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Preface

As one can see, the title of this thesis is: `A study of buildings of low rank'. The theory
of buildings is developed in the early '60s by Jacques Tits. The aim was to study various
important classes of simple groups, such as the simple algebraic groups, classical groups,
groups of mixed type and Frobenius-twisted Chevalley groups in a geometric way.

Why of low rank? Jacques Tits proved two important classi�cations for certain classes of
buildings. One for spherical buildings of rank at least 3 in 1974 ([44]), and one for a�ne
buildings of rank at least 4 in 1986 ([47]). The spherical buildings of rank 2 and a�ne
buildings of rank 3 cannot be classi�ed. However these casesdo not lose their importance
because of this, because they still have strong geometric properties and have a much richer
behaviour.

We have obtained various characterizations and constructions of such buildings of low
rank. One can �nd the results explained in more detail at the beginning of Chapters 2, 3
and 4.

I want to end this preface with some words of thanks. First of all, I would like to thank
my supervisor Hendrik Van Maldeghem. He suggested me lots ofinteresting mathemat-
ical problems, while at the same time he gave me the freedom towork on problems I
liked. Another person who deserves special thanks is my co-supervisor Koen Thas for his
interest in my activities, the many mathematical discussions, reading my manuscripts,
and improving my mathematical writing skills. For other non-mathematical things he
was a great help and friend too the past years.

I also thank my family, my friends and my colleagues for pleasant times on many occasions.
I especially give thanks to my parents for supporting me in what I am doing, and Jeroen
Schillewaert, whom I shared an o�ce with during the last three years, for being a great
friend and providing a healthy competition in many areas.

Finally, I acknowledge the Fund for Scienti�c Research - Flanders (FWO - Vlaanderen)
for �nancial support and making this Ph.D. possible.
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Chapter 1

Preliminaries

In this �rst chapter, we de�ne buildings and additional concepts needed in the later
chapters.

1.1 Simplicial complexes

The �rst thing we will de�ne are simplicial complexes, whichis the kind of object buildings
are.

1.1.1 De�nitions

A simplicial complexS on a setX is a set of �nite subsets ofX such that for each subset
x 2 S and y � x, we also have thaty 2 S. We also ask that each singleton ofX is in S.
The elements ofX are called thevertices, the elements ofS are called simplices. We will
always assume that the order of simplices is bounded.

A maximal simplexof a simplicial complexS on X , is a simplex ofS not contained in a
larger simplex. Two maximal simplices of the same order are called adjacent if they share
a simplex of order one less.

A type function of a symplicial complexS on X , is a function t from X to some setI ,
such that no two di�erent elements which have the same image under t can be in the same
simplex. The image undert of an element (set) is called thetype of that element (set).
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A morphism from a simplicial complexS on X to a simplicial complex S0 on X 0 is a
map � from X to X 0 which maps simplices inS to simplices inS0. A morphism � is an
isomorphism if there exists a morphism� 0 from the simplicial complexS0 on X 0 to the
simplicial complex S on X , such that � 0 � � is the identity on X . An automorphism is
an isomorphism from a simplicial complex to itself. The automorphisms of a simplicial
complex form a group: theautomorphism groupof the simplicial complex.

1.1.2 Chamber complexes

A simplicial complex is achamber complexif for each two maximal simplicesC and D
there is a sequence (C0 = C; C1; : : : ; Ci = D) of maximal simplices, such that each two
subsequent maximal simplices are adjacent. In this case themaximal simplices are called
chambers. Note that this implies that all the chambers have the same order. The simplices
of order one less than the chambers are calledpanels.

A chamber complex isthin if each panel is in exactly two chambers. It isthick if each
panel lies in at least 3 chambers.

1.1.3 Convexity

A gallery in a chamber complex is a sequence of chambers (C0; C1; : : : ; Ci ), such that each
two subsequent chambers share at least a panel. Thelength of a gallery is the number of
chambers in the sequence minus one. Thedistancebetween two chambers is the minimal
length of a gallery between the two chambers.

The product projB A of a simplexA with a simplex B (the order of the simplices matter,
so projB A is not equal projA B), is the intersection of all the last chambers in galleries
of minimal length, starting with a chamber containingA, and ending with a chamber
containing B. (The minimal length considered here is the minimal length over all such
possible chambers.)

A sub simplicial complexS0 of a simplicial complexS is convex, if for every two simplices
A and B in S0, the product of A with B is again inS0.

Remark 1.1.1 The notion of product (which can be found in [1]) is also knownas the
`projection' of the simplex A on B. However, we will not use this since it can lead to
confusion with the notion of projection for generalized polygons (see Section 1.6.2).
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1.2 Geometries

A pre incidence geometryis a tuple (X; � ; tp; I ), where X is called the set ofelements,
� the set of types, tp is a surjective map fromX to �, and I the incidence relation,
consisting of (unordered) pairs of elements inX such that no such pair has the same
image under the type function.

The function tp is called thetype function. The type of an element is its image under the
type function. Two elements are calledincident if the pair they de�ne is an element of
the incidence relation (instead off x; yg 2 I , we will use the notationxI y). A ag is a
set of elements such that each two (di�erent) elements in theset are incident. It is easily
seen that the set of all ags forms a simplicial complex (called the ag complex) with a
type function on the set of elements. Therank of a pre incidence geometry is the order
of the set of types.

The type tp( F ) of a ag F is the set of types of its elements. A pre incidence geometry
is an incidence geometryif each maximal ag has type �. A residue of a ag F is the
geometry obtained by restricting the elements to those distinct of F and incident with all
elements ofF .

A morphism (�;  ) of one incidence geometry (X; � ; tp; ; I ) to another (X 0; � 0; tp0; I 0)
consists of two maps� : X ! X 0 and  : � ! � 0 such that for all x; y 2 X it holds that
tp0(� (x)) =  (tp( x)) and xI y ) � (x)I 0� (y). Isomorphisms and automorphisms are then
de�ned in the usual way.

In most cases we will give the di�erent types speci�c names - such as: points, blocks,
lines, planes, circles, spheres . . . In addition we will adopt common linguistic expressions
such aspoints lie on a line, lines go through pointsto describe incidence. Points on a
block (or line) will be calledcollinear, blocks (or lines) through a pointconcurrent. If two
elements are collinear or concurrent, then we say they areadjacent. If for two adjacent
elementsx and y there exists a uniquez such that xI zI y, then we will denotez by xy.

Further elaborating this point of view, one often denotes a rank 2 incidence geometry as
(P; L ; I ), where P (called the points) together with L (called lines, blocks . . . ) form the
elements, subdivided by type.
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1.3 Coxeter complexes

1.3.1 Coxeter matrices, groups, systems and diagrams

A Coxeter matrix is an n � n-matrix M such that mii = 1 for i 2 f 1; : : : ; ng and mij =
mj i 2 f 2; 3; : : : ; + 1g for i; j 2 f 1; : : : ; ng and i 6= j .

The Coxeter group arising from this matrix M is the group W with generators S =
f s1; : : : ; sng and relations (si sj )m ij = e, with e the identity element of W. The Coxeter
systemis the group together with the set of generators: (W; S). Note that the elements
in S are involutions.

Remark 1.3.1 It is possible that Coxeter systems with a di�erent number ofgenerators
still give rise to isomorphic Coxeter groups. The followingtwo Coxeter matrices are
examples of this: 0

@
1 3 2
3 1 2
2 3 1

1

A and
�

1 6
6 1

�
: (1.1)

Most often, instead of using a Coxeter matrix to de�ne things, one uses aCoxeter diagram.
This diagram consists ofn vertices, one for each generator inS. If for two di�erent
generatorssi and sj it holds that mij = 2, then there is nothing drawn between the
associated vertices; ifmij = 3, then one draws a single edge, ifmij = 4, a double edge. If
mij > 4 one draws an edge and labels it withmij .

The Coxeter system isirreducible if this diagram is connected, andreducible if it is not.
We will always assume that a Coxeter system is irreducible. The reducible cases can be
viewed as direct products of irreducible cases.

Remark 1.3.2 In the literature triple edges are sometimes used formij = 5, but also
sometimes formij = 6 (in the context of Lie algebras). In order to avoid confusion, we
will not use triple edges.

1.3.2 Coxeter complexes

Let J be a subset off 1; : : : ; ng; the generatorssj with j 2 J generate a sub Coxeter
group WJ . One now obtains a simplicial complex (called theCoxeter complexmodeled
on (W; S)) in the following way.
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� The set of vertices consists of all left cosets of sub Coxetergroups WJ with jJ j =
jSj � 1.

� The set of simplices consists of all left cosets of sub Coxeter groups WJ with J �
f 1; : : : ; ng. A vertex lies in a simplex if the coset associated with the simplex is a
subset of the coset associated with the vertex.

The Coxeter complex forms a thin chamber complex with as chambers the left cosets of
the trivial subgroup f eg. So the chambers correspond to the elements ofW. The group
W (with left action) forms an automorphism group of this Coxeter complex.

Spherical Coxeter complexes

A spherical Coxeter complexis a Coxeter complex which is �nite. If this is the case, the
associated Coxeter groupW can be realized as a�nite reection group of a real vector
spaceV, which is a �nite group generated by reections de�ned by hyperplanes of the
vector space of dimensionjSj (a hyperplane of a vector space contains the zero vector by
de�nition). In addition, the generators S of the Coxeter groupW will correspond to the
generating reections of the �nite reection group.

The hyperplanes corresponding to the generators inS and their conjugates inW, will
subdivide V in cones corresponding to the chambers of the Coxeter complex (see Sec-
tion 1.8.2 for more details). If we consider the intersection of these cones with the unit
sphere inV, one gets a tesselation of the sphere, whence the name `spherical Coxeter
complex'.

The (irreducible) spherical Coxeter diagrams corresponding to spherical Coxeter com-
plexes have been classi�ed:

� An : : : : (n � 1)

� Cn : : : : (n � 2)

� Dn : : : : (n � 4)

� En : : : : (n = 6; 7; 8)
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� F4:

� H3: 5

� H4: 5

� I2(m): m (m � 5)

The subscript n denotes the number of nodes in the diagram. The caseCn is sometimes
denoted asBn , the caseI2(6) often as G2. This di�erence in notation stems from the
theory of (crystallographic) root systems, where these di�erent notations correspond to
essentially di�erent (crystallographic) root systems. However, the Coxeter systems de�ned
by the root systems do not exhibit this di�erence.

An important notion for spherical Coxeter complexes is opposition. Let (W; S) be a
spherical Coxeter system. The �nite groupW has a unique `longest' group elementw0

(longest in terms of shortest representation as word with letters the generatorsS). This
element is an involution and is called theopposition involution. The induced action as
an automorphism of the corresponding spherical Coxeter simplex can be interpreted as
the point reection across the centre of the sphere formed bythe complex. Two simplices
of a spherical Coxeter are said to beopposite if they are interchanged by the opposition
involution.

A�ne Coxeter complexes

A second interesting class of Coxeter complexes are thea�ne Coxeter complexes. These
are not �nite, but the associated Coxeter group contains a normal abelian subgroup such
that the corresponding quotient group is �nite.

The Coxeter groupW associated to the a�ne Coxeter complex can again be realizedas a
group acting on a real a�ne space of dimensionjSj � 1 generated by reections, but this
time not all the associated hyperplanes share the same point. Because of this we now get
a tesselation of the a�ne space instead. The normal abelian subgroup of which we spoke
in the previous paragraph is formed by the elements ofW corresponding to translations
of the a�ne space.

The (a�ne) Coxeter diagrams corresponding to a�ne Coxeter complexes also have been
classi�ed:
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� eA1: 1

� eAn : : : : (n � 2)

� eBn : : : : (n � 3)

� eCn : : : : (n � 2)

� eDn : : : : (n � 4)

� eE6:

� eE7:

� eE8:

� eF4:

� eG2:
6

The subscript n denotes the number of nodes minus one.

1.3.3 Adjacency and roots

Suppose we have again a Coxeter complex modeled on (W; S), and that we have two
chambersC and D sharing a panel. These two chambers correspond to two elements
gC and gD in W. As they share a panel they are in the left coset of a subgroupf e; si g
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for somei . So gD = gCsi . We then say that these two chambers arei -adjacent. The
involutory automorphism gCsi gC

� 1 maps the chambersC and D to each other.

Now consider the setR of all chambers for which the distance to the chamberC is strictly
less than the distance toD. Analogously de�neR0 as the set of chambers closer toD than
to C. These two sets partition the set of chambers in the Coxeter complex. The union of
all the chambers in such a set forms a convex subcomplex of theCoxeter complex, which
we shall call aroot. Note that gCsi gC

� 1 maps the roots to each other. The simplicial
subcomplex �xed by this mapping is called thewall of the root.

1.4 Buildings

A weak buildingis a simplicial complex �, with a set A of subcomplexes calledapartments,
such that:

(B0) Each apartment is a Coxeter complex.

(B1) Each two simplices of � are contained in an apartment.

(B2) If two apartments � and � 0 share two simplicesA and B, then there exists an
isomorphism from � to � 0 �xing the vertices in A and B.

A weak building is a chamber complex; if it is thick, we call ita building. We will always
assume that the Coxeter complex is irreducible - the reducible cases can be thought of
as direct products of irreducible buildings. Theroots of the building are the roots of its
apartments. The type of the Coxeter complexes formed by the apartments, will be called
the type of the building.

One can prove that (weak) buildings are ag complexes of (unique) geometries of rankjSj.
The types of the elements of this geometry (or equivalently the vertices of the simplicial
complex) correspond to the nodes of the diagram.

Remark 1.4.1 If we only would want to de�ne buildings, then due to the thickness
condition one can signi�cantly weaken condition (B0) and only ask that the apartments
are thin chamber complexes.

The notionsmorphism, isomorphismand automorphismfor buildings are the same for the
associated simplicial complex, but with the added condition that apartments are mapped
to apartments.
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1.5 Galleries in buildings

In Section 1.1.3 we de�ned galleries in chamber complexes. Since buildings are chamber
complexes, galleries of chambers in buildings are also de�ned. Note that because of
Axioms [B1] and [B2] of buildings, the notion ofi -adjacencycan be extended to chambers
in the building, and sharing a panel.

Combining this, one can associate a word with letters the generators S of the Coxeter
system (W; S), by concatenating for each two subsequent chambers in the galleries the
generatorsi , if those two chambers arei -adjacent. This word can also be interpreted as
a group element ofW.

The following lemma is well-known in the theory of buildings(see for example [28, p.
28]):

Lemma 1.5.1 A gallery between two chambers has the shortest length possible between
those two chambers, if and only if the associated word has no shorter representation in
the Coxeter groupW.

Also one can prove that this word viewed as group element ofW does not depend on
which gallery between the two chambers is considered. This provides some sort of distance
function between chambers, theWeyl distance.

Remark 1.5.2 There is another way to de�ne buildings, where one of the axioms is
exactly the above lemma. In fact, [28] uses this approach, and then shows equivalence
with the de�nition we used.

1.6 Some interesting cases

There are many types of buildings, in this section we look at some interesting cases.

1.6.1 Rank one

Here the building is just a set, the chambers are the elements, and the apartments all the
pairs of elements. On its own this is not an interesting case,but it becomes interesting
and useful if we add some Moufang-like condition, see Section 1.8.1.
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1.6.2 Rank two

Here the Coxeter group is a (�nite or in�nite) dihedral group of order 2m12.

First suppose we are in the �nite case, and that we have a dihedral group of order 2n.
Then the Coxeter complexes are ag complexes of ordinaryn-gons. The buildings are the
ag complexes of geometries called `generalized polygons'(we will often omit `generalized'
if the context is clear).

A generalizedn-gon (n 2 N, n � 2) � = ( P; L ; I ) is a rank 2 geometry consisting of a
point set P, a line set L (with P \ L = ; ), and incidence relation I betweenP and L
satisfying the following axioms.

(GP1) Every element is incident with at least three other elements.

(GP2) For every pair of elementsx; y 2 P [L , there exists a sequencex0 = x; x1; : : : ; xk� 1;
xk = y, with x i � 1I x i for 1 � i � k and with k � n.

(GP3) The sequence in (GP2) is unique wheneverk < n .

Note that this de�nition is self-dual; it is invariant under interchanging the notions point
and line. If we weaken Axiom (GP1) to `at least two other elements', then we call the
geometry aweak generalizedn-gon.

A path of a generalized polygon is a sequence of elements,such thateach two subsequent
elements are incident. Thelength of such a path and thedistanced between two elements
(not chambers) are now de�ned in a similar fashion as for galleries in Section 1.1.3. A
path is closedif the last element of the sequence equals the �rst, and isnonstammering
if each for each element of the sequence, the two neighbours are di�erent.

Two elements at maximal distancen are said to beopposite. If two elements are not
opposite, then the unique element incident withy closest tox is the projection of x on y.

The apartments correspond to the nonstammering closed paths of length 2n, i.e. the
ordinary n-gons in the geometry. The stammering closed paths of length2n will be called
degenerate apartments.

A generalized 3-gon is the same as a projective plane. Below are the smallest building of
type A2 (the ag complex of the projective planePG(2; 2)), and the smallest building of
type B2 (the ag complex of the symplectic quadrangle2).
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Now suppose we are in the in�nite case. In this case the Coxeter diagram of the building
is of type eA1, and the buildings are the trees without endpoints, and suchthat each vertex
has at least three neighbours. The smallest such building isshown below.

Collineations and dualities

We now take a closer look at the automorphisms of the spherical rank 2 buildings and
the corresponding generalized polygons. These break down in two classes,collineations,
which map points to points and lines to lines, anddualities, which map points to lines
and lines to points, both preserving incidence.

A duality from a polygon to itself of order 2 is called apolarity. An absoluteelement of
a polarity of a generalized polygon is an element incident with the image of that element
under the polarity.

The set of absolute points of a polarity of a 2n-gon forms anovoid of the 2n-gon, which is
a setO of mutually opposite points, such that every element of the 2n-gon lies at distance
at most n from a certain element ofO.
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1.6.3 Spherical buildings

Spherical buildings are buildings with spherical (and so �nite) Coxeter complexes. Let �
be a such a building and� a root of it. The root group U� is the set of all automorphisms
of the building which �xes � and all chambers sharing a panel with two di�erent chambers
of � . One says that the spherical building isMoufang if for each root � , the group U�

acts transitively on the set of apartments containing� . Furthermore it can be shown
that, if this is the case, then the groupU� acts sharply transitively on the set of these
apartments.

Now suppose the rank of the building is 3 or greater; then J. Tits proved in [44] that it
(which are pure geometric objects) satis�es the Moufang condition, and that it can be
classi�ed. Roughly speaking such buildings correspond to three types of groups - classical,
algebraic and mixed groups. This is perhaps the most important result in the theory of
buildings.

Spherical Moufang buildings of rank 2, i.e. generalizedn-gons, only occur forn = 3; 4; 6
and 8 (see [45], [46] and [64]). A consequence of this is that no buildings of typeH3 or H4

exist, as they would lead to the existence of Moufang generalized 5-gons.

Remark 1.6.1 The Moufang property can be de�ned for all types of buildings, but it
is omitted here as we will only need it in the spherical case (where the de�nition is less
elaborate).

Opposition and subapartments

We de�ne 2 simplices of a spherical building to beopposite if they are opposite in an
apartment (a spherical Coxeter complex) which contains them both. Existence of such an
apartment is implied by (B1), the independence of which apartment is chosen by (B2).

1.6.4 A�ne buildings

A�ne buildings are the buildings with a�ne Coxeter complexe s. The more general con-
cept of a�ne apartment system will be discussed later on.
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1.7 Residues of buildings

In Section 1.2 we already discussed residues of ags of geometries. As buildings are ag
complexes of geometries, residues of simplices of buildings also make sense. These residues
are again buildings, where the corresponding Coxeter diagram will be the diagram of the
original building with the nodes corresponding to the elements of the ag (equivalently
the vertices of the simplex) erased.

1.8 Related objects

1.8.1 Moufang sets

As we have seen above, buildings of rank one are trivial structures. But by adding a
Moufang-like condition these become very interesting. Many examples arise from higher
rank buildings.

Let X be a set (with jX j � 3), with for each x 2 X a group Ux (we call the root groups)
acting on X while �xing x. Then (X; (Ux )x2 X ) is a Moufang set if the following two
conditions are met:

� For every x 2 X , Ux acts regularly onX nf xg.

� The set of all root groups is normalized by the groupGy generated by all the root
groups.

The group Gy is called the little projective group, and is obviously 2-transitive. If it is
sharply 2-transitive, we say the Moufang set isimproper, otherwise we call itproper. The
full projective group is the group of all elements of Sym(X ) that leave the set of root
groups invariant.

Geometries de�ned by Moufang sets

Let (X; (Ux )x2 X ) be a Moufang set as above. For a certainx 2 X , let Vx be a nontrivial
subgroup ofUx such that Vx is a normal subgroup of the stabilizerGy

x . For any y 2 X ,
we can now de�ne a similar subgroupVy = V g

x E Gy
y, with g 2 Gy such that xg = y (this

is possible by 2-transitivity). The condition onVx makes it so that Vy is independent of
the choice ofg.
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The Moufang building of rank one de�ned onX by (Ux )x2 X relative to (Vx )x2 X is the rank
2 geometry (X; � ; 2 or 3) with as points the elements ofX , and blocks � the subsets
of X of the form f xg [ f yv jv 2 Vxg. The elementx of such a block is called thegnarl of
the block (in the cases we will consider, the gnarl of a block will turn out to be unique).

It is clear that the little projective group will induce automorphisms of this geometry
(X; � ; 2 or 3). If one shows that all the automorphisms of (X; �) arise in this way, then
the study of the Moufang set will be equivalent with the studyof the geometry (this idea
has been proposed by Tits in [49] and [50], see also [61]). Such results are obtained in
Chapter 2 for the Ree-Tits Moufang set.

Good candidates for the choice ofVx are the centers and derived groups of the root groups.

1.8.2 R-Buildings

De�nitions

Let (W ; S) be a spherical irreducible Coxeter system. SoW is presented by the setS of
involutions subject to the relations which specify the order of the products of every pair
of involutions (see Section 1.3.2). This group has a naturalaction on a real vector space
V of dimensionjSj. Let A be the a�ne space associated toV, which we call themodel
space. We de�ne W to be the group generated byW and the translations of the model
space.

Let H 0 be the set of hyperplanes ofV corresponding to the axes of the reections inS and
all their conjugates. LetH be the set of all translates of all elements ofH 0. The elements
of H are calledwalls and the (closed) half spaces they bound are calledhalf-apartments
or roots. A vector sector is the intersection of all roots that (1) are bounded by elements
of H 0, and (2) contain a given pointx that does not belong to any element ofH 0. The
bounding walls of these roots will be referred to as theside-wallsof the vector sector. A
vector sector can also be de�ned as the topological closure of a connected component of
V n ([H 0). Any translate of a vector sector is asector, with corresponding translated
side-walls. A sector-facet is an intersection of a given sector with a �nite number of its
side-walls. The latter number can be zero, in which case the sector-facet is the sector
itself; if this number is one, then we call the sector-facet asector-panel. The intersection
of a sector with all its side-walls is a point which is called the sourceof the sector, and of
every sector-facet de�ned from it. This source is unique dueto the irreducibility of the
Coxeter system.
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An R-building of type (W; S) (also called ana�ne apartment system) (de�nition by
Jacques Tits as can be found in [28] by Mark Ronan, along with some historic background)
is an object (� ; F ) consisting of a set � together with a collection F of injections of A
into � called charts obeying the �ve conditions below. The image ofA under a chart
f 2 F will be called anapartment, and the image of a sector, half-apartment,: : : of A
under a certainf 2 F will be called asector, half-apartment, : : : of �.

(A1) If w 2 W and f 2 F , then f � w 2 F .

(A2) If f; f 0 2 F , then X = f � 1(f 0(A )) is closed and convex inA , and f jX = f 0 � wjX
for somew 2 W.

(A3) Any two points of � lie in a common apartment.

The last two axioms allow us to de�ne a functiond : � � � ! R+ such that for any
a; b2 A and f 2 F , d(f (a); f (b)) is equal to the Euclidean distance betweena and b in
A .

(A4) Any two sectors contain subsectors lying in a common apartment.

(A50) Given f 2 F and a point � 2 �, there is a retraction � : � ! f (A ) such that the
preimage of� is f � g and such that for each�;  2 � : d(� (� ); � ( )) � d(�;  ).

Besides the original paper [47] of J. Tits, an important article is the one of Anne Parreau
([24]). In the latter she describes many structural properties of R-buildings. Also she
introduces some alternative de�nitions, including the following one: we again ask (A1),
(A2), (A3) and (A4) to be satis�ed, but replace (A50) by d being a distance function, and

(A5) If we have three apartements, each two apartments of which share a half-apartment,
then the intersection of all three is nonempty.

We call jSj, which is also equal to dimA , the dimensionof (� ; F ). We will usually denote
(� ; F ) briey by �, by slight abuse of notation.

Spherical buildings from R-buildings

One can associate spherical buildings of type (W; S) to R-buildings in two ways. The �rst
way to do so is to construct the building at in�nity. Two sector-facets of � will be called
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parallel if the distance between them is bounded. Due to the triangle inequality this is an
equivalence relation. The equivalence classes (namedfacets at in�nity ) form a spherical
building � 1 of type (W; S) called the building at in�nity of (� ; F ). The chambers of �1
are the equivalence classes of parallel sectors. An apartment � of � corresponds to an
apartment � 1 of � 1 in a bijective way. The direction of a facet is the parallel class it
belongs to. Another way to de�ne equivalence classes is the following: two sector-facets
are asymptotic if they have a sub sector-facet in common of the same dimension as the
original two. Two asymptotic sector-facets are necessarily parallel, for sectors these two
notions are identical.

A second way to construct a spherical building is to look at the `local' structure instead
of the one at in�nity. Let � be a point of �, and F; F 0 two sector-facets with source� .
Then these two facets willlocally coincideif their intersection is a neighbourhood of� in
both F and F 0. This relation forms an equivalence relation de�ninggerms of facetsas
equivalence classes (notation [F ]� ). These germs form a (possibly weak) building [�]� of
type (W; S), called the residue at � (this notion is di�erent, but slightly related to the
previously de�ned residues). If � is an apartment containing � , then [�] � will be used to
denote the corresponding apartment in [�]� . If we speak about agerm in [�] � without
further specifying which kind of facet it is derived from, wemean a germ of a sector.

The following lemma by Anne Parreau will prove to be an important tool in our proofs.

Lemma 1.8.1 (Parreau [24], Proposition 1.8) Let x be a chamber of the building at
in�nity � 1 and C a sector with source� 2 � . Then there exists an apartment� con-
taining an element of the germ[C]� and such that� 1 contains x.

This has also an interesting corollary.

Corollary 1.8.2 (Parreau [24], Corollary 1.9) Let � be a point of� and F1 a facet
of the building at in�nity. Then there is a unique facetF 0 2 F1 with source� .

The unique facet of the previous corollary will be denoted by(F1 )� or F� .

This introduction of germs allows us to state an additional alternative de�nition from [24],
which replaces (A3) and (A5') by the following stronger version of (A3).

(A3') Any two germs lie in a common apartment.

A�ne buildings form a special case ofR-buildings; they will be referred to as the `discrete
case' ofR-buildings. The type of the spherical building at in�nity of an a�ne building is
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the `type of a�ne Coxeter system without the tilde', keeping in mind that I2(6) equalsG2

and Bn equalsCn (see Section 1.3.2). This implies that the types of the possible spherical
buildings at in�nity of an a�ne building are restricted (in p articular only generalized
n-gons with n = 3, 4 or 6 are possible as building at in�nity of an a�ne buildi ng). For R-
buildings, every type of spherical building at in�nity is possible (exceptH3 or H4, as there
do not exist such spherical buildings), by the classical examples and free constructions
discussed in the next paragraph.

If the dimension of � is at least 3, then � 1 is a spherical Moufang building and, in
principle, � is known, see [47]. For the dimension 2 case, so with a generalizedn-gon at
in�nity, there exist free constructions for the discrete case by M. Ronan in [27] (withn = 3,
4 or 6), and nondiscrete constructions for alln by A. Berenstein and M. Kapovich ([6]).
These constructions imply that a classi�cation for the dimension 2 case is impossible.

Also R-buildings can be generalized. They form a special case of �-buildings, where � is
an ordered abelian group. For more information see [4].

Trees associated to walls and panels at in�nity

With a wall M of an R-building one can associate a direction at in�nity (by taking the
direction of all sector-facets it contains). This direction M1 at in�nity will be a wall of
the spherical building at in�nity.

Let m (respectively � ) be a wall (resp. a sector-panel contained in the wallm) of the
building at in�nity. Let T(m) be the set of all wallsM of the R-building with M1 = m,
and T(� ) the set of all asymptotic classes of sector-panels in the parallel class� .

One can de�ne charts (and so also apartments) fromR to T(m) (resp. T(� )). First choose
M (resp. D) a wall (resp. a sector-panel contained inM ) of the model space, such that
there exists some chartf such that f (M )1 = m and f (D) 2 � . One can identify the
model spaceA with the product R � M . For every chart g 2 F of the R-building (� ; F )
such that g(M )1 = m (resp. f (D) 2 � ), one de�nes a chartg0 as follows: ifx 2 R, then
g0(r ) is the wall g(f r g � M ) (resp. the asymptotic class containingg(f r g � D)).

These two constructions yieldR-buildings with a rank one building at in�nity, such build-
ings are better know asR-trees (or shortly trees when no confusion can arise). The
following theorem shows the connection between the above two constructions.

Theorem 1.8.3 If � is a panel in some wallm, then for each asymptotic classD of
sector-panels with direction� , there is a unique wallM in the direction m containing a
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representative ofD. The map D 7! M is an isomorphism from theR-tree T(� ) to the
R-tree T(m).

These constructions will be generalized in Section 4.12.

CAT(0)-spaces

For now suppose that (X; d) is some metric space, not necessarily anR-building. A
geodesicis a subset of the metric spaceX isometric to a closed interval of real numbers.
The metric space (X; d) is a geodesic metric spaceif each two points ofX can be connected
by a geodesic. From (A3) it follows thatR-buildings are geodesic metric spaces.

Let x; y and z 2 X be three points in a geodesic metric space (X; d). Because of the
triangle inequality we can �nd three points �x; �y and �z in the Euclidean planeR2 such
that each pair of points have the same distance as the corresponding pair in x; y; z. The
triangle formed by the three points is called acomparison triangleof x; y and z. Consider
a point a on a geodesic betweenx and y, so we have thatd(x; y) = d(x; a) + d(a; y) (note
that the geodesic, and so also the pointa, is not necessarily unique). We now can �nd
a point �a on the line through �x and �y such that the pairwise distances in �x; �y; �a are the
same as inx; y; a. If the distance betweenz and a is smaller than the distance between
�z and �a, we say that the geodesic metric space (X; d) is a CAT(0)-space. Roughly this
should be thought of as the space having nonpositive curvature.

The metric spaces formed byR-buildings are examples of CAT(0)-spaces. Complete
CAT(0)-spaces (completemeaning that all Cauchy sequences converge) have several nice
properties, such as:

Theorem 1.8.4 A nonempty bounded subset of a complete CAT(0)-spaceX has an
unique `center'.

The following direct corollary of the above lemma is known asthe Bruhat-Tits theorem.

Corollary 1.8.5 Let G be a group of isometries of a complete CAT(0)-space(X; d). If
G stabilizes a nonempty bounded subset ofX , then G �xes some point in X .

Although all discrete R-buildings form complete metric spaces, this is not true in general.
We will take a closer look at this problem in Section 4.10.

Remark 1.8.6 The notion of completeness has also another meaning when used for R-
buildings, in the sense of `the complete system of apartments'. However, there will be no
confusion possible as we will not use this other notion in this thesis.
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1.9 Some additional concepts

We end the introduction by de�ning two minor concepts which appear at various chapters
of this thesis.

1.9.1 Tits endomorphisms

Let K be a �eld with �nite characteristic p. The Frobenius endomorphismis the map
x 7! xp. A Tits endomorphism is then an endomorphism, such that applying it twice
gives the Frobenius endomorphism. When the �eldK is a �nite �eld of characteristic p,
then every �eld element is ap-th power, soKp = K (one says that the �eld isperfect). A
�nite �eld of characteristic p admits a Tits endomorphism if and only if the order ofK is
an odd power ofp.

1.9.2 Nets

A net is a rank 2 geometry (P; B; I ), consisting of points P, blocks B and incidence
relation I , such that for each pointp 2 P and blockB 2 B, there exists exactly one block
B 0 incident with p, parallel with B (where 2 blocks areparallel if the points incident with
the two blocks are either completely the same or disjoint).

It can be shown that the parallelism of blocks in a net forms anequivalence relation,
de�ning parallel classes.
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Chapter 2

`Rank one' case, or Moufang sets

The Ree groups in characteristic 3 (de�ned by Ree in [26]) andtheir generalizations over
nonperfect �elds (by Tits [42]) provide examples of Moufangsets. The root groups of
these Moufang sets have nilpotency class 3. This is a rather rare phenomenon; indeed,
until recently, these were the only known Moufang sets with this property (a second class
was discovered and constructed in [23]). Associated with each Ree group is a geometry
(called a unital in the �nite case), where each pair of points lies on exactly one line (in
the �nite case a 2� (q3 + 1; q+ 1; 1)-design), see [19]. This geometry can be viewed as the
geometry of involutions in a Ree group, since the blocks are in one-to-one correspondence
with a conjugacy class of involutions (in the �nite case there is only one conjugacy class).
In this way, Ree groups can be better understood in that several properties become more
geometric and intuitive through this geometry.

In this chapter we introduce another geometry for each Ree group, inspired by the general
construction of geometries associated to `wide' Moufang sets (for this construction see
Section 1.8.1) as proposed by Tits in one of his lectures: `wide' here means that the
unipotent subgroups are not abelian. In fact, this construction is the counterpart for Ree
groups of the inversive planes for Suzuki groups (see also the next chapter and [61]). The
structure of the geometries that we will introduce is probably slightly more involved than
that of the `unitals', but they have the major advantage thatthe automorphism groups of
the corresponding Ree groups are their full automorphism groups (and this is our Main
Result below), a result that is not yet proved for the unitals. This result contributes to
Tits' programme of characterizing all `wide' Moufang sets in this way. As an application,
we can show that every collineation of a Moufang hexagon of mixed type permuting the
absolute points of a polarity, centralizes that polarity (or, equivalently, also permutes the
absolute lines). This, in turn, means that the set of absolute points of any polarity of
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any Moufang hexagon (necessarily of mixed type) determinesthe polarity completely and
unambiguously. Combined with other results of the author ([34]) and H. Van Maldeghem
([59]), this provides the answer to the aformentioned question for all Moufang polygons.

The `new' geometries also have a number of interesting combinatorial properties, but we
will not concentrate on these, though it would be worthwhileto perform an investigation
in that direction.

Every Ree group is the centralizer of a certain outer involution of a Dickson group of
type G2 over a �eld of characteristic 3 admitting a Tits endomorphism. A geometric way
to see this is to consider the associated Moufang generalized hexagon, which is of mixed
type. Then the outer involution is a polarity, and the associated Ree group acts doubly
transitively on the absolute points of that polarity. That is essentially the way we are
going to de�ne and use the Ree groups. These Moufang hexagonsare calledRee hexagons
in [59] precisely for that reason.

Hence, in order to investigate the Moufang sets associated with the Ree groups, we turn
to the Ree hexagons, which, as follows from our remarks above, are de�ned over a �eld of
characteristic 3 admitting a Tits endomorphism� , and they allow a polarity � . The ab-
solute points under this polarity, together with the automorphisms of the mixed hexagon
commuting with � , form the Ree-Tits Moufang set. Since we will need an explicit de-
scription of the absolute points of� , we will use coordinates. These will be introduced in
Section 2.1. We de�ne the Ree geometries in Section 2.3 and state our main results and
main application in Section 2.4 (but we formulate our main results also below in rough
terms). The rest of the chapter is then devoted to the proofs.

