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ABSTRACT

This thesis deals primarily with different types of partitions of projective
spaces, namely spreads and mized partitions. It is well known that there is a close
relationship between spreads of odd dimensional projective spaces and finite affine
translation planes. Hence, more knowledge of spreads will hopefully one day lead
to a better understanding of finite affine translation planes.

We discuss spreads constructed via a method described in [19]. This method
is carefully explained in Chapter 2 using geometric techniques to better understand
the algebraic construction given in [19]. The basic method starts with a mixed
partition consisting of linear spaces together with Baer subspaces, and then lifts
these spaces to a spread in a higher dimensional space. It is possible to construct
the same translation plane directly from the associated mixed partition, although
the construction of a translation plane from the associated spread is better known.

Chapter 3 provides the reader with some classical examples of mixed par-
titions. These partitions are constructed via group theoretic techniques and are
shown to generate the Desarguesian affine plane. Automorphism groups are dis-
cussed in Chapter 4. This work is used to determine properties of the collineation
groups of such “geometrically lifted” spreads. We discuss the algebraic kernel of
the affine planes arising from these spreads, and we prove some general properties
about automorphisms of mixed partitions and their associated spreads.

In Chapter 5 we will generalize the lifting method given in [19]. From this,

xi



we prove a result about (n — 1)-spreads of PG(2n — 1, q) generating affine transla-
tion planes which are not n-dimensional over their kernel. This will lead to a gen-
eral theory about distinct spreads lying in projective spaces of different dimension
which generate isomorphic translation planes. This result, together with a result
of Liineburg [27], provides a complete unifying theory for spreads which generate
isomorphic translation planes.

Finally, Chapter 6 will provide the reader with some concrete examples of
mixed partitions showing that this method is indeed useful for finding spreads. The
author gives concrete constructions of several infinite families, and discusses the

translation planes they construct via the Bose/Andre model.
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Chapter 1

INTRODUCTION

1.1 History

Geometry has always been a central part of mathematics. From the time
we are in grade school we are taught the language of geometry. We are taught
about points and lines, and we learn words like triangle and square. Moreover,
we naturally view the world in perspective. That is, we view geometric objects by
the way they look from our personal standpoint. The first attempt at recreating
perspective in artwork appeared in the sixteenth century. This is when we first see
artists viewing objects as emanating from a point at infinity and using this model
to recreate 3-dimensional objects on a 2-dimensional surface.

As a mathematical discipline, projective geometry is concerned with those
geometrical properties which are invariant under perspective, or, in mathematical
terms, projection. Hence, any notion of measure, length, angle, area, congruence,
similarity, etc., has no place in projective geometry. The basics of projective ge-
ometry began early, being applied unknowingly by the ancient Greek and Roman
architects as well as early Egyptians and Mayans. However, the first formal mathe-
matical treatment of projective geometry must be attributed to the French architect
Gérard Desargues (1593-1661) in a book entitled An Attempt to Deal with the In-
tersection of a Cone with a Plane. It is in this book that Desargues presents the
famous Desargues’ Theorem which has become a central theorem in modern projec-

tive geometry. The theorem basically says that if two triangles are in perspective



Figure 1.1: Desargues’ Theorem

from a point, then the “meets” of their corresponding sides are collinear (see Figure
1.1).

It was in the mid 1600s that Desargues met the young Blaise Pascal and
encouraged him to apply the new methods of projective geometry to the study of
conic sections. In 1640, at the age of only 16, Pascal published a short work which
included his famed theorem of the hexagrammum mysticum, now known simply as
Pascal’s Theorem. It states that the intersections of the cross lines determined by
6 points on a conic are collinear (see Figure 1.2). Pascal actually did not give a
proof of his theorem. Rather, he said that it proves to be true for a circle and so,

by “projection and section”, must also be true for all conics.



Figure 1.2: Pascal’s Theorem

Unfortunately, not much attention was paid to Desargues’ and Pascal’s dis-
coveries until a century later when Gaspard Monge published his own lectures on
descriptive geometry. Monge certainly presented the basic concepts of projective ge-
ometry. However, these concepts became a recognized branch of geometry only after
Monge’s most talented student, Jean Victor Poncelet (1788-1867), devoted his time
to the further development of Desargues’ work. Poncelet’s volume, A Treatment
of the Projection of Figures, is probably the first recognized textbook of projective
geometry. There was a strong revival of geometry in the nineteenth century. The
discovery of non-Euclidean geometry provided a powerful stimulus to new thinking,
and the work of Poncelet in projective geometry served as one of the outcomes.

Projective geometry has not been dormant since. Steady contributions have
been made throughout the nineteenth and twentieth centuries. Finite geometry
earned a respectable place in the area of discrete mathematics, thanks in some
part to the contributions of Beniamino Segre (1903-1977). Segre’s contributions to

geometry are many, but he is remembered in particular for his study of geometries



over fields other than the complex numbers. By 1955, Segre was working mostly
with geometries over finite fields and was producing results which are now classified
as combinatorics rather than geometry. Segre was the first to discuss the possibility
of characterizing geometric objects using only their combinatorical properties. This
is commonly referred to as Segre’s point of view.

Throughout this thesis, we will attempt to use the geometry as much as
possible.  When necessary, algebra and algebraic geometry will play a significant
role. However, the author has made significant efforts to keep the arguments as

geometric as possible.

1.2 Finite Affine and Projective Planes
We wish to explore some of the structures of finite geometry in more detail.

We start with one of the most basic structures, the affine plane.

Definition 1.2.1 An affine plane is a set of points, together with a set of subsets

of these points, called lines, such that
1. every two distinct points determine a unique line,

2. for every line | and every point P not on [, there exists a unique line m through

P with no point in common with [,

3. there exist three noncollinear points.

The last axiom is often referred to as a non-degeneracy axiom. A single point, or a
set of two points incident with a common line, certainly satisfy the first two axioms.
We do not, however, want to refer to such configurations as affine planes. Hence,
we require at least three noncollinear points.

It should be noted that the term affine was first coined by the famous eigh-

teenth century mathematician Leonard Euler. It is not hard to check that the real



coordinate plane is one particular example of an affine plane. However, many more
examples exist and can easily be constructed. In particular, there is a classical
model for an affine plane. Let F' be any field and let V' be a two-dimensional vector
space over F'. We define our “points” to be all of the vectors in V' and our “lines”
to be all of the cosets of all 1-dimensional subspaces of V. Incidence is given by
containment. It is not hard to show that this incidence structure forms an affine
plane, and it is denoted by AG(2, F'). Throughout this thesis, we will work in the
finite case. That is, we will let F' be a finite field. We use GF(¢) to denote the finite
field with ¢ elements, and, in this case, we write AG(2, F') = AG(2,q).

