Tits de affiene gebouwen van rang minstens 4
classificeren ([47]).

Deze classificatie was niet beperkt tot de affiene gebouwen, maar omvatte ook de R-
gebouwen met dimensie minstens 3, die niet-discrete veralgemeningen zijn van affiene
gebouwen. Deze structuren hebben ook affiene ruimtes als appartementen, en tevens een
sferisch gebouw op oneindig.

Voor het rang 3 (of equivalent dimensie 2) geval bestaan opnieuw vrije constructies (door
Mark Ronan [27]), en is classificatie dus uitgesloten.

De rang 2 gevallen komen overeen met de bomen uit de voorgaande sectie. De 1-
dimensionale R-gebouwen zijn de zogenaamde R-bomen, die niet-discrete veralgemeningen
zijn van bomen.

A.2 Resultaten

De resultaten kan men ruwweg opdelen in drie categorieën.
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A.2.1 Rang 1: Moufangverzamelingen

Merk op dat de definitie van een Moufangverzameling een puur groep-theoretische definitie
is, in tegenstelling tot de definitie van gebouwen. Als de wortelgroepen niet commutatief
zijn, kan men echter toch een rang k meetkunde definiëren op de punten van de Mouf-
angverzameling, waarbij k de nilpotentieklasse is van de wortelgroepen. De fundamentele
vraag is dan: is de automorfismegroep van de Moufangverzameling gelijk aan die van de
meetkunde?

In dit hoofdstuk bestuderen we de Ree-Tits Moufangverzamelingen. De punten van zo een
Moufangverzameling zijn de absolute punten van een polariteit van de Ree zeshoek. De
wortelgroepen zijn van nilpotentie klasse 3, wat zeldzaam is want op één andere, recent
ontdekte, klasse ([23]) na, zijn de wortelgroepen van alle andere gekende Moufangverza-
melingen van lagere nilpotentieklasse.

Men bekomt dus voor Ree-Tits Moufangverzamelingen rang 3 meetkundes, Ree meetkun-
des genaamd, waarvan we de elementen punten, cirkels en sferen noemen. We zijn er in
geslaagd aan te tonen dat de automorfismegroep van deze meetkunde (en van deelmeet-
kundes waarbij men enkel punten en cirkels, of punten en sferen beschouwt), inderdaad
de automorfismegroep van de Moufangverzameling is.

Een interessant gevolg hiervan is dat als een automorfisme van de Ree zeshoek de absolute
punten stabiliseert, ook de absolute rechten gestabiliseerd worden.

Deze resultaten zijn bekomen in samenwerking met Fabienne Haot en Hendrik Van Mal-
deghem.

A.2.2 Rang 2: Veralgemeende vierhoeken

Gemengde vierhoeken. — Een paar niet-collineaire punten p en q van een veralge-
meende vierhoek noemt men regulier, als voor elk punt r dat collineair is met twee punten
die beide collineair zijn met zowel p en q, alle punten collineair met zowel p en q ook
collineair zijn met r. Een punt p is regulier als alle mogelijke niet-collineaire puntenparen
met p erin regulier zijn. Met een regulier punt kan men een bepaalde meetkunde - een
duaal net - associëren. Analoog definieert men reguliere rechten.

Eén bepaalde klasse van Moufang veralgemeende vierhoeken is de klasse van gemengde
vierhoeken. Dit zijn de enige gekende vierhoeken waarvan alle punten en rechten regulier
zijn. Men vermoedt dat deze de enige zijn.
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Wij bewezen een zwakkere versie van dit vermoeden. Ruwweg tonen we aan dat als een
veralgemeende vierhoek ‘genoeg’ reguliere punten en rechten bevat, en als de duale netten
corresponderend met de reguliere punten voldoen aan het Axioma van Veblen en Young
(een rechte die twee zijden van een driehoek snijdt, maar niet in een hoekpunt, snijdt ook
de derde zijde) de vierhoek een gemengde vierhoek is.

Deze resultaten en die uit de volgende paragraaf zijn bekomen in samenwerking met Van
Maldeghem.