Since the Ree groups have root groups of nilpotency class 3 (at least, if the base �eld
is large enough), the Ree geometries that we will de�ne have rank 3. This means that
we will have two types of blocks in our geometry. In this chapter we prove that every
automorphism of such a geometry is an automorphism of the corresponding Ree group,
by writing down explicitly the automorphisms of this geometry. But we also do slightly
better and prove that the same conclusion holds when restricting to one type of blocks.
We call these geometriestruncated Ree geometries. Hence, loosely speaking, we may write
our main result as follows:

The full automorphism group of a (truncated) Ree geometry isinduced by the
full collineation group of the corresponding Ree hexagon.

The results in this chapter are joint work together with Fabienne Haot and Hendrik Van
Maldeghem, and are accepted for publication inForum Math.
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2.1 Coordinatization of the Ree hexagon

In this section, we present two coordinatizations of the mixed hexagons, of which the
Ree hexagons are a special case. These coordinatizations can at the same time serve as
a de�nition of these structures. We start with the coordinatization with respect to one
ag f (1 ); [1 ]g (which was �rst carried out by De Smet and Van Maldeghem for (�nite)
generalized hexagons in [12]). For a detailed description of the coordinatization theory
for other generalized polygons we refer to [59]. The second coordinatization follows in
fact from the natural embedding of the mixed hexagons inPG(6; K).

2.1.1 Hexagonal sexternary rings for mixed hexagons

In [59] a coordinatization theory with respect to a agf (1 ); [1 ]g is described. It is a
generalization of the coordinatization of Hall for generalized triangles. Here we explicitly
describe the coordinatization of the mixed hexagon. LetK be a �eld of characteristic 3.
Let K0 be a sub�eld of K containing the sub�eld K3 (so K3 � K0 � K). We consider a
hexagonal sexternary ringR = ( K; K0; 	 1; 	 2; 	 3; 	 4) with

8
>>><

>>>:

	 1(k; a; l; a0; l0; a00) = a3k + l;

	 2(k; a; l; a0; l0; a00) = a2k + a0+ aa00;

	 3(k; a; l; a0; l0; a00) = a3k2 + l0+ kl;

	 4(k; a; l; a0; l0; a00) = � ak + a00;

wherea; a0; a002 K and k; l; l 0 2 K0. This de�nes the mixed hexagonH(K; K0) as follows.
The points and lines are thei -tuples of elements ofK [ K0 (i � 5) with alternately an
entry in K and one in K0, and for points (lines) the last entry is supposed to be inK
(K0), except wheni = 0, in which case we denote the point by (1 ) and the line by [1 ]
(we generally use round brackets for points and square brackets for lines). Incidence is
de�ned as follows:

� If the number of coordinates of a pointp di�ers by at least 2 from the number of
coordinates of a lineL, then p and L are not incident.

� If the number ip of coordinates of a pointp di�ers by exactly 1 from the number iL

of coordinates of a lineL, then p is incident with L if and only if p and L share the
�rst i coordinates, wherei is the smallest amongip and iL .
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� If ip = iL 6= 5, then p is incident with L if and only if p = ( 1 ) and L = [ 1 ].

� A point p with coordinates (a; l; a0; l0; a00) is incident with a line [k; b; k0; b0; k00] (with
b; b0 2 K and k0; k002 K0) if and only if

8
>>><

>>>:

	 1(k; a; l; a0; l0; a00) = k00;

	 2(k; a; l; a0; l0; a00) = b00;

	 3(k; a; l; a0; l0; a00) = k0;

	 4(k; a; l; a0; l0; a00) = b0:

Suppose now that our �eld K (which has characteristic 3) has a Tits endomorphism� ;
then the speci�c choiceK0 = K � gives aRee hexagon.

2.1.2 The embedding of mixed hexagons in PG(6; K)

The mixed hexagons (and then also the Ree hexagons) have natural embeddings in
PG(6; K). Indeed, H(K; K0) is a substructure of the split Cayley hexagonH(K), which
has itself a natural embedding inPG(6; K) as discovered and described by Tits in [41], see
also Chapter 2 of [59]. All these embeddings arefull, meaning that all points ofPG(6; K)
incident with a line of the mixed hexagon are points of the mixed hexagon). Here, we
content ourselves with the table below translating the above coordinates to the projective
coordinates. We refer to Chapter 3 of [59] for details and proofs.

We write � for � al0+ a02 + a00l + aa0a00and � for l � aa0 � a2a00.

Coordinates inH(K; K0) Coordinates inPG(6; K)
(1 ) (1; 0; 0; 0; 0; 0; 0)
(a) (a;0; 0; 0; 0; 0; 1)
(k; b) (b;0; 0; 0; 0; 1; � k)
(a; l; a0) (� l � aa0; 1; 0; � a;0; a2; � a0)
(k; b; k0; b0) (k0+ bb0; k; 1; b;0; b0; b2 � b0k)
(a; l; a0; l0; a00) (�; � a00; � a; � a0+ aa00; 1; �; � l0+ a0a00)
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Coordinates inH(K; K0) Points generating this line
[1 ] (1 ) and (0)
[k] (1 ) and (k; 0)
[a; l] (a) and (a; l; 0)
[k; b; k0] (k; b) and (k; b;0)
[a; l; a0; l0] (a; l; a0) and (a; l; a0; l0; 0)
[k; b; k0; b0; k00] (k; b; k0; b0) and (0; k00; b0; k0+ kk00; b)

The subgroup ofPSL7(K) stabilizing H(K; K0) is denoted byG2(K; K0) and is simple (a
mixed group of typeG2, see [44]).

2.2 The Ree-Tits ovoid

We start from the Ree hexagonH(K; K � ), with � as above a Tits-endomorphism ofK. This
hexagon allows a polarity. The absolute points under this polarity form an ovoid of the
Ree hexagon - theRee-Tits ovoid, see Chapter 7 of [59]. We denote the polarity, which we
can choose in such a way that it �xes the agsf (1 ); [1 ]g and f (0; 0; 0; 0; 0); [0; 0; 0; 0; 0]g
and maps the point (1) onto the line [1], by� . It has the following actions:

(a; l; a0; l0; a00)� = [ a� ; l � � 1
; a0� ; l0� � 1

; a00� ];

[k; b; k0; b0; k00]� = ( k� � 1
; b� ; k0� � 1

; b0� ; k00� � 1
);

for all a; a0; a00; b; b0 2 K and k; k0; k00; l; l 0 2 K � .

Now the point (a; l; a0; l0; a00) is absolute for � if and only if it is incident with its image.
This leads to the following conditions:

(
l = a00� � a� +3 ;

l0 = a2� +3 + a0� + a� a00� :

Coordinates of the Ree-Tits ovoid in PG(6; K). | Instead of using the 5-tuple
(a; a00� � a3+ � ; a0; a3+2 � + a0� + a� a00� ; a00), we now will use the shorter notation (a; a00; a0� aa00).
Note that every triple in K3 now corresponds to a point of the ovoid. Now, fora; a0; a002 K,
we put

f 1(a; a0; a00) = � a4+2 � � aa00� + a1+ � a0� + a002 + a01+ � � a0a3+ � � a2a02;

f 2(a; a0; a00) = � a3+ � + a0� � aa00+ a2a0;

f 3(a; a0; a00) = � a3+2 � � a00� + a� a0� + a0a00+ aa02:
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So the set of absolute points inPG(6; K) can be described by

P = f (1; 0; 0; 0; 0; 0; 0)g[

f (f 1(a; a0; a00); � a0; � a; � a00; 1; f 2(a; a0; a00); f 3(a; a0; a00)) j a; a0; a002 Kg:

Compact notation. | As before, we associate the triple (a; a00; a0� aa00) with the point
(a; a00� � a3+ � ; a0; a3+2 � + a0� + a� a00� ). The set of absolute points under the polarity is now

P = f (1 )g [ f (a; a0; a00) j a; a0; a002 Kg:

On this ovoid there acts a Moufang set. The elements of the root group U1 of this
Moufang set (�xing the point ( 1 )), act as follows on the remaining points (x; x0; x00): the
unipotent element that �xes (1 ) and maps (0; 0; 0) to (y; y0; y00) maps (x; x0; x00) to

(x; x0; x00) � (y; y0; y00) = ( x + y; x0+ y0+ xy � ; x00+ y00+ xy0 � x0y � xy � +1 );

and this action can also be seen as the multiplication insideU1 , see Chapter 7 of [59].

In this way we obtain theRee-Tits Moufang set. The (simple) Ree groups arise as (simple
subgroups of the) centralizers of polarities in these hexagons. More exactly, the Ree group
R(K; � ) is de�ned as the centralizer inG2(K; K � ) of the outer automorphism� . This group
is simple if jK j > 3 and the multiplicative group of K is generated by all squares together
with � 1, see [26]. In any case, the group generated by the root groups is simple, provided
jKj > 3, and it coincides with the derived groupR0(K; � ). For jKj = 3, R(K; � ) = R(3) is
isomorphic to P�L 2(8) and containsPSL2(8) as a simple subgroup of index 3.

We can see the Ree-Tits ovoid and its automorphism group embedded in the Ree hexagon
as a representation of the Ree-Tits Moufang set. Henceforth, we will denote by P the
Ree-Tits ovoid, and byUx , x 2 P , the root group �xing x in the Ree-Tits Moufang set
over the �eld K with associated Tits endomorphism� .

We will also need the explicit form of a generic element of theroot group U(0;0;0), which
we shall briey denote by U0. This is best given by the action on coordinates in the
projective space. Such a generic elementu(0;0;0)

(x;x 0;x00) then looks like (x; x0; x00are arbitrary
in K):
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�x = ( x0 x1 x2 x3 x4 x5 x6) 7!

�x �

0

B
B
B
B
B
B
B
B
@

1 f 2(x; x 0; x00) f 3(x; x 0; x00) x00 f 1(x; x 0; x00) � x0 � x
0 1 � x � 0 x0 � x1+ � 0 0
0 0 1 0 x 0 0
0 � x x 0 1 � x00 0 0
0 0 0 0 1 0 0
0 x2 � x00� xx 0 x p 1 0
0 r s � x0+ x1+ � q x� 1

1

C
C
C
C
C
C
C
C
A

;

where 8
>>><

>>>:

p = x3+ � � x0� � xx00� x2x0;

q = x00� + x � x0� � xx02 � x2+ � x0 � x1+ � x00� x3+2 � ;

r = x00� xx0+ x2+ � ;

s = x02 � x1+ � x0 � x � x00;

see Section 9.2.4 of [38].

Remark 2.2.1 An explicit construction (with detailed proofs) of the Ree group acting
on the Ree hexagon can be found in [11].

We are now ready to de�ne the Ree geometries.

2.3 The Ree geometry

As already mentioned, the Ree groups have root groups of nilpotency class 3 (ifjK j > 3,
see below for a calculation). So applying the construction in Section 1.8.1 using the
subgroups [Ux ; Ux ] and [[Ux ; Ux ]; Ux ], gives us two types of blocks in our geometry, and
blocks of one type are subsets of the others (the last group isthe same as the center
Z (Ux ) when jKj > 3, see further in this section). WhenjKj = 3 the Ree group has
nilpotency class 2, but one can consider similar subgroups as above (see below). In order
to distinguish the two types of blocks, we will call the `smallest' onescircles (notation
C), and the others spheres(notation S). All the blocks, regardless of the type, will be
denoted byB, and the points by P. In this way we have constructed theRee geometry
G = ( P; B; 2 or 3). We can de�ne two further geometries by restricting the setof blocks.
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We call the geometriesGC = ( P; C; 2 or 3) and GS = ( P; S; 2 or 3) the truncated Ree
geometries.

Let us be more concrete now and look for the coordinates of thecircles and spheres which
have (1 ) for gnarl.

We �rst claim that, if jK j > 3, then the groupU0
1 = [ U1 ; U1 ] is preciselyf (0; u0; u00) j u0; u00

2 Kg. Indeed, computing an arbitrary commutator, we get

[(u1; u0
1; u00

1); (u2; u0
2; u00

2)] = (0 ; u1u�
2 � u2u�

1; u0
1u2 � u1u0

2 � u1u1+ �
2 + u2u1+ �

1 ):

Noting that (0 ; x0; 0) � (0; 0; x00) = (0 ; x0; x00), we only have to show that (0; x0; 0) 2 U0
1 ,

for all x0 2 K, and that (0; 0; x00) 2 U0
1 , for all x002 K. Putting u1 = u00

1 = u0
2 = u00

2 = 0,
u0

1 = 1 and u2 = x00 in the above commutator, we see that (0; 0; x00) 2 U1 . Now let
x0 2 K be arbitrary. Since jKj > 3, there exists an elementt 2 K with t3 � t 6= 0. Put
k = t3 � t and let y = x0k� � . Putting u0

1 = u0
2 = u00

1 = u00
2 = 0 and (u1; u2) = ( y; t3),

respectively (u1; u2) = ( t � y; 1), we obtain (0; t3� y� t3y� ; 0) 2 U0
1 and (0; t � y� t3y� ; 0) 2 U0

1 .
Multiplying the former with the inverse of the latter, we seethat (0; x0; 0) 2 U0

1 , proving
our claim.

If jK j = 3, then U0
1 has order 3 and coincides with the center (see below). In thiscase,

for the construction of the Ree geometry, we will substituteU0
x by the subgroup ofUx

generated by the elements of order 3, and we will denote it, with abuse of notation, byU0
x

(but there will be no confusion possible), since forjKj > 3, the derived group coincides
with the group generated by elements of order 3 (as one can check easily).

The center of U1 is the subgroupf (0; 0; u00) j u002 Kg. Indeed, this follows from the
explicit form of the multiplication in U1 by standard arguments. Since the commutator
of an element (0; u0

1; u00
1) 2 U0

1 and (u2; u0
2; u00

2) 2 U1 is

[(0; u0
1; u00

1); (u2; u0
2; u00

2)] = (0 ; 0; u0
1u2)

= (0 ; 0; u00);

with u00essentially arbitrary, we see that the second group in the normal seriesU00
1 =

[U1 ; [U1 ; U1 ]] coincides with the centerZ (U1 ) when jKj > 3.

When jKj = 3, the group U00
1 will be the subgroup consisting only of the identity. Again,

for the construction, we will substitute U00
x by the subgroupf (0; 0; u00) j u002 Kg of Ux in

this case.

Now, since the circles having (1 ) as gnarl are the orbits of a point (a; a0; a00) under the
group f (0; 0; x) j x 2 Kg, union with f (1 )g, these circles are given by

f (a; a0; a00+ x) j x 2 Kg [ f (1 )g = f (a; a0; t) j t 2 Kg [ f (1 )g:
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The spheres with gnarl (1 ) have the following description:

f a; a0+ x0; a00+ x00+ ax0 j x0; x002 Kg [ f (1 )g = f (a; t0; t00) j t0; t002 Kg [ f (1 )g:

We can now interpret the algebraic description of a circle and a sphere with gnarl (1 ) in
the corresponding Ree hexagonH(K; K � ). The points at distance 3 from the nonabsolute
line [0; 0] are (1 ) and all the points of the form (0; 0; a0; l0; a00) with a0; l0; a002 K. The
absolute points in this set are exactly the points in the circle with gnarl (1 ) and containing
(0; 0; 0). From this it follows that each circle is the set of absolute points at distance 3 from
a nonabsolute lineM , not going through an absolute point. The unique absolute point
for which its corresponding absolute line intersectsM is the gnarl of the circle. With
similar reasoning, one sees that each sphere is the set of absolute points not opposite
some nonabsolute pointp, with p lying on an absolute line. The unique absolute point
at distance 2 fromp is the gnarl of the sphere. Conversely, every such set is a circle or
sphere, respectively. It follows now easily that the gnarl of a circle and of a sphere is
unique. These gnarls will play a prominent role in our proofs.

As an application we make the following important observation.

Lemma 2.3.1 A sphere contains only circles with the same gnarl. Also, thepoint set of
a sphere, except for its gnarl, is partitioned by the circlescontained in the sphere.

Proof. Let us consider a sphere and circle, and assume that this sphere's gnarl is the
absolute point p while the gnarl of the circle is a di�erent absolute pointq. The ags
f p; p� g and f q; q� g determine a unique apartment � containing both ags, and because
both ags are absolute,� will stabilize �. Denote the unique line in � at distance 2 fro m
q� and at distance 3 fromp with L, and the projection ofq on p� with r . Let a be a third
absolute point on the circle di�erent from both p and q.

p
p� r �

r

a

q
q�

La�
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Becausea lies on the circle with gnarlq through p, a lies at distance 3 fromL. Similarly
a also lies at distance 4 fromr because of the de�nition of a sphere. The last statement
implies that a� lies at distance 4 from the liner � . This line r � intersects the lineL, so
the point a and the linesL; r � ; a� are contained in an ordinary 5-gon, which contradicts
the de�nition of a generalized hexagon. This proves the �rstassertion.

For the second assertion, we just consider the circles de�ned by the nonabsolute lines of
H(K; K � ) through the point de�ning the sphere in question. �

2.4 Results on Ree geometries

Given the construction of the circles and spheres in the corresponding Ree hexagon
H(K; K � ), it is clear that every collineation of H(K; K � ) that commutes with the po-
larity � induces a collineation of the Ree geometry and its truncations. Our main results
now say that also the converse holds. More precisely:

Main Result 2.4.1 The full automorphism group of the Ree geometryG = ( P; B; 2
or 3) is the centralizer of� in the full collineation group ofH(K; K � ).

Likewise, we will show:

Main Result 2.4.2 The full automorphism groups of the truncated Ree geometries GC =
(P; C; 2 or 3) and GS = ( P; S; 2 or 3) coincide with the centralizer of� in the full
collineation group ofH(K; K � ).

As a main consequence we will be able to show:

Main Corollary 2.4.3 The stabilizer of a Ree-Tits ovoid in the full collineation group of
H(K; K � ) coincides with the centralizer of the corresponding polarity in the full collineation
group ofH(K; K � ). Consequently, any polarity is determined by its set of absolute points.

The latter was already announced in [59] as Theorem 7.7.9, but not proved there. Com-
bined with results in [59] and [34], one directly obtains:
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Corollary 2.4.4 Each automorphism of a Moufangn-gon with a polarity stabilizing the
set of absolute points of that polarity, also stabilizes theset of absolute lines and centralizes
that polarity, except if either n = 3, the projective plane is Pappian, the characteristic
of the underlying �eld is 2, and the polarity is not Hermitian (i.e., there is no twisting
�eld automorphism), or if n = 4 and the generalized quadrangle is the smallest symplectic
quadrangleW(2).

We will now prove these results.

2.5 Auxiliary tools

Before we can begin with the actual proof, we need to introduce some additional termi-
nology and tools.

2.5.1 The derived geometry at (1 )

We de�ne the structure G0 = ( P0; B0; 2 or 3), where P0 = P n f (1 )g, and B0 is the set
of blocks ofG going through (1 ), with ( 1 ) removed. We call this thederived geometry
at (1 ), inspired by a similar concept in the theory of designs. In order to know the
coordinates of the circles through (1 ), we �rst write down the coordinates of the circles
with gnarl (1 ). As we saw earlier, these are the sets

f (a; a0; t) j t 2 Kg [ f (1 )g; with a; a0 2 K:

Removing the point (1 ) gives us thevertical line La;a0. We now compute the coordi-
nates of the circle with gnarl (0; 0; 0) through (1 ). The point (1 ) is identi�ed with
(1; 0; 0; 0; 0; 0; 0), so its orbit under Z (U0) (using the elementsu(0;0;0)

(0;0;x00) de�ned above) is
the set

f (1; f 2(0; 0; x00); f 3(0; 0; x00); x00; f 1(0; 0; x00); 0; 0) j x002 Kg

= f (1; 0; � x00� ; x00; x002; 0; 0) j x002 Kg:

Putting x = x00� 2� � (and hencex00= x � 2+ � ), adding the gnarl and deleting the point (1 ),
we obtain the setf (x; 0; � x2+ � ) j x 2 Kg. The image of this set under (a; a0; a00) 2 U1 is
the set

f (a + x; a0+ a� x; a00+ ( a0 � a1+ � )x � x2+ � ) j x 2 Kg;
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which we call the ordinary line C(a;a0;a00) (with gnarl (a; a0; a00)). Note that unlike the
vertical lines, these are not a�ne lines.

Just as we did for circles, we consider the spheres with gnarl(1 ) and the other spheres
through (1 ) separately.

The spheres with gnarl (1 ) are the setsf (a; t0; t00) j t0; t002 Kg [ f (1 )g, with a 2 K.
Removing the point (1 ) gives us thevertical plane Pa.

The orbit of (1 ) under U0
0, using the elementsu(0;0;0)

(0;x0;x00) , is the set

f (1; f 2(0; x0;x00); f 3(0; x0; x00); x00; f 1(0; x0; x00); � x0; 0) j x0; x002 Kg

= f (1; x0� ; � x00� + x0x00; x00; x002 + x01+ � ; � x0; 0) j x0; x002 Kg

=
��

x00� � x0x00

x002 + x01+ � ;
� x0�

x002 + x01+ � ;
� x00

x002 + x01+ �

�
j K � K 3 (x0; x00) 6= (0 ; 0)

�
[ f (1 )g:

Note that x002 6= � x01+ � is equivalent with (x0; x00) 6= (0 ; 0). Adding (0; 0; 0), the image of
this sphere under (a; a0; a00) 2 U1 is the set

��
x00� � x0x00

x002 + x01+ � ;
� x0�

x002 + x01+ � ;
� x00

x002 + x01+ �

�
� (a; a0; a00) j K � K 3 (x0; x00) 6= (0 ; 0)

�

[ f (a; a0; a00); (1 )g:

Removing the point (1 ) gives us theordinary plane S(a;a0;a00) (with gnarl (a; a0; a00)). Again
note that these are not a�ne planes, unlike vertical planes.

Notice that points of vertical planes have constant �rst coordinate, while the points of
an ordinary line never have constant �rst coordinate. This provides an algebraic proof of
Lemma 2.3.1.

2.5.2 Parallelism in the derived structure

We consider the set of points (x; x0; x00) as an a�ne space in the standard way, and call
the planesa�ne planes . We assume that the coordinates are given with respect to a basis
with axes X; Y; Z .

First we remark that every ordinary line C(a;a0;a00) completely lies in the a�ne plane with
equation Y = a� X + ( a0� a1+ � ). We say that two ordinary lines C1 and C2 are parallel if
all vertical lines intersectingC1 intersect C2 | in that case the two ordinary lines lie in the
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same a�ne plane of the aforementioned form | or if there is no vertical line intersecting
both ordinary lines | which implies that the ordinary lines l ie in parallel, but disjoint,
a�ne planes of the above form.

We claim that two ordinary lines C(a;a0;a00) and C(b;b0;b00) are parallel if and only if a = b.
Indeed, a vertical line meeting the ordinary lineC(a;a0;a00) must lie in the a�ne plane
Y = a� X + ( a0� a1+ � ), so any vertical line meeting bothC(a;a0;a00) and C(b;b0;b00) must lie in
the intersection of (

Y = a� X + ( a0 � a1+ � );

Y = b� X + ( b0 � b1+ � ):

This has a unique solution if and only ifa 6= b, proving our claim.

We have the following lemma.

Lemma 2.5.1 The gnarls of the ordinary lines of the parallel class ofC(a;a0;a00) are exactly
the points of the vertical planePa.

Proof. The above says that the set of gnarls of the lines of the parallel class ofC(a;a0;a00) is
given by f (a; t0; t00) j t0; t002 Kg, which is exactly Pa. �

2.5.3 Ree unitals

In Section 2.9, we will use the Ree unitals mentioned in the introduction. We do not need
a formal de�nition, nor a complete description of them, but only the following facts about
these geometries (for a proof of these facts or a more detailed description, see Chapter 7
of [59]):

� the set of points is the same as of the Ree geometries,

� two di�erent points are joined by exactly one block of the Reeunital,

� the block through (1 ) and (a;0; a00), with a and a00 2 K, is given by f (1 )g [
f (a; t; a00� at)jt 2 Kg,

� the Ree groupR(K; � ) acting on the Ree geometries stabilizes the Ree unital (to-
gether with the previous fact, this can be used to de�ne the Ree unital).

If B is a unital block containing (1 ), then we will call the setB n f (1 )g an a�ne unital
block.
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2.6 Automorphism group of the Ree geometry

General idea. | We consider an automorphism ' of the Ree geometry. Without loss of
generality we may assume that' �xes both (1 ) and (0; 0; 0) (because of the 2-transitivity
induced by the Moufang set). We will prove that' must preserve gnarls, and this will
imply that it has to preserve the parallelism we just de�ned. We then compute the
algebraic form of' and conclude that it can be extended toH(K; K � ).

Lemma 2.6.1 The automorphism' maps the gnarl of any sphere onto the gnarl of the
image of the sphere, and it maps the gnarl of any circle onto the gnarl of the image of the
circle under ' .

Proof. Any automorphism of � maps spheres onto spheres and circles onto circles, since
every circle is properly contained in a sphere, but no sphereis properly contained in
any circle or sphere. Since the gnarl of a sphere is exactly the intersection of all circles
contained in it (by Lemma 2.3.1), and there are at least two such circles, ' preserves
gnarls of spheres. But then' must also preserve the gnarls of these circles. �

Since ' �xes the points (1 ) and (0; 0; 0), it acts on the derived structureG0, and the
previous lemma implies that' �xes the set of vertical lines. Therefore the points (a; a0; z1)
and (a; a0; z2) are mapped on the same vertical line. If we represent' as follows:

' : (x; y; z) 7! (g1(x; y; z); g2(x; y; z); g3(x; y; z)) ;

then both g1 and g2 have to be independent ofz, and we write gi (x; y; z) = gi (x; y),
i = 1; 2.

The mapping ' preserves the parallel relation between ordinary lines, since the number
of vertical lines meeting two circles (i.e. none, one or all)is preserved under' . This
translates to g1 being independent ofy. Indeed, two points (a; y1; z1) and (a; y2; z2) being
the gnarls of two parallel ordinary lines are mapped onto twognarls of parallel ordinary
lines, which implies thatg1(a; y1) = g1(a; y2) for every choice fory1 and y2.

The point (0; 0; 0) is �xed by ' , so the a�ne plane Y = 0 | which is the unique a�ne
plane containing bothC(0;0;0) and L0;0, and which consists of the union of vertical lines
all meeting C(0;0;0) | is �xed by ' . The planeY = c1 | which is also a union of vertical
lines | must necessarily be mapped onto a planeY = c2. So g2(x; c1) = g2(0; c1) for
every choice ofx 2 K.

It follows that there are two permutations � and � of K such that (x; y; z) ' is equal to
(x � ; y� ; g3(x; y; z)). Since ' preserves gnarls, it maps the ordinary lineC(a;b;c) onto the
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ordinary line C(a� ;b� ;g3(a;b;c)) . Now notice that the point (x; y; z) can only be contained
in the ordinary line C(a;b;c) if y = b+ a� (x � a). Expressing that the point (a + x; y; z)
lies on the circleC(a;b;c) if and only if its image under ' lies in C '

(a;b;c) shows that, for all
a; b; x 2 K,

(b+ a� x)� = b� + ( a� )� ((x + a)� � a� ): (2.1)

Putting b = 0, and noting that 0 � = 0 � = 0, we see that (a� )� ((x + a)� � a� ) = ( a� x)� ,
which implies, by substituting this back in Equation (2.1),that ( b+ a� x)� = b� + ( a� x)� .
So � is additive. Put ` = 1 � . Then we see, by settinga = 1 and b = 0 in Equation (2.1)
above, that

x � = ` � ((x + 1) � � 1� ); (2.2)

so � is additive if and only if (x + 1) � = x � + 1 � . Plugging in x = m � 1 in Equation (2.2)
we have that (m � 1)� = ` � (m� � 1� ). Because of the additivity of� we have on the other
hand that (m � 1)� = m� + ( � 1)� = ` � ((1 + m)� � 2 � 1� ). So � is additive as well.

We now have thatx � = ` � x � . De�ne the bijection � : K ! ` � 1K : y 7! y� = ` � 1y� (note
that 1 � = 1). Plugging in these identities in Equation (2.1) yields

(b+ a� x)� = b� + ( a� )� x � ;

for all a; b; x 2 K. Putting a = 1, we see that� is additive; putting b = 0 and x = 1, we
see that � commutes with � . Putting b = 0, we see that (xy)� = x � y� for x 2 K � and
y 2 K. If x; y 2 K, then

((xy)� )� = (( xy)� )� = ( x � y� )� = ( x � )� (y� )� = ( x � )� (y� )� = ( x � y� )� ;

and the injectivity of � implies that � is an automorphism ofK. Now the action of ' on
a point (x; y; z) is given by (x; y; z) ' = ( `x � ; `1+ � y� ; g3(x; y; z)), for all x; y; z 2 K.

Let us now investigate whatg3(x; y; z) looks like.

The point p with coordinates(a� a0

a� ; 0; a00+( a0� a1+ � )( � a0

a� ) � ( � a0

a� )2+ � ) lies on bothC(a;a0;a00)

and the ordinary line with gnarl (0; 0; a00+ (a1+ � � a0)1+ � + a01+ �

a2+ � ). So its image under' lies on
the ordinary line with gnarl (`a� ; `1+ � a0� ; g3(a; a0; a00)) and on the ordinary line with gnarl
(0; 0; g3(0; 0; a00+ (a1+ � � a0)1+ � + a01+ �

a2+ � )). This leads to
8
><

>:

g3(a � a0

a � ; 0; a00� (a0� a1+ � )a0

a � + ( a0

a � )2+ � ) = g3(a; a0; a00) � `2+ � ( a02

a � � aa0 � a02+ �

a3+2 � )� ;

g3(a � a0

a � ; 0; a00� (a0� a1+ � )a0

a � + ( a0

a � )2+ � ) = g3(0; 0; a00+ (a1+ � � a0)1+ � + a01+ �

a2+ � ) � (`(a � a0

a � )� )2+ � :
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Putting these two equations together we get :

g3(a; a0; a00) = g3

�
0; 0; a00+

(a0 � a1+ � )1+ � + a01+ �

a2+ �

�
� `2+ �

�
(a0 � a1+ � )1+ � + a01+ �

a2+ �

� �

;

for every a 2 Knf 0g and a0; a00 2 K. We want to extend this equation to one with
a = 0. To this end, we note that the point (0; a0; a00) lies on every circle with gnarl
(A; a0+ A1+ � ; a00+ a0A � A2+ � ), with A 2 K. We now only considerA 6= 0. Then we take
the image under' and obtain that

g3(0; a0; a00) = g3(A; a0+ A1+ � ; a00+ a0A � A2+ � ) � `2+ � (Aa0 � A2+ � )� :

We can now use the above expression forg3(a; a0; a00) for a 6= 0 to express g3(0; a0; a00)
in terms of g3(0; 0; z), for somez 2 K. We rewrite g3(0; a0; a00) in this form, substitute
a0 = B � � 1 and A = B 2� � , and obtain after a tedious calculation

g3(0; B � � 1; a00) = g3(0; 0; a00� B ) + `2+ � B � ;

for all B 2 K n f 0g, and all a002 K. Substituting � B for B , we see thatg3(0; 0; a00�
B ) = g3(0; 0; a00+ B) + `2+ � B � . We may now put a00 = � B and obtain �nally that
g3(0; 0; B) = `2+ � B � . Plugging this into the formulae above forg3(a; a0; a00), a 6= 0, and
g2(0; a0; a00), we see thatg3(a; a0; a00) = `2+ � a00� , for all a; a0; a002 K.

So the action of' on a point (x; y; z) is given by (x; y; z) ' = ( `x � ; `1+ � y� ; `2+ � z� ), with
� and � commuting automorphisms ofK. This action is the restriction to 
 of the
collineation of H(K; K � ) de�ned by the following mapping on the points and lines with
�ve coordinates:

(
(a; l; a0; l0; a00) 7! (`a� ; ` � +3 l � ; ` � +2 a0� ; `2� +3 l0� ; ` � +1 a00� );

[k; b; k0; b0; k00] 7! [` � k� ; ` � +1 b� ; `2� +3 k0� ; ` � +2 b0� ; ` � +3 k00� ]:

The proof of Main Result 2.4.1 is complete. �

2.7 Automorphism group of the truncated Ree
geometry GC

General idea. | Let GC = ( P; C; 2 or 3) be the truncated Ree geometry, withC the
set of circles. We �rst prove that gnarls of circles have to bemapped onto gnarls of circles.
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Then we use the result from the previous section to prove thatthe automorphism group
of GC is equal to the automorphism group of the Ree geometryG.

We denote byGC
0 the derived geometry in (1 ) (so the point set is P n f (1 )g and the

blocks are the vertical and ordinary lines, as de�ned in Section 2.5.1).

Lemma 2.7.1 The full group G of automorphisms ofGC
0 has two orbits on the lines,

which are the vertical and the ordinary lines.

Proof. It is clear that G acts transitively on both the set of vertical lines and the set of
ordinary lines (asG contains the corresponding Ree group), so we only have to exclude
the possibility of one orbit. We suppose this is the case and derive a contradiction.

Consider, as before, the point setP nf (1 )g as a 3-dimensional a�ne space with point set
f (a; a0; a00)ja; a0; a002 Kg. We project it on the 2-dimensional spacef (a; a0; 0)ja; a0 2 Kg
by the standard projection map (a; a0; a00) 7! (a; a0; 0). The projection of a vertical line
La;a0 is the point (a; a0; 0), and the projection of an ordinary lineC(a;a0;a00) is the a�ne line
Y = a� X + ( a0� a1+ � ). All these a�ne lines coming from the projections of ordinary lines
form the line set of a netN , and a parallel class of ordinary lines is projected to a parallel
class in this net.

Let L be a vertical line andM a vertical or ordinary line disjoint from L. If M is a
vertical line, then the projection of L and M are two points. If there exists an ordinary
line such that the projection contains both points, then translating this back to the lines
means that through each point ofL there is an (ordinary) line intersectingM (by varying
the third coordinate a00). If, on the other hand, there is no projection of an ordinaryline
containing both points, then there is no (ordinary) line intersecting bothL and M .

If M is an ordinary line, then the projection ofM is a certain a�ne line with equation
Y = a� X + ( a0 � a1+ � ). As no projection of an ordinary line is of the formX = c with
c 2 K a constant, there are points ofM through which no (ordinary) line passes which
also intersectsL (because we would have projections of the formX = c). Also, there
obviously are ordinary lines whose projection contains theprojection of L and intersect
the projection of M . The set of ordinary lines projected to this projection forms a subset
of a parallel class exactly one member of which intersects both L and M . We conclude
that there exist lines intersecting bothL and M , but not through each point of M .

In the above two paragraphs we proved that we can tell a vertical line from an ordinary
line if one vertical line is given. Using the hypothesis thatthere is only one orbit on the
lines, this implies that there is an equivalence relation onthe lines which is preserved by
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G. One of the equivalence classes is obviously the set of vertical lines. By transitivity it
follows that through each point ofGC

0 there is exactly one line of a given equivalence class.
We now claim that the other classes are the parallel classes of ordinary lines. Indeed, if
an ordinary line C(a;a0;a00) lies in a certain equivalence class, then all linesC(a;a0;k) with
k 2 K lie in this class, because there is a vertical line through each point of C(a;a0;a00)

intersecting C(a;a0;k) . It is implied that two lines are in the same equivalence class if they
are projected to the same a�ne line. Since two intersecting a�ne lines can be viewed as
the projection of two intersecting ordinary lines, two of these subsets are parallel if and
only if the corresponding a�ne lines are parallel. This implies that the equivalence classes
are subpartitions of the parallel classes. But since through each point there has to be a
line of each equivalence class, the latter must coincide with a parallel class.