Note that in the previous model of an affine plane using a vector space over
a finite field, every line contains the same number of points, namely ¢, where ¢ is
the order of the finite field. It turns out that for any finite affine plane, the number
of points on a line is always a constant. One can use this fact and the set of axioms

to show the following:

Proposition 1.2.2 FEvery finite affine plane has a unique associated natural number

n > 2 such that
1. every line contains n points,
2. every point is concurrent with n + 1 lines,
3. there exist exactly n? points,
4. there exist exactly n? +n lines.
This unique natural number n is called the order of the affine plane.

With affine planes comes the notion of parallel lines. We will define two lines
[ and I’ of an affine plane to be parallelif | = 1' or INI" = (). One can easily show that
the parallel relation forms an equivalence relation on the lines of any affine plane.

We call the congruence classes parallel classes.



Standing on railroad tracks helps to better explain how we naturally view
the world projectively. In the affine plane, we naturally have parallel lines. How-
ever, from the perspective of a man looking at the horizon, parallel lines seem to
meet, just like the railroad tracks seem to meet. Thus, one naturally arrives at the
notion of lines meeting at infinity. This can be laid out more specifically, and more

mathematically, in what we call a projective plane.

Definition 1.2.3 A projective plane is a set of points, together with a set of

subsets of these points, called lines, such that

1. every two distinct points determine a unique line,
2. every two distinct lines meet in a unique point,

3. there exist four points, no three collinear.

Again we have a non-degeneracy axiom, namely Axiom # 3. This guarantees that
small configurations with only three (or less) points or only three lines are not
considered projective planes.

Having given the definitions of both affine and projective planes, we should
note that there is a tight connection between the two. Let [, be any line of a
projective plane 7, and consider the incidence structure A obtained by deleting the
line [, and all of the points incident with it. Hence, the points of A are the points
of m not on the line [, and the lines of A are all of the lines of 7 except for the
special line [,,. Here, each line contains one less point. One can easily check that
A forms an affine plane. Notice that the process of removing the line [, creates
parallel classes of lines since any two lines which meet at a common point of [, no
longer meet in A. We write 7= to denote this affine plane.

This process is, in fact, reversible. That is, given any affine plane, one can
obtain a projective plane by first creating new points, one for each parallel class of

lines. These points are commonly referred to as points at infinity, and any particular



point at infinity is incident with all of the lines in exactly one parallel class. We
then add the line at infinity, [, which is incident with all of the points at infinity.
This process is commonly referred to as completing the affine plane to a projective

plane. It turns out that this completion process is unique.

Theorem 1.2.4 Let A be an affine plane. Then there exists a unique projective

plane 7 such that A = '~ for some line lo, in .

If there exists a map ¢ from a projective plane 7 to another projective plane
7' which forms a bijection on the points and lines, and preserves incidence, then
we say that 7 and #’ are isomorphic and the map ¢ is called an isomorphism. In
the above theorem, two non-isomorphic affine planes could potentially complete to
isomorphic projective planes. In particular, if [ and I’ are two distinct lines of a
projective plane 7, it is possible that 7! and 7' are non-isomorphic.

There is also a classical model for obtaining projective planes. Let F' be any
field and let V' be a 3-dimensional vector space over F'. We define our “points” to be
all of the 1-dimensional subspaces of V' and our “lines” to be all of the 2-dimensional
subspaces of V. Incidence is given by the natural containment. It is not hard to show
that this incidence structure forms a projective plane, and is denoted by PG (2, F).
When F is the finite field GF(q), we write PG(2, F) = PG(2,q).

Just as in Proposition 1.2.2, projective planes also have a uniquely defined
order. As one might expect, the duality of the points and lines of a projective plane

makes the counting more symmetric.

Proposition 1.2.5 FEvery finite projective plane has a unique associated natural

number n > 2 such that
1. every line contains n + 1 points,

2. every point is concurrent with n + 1 lines,



3. there exist exactly n> +n + 1 points,
4. there exist exactly n? +mn + 1 lines.

As before, this unique natural number n is called the order of the plane.

We now show that the classical projective plane, PG(2,¢), has order ¢. Let
V be a 3-dimensional vector space over the finite field GF(¢). The number of points
on a line of PG(2,q) is the same as the number of 1-dimensional subspaces in a 2-
dimensional subspace of V. There are ¢>—1 non-zero vectors in such a 2-dimensional
vector subspace, but the ¢ — 1 non-zero scalar multiples of any vector all generate
the same 1-dimensional subspace. We conclude that each line of PG (2, q) contains
=

qul = ¢ + 1 points. Hence, from Proposition 1.2.5, PG(2, q) has order q.

1.3 Projective Geometries

Naturally, one can extend the notion of a projective plane to higher dimen-
sions. Just like we define real n-dimensional space, we can define n-dimensional

projective spaces. First, the axiomatic definition:

Definition 1.3.1 A projective geometry is a set of points, together with a set

of subsets of these points, called lines, such that
1. every two distinct points determine a unique line,

2. if A, B,C and D are four points such that the line AB intersects the line C'D,
then AC' also intersects the line BD,

3. every line contains at least three points,

4. there exist at least two lines.

Axiom #2 (see Figure 1.3) is a truly ingenious way of saying that any two lines of

a plane meet, despite the fact that planes have not yet been defined. Some people



Figure 1.3: Axiom #2: coplanar lines meet

refer to this axiom as the axiom of Pasch, because the German geometer Moritz
Pasch (1843-1930) used a similar picture. Other subspaces are defined similarly to
the way they are defined for vector spaces. For instance, if P is a point not on a
line [, one can construct a “plane” by taking the point set determined by the union
of all of the lines joining P to a point of [. Similarly, a non-incident point-plane
pair uniquely determines a “solid”, and so forth. Basically, if d + 1 is the smallest
number of points needed to generate a certain projective subspace S, we say that
S has projective dimension d. A rigorous mathematical treatment of geometric
dimension would require much more work. We will see shortly that this detour is
unnecessary.