Veralgemeende Suzuki-Tits inversieve vlakken. — Bepaalde gemengde vierhoe-
ken laten polariteiten toe. De absolute punten hiervan kan men opnieuw opvatten als een
Moufangverzameling, en de bijhorende meetkundes noemt men veralgemeende Suzuki-Tits
inversieve vlakken. Als een toepassing op de karakterisering van gemengde vierhoeken
hebben we een karakterisering voor (perfecte) Suzuki-Tits inversieve vlakken van Hen-
drik Van Maldeghem ([61]) uitgebreid naar het niet-perfecte geval, en de oorspronkelijke
karakterisering voor het perfecte geval vereenvoudigd.

Inbeddingen van veralgemeende vierhoeken in gebouwen van type F4. — De
eerste voorbeelden van veralgemeende veelhoeken onstonden bijna allemaal als inbeddin-
gen in projectieve ruimtes (die corresponderen met gebouwen van type An). Hierbij zijn
de punten van de veelhoek punten van de projectieve ruimte, en de rechten van de veel-
hoek rechten van de projectieve ruimte waarbij de incidentie de natuurlijke is. Als deze
inbedding aan bepaalde ‘mooie’ voorwaarden voldoet (bv. alle rechten van de veelhoek
door een punt liggen in een bepaalde deelruimte), dan erft de veralgemeende veelhoek
symmetrie-eigenschappen over van de projectieve ruimte, waardoor men classificaties en
karakteriseringen van bepaalde Moufangvierhoeken kan opstellen.

Echter niet alle Moufang veralgemeende veelhoeken kan men ‘mooi’ inbedden in een pro-
jectieve ruimte. Bijvoorbeeld de zogenaamde exceptionele veralgemeende vierhoek van
type F4 is niet op deze manier inbedbaar in een projectieve ruimte, maar wel in een ge-
bouw van type F4. Deze gebouwen kan men opvatten als rang 4 meetkundes van punten,
rechten, vlakken en hyperrechten, metasymplectische ruimtes genoemd. De vierhoeken
kan men dan inbedden door middel van punten en hyperrechten. Ook bv. de gemengde
vierhoeken kan men op deze manier inbedden.

Wij hebben aangetoond dat als een veralgemeende vierhoek ingebed is in een metasym-
plectische ruimte door middel van punten en hyperrechten, waarbij twee punten op de-
zelfde rechte in de vierhoek nooit op één rechte liggen van de metasymplectische ruimte,
dan ofwel de vierhoek Moufang is, ofwel dat de inbedding ‘ontaard’ is.
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A.2.3 Rang 3: 2-Dimensionale R-gebouwen

Veelhoeken met valuatie. — Zoals reeds vermeld hebben affiene gebouwen (en hun
veralgemening als R-gebouwen) een sferisch gebouw op oneindig. Als de rang van dit
gebouw op oneindig minstens drie is kan men het gebouw op oneindig en het affien gebouw
(of R-gebouw) zelf classificeren. Als de rang van het gebouw op oneindig echter 2 is (dus
een veralgemeende veelhoek), is een classificatie onmogelijk.

Men kan zich wel afvragen welke veralgemeende veelhoeken gebouwen op oneindig zijn van
een R-gebouw. Hendrik Van Maldeghem voerde voor dit doel veralgemeende veelhoeken
met (discrete) valuatie in ([55]), en bewees dat een veralgemeende n-hoek met n ∈ {3, 4}
een discrete valuatie toelaat als en slechts als de veelhoek het gebouw op oneindig is van
een (discreet) affien gebouw van type Ã2 of type C̃2.

Wij hebben de definitie van veelhoek met valuatie uitgebreid naar het niet-discrete geval,
als volgt:

Zij Γ = (P, L, I) een veralgemeende n-hoek met punten P , rechten L en incidentie I, en
zij u een functie, de valuatie genaamd, werkend op de paren collineaire punten en paren
snijdende rechten, waarbij de beelden in R

+ ∪ {∞} liggen. Dan noemen we (Γ, u) een n-
hoek met (niet-discrete) valuatie en gewichtreeks (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1) ∈
(R+)2n−2 als de volgende condities voldaan zijn.

(U1) Op elke rechte ligt er een paar punten p en q zodat u(p, q) = 0, en analoog voor
rechten door een punt.

(U2) u(x, y) = ∞ als en slechts als x = y.

(U3) u(x, y) < u(y, z) impliceert dat u(x, z) = u(x, y) als x, y en z collineaire punten of
snijdende rechten zijn.