Now consider the ordinary lineC(0;0;0) and its parallel class� . We can conjugate the center
of U(1 ) to obtain an automorphism � 2 G that �xes the ordinary lines in � , acts freely
on the points of such a line, �xes the equivalency classes, and maps (0; 0; 0) to (1; 0; � 1).

Let (x; x0; x00) be an arbitrary point of GC
0. This point lies on the ordinary lineC(0;x0;b) =

f (t; x 0; b+ x0t � t2+ � ) j t 2 Kg for t = x with b := x00� x0x + x2+ � . As this ordinary
line is an element of� , the point (x; x0; x00)� also lies on this line. Hence there exists an
f x0;b(x) 2 K such that (x; x0; x00)� = ( f x0;b(x); x0; b+ x0f x0;b(x) � f x0;b(x)2+ � ). Notice that
the middle coordinate is always �xed.

The vertical line L x;x 0 = f (x; x0; t) j t 2 Kg must be mapped to another vertical line
L f x 0;b (x);x0 = f (f x0;b(x); x0; t) j t 2 Kg. From this it follows that the function f is indepen-
dent of the last coordinate. As both the �rst and second coordinate are independent of
the last, it follows that � induces an automorphism� 0 on the net N , mapping (x; x0; 0) to
(f x0;b(x); x0; 0). Now � 0 also �xes every parallel class ofN (the parallel class coming from
� is even �xed linewise), and maps (0; 0; 0) to (1; 0; 0) (because (0; 0; 0)� = (1 ; 0; � 1)). It
is now easy to see that this impliesf x0;b(x) = x + 1. This gives us the following explicit
formula for � :

� : (x; x0; x00) 7! (x + 1; x0; x00� x0x + x2+ � + x0(x + 1) � (x + 1) 2+ � )

7! (x + 1; x0; x00+ x0+ x2+ � � (x + 1) 2+ � ):

The image of the ordinary lineC(1;1;0) = f (1 + t; 1 + t; � t2+ � ) j t 2 Kg, using the formula
for � , is:

C �
(1;1;0) = f (t � 1; t + 1; � t2+ � � t2 + t1+ � + t) j t 2 Kg:

The latter has to coincide with a certain ordinary lineC(1;a0;a00) = f (1 + s; a0+ s; a00+ ( a0�
1)s � s2+ � ) j s 2 Kg (because the parallel class is preserved), witha0; a002 K. This yields
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the following system of equalities:
8
<

:

t � 1 = 1 + s;
t + 1 = a0+ s;
� t2+ � � t2 + t1+ � + t = a00+ ( a0 � 1)s � s2+ � ;

which simpli�es to: 8
<

:

s = t + 1;
a0 = 0;
t = a00+ 1 � t � :

If t = 0 the last equation gives usa00= � 1, but if we uset = 1, we obtain a00= 1, which is
a contradiction sincea00is a constant. It follows that the hypothesis of one orbit is false.

�

The following corollary follows directly:

Corollary 2.7.2 Gnarls of circles are mapped onto gnarls of circles.

Using the above and Lemma 2.5.1, one can reconstruct the spheres, giving the following
result (which is part of Main Result 2.4.2):

Corollary 2.7.3 The automorphism group ofGC is equal to that ofG.

2.8 Absolute points and lines of polarities in the Ree
hexagon

We now show our Main Corollary in the formulation below. We note that our proof will not
use the full strength of our results proved so far. Indeed, wewill only use Corollary 2.7.2.
The last few lines of the proof can be deleted if we use Main Result 2.4.1.

Corollary 2.8.1 If a collineation � of a Moufang hexagon stabilizes the set of all absolute
points of some polarity, then it stabilizes the set of all absolute lines as well.

Proof. By Theorem 7.3.4 and Theorem 7.7.2 of [59], any polarity� of a Moufang hexagon
is associated to a Ree group, so it is a polarity of the associated Ree hexagon.
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As mentioned before, a circleC of the Ree geometry is the set of absolute points at
distance 3 from a lineM , not going through an absolute point. The collineation� maps
this set to the set of absolute points at distance 3 fromM � , which is again a circle since
M � clearly is not incident with any absolute point (as� stabilizes the set of absolute
points). It follows that � induces an automorphism ofGC. The gnarl of C is the absolute
point x such that the corresponding absolute linex � intersects M . Corollary 2.7.2 now
implies that the absolute line (x � )� intersectsM � . As (x � )� also containsx � and intersects
M � , it follows that ( x � )� = ( x � )� . This means that the absolute linex � is mapped to
another absolute line. VaryingC we now see that the set of all absolute lines is stabilized
by � . �

2.9 Automorphism group of the truncated Ree ge-
ometry
GS

General idea. | Let GS = ( P; S; 2 or 3) be the truncated Ree geometry withS the
set of spheres. We again prove that gnarls of spheres have to be mapped onto gnarls of
spheres. As a consequence one can recognize certain automorphisms of the Ree geometry
generating the Ree group. Using this the circles can be reconstructed giving us the full
Ree geometryG and its automorphism group.

We denote byGS
0 the derived geometry in (1 ) (so the point set isP n f (1 )g and the

blocks are the vertical and ordinary planes, as de�ned in Section 2.5.1).

We start with some small observations:

Lemma 2.9.1 A vertical plane and an ordinary plane always intersect.

Proof. By transitivity we can suppose that the vertical plane is given by

Pa = f (a; t0; t00) j t0; t002 Kg; with a 2 K

while the ordinary plane can be represented byS(0;0;0) , which is the set
��

x00� � x0x00

x002 + x01+ �
;

� x0�

x002 + x01+ �
;

� x00

x002 + x01+ �

�
j K � K 3 (x0; x00) 6= (0 ; 0)

�
[ f (0; 0; 0)g:

If a = 0, then (0; 0; 0) 2 Pa \ S(0;0;0). If a 6= 0, then putting x0 = 0 and x00= a� 2� � in the
formula of S(0;0;0) gives the point (a;0; � a2+ � ), which is also a point ofPa. �
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Lemma 2.9.2 The intersection of P0 and S(0;0;0) is given by the setf (0; t; 0) j t 2 K g [
f (0; t � � 1; t) j t 2 Knf 0gg.

Proof. Using the representations ofP0 = f (0; t; t 0) j t; t 0 2 Kg and S(0;0;0) =
��

x00� � x0x00

x002 + x01+ �
;

� x0�

x002 + x01+ �
;

� x00

x002 + x01+ �

�
j K � K 3 (x0; x00) 6= (0 ; 0)

�
[ f (0; 0; 0)g;

we see that the points of the intersection are determined by the equationx00� � x0x00= 0.
The solutions of this equation are given byx00= 0 or x0 = x00� � 1. The �rst set of solutions
gives usf (0; t; 0) j t 2 K g, the secondf (0; t � � 1; t) j t 2 Knf 0gg. �

Note that P0 is the disjoint union of a�ne unital blocks. Indeed, the a�ne blocks
f (0; t; b) j t 2 Kg, with b 2 K, partition P0. It is now clear that the intersection of
S(0;0;0) and P0 contains exactly one a�ne unital block, and all other a�ne un ital blocks
in P0 share exactly one point with that intersection.

Lemma 2.9.3 The ordinary planesS(0;0;0) and S(0;a0;a00) , with a0; a002 K, intersect.

Proof. Since (0; a0; a00) 2 U1 mapsP0 to itself and S(0;0;0) to S(0;a0;a00) , it follows from the
paragraph preceding this lemma thatP0 \ S(0;a0;a00) contains an a�ne unital block B. But
from that same paragraph also follows thatB shares a point withP0 \ S(0;0;0) . That point
is hence contained inS(0;0;0) \ S(0;a0;a00) . �

The above lemmas now allow us to prove the following analogueto Lemma 2.7.1.

Lemma 2.9.4 The full group G of automorphisms ofGS
0 has two orbits on the planes,

which are the vertical and the ordinary planes.

Proof. As with the case of points and circles, it su�ces to prove thatthe planes can not
be all in one orbit. So suppose this is the case.

We call two vertical or ordinary planesparallel if they are disjoint or equal. By the
transitivity assumption on the planes and Lemma 2.9.1, for each point p (di�erent from
(1 )) and plane P, there is exactly one planeQ parallel to P and containingp. Let $ be
the parallel class containingS(0;0;0). BecauseU1 preserves parallelism and acts regularly
on the ordinary planes, the stabilizerV of $ in U1 acts regularly on the planes in$ and
S(a;a0;a00) 2 $ if and only if (a; a0; a00) 2 V .

Let g = ( a; a0; a00) 2 U1 be a nontrivial element ofV. Then, in view of Lemma 2.9.3,a
has to be di�erent from 0. But as V is a group, g3 = (0 ; 0; � a2+ � ) is also a nontrivial
element ofV , which does have as �rst coordinate 0, so the hypothesis is false. �
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Lemma 2.9.5 In GS
0 the a�ne unital blocks are (geometric) invariants.

Proof. We will denote the intersection of a vertical plane through the point p with the
ordinary plane with gnarl p by Wp. The setsWp are invariants of the geometry by virtue
of Lemma 2.9.4. Lemma 2.9.2 implies that the a�ne unital block through p is contained
in Wp.

By transitivity, it su�ces to construct the a�ne unital bloc k B through (0; 0; 0). Let
p 2 W(0;0;0) be a point di�erent from (0; 0; 0). If p lies onB, then W(0;0;0) \ Wp containsB
itself and so at least 4 points (asjKj > 3). Now supposep =2 B, so p = (0 ; k� � 1; k) for a
certain k 2 K di�erent from 0. Using (0; k� � 1; k) as an element ofU1 and Lemma 2.9.2,
we calculate that Wp = f (0; t + k� � 1; k) j t 2 Kg [ f (0; t � � 1 + k� � 1; t + k) j t 2 Knf 0gg.
The intersectionW(0;0;0) \ Wp contains two obvious intersection points on the a�ne unital
blocks contained in eitherW(0;0;0) and Wp. To look for more intersection points we need
to investigate whether or not it is possible to have (0; t � � 1 + k� � 1; t + k) = (0 ; s� � 1; s) for
certain s; t 2 Knf 0g. Equality on the third coordinate gives ust + k = s, the second gives
us

s� � 1 = t � � 1 + k� � 1 , (t + k)� � 1 = t � � 1 + k� � 1

, t2� � = � k2� � :

If we raise both hand sides of the last equation to the power 2+� , then we obtaint = � k,
implying s = 0, a contradiction.

Hence in this case we have thatjW(0;0;0) \ Wpj = 2. This allows us to recognize the points
of the a�ne unital block through (0 ; 0; 0) as those for whichjW(0;0;0) \ Wpj > 2. �

Lemma 2.9.6 In GS, the circles ofG are invariants.

Proof. Let p and q be two di�erent points of GS, and let G be the full automorphism
group of GS. Then we �rst want to determine the elements ofG which �x p and all the
blocks of the unital through p, within the sphere with gnarl p through q. We will denote
this group by G[p;q[.

By 2-transitivity we can suppose thatp = ( 1 ) and q = (0 ; 0; 0). The aim is to prove
that G[(1 );(0;0;0)[ = f (0; t; 0) j t 2 Kg =: H . It is easy to see that these automorphisms
satisfy the needed properties and act transitively (even regularly) on the points of the
a�ne unital block B through (0; 0; 0). Suppose there is another automorphismg which
satis�es these properties. Then, possibly by composing with a suitable element ofH ,
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we may assume thatg �xes (0; 0; 0). This implies that the sphere with gnarl (0; 0; 0)
through (1 ) is also �xed. By Lemma 2.9.2 the points (0; k� � 1; k) with k 2 Knf 0g are
also �xed, so also the blocks through (0; 0; 0) in the sphere with gnarl (0; 0; 0) through
(1 ), which makes the situation symmetric in both points. We canalso let the �xed
points of the form (0; k� � 1; k) play the role of (0; 0; 0), which yields the �xed points
(0; k� � 1

1 + k� � 1
2 + � � � + k� � 1

n ; k1 + k2 + � � � + kn) with ki 2 Knf 0g, by repeating the argument.
Choosingn = 3 and k1 = � k2 = k3 = k with k 2 Knf 0g gives us the �xed points (0; 0; k)
for all k 2 K.

Interchanging the roles of (1 ) and (0; 0; 0), we get the �xed points (k; 0; � k2+ � ) (to
calculate these observe that (0; 0; k) are the points di�erent from (1 ) on the circle with
gnarl (1 ) through (0; 0; 0), interchanging gives us the points di�erent from (0; 0; 0) on
the circle with gnarl (0; 0; 0) through (1 )). If we let a �xed point (0 ; 0; l) with l 2 K
play the role of (0; 0; 0), we obtain that all the points of the form (k; 0; l) with k; l 2 K
are �xed points. On each a�ne unital block lies a point of this form, so all a�ne unital
blocks are �xed, and by symmetry also the blocks of the Ree unital through (0; 0; 0). It
follows that all points are �xed points, and that g is the identity.

The above proves thatG[p;q[ is a subgroup of the root groupUp and hence, ifjK j > 3, also
a subgroup of the simple Ree groupR0(K; � ). The group K generated by all groups of the
form G[p;q[ is a normal subgroup of this Ree group (indeed, ifg is an automorphism ofGS,
then Gg

[p;q[ = G[pg ;qg [). So by simplicity, K coincides withR0(K; � ). Now, by [10], the root
groups ofK are the unique unipotent subgroups ofK . Hence we can recover these root
groups and consequently also the circles constructed from these root groups.

If jK j = 3, then K is a normal subgroup of the Ree groupR(3) over the �eld with 3
elements. But the groupsG[p;q[ do not belong to the simple Ree group. Hence it is easy
to see thatK coincides with the Ree groupR(3) and, as above, we can again recover the
circles. �

We have proved :

Corollary 2.9.7 The automorphism group ofGS coincides with that ofG.

This completes the proof of Main Result 2.4.2.
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Chapter 3

`Rank two' case, or generalized
polygons

During my Ph.D. studies, I obtained various results about generalized polygons, which
can roughly be put in two categories: mixed quadrangles and generalized inversive planes,
and embeddings of quadrangles in buildings of typeF4.

Mixed quadrangles. | In 1974, Jacques Tits [44] introduced what he calledgroups of
mixed type, as a certain generalization of algebraic groups. This was motivated by the fact
that certain spherical buildings arise from such groups, and Tits classi�ed all spherical
buildings of rank at least three in [44].

Roughly, the groups of mixed type of rank 2 arise when the weight of the edge of the
rank 2 Coxeter diagram is equal to the characteristic of the underlying �eld. Indeed,
in the commutation relation of the root groups, the weightw of the edge turns up as a
coe�cient, and as a power (if the diagram is included in a rank3 diagram, then only
the casesw 2 f 1; 2; 3g occur). If the corresponding term does not vanish (i.e., if in
the underlying �eld w is not equal to 0), then we are in the generic case where we are
able to distinguish long and short roots (by the commutationrelations, but also by the
geometry of the corresponding building). However, ifw = 0, i.e., if the characteristic of
the underlying �eld is equal to w, then the commutation relations become much more
symmetric, allowing for diagram automorphisms. If the �eldis perfect, not much extra
happens since the symmetry is thenup to the �eld Frobenius automorphismx 7! xw ,
and we only obtain an extra group automorphism (diagram automorphism). However, if
the �eld is not perfect, then this `duality' is not surjective anymore, and we obtain the
peculiar situation in which the rank 2 geometry `looks' symmetric, but isn't. Technically,
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the duality maps the geometryinto itself, but not onto. In other words, the geometry
(building) is isomorphic to the dual of a subgeometry. On thealgebraic level, we obtain
an in�nite descending chain of algebraic structures, each one containing the next one,
and the �rst one parameterizing the chambers in a certain panel. Since we have two
di�erent types of panels, we have two such chains (which are mapped onto each other by
the duality). The strange thing is now that `interlacing' subchains de�ne subgeometries
and the corresponding automorphism groups are the groups ofmixed type. If the original
chains consist of �elds, then the interlacing chains may consist of �elds, too, but also of
vector spaces. The latter only happens forw = 2.

In this chapter, we study the casew = 2 in a geometric way. This is the case where
the Coxeter diagram has a weight 2 edge, hence a double bond. Geometrically, this is
the case of the (Moufang) generalized quadrangles. In the (algebraically) split case, we
have a symplectic quadrangle over some �eldK. If K has characteristic 2 and is perfect,
then this generalized quadrangle, denoted byW(K), is self-dual. If K has characteristic
2 and is not perfect, then we are in the mixed case. There are two types of panels here,
and hence two di�erent parametrizations. Any point row is parametrized by K [ f1g ,
while any line pencil is parametrized byK2 [ f1g (here, K2 is the �eld of squares ofK).
We obtain two chains K � K2 � K4 � � � � and K2 � K4 � K8 � � � � . An interlacing
chain may look likeK0 � K02 � K04 � � � � , with K0 a �eld satisfying K2 � K0 � K. But
we may also substituteK in the �rst chain by a vector spaceL over K0 contained in K,
and K0 in the second chain by a vector spaceL0 over K2 contained in K0. This is the
most general case that can occur. We denote the corresponding (Moufang) quadrangle
by W(K; K0; L; L 0).

The quadrangleW(K; K0; L; L 0) has an interesting geometric property. Indeed, all its
points and lines areregular (for precise de�nitions, see below). Moreover, the dual nets
associated with the regular elements also satisfy some regularity properties. In a very
weak form one can say that these dual nets satisfy a certain Little Desargues Axiom. We
will show that this axiom, together with the regularity of points and lines, characterizes
all quadrangles of mixed type. In order to answer the question of the geometric di�erence
between the cases where both / exactly one / none ofL and L0 are �elds, we consider the
Veblen & Young Axiom in these dual nets. We will show that if a generalized quadrangle
has enough regular points and lines, and if the dual nets related to the regular points
satisfy the Axiom of Veblen & Young, then the quadrangle is ofmixed type and L0 is a
�eld.

These results hold in both the in�nite and �nite case. But in the �nite case there are
no proper mixed quadrangles since a �nite �eld is always perfect. All the results of the
present chapter that are also valid in this improper mixed case are actually well known
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for �nite quadrangles, but some of our proofs give rise to alternative arguments. As an
example we mention that Theorem 3.5.6 immediately implies that, if a �nite generalized
quadrangle of orderq has an ovoid of regular points, then all corresponding projective
planes are classical.

These results, and the ones in the next subsection, were obtained in a joint work with
Hendrik Van Maldeghem, see [35].

Generalized Suzuki-Tits inversive planes. | Another feature of the mixed quad-
rangles is that certain of them admitpolarities, i.e., dualities of order 2. In this case, the
centralizer of that polarity in the little projective group of the quadrangle is a (general-
ized) Suzuki group. The set of elements �xed under a polaritycan be structured to a
geometry which is called ageneralized inversive planein [61]. The main result of [61] says
that the automorphism groups of these generalized inversive planes are essentially the
(generalized) Suzuki groups. In the present chapter, we usethe above characterizations
of the mixed quadrangles to axiomatize the generalized inversive planes corresponding to
the generalized Suzuki groups. In the perfect case, this hasalready been done by Hendrik
Van Maldeghem in [58]. So we relax the axioms of [58] to deal with the more general case
of imperfect �elds (using the Veblen & Young Axiom) and vector spaces (using the Little
Desargues Axiom). As a corollary, these new results let us simplify the characterization
for the perfect case in [58] by removing one axiom.

Embeddings of quadrangles in buildings of type F4. | The �rst examples of
generalized polygons mainly arose asembeddingsin projective spaces, i.e., the points of
the polygon are some points of a projective space, while the lines of the polygon can be
identi�ed with some lines of the projective space, and the incidence relation is the natural
one. The mixed quadrangles and the hexagons mentioned in theabove subsection and
the previous chapter are examples of such embeddings. If theembedding is `nice', then
it automatically inherits beautiful symmetry properties from the projective space, see
[13, 18, 32, 33, 40]. `Nice' could mean that the lines of the polygon through any point
are contained in a certain subspace of the projective space (plane, hyperplane), or that
the points not opposite a given point in the polygon do not span the entire projective
space, or just a bound on the dimension of the projective space together with the fact
that all points of the projective space on any line of the polygon belong to the polygon.
In particular, the previous references contain characterizations and classi�cations of the
`nice' embeddings of the Moufang generalized quadrangles and hexagons.

However, not all Moufang polygons admit an embedding as considered above. The notable
examples are the exceptional Moufang quadrangles and theirduals, the duals of some
embeddable classical Moufang quadrangles, and the duals ofthe exceptional Moufang
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hexagons and of the Ree-Tits octagons. These exceptional polygons geometrically come
forward in a di�erent way: they do not arise from `forms' of a projective space, but from
`forms' of buildings of exceptional type and rank at least 4.All types arise: E6; E7; E8; F4.
In this chapter, we take a closer look at the situation ofF4 (called metasymplectic spaces
from a geometric point of view). This case is the least `algebraic' of the lot. Similar as
explained above, characteristic 2 is a special case for buildings of typeF4 (which contain
an edge of weight 2). This leads to the existence of groups andbuildings of mixed type
with diagram F4, see [44].

Using this special behaviour one can �nd embeddings of certain Moufang quadrangles and
octagons. This is the starting point. Our goal is to �nd a `nice' property of the embedding
of the exceptional Moufang quadrangles in buildings of typeF4 that guarantees that any
quadrangle embedded in a building of typeF4 with that property, is automatically a
Moufang quadrangle. This property will be denoted by (OV) inSection 3.9. Roughly,
we require that the points of the quadrangle are points of thebuilding, the lines of the
quadrangle are hyperlines of the building (with natural incidence), and (OV) says that
any two noncollinear points of the quadrangle are never contained in a hyperline of the
building. In other words, collinearity in the quadrangle coincides with cohyperlinearity
in the building. This very natural property surprisingly is enough to characterize the
Moufang quadrangles arising from buildings of typeF4.

The results mentioned in this subsection are accepted for publication in European J.
Combin.

3.1 Some further de�nitions on generalized
quadrangles

Let � = ( P; L ; I ) be a generalized quadrangle and letx be an arbitrary point. The set of
points of � collinear with x will be denoted byx? . For a setX � P , we denote byX ? the
set of points collinear with all points ofX , and we abbreviate (X ? )? by X ?? . If y is a
point oppositex, then f x; yg? is called theperp of the pair x; y. The spanof the pair x; y
is the setf x; yg?? . If every span containingx is also a perp (of a pair of di�erent points,
needless to say), then the pointx is called regular. Dually one de�nes regular lines. If
x is a regular point, then the geometry ��x = ( x? n f xg; ff x; yg? : y 6� xg; 2 or 3) is
a dual net (associated tox) (see Section 1.9.2) , i.e., it has the property that for every
point z 2 x? n f xg and every block B = f x; yg? , with y opposite x, there is a unique
point z0 2 B not collinear with z (collinearity in � �

x ). If � �
x is a dual a�ne plane, then
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we call x a projective point. The motivation for this terminology is that the geometry
� x = ( x? ; ff x; yg? : y 2 Pg; 2 or 3) is then a projective plane, called theperp-plane
in x. Projective points have nice properties. For instance, onecan easily check thatx
is a projective point if and only if the geometry (P n x? ; f L 2 L : x 6I Lg [ ff x; yg?? :
y 6� xg; I or 2 or 3) is a generalized quadrangle if and only if every pair of distinct
perps contained inx? meet in a unique point (this construction is known as thePayne
construction, see [25]).

Finally we introduce some notions concerning symmetry in generalized quadrangles. A
point x of a generalized quadrangle is called acenter of symmetryif it is regular and if
the group of collineations �xing x? pointwise acts transitively on the setf x; yg?? n f xg,
for some, and hence for every, pointy opposite x. The dual notion is called anaxis of
symmetry.

3.2 Examples of generalized quadrangles

We introduce some classes of generalized quadrangles whichwill be of use later on.

3.2.1 Symplectic quadrangles

The prototype class of examples of generalized quadranglesis the class ofsymplectic
quadrangles, which are de�ned as follows. Let� be a symplectic polarity in a 3-dimensional
projective spacePG(3; K) over a �eld K. If P is the point set of PG(3; K), if L is the
set of lines ofPG(3; K) �xed by � , and if I denotes the incidence relation inPG(3; K),
then W(K) = ( P; L ; I ) is a generalized quadrangle called thesymplectic quadrangle (over
K). All the points of W(K) are regular, even projective. Conversely, Schroth [31] proved
that any generalized quadrangle all points of which are projective is isomorphic to a
symplectic quadrangle. In fact, Theorem 6.2.1 of [54] asserts that, if all points of a
generalized quadrangle � are regular and at least one point is projective, then all points
are projective and � is a symplectic quadrangle. The �rst step in the proof is to show
that if a point x of � is projective, then every opposite (regular) point is also projective.
We record this step as a separate lemma for later reference.

Lemma 3.2.1 ([59]) Let x; y be two opposite points of a generalized quadrangle� . If x
is projective andy is regular, theny is projective too.
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The symplectic quadrangle has a lot of symmetry. All points of W(K) are centers of
symmetry. Dually, all lines of W(K) are axes of symmetry if and only ifK has char-
acteristic 2. Also, W(K) is self-dual if and only if K is a perfect �eld with characteris-
tic 2. Moreover, W(K) admits a polarity if and only if there exists a Tits automorphism
� : K �! K : x 7! x � , so (x � )� = x2, for all x 2 K (see Section 1.9.1).

We now give a description ofW(K) using coordinates (see [59]). LetW(K) = ( P; L ; I ) be
the symplectic quadrangle over the �eldK. Then we may take forP the following set:

P = f (1 )g [ f (a) : a 2 Kg [ f (k; b) : k; b 2 Kg [ f (a; l; a0) : a; l; a0 2 Kg;

and for L the set

L = f [1 ]g [ f [k] : k 2 Kg [ f [a; l] : a; l 2 Kg [ f [k; b; k0] : k; b; k0 2 Kg;

where1 is a symbol not contained inK, and where incidence is given by

(a; l; a0)I [a; l]I (a)I [1 ]I (1 )I [k]I (k; b)I [k; b; k0];

for all a; a0; b; k; k0; l 2 K, and

(a; l; a0)I [k; b; k0] ()
�

a0 = ak + b;
k0 = a2k + l � 2aa0:

We clearly see the asymmetry if the characteristic ofK is unequal to 2. If, on the other
hand, the characteristic ofK is equal to 2, then the two above formulas are equivalent if
squaring is an automorphism, i.e., the Frobenius is surjective, implying the �eld is perfect.

3.2.2 Mixed quadrangles

Mixed quadrangles are subquadrangles of the symplectic quadrangle W(K), for K an im-
perfect �eld with characteristic 2 (in the other case the only (thick) subquadrangles are
symplectic quadrangles over sub�elds). Neither the point set nor the line set of these
subquadrangles can be given by a nice set of equations inPG(3; K), because the corre-
sponding collineation groups are not algebraic groups. Thequickest and most elementary
way to de�ne the mixed quadrangles is using the coordinates of symplectic quadrangles
introduced above.

So supposeK is imperfect and of characteristic 2, and letK2 be the sub�eld consisting of
all squares. LetK0 be a sub�eld with K2 � K0 � K and let L; L 0 be subspaces ofK; K0



3.3 Dual nets 59

viewed as vector spaces overK0; K2, respectively, with K2 � L0 and K0 � L . We consider
the description ofW(K) with coordinates as above, and we now restrict thea; a0; b to L
and the k; k0; l to L0. Then we obtain a subquadrangle that we denote byW(K; K; L; L 0)
and call amixed quadrangle(the terminology in [51] mentionsindi�erent quadrangle, but
we prefer to name the geometries after the groups, as for the symplectic quadrangle). In
order to have a unique de�nition, we also assume thatL and L0 generateK and K0 as
a ring. Note that W(K) = W(K; K; K; K) and that W(K; K2; K; K2) is the dual of W(K)
(and this dual is isomorphic to the generalized quadrangle arising from a nonsingular
quadratic form of maximal Witt index in a �ve-dimensional vector space overK).

It is convenient to also callW(K), with K perfect and of characteristic 2, a mixed quad-
rangle. In this case, we also writeW(K) = W(K; K; K; K).

In general, the dual ofW(K; K0; L; L 0) is isomorphic to W(K0; K2; L0; L2); hence the class
of mixed quadrangles is a self-dual one. Moreover, since allpoints of W(K) are regular,
so are all points of every mixed quadrangle, and hence so are all lines of it. Notice
that, applying duality twice, the subquadrangleW(K2; K02; L2; L02) of W(K; K0; L; L 0) is
isomorphic to W(K; K0; L; L 0) itself.

Let us �nally mention that all points of a mixed quadrangle are centers of symmetry, and
all lines are axes of symmetry. Moreover, it follows from [37] and Theorem 21.10 in [51]
that, if all lines of a generalized quadrangle � are axes of symmetry, and at least one point
is regular, then � is a mixed quadrangle.

3.2.3 Suzuki quadrangles

It is well known, see Theorem 7.3.2 of [59], that a mixed quadrangleW(K; K0; L; L 0) admits
a polarity if and only if K admits a Tits endomorphism� : K �! K and we can choose
K0; L; L 0 such that K0 = K � and L0 = L � . Hence every polarity inW(K; K0; L; L 0) is the
restriction of a polarity in W(K; K0; K; K0). So the case ofL = K is a kind of principal
case. A self-polar mixed quadrangle shall be called aSuzuki quadrangle.

Remark 3.2.2 The mixed quadrangles and mixed hexagons have a similar algebraic
background in the theory of mixed groups, and for this reasonmany properties are alike.

3.3 Dual nets

In Section 3.1, it was mentioned that one can associate a dualnet to a regular point of
a generalized quadrangle. We now take a closer look at dual nets in order to state the
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results.

Let � = ( P; L ; I ) be a dual net. Noncollinear points shall be calledparallel, it is easy
to see that parallelism is an equivalence relation inP. Call the dual parallel classes of
points vertical lines and introduce a new point1 incident with all vertical lines. This
way we create a linear space� = ( P; L ; I ) (a linear spaceis a point-line geometry in which
every pair of distinct points is incident with a unique line). A triangle is a set of three
pairwise intersecting distinct elements ofL , but such that all three lines do not have a
point in common. The 3 intersection points are also viewed asbelonging to the triangle.
Two triangles are said to bein perspective from a pointx if there are three di�erent lines
through x of � each incident with a unique point of each triangle. Consider the following
two conditions:

(LD) For every pair of triangles which are in perspective from the point 1 , and for
which two pairs of corresponding sides meet on a vertical line V, the third pair of
corresponding sides also meets onV.

(VY) If a line L meets two sides of a proper triangle in two distinct points, thenL intersects
the third side too.

If we want to �x and include the line V of (LD) in our assumptions, we more speci�cally
say that the dual net satis�es (LD) with respect to the vertical lineV.

The letters (LD) and (VY) stand for Little Desarguesand Veblen-Young, respectively.

3.4 Results on mixed quadrangles

A famous conjecture says that every generalized quadrangleall elements of which are
regular is isomorphic to a mixed quadrangle (in the form of a problem, this is Problem 8
in Appendix E of [59]). In the �nite case, generalized quadrangles all of whose points are
regular are not classi�ed, unless one requires an additional condition on the corresponding
dual nets, or on the parameters. In [39] the condition that these dual nets satisfy the
Axiom of Veblen-Young does the job. In the present chapter wewill classify all generalized
quadrangles with a lot of regular points and lines, and for which the dual nets associated
to the regular points satisfy the Axiom of Veblen-Young. Postponing a discussion of what
`a lot' precisely means to Section 3.5.3 (see Theorems 3.5.8and 3.5.9), we here state the
weakest form.
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Main Result 3.4.1 A generalized quadrangle� is isomorphic to some mixed quadran-
gle W(K; K0; L; K0) if and only if all points and lines of� are regular and the dual net
associated to each regular point satis�es Condition(VY) .

In order to include all mixed quadrangles, we have to appeal to Condition (LD).

Main Result 3.4.2 A generalized quadrangle� is isomorphic to some mixed quadran-
gle W(K; K0; L; L 0) if and only if all points and lines of� are regular and the dual net
associated to each regular point satis�es Condition(LD) .

3.5 Proofs

General idea. | First we show that under certain assumptions Condition (LD ) follows
from Condition (VY). Then, using a ag consisting of a regular point and line, such that
the point satis�es (LD), we construct collineations of the generalized quadrangle, making
the line into an axis of symmetry. Enough axes of symmetry will then imply that the
quadrangle is a mixed quadrangle.

3.5.1 Dual nets satisfying the axiom of Veblen-Young

Let � = ( P; L ; I ) be a dual net. As before, we call the dual parallel classes ofpoints vertical
lines and introduce a new point1 incident with all vertical lines. This way we created
a linear space� = ( P; L ; I ). If two lines L; M intersect in this linear space, we write
L � M . Let V be the set of all vertical lines. Our aim is to prove that Condition (LD)
follows from Condition (VY), if there exists at least one pair of nonintersecting lines.

So henceforth we assume that � satis�es (VY), and that there are at least two noninter-
secting lines in �. Clearly, the latter condition is equivalent with � being not a dual a�ne
plane.

We begin with de�ning a projective plane for every pair of intersecting linesL; M . Indeed,
let L; M be two intersecting lines in �, and let x be their intersection point. Then we
consider the set of lines intersecting bothL and M in two distinct points, together with
the set of lines incident withx and meeting some lineK that intersects L and M in two
distinct points. We denote this set byB� . The point set A is de�ned to be the set of
points incident with at least one element ofB� , together with 1 . Now add all vertical
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lines to B� by de�ning B = B� [ V . If we denote the restriction ofI still by I (slightly
abusing notation), then we claim that � L;M = ( A ; B; I ) is a projective plane.

Indeed, this is in fact a routine check. Let us �rst show that two distinct lines X; Y
always meet. If at least one ofX; Y belongs toV, or if both X; Y are incident with x,
then this is trivial. If none of X; Y is incident with x, then this follows directly from
(VY), as by de�nition both of X and Y meet both ofL and M . If X is incident with x,
then it intersects some lineK which also intersects both ofL and M in distinct points.
Since we may assumeK 6= Y, we may also assume thatY; K; L form a proper triangle
(as otherwiseY; K; M form one). Now (VY) implies that X meetsY.

Now we show that two distinct pointsy; z 2 A are joined by exactly one line inB. Indeed,
we clearly may assume that neithery or z coincides with1 , and that they are not incident
with the same vertical line. Hence they are incident with a unique memberX 2 L . We
must show that X 2 B � . By de�nition, yI Y 2 B � and zI Z 2 B � . Suppose thatYI x. Let
K 2 B � be such that K intersectsL; M; Y in three di�erent points, and suppose thaty
is not incident with K . Choose an arbitrary pointy0 incident with K and not parallel to
y. The line Y 0 joining y and y0 meets both ofL and M by (VY). We have shown that we
may assume thatY is not incident with x, and hence neitherZ . Moreover, using (VY),
we can arrange thatY; Z do not meet onL or M (if they do then we may re-chooseY
not incident with the intersections ofZ with L and M ). Then X meets two sides of both
the trianglesY; Z; L and Y; Z; M in distinct points, and hence (VY) implies that X meets
both of L and M . If X is not incident with x, then X 2 B � by de�nition; if xI X , then
with K 2 f Y; Zg, we see that againX 2 B � .

Clearly � L;M = � L 0;M 0 for L0; M 0 distinct nonvertical lines of � L;M . Hence if two projec-
tive planes of this form share two nonvertical lines, then they coincide.

If we now remove from � L;M the point 1 and the vertical lines, then we obtain a dual
a�ne plane. Our assumptions and the existence and uniqueness of the projective plane
constructed above now implies that the dual of � is a subplanecovered net in the sense
of Johnson [17]. It follows from the latter paper that we can identify P with the points of
a projective spaceP minus a subspaceW of codimension 2, andL can be identi�ed with
the lines ofP that do not intersect W. Our hypothesis that � is not a dual a�ne plane
implies that the dimension ofP is at least 3, and hence it is a Desarguesian projective
space.