Projective geometries which are not projective planes can be constructed
in a similar fashion to that of the classical projective plane. That is, to create a
classical projective geometry of dimension n, we start with an (n + 1)-dimensional
vector space V over a field F. We let the “points” be all of the 1-dimensional
subspaces of V', the “lines” are all of the 2-dimensional subspaces, the “planes”
are all of the 3-dimensional subspaces, and so on. The n-dimensional subspaces

are commonly referred to as “hyperplanes”. Incidence is again given by the natural



containment. We denote this projective space as PG (n, F), and if F is finite of order
q, we write PG(n,q). Through this model, one naturally arrives at the notion of
homogeneous coordinates for projective points. Since a point P of PG(n, q) is given
by a 1-dimensional subspace U of V| we say that any non-zero vector in U induces
the point P. Hence, more than one vector can induce the same projective point.
We will frequently normalize vectors to avoid this problem. That is, we can scalar
multiply a non-zero vector v so that the first non-zero entry from the left (or right)
in v is a 1. In this way, every projective point is induced by a unique normalized
vector.

Isomorphism among higher dimensional projective spaces is defined the same
way it is for projective planes. Hence, two projective spaces ¥ and ¥’ are said
to be isomorphic if there exists a bijection from the points of ¥ to the points of ¥’
which preserves subspaces and incidence. One can only wonder how many projective
geometries exist up to isomorphism. In a most remarkable result of Veblen and

Young [32] around 1903, we have

Theorem 1.3.2 Any projective geometry whose projective dimension is not 2 is

classical.

That is, every projective geometry which is not a projective plane can be modeled
using a vector space. This gives us a natural method of viewing subspaces. If
¥ = PG(n,q) is modeled by an (n + 1) dimensional vector space V over GF(q),
we define an r-space of ¥ to be the set of projective points induced by the non-
zero vectors in some (r + 1)-dimensional subspace of V. Hence, the projective
dimension is always one less than the vector space dimension. In particular, note
that the projective line can be modeled using a 2-dimensional vector space. The
only non-zero subspaces are the 1-dimensional subspaces representing the points of

the projective line.

10



As mentioned above, when a projective geometry can be modeled using a
vector space over a (skew) field, we will call the projective geometry classical. A
result originally due to Hilbert [16], but also proven by Baer [2], says that a finite
projective geometry is classical if and only if it satisfies the Theorem of Desargues
mentioned in Section 1.1. Hence, we often refer to classical projective geometries
as being Desarguesian and we use the terms “classical” and “Desarguesian” inter-
changably when working in the finite setting.

With the vector space model in mind, we can use the “Dimension Theorem”
when working with higher dimensional geometries. That is, if S and 7" are subspaces

of a projective geometry of dimension greater than 2, then
dim(S +T) = dim(S) + dim(T) — dim(SNT).

In particular, we can conclude that lines and hyperplanes must always meet in at
least a point. This will prove useful in many of the constructions yet to come.

Of course, one naturally asks about the case when the dimension of a pro-
jective space is 2. Throughout the twentieth century, mathematicians have tackled
the problem of constructing non-classical projective planes, those which cannot be
modeled by a vector space over a (skew) field, through algebraic techniques. This
is usually done by constructing a “weak” algebraic system, such as a quasifield,
and then using it to supply coordinates (see [21] for examples). One large class of
non-classical planes for which many examples have been constructed is the class of

so-called translation planes.

1.4 Translation Planes
In any area of mathematics there is always the notion of symmetry. It is easy
to look at one’s tiled floor and find many symmetries. That is, shifting the tile up

three inches and across four inches takes the pattern back to itself. Mathematicians

11



use symmetry as a measure of the amount of structure in an object. This is one
method we use to try to classify projective planes.

We define a collineation of a projective space ¥ to be a bijection which sends
points to points, lines to lines, and, in general, subspaces of dimension n to other
subspaces of dimension n, and preserves incidence. The set of all collineations of
a projective space Y forms a group under composition, denoted by Aut(X). We
typically write S® for the image of a subspace S under a collineation «. The full
collineation group of the classical projective space PG(n,q) is completely deter-

mined.

Theorem 1.4.1 The Fundamental Theorem of Projective Geometry Let
¥ = PG(n,q) have underlying vector space V over GF(q). Then Aut(X) = PI'L(n+
1,q), where PI'L(n+1, q) is the group of all semi-linear transformations on the vector

space V.

We write PGL(n + 1,q) to denote the linear portion of PI'L(n + 1,¢). Notice
that non-zero scalar multiples of the same non-singular matrix induce the same
collineation in PG(n + 1, ¢). Hence, if we let Z, be the center of the general linear
group GL(n +1,q), then PGL(n+1,q) 2 GL(n+ 1,q)/Z.

Throughout this thesis, we will be particularly interested in projective planes.
As was indicated in Theorem 1.3.2, projective planes are not necessarily classical,
and so the full automorphism group of a projective plane can be quite different from
PI'L(3,q). We need to examine collineations in a projective plane more carefully. If
a collineation of a projective plane 7 fixes all the points on a line [ of 7, then the
collineation is called a perspectivity, and the line of fixed points is called the axis.
It is not hard to show that for any nonidentity perspectivity there must always
be a uniquely determined fixed point, called the center, such that all lines passing
through this point are fixed. Such a collineation with center V' and axis [ is called a

(V,1)-perspectivity or a (V,1)-central collineation. When the center V' is on the axis

12



[, we call such a collineation an elation. If V' is not on [, we call such a collineation
a homology.

It is not hard to show that a perspectivity with center V' and axis [, if it
exists, is uniquely determined by the image of any one point not equal to V' and off
[. In particular, one can show that in a classical projective plane of order ¢, there are
exactly ¢ elations and ¢ — 1 homologies with fixed center and axis. In non-classical

projective planes, this might not be true.

Definition 1.4.2 We say a projective plane m is (V,[)-transitive if for any two
distinct points A and B with VA=VB, A#V # B, and A ¢ [,B ¢ [, there is a
(V,1)-perspectivity « in Aut(m) with A* = B.

In other words, if a projective plane admits all possible perspectivities with center

V' and axis [, we say the plane is (V,[)-transitive.

Definition 1.4.3 We say the line | in a projective plane 7 is a translation line

if ™ is (V,1)-transitive for every point V' on the line .

Now consider a projective plane m which contains a translation line /. In other
words, 7 admits all possible elations with axis [, and we consider the affine plane 7.
Such an elation « of m induces an automorphism on the affine plane 7! which fixes a
parallel class of lines (the class which corresponds to the center of «), is fixed-point
free, and preserves parallelism. This is exactly what we call a translation.