(U4) Telkens als x0Ix1Ix2I . . . Ix2n = x0, met xi ∈ P ∪ L, heeft men:

n−1∑

i=1

aiu(xi−1, xi+1) =
2n−1∑

i=n+1

aiu(xi−1, xi+1).

Wij zijn er in geslaagd aan te tonen dat enerzijds de veelhoek op oneindig van een 2-
dimensionaal gebouw altijd een veelhoek met valuatie is, en anderzijds dat een n-hoek
(met n = 3, 4) met valuatie het gebouw op oneindig is van een 2-dimensionaal gebouw.

Het resterende discrete geval, zeshoeken met discrete valuatie en gebouwen van type G̃2,
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hebben we ook opgelost. Tevens is aangetoond dat er voor elke n maar één mogelijke
gewichtreeks is (op veelvouden en valuaties die overal waarde nul hebben na).

Als toepassing van deze karakterisering hebben we verscheidene veelhoeken met valuatie
(en dus ook de bijhorende R-gebouwen) geconstrueerd.

Deze resultaten zijn bekomen in samenwerking met Hendrik Van Maldeghem.

Volledigheid van R-gebouwen. — Een metrische ruimte noemt men volledig als elke
Cauchyrij convergeert. Net zoals we een appartement van een R-gebouw kunnen opvatten
als een affiene Euclidische ruimte, kunnen we een R-gebouw opvatten als een metrische
ruimte bestaande uit aan elkaar gevoegde affiene Euclidische ruimtes. Als deze metrische
ruimte volledig is, dan zijn er bepaalde resultaten van toepassing, bv. de Bruhat-Tits
fixpuntstelling. Een (discreet) affien gebouw levert altijd een volledige metrische ruimte
op, een niet-discreet R-gebouw niet altijd.

Het doel is nu na te gaan welke R-gebouwen precies volledig zijn. In deze thesis nemen
we een stap in de richting van een antwoord. We herleiden de vraag tot de vraag wel-
ke R-bomen er volledig zijn. Deze nieuwe vraag hopen we dan algebräısch te kunnen
beantwoorden.

Deelgebouwen van R-gebouwen corresponderende met fixgebouwen op onein-
dig. — Als een groep werkt op een sferisch gebouw, dan is in de meeste gevallen de
fixstructuur opnieuw een (sferisch) gebouw. Voor algemene gebouwen (en dus ook affiene
gebouwen) geldt dit niet.

Veronderstel dat een groep G op een affien gebouw Λ werkt; alhoewel de fixstructuur van
G in Λ niet noodzakelijk terug een gebouw is, is de fixstructuur in het sferisch gebouw
Λ∞ op oneindig dit meestal wel. Wij bewezen nu dat de fixstructuur in het R-gebouw
in bepaalde gevallen wel een deelgebouw bevat met de fixstructuur in Λ∞ als gebouw op
oneindig.

Deze resultaten zijn bekomen in samenwerking met Hendrik Van Maldeghem.



148 Nederlandstalige samenvatting



Bibliography

[1] P. Abramenko and K. Brown, Buildings: Theory and applications, Springer, 2008.

[2] P. Abramenko and M.A. Ronan, A characterization of twin buildings by twin apart-
ments, Geom. Dedicata 73 (1998), no. 1, 1–9.

[3] R. Alperin and H. Bass, Length functions of group actions on Λ-trees, In Combina-
torial group theory and topology (Alta, Utah, 1984), volume 111 of Ann. of Math.
Stud., pp. 265–378. Princeton Univ. Press, Princeton, NJ, 1987.

[4] C. D. Bennett, Affine Λ-buildings I, Proc. London Math. Soc., 68 (3) (1994), 541-576.

[5] C. D. Bennett, Twin trees and λΛ-gons, Trans. Amer. Math. Soc. 349 (1997), no. 5,
2069–2084.

[6] A. Berenstein and M. Kapovich, Affine buildings for dihedral groups, manuscript.

[7] A. Beutelspacher, 21 − 6 = 15: A connection between two distinguished geometries,
American Math. Monthly 93 (1986), no. 1, 29–41.
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[21] B. Mühlherr and H. Van Maldeghem, Exceptional Moufang quadrangles of type F4,
Canad. J. Math. 51 (1999), 347–371
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