Now if a pair of triangles is in perspective from1 , and if two pairs of corresponding
sides meet, then inP, this means that the two triangles are also in perspective from a
point (because two corresponding pairs of sides must lie in the same plane), and so by
Desargues' theorem, also the third pair of corresponding sides meets, and this intersection
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point is collinear with the two others. This shows (LD).

Hence we have proved the following theorem.

Theorem 3.5.1 A dual net which is not a dual a�ne plane satis�es (VY) only if it
satis�es (LD) .

One of our crucial tools to characterize the mixed quadrangles is Property (LD) for the
nets associated to the regular points of some generalized quadrangle �, which we now know
to hold if (VY) is satis�ed for these dual nets in the case theyare not dual a�ne planes.
In dual a�ne planes (VY) holds trivially, but (LD) is not nece ssarily true. A su�cient
condition for (LD) is that the corresponding projective plane is a Moufang plane. And
that is exactly what we are going to prove in the case that the generalized quadrangle
contains `enough' projective points.

3.5.2 Generalized quadrangles with a lot of projective poin ts

In this section we concentrate on generalized quadrangles with a number of projective
points. In fact, we only need one projective point and a set ofregular points. More
precisely, let � be a generalized quadrangle and letO be a set of regular points of �. We
assume the following two conditions onO.

(PP) At least one member ofO is a projective point.

(TP) If x; y are opposite points of �, then jf x; yg? \ Oj 6= 1.

Our aim is to prove that, under these assumptions, all pointsof O are projective and
every corresponding perp-plane is a Moufang projective plane. We will need the following
characterization of Moufang projective planes by H. Van Maldeghem [60]. In a projec-
tive plane, a line L is called anaxis of transitivity if the pointwise stabilizer of L acts
transitively on the points not incident with L.

Theorem 3.5.2 ([60]) A projective plane is a Moufang plane if and only if each lineL
is an axis of transitivity.

Henceforth � is a generalized quadrangle withO a set of regular points of � satisfying
(PP) and (TP).

We start with proving that all elements of O are projective.
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Lemma 3.5.3 Every element ofO is a projective point of � .

Proof. We know that there is at least one pointp 2 O which is projective. Let q be any
other element ofO. If q is oppositep, then Lemma 3.2.1 implies thatq is projective.
Now supposeq � p. Let x; y be opposite points collinear top such that x is incident with
the line pq, but x 6= q. Then p 2 f x; yg? , implying by (TP) that some other element
p0 2 O n f pg also belongs tof x; yg? . Clearly, p0 is oppositep and therefore is a projective
point. But p0 is also oppositeq and hence Lemma 3.2.1 implies thatq is projective.

The lemma is proved. �

We now prove a lemma that will generate collineations of the perp-planes �p, for p 2 O .

Lemma 3.5.4 Let p; q 2 O , with p oppositeq. Then the following function� p;q de�nes
an isomorphism between� p and � D

q :

(i ) A point x of � p is mapped to the blockx � p;q of � q consisting of all the points collinear
with both x and q.

(ii ) A block � of � p is mapped to the point� � p;q of � q collinear with q and with all points
of � .

Proof. First we show that � p;q is well de�ned by proving that for each block� of � p,
there is indeed a unique pointa � q collinear with all points of � . We may assume
that � 6= f p; qg? , as otherwisea = q is easily seen to be that unique point. Since �p is
projective, there is a unique pointr 2 f p; qg? \ � . Now a is necessarily the unique point
on the line rq which is collinear with any point of � n f r g.

The de�nition of � p;q now easily implies that, if x 2 � , with x � p and � a block of � p,
then � � p;q 2 x � p;q . Also, the inverse mapping is apparently given by� q;p, hence� p;q is
bijective and so de�nes an isomorphism from �p to the dual of � q. �

Note that we can write x � p;q = f q; xg? and � � p;q = � ?? \ q? , with x � p and � a block of
� p.

We now consider three di�erent pointsp1; p2; p3 2 O , with p3 opposite bothp1 and p2. By
the previous lemma, we can combine� p1 ;p3 and � p3 ;p2 to an isomorphism� := � p1 ;p3 � p3 ;p2

between �p1 and � p2 . Let us calculate the image of a pointx of � p1 under � :

x � = x � p1 ;p 3 � p3 ;p 2 = ( f x; p3g? )� p3 ;p 2 = f x; p3g?? \ p?
2 :
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If we apply this to a point a in f p1; p2g? , then, sincea 2 f a; p3g?? \ p?
2 , we see that

a� = a (note the independence ofp3). We also havep�
1 = f p1; p3g?? \ p?

2 .

Now let p0
3 be another point of Onf p1; p2g opposite both p1; p2. We obtain a di�erent

isomorphism� 0 := � p1 ;p0
3
� p0

3 ;p2 between the two perp-planes �p1 and � p2 . This allows us
to construct a collineation � := � � 1� 0 of � p2 . Using the independence mentioned in the
above paragraph we see thatf p1; p2g? is �xed pointwise under the action of � . Choose
points x; y in � p2 di�erent from p2 and not contained inf p1; p2g? . We can choosep3 2 O
in such a way that p�

1 = x (this is possible since the spanf p1; xg?? contains at least
two points of O, and we can choosep3 as one of these points di�erent fromp1; then
p�

1 = f p1; p3g?? \ p?
2 = f p1; xg?? \ p?

2 = x). Analogously, we can choosep0
3 2 O in such

a way that p� 0

1 = y. Combining this we obtainx � = x � � 1 � 0
= p1

� 0
= y.

Consequently, the pointwise stabilizer off p1; p2g? in the collineation group of �p2 acts
transitively on all the other points of the plane, possibly except p2. But if p2 was �xed by
this stabilizer, then the orbits of the other points would completely lie on lines through
p2, which is impossible by the transitivity already shown. So the pointwise stabilizer of
f p1; p2g? is transitive on all points of the perp-plane �2 except for the points off p1; p2g?

itself. Hencef p1; p2g? is an axis of transitivity in the projective plane � p2 .

We can even do better.

Lemma 3.5.5 Each block� of � p2 is an axis of transitivity.

Proof. Let � be a block of �p2 not incident with p2, so that � is a perp f p2; xg? with x
a point of � opposite p2. The spanf p2; xg?? is a perp and containsp2, hence it contains
a second pointp4 2 O . This implies � = f p2; p4g? and the assertion follows from our
previous discussion.

The blocks through p2 can now be mapped to blocks not throughp2 by the pointwise
stabilizers of the blocks not containingp2. So the blocks throughp2 are also axes of
transitivity. �

Now Theorem 3.5.2 implies that �p2 , and hence all perp-planes of points inO, are Moufang
projective planes, and in particular satisfy Condition (LD).

Hence, in this section, we have shown the following theorem.

Theorem 3.5.6 Let � be a generalized quadrangle and letO be a subset of regular points
of � satisfying (PP) and (TP) . Then all points of O are projective and all corresponding
perp-planes are Moufang projective planes, and satisfy, inparticular, (LD) .
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3.5.3 Quadrangles with regular points satisfying (LD)

In this section, we will prove Main Result 3.4.1 and Main Result 3.4.2. They will follow
from Theorem 3.5.1, Theorem 3.5.6 and the following lemma.

Lemma 3.5.7 Let � = ( P; L ; I ) be a generalized quadrangle containing a agf p; Lg
consisting of a regular lineL and a regular pointp such that the dual net associated top
satis�es (LD) with respect to the vertical line de�ned byL. Then L is an axis of symmetry
for � .

Proof. First of all we notice that if there are only three lines through each point in �, then
regularity of a point implies that there are also exactly three points on each line. Such a
generalized quadrangle is always isomorphic toW(2), in which the assertion clearly holds.
So we may assume that there are at least four lines through each point.

Let M be a line throughp di�erent from L. Let a; a0 be two points incident with M but
di�erent from p. We will gradually construct a collineation � mapping a to a0 �xing L
pointwise, and �xing all lines meetingL.

Lines intersecting L

For these linesN we setN � = N .

Points collinear to p not on L

Let N be a line throughp di�erent from both L and M , and let q be a point onN di�erent
from p; then we de�ne the image ofp under � as follows. The perp� in � �

p through a and
q intersectsL in a point b. Then q� is the intersection point ofN with the perp through
a0 = a� and b. This way the image ofa de�nes the image of a pointq collinear with p,
but not with a. We denote this as:a ! q. The image of a pointc on M is de�ned by
q ! c, for some pointq � p not collinear to c.

To show that � is well de�ned, we have to prove that combininga ! bwith b ! c (we will
abbreviate this by a ! b ! c) where b is not collinear with either a or c, is independent
of the choice ofb. So supposea; b; cand d are four points in p? not on L such that both
b and d are not collinear with either a or c.
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(i ) If a is not collinear with c, then a ! b ! c is equivalent with a ! c. Indeed, this
follows directly from the condition (LD) applied to the trianglesa; b; cand a� ; b� ; c�

(where � is de�ned using a ! b ! c). Similarly, a ! d ! c is equivalent with
a ! c and the result follows.

(ii ) Suppose thata is collinear with c. If b is not collinear with d then a ! b ! c is
equivalent with a ! b ! d ! c which in its turn is equivalent with a ! d ! c. If b
and d are collinear then we can choose a pointe collinear with p but not with a or
b and not on L (because there are at least four lines through a point in �). Then
a ! b ! c is equivalent with a ! b ! e ! c, a ! e ! c and a ! d ! c by using
the previous arguments.

It is important to note that � preserves the perps in ��p.

Lines and points opposite L or p

Let N be a line oppositeL, and let pI AI qI N . Then we de�ne N � to be the unique
line incident with q� in the (line) span containing L and N . The image of a point t
incident with N is de�ned as the intersection point ofN � with the unique line K through
t intersecting L (these lines indeed intersect because of the regularity ofL). The only
thing left to show is that t � is well de�ned. If t is collinear with p then this is clear, so
supposet 6� p. The lines throught de�ne a perp in � �

p, which will be mapped to another
perp by � while �xing the intersection point r of K and L of the perp. The images of
all the lines through t must meet K . Since they also must contain a point of the perp
f p; t� g? , we see that they are all incident witht � . Hencet � is well de�ned. It is now also
clear that � and its inverse preserve incidence, and hence it is a symmetry. Sincea and a0

were basically arbitrary, it follows that L is an axis of symmetry, and the lemma follows.
�

We are now ready to prove slightly more general results than Main Results 3.4.1 and 3.4.2.

Theorem 3.5.8 A generalized quadrangle� = ( P; L ; I ) is a mixed quadrangle if and only
if there is a subsetO � P of points and a nonempty subsetS � L of lines satisfying the
following conditions.

(i ) All points of O and all lines ofS are regular.

(ii ) Every (line) span containing a line ofS contains at least two lines ofS.
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(iii ) Every element ofS is incident with some element ofO.

(iv ) The dual net associated to each regular pointx of O satis�es (LD) with respect to a
vertical line given by some element ofS incident with x.

In particular, if all elements of � are regular and(iv ) holds, then� is a mixed quadrangle.

Proof. Fix a line L of S. By (iii ), there is a regular point p incident with L with the
property that, by ( iv ), the associated dual net satis�es (LD). Lemma 3.5.7 implies that
L is an axis of symmetry. Likewise, every element ofS is an axis of symmetry. LetM be
an arbitrary line oppositeL. The spanf L; M g?? contains some elementK 2 S n f Lg, by
(ii ). SinceL is an axis of symmetry, there is a collineation mappingK to M . SinceK is
an axis of symmetry, so isM . Hence all lines oppositeL, and likewise all lines opposite
K , are axes of symmetry. It is easy to see that for each elementN of f L; K g? there is a
line opposite all ofL; K; N . We conclude that all lines of � are axes of symmetry. Since
we have at least one regular point, we can conclude that � is a mixed quadrangle (see
Section 3.2.2). �

Theorem 3.5.9 A generalized quadrangle� = ( P; L ; I ) is isomorphic to a mixed quad-
rangle W(K; K0; L; K0) if and only if there is a subsetO � P of points and a nonempty
subsetS � L of lines satisfying the following conditions.

(i ) All points of O and all lines ofS are regular.

(ii ) Every span containing a point ofO contains at least two points ofO.

(ii )0 Every (line) span containing a line ofS contains at least two lines ofS.

(iii ) Every element ofS is incident with some element ofO.

(iv ) The dual net associated to each regular point ofO satis�es (VY) .

In particular, if all elements of � are regular and(iv ) holds, then� is isomorphic to a
mixed quadrangleW(K; K0; L; K0).

Proof. If none of the points ofO are projective, then Theorem 3.5.1 implies that, to-
gether with (iv ), each dual net associated to a regular point ofO satis�es (LD). From
Theorem 3.5.8 we infer that � is isomorphic to a mixed quadrangle W(K; K0; L; L 0).
We now show that L0 = K0. Assume, by way of contradiction, thatL0 6= K0. Then
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we can choose elementsk; k0 2 K0 such that kk0 =2 L0. One easily calculates that
in the coordinate representation ofW(K; K0; L; L 0), the perp Ta;a0 := f (1 ); (a; l; a0)g?

consists of the point (a) together with the points (x; ax + a0), x 2 L0. Now we con-
sider the perpsT0;0 = f (0)g [ f (x; 0) : x 2 L0g and T0;1 = f (0)g [ f (x; 1) : x 2 L0g,
which both meet the perpsT1;0 = f (1)g [ f (x; x) : x 2 L0g and T(k � 1+1) � 1 ;k0(k � 1+1) � 1 =
f ((k� 1 + 1) � 1)g [ f (x; (k� 1 + 1) � 1x + ( k� 1 + 1) � 1k0) : x 2 L0g. By (VY), the latter two
perps must intersect. Hence there must existx 2 L0 such that

x = ( k� 1 + 1) � 1x + ( k� 1 + 1) � 1k0;

which is equivalent with kk0 = x 2 L0, a contradiction.

If at least one point of O is projective, then by Theorem 3.5.6 and Assumption (ii ), all
points of O are projective, and all corresponding perp-planes are Moufang and satisfy
(LD). Since they also satisfy (VY), the result now again follows from Theorem 3.5.8 and
the computation performed in the previous paragraph. �

3.6 Results on generalized Suzuki-Tits
inversive planes

Let � be a polarity in a Suzuki quadrangle and letO be the set of its absolute points,
which forms an ovoid of the Suzuki quadrangle - the so-calledSuzuki-Tits ovoid. Viewed
as a subset of points ofPG(3; K), it is also an ovoid in the sense of Tits [43] (which is a
set of pointsO in PG(3; K), such that for each pointp 2 O there is a plane for which the
intersection with O only containsp, while all lines throughp not in the plane intersectO
in exactly two points).

First consider the case where the �eldK is perfect, so that the Suzuki quadrangle is in fact
a symplectic quadrangle. With each ovoid ofPG(3; K) corresponds aninversive plane,
i.e. a rank 2 geometry consisting of a set of points and a set ofcircles, which are the
intersections of planes inPG(3; K) with O containing more than one point, and provided
with the natural incidence relation. It satis�es the following axioms.

[MP1'] Each 3 di�erent points are contained in exactly one circle.

[MP2] For each circleC and each pair of pointsx; y with x 2 C and y =2 C, there exists
an unique circleC0 which containsy and touchesC in x.
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(`Touching' circles are circles that meet in a unique point.) Another way to construct
the circles would be taking for each nonabsolute point of thequadrangle the points ofO
collinear to it.

The inversive planes arising from the (perfect) Suzuki-Tits ovoids have been characterized
by a set of axioms by H. Van Maldeghem in [58]. We will generalize this result below.

We now turn to the general case, not demanding perfectness anymore. Here we de�ne
the set of circles as follows. Acircle is the set of points ofO collinear to some point
not contained in O. If we denote the family of circles byC, then we obtain a geometry
(O; C; 2 or 3). Thesegeneralized inversive planessatisfy the following axioms.

[MP1] Each 3 di�erent points are contained in at most one circle.

[MP2] For each circleC and for every pair of pointsx; y 2 P with x 2 C and y =2 C, there
exists a unique circleC0 which containsy and touchesC in x.

[CH1] There exist no 3 circles which are pairwise touching indi�erent points.

[CH2] For each circleC and every pair of pointsx; y =2 C, we have the following three
possibilities: no circle containingx; y touchesC, one circle does, or all circles do.

Remark 3.6.1 The circles in the nonperfect case also can be realized as plane intersec-
tions, but not all plane intersections containing more thanone point give rise to circles.

There are a lot of geometries that satisfy the above axioms. For instance every inversive
plane obtained from an ovoid of a projective 3-space over a �eld with characteristic 2.
In order to further distinguish the geometries corresponding to the polarities in Suzuki
quadrangles, we use the observation that each circleC has a very special point, which we
denote by@Cand call thegnarl of the circle. Indeed, ifC is the set of points ofO collinear
with the point x =2 O , then there is a unique absolute line incident withx and hence a
unique point @Cof C such that the line joining @Cwith x is absolute. Alternatively, @C
is the unique point ofC incident with x � .

The function @has the following properties.

[ST1] For each pair of pointsx; y there exists a unique circleC which containsx and such
that @C= y.

[ST2] For each circleC and point x =2 C, there is at most one circleC0 which contains
both of x and @C, and such that @C0 2 C.
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[TR] Let C be an arbitrary circle, and letx; y 2 C (@C6= x 6= y 6= @C). Let D be a circle
through @C6= @D. For each circleE di�erent from C, containing both x and @C,
and intersectingD in two distinct points @C; z, we consider the circleE � through
z and touching C in @C. We also consider the circleE �� containing y, touching E
in @C. Then E � \ E �� is contained in a circleD 0 through @Cwhich is essentially
independent ofE.

If K is perfect, we have an inversive plane, and this allows us to impose a stronger version
of [MP1].

[MP1'] Each 3 di�erent points are contained in exactly one circle.

Remark 3.6.2 As the terminology of gnarl suggests, generalized inversive planes are
examples of the geometries de�ned by Moufang sets describedin Section 1.8.1. The
Moufang set in question acts on the Suzuki-Tits ovoid, and iscalled accordingly the
Suzuki-Tits Moufang set. It is in some way the characteristic 2 counterpart of the Ree-
Tits Moufang set.

The properties mentioned so far characterize the generalized inversive planes arising from
polarities in mixed quadrangles.

Main Result 3.6.3 Let P be a set andCa set of distinguished subsets ofP all containing
at least 3 elements. Also suppose there is a map@: C ! P such that8C 2 C : @C2 C.
We call the elements ofC circles and if two of them have only one point in common,
we say they touch at that point. Then(P; C; @) satis�es the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2]and [TR], if and only if P can be embedded in a self-polar
mixed quadrangleW(K; K0; L; L 0) as the set of absolute points of a polarity� . The set C
corresponds to the family of sets of absolute points collinear with a nonabsolute point, and
the map@maps a circle onto its gnarl, i.e.,@C, with C = x? \ P , is the unique point of
P incident with x � .

If we want to restrict to self-polar mixed quadrangles of type W(K; K0; K; K0), then we
may introduce the following alternative axiom (where we call a set of pointscocircular if
they belong to a common circle).

[F] Let x be an arbitrary point, and let x1; x2; x3 be three points pairwise cocircular
with x, but not all cocircular with x. If a point y is cocircular with x and x1, and
also with x en x2, but if y; x; x1; x2 are not cocircular, theny; x; x3 are cocircular.
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And we will show:

Main Result 3.6.4 Let P a set andC a set of distinguished subsets ofP all containing
at least 3 elements. Also suppose there is a map@: C ! P such that8C 2 C : @C2 C.
We call the elements ofC circles and if two of them have only one point in common,
we say they touch at that point. Then(P; C; @) satis�es the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2]and [F], if and only if P can be embedded in a self-polar
mixed quadrangleW(K; K0; K; K0) as the set of absolute points of a polarity� . The set C
corresponds to the family of sets of absolute points collinear with a nonabsolute point, and
the map@maps a circle onto its gnarl, i.e.,@C, with C = x? \ P , is the unique point of
P incident with x � .

As mentioned before, ifK is perfect, then this is an inversive plane which allows us to
impose a stronger version of [MP1], which was denoted as [MP1']. Using this axiom
instead of [MP1] allows us to improve upon the characterization given in [58], by deleting
one axiom.

Main Result 3.6.5 Let P a set andC a set of distinguished subsets ofP all containing
at least 3 elements. Also suppose there is a map@: C ! P such that8C 2 C : @C2 C.
We call the elements ofC circles and if two of them have only one point in common, we
say they touch at that point. Then(P; C; @) satis�es the conditions[MP1'], [MP2], [CH1],
[CH2], [ST1] and [ST2], if and only if P can be embedded in a projective spacePG(3; K),
for some perfect �eld K of characteristic 2 admitting a Tits automorphism� , such that
P is the set of absolute points of a polarity of a certain symplectic quadrangleW(K) in
PG(3; K) and the set of circles ofP is equal to the set of plane sections ofP in PG(3; K).

3.7 Proofs

General idea. | Using the axioms, we construct a generalized quadrangle from the
generalized inversive plane. Using the results from Section 3.5.3, we then show this is a
mixed quadrangle, satisfying the desired properties.

In this section, we generalize the main theorem of [58] to allself-polar mixed quadran-
gles. It will turn out that we need exactly the more general form in the previous Main
Results 3.4.1 and 3.4.2 in order to prove Main Results 3.6.3 and 3.6.4.

Let P be a set andC a distinguished set of subsets ofP all containing at least 3 elements.
Also we have a map@: C ! P such that 8C 2 C : @C2 C. We call the elements ofC
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circles and if two of them have only one point in common, we say theytouch at that point.
The element @Cof a circle C will be called the gnarl of C. We assume that (P; C; @)
satis�es the conditions [MP1], [MP2], [CH1], [CH2], [ST1],[ST2] and [TR].

First, we will prove some further properties using these axioms. All these lemmas are
copies or reformulations of lemmas in [58], with similar proofs, although [MP1] and [ST2]
here are slightly weaker than the corresponding axioms in [58]. We mention them without
proof.

Lemma 3.7.1 Suppose we have 3 di�erent circlesC; D and E. If C and E both touch
D at some pointx, then C touchesE at x.

Lemma 3.7.2 For every circle C and every pointx not contained in C there exists a
unique circleD with @D2 C, @C6= @Dand containing both ofx and @C.

Lemma 3.7.3 If a circle C touchesD at @D, then @C= @D.

We now proceed with constructing a geometry � = (P � ; L � ; I ) out of (P; C; @). This is
also similar to the perfect case in [58], but since it is crucial for the rest, we repeat it here.

We identify both P � and L � with the union of P and C. To avoid confusing the elements
of P � with those of L � , we put a subscriptp or l to denote to which set it belongs, i.e.,
for all x 2 P and all C 2 C, we havexp; Cp 2 P and x l ; Cl 2 L. A point xp, x 2 P , is
incident with yl , y 2 P , if and only if x = y. A point xp, x 2 P , is incident with the line
Cl , C 2 C, if and only if Cp is incident with x l if and only if @C= x. Finally, the point
Cp, C 2 C, is incident with D l , D 2 C, if and only if @C2 D, @D2 C and @C6= @D.
This new geometry � obviously admits a polarity � : P � $ L � : Cp 7! Cl ; xp 7! x l ; Cl 7!
Cp; x l 7! xp. The absolute ags are of the formf xp; x lg with x 2 P .

The following lemma tells us when two points are collinear in�.

Lemma 3.7.4 For all x; y 2 P and C; D 2 C, the following holds.

(i ) The point xp is collinear with the point yp if and only if x = y.

(ii ) The point xp is collinear with the point Cp if and only if x 2 C.

(iii ) The point Cp is collinear with the pointDp if and only if C and D touch each other.

Also, two di�erent elements ofP � are incident with at most one element ofL � .
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Proof.

(i ) SupposexpI Cl I yp; then, by de�nition, x = @C= y.

(ii ) If xp is collinear with Cp, then xpI x l I Cp, or there is anE 2 C such that xpI E l I Cp.
In the �rst case we havex = @C2 C; in the second casex = @D2 C. Suppose now
that x 2 C. If x = @C, then xpI x l I Cp and soxp is collinear with Cp. If x 6= @C,
then there is a unique circle D with gnarlx through �C by [ST1], soxpI D l I Cp.

(iii ) If CpI zl I Dp, with z 2 P , then the claim follows from [ST1]. Suppose thatCpI E l I Dp,
with E 2 C. Then @E2 C \ D, and sinceD 6= C, we have@D6= @C. Clearly, also
@C6= @E6= @D. Since@C; @D2 E, the result follows from [ST2].

Conversely, supposeC and D touch. If they touch at @C, then by Lemma 3.7.3,
@C= @Dand CpI (@C) l I Dp. So we can assume that they touch at a pointx
di�erent from @Cand di�erent from @D. Let E be the circle containing@Dand so
that @E= x, and assume by way of contradiction that@C =2 E. By Lemma 3.7.2
there exists a circleF containing @Cand x, and with @F2 E. Our assumption
implies F 6= E. We claim that either D = F or F touchesD at x. Indeed, if not,
then D and F share some pointy 6= x. Note that y =2 E as otherwiseF and D
coincide with E, a contradiction. But then both D and F have their gnarl onE,
contain the gnarl ofE and contain a further point y =2 E. Lemma 3.7.2 implies that
D = F . Our claim follows. Now by Lemma 3.7.1,F touchesC at x, contradicting
@C2 F \ C. So we have thatCpI E l I Dp. �

Our goal now is to show that � is a Suzuki quadrangle. First we prove that � is a
generalized quadrangle.

Lemma 3.7.5 There are no three di�erent, pairwise collinear points inP � unless they
are all incident with the same line.

Proof. First suppose one of the points is of the formxp with x 2 P ; then the other points
must be of the formCp and Dp (C; D 2 C) with x = C \ D. If x = @C, then x = @Dand
all the points are incident with the line x l . If x 6= @C, then CpI E l I Dp, with E 2 C and
hence@E= x. But then also xpI E l .

Now suppose we have three points of the formCp; Dp and Ep with C; D; E 2 C. By
collinearity, the circles C; D and E all have to touch each other. Axiom [CH1] implies
that they touch in one common pointx. So Cp; Dp and Ep are all collinear with xp. By
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the �rst part of the proof we obtain that Cp; Dp; xp lie on one lineFl and Cp; Ep; xp lie
one line Gl (F; G 2 C). Both Fl and Gl contain Cp and xp, so, by the last assertion of
Lemma 3.7.4,Cp; Dp and Ep all are incident with Fl = Gl . �

Lemma 3.7.6 A point in P � and a line in L � lie at distance at most3 from each other.

Proof. We prove that for any point X and any line M not incident with X , there is a
point on M collinear with X .

Case 1. First supposeX = xp and M = yl , with x; y 2 P ; x 6= y. Condition [ST1] tells
us that there is a circle C with gnarlx trough y. Now Cp is collinear with yp (by
Lemma 3.7.4) and incident withxp (since@C= x).

Case 2. Secondly supposeX = xp and M = Cl , with x 2 P , C 2 L , and @C6= x. If x 2 C
then the point Dp, with D the circle with gnarl x through @C, is incident with Cl

and collinear with xp.

If x is not on C, then by Lemma 3.7.2 there exists a circleD through x sharing
two distinct points (namely, @Cand @D) with C. The point Dp is now onCl and
collinear with xp.

Case 3. Taking duality in account, there is one case left to consider, whereX = Cp and
M = D l , with C; D 2 L and Cp not incident with D l in �. The �rst possibility is
that @C= @D. Then Cp is collinear with (@C)p, which is incident with D l .

Now suppose that@C6= @D2 C. Then the point (@D)p is collinear with Cp and
lies onD l . The case where@C2 D is the dual of the case just handled.

So we may assume that@C =2 D; @D =2 C. By Axiom [MP2] and the fact that a
circle contains 3 or more points, there are at least two circlesC1 and C2 with gnarl
@Dand touchingC. By Axiom [CH1] these two circles have a second pointx 6= @D
in common. Due to [CH2] all circles throughx and @Dtouch C. So we can consider
the circle E, guaranteed to exist by Lemma 3.7.2, which contains the two points
@D; x, and has its gnarl onD. This circle E touchesC, henceEp is collinear with
Cp and is incident with D l . �

Now we want to apply Theorem 3.5.9. Hence we have to �nd a suitable set of regular
points and regular lines. We will consider the set of absolute points and absolute lines of
� with respect to the polarity � mentioned above.
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Lemma 3.7.7 The absolute points and lines of� are regular.

Proof. Because of the polarity� , we only need to prove that when three di�erent points
f U; V; Wg are collinear with two noncollinear pointsX; Y , with X = xp for somex 2 P ,
then each point collinear withU and V is also collinear withW.

SinceU andV are two noncollinear points collinear withxp, we may write, by Lemma 3.7.4,
U = Cp, V = Dp, with C; D 2 C, x 2 C \ D, and with C and D not touching each other.
The latter condition implies that C and D share an additional pointy 6= x. Then yp is
collinear with both Cp and Dp. We setW = Ep, with E 2 C and x 2 E. If Y = yp, then
y 2 E. The points collinear with Cp and Dp are, besidesxp and yp, all points Fp, with F
a circle touching bothC and D. But by Condition [CH2], the circle E also touchesF , so
Ep is collinear with Fp.

If Y 6= yp, then it is one of theFp above, and the assertion follows anyway. �

Note that the previous proof immediately implies the following lemma.

Lemma 3.7.8 Every span of� containing an absolute point of� contains exactly two
absolute points. Also the dual holds.

In view of the two previous lemmas, it only remains to check Condition ( iv ) of Theo-
rem 3.5.9 in order to prove that � is a mixed quadrangle. Therefore we have to look at
the dual net corresponding to a regular pointxp, x 2 P . In view of the previous results,
one can easily give the following description of the dual net� �

xp
. The points are the

circles containingx and the blocks are the points di�erent fromx, with incidence given
by containment. The circles with gnarlx correspond to a class of parallel points given by
the line x l = x �

p of the quadrangle �. Then the following observations are immediate.

Lemma 3.7.9 (i ) With the above notation,(P; C; @) satis�es Condition [TR] if and
only if for each point x 2 P , the dual net� �

xp
satis�es Axiom (LD) with respect to

the parallel class of points given by the linex l of � .

(ii ) With the above notation,(P; C; @) satis�es Condition [F] if and only if for each point
x 2 P , the dual net� �

xp
satis�es Axiom (VY) .

Putting together the last four lemmas, Main Results 3.6.3 and 3.6.4 follow from Theo-
rem 3.5.8 and 3.5.9, respectively.

If we substitute Condition [MP1] by Condition [MP1'], then the dual net � �
xp

is clearly
a dual a�ne plane, so Axiom (VY), or the equivalent Condition [F], is trivially true.
Whence Main Result 3.6.5 holds (the other direction of that theorem being contained
in [58]).



3.8 Metasymplectic spaces 77

3.8 Metasymplectic spaces

We use the following de�nition of metasymplectic spaces ([59, p. 79]): ametasymplectic
spaceM is a rank 4 geometry with four types of elements, calledpoints, lines, planesand
hyperlines, and a (symmetric) incidence relation satisfying the four axioms listed below.

(M1) The residue of any ag of type f point, lineg or f plane, hyperlineg is a projective
plane.

(M2) The residue of any ag of type f point, planeg, f line, hyperlineg or f line, planeg is
a generalized digon.

(M3) The residue of any ag of typef point, hyperlineg is a generalized quadrangle.

(M4) Two distinct nonpoint elements have di�erent sets of points incident with them.

Using (M1) to (M4), one can prove that the dual property of (M4) is satis�ed as well,
making the de�nition self-dual. The ag complexes of these metasymplectic spaces form
the buildings of type F4. Note that these axioms imply thickness because generalized
polygons are thick by de�nition.

Remark 3.8.1 Instead of the notion `hyperline', some authors use the term̀symplecton'.

3.8.1 Embeddings of quadrangles in the metasymplectic spac e

We consider embeddings of the following kind: given a metasymplectic spaceM together
with a set P of points ofM and a setH of hyperlines ofM , the incidence relation de�ned
on them by taking the restriction of the incidence relation of M , de�nes a generalized
quadrangle �. We then say that the quadrangle � is point-hyperline embeddedin M .

Examples of such embeddings are constructed by Hendrik Van Maldeghem and Bernhard
M•uhlherr in [21]. There it is shown that the exceptional Moufang quadrangles of typeF4

and certain mixed quadrangles appear as �xed point structures of involutions of metasym-
plectic spaces over �elds with characteristic 2. As the subquadrangles of a point-hyperline
embedded quadrangle will also be point-hyperline embedded, orthogonal and symplectic
quadrangles also appear. All these quadrangles are Moufangand share the property that
no two points of the quadrangle are collinear in the metasymplectic space.
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Embeddings will be denotedimproper if all hyperlines in H incident with a certain point
in P always share a line. By substituting each point with its associated line in this case,
it follows that we can view the quadrangle embedded `by' lines and hyperlines.

We now construct an example of an improper embedding. Letf p; Lg be an incident point-
line pair of a metasymplectic spaceM which is de�ned over some �eld containing the
�nite �eld of four elements. The residue of this ag forms a projective plane, containing
a sub projective plane isomorphic toPG(2; 4). The symplectic quadrangleW(2) can be
embedded in this plane (see [7]). Returning to our metasymplectic spaceM , we have
embeddedW(2) in M `by' planes and hyperlines. Now choose for each plane of this
embedding a point incident with the plane, producing a point-hyperline embedding. If
the �eld which de�nes the metasymplectic space is `large enough', it is clear that the
choices can be made such that no two collinear points of the quadrangle are collinear in
the metasymplectic space.

Remark 3.8.2 All of the known embeddings such that no two points of the quadrangle
are collinear in the metasymplectic space, occur in characteristic 2 or are improper. The
existence of the known proper embeddings originates from analgebraic setting, however
this algebraic setting does not yield such embeddings for odd characteristic. For this
reason it could be conjectured that these only occur in characteristic 2. More about the
underlying algebraic setting can be found in [59, App. C].

3.9 Results on embedded quadrangles in
metasymplectic spaces

We now pose the inverse question: when is a point-hyperline embedded quadrangle Mou-
fang?

Main Result 3.9.1 Let � be a generalized quadrangle point-hyperline embedded in a
metasymplectic spaceM , with P the set of points andH the set of lines of the quadran-
gle. Then� will be either a Moufang quadrangle, or improperly embedded, if the following
property holds:

(OV) No 2 points of P in the same hyperline ofH are collinear in M .
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Remark 3.9.2 It can be shown that the residue of a hyperline forms a polar space (see
property (M9) in the next section). Condition (OV) then reformulates to: the points of
P in the same hyperline ofH form a partial ovoid of the corresponding polar space.

Remark 3.9.3 Note that our de�nition of generalized polygon asks that � is thick: if
this would not be the case, counterexamples occur.

3.10 Proof

General idea. | We �rst investigate what the possibilities are for a single apartment of
the generalized quadrangle to be embedded. Using this, we can show that the embedding
is convex (see Section 1.1.3), or improper. Applying a result of H. Van Maldeghem and
B. M•uhlherr, this implies Main Result 3.9.1.

Suppose we haveM ; � ; P; H as given in the statement of the above result. We do not
require that the property (OV) holds yet.

If we refer to a point or line, we mean a point or line of the metasymplectic space, unless
explicitly noted otherwise.

3.10.1 Further concepts and some lemmas about
metasymplectic spaces

The following lemma can be found in [59, p. 80] - we will not reproduce the proof here.

Lemma 3.10.1 We have the following properties:

(M5) Let x and y be two points ofM . Then one of the following situations occurs:

{ x = y.