Hence, when a projective plane 7 contains a translation line [, we call 7

Uis called an affine translation plane.

a translation plane, and the affine plane 7
For non-classical finite translation planes, the translation line is always uniquely
determined. If [ is a translation line of =, it is not hard to see that the subgroup
T of Aut(n') containing all of the elations with axis [ acts transitively on the the

affine points. This subgroup 7 is called the translation group. One can show that

the full automorphism group Aut(n') is uniquely determined by 7 and the subgroup

13



of Aut(r!) which stabilizes a particular affine point, taken to be the “origin”. This
subgroup is often called the translation complement. For translation planes of order
¢, the translation groups are all isomorphic. Hence, determining the translation
complement of such a plane is often helpful in classifying the translation plane. It
should be noted however that two non-isomorphic translation planes could have
translation complements which are isomorphic.

A considerable amount of work has been done to try to classify, or at least
categorize, translation planes. This appears to be a hefty task with no clear end
in sight. Hence, many finite geometers have been working on classifying subsets of
translation planes (flag-transitive planes, for instance). But nevertheless, the search
for new translation planes has been ongoing for many decades. One of the more
remarkable results of the early fifties shows that translation planes can be studied

using higher dimensional projective spaces. First we introduce some notation.

Definition 1.4.4 An r-spread of ¥ = PG(d,q) is a collection of r-spaces of ¥

which together partition the points of X.

By counting points we see that an r-spread of PG(d, q) can exist only if ¢"+- - -+¢+1
divides ¢¢ + - -- + ¢ + 1. This immediately implies (r + 1)|(d + 1). As it turns out,
this divisibility property is also a sufficient condition for the existence of spreads
(see Corollary 4.17 of [17]). We will examine the construction of spreads in Chapter
3.

A few of the pioneering mathematicians in projective geometry proved that
spreads can actually be used to construct translation planes. More specifically, it
was proven independently by Bruck/Bose [7] and by Andre [1] that any (n — 1)-
spread of PG(2n— 1, q) could be used to construct a finite affine translation plane of
order ¢". Moreover, it was shown in [7] that the converse is true. That is, every finite
translation plane can be obtained via this construction. This method is commonly

referred to as the Bose/André Model for constructing translation planes.
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Figure 1.4: The Bose/Andreé model

1.4.1 The Bose/Andrée Model

Let ¥ = PG(2n — 1,q) and embed ¥ in ¥* 2 PG(2n,q). The hyperplane X
is often referred to as the “hyperplane at infinity” in this model. Furthermore, let S
be an (n—1)-spread of 3. We define an incidence structure as follows. The “points”
are the points of ¥* \ ¥. The “lines” are the the n-dimensional projective spaces
of ¥* which meet the hyperplane ¥ in an element of the spread S (see Figure 1.4).
Incidence is given by containment. One can check that this incidence structure,
typically denoted 7(S), forms a finite affine plane of order ¢”, and it was proven in
[7] that the plane is, in fact, a translation plane. One completes this affine plane
to a projective plane by viewing the elements of S as the points at infinity, and &
itself becomes the line at infinity.

Of course, the Desarguesian plane PG(2,¢), being a translation plane, can
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be constructed via this method. This leads to a new definition.

Definition 1.4.5 A (t — 1)-regulus of ¥ = PG (2t — 1,q) is a collection of ¢ + 1
(t —1)-spaces of ¥ with the property that any line meeting three of the (t — 1)-spaces
meets all of the (t — 1)-spaces.

A straight forward linear algebra argument shows the following.

Lemma 1.4.6 Let Sy, Sy, and S be three distinct, pairwise disjoint (t — 1)-spaces
of PG(2t — 1,q). Then there exists a unique requlus containing Si, Sz, and Ss.

For ¢ > 2, We will say that a spread S of PG (2t — 1, q) is regular if for every
three distinct elements of S, the unique regulus determined by them is a subset of
S. When ¢ = 2, every triple of pairwise skew lines forms a regulus by our definition.
Hence, one needs a more careful definition of regular spreads in the case when ¢ = 2.
This definition is unimportant for our purposes and can be found in [18] for instance.
It should be mentioned also that reguli in projective 3-space have another special
property. The set of points covered by the lines of a regulus form the points of a
hyperbolic quadric (see [17]). We will use the quadratic form associated with such
a quadric for some of the arguments in later chapters. As it turns out, Bruck [7]

proved that regular spreads are intimately connected with the classical planes.

Theorem 1.4.7 The affine plane ©(S) is classical if and only if the spread S is

reqular.

There is a special property of regular spreads which we will refer to several
times in this thesis. If S is any spread of PG(2n — 1, ¢), we will write Aut(S) for
the subgroup of PI'L(2n,q) which fixes §. For regular spreads, there is always a
cyclic subgroup of Aut(S) which fixes every element of S and acts regularly on the
points of any spread element. This special subgroup is often referred to as the Bruck

Kernel.
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As mentioned earlier, the translation complement of a translation plane can
be a great aid in determining the type of translation plane arising from a given
spread. When viewing a translation plane in the Bose/Andre model as above, one
can show that the translation complement is isomorphic to the direct product of
Aut(S) with the cyclic group of order ¢ — 1. We use this fact to try to classify
planes in Chapter 6.

Another characteristic of translation planes should be mentioned here. For
any translation plane 7 there is always an associated kernel. The definition of
the kernel comes from the way coordinates are assigned to a plane (see [21], for
instance). This is unimportant at the moment and would require an extreme detour.
The important point is that for any projective plane 7 of order ¢, there is always
a coordinatizing algebraic system R of order ¢ for w. Moreover, there is always a
uniquely defined finite field F' inside R. This field is maximal in the sense that it
is not contained in any larger subfield of R. The system R can then be thought of
as a t-dimensional vector space over F', where t is the unique natural number such
that |R| = |F|'. In fact, F is the kernel of 7, and we say the translation plane 7 is ¢-
dimensional over its kernel. Hence, we have two quite different notions of dimension.
There is the geometric dimension, which is always 2 in the case of translation planes,
and there is the algebraic dimension which is determined by the kernel. It was shown
in [7] that an (n — 1)-spread of PG(2n — 1,q) generates a translation plane from
the Bose/Andre model whose algebraic dimension is a divisor of n. Moreover, the
kernel must contain GF(q). Letting F* denote the multiplicative group of the field
F| the group F*/GF(q)* is isomorphic to the subgroup T of Aut(S) which fixes each
spread element. In particular, |[F*| = (¢ — 1) - |T|. As a result, we will frequently
look at this subgroup of Aut(S) in order to determine the algebraic dimension of
the associated plane.

We should point out here that the multiplicative group of the kernel of a
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plane 7 is isomorphic to a subgroup of the translation complement of 7. In fact, it
is the subgroup of the translation complement which stabilizes each point on the line
at infinity. But the translation complement is certainly a homology group since it
fixes the origin and every point on the line at infinity. Moreover, every homology is
a perspectivity, and it is well-known that every perspectivity is a linear collineation
(see [21]). Hence, we know that the kernel is a linear subgroup of Aut(r). We use
this result when examining kernels in Chapter 6.