{ There is a unique line incident with bothx and y. In this case, we callx and
y collinear.

{ There is a unique hyperline incident with bothx and y. In this case there is
no line incident with bothx and y, and we callx and y cohyperlinear.

{ There is a unique pointz collinear with both x and y. In this case we callx
and y almost opposite.
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{ There is no point collinear with bothx and y.

(M6) The intersection of two hyperlines is either empty, or apoint, or a plane.

(M7) Let x be a point andh a hyperline of M . Then one of the following situations
occurs:

{ x 2 h.

{ There is a unique lineL in h such thatx is collinear with all points ofL. Every
point y of h which is collinear with all points ofL is cohyperlinear withx and
the unique hyperline containing both also containsL. Every other point z of h
is almost oppositex and the unique point collinear with both lies onL.

{ There is a unique pointu of h cohyperlinear withx, and the hyperline contain-
ing x and u only hasu in common with h. All points v of h collinear with u
are almost oppositex, and the point collinear with both doesn't lie inh. All
points w of h cohyperlinear withu are oppositex.

(M9) The residue of a hyperline forms a polar space. �

Note that the dual statements also hold. Property (M8) givenin [59] is omitted as we
will not need it here.

Let W be the spherical Coxeter group of typeF4; this is the group generated by symbols
s1; s2; s3; s4 and identity element e, with relations (si sj )m ij = e, and mij as given in the
following matrix:

(mij ) =

0

B
B
@

1 3 2 2
3 1 4 2
2 4 1 3
2 2 3 1

1

C
C
A

Two maximal ags of a metasymplectic space (which are chambers of the F4-building)
are s1; s2; s3 or s4-adjacent respectively, if those two ags di�er in a point, line, planeor
hyperline respectively.

We de�ne the spherical Coxeter groupWf 1;2;3g to be the subgroup ofW generated by
s1; s2 and s3, and analogouslyWf 2;3;4g will be the subgroup generated bys2, s3 and s4.

Lemma 3.10.2 The following double cosets are written in such a way that therepresen-
tative is of shortest length:
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� Wf 2;3;4gs1s2s3s2s1Wf 2;3;4g; Wf 1;2;3gs4s3s2s3s4Wf 1;2;3g;

� Wf 1;2;3gs4s3s2s3s4s1s2s3s2s1Wf 2;3;4g; Wf 2;3;4gs1s2s3s2s1s4s3s2s3s4Wf 1;2;3g;

� Wf 2;3;4gs1s2s3s2s1s4s3s2s3s4s1s2s3s2s1Wf 2;3;4g,
Wf 1;2;3gs4s3s2s3s4s1s2s3s2s1s4s3s2s3s4Wf 1;2;3g;

� Wf 2;3;4gs1s2s3s2s1s4s3s2s3s4s1s2s3s2s1s4s3s2s3s4Wf 1;2;3g,
Wf 1;2;3gs4s3s2s3s4s1s2s3s2s1s4s3s2s3s4s1s2s3s2s1Wf 2;3;4g.

Proof. By long but straightforward calculations. �

The following important theorem by Bernhard M•uhlherr and Hendrik Van Maldeghem
([22]) gives us more information about convex subbuildings(see Section 1.1.3 for a de�-
nition).

Theorem 3.10.3 A convex subbuilding of a Moufang building is again a Moufangbuild-
ing. �

Or applied to our case (F4-buildings are always Moufang):

Corollary 3.10.4 A convex point-hyperline embedded quadrangle� in a metasymplectic
spaceM is Moufang. �

3.10.2 Embedding apartments

First we investigate how the apartments of the quadrangle are embedded inM . Let
f p; hg; f q; gg (p; q 2 P ; h; g 2 H ) be 2 chambers of � such that p =2 g; q =2 h and the
hyperlines h and g intersect in a point or plane (these are the only possibilities due to
(M6)). Collinearity and opposition will be used relative tothe metasymplectic spaceM
and not the quadrangle �, unless stated otherwise.

Lemma 3.10.5 If h and g intersect in a point u, then one of the following holds:

� The points p and q are opposite and both are cohyperlinear withu.

� The points p and q are almost opposite and at least one point is collinear withu.

� The points p and q are cohyperlinear and both are collinear withu.
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� The points p and q are collinear and both are collinear withu.

Proof.

� If p and q are opposite then (M7) applied to the pointp and hyperline g tells us
that there is exactly one point ofg cohyperlinear with p; therefore u will be this
point. It now follows that p and q both are cohyperlinear withu.

� If p and q are almost opposite, then applying (M7) top and g leaves us with two
possibilities. If there is a unique point (this point will again be denoted with u)
of g cohyperlinear with p, then q will be collinear with u. If on the other hand
there is a unique lineL in g of points collinear with p, then the possibility that u
is cohyperlinear with p implies that u is collinear with all points of L and that h
contains L. But h and g intersect in a point and do not have a line in common, so
p is collinear with u.

� If p and q are cohyperlinear, then again applying (M7) top and g implies that there
is a line L in g of points collinear with p (the other possibility for cohyperlinearity
would imply that u = q, which is ruled out). If u would be cohyperlinear with
p, then h and g would intersect in a line as explained in the previous point,so p
is collinear with u. Interchanging the roles ofp and q gives that both points are
collinear with u.

� In the last case wherep is collinear with q, Property (M7) implies that p is collinear
with all the points of a line L of g. If u would be cohyperlinear withp then the
unique hyperlineh containing u and p would also containq, which is impossible. It
follows that u is collinear with p and also with q. �

Lemma 3.10.6 If h and g intersect in a plane� , then p and q are not opposite.

Proof. Supposep and q are opposite. Thenp and q are on distance 3 from each other,
but (M9) gives us that the points on distance 1 fromp in � will be on a line of� , and the
same holds forq. Two lines in a plane always have at least one point in common,so the
distance betweenp and q is 2, resulting in a contradiction. �

Let the points p; q; r; s and hyperlines denoted bypq; qr; rs; spde�ne an apartment in �.
If the points p and r are opposite then the two lemmas above imply that if two points of
the apartment are collinear in �, they are cohyperlinear inM . The hyperlinepqintersects
qr in a point - the same holds forsp and rs. The other mutual positions can be divided
in 2 possibilities due to the third lemma:
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� The hyperlines pq and sp intersect in a point. Then q and s are opposite andqr
and rs also intersect in a point.

� The hyperlinespq and sp intersect in a plane. Thenq and s are not opposite and
qr and rs also intersect in a plane.

We now state a lemma which will be used to `reduce' the quadrangle.

Lemma 3.10.7 If each two points in a setX of points in M are collinear, then this set
is contained in a plane.

Proof. Let x 2 X be a point. If we take the residue of this point, we obtain a dual
rank 3 polar space where the linesxy with y 2 X nf xg form dual generators. All these
generators intersect in lines of the polar space. If we wouldhave a proper `triangle' of
these generators and lines, the lines would meet in a single point. Taking the residue
again of this point, we would have a proper triangle in a quadrangle, which is impossible.
So all the generatorsxy with y 2 X nf xg share at least one line, and translating this back
to M we obtain that all points are contained in a plane. �

3.10.3 Embedding quadrangles

Condition (OV)

From now on suppose that condition (OV) holds. Let � be an apartment of �. If two
hyperlines of � which intersect in � share a point, then there has to be an opposite pair of
points (in M ) in �, so according to the previous section the other two hyperlines in � must
also intersect in a point. Because the projectivity group ofa point of our quadrangle is
2-transitive on the (hyper)lines through that point, either any two hyperlines inH which
intersect in � share a point, or all hyperlines in H which intersect in � share a plane.

In the second case we can replace each pointp 2 P with a line Lp such that all hyperlines
of H through p contain that line (this is possible due to the dual of Lemma 3.10.7), so
we obtain a quadrangle consisting of lines and hyperlines where no two lines which are
collinear in the quadrangle are contained in one plane (otherwise the points corresponding
to the two lines would be collinear inM ), so we are in the improper case.

In the �rst case we have that two points ofP are cohyperlinear if they are collinear in
�, and opposite if they are not. For hyperlines inH we have the dual properties. In the
next section we will show convexity of quadrangles withinM with such properties.
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Convexity of quadrangles

In this section we prove that the embedded quadrangle � is convex in M . Herefore we
use that two points ofP are cohyperlinear if they are collinear in �, and opposite ifthey
are not, and the dual properties for hyperlines inH , then

The next lemma gives us the needed building blocks for the rest of the proof of convexity.

Lemma 3.10.8 Let h be a hyperline andp; q be two cohyperlinear points inh. If we have
a chamberC containing p and h, then there is a shortest gallery with associated word
s1s2s3s2s1 from C to a chamber containingq.

Proof. The residue ofh will be a rank 3 polar space withp and q opposite points in it. The
theory of buildings tells us that we can embed the agsCnf hg and f qg of this polar space
in an octahedron (this forms an apartment of the rank 3 polar space, see [28]). In this
octahedron it is easily seen that there is a shortest gallerywith associated words1s2s3s2s1

from C to a chamber containingq and h. Because this word is a shortest presentation of
the corresponding element in the groupW, this will be a shortest gallery. �

Now let A and B be two ags of �. It is clear that there exists a shortest gallery  �

in � between these ags starting from a chamberC in � containing A, to a chamberD
containing B. Using the above lemma (and the dual statement) to `lift' this gallery to
a gallery  M in M , we obtain galleries from each chamber containingC (now viewed
as ags in M ) to a certain chamber containingD (viewed as a ag in M ) with words
consisting of an alternating consecution of the `building block' s1s2s3s2s1 and the dual
s4s3s2s3s4. Lemma 3.10.2 implies that these are also shortest galleries between chambers
containing A and chambers containingB in M . Because the galleries can start from
each chamber containingC, the product of simplexB with simplex A will be completely
contained within C and so also within the subbuilding �, hence the embedded quadrangle
� is convex. Corollary 3.10.4 now implies that the quadrangle � is Moufang.



Chapter 4

`Rank three' case, or
two-dimensional R-buildings

The results in this chapter are aboutR-buildings, the �rst series of results are about
two-dimensionalR-buildings, the others hold for generalR-buildings.

Polygons with valuation. | In 1986, Jacques Tits ([47]) classi�ed the a�ne build-
ings of rank at least 4. In fact, he also included in his work the so-calledsyst�emes
d'appartements, or apartment systems. Later on people also called themnondiscrete a�ne
buildings ([28]) or R-buildings. Basically, these are building-like structures with one big
di�erence: they are no longer simplicial. Easy examples areR-trees (rank 2 case; these
are trees that continuously branch), or the `buildings' related to the `parahoric' subgroups
of a Chevalley group over a �eld with nondiscrete valuation.From the geometric point of
view, the case of rank 3 | when the apartments are 2-dimensional | is very interesting
since nonclassical phenomena occur there.

In [47] Tits associates to everysymmetric apartment system a so-calledbuilding at in�nity ,
which is a simplicial spherical building, see also [8]. The rank of this building at in�nity is
precisely the dimension of its apartments. Hence, in the 2-dimensional case, generalized
polygons appear. When the apartment system is irreducible,then this polygon is not
a digon. In the simplicial case, the only generalized polygons that occur are projective
planes, generalized quadrangles and generalized hexagons.

In a series of rather long papers [52, 53, 54, 56, 15], HendrikVan Maldeghem (jointly
with Guy Hanssens in the last quoted paper) investigates in detail two classes of a�ne
buildings (namely, those with projective planes and generalized quadrangles at in�nity)
and characterizes the corresponding spherical buildings at in�nity. This leads to many
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new examples of such a�ne buildings, explicitly de�ned and with knowledge of the au-
tomorphism groups. Originally, the characterization madeuse of the notion of adiscrete
valuation on the algebraic structures that coordinatize projective planes and generalized
quadrangles, but in later papers [55, 57], the valuation wasde�ned directly on the ge-
ometry. The hope was that with such a direct de�nition, the case of type eG2, which
was the only remaining case, would become treatable with much less e�ort. One of the
reasons why it didnot is that, although the paper [55] provides the exact condition for
a generalized hexagon with valuation, the lack of symmetry in the formulae prevented
from deducing ageneral formulae independent of the type, and hence from (1) further
generalization to nondiscrete valuations, and (2) composing a type-free proof.

In the present chapter, we start such a type-free approach, which ought to eventually
lead to a characterization of all irreducible 2-dimensional a�ne apartment systems. More
in particular, we �rst show how any irreducible 2-dimensional a�ne apartment system
gives rise to a generalized polygon with a speci�c valuation, by which we mean, with the
terminology of [55], an explicitly de�ned weight sequence.One of the crucial observations
to achieve this is to slightly modify, or re-scale, the valuation as de�ned from a rank 3
a�ne building as de�ned in [57]. Indeed, roughly speaking, the valuation between two
elements as de�ned in [57] counted the graph theoretic distance between two vertices
in the simplicial complex related to the a�ne building. The purpose was to end up
with a natural number. But taking the Euclidean distance instead will put much more
symmetry into the picture, and at the same time we will have a closed formula for the
weight sequences. Also the nondiscrete case can clearly be included in a natural way.
The fact that the discrete case enjoys a characterization asin [55] seems to be a happy
coincidence in this viewpoint.

The other question now is, what can we say when we are given a generalized polygon with
(nondiscrete) valuation? The �rst thing we obtain is that the only weight sequences (for
a de�nition see below) that can occur are exactly the ones that occur for the valuations
of generalized polygons at in�nity of two-dimensionalR-buildings. Moreover, if n = 3; 4
we provide a detailed proof for the complete equivalence between generalizedn-gons with
real valuation and 2-dimensionalR-buildings. As an application we construct classes of
explicit examples of such structures which are not of Bruhat-Tits type, and which include
locally �nite ones. These constructions are similar to the constructions due to Hendrik
Van Maldeghem in the simplicial case, see [52, 53, 54, 56].

Remarkably, as a byproduct, we obtain that projective planes with valuation are equiva-
lent with ultrametric planes in which all triangles satisfythe sine rule, for an appropriate
though natural de�nition for angles between lines.
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In the ideal case, one would like to prove the conjecture thatthe just mentioned equiva-
lence holds for alln � 3. However, this seems to be out of reach for now. In our present
approach, the complications in the proofs seem to grow exponentially with the girth. For
n = 5, it is just feasible, but too long to include here. Forn = 6, assuming discreteness
allows for an alternative argument, as we shall see. Notice that our proofs for n = 3; 4
provide di�erent arguments for the simplicial case, which are in fact drastically shorter
and more direct than the original proofs of Hendrik Van Maldeghem. One does not need
to go around theHjelmslev geometriesand the rather complicated axiomatization related
to this (see e.g. [15]). These geometries were needed to de�ne the vertices of the a�ne
building. In the present approach, we do no longer have vertices, but the points of the
apartment system are the di�erent valuations that emerge from the given one. This simple
idea, however, requires a lot of unavoidable technicalities to take care of. For example, it
is already fairly technical to prove that the residue of ann-gon with valuation is again a
generalizedn-gon. We will do this explicitly for n � 6. It will be clear that similar meth-
ods should work in general, but our present approach fails for that. So, on the one hand,
the present methods are signi�cantly stronger than the old ones developed by Hendrik
Van Maldeghem in the eighties, on the other hand, one needs animprovement of another
magnitude to prove the full conjecture.

These results are joint work with Hendrik Van Maldeghem and are contained in two
papers, both accepted for publication, one inAdv. Geom., the other in Pure Appl. Math.
Q.

Completeness of R-buildings. | As already indicated in Section 1.8.2, there ex-
ist various results which hold for completeR-buildings. All a�ne (discrete) buildings
are complete, but this is not true for generalR-buildings. The question that now rises
is: which R-buildings are complete? Especially for thoseR-buildings arising from Tits'
classi�cation ([47]) a full answer is something that shouldbe aimed at.

In Section 4.10 we take the �rst step to such an answer. We prove that an R-building is
complete, if and only if all theR-trees corresponding to its walls are complete. The next
step (which we are currently researching) is then to determine whichR-trees are complete.
This problem seems to be answerable in algebraic terms for thoseR-trees coming from
higher-dimensionalR-buildings.

Subbuildings of R-buildings corresponding to �xbuildings at in�nity. | Just like
the result mentioned in the previous paragraph, this resultis also a research in progress.
The setting is the following: when an automorphism group acts on a spherical building,
then the �xed structure is in `most' cases again a (spherical) building. Such a statement
is not true for (R-)buildings which are not spherical, because there is no such thing as
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opposition in these cases.

Consider some a�ne building � with a group G acting on it, while the �xed structure in
� is not necessarily again an a�ne building, the �xed structu re in the spherical building
� 1 at in�nity is most often again a spherical building � 0

1 . If we now return to the �nite
part of the a�ne building, one might wonder if there exists anembedded a�ne building
� 0 with � 0

1 at in�nity.

In Section 4.14 we give a positive answer for some, but not all, cases using geometric
methods. For one of the steps in the proof we generalize the notion of trees corresponding
to walls and sector-panels (see Section 1.8.2). This generalization is not entirely unknown,
but a proof doesn't seem to exist in the literature.

These results are joint work with Hendrik Van Maldeghem.

4.1 Two-dimensional R-buildings

As mentioned in Section 1.8.2, theR-buildings of dimension at least 3 are known. For
the �rst series of results of this chapter we will only deal with the (unclassi�able) R-
buildings of dimension 2, i.e.,jSj = 2 and W is the dihedral group of order 2n, for some
n 2 N, n � 3. So the building at in�nity and the residues are (weak) generalized n-gons.
The elements of the (weak) generalized polygon at in�nity correspond to sector-panels
of the R-building. So one can discern two classes of sector-panels in the R-building, one
corresponding to thepoints P, the other to the lines L (the choice which type of sector-
panels correspond to the points or lines can be chosen arbitrarily). Roman letters will be
used for elements of the building at in�nity, Greek letters for points of �.

Let x; y be two adjacent elements of �1 and � 2 �; then we denote the length (measured
with the distance d) of the common part of the sector-panelsx � and y� by u� (x; y).

4.2 Polygons with valuation

Now we continue with de�ning generalized polygons with valuation. Let � = ( P; L; I ) be a
generalizedn-gon with point set P and line setL, and let u be a function calledvaluation
acting on both pairs of collinear points and pairs of concurrent lines, and images inR+ [
f1g (we use the natural order on this set with1 as largest element). Then we call (�; u)
an n-gon with (nondiscrete) valuationand weight sequence(a1; a2; : : : ; an� 1; an+1 ; an+2 ; : : :
a2n� 1) 2 (R+ )2n� 2 if the following conditions are met:
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(U1) On each line there exists a pair of pointsp and q such that u(p; q) = 0, and dually
for points.

(U2) u(x; y) = 1 if and only if x = y.

(U3) u(x; y) < u (y; z) implies u(x; z) = u(x; y) if x; y and z are collinear points or con-
current lines.

(U4) Wheneverx0I x1I x2I : : : I x2n = x0, with x i 2 P [ L, one has

n� 1X

i =1

ai u(x i � 1; x i +1 ) =
2n� 1X

i = n+1

ai u(x i � 1; x i +1 ):

One direct implication of (U3) is that u is symmetric (by putting x = z). Also remark
that this de�nition is self-dual, so whenever a statement isproven, we also have proven
the dual statement. Finally, we note that, due to (U2), Axiom(U4) is trivially satis�ed
whenever thex i , 0 � i � 2n, form a degenerate apartment.

Remark 4.2.1 The di�erence with the de�nition in [55] is that in the current one, the
type of the elementx0 is arbitrary, while in [55], x0 was required to be a line. On the
other hand, in [55], the image ofu had to be natural or 1 . The main result of [55] says
that, in this case, n 2 f 3; 4; 6g, the function u is also a valuation on the dualn-gon, and
the weight sequences are uniquely determined up to duality.These weight sequences are,
however, only self-dual ifn = 3. Hence, only in the casen = 3, a valuation on an n-gon in
the sense of [55] will be a valuation on ann-gon in the above sense. However, rescaling the
valuation between lines by a factor

p
2 (multiplying or dividing according to the weight

sequence) forn = 4 turns the valuation on a 4-gon in the sense of [55] into a valuation in
the above sense. Similarly for 6-gons. Taking this rescaling into account, we see that the
above de�nition is essentially a generalization of the de�nition in [55]. We will come back
to this in more detail in Section 4.4.1, where we will show howour main results relate to
the conjectures stated in [55] and [57].

If we speak about the valuation of a side or cornerx in an ordinary n-gon 
, we mean the
valuation between (respectively) the two corners or sides incident with x in 
. If we talk
about the valuations in an ordinaryn-gon, then we mean all the valuations of sides and
corners. A path (x0; x1; : : : ; xm ) is said to have valuation zero ifu(x i � 1; x i +1 ) = 0 for each
i 2 f 1; 2; : : : ; m � 1g. Because of (U2) such a path has to be nonstammering. We now
show some preliminary lemmas which we will use to formulate one of the main results.
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Lemma 4.2.2 Given a line L and a point pI L, then there exists a pointqI L such that
u(p; q) = 0 .

Proof. Due to (U1) there exist two pointsr; sI L such that u(r; s) = 0. Applying (U3) we
obtain that either u(p; r) = 0 or u(p; s) = 0, and in each case we have found a suitableq.

�

Lemma 4.2.3 Each path(x0; x1; : : : ; xm ) with m � n +1 and valuation zero is contained
in an ordinary n-gon 
 where all the valuations of corners and sides are zero.

Proof. Using the previous lemma we can extend the path to a path (x0; x1; : : : ; xn ; xn+1 )
with valuation zero. It is now easily seen that the other valuations in the unique ordinary
n-gon containing this path are zero too by (U4). �

In order to make notations easier, an ordinaryn-gon with all valuations zero will be re-
ferred to as anonfoldedn-gon. If there are exactly two nonzero valuations in (necessarily)
opposite elementsx and y of an ordinary n-gon, then this ordinaryn-gon will be referred
to as a simply foldedn-gon folded alongx (or y), and two elements in such ann-gon at
the same distance fromx (and hence also at the same distance fromy) are said to be
folded togetherin that n-gon. The Main Result 4.3.2 will imply that a1 = an+1 and that
the valuations in x and y are equal due to (U4).

Two opposite elements in � are said to beresidually oppositeif there is a shortest path
between them with valuation zero. If this is the case, then by(U4) all shortest paths
between both elements have valuation zero. Ifx is an element of �, then we denote with
[x]opp the set of residually opposite elements tox. This set is nonempty due to the previous
lemma. We say that two elementsx and y are residually equivalentif [x]opp = [ y]opp. The
equivalence class is denoted by [x] = [ y]. It is clear that all elements of one equivalence
class share the same type, so these classes can be referred toas residual points ([P]) or
residual lines([B ]) depending on the type. A residual point [p] is said to be incident with
a residual line [L] if there arep0 2 [p] and L0 2 [L] such that p0I L0. We then write [p]I r [L ].
The geometry � r ([P]; [B ]; I r ) is the residuede�ned by u. The distancedr in the incidence
graph of this geometry is called theresidual distance.

Remark 4.2.4 Note that we already have de�ned a notion of residue, which was asso-
ciated to a point of an R-building, in Section 4.1. It follows from Main Result 4.3.1in
the next section, and from the de�nition of residues inR-buildings, that for a general-
ized polygon with valuation de�ned by a point in a two-dimensional R-building, the two
notions are essentially the same. From the context it shouldbe clear which one is meant.
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4.3 Results on two-dimensional R-buildings and
polygons with valuation

Main Result 4.3.1 Let (� ; F ) be a two-dimensionalR-building and� 2 � . Then u� as
de�ned in Section 4.1 de�nes a valuation on the generalizedn-gon at in�nity � 1 , with
weight sequence(a1; a2; : : : ; an� 1; an+1 ; an+2 ; : : : ; a2n� 1), whereai = j sin(i�=n )j.

For the other three main results, let (�; u) be a generalizedn-gon with (nondiscrete)
valuation and weight sequence (a1; a2; : : : ; an� 1; an+1 ; an+2 ; : : : ; a2n� 1).

Main Result 4.3.2 If u has nonzero values, then the weight sequence(a1; a2; : : : ; an� 1;
an+1 ; an+2 ; : : : ; a2n� 1) is a multiple of the weight sequence(b1; b2; : : : ; bn� 1; bn+1 ; : : : ; b2n� 1)
with bi = j sin(i�=n )j.

Main Result 4.3.3 If 3 � n � 6, the residue de�ned byu is a (weak) generalizedn-gon.

Main Result 4.3.4 If n 2 f 3; 4g, or if n = 6 and u is discrete, there exists a two-
dimensional R-building (� ; F ) such that � is isomorphic to the generalized polygon at
in�nity of (� ; F ) with valuation as in Main Result 4.3.1.

4.4 Applications

We list some applications and corollaries of the main results.

4.4.1 The discrete case

Let (U40) be the Condition (U4) with the additional requirement that x0 2 L, and let
� = ( P; L; I ) be a generalizedn-gon,n � 3. Suppose that (�; u) satis�es (U1), (U2), (U3)
and (U40), and suppose in addition that the image ofu is in N [ f1g , the set of natural
numbers, including 0, together with1 . Then we say that (� ; u) is a generalized polygon
with discrete valuation. The main result of [55] says that, in this case,n 2 f 3; 4; 6g and
the weight sequence (a1; a2; : : : ; an� 1; an+1 ; an+2 ; : : : ; a2n� 1) can be chosen as follows.

(WS3) If n = 3, then (a1; a2; a4; a5) = (1 ; 1; 1; 1).
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(WS4) If n = 4, then (a1; a2; a3; a5; a6; a7) = (1 ; 1; 1; 1; 1; 1) or (1; 2; 1; 1; 2; 1).

(WS6) If n = 6, then (a1; a2; : : : ; a5; a7; : : : ; a11) = (1 ; 1; 2; 1; 1; 1; 1; 2; 1; 1) or
(1; 3; 2; 3; 1; 1; 3; 2; 3; 1).

In the cases (WS4) and (WS6), where there are two possibilities, it is proved in [55]
that the weight sequences are dual to one another, i.e., if (�; u) has one weight sequence,
then, if � D is the dual of � (obtained from � by interchanging the point set and the line
set), then (� D ; u) is a polygon with discrete valuation with respect to the other weight
sequence.

This gave birth to the conjecture that a generalized hexagon� is `isomorphic' to the
building at in�nity of some (thick) a�ne building of type eG2 if and only if there existsu
such that (� ; u) is a generalized hexagon with discrete valuation and with one of the two
above weight sequences. The Main Results 4.3.1 and 4.3.2 seem to be in contradiction
with this, since, applied to discrete a�ne buildings of type eG2, there is only one weight
sequence, namely

(a1; a2; : : : ; a5; a7; : : : ; a11) =

 
1
2

;

p
3

2
; 1;

p
3

2
;
1
2

;
1
2

;

p
3

2
; 1;

p
3

2
;
1
2

!

;

and it does not consist of only natural numbers! But the aboveconjecture was evidenced
by the situation for the types eA2 and eC2, where the valuation measured simplicial distance,
and not Euclidean distance, as in the present approach. In the eG2 case, this means that,
in view of the fact that the lengths of the panels (of a chamber) containing the special
vertex (for terminology, see [47]) have ratio 1 :

p
3, to go from the weight sequence of the

present approach to the weight sequences of the discrete valuation, we must multiply the
valuation on the point pairs with

p
3 (or do this with the valuation on line pairs), and

then take a suitable multiple.

As explained earlier, one can do a similar procedure with type eC2, as is clear from the
above.

4.4.2 Ultrametric projective planes

In this application we explore a surprising link between projective planes with valuations
and some geometric conditions from Euclidean geometry.

Suppose (�; u) is a generalized triangle (or projective plane) with valuation. Chooset 2 R
with t > 1. We then can de�ne a functiond(p; q) = t � u(p;q) 2 [0; 1] on pairs of points, and
a similar function \ (L; M ) = arcsin( t � u(L;M )) 2 [0; �= 2] on pairs of lines.
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Theorem 4.4.1 A projective plane� with a distance functiond on pairs of points valued
in [0; 1] and an angle function\ on pairs of lines valued in[0; �= 2], is constructed from a
projective plane with valuation as above, and hence is isomorphic to the building at in�nity
of someR-building, if and only if the following conditions are ful�lled.

(M1) d is an ultrametric (this is a metric satisfying the stronger triangular inequality
d(p; q) � max(d(p; r); d(r; q))).

(M2) Two lines have angle zero if and only if they are equal.

(M3) On each line there are two points on maximal distance 1 from each other.

(M4) Through each point there are two lines with a right (�= 2) angle.

(M5) The sine rule is ful�lled, i.e., if we have a triangle with lengths of the sidesA, B
and C and opposing angles� , � and  , then

A
sin�

=
B

sin�
=

C
sin

:

The proof is postponed to Section 4.9.

4.4.3 Examples and constructions

n = 3

Here we rely on some results for the discrete case. Hendrik Van Maldeghem proved in [57]
that the notion of a projective plane with valuation is equivalent to one of a planar ternary
ring with valuation. Moreover he also investigated in [52] how the valuation behaves in
planar ternary rings with extra algebraic properties (near�elds, quasi�elds, linear PTRs,
etc.). In particular he proved the following result, the arguments of which can be copied
verbatim in the nondiscrete case.

Proposition 4.4.2 A quasi�eld with valuation v, which is a unary function with values
in Z [ f1g gives rise to a planar ternary ring with valuation (and so also to a projective
plane with valuation, and an a�ne apartment system with a projective plane at in�nity),
if the following three conditions are ful�lled:

(V1) v(a) = 1 if and only if a = 0.
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(V2) If v(a) < v (b), then v(a + b) = v(a).

(V3) v(a1b� a2b) = v(a1 � a2) + v(b).

We now construct such quasi�elds (again inspired by resultsof Hendrik Van Maldeghem
in [52], but now with the function v having values inR [ f1g ). Let K + ;� be a �eld with
a nondiscrete valuationv in the classical sense (which is in fact the above de�nition for
quasi�elds applied to �elds, so (V3) becomesv(ab) = v(a) + v(b)).

Remark 4.4.3 Notice that the classical a�ne apartment systems with a (Desarguesian)
projective plane at in�nity already appear here by taking quasi�elds with valuation which
are (skew) �elds.

Now let � be a �eld automorphism, with �nite order, of K , preserving the valuation
v. So � generates a �nite group of automorphismsG. One can de�ne thenorm map
n : K ! K : a 7!

Q
� 02 G a� 0

. Notice that v(n(a)) = jGjv(a). Let � be a map from
the image of the norm mapn to G such that � (1) is the unit element ofG, and so that
v(a) = v(b) implies � (n(a)) = � (n(b)).

It follows that one can construct an Andr�e quasi�eld K + ;� by taking the elements of
K with the addition of the �eld and a new multiplication � : K � K ! K : (a; b) 7!
a � b� (n(a)) . Moreover, we now show that this quasi�eld with the mapv forms a quasi�eld
with valuation. We only have to verify (V3) for the new multiplication. First remark that
v(a � b) = v(a � b� (n(a)) ) = v(a) + v(b� (n(a)) ) = v(a) + v(b). The last step holds because� ,
and so all elements ofG, preservev.

We now calculatev(a1 � b� a2 � b). There are two possibilities that can occur.

� v(a1) 6= v(a2) - suppose without loss of generality thatv(a1) < v (a2). Then

v(a1 � b� a2 � b) = v(a1 � b) (4.1)

= v(a1) + v(b) (4.2)

= v(a1 � a2) + v(b); (4.3)

where the �rst step is true becausev(a1 � b) = v(a1)+ v(b) < v (a2)+ v(b) = v(a2 � b),
(V2), and v(� 1) = 0 (which easily follows from the de�nition of valuation).
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� The other possibility is that v(a1) = v(a2). Then

v(a1 � b� a2 � b) = v(a1 � b� (n(a1 )) � a2 � b� (n(a2 )) ) (4.4)

= v((a1 � a2) � b� (n(a1 )) ) (4.5)

= v(a1 � a2) + v(b� (n(a1 )) ) (4.6)

= v(a1 � a2) + v(b); (4.7)

where the second step holds becausev(a1) = v(a2) implies � (n(a1)) = � (n(a2)).

Combining both cases, we see that (V3) holds for the quasi�eld K + ;� with valuation v.

We now provide some explicit examples of the above situation. Let k be any �eld, let M
be a subset ofNnf 0g generated multiplicatively by a certain set of primes. Now let K be
the �eld of rational functions in t, but allowing all rational powers r=s of t with s 2 M .
If k(t) = f (t)=g(t) 2 K with f (t) and g(t) polynomials (also allowing powers of the form
above), we then setv(k(t)) to be the minimal nonvanishing power oft in f (t), minus the
minimal nonvanishing power oft in g(t). One veri�es that K together with v forms a �eld
with valuation.

� Let k be a �nite �eld with characteristic p and M the set of integer powers ofp.
Then a suitable choice of� is the automorphism that mapst

r
s to ( t1=s

1+ t1=s )r .

� Now let k be any �eld and M generated by all the odd primes (soM is the set of
the odd nonnegative integers). Now one can set� to be the automorphism that
mapst

r
s to (� t

1
s )r .

All of these examples have a nonclassical projective plane at in�nity, but have classical
residues. In addition the residues of theR-building are �nite when k is �nite.

There are also examples where one can choose one residue completely freely. For a given
planar ternary ring R, one can de�ne a `positively valuated ternary ring'Rf tg, similarly as
in the discrete case, see [53]. Indeed, one considers the power series

P
n2 N an tn in t where

N is a set of positive integer multiples of a certain rational number (for di�erent power
series, this number may be di�erent) andan 2 R for n 2 N . Since any �nite number
of such power series can be thought of as belonging to the samediscrete version of this
construction, the ternary operation can be copied from [53], and also the proof of the fact
that we have a positively valuated ternary ring. Now, in completely the same way as in
the discrete case, one constructs a projective plane with (nondiscrete) valuation out of
this. The residue de�ned by this valuation is precisely the projective plane coordinatized
by R. To the best of our knowledge, these are the �rst examples of such nondiscrete
apartment systems with an arbitrary (possibly �nite) residue.
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n = 4

The construction we will explain here is again inspired by anexample for the discrete
case by Hendrik Van Maldeghem in [54]. We will only sketch what the coordinatizing
structure with valuation looks like. All proofs for the �nit e case still hold here (this is
due to the fact that any �nite number of elements in the coordinatizing structure can be
`embedded' in a coordinatizing structure of a discrete case). In particular, the reader can
consult [57] for explicit formulae to derive the valuation of a generalized quadrangle from
the valuation of the coordinatizing structure.

Consider the �nite �eld k = GF(q) with q = 2 h. Let h1 and h2 be two natural numbers
such that q � 1 and � 1 + 21+ h1+ h2 are relatively prime (for exampleh = 3, h1 = 1 and
h2 = 0). For i = 1; 2, let � i be raising to the power 2h i , forming automorphisms of this
�nite �eld. Now consider the �eld K of Laurent series

P
n2 N an tn in t where N is a

set of integer multiples of a certain rational number, bounded below (again, for di�erent
Laurent series, this number may be di�erent), andan 2 k for n 2 N . There is a natural
valuation on this �eld de�ned by v(

P
n2 N an tn ) = m, wherem is the smallest element of

N such that am is nonzero (well de�ned by the boundedness below). We de�nev(0) to
be 1 . One can extend� i for i 2 f 1; 2g to the �eld K by

(
X

n2 N

an tn )� i =
X

n2 N

a� i
n tn : (4.8)

The coordinatizing structure is now given by:

Q1(k; a; l; a0) = ( k� 1 )2:a + a0; (4.9)

Q2(a; k; b; k0) = a� 2 :k + k0; (4.10)

wih k; l; k0; a; b; a0 2 K and v the natural valuation.

For more information about this example and coordinatizingstructures, see [54]. One can
show that this example de�nes a generalized quadrangle withvaluation where both the
quadrangle itself and its residue are nonclassical.

These are, to the best of our knowledge, the �rst explicitly de�ned examples of nondiscrete
R-buildings of this nature.

4.5 Proof of Main Result 4.3.1

General idea. | The hard part of the proof will be showing Axiom (U4). This wi ll be
proven by investigating how the sums occuring in (U4) changewhen we `move around'
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the point � .

The �rst lemma deals with the exact shape of the intersectionof two sectors with the
same source, and sharing a sector-facet.

Lemma 4.5.1 Let C and C0 be two sectors with the same source� which share a sector-
facet F . Then the intersection of both is formed by the convex hull ofF and the common
part of the other two sector-facets ofC and C0.

Proof. Take any apartment � containing C (and so also� ). If � contains C0 then there is
nothing left to prove. If this is not the case then there is a unique apartment � 0

1 at in�nity
containing C0 and sharing a half-apartment with � 1 . A remark in [24, p. 10] states that
if two apartments share a half-apartment at in�nity, they also do in theR-building itself.
This implies the exact form of the intersection. �

If C 6= C0, then such an intersection is called achimney with source� ([30]). We refer to
the width of the chimney as the distance between the parallel walls bordering it.

Corollary 4.5.2 Let r; s; t be elements of� 1 such thatr I sI t, and let � be a point of� ;
then the width of the chimney de�ned by the intersection of the sector containingr � and
s� , and the one containings� and t � , equalssin(�=n )u� (r; t ).

Proof. Directly from the de�nitions and the previous lemma. �

Now let � be an arbitrary point of � and consider the map u� . The Axiom (U1) will be
satis�ed because given an elementx at in�nity there is always an apartment containing
x � where we then can �nd the needed elementy adjacent to x such that u� (x; y) = 0.
The second Axiom (U2) is satis�ed trivially and (U3) followsfrom the convexity of sector-
panels.

The main di�culty is (U4). Let x0 and xn be two opposite elements of �1 and M :=
(x0; x1; : : : ; xn ) 2 (P [ B)n+1 such that x0I x1I : : : I xn . We de�ne the function

f : R+ ! R+ : l 7!
n� 1X

i =1

sin(i�=n )u� (x i � 1; x i +1 );

with � 2 (x0)� at distancel from � . If we can prove thatf only depends onx0; xn and � ,
then we have proven (U4) and Main Result 4.3.1 (in view of the fact that (U4) is trivially
satis�ed in degenerate apartments).
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Before we go on we need the notion of `distance in the residues'. Let x and y be elements
of � 1 and � 2 �. Then we de�ne the residual distanced� (x; y) at � to be the distance
between [x]� and [y]� as de�ned in the generalizedn-gon [�] � (a point and an incident
line are at distance 1, two collinear points are at distance 2, . . . ).

Remark 4.5.3 Similar to residues, the notion residual distance has been used already
for a di�erent object, see Remark 4.2.4 for more informationabout both notions. Again,
from the context it should be clear what is meant.

The next lemma investigates the local behaviour of the valuations.

Lemma 4.5.4 Let r; s; t be elements of� 1 such that r I sI t, and � a point on (x0)�

with d(�; � ) = l. Then there exists some� > 0 such that for any � 0 on (x0)� with
d(�; � 0) 2 [l; l + � ], the following holds:

u� 0(r; t ) = u� (r; t ) + �
sin(d� (s; x0)�=n )

sin(�=n )
d(�; � 0);

where� is a constant equal to

8
<

:

� 1 if d� (r; x 0) = d� (t; x 0) = d� (s; x0) � 1;
1 if d� (r; x 0) = d� (t; x 0) = d� (s; x0) + 1 ;
0 if d� (r; x 0) 6= d� (t; x 0):

Proof. Let C be the sector spanned byr � and s� and C0 the one bys� and t � . Both these
sectors have source� . Using Lemma 1.8.1, we can �nd apartments � and � 0 containing C
and an element of the germ [x0]� , and C0 and an element of the germ [x0]� , respectively.
Let � be the length of the part of (x0)� included in � \ � 0. Obviously � > 0. Let � 0 be
on (x0)� with d(�; � 0) 2 [l; l + � ]. The sectorsC� 0 and C0

� 0 with source � 0 now lie in the
apartments � and � 0, respectively.

Using the intersection of both apartments one can easily calculate that the width of the
chimney de�ned by r; s and t with source at � 0 is � sin(d� (s; x0)�=n )d(�; � 0) larger than
the one with source� , with � as in the table above. Using Corollary 4.5.2 we now obtain
the desired result. �

As an immediate consequence of the previous lemma, we see that f is right-continuous.
Left-continuity (and because of this also continuity) can be proved analogously. Using a
similar reasoning one can prove the following lemma and corollary, which we will need to
prove a later result.
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Lemma 4.5.5 For any R-building (� ; F ) (not necessarily 2-dimensional), andC1 and
D1 two adjacent chambers at in�nity, only di�ering in the vertices x1 and y1 , the
function u : � ! R which maps a point� to the length of the common part of the
sector-facetsx � and y� , is uniformly continuous. �

Corollary 4.5.6 For an R-building (� ; F ), and two adjacent chambersC1 and D1 at
in�nity, the subset of points � of � for which [C]� = [ D]� is an open subset of the metric
space de�ned on� .

Proof. Directly from the above lemma. �

Applying Lemma 4.5.4 to the (�nite number of) valuations occurring in the de�nition of
f now implies that for every l 2 R+ there exists some�� > 0 (the minimum occurring in
the application to each valuation) andal 2 R such that f (l0) = f (l) + al (l0 � l ) for every
l0 2 [l; l + �� ]. The next step in our proof is to show thatal only depends onx0; xn ; � and
l. One thing which is directly clear is that al only depends on the distancesd� (x0; x i )
with i 2 f 1; 2; : : : ; ng, and on the point � on (x0)� with d(�; � ) = l. Because of this
we can reduce this combinatorially as follows. De�ne the sequence (y0; y1; : : : ; yn), with
yi := d� (x0; x i ), i 2 f 0; 1; 2; : : : ; ng. This sequence consists of nonnegative integers such
that two consecutive ones di�er by exactly one, and the extremities y0 (which equals 0)
and yn are constants. An entry di�erent from the extremities with the property that both
neighbours are strictly smaller will be called apeak; if both neighbours are strictly larger,
then we call the entry avalley. The sequence will determine theal uniquely.

If two sequences produce the sameal we will say that they areequivalent. We now show
that each sequence is equivalent to the unique sequence withno valleys, which will be
called thestandard sequence. Therefore we look at the sum� of all the yi 's. The number
� is clearly an integer and bounded. Consider any sequence di�erent from the standard
sequence; then it has at least one valley, say at the entryyj = m. We now break the
problem down to some di�erent cases and show that in each casethe given sequence is
equivalent with one obtained from the �rst one by replacingyj by yj + 2. This equivalent
sequence has a larger sum, and because this sum is an integer and is bounded by the sum
obtained from the standard sequence, recursion implies that all sequences are equivalent
to the standard sequence. Note thatj � 2, soj � 2 is always well-de�ned.

In the following we will denote�=n by � n for ease of notation.

(i ) Case (yj � 2; yj � 1; yj ; yj +1 ; yj +2 ) = ( m+2; m+1; m; m+1; m). As indicated above, we
show that this is equivalent with (yj � 2; yj � 1; y0

j ; yj +1 ; yj +2 ) = ( m+2; m+1; m+2; m+
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1; m). Indeed, using the expression foral from the de�nition of f and Lemma 4.5.4,
we see that we must show

� sin(j� n ) sin(m� n ) + sin(( j + 1) � n ) sin((m + 1) � n ) =

� sin((j � 1)� n ) sin((m + 1) � n ) + sin( j� n ) sin((m + 2) � n ):

Indeed, we perform the following elementary calculations.

� sin(j� n ) sin(m� n ) + sin(( j + 1) � n ) sin((m + 1) � n )

= 1=2(� cos((j � m)� n ) + cos((j + m)� n ) + cos((j � m)� n ) � cos((j + m + 2) � n ))

= 1=2(cos((j + m)� n ) � cos((j + m + 2) � n )) ;

while

� sin((j � 1)� n ) sin((m + 1) � n ) + sin( j� n ) sin((m + 2) � n )

= 1=2(� cos((j � m � 2)� n ) + cos((j + m)� n ) + cos((j � m � 2)� n )

� cos((j + m + 2) � n ))

= 1=2(cos((j + m)� n ) � cos((j + m + 2) � n )) :

It follows that the two sequences are equivalent.

(ii ) Case (yj � 2; yj � 1; yj ; yj +1 ; yj +2 ) = ( m; m + 1; m; m + 1; m + 2) . This is analogous to
the previous case.

(iii ) Case (yj � 2; yj � 1; yj ; yj +1 ; yj +2 ) = ( m; m+1; m; m+1; m). Here, we show that this is
equivalent with (yj � 2; yj � 1; y0

j ; yj +1 ; yj +2 ) = ( m + 2; m + 1; m + 2; m + 1; m). Indeed,
as before, we must show that

sin((j � 1)� n ) sin((m + 1) � n ) � sin(j� n ) sin(m� n ) + sin(( j + 1) � n ) sin((m + 1) � n )

= sin( j� n ) sin((m + 2) � n ):

This equality is the same as the one in Case (i ), but with one term swapped from
side. The same conclusion follows.

(iv ) Case (yj � 2; yj � 1; yj ; yj +1 ; yj +2 ) = ( m + 2; m + 1; m; m + 1; m + 2) . Here we must
show that

� sin(j� n ) sin(m� n ) = � sin((j � 1)� n ) sin((m + 1) � n )

+ sin( j� n ) sin((m + 2) � n ) � sin((j + 1) � n ) sin((m + 1) � n ):

This equality is the same as in Case (iii ) but with m substituted by � m � 2. Again
the same conclusion follows.
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(v) Case j = n � 1. In this case we can reuse the previous arguments by adding an
extra elementxn+1 I xn with correspondingyn+1 := yn � 1, and extendingf with an
extra coe�cient sin( n�=n )u� (xn� 1; xn+1 ) (which is zero anyway due to sin� = 0).

This proves that each sequence is equivalent to the standardsequence, and so that all
sequences are equivalent andal only depends onx0; xn ; � and l.

We now need an elementary result from analysis, which we prove for completeness' sake.

Lemma 4.5.7 If g is a continuous real function de�ned overR+ such that for every
l 2 R+ there is a � for which g(l0) = g(l) for every l0 2 [l; l + � ], then g is constant over
R+ .

Proof. De�ne 	 := f x 2 R+ j(9� 0 > 0)(8x0 2 [x � � 0; x + � 0])(g(x) = g(x0))g as the set of
`constant points'. If an interval lies completely in 	, then g is constant over that interval
because the preimage of the image of an element in such an interval is both open (due to
the de�nition of 	) and closed (because of the continuity of g) in the connected interval.
It follows also from the continuity of g that this is also true for the closure of an interval
lying completely in 	. If the set R+ n	 is nonempty, then it has an in�mum t. Note
that by assumption, there exists some� > 0 such that [0; � [ � 	. Hence t > 0 and the
interval [0; t[ lies completely in 	, implying that g is constant over [0; t]. But we also
know that there exists a� 0 such that g is constant over [t; t + � 0], so [0; t + � 0[ lies in 	.
This contradicts the fact that t is an in�mum. So 	 = R+ and g is constant overR+ . �

Lemma 4.5.8 There is an l 2 R+ such thatf (l0) = 0 if l0 � l .

Proof. Let i be minimal with respect to the property d� (x0; x i ) 6= i . It is clear that, if
� 2 (x0)� , then d� (x0; x j ) = j for j < i (because the sectors spanned byx0 till x j with
source� form a part of an apartment and contain those with source� ). Suppose there is
no � 2 (x0)� such that alsod� (x0; x i ) = i . In such a case we have that the function

g : R+ ! R+ : l 7! u� (x i � 2; x i ); with d(�; � ) = l;

is strictly positive for each� 2 (x0)� (because a zero value would imply thatd� (x0; x i ) =
i ). As we know by Lemma 4.5.4, for everyl 2 R+ there is a� such that

g(l0) = g(l) �
sin((i � 1)� n )

sin� n
(l0 � l ); for every l0 2 [l; l + � ]:
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The function g(l) + sin(( i � 1)� n )
sin � n

l then complies to the statement of Lemma 4.5.7 and is
constant. But this is impossible since forl large enough, this would imply thatg(l) is
negative. Consequentlyg cannot be strictly positive, yielding that there is a� 2 (x0)�

such that alsod� (x0; x i ) = i .

Repeating this process a �nite number of times will produce an l such that d� (x0; xn ) = n
if d(�; � ) � l . This implies that u� (x i � 1; x i +1 ) is zero for eachi 2 f 1; 2; : : : ; n � 1g, which
on its turn implies that f (d(�; � )) = 0. �

Let us reiterate what we know about the functionf de�ned over R+ :

(O) For high enough values it is zero.

(C) The function is continuous.

(P) For every l 2 R+ there is a �� and an al 2 R such that f (l0) = f (l) + al (l0 � l ) for
every l0 2 [l; l + �� ] whereal depends only onl; x 0; xn and � .

Lemma 4.5.9 Two functions satisfying the three conditions(O), (C) and (P) (with the
sameal ) are equal overR+ .

Proof. Because we know thatf satis�es the above conditions, we can assume that one
of the functions is f - let the other be f 0. Considerg = f 0 � f ; then g is continuous, is
zero for high enough values, and for everyl 2 R+ there is a � (the minimum of the two
�� related to f and f 0) such that g(l0) = g(l) for every l0 2 [l; l + � ]. Lemma 4.5.7 now
implies that g is constant, and so zero overR+ .

This implies that f and f 0 are equal. �

As al only depends onl; x 0; xn and � , it is a direct corollary of the previous lemma that
f only depends onx0; xn and � , which has previously been said to imply (U4). This
completes the proof of Main Result 4.3.1.

4.6 Proof of Main Result 4.3.2

We start with a polygon � with valuation u, with weight sequence (a1; a2; : : : ; an� 1; an+1 ;
an+2 ; : : : a2n� 1), and such that u has nonzero values. Our proof is heavily inspired by a
similar result for the discrete case in [55] by Hendrik Van Maldeghem. In fact, we will
use some of the results (with the proofs remaining valid in the nondiscrete case) obtained
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there, directly in our proof. In particular, and to begin with, it is shown in 3.1 of [55] that
the weight sequence of a given polygon with valuation havingnonzero values is unique,
up to a nonzero multiple. As is also exploited in [55], this has as consequence that the
weight sequence is symmetric, i.e.,ai = an� i = an+ i = a2n� i for i 2 f 1; 2; : : : ; n � 1g.

Now let (x0; x1; : : : ; x2n = x0) be any closed path of length 2n in �. Because of (U4) we
know that

n� 1X

i =1

ai u(x i � 1; x i +1 ) =
2n� 1X

i = n+1

ai u(x i � 1; x i +1 );

and also that
n+1X

i =3

ai � 2u(x i � 1; x i +1 ) =
2n+1X

i = n+3

ai � 2u(x i � 1; x i +1 ):

If one takes the sum of both equations, and simpli�es the resulting expression using
a1 = an� 1 = an+1 = a2n� 1, one obtains

a2u(x1; x3) +
n� 1X

i =3

(ai + ai � 2)u(x i � 1; x i +1 ) + an� 2u(xn� 1; xn+1 )

= an+2 u(xn+1 ; xn+3 ) +
2n� 1X

i = n+3

(ai + ai � 2)u(x i � 1; x i +1 ) + a2n� 2u(x2n� 1; x2n+1 ):

This implies that

(a2; a3 + a1; a4 + a2; : : : ; an� 1 + an� 3; an� 2; an+2 ; an+3 + an+1 ; : : : ; a2n� 1 + a2n� 3; a2n� 2)

is also a weight sequence. Hence there exists some positive real numberk satisfying

8
>>>>>><

>>>>>>:

ka1 = a2;
ka2 = a3 + a1;
ka3 = a4 + a2;
: : :
kan� 2 = an� 1 + an� 3;
kan� 1 = an� 2:

(4.11)

One notices, by taking the sum of all equations in the system of equations above, that

k
n� 1X

i =1

ai = 2
n� 1X

i =1

ai � (a1 + an� 1):



104 `Rank three' case, or two-dimensional R-buildings

This implies that 1 � k < 2. As a consequence, we can �nd an� 2 ]0; �= 3] such that
k = 2 cos� . Also remark that aj = kaj � 1 � aj � 2 for j 2 f 3; n � 1g. If we formally set
a0 = an = 0, then this is also true for j 2 f 2; ng. Furthermore we can suppose that
a1 = sin � .

Lemma 4.6.1 For i 2 f 0; 1; : : : ; ng we haveai = sin( i� ).

Proof. We prove this using induction oni . It is clear that this holds for i = 0 and i = 1
(by assumption and by de�nition of � , respectively). So leti � 2 such that aj = sin ja
for j < i . Then we know that:

ai = kai � 1 � ai � 2

= 2 cos� sin[(i � 1)� ] � sin[(i � 2)� ]

= sin i�

The second equality follows from the induction hypothesis,the third from the trigono-
metric formula sina + sin b= 2 sin[(a + b)=2] cos[(a � b)=2]. �

Lemma 4.6.2 � = �=n .

Proof. We have that an = 0, so sinn� = 0 by the previous lemma. This yields� = m�=n ,
with m 2 N0 smaller than or equal ton=3 (since� 2 ]0; �= 3]). At the same time we have
ai > 0 for i 2 f 1; : : : ; n � 1g. Let t be the smallest integer greater than or equal ton=m.
Becausen=m � t � 2n=m (by n=m � 3), it holds that tm�=n 2 [�; 2� ], so at � 0. As
t clearly is in f 1; 2; : : : ; ng, we obtain that t = n, which implies that m = 1 (because
m 2 N0 and n � 3) and � = �=n . �

Combining the two previous lemmas, we obtain:

Corollary 4.6.3 For i 2 f 0; 1; : : : ; ng, ai = sin( i�=n ), and any other weight sequence of
(� ; u) is a multiple of this.

Remark 4.6.4 It is easy to see that allk 2 R satisfying Equation 4.11 are precisely
the eigenvalues of the path graphPn� 1 of length n � 2, consisting ofn � 1 vertices.
Moreover, since allai are positive, it is the unique eigenvalue for which the coordinates of
the associated eigenvectors have constant sign. This observation can be used to give an
alternative proof of the previous corollary. Doing so, one sees that 2 cos(�=n ) is in fact
the largest eigenvalue ofPn� 1.
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4.7 Proof of Main Result 4.3.3

By the proof of the previous main result one can suppose for the proof of the current and
following main result that the weight sequence is given byai = j sin(i�=n )j=sin(�=n ). In
particular, we have that a1 = 1.

Let n be a natural number with 3� n � 6 for the rest of this section.

If x and y are opposite elements, let� (x; y) be the sum
P n� 1

i =1 ai u(x i � 1; x i +1 ) where (x0 =
x; x1; : : : ; xn� 1; xn = y) is a shortest path fromx to y; (U4) guarantees independence of
the chosen path.

Two elementsx and y are said to bet-residually equivalent, if for each elementz the
following are equivalent:

� z is oppositex and � (x; z) < t ;

� z is oppositey and � (y; z) < t .

Notice that when t = 0, this de�nition is trivially ful�lled.

Lemma 4.7.1 Two adjacent elementsx and y are u(x; y)-residually equivalent, but not
t-residually equivalent witht > u (x; y).

Proof. Let z be an element oppositex with � (x; z) < u (x; y). Consider the unique shortest
path (x0 = x; x1 = xy; x2; : : : ; xn = z) from x to z containing xy. Becausea1 = 1, it
holds that u(x; x2) � � (x; z) < u (x; y), so u(y; x2) = u(x; x2) by (U3). This implies that
y and z are opposite and that� (y; z) = � (x; z) (the last is easily seen when considering
the path (y; x1; x2; : : : ; xn = z)).

If t > u (x; y), then consider a path (x; xy; y = y2; : : : ; yn ) where the path (y2; : : : ; yn) has
valuation zero (possible by Lemma 4.2.2). �

Corollary 4.7.2 If xI yI z, then [x] = [ z] if and only if u(x; z) > 0.

Lemma 4.7.3 Given a closed path	 , there are at least two sides having the same mini-
mal valuation among all sides in	 .
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Proof. Let x and y be the two points on a side with minimal valuation, and suppose
all other sides have valuation strictly larger thanu(x; y). Let t be the second smallest
valuation among the sides in 	. By repeatedly using Lemma 4.7.1 and going fromx to y
in 	 not using xy, one proves thatx and y are t-residually equivalent, which contradicts
Lemma 4.7.1. �

Lemma 4.7.4 If two elementsx and y are not residually equivalent, but if there exist
aI x and bI y which are residually equivalent, then there is an elementz residually opposite
one element off x; yg, but at distancen � 2 from the other.

Proof. Without loss of generality, one can suppose that there exists an elementd which
is residually oppositex, but not residually oppositey.

According to Lemma 4.2.2, there exists an elementc incident with x such that u(a; c) = 0.
Let (x = x0; c = x1; : : : ; xn� 1; d = xn ) be the unique shortest path fromx to d containing
c. The elementxn� 1 is residually opposite, and so also opposite,a and b. This implies
that d(y; d) = n or d(y; d) = n � 2. In the second case we are done, so suppose we are in
the �rst case. Let (y = y0; y1; : : : ; yn� 2; yn� 1 = xn� 1; yn = d) be the unique shortest path
from y to d containing xn� 1. Because the elementxn� 1 is residually oppositeb, the path
(b; y= y0; y1; : : : ; yn� 2; yn� 1 = xn� 1) has valuation zero. Asy is not residually opposited,
the valuation u(yn� 2; d) has to be non zero. Soxn� 2 6= yn� 2 and u(xn� 2; yn� 2) = 0. The
element xn� 2 will now be the desired elementz, because it is residually oppositey, but
at distancen � 2 from x. �

Lemma 4.7.5 Let 
 be a simply foldedn-gon. If two elementsx and y are folded together
in 
 , then they are residually equivalent.

Proof. Here we need to distinguish between the di�erent possibilities for n. Let z be an
element of 
 such that 
 is folded along z.

� n = 3. For this case the result follows directly from Corollary4.7.2.

� n = 4. Again using Corollary 4.7.2, one only needs to prove thatthe two elements
of 
 at distance 2 from z are residually equivalent. Suppose this is not the case.
Using the previous lemma, one can assume without loss of generality that there is
an elementa residually oppositex, but at distance 2 fromy.
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z

a

x

x2

x3

y

z0

Let (x; xz; x2; x3; a) be the unique shortest path (which has valuation zero) from
x to a containing xz. Let z0 be the element oppositez in 
. The element x3 is
residually oppositexz0, and so also residually oppositeyz0 due to Corollary 4.7.2.
This implies that the valuations u(y; a) and u(x3; ay) are zero. But as also the
valuations u(xz; x3) and u(x2; a) are zero, (U4) would imply that u(xz; zy) = 0,
which is a contradiction.

� n = 5. Using Corollary 4.7.2 and the previous lemma, one can assume without loss
of generality that x and y are at distance 2 fromz, and that there exists an element
a residually oppositex, but at distance 3 fromy.

Let (x; xz; x2; x3; x4; a) be the unique shortest path (which has valuation zero) from
x to a containing xz, and let (y; y1; y2; a) be the shortest path fromy to a. Choose
an elementbI a such that u(b; x4) = 0 (this is possible due to Lemma 4.2.2). The
elementxz is residually oppositeb, and so alsoyz. All of this implies that the path
(yz; y; y1; y2; a; b) has valuation zero. A consequence is thatu(x4; y2) > 0, otherwise
we could have chosenb to be y2, leading to a contradiction.

z

x2

x y

x4
a

b

y2

z0

x3

y1

x0 y0
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Let z0 be the element oppositez in 
, and let x0; y0 be the elements incident with
z0 closest tox and y respectively. Nowx0 and y0 are both residually oppositex3,
implying that the unique shortest path fromyy0 to x3 has valuation zero. If we look
in the unique ordinary pentagon containingyy0; x3 and y2, we see that the valuation
of x3 in this pentagon is nonzero because of (U4) andu(x4; y2) > 0. By (U3) we
then obtain that the valuation of x3 in the unique ordinary pentagon containingx3,
yy0 and z is zero. This contradicts (U4) and the fact that the valuation of z in this
pentagon is nonzero.

� n = 6. Apart from the case handled in Corollary 4.7.2, there aretwo cases to
consider here.

{ The �rst case is whenx and y lie at distance 2 or 4 fromz; without loss of
generality one can suppose this to be 2. Similarly to the previous cases, let
a be an element residually oppositex, but at distance 4 from y. Let x1 be
the unique element of 
 at distance 1 fromx and 3 from z. Now consider the
unique shortest path (x; x1; x2; x3; x4; x5; a) from x to a containing x1, and the
unique shortest path (y; y1; y2; y3; a) from y to a. Observe thatx4 2 [z]opp. Let

 0 be the unique ordinary simply folded hexagon containingz, x4, x and yz,
and let b be the element oppositex2 in this hexagon. By (U3), the unique
ordinary hexagon containingy, b, y1, and x4 is nonfolded, sou(y; b) is zero and
x4 2 [y]opp.

Let 
 00be the unique ordinary hexagon containingz, y and x3, and 
 000the
unique ordinary hexagon containingy, b and x3. Let c and c0 respectively be
the elements oppositexz in the hexagons 
 and 
 00respectively. Letd and d0

be the projections ofc and c0, respectively, ony. The hexagon 
000is a simply
folded hexagon folded alongy (remember that u(y; b) was zero). Sou(yz; d0)
is nonzero, and sou(d; d0) is zero. This implies that c 2 [c0]opp, so also the
element c00 opposite yz in 
 is in [ c0]opp. Because the unique path fromc00

to c0 containing x2 has valuation zero, also the path fromxz to c0 containing
x has valuation zero. Soxz 2 [c0]opp, which givesyz 2 [c0]opp, and this is a
contradiction becauseyz and c0 are at distance 4 from each other.
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{ The last case to handle is the case wherex and y are at distance 3 fromz.
For the �nal time, consider an elementa 2 [x]opp at distance 4 fromy. Let x0

and y0 be the projections fromz on x and y, respectively, and letx00and y00

be the elements in 
 at distance 4 fromz and 1 from x and y, respectively.
Let a0 be the projection ofx00on a; this element is residually oppositex0, so
it is also residually oppositey0 (as shown in the previous case). The unique
shortest path from y0 to a0 containing a (and because of this alsoy) now has
valuation zero. Let a00be the projection ofy0 on a. This element is residually
opposite x00, but cannot be residually oppositey00as it is only at distance 4
from y00. This contradicts the previous case applied tox00and y00.
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z

x0 y0

x y

x00 y00

a0 a a00

�

Lemma 4.7.6 Let x; y be elements of� such that[x]I r [y]. Then there exists somey0 2 [y]
such thatxI y0.

Proof. Let F be the set of all ags containing an element of [x] and one of [y]. Let f x0; y0g
be a ag of F such that the sumd of distances ofx0 and y0 to x is minimal. If d = 1, then
x0 = x and xI y0. So we may suppose thatd > 1.

Suppose that the distance ofx to y0 is one bigger than the distance fromx to x0. Let
(x0 = x; x1; : : : ; xj � 1 = x0; x j = y0) be the shortest path fromx to y0 containing x0 (j � n).
Let i be the smallest integer such that the subpath (x i ; : : : ; xj � 1; x j ) has valuation zero.
We have that i � 1 (because otherwise it is impossible thatx0 2 [x]) and i � j � 1. Using
Lemma 4.2.2 we can extend this subpath to a path (x i ; : : : ; xj � 1; x j ; x j +1 ; : : : ; xi + n ) with
valuation zero of lengthn. Consider the unique path (x0

i = x i ; x0
i +1 = x i � 1; : : : ; x0

i + n =
x i + n ) from x i to x i + n containing x i � 1. Then using (U4), we see that this path has valuation
zero. These two paths together form an ordinaryn-gon 
, which is simply folded along
x i . The previous lemma implies thatx0

j � 1 2 [x] and x0
j 2 [y]. But the sum of distances to

x of these two incident elements is strictly less thand, contradicting the minimality of d.

The case where the distance ofx to x0 is one bigger than the distance fromx to y is
proven analogously. �

The diameter of our new geometry �r is clearlyn. In order to prove it is a (weak) general-
izedn-gon we have to show that there is no closed nonstammering path of length less than
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2n. So suppose by way of contradiction that we have such a path ([x0]; [x1]; : : : ; [x2m ] =
[x0]) with 2 � m < n . The previous lemma allows us to lift the path into a (not necessarily
closed) path (x0

0; x0
1; : : : ; x0

2m ) such that [x0
i ] = [ x i ].

Due to Corollary 4.7.2 and the fact that the original path wasnonstammering, this path
has valuation zero. If 2m < n , we extend this path to a path (x0

0; x0
1; : : : ; x0

2m ; x0
2m+1 ; : : : ; x0

n )
with valuation zero, of length n (this is possible by Lemma 4.2.2). In each case we have
that x0

n is residually oppositex0
0, but not opposite, and so certainly not residually opposite

x0
2m . Hence we have a contradiction and we have proven the Main Result 4.3.3.

4.8 Proof of Main Result 4.3.4

General idea. | Starting from one valuation u on �, we will construct more valuations.
Each of these valuations will correspond to a point of ourR-building. We will use results
from Section 4.5, which prove the current problem in the other direction. For example,
in that section Lemma 4.5.4 tells us how a valuation should behave when we `move' the
point it is de�ned from. We will use this information to construct new valuations.

We now return to our case. Let (�; u) be a generalizedn-gon with valuation, x an element
of �, and t 2 R+ a positive real number. We want to de�ne a new valuationuV (x;t ) with
V(x; t ) an operator called thetranslation operator (uV (x;t ) will be referred to as thet-
translation of u towards x, and u is t-translated towardsx).

How do we construct this new valuation? Remember that each element y has a certain
residual distancedr (x; y) from x in the residue � r de�ned by the valuation u. We now
`predict' the translated residual distancedx;t

r (y) from x to y when t-translating u, as it
would be if we were indeed in anR-building (we changed the notation of the residual
distance to an unary function to stress the dependability ofx, and the fact that we will
only need distances fromx). This function de�ned for t 2 [0; + 1 [ will be right-continuous
and piecewise constant. First thing one needs to assure hereis that for two incident
elementsy; z, the translated residual distancesdx;t

r (y) and dx;t
r (z) di�er by only one. The

de�nition of this function will be referred to as step (C1), the `di�erence condition' as
condition (C2).

Because we know how the (translated) residual distances would behave if we were in an
R-building, we can use Lemma 4.5.4 to predict how the translated individual valuations
would behave if we were indeed in an a�ne apartment system (this is done by a trivial
integration of a piecewise constant function). The set of all these individual valuations



112 `Rank three' case, or two-dimensional R-buildings

allows to construct a new `valuation'uV (x;t ) (we still need to verify this is really a valua-
tion). On the third and fourth page of Section 4.5, it was shown that the weighted sum of
the coe�cients of t along the path (x0; : : : ; xn ) depends only on the residual distances of
d0 and dn of x0 and xn respectively, under the assumption thatd0 = x0. The argument in
that section can be extended to show that this weighted sum depends also only ond0 and
dn when d0 is not zero, by applying the same idea as in Case (v) of that section if j = 1 is
a valley. Because here the predicted individual valuationsbehave in the same way as they
would in the a�ne apartment system case, this result can be applied here (also using the
fact that for two incident elements the residual distances di�er only by one) to guarantee
that (U4) will be satis�ed by uV (x;t ) . The condition (U2) is trivially satis�ed. For more
insight in how uV (x;t ) is constructed, see the example in the section below.

For the other two conditions and positivity of the valuation, we will de�ne and use the
R-trees associated to elements of �.

Choose a pointx in a given tree. We can de�ne a valuationv acting on the set of pairs
(e; f ) of ends (parallel classes of sectors) of this tree as the length of the intersection of
the two half apartments with boundary x and endse and f . The point x will be called
the base point of the valuation.

One property of v is that for three arbitrary ends e; f; g the inequality v(e; f ) < v (f; g )
implies v(e; g) = v(e; f ). Now, given any binary function w acting on a setE obeying
this property, one can (re)construct a tree (ifw is already a valuation of a tree, then
we will obtain the same tree) by taking the setf (e; t)je 2 E; t 2 R+ g and applying the
equivalence relation

(e; t) � (f; s ) , t = s and t � w(e; f )

(e; f 2 E and s; t 2 R+ ). The base point of this tree is the equivalence classf (e;0)je 2
Eg =: x. The set of ends of this tree is in natural bijective correspondence withE and the
valuation in this tree with base point x coincides withw. (This construction is a special
case of the one of Alperin and Bass in [3].)

It is easily seen that this property is the same as (U3) when werestrict u to a point row
or line pencil. So to each lineL or point p of � we can associate a tree namedT(L) or
T(p) with a certain base point. The location of this base point will play a major role in
the next sections. Other choices of base points yield other valuations of the tree.

We now return to the problem of (U1), (U3) and positivity. Obviously, this will be solved
if we can show that the change in valuations of elements incident with an elementy of � is
described by changing the base point in the treeT(y). With an eye on the above lemma,
we want to move the base point towards an end corresponding toan elementaI y with
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dx;t
r (a) = dx;t

r (y) � 1 over a length oft sin(dx;t
r (y)�=n )=sin(�=n ), with t a certain translation

length such that the translated residual distances ofa and y stay the same. In order that
the valuations obtained by this change of base point correspond to the predictions of the
valuations using the above lemma, we need to verify three things.

� If the valuation of the pair consisting of a and another elementbI y is going to
decrease (equivalent with saying thatdx;t

r (b) = dx;t
r (y) � 1 and dx;t

r (y) 6= n), then
this valuation corresponds to the predicted valuation using the displacement of the
base point in the tree, if the two half-apartments with endsa and b and source the
base point have more in common than only the base point, souV (x;t )(a; b) > 0. (We
refer to this as condition (C3).)

� If the valuation of the pair consisting of a and another elementbI y is going to
stay the same (equivalent with saying thatdx;t

r (b) = dx;t
r (y) + 1), then we have

correspondence between the two predictions if the base point lies in the apartment
with ends a and b, so uV (x;t )(a; b) = 0. (This will be condition (C4).)

� Finally note that if the valuation is going to increase (two elements b; cI y with
dx;t

r (b) = dx;t
r (c) = dx;t

r (y) + 1), we would need that the base point lies on the
intersection of the apartment with endsa and b, and the one with endsa and c (so
uV (x;t )(a; b) = uV (x;t )(a; c) = 0). But this is already covered by (C4), so there is no
extra condition needed.

In the next part of the proof (after the example), we considereach case seperately.

4.8.1 An example

We will illustrate with an example how uV (x;t ) will be calculated in practice. Suppose we
are in the n = 3 case, and thatx is a point. Let us say we have two pointsx1, x2 di�erent
from x, and we want to de�ne uV (x;t )(x1; x2). (For the (C1) used here we refer to the next
section.)

Supposeu(x; x i ) = t i and supposeu(x1; x2) = t2, with t1 > t 2 > 0 (there are other cases,
but let's rectrict to this one). The residual distances are all zero between these points.
Let L be the line joining x1 and x2. Then � in the formula of Lemma 4.5.4 equals� 1.
Here, we can take� = t2 (so far, the residual distances tox do not change according to
(C1)), and we obtain

uV (x;t )(x1; x2) = t2 � t for t � t2:
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From then on, � becomes zero untilt = t1, since the residual distance tox from x1 di�ers
from that to x2; to x2 it becomes 2 and tox1 it is 0. Hence

uV (x;t )(x1; x2) = 0 for t2 < t � t1:

Note that, up to now, the residual distance fromx to L was always 1, hence the quotient
of the sines has always been 1. This is going to change in the next paragraph.