A famous result of Liineburg [27] says that some spreads generate isomorphic

translation planes.

Theorem 1.4.8 Let Sy and Sy be two spreads of PG(2n—1,q). Thenw(81) = 7(Sz)
if and only if there is a collineation ¢ of PG(2n — 1,q) such that Sf =38,.

Unfortunately, the theorem says nothing about spreads which lie in projective spaces
of different dimension. It is possible that such spreads could also generate the same

translation plane. We explore such spreads in Chapter 5.

1.4.2 Translation Planes Directly from Mixed Partitions

It is less well known that spreads are not the only type of partition which
can be used to construct affine planes. We will discover in Chapter 2 that there is
a close connection between certain types of spreads and another type of partition.
Throughout this thesis, we will use the term mized partition to mean a partition
of an odd dimensional square order projective space, say PG(2n — 1,¢?%), into two
types of objects, (n — 1)-spaces and so-called Baer subspaces. More specifically, a
mixed partition of II = PG(2n — 1,¢?) is a partition of the points of IT into Baer
subspaces of dimension 2n—1 (copies of PG(2n—1,q)) and PG(n—1,¢*)’s. We will
use the term Baer subspace for any isomorphic copy of PG(2n — 1,¢) contained in
PG(2n —1,4?). So unless otherwise specified, the dimension of the Baer subspace is

always assumed to be the same as the dimension of the space in which it is contained.
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One standard method of constructing Baer subspaces is through the use of co-
ordinates. Let ¥ = PG(d, ¢*) with underlying vector space V', and let Py, Py, ..., Pys
be d + 2 points of ¥ which are in standard position. That is, no d + 1 of the points
lie in the same (d — 1)-dimensional subspace (i.e. a hyperplane). Moreover, for
1 <4< d+ 2 let vi be any vector of V' which induces the point P;. Then, since V'
has dimension d + 1, one can find unique scalars k; in GF(q?) such that

d+1

E kivi = viio.

i=1
We then consider all the points induced by vectors in the GF(g)-linear span of
{kivi: 1 <i<d+1}. This collection of vectors certainly forms a (d+1)-dimensional
vector space over GF(q) and so induces an isomorphic copy of PG(d,q) inside .
We will use this method to construct Baer subspaces throughout this thesis.

It turns out that mixed partitions can be used to construct affine planes. The
construction is alluded to in a paper by Freeman [15], and also developed in a paper
of Bruen and Thas [10]. We give the construction now.

Let IT = PG(2n — 1,¢*) and embed IT in IT* = PG(2n,q?). Again, the
hyperplane II is often referred to as the “hyperplane at infinity” in this model.
Furthermore, let P be a mixed partition of IT (a partition containing Baer subspaces
and (n — 1)-spaces). We define a new incidence structure as follows. The “points”
are the points of IT* \ II. There are two different types of “lines” in this incidence
structure. The first type of line is given by any n-dimensional projective space of
IT* which meets the hyperplane IT in an (n — 1)-space of the partition P. This is
exactly the way all the lines were defined in the Bose/André Model. The second
type of line is given by a Baer subspace of II* (an isomorphic copy of PG(2n,q))
which meets the hyperplane II in one of the Baer subspaces of the mixed partition
P (see Figure 1.5). Incidence is given by containment. We let 7(P) represent this

incidence structure.
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Figure 1.5: An affine plane directly from a mixed partition
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Since this construction is not as well known as the Bose/Andre construction,
we provide proof that this incidence structure is, in fact, an affine plane of order

q*". We start with the following lemma.

Lemma 1.4.9 Let | = PG(1,q?) be the projective line of order ¢*, and let ly =
PG(1,q) be a Baer subline of | containing the point Q. Further, let P be a point of
[\ ly. Then, there is a unique Baer subline m through P such that [y N"m = Q.

Proof: It is well known that the points and Baer sublines of PG(1,¢?) form a
3—(¢*+1,q+1,1) design (see [17]). Hence, the number of Baer sublines through
both P and @ is (¢* —1)/(¢—1) = ¢+ 1. But q of these lines meet the subline [, in
a second point. Hence, there is a unique subline through P which meets [y in only

the point Q). [ |

Theorem 1.4.10 The incidence structure w(P) described above forms an affine

plane of order ¢*".

Proof: First we show that every two points determine a unique line. We let U
and V' be two distinct points of m(P). Then, the line [ of IT* determined by U and
V' meets the hyperplane Il in a unique point P. Let S be the unique element of
P containing P. We have two cases. Either S is an (n — 1)-space of II, or S is a
Baer subspace of II. If S is an (n — 1)-space, then the projective space spanned by
S together with the line [ is an n-space of IT and hence represents a line of 7(P).
On the other hand, suppose S is a Baer subspace of II. There is a unique Baer
subline through the points U, V', and P. This Baer subline together with the space
S generates a Baer subspace (of dimension 2n) of IT* which represents a line of (P).
The space S and the Baer subline determined by P, U and V" are both unique, which
implies the uniqueness of the line of 7(P) through U and V.
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Figure 1.6: The set of lines £

We now establish Axiom #2 of Definition 1.2.1. Let P be an affine point of
7(P) and let [ be a line of m(P) which does not contain P. We again have two cases.
First suppose that the line [ is represented by an n-space of II* which meets II in
an (n — 1)-space S of P. Then, the line m of 7(P) induced by the unique n-space
of IT determined by the point P and the (n — 1)-space S certainly contains P and is
parallel to [. Here, the uniqueness of m follows from the uniqueness of the n-space
representing m.

Now suppose that the line [ is represented by a Baer 2n-space I of [T* meeting

IT in a Baer subspace S of P. Consider the lines in the set
L={PX:XeS}

as shown in Figure 1.6. Every line through P which also meets I' meets [" in a point
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or in a Baer subline. No two lines through P could meet [' in a Baer subline since
then T" would contain two coplanar lines which do not meet in a point of T'.

The space I' contains exactly

(¢+1)g

lines, and each of these lines extends to include ¢? — ¢ additional points in the space

IT*. As above, none of the lines of I' can meet in a point outside of I'. Therefore,

the extensions of all of the lines of I' cover exactly

(q2n_|_q2n—1+_|_1)(q2n_|_q2n—1+_|_q) )
< (¢ +1)q ) (7" =)

points of IT*. But straightforward computation shows that this is

(q4n _|_q4n—2 4. _|_q2n+2) o (q2n—1 _|_q2n—3 4. +Q)

:(q4n+q4n—2++q2+1)_(q2n+q2n—1++q+1),

exactly the number of points of IT* \ I". Hence, every point of IT* \ T" lies on a unique
line which meets I' in a Baer subline.

Now, since S is a hyperplane of [, any line of I' must meet the space S in a
point. Hence, there exists a unique line of £ meeting I" in a Baer subline. Let m be
this unique line and let ) =m N S. Then, by Lemma 1.4.9, there is a unique Baer
subline mg of m containing P and @, but having no other point in common with
the space I'. Now consider the Baer 2n-space IV of IT* spanned by S and the Baer
subline mg. Every point of I is on a line of £. Since m is the only line of £ which
intersects ' in a point of T'\ S, and since mg N T = {Q}, we see that TNT' = S.
Therefore, I induces a line of 7(P) which is parallel to [ and contains the point P.
This line is unique from the uniqueness of my.

Finally, it is clear that there exist at least 3 noncollinear points. Hence, we
have constructed a finite affine plane. Since each line clearly contains ¢*" points,

the order of the plane is ¢*". |
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We will see in Chapter 2 that the method given above and the Bose/Andre
method for constructing translation planes are closely connected. One special case
of a mixed partition of PG(2n —1, ¢) is simply an (n — 1)-spread. It should be noted
that the construction method given here is exactly the same as the Bose/Andreé
construction of Section 1.4.1 when one uses a spread rather than a proper mixed

partition (one containing at least one Baer subspace).

1.5 Net Replacement and Derivation

In this last section of Chapter 1 we will look at a method whereby one can
use a given translation plane to obtain another translation plane. This method,
most generally known as net replacement, is discussed in detail in [29] and a special
type of net replacement is described in detail in [24]. We start by describing the
method and then applying it to our models discussed in the previous section.

For our purposes, a replaceable netis a set N of (n—1)-spaces of PG(2n—1, q),
covering point set C, such that there exists a different set N’ of (n — 1)-spaces,
N NN’ = (), which also covers C. Such replaceable nets can be used to construct
new translation planes from old translation planes. Suppose a spread S contains
a replaceable net A, and let 8’ be the spread (S \ N) UN’. Then the spread &'
can be used to construct a translation plane 7(S") which typically is not isomorphic
to the plane 7(S). One special form of net replacement is more commonly called
derivation, which we now discuss.

Let A be a finite affine plane of order n?, and let [, be the special line (i.e.
the line at infinity) so that '~ = A for some projective plane 7. Let S be a subset
of n + 1 points of o, such that, for every two points X,Y of A for which the line
through X and Y meets [, in a point of S, there is a unique Baer subplane of 7
containing X, Y and the points of S. Such a set of points is called a derivation set.
We define a new incidence structure D(.A) as follows. A point of D(A) is simply a
point of A. A line of D(A) is either a line of A meeting [, in a point outside of
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S, or is a Baer subplane of A meeting [, in the set S. One can easily show that
this incidence structure is in fact an affine plane of order n?. The process is called
derivation and the plane D(A) is called the derived plane.

We now try to interpret derivation in the two models given in Section 1.4.
For this, we refer the reader to Definition 1.4.5 of a regulus. When looking at 1-
spreads of PG (3, ¢q), reguli have a close connection with derivation. Referring to the
Bose/Andre Model of Section 1.4.1, embed II = PG(3,q) into II* = PG(4,q), and
let S be a spread of II containing a regulus R. Let 7(S) denote the finite affine
plane obtained from this model. Moreover, let R°PP be the set of transversal lines of
the regulus R. One can easily show that R°PP is another regulus, called the opposite
regulus of R. It is well known that the plane obtained from the Bose/Andre model
using the spread &' = (§\ R) U R is exactly the plane obtained by deriving
7(S). To see this, one needs to take a plane of IT* which meets I in a line of &’
and interpret this point set in the plane 7(S’). The details can be found in [5], for
instance. Hence, derivation is an example of net replacement.

Similarly, one can look at derivation in the Bose/André model using higher
dimensional spaces. Again, the general result can be found in [5]. We simply look
at the special case of PG(7,q). Let S be a 3-spread of Xy = PG(7,¢) and, as in
the Bose/Andreé model, embed ¥, into ¥§ = PG (8, q) as the hyperplane at infinity.

Moreover, let 7(S) be the affine plane determine by S. Then, we have:

Theorem 1.5.1 A point set is an affine Baer subplane of ©(S) if and only if the
corresponding point set of Xj is a 4-space not contained in ¥y which intersects Xy

in a 3-space meeting ezactly ¢> + 1 elements of the spread S.

Hence, a Baer subplane of 7(S) is represented by a 4-space of 3§ which meets %
in a solid S which intersects ¢? + 1 solids of the spread S. Such a solid S acts as a
transversal to ¢® + 1 elements of the spread S. If these ¢? + 1 elements of the spread
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can be covered by ¢* + 1 pairwise disjoint transversal solids, then they would form
a replaceable net.

We can say a little more about such a replaceable net of Xj. Let N be a
set of ¢> + 1 pairwise disjoint solids of ¥y covering a point set C, and let N’ be a

different set of ¢? + 1 pairwise disjoint solids of 3, also covering C.
Proposition 1.5.2 Every solid of N meets every solid of N' in a line.

Proof: Suppose that the solid S of N/ meets a solid of N7 in a plane. Then, since
lines and planes always meet in projective 3-space, S cannot meet any other solid
of N in a line. This implies that S must meet every other solid of N in at most
a point. But S contains ¢® additional points and there are only ¢? additional solids
of N, a contradiction. Hence, no solid of N" can meet a solid of A/ in a plane. A
similar argument now shows that no solid of A can meet a solid of N in a single

point. |
We can now combine these results to obtain the following:

Theorem 1.5.3 Let N be a set of ¢* + 1 pairwise disjoint solids of a spread S of
Yo and let N be a different set of ¢*> + 1 pairwise disjoint solids of Yo such that
every solid of N' meets every solid of N' in a line. Then, letting 8" = (S\N)UN’,
©(8") 2 D (n(S)).

Proof: Since each element of N’ meets each element of A in a line, the correspond-
ing lines of 7(&S’) are represented by 4-spaces of ¥ meeting ¢ + 1 elements of 7(S)

in a line. Hence, the result follows immediately from Theorem 1.5.1. [ |

There are, of course, other types of replaceable nets. For instance, in Bruck
[9], a family of norm surfaces are described. These surfaces are made up of (¢" ! +

-+« + ¢+ 1)? points of PG(2n — 1,q) which are ruled by (n — 1)-spaces. In fact,
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there are exactly n distinct ruling families and every point of the norm surface lies
on exactly one member of each ruling family. If any such ruling family is part of a
spread, there are clearly several possibilities for replacement.