For t � t1, � equals 1, and the quotient of the sines is still 1, but only fort � � (x; L )
according to (C1), which is by de�nition bigger than t1. Hence

uV (x;t )(x1; x2) = t � t1 for t1 < t � � (x; L ):

At t = � (x; L ), the sine ofd(x; L )�= 3 becomes 0, and so the valuation becomes constant
again:

uV (x;t )(x1; x2) = � (x; L ) � t1 for � (x; L ) < t:

4.8.2 n = 3

We de�ne (C1) and check (C2), (C3) and (C4).

(C1)

� If d(x; y) = 0, then dt;x
r (y) = 0 for t 2 [0; + 1 [.

� If d(x; y) = 1, then dt;x
r (y) = 1 for t 2 [0; + 1 [.

� If d(x; y) = 2, then

{ dt;x
r (y) = 0 for t 2 [0; u(x; y)[,

{ dt;x
r (y) = 2 for t 2 [u(x; y); + 1 [.

� If d(x; y) = 3, then

{ dt;x
r (y) = 1 for t 2 [0; � (x; y)[,

{ dt;x
r (y) = 3 for t 2 [� (x; y); + 1 [.
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(C2)

Let y and z be a pair of incident elements. Without loss of generality one can suppose
that d(x; y) + 1 = d(x; z). The only not completely trivial cases are whered(x; y) = 2 and
dt;x

r (y) = 0. This happens whent 2 [0; u(x; y)[, so alsot < � (x; z) = u(x; y) + u(y; z), and
so dt;x

r (z) = 1. We conclude that (C2) is satis�ed.

(C3)

Let again y be an element, witha; btwo elements incident withy, such that dx;t
r (a) + 1 =

dx;t
r (b) + 1 = dx;t

r (y). The only cases for which we need to verify thatuV (x;t )(a; b) > 0 are
dx;t

r (y) = 1 or 2.

� If d(x; y) = 1, then dx;t
r (a) + 1 = dx;t

r (b) + 1 = dt;x
r (y) = 1. One can choose

a = x, then d(x; b) = 2, so in this caset 2 [0; u(x; b)[. The following now holds:
uV (x;t )(a; b) = u(x; b) � t > 0.

� If d(x; y) = 2, then dt;x
r (y) = 2 for t 2 [u(x; y); + 1 [. Assume that a = xy and

d(x; b) = 3. This yields that t 2 [u(x; y); � (x; b)[= [ u(x; y); u(x; y) + u(a; b)[. One
checks thatuV (x;t )(a; b) = u(a; b) � t + u(x; y) > 0, so (C3) holds here.

� If d(x; y) = 3, then dt;x
r (y) = 1 for t 2 [0; � (x; y)[. This case is similar to the case

d(x; y) = 1, but now using Lemma 4.7.3 instead of (U3).

(C4)

Let y be an element, witha; b two elements incident with y, such that dx;t
r (a) + 1 =

dx;t
r (b) � 1 = dx;t

r (y). We only need to verify that uV (x;t )(a; b) = 0 is when dx;t 0

r (b) < dx;t
r (b)

for t0 < t .

� If d(x; y) = 1, we again choosex to play the role of a. It is clear that the conditions
then tell that t = u(x; b), and uV (x;t )(x; b) = u(x; b) � t = 0.

� If d(x; y) = 2, then dt;x
r (y) = 2 for t 2 [u(x; y); + 1 [. We choosea to be the element

xy. The elementblies at distance 3 fromx because of this, andt = � (x; b). Similarly
to the (C3) case one checks thatuV (x;t )(a; b) = u(a; b) � t + u(x; y) = 0.

� If d(x; y) = 3, then dt;x
r (y) = 1 for t 2 [0; � (x; y)[. This case is similar to the case

d(x; y) = 1, but now using Lemma 4.7.3 instead of (U3).
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4.8.3 n = 4

Before we check the conditions, we state some useful lemmas.

Lemma 4.8.1 It is impossible to have an ordinary quadrangle
 containing exactly two
sides with nonzero valuations, such that opposite elementshave the same valuation, but
each two corners of a side have di�erent valuations.

Proof. Suppose that such a quadrangle 
 does exist. Then letp; q be corners of 
 such
that u(p; q) > 0, and such that the valuation in p is bigger than the one inq. There
exists an r I pq such that u(p; r) = u(q; r) = 0 (by Lemma 4.2.2 and (U3)). Let 
 0, 
 00

be the ordinary quadrangles sharing a path of length 4 with 
 and containing r; p and
r; q, respectively. Denote the element oppositepq in 
 by s. Let p0, q0 and r 0 be the
projections of, respectively,p, q and r on s. Because the valuation inp is bigger than inq,
(U4) applied in both 
 0 and 
 00yields u(r 0; q0) < u (r 0; p0) (because these are the only two
other di�erent terms in applying (U4) in both quadrangles), sou(r 0; q0) = u(p0; q0) > 0 by
(U3).

The valuations of the elementsr and r 0 in 
 0 cannot be equal because the valuation
of q in 
 0 is strictly smaller than the valuation of q0 in 
 0. So the two corners with
smallest valuation in 
 0 | guaranteed by (the dual of) Lemma 4.7.3 | have to be
in the corners q and r 0. Applying (U4) we obtain u(q; q0) +

p
2u(qq0; qr) + u(q; r) =

u(q0; r 0) +
p

2u(r 0q0; r 0r ) + u(r; r 0), which implies that u(q0; r 0) = 0, a contradiction. �

Lemma 4.8.2 Let a; bbe two opposite elements. Then there exist two paths(a; x1; x2; x3; b)
and (a; y1; y2; y3; b) from a to b such that u(a; x2) = u(x2; b), u(a; y2) = u(y2; b) and
u(x1; y1) = 0 , if and only if for each path(a; z1; z2; z3; b) the equalityu(a; z2) = u(z2; b)
holds.

Proof. The implication from right to left is trivial by (U1). So supp ose the left part of
the statement is satis�ed.

First remark that (U4) tells us that u(x3; y3) = 0, so the situation is symmetric in a
and b. Suppose thatu(a; z2) < u (z2; b); then without loss of generality we may assume
that u(x1; z1) = 0 (by (U3)). But then u(x2; a) +

p
2u(x1; z1) + u(a; z2) < u (x2; b) +p

2u(x3; z3) + u(b; z2), which contradicts (U4). �

If for two opposite elementsa and b the situation of the above lemma holds, then we say
that those two points areequidistant.
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Lemma 4.8.3 If two opposite pointsx; y are not equidistant, then there exists a path
(x; a; b; c; y) from x to y, such thatu(x; b) � u(b; y) and u(a; c) = 0 .

Proof. First note that, if for all paths ( x; a0; b0; c0; y) from x to y it would happen that
u(x; b0) � u(b0; y), then Condition (U4) or Lemma 4.8.2 is violated in a quadrangle de-
�ned by two paths (x; a0; b0; c0; y) and (x; a00; b00; c00; y), where a0 and a00are chosen so that
u(a0; a00) = 0 (which is possible due to (U1)).

So we know the existence of a path (x; a0; b0; c0; y) with u(x; b0) > u (b0; y0). If u(a0; c0) = 0,
then we are �nished, so assume this is not the case. Using Lemma 4.2.2, we can �nda00I x
with u(a0; a00) = 0. Let ( x; a00; b00; c00; y) be the unique shortest path fromx to y containing
a00. Lemma 4.7.3 tells us that eitheru(c0; c00) = 0 or u(a00; c00) = 0. If we are in the �rst
case, then applying Lemma 4.7.3 again on the other type of elements in the ordinary
quadrangle leads to a contradiction with Lemma 4.8.1. Sou(a00; c00) = 0. Using (U4) one
sees that (x; a00; b00; c00; y) is a path with the desired properties. �

We are now ready to check (C1), (C2), (C3) and (C4).

(C1)

� If d(x; y) = 0, then dt;x
r (y) = 0 for t 2 [0; + 1 [.

� If d(x; y) = 1, then dt;x
r (y) = 1 for t 2 [0; + 1 [.

� If d(x; y) = 2, then

{ dt;x
r (y) = 0 for t 2 [0; u(x; y)[,

{ dt;x
r (y) = 2 for t 2 [u(x; y); + 1 [.

� If d(x; y) = 3, with xI aI bI y then

{ dt;x
r (y) = 1 for t 2 [0; u(x; b) + u(a; y)=

p
2[,

{ dt;x
r (y) = 3 for t 2 [u(x; b) + u(a; y)=

p
2; + 1 [.

� If d(x; y) = 4, then in the case that there exista; band c such that xI aI bI cI y, with
u(x; b) 6= u(b; y), let k(x; y) be the minimum of both (this is independent ofa; band
c due to Lemma 4.7.3). In the case thatx and y are equidistant, we de�nek(x; y)
to be equal to� (x; y)=2. Then we have

{ dt;x
r (y) = 0 for t 2 [0; k(x; y)[,
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{ dt;x
r (y) = 2 for t 2 [k(x; y); � (x; y) � k(x; y)[.

{ dt;x
r (y) = 4 for t 2 [� (x; y) � k(x; y); + 1 [.

(C2)

Let y; z be a pair of incident elements. Without loss of generality one can suppose that
d(x; y) + 1 = d(x; z). There are three nontrivial cases.

� d(x; y) = 2, with dt;x
r (y) = 0, and dt;x

r (z) = 3. This yields t 2 [0; u(x; y)[ \ [u(x; y) +
u(xz; z)=

p
2; + 1 [. The last intersection is clearly empty and so this case cannot

occur.

� d(x; y) = 3, with dt;x
r (y) = 1 and dt;x

r (z) = 4. Let xI aI bI y. This situation oc-
curs when t 2 [0; u(x; b) + u(a; y)=

p
2[ \ [� (x; z) � k(x; z); + 1 [. As k(x; z) �

min(u(x; b); u(b; z)) + u(a; y))=
p

2, the range for t is empty, so this case cannot
occur either.

� d(x; y) = 3, with dt;x
r (y) = 3 and dt;x

r (z) = 0. Let xI aI bI y. This happens
when t 2 [0; k(x; z)[ \ [u(x; b) + u(a; y)=

p
2; + 1 [. Again the bound k(x; z) �

min(u(x; b); u(b; z)) + u(a; y))=
p

2 leads to a contradiction.

(C3)

Let again y be an element, witha; b two elements incident withy, such that dx;t
r (a) + 1 =

dx;t
r (b) + 1 = dx;t

r (y).

� If d(x; y) = 1, then dt;x
r (y) = 1 for t 2 [0; + 1 [. Let a be the elementx. then

d(x; b) = 2, so in this caset 2 [0; u(x; b)[. The following now holds: uV (x;t )(a; b) =
u(x; b) � t > 0.

� If d(x; y) = 2, then dt;x
r (y) = 2 for t 2 [u(x; y); + 1 [. We may assume thata = xy

and d(x; b) = 3. This yields that t 2 [u(x; y); u(x; y) + u(a; b)=
p

2[. One checks that
uV (x;t )(a; b) = u(a; b) �

p
2(t � u(x; y)) > 0, so (C3) holds here.

� If d(x; y) = 3, with xI pI qI y then

{ dt;x
r (y) = 1 for t 2 [0; u(x; q) + u(p; y)=

p
2[. We distinguish two subcases.
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� If u(x; q) > t , then we choosea = q. The elementb is then at distance 4
from x, with dt;x

r = 0, hence t 2 [0; k(x; b)[. If u(q; b) � t, then u(q; b) =
k(x; b) � t which is impossible (rememberu(x; q) > t ). As uV (x;t )(q; b) =
u(q; b) � t, Condition (C3) is satis�ed here.

� The other subcase is whereu(x; q) � t. Note that dt;x
r = 2, so d(x; b) = 4.

Sinceu(x; q) � t and t < k (x; b), we haveu(q; b) = u(x; q) and u(p; y) > 0.
We construct a as follows: letr be an element incident withx such that
u(p; r) = 0 and let s be an element incident withr such that u(x; s) = 0.
The element a is the projection of s on y. Let c be the projection of b
on r . Lemmas 4.7.3 and 4.8.1 yieldu(a; s) = u(y; as) = 0, u(r; as) =
� (x; a)=

p
2, a and x are equidistant (by Lemma 4.8.2), anddt;x

r (x; a) = 0.
As uV (x;t )(a; b) = u(a; b) � t, we have to prove thatu(a; b) � k(x; b) in
order to prove (C3).
Let 
 be the unique quadrangle containing b, y, s and r . If b and x are
equidistant, then the valuation ofb in 
 is zero, and (U4) implies u(a; b) �
u(r; as)=

p
2 = k(x; b). Finally suppose that b and x are not equidistant;

then Lemma 4.8.2 impliesu(x; s) 6= u(s; c), and sou(x; s); u(s; c) � k(x; b)
(by de�nition of k(x; b)). Applying (U4) in 
 tells us now that u(a; b) �
u(s; c) � k(x; b), which we needed to show.

{ dt;x
r (y) = 3 for t 2 [u(x; q) + u(p; y)=

p
2; + 1 [. Let a be q in this case. This

implies that the element b will be at distance 4, whiledx;t
r (b) = 2. So t 2

[k(x; b); � (x; b) � k(x; b)[, which also means thatb and x are not equidistant.
Careful analysis reveals thatuV (x;t )(a; b) = � (x; b) � k(x; b) � t, which is strictly
larger than zero becausedx;t

r (b) = 2 implies that t 2 [k(x; b); � (x; b) � k(x; b)[.

� If d(x; y) = 4, then dt;x
r (y) = 2 for t 2 [k(x; y); � (x; y) � k(x; y)[. Notice that x and y

are not equidistant. Let (x; p; q; a; y) be a path as constructed in Lemma 4.8.3. This
�xes our choice ofa. Let (x; r; s; b; y) be the unique path fromx to y containing b.
One checks thatuV (x;t )(a; b) = u(a; b) �

p
2(t � k(x; y)) = u(a; b) �

p
2(t � u(y; q)).

The value oft is strictly smaller than u(x; s) + u(s; b)=
p

2 (becausedt;x
r (b) = 1). All

we have to check is thatuV (x;t )(a; b) � 0 whent = u(x; s) + u(s; b)=
p

2. Using (U4),
one proves thatuV (x;t )(a; b) = u(p; r) � 0 for this value of t.

This concludes the proof of (C3) in this case.

(C4)

In this case, the condition (C4) can be proved analogously asthe proof of (C3).
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4.8.4 n = 6 and the valuation is discrete

Here the discreteness allows us to de�ne the translations ina much easier way using
recursion. We start with a valuation u where the valuations of one type of elements
are integer multiples of 3, while valuations of the other type are integer multiples of

p
3

(with proper rescaling, this is a consequence of the discreteness, see Section 4.4.1). The
valuation u also de�nes a residual distancedr . We use this as the constant translated
residual distancedx;t

r with t 2 [0; 1[ or [0;
p

3=2[, depending on the type ofx (notice that
this implies (C1) and (C2)). The condition (C4) is satis�ed because it is satis�ed for
t = 0, and because the valuations in question stay zero. The discreteness makes it so
that because (C3) is satis�ed fort = 0, it will also be satis�ed for t in the ranges above
(because the range is small enough such that the valuation inquestion cannot decrease
to zero).

Let's clarify this with an example �rst. Suppose that x is an element such that the
valuations of that type of element are integer multiples of

p
3, and let k 2 [0;

p
3=2].

Applying what is said above, the displacement of the base point of the trees associated
with an element y with residual distance dr (x; y) to yield the valuation uV (x;k ) will be
as given in the following table; all displacements are towards an element which is in the
residue closest tox:

dr (x; y) 0 1 2 3 4 5 6
Displacement of base point none k

p
3k 2k

p
3k k none

Note that k is small enough so that the displacements do not make the basepoints reach
branching points of the trees, except for the maximal valuek =

p
3=2 and dr (x; y) = 3.

In order to satisfy (C3), branching points are not supposed to be crossed as valuations are
not allowed to decrease to zero (which is what happens at branching points), except for
the �nal point (for a k-translation, (C3) needs only to be checked for valuest in [0; k[).

We can repeat the same procedure on the new valuations we obtain but with one major
caveat: the valuations are no nice integer multiples anymore (because we cank-translate
with k a real number in [0; 1] or [0;

p
3=2] depending on the situation). However, we

can handle this as follows. LetW be a Coxeter group of typeeG2 acting naturally on a
Euclidean a�ne plane A . Take a special vertexs. Notice that, with proper rescaling,
the distances froms to all the walls of a parallel class of walls is exactly the image set
of the valuations u of the elements incident with a certain type of elements. Lets0 be a
point of the plane A at distance k from s, on the same wall (with type the element we
have translated to) ass. Due to Lemma 4.5.4 (or by looking at the example above), we
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can again identify distances froms0 to all the walls of a parallel class with image sets of
valuations uV (x;k ) of certain elements as above. (We can no longer identify witha type of
elements; there will be more classes of elements, due to the residue corresponding with
uV (x;k ) being a weak generalized hexagon.)

We can nowl-translate uV (x;k ) to an elementy in the same way as above, withl small
enough so that we do not `cross' any walls with the corresponding displacement of the
point in the plane. The displacement will now happen along the line at angled�=n with
the line through s and s0, with d the distance in the residue ofuV (x;k ) from x to y. One
cannot cross the wall because we will have moved some base points of trees to branching
points. Note however that `arriving' at a wall is allowed, soone can get across that wall
with the next translation.

This procedure allows us to repeat the construction, obtaining all subsequent translations
of u we want.

We again clarify further with an example. Supposex is as in the above example and lett
be

p
3=3. Now suppose thaty is an element which is at distance 2 fromx in the residue

of uV (x;k ) . With the above procedure it follows that wel-translate to y with l 2 [0;
p

3=3]
(when l =

p
3=3, we arrive again in a special point ofA ). Again we could make a table

and con�rm indeed that the base points reach branching points of the tree except for the
maximal value l =

p
3=3.

4.8.5 What about n = 5 and the nondiscrete case for n = 6?

One could use similar techniques as for the casesn = 3 and n = 4 to investigate these cases.
The things one would need to prove are mostly quantitative versions of the qualitative
lemmas of the proof of Main Result 4.3.2. However extending the, already extensive,
complexity of the case studiesn = 3 and n = 4 to these higher cases, would probably
require an extremely extensive case study and a massive number of pages. For this reason
we choose to restrict ourselves to the already handled cases.

4.8.6 Some �rst observations

Now that we de�ned additional valuations, we need to show that they form the point set
of an R-building. We need some properties to do so.

Lemma 4.8.4 The residual distance ofx and y in the residue ofuV (x;t ) equalsdt;x
r (y).
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Proof. This follows from the way we de�ned (C1) forn = 3 and n = 4, and from the
construction for the discrete case whenn = 6. �

Lemma 4.8.5 If dx;t
r (y) = n, then dx;t 0

r (y) = n for every t0 � t.

Proof. The only case for which this is not directly clear isn = 6. Applying the previous
lemma we see that in the residue ofuV (x;t ) the elementsx and y are residually opposite
and that each shortest path between both has valuation zero.Because of the way we
de�ned uV (x;t 0) , it follows that the path also has valuation zero foruV (x;t 0) . This proves
the lemma. �

Corollary 4.8.6 When translating towardsx, the residual distancedx;t
r (y) only increases,

up to the point thatdx;t
r (y) = d(x; y).

Proof. Again we only need to prove this whenn = 6. Because of the previous lemma and
the fact that the residue is a weak generalizedn-gon where each element is incident with
at least 2 elements, we see thatdx;t

r (y) only increases. It increases tod(x; y) because if for
an arbitrary element z we havedx;t

r (z) = d(x; z) < n , then for an elementaI z there exists
t0 � t such that dx;t

r (a) = d(x; a) (this is due to the displacement of the base point of the
tree associated toz, which happens at a constant rate towards the projection ofx on z).
Repeating this argument implies thatdx;t

r (y) will eventually becomed(x; y). �

4.8.7 Structural properties of the set of translated valuat ions

Let �( u) be the set of all valuations obtained by translatingu a �nite number of times.

Lemma 4.8.7 If we know the values of a valuationv on the pairs of elements incident
with an elementx, and we know that an elementy is residually oppositex, then we know
the values ofv on the pairs of elements incident withy.

Proof. Let a; bI y; then (U4) in an n-gon containing a; b; x and y tells us that v(a; b) =
v(a0; b0), where a0 and b0 are the projections onx of a and b, respectively. �

Lemma 4.8.8 Let 
 be ann-gon in � , nonfolded for a valuationv 2 �( u), such that all
values ofv in the line pencils of the corners and points on the sides of
 are known; then
the values ofv are known entirely.
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Proof. Let x be an element of �. Let y be an element of 
 with minimal distance k to x.
Notice that k < n . If k = 0, then we know the valuations of pairs of elements incident
with x, so supposek > 0. Let z be the projection ofx on y. Then there are two ordinary
n-gons containingz and sharing a path of lengthn with 
. By applying (U3), (U4) at
least one of these twon-gons is nonfolded for the valuationv. Let 
 0 be such ann-gon.
The valuations in the line pencils of the corners and points on the sides of 
0 are known
because of the previous lemma. The minimal distance fromx to an element of 
 0 is now
strictly less than k. So by repeating the above argument one sees that one knows the
value of v everywhere. �

Corollary 4.8.9 If dt0;x
r (y) = 0 for all t0 2 [0; t[, then uV (x;t ) = uV (y;t ) .

Proof. If n = 6, then this follows from the `discrete' construction.

In the other cases, let 
 be a nonfoldedn-gon (for u) containing x. If we can prove that
for each elementz in 
 the relation dt0;x

r (z) = dt0;y
r (z) holds for all t0 2 [0; t[, then the

displacements of the base points in the trees correspondingto the elements of 
 are the
same, so by the previous lemma alsouV (x;t ) = uV (y;t ) . Moreover, it su�ces to prove this
for z equal to x and equal to the element oppositex in 
 because of (C2).

If z = x, then note that, due to the symmetry of the de�nitions in (C1), dt0;y
r (x) = 0 is

equivalent with dt0;x
r (y) = 0 for all t0 2 R+ , so also fort0 2 [0; t[. So the result follows from

the assumption.

If z is oppositex in 
, note that due to the residual equivalency ofx andy (by Lemma 4.8.4),
we have that � (x; z) = � (y; z) = 0, and so dt0;x

r (z) = dt0;y
r (z) = n for all t0 2 R+ . �

Remark 4.8.10 It should also be noted that at this point one can prove that the group
of projectivities of a lineL preserves the tree structure associated withL. This allows for
a characterization due to Jacques Tits in the casen = 3, which was formulated without
proof in [47].

4.8.8 Apartments

An apartment in our R-building will consist of all valuations in �( u) for which a given
ordinary n-gon is nonfolded. Here, we investigate which valuations keep a given ordinary
n-gon nonfolded. Later on, this will give us the a�ne structure of the apartments.
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Let u be a valuation, and let 
 be a nonfoldedn-gon in � containing an element x. Note
that due to (U4) and multiple use of Lemma 4.2.2, each ag can be embedded in such a
nonfolded n-gon, so results obtained here for single points or ags of 
 are true for all
points or ags.

Using the de�nition of t-translation one easily obtains that a translationV(x; t ) moves
the base point of the tree corresponding to an elementy of 
 along the apartment of
that tree with ends the two elements of 
 incident with y. The new base point lies at
length t sin(d(x; y)�=n )=sin(�=n ) towards the projection of x on y (note that when this
projection is not de�ned, the length will be zero).

Consider the real a�ne real two-dimensional spaceA . One can think of this as a (degen-
erate) a�ne apartment system with an ordinary n-gon at in�nity. Identify this n-gon with

 and let � be a point of A . Now consider the point at distancet on the sector-panel
with source � and direction x. We observe that for an elementy of 
 at in�nity, the
distance component perpendicular to the direction toy of the original to the new point
is t sin(d(x; y)�=n )=sin(�=n ), which is exactly the same as above.

Note also that 
 is nonfolded for the valuation uV (x;t ) , and that the displacements of the
base points in the aforementioned trees describeuV (x;t ) completely whenu is known, due
to Lemma 4.8.8. So we can identify the points ofA with the valuations obtained by
translating u to elements of a certain nonfoldedn-gon for u. This spawns a few direct
consequences.

Corollary 4.8.11 Let x be an element of� and let t and s be nonnegative real numbers.
Then

� uV (x;t )V (x;s) = uV (x;t + s) (local additivity).

� uV (x;t )V (y;s) = uV (y;s)V (x;t ) if xI y (local commutativity).

� uV (x;t )V (y;t ) = u if � u(x; y) = 0 (reversibility).

� Let (x0; x1; : : : ; xi ) (with i � n) be a path with valuation zero for some valuation
u, and suppose thatv is a valuation obtained fromu by subsequently translating
towards the respective elements of the path. Then there exists a j 2 f 1; : : : ; ig and
t0; s0 2 R+ such that v = uV (x j � 1 ;t0)V (x j ;s0) . In addition, the total sum of lengths of
all the translations does not increase.

Note that the reversibility statement also implies that, if v 2 �( u), then �( v) = �( u).
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4.8.9 Convexity

The next thing to investigate is how an ordinaryn-gon 
 behaves with respect to trans-
lations towards elements outside 
. This will allow us to prove the (convexity) condition
(A2) later on.

Lemma 4.8.12 Let 
 be an ordinaryn-gon andx an element not residually equivalent
with any of the elements of
 . Then 
 cannot be a nonfoldedn-gon for uV (x;t ) with t > 0.

Proof. Consider the closed path (x0; : : : ; x2n = x0) that 
 forms. There is an i 2
f 1; : : : ; 2ng such that the residual distances fromx to x i � 1 and x i +1 , are both larger
than the residual distance fromx to x i . We excluded that x i is residually equivalent to
x, so the right derivative (with respect to t) of the valuation uV (x;t )(x i � 1; x i +1 ) is positive
in a certain interval (for t) containing 0, where the residual distances tox in the path
are constant. This implies that 
 is not nonfolded for t in this interval but di�erent from
zero. We also know that we can partition [0; + 1 [ in a �nite set of intervals with constant
residual distances tox in the path, so repeating the above argument proves the lemma.

�

Lemma 4.8.13 Let f p; Lg be a ag in � , let l; m be positive real numbers, and let

be a nonfoldedn-gon. Then, if 
 is nonfolded for the valuationuV (p;l )V (L;m ) , it is also
nonfolded for the valuationsuV (p;l0)V (L;m 0) , for all l0 2 [0; l] and m0 2 [0; m]. Moreover,
there is a pointp0 and line L0 in 
 such thatuV (p;l0)V (L;m 0) = uV (p0;l 0)V (L 0;m0) for all l0 2 [0; l]
and m0 2 [0; m].

Proof. For the �rst assertion, note that, using Corollary 4.8.6, it follows that if we are
translating to a certain ag f p; Lg, we can �rst `use up' that much of the translations top
and L (note that these commute) such that we only end up with valuations to elements not
residually equivalent to an element of the ordinaryn-gon. If we now translate further than
this, the apartment loses its nonfoldedness and never regains it, due to Lemma 4.8.12.
So if for uV (p;l )V (L;m ) the n-gon 
 is still nonfolded, it has to be that p and L remain
residually equivalent to elements of then-gon for the whole translation. So if we translate
`less' (uV (p;l0)V (L;m 0) with l0 2 [0; l] and m0 2 [0; m]), 
 will still be nonfolded.

The second assertion now follows from Lemma 4.8.12 and Corollary 4.8.9 (the elementsp
and L stay residually equivalent with the same pair of incident elements of then-gon for
the whole translation because of Corollary 4.8.6). �
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4.8.10 Existence of apartments containing two valuations

Lemma 4.8.14 Let u be a valuation, andv; w 2 �( u). Then there exists a pointp and
line LI p in � , and nonnegative real numbersk and l such thatw = vV (p;k)V (L;l ) .

Proof. First remark that w 2 �( u) = �( v). So w can be obtained fromv with a series
of i translations. We prove with induction that this series of translations can be reduced
into the desired form.

If i � 1 this is trivial. If i > 1 we can reduce the lasti � 1 translations into the desired
form, so we have thatw = vV (x;k )V (y;l )V (z;m) with yI z and k; l; m 2 R+ (note that the last
two translations commute).

We now start a second induction onj = max( d(x; y); d(x; z)). If this is 1, then we are
done because of Corollary 4.8.11. So suppose thatj > 1, and that we can reduce to the
desired form if the maximum is strictly less thanj . Without loss of generality, assume the
maximum in the de�nition is reached ford(x; z). Let t be the smallest real positive number
such that the residual distance betweenx and z in vV (x;t ) equals the actual distance in �.
There exists an elementx0 such that d(x0; z) < d(x; z) and x0 is residually equivalent with
x for vV (x;t 0) , with t0 < t (the existence of such anx0 will be clari�ed below).

If k � t, then w = vV (x;k )V (y;l )V (z;m) = vV (x0;k)V (y;l )V (z;m) , and so we are done in this case
by the second induction hypothesis. Ifk > t , then

w = vV (x;k )V (y;l )V (z;m) = ( vV (x;t ))V (x;k � t )V (y;l )V (z;m) :

By the de�nition of t, there exists a nonfoldedn-gon for the valuation vV (x;t ) containing
x; y and z. This implies that the last three translations can be reduced into the desired
form of two translations towards two incident elements in the path from x to z (by
Corollary 4.8.11). If both of these translations are not towards z, then we are done due
to the second induction hypothesis. If this is not the case then w = ( vV (x;t ))V (y;l 0)V (z;m0) =
(vV (x0;t ))V (y;l 0)V (z;m0) for certain l0 and m0, which is again reducable due to the second
induction hypothesis.

All that is left to do is clarify the existence of the elementx0 above. We will only point
out which elements should be chosen asx0, the veri�cation of the conditions is easily done.
We can assume thatd(x; z) � 2.

� n = 3

{ d(x; z) = 2; here we setx0 = z.
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{ d(x; z) = 3; here we takex0I z, such that u(xx0; z) = 0. The existence of such
an x0 follows from applying Lemma 4.7.3 on a triangle containingx; z and two
elements incident withx, constructed by (U1).

� n = 4

{ d(x; z) = 2; here we setx0 = z.

{ d(x; z) = 3; let ( x; a; b; z) be the unique path of lenght 3 fromx to z. If
u(a; z) = 0, we let x0beb. If this is not the case then letc be an element incident
with x and such that u(a; c) = 0. Next construct an elementd incident with c
such that u(x; d) = 0. The last two constructions are possible by Lemma 4.2.2.
Finally x0 will be the projection of d on z. Note that x and x0 are equidistant
due to Lemmas 4.8.1 and 4.8.2.

{ d(x; z) = 4; if x and z are equidistant, we let x0 be z. Otherwise, using
Lemma 4.8.3, we can construct a path (x; a; b; c; z) such that u(x; b) � u(b; z)
and u(a; c) = 0. Here we let x0 be the elementb.

� n = 6 and discrete. In this case the existence is guaranteed by the discreteness and
Lemma 4.7.6. �

Corollary 4.8.15 If we reduce vV (p;l )V (L;m )V (p0;l 0)V (L 0;m0) to an expression of the form
vV (p00;l 00)V (L 00;m00) , then l00+ m00� l + m + l0+ m0.

Proof. All the reductions in the proof of the above lemma use Corollary 4.8.11, which
does not increase the sum of the lengths of the translations. �

Lemma 4.8.16 For each pair of valuationsv; w 2 �( u) there is an ordinary n-gon 
 in
� which is nonfolded for bothv and w.

Proof. Due to the previous lemma there exists a pointp and line LI p in �, l; m 2 R+

such that w = vV (p;l )V (L;m ) . Let 
 be an ordinary n-gon in � containing p and L such
that 
 is nonfolded for v (these exist because of Lemma 4.2.3). Because bothp and L lie
in 
, translations towards p and L produce valuations for which 
 remains nonfolded. In
particular this holds for w = vV (p;l )V (L;m ) . �
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4.8.11 Building the a�ne apartment system

We end by putting all the pieces together to form an a�ne apartment system. Let �( u)
be the set of points. Remember that ifv 2 �( u), then �( u) = �( v).

Let 
 be an ordinary n-gon of �. Consider the set A(
) of all the valuations in �( u)
for which this n-gon is nonfolded. Suppose that two valuationsv1 and v2 are in this set.
Lemma 4.8.14 tells us that there exists a agf p; Lg in � and k; l 2 R+ such that v2 =
vV (p;k)V (L;l )

1 . As 
 is nonfolded for both v1 and v2, Lemma 4.8.13 implies that there exists
a ag f p0; L0g in 
 such that v2 = vV (p0;k)V (L 0;l )

1 . We can conclude that all the valuations
in the set A(
) can be obtained out of each other by translating towards elements of 
.
This is exactly the set of valuations which has been studied in Corollary 4.8.11. In the
reasoning before the statement of this corollary it was seenthat the valuations can be
interpreted as points ofA . The sector with sourcev 2 �( u) and direction the ag f p; Lg
will be the set f vV (p;k)V (L;l ) jk; l 2 R+ g.

This allows us to de�ne a chartf 
 ;v;p;L , for a v 2 �( u), and 
 a nonfolded n-gon, containing
a ag f p; Lg (the chart is de�ned such that a chosen �xed sector ofA is mapped to the
sector with sourcev and direction f p; lg). Let F be the collection of all these charts.
Condition (A1) can now easily seen to be true.

The second condition to check is (A2). Letf = f 
 ;v;p;L and f 0 = f 
 0;v0;p0;L 0 be two charts
in F . Let X = f � 1(f 0(A )). The points (or valuations) which are in the image of both
charts, are those valuations for which both 
 and 
 0 are nonfolded. Letv00be a valuation
for which this is the case (if there is not such av00, the condition (A2) is trivially satis�ed).
Lemma 4.8.13 implies thatX is star convex forf � 1(v00). Becausev00is arbitrary in f (X ),
one obtains thatX is convex. ThatX is also closed follows from the fact that translations
change the valuations continuously.

Next thing we need to show is the existence of aw 2 W such that f jX = f 0� wjX . Consider
both X and the similar setX 0 = f 0� 1(f (A )). In order to prove the existence of such aw
we need to prove thatX can be mapped ontoX 0 by somew 2 W. The map � = f 0� 1 � f
is bijective from X to X 0. Let x1 and x2 be elements ofX . Then their images underf
are two valuationsv1 and v2. Because they lie in the same apartmentA(
), there is a ag
f q; Mg in 
 and k; l 2 R+ such that v2 = vV (q;k)V (M;l )

1 . But as these two valuations are
also in A(
 0), we know by Lemma 4.8.13 that there exists a agf q0; M 0g in 
 0 such that
v2 = vV (q0;k)V (M 0;l )

1 . Since the lengths of the translations and the type of elements towards
the translations happen is invariant, it follows that � is distance preserving and preserves
the type of the directions at in�nity of A . This implies the existence of the neededw.

Condition (A3) is satis�ed because of Lemma 4.8.16.
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Now, (A4) can be shown to be true as follows: suppose we have two sectors related to
two ags f p; Lg and f q; Mg of �. These can be embedded in an ordinaryn-gon 
. The
apartment A(
) contains sectors with directions f p; Lg and f q; Mg. This only leaves us
to prove that two sectors related to the same ag always intersect in a subsector. This last
assumption is true because if we have two ordinaryn-gons 
 and 
 0 containing p and L,
it follows from Corollary 4.8.6 that there existl; m 2 R+ such that for eachl0 � l; m0 � m
the valuation uV (p;l0)V (L;m 0) takes only the value zero in both 
 and 
 0. The set of these
valuations forms the desired subsector.

For (A5) we have three ordinaryn-gons 
, 
 0 and 
 00, each pair sharing a path of length
n. From (U3) and (U4) we deduce that, if for a valuationv 2 �( u) the ordinary n-gon

 is nonfolded, then at least one of 
 0 and 
 00is nonfolded forv, too. This means that
every point of A(
) belongs to A(
 0) or to A(
 00), or to both. Since it is easy to see that
the intersection of two apartments is closed, the setsA(
) \ A(
 0) and A(
) \ A(
 00) are
not disjoint, proving (A5).

It remains to prove that the `distance' functiond de�ned on pairs of valuations by (A1),
(A2) and (A3) is indeed a distance function. (For two valuations v and vV (p;k)V (L;l ) , the
distance between both is de�ned as the length of the third side of a triangle in a Euclidean
plane, where two sides have lengthk and l, and with the angle between both sides�=n .)
However, by re-reading the proof in [24,x1] of the equivalence of the various de�nitions for
a�ne apartment systems, one sees that the weaker inequalityd(u; v) � 2(d(u; w)+ d(w; v))
also su�ces. This inequality is a direct consequence of Corollary 4.8.15.

So we conclude that the set of points �(u), endowed with the set of apartments

f A(
) j 
 is an ordinary n-gon of � g;

forms a 2-dimensional a�ne apartment system with the generalized n-gon � at in�nity.

All that is left to show is that the construction of Main Result 4.3.1 applied to the a�ne
apartment system de�ned on �(u) and the point de�ned by the valuation u, gives us back
the valuation u on �. One has to prove that, if x and y are adjacent, the corresponding
sector-panels with sourceu share a line segment of lengthu(x; y). This follows from
Corollary 4.8.9 and the fact that, if x and y are adjacent, one hasdt;x

r (y) = 0 if and only
if t 2 [0; u(x; y)[.

This concludes the proof of Main Result 4.3.4.
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4.9 Proof of Application 4.4.1

Suppose we have a projective plane � and a real numbert 2 R+ nf 0g. Also suppose we
are either given a valuationu, or two functions d and \ satisfying the conditions listed
in Theorem 4.4.1. Use the identitiesd(p; q) = t � u(p;q) and \ L; M = arcsin(t � u(L;M )) to
reconstruct the other function(s).

It is easily seen that Condition (U2) for valuations corresponds to Condition (M2) and
the part \ d(p; q) = 0 , p = q" of Condition (M1).

If we have three pointsp, q and r , then

u(p; q) � min(u(p; r); u(r; q)) , d(p; q) � max(d(p; r); d(r; q)) :

The left hand side is satis�ed for a valuation because of (U3)and Lemma 4.7.3; the right
hand side is satis�ed for a distance because of (M1). So Condition (U3) for points on a
line is equivalent with the inequality part of (M1).

Condition (U1) for valuations is equivalent with Conditions (M3) and (M4).

Also Condition (U4) corresponds directly to the sine rule Condition (M5).

The only part that needs a closer look is how Condition (U3) for valuations follows from
Conditions (M1) up to (M5) (and the already proven Conditions (U1), (U2), (U3) for
points on a line, and (U4)). Let L, M and N be three lines through a pointp. By
(U1), there exist two linesY and Z through p such that u(Y; Z) = 0. Since (U1) and
(U3) hold for points on a line, Lemma 4.2.2 also holds. So there existqI Y and r I Z with
u(p; q) = u(p; r) = 0. We now have for the lineqr that � (p; qr) = 0 by (U4). (Note that
� is well-de�ned because (U4) holds.)

Let l , m and n be the respective projections ofL, M and N on the line qr . Using (U4)
we see thatu(L; M ) = u(l; m), u(M; N ) = u(m; n) and u(L; n ) = u(l; n). So Condition
(U3) for the three lines L, M and N follows directly from the same Condition (U3) for
the three points l, m and n.

4.10 A condition on the completeness of R-buildings

As we have discussed in Section 1.8.2, the completeness of the metric space formed by
an R-building allows us to apply various results for complete CAT(0)-spaces. While all
discrete R-buildings are complete, this statement is not true for arbitrary R-buildings.
With the next theorem we want to provide a tool to determine when a certainR-building
forms a complete metric space and when not.
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Main Result 4.10.1 The metric space(� ; d) de�ned by anR-building (� ; F ) is complete
if and only if all of the metric spaces de�ned by the trees associated to its walls are
complete.

The question as to whether a certainR-tree forms a complete metric space seems an easier
question, which will hopefully be resolved forR-trees fromR-buildings of dimension three
and higher, using algebraic methods.

Remark 4.10.2 This result is related to a result of Bruhat and Tits ([8]) where they use
the additional assumption that the building at in�nity is Mo ufang.

4.11 Proof

First assume that the metric space (�; d) is complete, and letm be a wall of the spherical
building at in�nity. Let ( � n )n2 N be a Cauchy sequence in the treeT(m). The union of the
apartments of theR-building which at in�nity contain m form a subsetK � � isometric
to the direct product of the metric space formed byT(m) and R (see Section 1.8.2).

Using this subsetK , we can `lift' the Cauchy sequence (� n )n2 N to a Cauchy sequence
(� n )n2 N in K � �. As the metric space (� ; d) is complete, this sequence converges to
some point � 2 �. Our goal is to prove that the point � lies in K , implying that the
sequence (� n )n2 N converges. For this we have to prove that� lies in an apartment which
at in�nity contains the wall m. Let S1 and S0

1 be two opposite maximal sector-panels of
m; if we can prove that the germs of sector-panels [S]� and [S0]� in the residue at� are still
opposite, we are done. Equivalent with this last statement is that for a shortest gallery
from a chamberC1 containing S1 to a chamberC0

1 containing S0
1 , the corresponding

gallery from [C]� to [C0]� always is nonstammering. As this is the case for each point of
the sequence (� n )n2 N, Corollary 4.5.6 implies that this is also the case for� . So we have
proven that the metric space de�ned by theR-tree T(m) is complete.

We are now left with the other direction to prove. Assume thatall the metric spaces
de�ned by the trees corresponding to walls at in�nity are complete. Let (� n)n2 N be a
Cauchy sequence in the metric space (�; d). Let ( �� ; �d) be the metric completion of (� ; d).
In this larger metric space the Cauchy sequence (� n )n2 N does converge to some point� .
Choose some chamberC1 at in�nity and consider the sequence of sectors (C� n )n2 N.

Lemma 4.11.1 Let C� and C be two sectors with sources� and  respectively, and
having the same directionC1 . Then there exists a constantk 2 R+ depending on the type
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of the R-building, such that there exists a point� for which the sectorC� is a subsector of
both C� and C , and d(�; � ); d(; � ) � kd(�;  ).

Proof. Embed the sectorC� in an apartment �, and the sector C in an apartment � 0.
Let � be the point of C� \ C closest to� (possible because this intersection is a closed
subset of � due to Condition (A2)). The sector C� is a subsector of bothC� and C .

Let D1 and D 0
1 be the chambers oppositeC1 in respectively � 1 and � 0

1 . Note that
� 2 D � and  2 D 0

� . Due to the way we de�ned� , we have thatD � \ D 0
� = f � g. Consider

the retraction r on the apartment � centered at the germ of D � (see [24, Prop. 1.17]).
This retraction maps the sectorD 0

� to some sectorD 00
� in �, only sharing its source � with

the sectorD � . As r ( ) lies in D 00
� , it follows that there exists some constantk such that

d(�; � ); d(r ( ); � ) � kd(�; r ( )). Because the retraction does not change distances to� ,
and does not increase the other distances, this implies the desired result. �

Corollary 4.11.2 There exists a constantk0, such that for each sectorC� , and l 2 R+ ,
there exists a point� 2 C� with d(�; � ) = k0l , such that for each point at distance at
most l from � , the sectorC� is a subsector ofC .

Proof. All the sectorsC� with d(�; � ) < t , t 2 R+ and � 2 C� , contain a common point�
which lies at a distancek00t from � , with k00some constant. The result then follows from
applying the above lemma. �

Using Corollary 4.11.2 one can �nd a sequence of points (� n )n2 N in � which also converges
to the point � , and such that if i < j , then the sectorC� i is a subsector ofC� j . In the
completion �� we obtain a subset isometric to a sector, where the `source'is � (by applying
Corollaire 2.11 from [24] and its preceding text). Note thatthe interior (as it would be
in an apartment) lies in �.

Let S1 be a sector-panel ofC1 . The sequence (S� n )n2 N forms a Cauchy sequence in the
tree T(S1 ), contained in a half-line. Using the completeness of this tree, we can extend
this half-line to an apartment, and �nd a sectorC0

1 such that [C]� n 6= [ C0]� n for all n 2 N.
Regarding the limit situation in ��, one obtains a subset isometric to two sectors with the
same `source'� and sharing a `sector-panel'. Note again that the interior (as it would be
in an apartment) lies in � because the geodesic in�� between two points of � lies again
in � (due to the above corollary).

Repeating the algorithm one can obtain a subsetK of �� isometric to a half-apartment
with � on its `wall' M , and such that all points ofK not in M lie in �. Considering the
complete wall-treeT(m) where m is the direction at in�nity of the walls in K parallel to
M , we see thatK has to lie completely in �, proving that � 2 �, and completeness.
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4.12 Generalizations of R-trees related to walls and
panels at in�nity

As already mentioned in Section 1.8.2, we will generalize the notion of trees associated to
walls and panels at in�nity in this section.

We let (� ; F ) be an R-building with set of apartments A . Let � 1 be the corresponding
building at in�nity with set of apartments A 1 (in one-to-one correspondence with the
elements ofA ). Let S1 be a certain simplex at in�nity (with a corresponding sector-facet
S); then its residue at in�nity is a (possible weak) sphericalbuilding (� 1 )S1 .

One can repeat the two constructions from Section 1.8.2, butnow replacing the sector-
panel � by the sector-facetS1 , and the wall m by the smallest convex subcomplexB of
the sector-facetS1 and some opposite sector-facetS0

1 (a set in the R-building with this
subcomplexB at in�nity will be referred to as a subspace).

These two constructions yield injections fromRm (where m is the rank of the residue
of S1 ) into sets T(S1 ) and T(B). We now claim that the following two constructions
both yield R-buildings with as building at in�nity (� 1 )S1 , forming a generalization of
Section 1.8.2.

4.13 Proof

Before proving that these two constructions yieldR-buildings we show that they are
equivalent. For this we need a few lemmas. When we use the notion of subsector-facet,
we only mean sector-facets which are subsets of the other sector-facet, and having the
same rank.

Lemma 4.13.1 Let S� and S� be two sector-facets with the same directionS1 and
sources�; � 2 � . Then there exists an apartment containing subsector-facets of both.

Proof. We embedS1 in a chamber at in�nity C1 . It follows from (A4) that the two
corresponding sectorsC� and C� have a common subsectorC with source  (note that
there is no uniqueness here). LetC0

1 be a chamber at in�nity containing S1 and adjacent
to C1 , and such that the germs of the sectorsC and C0

 are di�erent, and containing
a subsector-facet ofS� (to verify the existence of such aC0

1 , consider any apartment
containing C� ). Analogously we choose aC00

1 containing a subsector-facet ofS� , with the
additional requirement that C00

1 is adjacent with C0
1 .
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Consider the two sectorsC0
 and C00

 . Let � be any apartment containing C0
 . BecauseC00


is adjacent to this sector, there exists an apartment �0 sharing a half-apartment with �
and containingC00

 . There is also a third apartment � 00sharing half-apartments with both
of the previous apartments. As each pair of points in the union of all three apartments
�, � 0 and � 00, lies in at least one of these apartments (by (A5)), we have that at least one
of these apartments contains subsector-facets of bothS� and S� . �

Lemma 4.13.2 Let S� be a secor-facet, andS0
1 a sector-facet at in�nity opposite toS1 .

Then there exists a unique subspace containing bothS0
1 at in�nity and a subsector-facet

of S1 .

Proof. Let B be some minimal subspace containing bothS0
1 and S1 at in�nity. Let � 2 B

be a point. By the above lemma there exists an apartment � containing subsectors ofS�

and S� . In particular there exists a sectorC with source on S� containing a subsector
of S� . The germ of this sector is opposite to some germ of a sectorD  containing S0

 . It
is clear that the apartment de�ned by C1 and D1 contains a desired subspace. Unicity
is trivial. �

The above lemma makes clear that the sets of points of the two constructions are in
one-to-one correspondence with each other. An apartment from the second construction
(using sector-facets) is easily seen to imply an apartment in the �rst construction (using
subspaces). Conversely, for the �rst construction, one sees that all apartments containing
S1 and a subspace in the residue ofS1 at in�nity, correspond to one apartment of the
second construction, establishing a one-to-one correspondence.

We now verify (A1)-(A4) and the triangular inequality (� � ) for both constructions. The
above implies that we can choose which one of both constructions to verify the condition
for.

(A1),(A2) Directly from the corresponding conditions of the original building and the second
construction.

(A3) From Lemma 4.13.1 using the �rst construction.

(A4) Notice that sectors in the second construction are in fact sectors of the original
building, so (A4) for the original building gives us a sectorwhich can be seen to be
a sector of the �rst construction.

(A5) From the second construction and (A5) for the original building.
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(4 � ) From the second construction and the triangular inequality for the original building.

As the conditions are all veri�ed, we have proved that these constructions yield R-
buildings.

4.14 Subbuildings corresponding to �xbuildings at
in�nity

Let (� ; F ) be some a�ne building with an automorphism groupG acting on it, �xing at
least one point (whenG is �nite this is implied by the Bruhat-Tits Theorem 1.8.4). This
group G also acts on the spherical building �1 at in�nity. Suppose that the group G acts
type-preservingly on the spherical building �1 , such that the �xed simplicial complex � 0

1

forms a building, and such that for each �xed simplexS1 , there also exists an opposite
�xed simplex S0

1 .

We do not demand that this new building is of the same rank as the original building.
While the �xed structure of an automorphism groupG of a spherical building is in `most'
cases again a building, this is no longer the case for generalbuildings, in particular for
the �xed structure of G in the a�ne building �.

In this section, we will try to show that, despite the fact that the �xed structure is not
necessarily an a�ne building, in many (but not all) cases this �xed structure does contain
an a�ne building (� 0; F 0) with the �xed subbuilding � 0

1 as spherical building at in�nity.
A list of some cases where the construction works is listed atthe end of the next section.

Remark 4.14.1 As one can notice from the notations used, we will consider a�ne build-
ings as being discreteR-buildings. It appears that the proof can be extended to the
nondiscrete case by replacing the induction argument, and considering the completion��
of the metric space (�; d) when it is not complete.

4.15 Proof

Let S1 and S0
1 be maximal �xed and opposite simplices at in�nity, and let B be the

unique apartment of � 0
1 containing both.
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Lemma 4.15.1 There exists at least one �xed subspace of theR-building such that the
corresponding structure at in�nity is B .

Proof. By applying Lemma 4.13.2, knowing that there is at least one �xed point and
keeping in mind that if a point and some simplex at in�nity is � xed, then also all the
points on the unique sector-facet with this source and direction are �xed. �

By the above lemma we know that there is at least one �xed subspace with B at in�nity;
now consider all such �xed subspaces. All these subspaces form a setF of points of theR-
building T(B). As the original R-building is discrete, thisR-building will also be discrete,
and because of this also complete. The setF is nonempty and bounded (because of the
maximality of S1 and S0

1 ), and has for this reason a unique center due to Theorem 1.8.4.
With this unique center corresponds a �xed subspace of the original R-building with
B at in�nity. We will call this subspace the middle �xed subspace corresponding toB.
These will form the apartments of the newR-building � 0. Using the associated structure
at in�nity, one can de�ne charts on them such that both Conditions (A1) and (A2) are
satis�ed (for proving (A2) keep in mind that the original R-building (� ; F ) satis�es (A2)).

Remark that we can perform a similar construction to obtain acenter using �xed asymp-
totic classes instead of �xed subspaces (these two notions are in bijective correspondence
due to Lemma 4.13.2). If we look at things this way it follows that if two apartments
of � 0 share a maximal �xed simplex at in�nity, then the corresponding sector-facets in
both apartments are asymptotic, or equivalently, they share a subsector-facet. Condition
(A4) now follows from applying the fact that two chambers of abuilding lie in a common
apartment of the spherical building �0

1 .

The same reasoning combined with convexity shows that if twoapartments of � 0 share a
half-apartment at in�nity, then the apartments themselves share a half-apartment. The
next condition we handle, and this is the part where the extraassumptions come in,
is Condition (A5). Assume that there exist three apartmentsof � 0 pairwise sharing a
half-apartment, while the intersection of all three is nonempty. Such a con�guration we
will call a triangle con�guration. Using the generalization of the `trees corresponding to
walls construction' from Section 4.12, one can obtain atriangle con�guration of subspaces
isometric to the real a�ne line. Because the sum of the anglesof a triangle in a CAT(0)-
space is less or equal than� , the triangle formed by these subspaces satis�es it too. If
vertices of the appropriate type (the residues of rank one atin�nity) lie at angles strictly
more than �= 3 (considering apartments as spheres), then the con�guration is impossible,
and Condition (A5) has to satis�ed.

The triangle inequality is trivially satis�ed as it is satis�ed for the original R-building.
The only condition one still has to verify is Condition (A3). Note that due to discreteness
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and the apartments we de�ned, the structure �0 is a chamber complex. SupposeC; D and
D 0 are three chambers, whereC and D lie in an apartment � of � 0, while D 0 lies in an
apartment � 0 of � 0. Using a lemma with a similar statement and proof as Lemma 1.8.1, it
follows easily thatC and D 0 lie in a common apartment of �0. Repeating this construction
proves (A3).

As we have proven Conditions (A1)-(A5) and the triangle inequality, the set � 0 forms
indeed anR-building. It is easily seen that � 0

1 is the building at in�nity of � 0.

We end with listing some diagrams of embeddings for which we veri�ed the aforementioned
condition on the angles (this list is not exhaustive). The diagram itself depicts the type
of the building � 1 , the encircled nodes show how the �xbuilding �01 is embedded. We
group these diagrams per type of the embedded building �0

1 .

� A1:

: : :

: : :

� A2:

� C2:

� G2:
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Bijlage A

Nederlandstalige samenvatting

A.1 Inleiding

De titel van deze thesis luidt: `Een studie van gebouwen van lage rang'. De theorie der
gebouwen is ontwikkeld in de vroege jaren 60 door Jacques Tits. Het doel hiervan was
om een meetkundig instrument te verscha�en om de belangrijkste klassen van enkelvou-
dige groepen te bestuderen, namelijk de enkelvoudige algebra•�sche groepen, de klassieke
groepen, de groepen van gemengd type en de Frobenius-gedraaide Chevalley groepen.

Waarom nu van lage rang? Jacques Tits bewees twee belangrijke classi�caties van be-
paalde klassen van gebouwen. Die van de sferische gebouwen van rang minstens 3 in 1974
([44]), en die van de a�ene gebouwen van rang minstens 4 in 1986 ([47]). Als men echter
de sferische gebouwen van rang 2 en de a�ene gebouwen van rang3 bekijkt, dan is een
classi�catie onmogelijk. Deze gevallen verliezen hierdoor echter niet hun belangrijkheid,
omdat ze nog steeds sterke meetkundige eigenschappen hebben en door de extra vrijheid
een veel rijker gedrag vertonen.

Wij hebben verscheidene karakteriseringen en constructies van zulke gebouwen van lage
rang bekomen - deze zijn terug te vinden in Sectie A.2.

A.1.1 Simpliciale complexen

Een simpliciaal complex S gede�nieerd op een verzamelingX is een verzameling van
deelverzamelingen vanX zodanig dat als een bepaalde deelverzameling een element is
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van S, dan ook elke deelverzameling ervan. De elementen vanX noemt men depunten,
die van S de simplexen.

Een maximaal simplexis een simplex niet bevat in een groter simplex. Twee maximale
simplexen zijnadjacent als hun doorsnede een simplex is met �e�en punt minder dan de 2
maximale simplexen.

Een simpliciaal complex noemt men eenkamercomplexals men elke twee maximale sim-
plexen kan verbinden met een keten van adjacente maximale simplexen. De maximale
simplexen noemt men in dit gevalkamers. Deze de�nitie impliceert ook dat elke twee
kamers even groot zijn. Depanelenzijn dan de op �e�en na grootste simplexen.

Een kamercomplex noemt mendun als elk paneel in juist twee kamers ligt, endik als het
altijd in minstens drie kamers ligt.

A.1.2 Gebouwen

Gebouwenzijn de dikke kamercomplexenS waarvoor er een verzamelingA van dunne
deel-kamercomplexen bestaat (appartementengenoemd), zodat aan volgende twee voor-
waarden voldaan is.

� Elke twee kamers liggen in een appartement.

� Voor elke twee appartementenA en B bestaat er een isomor�sme vanA naar B dat
de doorsnede elementsgewijs vasthoudt.

De orde van de kamers noemt derang van het gebouw.

A.1.3 Interessante gevallen

Rang 1

Een rang 1 gebouw is een verzameling puntenX (jX j � 3) waarbij de appartementen
de puntenparen zijn. Om deze gevallen meer structuur en betekenis te geven, de�nieert
men Moufangverzamelingen. Hierbij veronderstelt men voor elk elementx 2 X een groep
(de wortelgroepgenaamd) die regulier werkt op de overige punten vanX . Ook eist men
dat de groepGy (de kleine projectieve groep) voortgebracht door alle wortelgroepen de
verzameling van alle wortelgroepen normaliseert.
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Rang 2

De rang twee gevallen kan men opsplitsen in twee categorie•en. De eerste categorie is
waar de appartementen oneindig zijn; deze gebouwen komen overeen met de boomgrafen
zonder eindpunten, en waarbij elke top minstens 3 buren heeft. De appartmenten zijn
hier oneindige lijngrafen.

De tweede categorie (met eindige appartementen) komt overeen met de bipartiete grafen
met maximale afstandn en minimale cykels van lengte 2n. Meestal kiest men �e�en van
deze verzamelingen en associeert men daarmeepunten, met de andererechten, en men
zegt dat een punt en een rechteincident zijn als de bijhorende toppen adjacent zijn.
Op deze manier bekomt men een (rang 2) meetkunde die men eenveralgemeenden-hoek
noemt (meestal kortwegn-hoek als er geen verwarring kan optreden). De appartementen
komen in de graaf overeen met 2n-hoeken, en in de veralgemeenden-hoek metn-hoeken
(wat de naamgeving verklaart).

Een dualiteit van een veralgemeende veelhoek is een automor�sme van het bijhorende
gebouw dat punten op rechten afbeeldt en vice versa. Men noemt een dualiteit een
polariteit als ze van orde 2 is. Een punt (rechte) van de veralgemeende veelhoek isabsoluut
als het (ze) incident is met zijn (haar) beeld.

Sferische gebouwen

Sferische gebouwenzijn gebouwen waarbij de appartementen eindige kamercomplexen
zijn. De naam komt van het feit dat men in dit geval de appartementen kan opvatten
als betegelingen van sferen. De mogelijke appartementen kan men classi�ceren als volgt
(zonder verder te speci�ceren wat de diagrammen betekenen):

� An : : : : (n � 1)

� Cn : : : : (n � 2)

� Dn : : : : (n � 4)

� En : : : : (n = 6; 7; 8)
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� F4:

� I2(m): m (m � 5)

De sferische gebouwen van rang minstens 3 zijn geclassi�ceerd door Jacques Tits ([44]).
Men kan aantonen dat zeMoufang zijn (wat een bepaalde groep-theoretische voorwaarde
is). Ruwweg komen ze overeen met de volgende groepen:

� klassieke groepen,

� algebra•�sche groepen,

� gemengde groepen.

Voor sferische gebouwen van rang 2 (de veralgemeende veelhoeken) bestaan er zogenaamde
vrije constructies waardoor een classi�catie onmogelijk is.

De gebouwen van typeAn corresponderen metn-dimensionale projectieve ruimtes.

A�ene gebouwen

A�ene gebouwen zijn gebouwen waarbij de appartementen betegelingen zijn van a�ene
Euclidische ruimtes. Dedimensie van de a�ene ruimte is de rang van het gebouw min
1. Ook hier kan men de appartementen classi�ceren (opnieuw zonder er dieper op in te
gaan):

� eA1: 1

� eAn : : : : (n � 2)

� eBn : : : : (n � 3)

� eCn : : : : (n � 2)

� eDn : : : : (n � 4)
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� eE6:

� eE7:

� eE8:

� eF4:

� eG2:
6

Met een a�en gebouw kan men een zogenaamdgebouw op oneindigassoci•eren, en dit is
dan een sferisch gebouw waarbij de rang 1 lager is dan de rang van het oorspronkelijk
gebouw. Gebruik makende van deze constructie en de classi�catie van de sferische ge-
bouwen van rang minstens 3, kon Jacques Tits de a�ene gebouwen van rang minstens 4
classi�ceren ([47]).

Deze classi�catie was niet beperkt tot de a�ene gebouwen, maar omvatte ook de R-
gebouwen met dimensie minstens 3, die niet-discrete veralgemeningen zijn van a�ene
gebouwen. Deze structuren hebben ook a�ene ruimtes als appartementen, en tevens een
sferisch gebouw op oneindig.

Voor het rang 3 (of equivalent dimensie 2) geval bestaan opnieuw vrije constructies (door
Mark Ronan [27]), en is classi�catie dus uitgesloten.

De rang 2 gevallen komen overeen met de bomen uit de voorgaande sectie. De 1-
dimensionaleR-gebouwen zijn de zogenaamdeR-bomen, die niet-discrete veralgemeningen
zijn van bomen.

A.2 Resultaten

De resultaten kan men ruwweg opdelen in drie categorie•en.
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A.2.1 Rang 1: Moufangverzamelingen

Merk op dat de de�nitie van een Moufangverzameling een puur groep-theoretische de�nitie
is, in tegenstelling tot de de�nitie van gebouwen. Als de wortelgroepen niet commutatief
zijn, kan men echter toch een rangk meetkunde de�ni•eren op de punten van de Mouf-
angverzameling, waarbijk de nilpotentieklasse is van de wortelgroepen. De fundamentele
vraag is dan: is de automor�smegroep van de Moufangverzameling gelijk aan die van de
meetkunde?

In dit hoofdstuk bestuderen we deRee-Tits Moufangverzamelingen. De punten van zo een
Moufangverzameling zijn de absolute punten van een polariteit van de Ree zeshoek. De
wortelgroepen zijn van nilpotentie klasse 3, wat zeldzaam is want op �e�en andere, recent
ontdekte, klasse ([23]) na, zijn de wortelgroepen van alle andere gekende Moufangverza-
melingen van lagere nilpotentieklasse.

Men bekomt dus voor Ree-Tits Moufangverzamelingen rang 3 meetkundes,Ree meetkun-
des genaamd, waarvan we de elementenpunten, cirkels en sferen noemen. We zijn er in
geslaagd aan te tonen dat de automor�smegroep van deze meetkunde (en van deelmeet-
kundes waarbij men enkel punten en cirkels, of punten en sferen beschouwt), inderdaad
de automor�smegroep van de Moufangverzameling is.

Een interessant gevolg hiervan is dat als een automor�sme van de Ree zeshoek de absolute
punten stabiliseert, ook de absolute rechten gestabiliseerd worden.

Deze resultaten zijn bekomen in samenwerking met Fabienne Haot en Hendrik Van Mal-
deghem.

A.2.2 Rang 2: Veralgemeende vierhoeken

Gemengde vierhoeken. | Een paar niet-collineaire punten p en q van een veralge-
meende vierhoek noemt menregulier, als voor elk puntr dat collineair is met twee punten
die beide collineair zijn met zowelp en q, alle punten collineair met zowelp en q ook
collineair zijn met r . Een punt p is regulier als alle mogelijke niet-collineaire puntenparen
met p erin regulier zijn. Met een regulier punt kan men een bepaalde meetkunde - een
duaal net - associ•eren. Analoog de�nieert men reguliere rechten.

E�en bepaalde klasse van Moufang veralgemeende vierhoekenis de klasse vangemengde
vierhoeken. Dit zijn de enige gekende vierhoeken waarvan alle punten enrechten regulier
zijn. Men vermoedt dat deze de enige zijn.
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Wij bewezen een zwakkere versie van dit vermoeden. Ruwweg tonen we aan dat als een
veralgemeende vierhoek `genoeg' reguliere punten en rechten bevat, en als de duale netten
corresponderend met de reguliere punten voldoen aan hetAxioma van Veblen en Young
(een rechte die twee zijden van een driehoek snijdt, maar niet in een hoekpunt, snijdt ook
de derde zijde) de vierhoek een gemengde vierhoek is.

Deze resultaten en die uit de volgende paragraaf zijn bekomen in samenwerking met Van
Maldeghem.

Veralgemeende Suzuki-Tits inversieve vlakken. | Bepaalde gemengde vierhoe-
ken laten polariteiten toe. De absolute punten hiervan kan men opnieuw opvatten als een
Moufangverzameling, en de bijhorende meetkundes noemt menveralgemeende Suzuki-Tits
inversieve vlakken. Als een toepassing op de karakterisering van gemengde vierhoeken
hebben we een karakterisering voor (perfecte) Suzuki-Titsinversieve vlakken van Hen-
drik Van Maldeghem ([61]) uitgebreid naar het niet-perfecte geval, en de oorspronkelijke
karakterisering voor het perfecte geval vereenvoudigd.

Inbeddingen van veralgemeende vierhoeken in gebouwen van t ype F4. | De
eerste voorbeelden van veralgemeende veelhoeken onstonden bijna allemaal alsinbeddin-
gen in projectieve ruimtes (die corresponderen met gebouwen van type An ). Hierbij zijn
de punten van de veelhoek punten van de projectieve ruimte, en de rechten van de veel-
hoek rechten van de projectieve ruimte waarbij de incidentie de natuurlijke is. Als deze
inbedding aan bepaalde `mooie' voorwaarden voldoet (bv. alle rechten van de veelhoek
door een punt liggen in een bepaalde deelruimte), dan erft deveralgemeende veelhoek
symmetrie-eigenschappen over van de projectieve ruimte, waardoor men classi�caties en
karakteriseringen van bepaalde Moufangvierhoeken kan opstellen.

Echter niet alle Moufang veralgemeende veelhoeken kan men `mooi' inbedden in een pro-
jectieve ruimte. Bijvoorbeeld de zogenaamdeexceptionele veralgemeende vierhoek van
type F4 is niet op deze manier inbedbaar in een projectieve ruimte, maar wel in een ge-
bouw van type F4. Deze gebouwen kan men opvatten als rang 4 meetkundes vanpunten,
rechten, vlakken en hyperrechten, metasymplectische ruimtesgenoemd. De vierhoeken
kan men dan inbedden door middel van punten en hyperrechten.Ook bv. de gemengde
vierhoeken kan men op deze manier inbedden.

Wij hebben aangetoond dat als een veralgemeende vierhoek ingebed is in een metasym-
plectische ruimte door middel van punten en hyperrechten, waarbij twee punten op de-
zelfde rechte in de vierhoek nooit op �e�en rechte liggen vande metasymplectische ruimte,
dan ofwel de vierhoek Moufang is, ofwel dat de inbedding `ontaard' is.
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A.2.3 Rang 3: 2-Dimensionale R-gebouwen

Veelhoeken met valuatie. | Zoals reeds vermeld hebben a�ene gebouwen (en hun
veralgemening alsR-gebouwen) een sferisch gebouw op oneindig. Als de rang van dit
gebouw op oneindig minstens drie is kan men het gebouw op oneindig en het a�en gebouw
(of R-gebouw) zelf classi�ceren. Als de rang van het gebouw op oneindig echter 2 is (dus
een veralgemeende veelhoek), is een classi�catie onmogelijk.

Men kan zich wel afvragen welke veralgemeende veelhoeken gebouwen op oneindig zijn van
eenR-gebouw. Hendrik Van Maldeghem voerde voor dit doelveralgemeende veelhoeken
met (discrete) valuatiein ([55]), en bewees dat een veralgemeenden-hoek metn 2 f 3; 4g
een discrete valuatie toelaat als en slechts als de veelhoekhet gebouw op oneindig is van
een (discreet) a�en gebouw van typeeA2 of type eC2.

Wij hebben de de�nitie van veelhoek met valuatie uitgebreidnaar het niet-discrete geval,
als volgt:

Zij � = ( P; L; I ) een veralgemeenden-hoek met puntenP, rechten L en incidentie I , en
zij u een functie, devaluatie genaamd, werkend op de paren collineaire punten en paren
snijdende rechten, waarbij de beelden inR+ [ f1g liggen. Dan noemen we (�; u) eenn-
hoek met (niet-discrete) valuatieen gewichtreeks(a1; a2; : : : ; an� 1; an+1 ; an+2 ; : : : ; a2n� 1) 2
(R+ )2n� 2 als de volgende condities voldaan zijn.

(U1) Op elke rechte ligt er een paar puntenp en q zodat u(p; q) = 0, en analoog voor
rechten door een punt.

(U2) u(x; y) = 1 als en slechts alsx = y.

(U3) u(x; y) < u (y; z) impliceert dat u(x; z) = u(x; y) als x; y en z collineaire punten of
snijdende rechten zijn.

(U4) Telkens alsx0I x1I x2I : : : I x2n = x0, met x i 2 P [ L, heeft men:

n� 1X

i =1

ai u(x i � 1; x i +1 ) =
2n� 1X

i = n+1

ai u(x i � 1; x i +1 ):

Wij zijn er in geslaagd aan te tonen dat enerzijds de veelhoekop oneindig van een 2-
dimensionaal gebouw altijd een veelhoek met valuatie is, enanderzijds dat eenn-hoek
(met n = 3; 4) met valuatie het gebouw op oneindig is van een 2-dimensionaal gebouw.
Het resterende discrete geval, zeshoeken met discrete valuatie en gebouwen van typeeG2,
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hebben we ook opgelost. Tevens is aangetoond dat er voor elken maar �e�en mogelijke
gewichtreeks is (op veelvouden en valuaties die overal waarde nul hebben na).

Als toepassing van deze karakterisering hebben we verscheidene veelhoeken met valuatie
(en dus ook de bijhorendeR-gebouwen) geconstrueerd.

Deze resultaten zijn bekomen in samenwerking met Hendrik Van Maldeghem.

Volledigheid van R-gebouwen. | Een metrische ruimte noemt men volledig als elke
Cauchyrij convergeert. Net zoals we een appartement van eenR-gebouw kunnen opvatten
als een a�ene Euclidische ruimte, kunnen we eenR-gebouw opvatten als een metrische
ruimte bestaande uit aan elkaar gevoegde a�ene Euclidischeruimtes. Als deze metrische
ruimte volledig is, dan zijn er bepaalde resultaten van toepassing, bv. de Bruhat-Tits
�xpuntstelling. Een (discreet) a�en gebouw levert altijd e en volledige metrische ruimte
op, een niet-discreetR-gebouw niet altijd.

Het doel is nu na te gaan welkeR-gebouwen precies volledig zijn. In deze thesis nemen
we een stap in de richting van een antwoord. We herleiden de vraag tot de vraag wel-
ke R-bomen er volledig zijn. Deze nieuwe vraag hopen we dan algebra•�sch te kunnen
beantwoorden.

Deelgebouwen van R-gebouwen corresponderende met �xgebouwen op onein-
dig. | Als een groep werkt op een sferisch gebouw, dan is in de meeste gevallen de
�xstructuur opnieuw een (sferisch) gebouw. Voor algemene gebouwen (en dus ook a�ene
gebouwen) geldt dit niet.

Veronderstel dat een groepG op een a�en gebouw � werkt; alhoewel de �xstructuur van
G in � niet noodzakelijk terug een gebouw is, is de �xstructuur in het sferisch gebouw
� 1 op oneindig dit meestal wel. Wij bewezen nu dat de �xstructuur in het R-gebouw
in bepaalde gevallen wel een deelgebouw bevat met de �xstructuur in � 1 als gebouw op
oneindig.

Deze resultaten zijn bekomen in samenwerking met Hendrik Van Maldeghem.
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