As discussed in Section 1.4.2, one can also obtain an affine plane 7(P) from a
mixed partition P. We will look at some interpretations of derivation in this model
as they arise. Additionally, we will see more examples of replaceable nets which
do not correspond to derivation. These will be discussed as they are encountered.
Our first step will be to look at the tight connection between mixed partitions and

spreads.
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Chapter 2

A GEOMETRIC LOOK AT THE HIRSCHFELD-THAS
CONSTRUCTION

Having given a brief introduction to the study of translation planes, we are
now ready to look at a method for construction spreads. More specifically, we will
look at a method for constructing (2n — 1)-spreads of PG(4n — 1,¢q) using a mixed
partition of PG(2n — 1,¢%). The arguments given here are mostly geometric in

nature as opposed to the algebraic methods which are given in [19].

2.1 The Theory in PG(4n — 1,¢?)

Let K be the finite field GF(¢?) with primitive element 3, and let F be its
subfield GF(q). For convenience, we name the element o = 397!, whose order is
q+1. Let I' = PG(2n — 1, ¢*) with underlying vector space W over K, and let ¥ =
PG (4n —1,¢*) with underlying vector space V over K. Also, let 3g = PG(4n —1,q)
be a Baer subspace of ¥ in standard position. That is, ¥y consists of those points
of ¥ induced by vectors in V' all of whose components lie in the subfield F' of K.

We also establish some notation which will be used consistently throughout
this work. We use homogeneous coordinates for the points of any projective space.
Thus, non-zero vectors from V' which are K-scalar multiples of one another induce

the same projective point. We write v ~ w to mean v and w are K-scalar multiples.

28



For much of the following we will be working in I" and then embedding into X.
We first show a nice way to do this embedding. Consider the K-linear transformation
A: W — V given by

v (v,av),

where (v,av) is the 4n dimensional vector whose first 2n coordinates are the co-
ordinates of v and whose last 2n coordinates are the coordinates of awv. One can
easily check that ker(A) = {0} and hence A induces an embedding of T" into X. By
a slight abuse of notation, we also let A denote the induced embedding. For the

construction we are leading up to, we need I'* N ¥y = (. We show this now.
Lemma 2.1.1 Under the embedding A, the image of I' in X is disjoint from ¥.

Proof: Let v = (v, vs, ..., oy, U1, Ay, ..., QUy,) be a vector in V' which induces a
projective point of I'®. Then at least one of vy, vs, ..., Uy, must be non-zero. By left
normalizing v to get an equivalent projective point, the first non-zero coordinate
becomes 1 and we get another coordinate to be «. But the coordinates of any
normalized vector which induces a point of ¥y are all in F. Since a ¢ F', v cannot

induce a point of £y and ' N3, = 0. []

Definition 2.1.2 With K as above, the map from K to K given by k — k7 is an
automorphism of the field K with fixed field F'. We call this map the Frobenius

automorphism.

By letting the Frobenius automorphism act on components of a vector from
V', we get a non-singular semi-linear transformation on V' which therefore induces a
collineation of ¥ by Theorem 1.4.1. We also refer to the collineation as the Frobenius
collineation (or map) of X. For the remainder of this section, we will use the term
conjugation to mean application of the Frobenius map. We typically write P? for

the image of point P € ¥ under the Frobenius map.
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Lemma 2.1.3 The points of ¥ which are fived under conjugation are precisely the

points of Xg.

Proof: Clearly the points of ¥ are fixed under conjugation. We show that no other
point can be fixed.

Let P be a point of ¥\X, and let v = (v;) be any vector which induces the
point P. Suppose that P? = P. Then v? ~ v and there is a £ € K such that
v? = kv. So,

v =)= (kv)! = k%! = kv,

which means that the field element k& must be a power of a. Let k = o' for some ¢.
Then v! = alv; = 44Dy, for all i. But this means that v; = f;3!, where f; € F,
and f; = 0 precisely when v; = 0. Thus, (v;) = (8'f;) = B'(f;) ~ (f;). Hence, the
projective point P is induced by a vector which has all of its coordinates in F', and

so lies in the Baer subspace Y. [ |

Lemma 2.1.4 For any point P € ¥\%,, the line [p = PP? meets the Baer subspace

Yo in ezxactly ¢ + 1 points (i.e., in a Baer subline).

Proof: Since P ¢ Y,, P? # P by Lemma 2.1.3, and thus P and P? determine a
line. Let v be a vector which induces the point P, and consider the points on the

line [p induced by the vectors v + a'v? as i varies from 0 to ¢. Since a? = é,

(v+av)" = (v +a 'v) ~ (a'vI+v),

and we see that the projective points induced by vectors of the form v 4 o'v? are
all fixed by the Frobenius map. Hence they lie in ¥j by Lemma 2.1.3. Since no two
of these points are the same, and there are ¢ + 1 choices for i, we get ¢ + 1 points

of [p lying in X. Clearly, [p cannot contain more than ¢ 4+ 1 points of ;. [ |
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This next lemma appears quite elementary, yet will be instrumental in our
ultimate construction. Let IT be any (2n — 1)-space in ¥ which is disjoint from X,
for instance IT = I'®. For the lemma, we restrict to P € II, however, the reader
should note that all we really need is for P to be in some projective subspace that

does not intersect Xg.

Lemma 2.1.5 If P € II, then P? ¢ I1. Moreover, for any two distinct points, say
P and Q) of 11, the lines [p = PP? and lg = QQ? do not intersect.

Proof: Let P € II. If P9 were a point of II, then the line [p would be a line of
IT and could not possibly meet the Baer subspace Yy, contradicting Lemma 2.1.4.
Hence, P? ¢ TI, and as a result, TI? N IT = (.

Now, consider the line P(@). Since P and () are both in II, the line P(Q is also
a line in II. Similarly, the line P9Q)7 is a line of I19. Hence, these two lines do not
meet. Suppose now that the lines [p and [y meet. Then the lines determine a plane,
which means that the four points P, (), P?, (Q? are coplanar. But then it follows that
the lines P() and P?(Q)? intersect, a contradiction. Hence, the lines [p and /g do not

intersect (see Figure 2.1). |

Now, we fix a projective (2n — 1)-space II in ¥ which does not intersect ¥,
say II =T'2. Let Py, Py, ..., P>, be 2n + 1 points in general position in II. In other
words, no 2n of the P;’s lie in the same hyperplane (a (2n — 2)-space). Then, by the
above lemmas, P/ ¢ II for each i and the lines [p, = P;P{ all intersect X, in a Baer

subline. Let l_pi represent [p, N Y, for each s.
Lemma 2.1.6 Any 2n of the sublines lp, generate X.

Proof: Since the P;’s are in general position, their images under conjugation, P?,

are also in general position. Thus, any 2n of the P/’s generate the (2n — 1)-space
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Figure 2.1: Lifting a point of I

[17 in ¥. From Lemma 2.1.5, I1? cannot intersect II, and, as shown in Lemma 2.1.3,
I19 cannot intersect Xg.

Since the (2n — 1)-spaces II and II? do not intersect, we immediately get
that the vectors which induce the points Pj, Ps, ..., Py, P}, Py..., Pj. are all linearly
independent. Hence, they generate all of the points of ¥. But then the lines [p,, for
i =1,2,...,2n, generate ¥, and so the Baer sublines [p, generate ¥5. We use the

same argument for the other combinations of 2n distinct points. [ |

Lemma 2.1.7 Let X = {lp, : i =0,1,2,...,2n} be a set of 2n + 1 lines in 3o, as
constructed earlier, with the property that any 2n of the lines generate ¥y. Let Qg be
any point on lp,. Then, there exists exactly one Baer (2n — 1)-space of & contained

in Yo which contains Qo and meets each of the lp,’s in exactly one point.
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Proof: The proof of this statement will follow from the uniqueness of representation
of a vector with respect to a given basis. All of the lines and the purported Baer
(2n — 1)-space in the statement of the lemma are contained in ¥,. Hence, we can
drop the “Baer” notation and view the lemma as a result about lines and (2n — 1)-
spaces of X9 2 PG(4n —1,q). For i =1,2,...,2n, let r; and s; be two vectors which
induce distinct projective points on the line [p. Since the lines of X generate %,
the above 4n vectors are linearly independent and form a basis for the underlying
vector space of ¥y. Letting t be a vector which induces the projective point @y, we

can express t in terms of this basis:

2n 2n
E a;r; + E biSZ‘ =t
=1 =1

for some a;,b; € F. Since the vector a;r; + b;s; induces a point on l_pz. for 1 =
1,2,...,2n, the (2n — 1)-space B generated by the 2n points induced by a;r; + b;s;,
for i = 1,2, ..., 2n, will meet each [p, in at least one point.

Suppose that the statement in the lemma is false. That is, either B meets one
of the lines in more than one point, or there is another (2n — 1)-space of ¥y through
Qo that meets each line in a point. In either case, we draw the same conclusion.
There must be a different set of 2n points, one on each of the Ip,’s, that are all in a
(2n — 1)-space B’ of ¥y containing (y. Since these 2n points are on the Ip,’s, they
will generate B'. Let air; + b}s;, for i = 1,2,...,2n, be vectors which induce these
2n points. Of course, it is possible that a, = a; or b, = b; for some i. Then, since

these points generate B, ,
n

Z C; (a;ri + b;SZ) =t

=1

for some ¢; € F. Hence,

2n 2n

/ /
Z ¢ (a;rs + bysi) = Z a;r; + b;s;
i=1 i=1
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or
2n

3 (el — ag)r; + (eibf, — b;)s;] = 0.

=1

Since the r;’s and s;’s together form a basis for the underlying 4n-dimensional vector

space, the coefficients in the above equation must be zero. As a result,
cia; = a; and ¢;b; = b;
for all 7, implying
a;r; + bis; ~ ¢; (air; + bis;) = a;r; + b;s;.
Hence, B = B’ and B meets each [p, in a unique point. [ |

We are now ready to begin the main construction. We first show how to lift

a Baer subspace of II.

Lemma 2.1.8 Let By be a Baer subspace of II. Then, the Baer sublines lp, for

each point P in By, form a set of transversal lines to a requlus in Y.

Proof: Let P, be any fixed point of Il and let P, P, ..., P5, be 2n other distinct
points of II such that Py, Py, P, ..., P, are in general position. Then, since ¢ > 2,
we can find three distinct points @, @1, and Qo on lp,. Using Lemma 2.1.7, let
Iy, [Ty, and TI; be the three unique Baer (2n — 1)-spaces through Qg, @ and Q-
respectively that meet each of the [p,’s in exactly one point each. Then, by following
the exact same argument as in Lemma 2.1.7, we show that these Baer spaces do
not intersect. Hence, we can consider the regulus R in ¥, generated by these three
(2n — 1)-spaces of Y. Now, each of the original lines Ip, is a transversal to all of
the (2n — 1)-spaces in the regulus since it meets three of the them. Hence, all of
the (2n — 1)-spaces in the regulus meet all of the Ip.’s in exactly one point each. All
we need to show is that for any other point P of By, the Baer subline [p is also a

transversal line to the (2n — 1)-regulus R.
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As was shown in Lemma 2.1.4, for any point P, every point of the line [p is
induced by a vector of the form v + a’/v? for some j € {0, 1,...,q}, where v is any
vector which induces the point P. Let v; be any vector which induces the point P;

for i =1,2,...,2n. For convenience, choose the v;’s so that
Vg =V + Vg + ... +Vg,.

When these vectors are chosen this way, there is a clear representation for the
(2n — 1)-spaces of R. Pick any point in [p, and let vy + a/v{ be the vector which
induces this point. Let II; be the solid through this point which meets each of the

other [p,’s in exactly one point. Then II; meets [p, in the point induced by vector

v +a’v!
since
2n 2n 2n q
E (vk+oﬂv;§) = E vy + o’ E vi | =vo+alv.

Now, let P, induced by vector w, be any other point of II. Then, there are

scalars a; € K so that
W = a1V] + aoVy + ... + a9, Voy,.
But then, for each 7,
ay (Vi 4+ VY 4+ ag(ve + V) + .. 4 agn (Vo + @l vE )

= (a1V1 + oV + ... + G2, Vo) + &7 (a1V) + aaVa + ... + G2, Vap)?
=w+a'w?

which certainly induces a point on [p. Hence, the line [p also meets the solid I1; for
each j, and we have shown that the lines [p, for every P in II, form a ruling family

for a regulus in ¥ (see Figure 2.2). |
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Figure 2.2: Lifting to a regulus

Hence, each Baer subspace, say By, lifts to a regulus of ¥,. It also follows
from the proof of Lemma 2.1.8 that we can write the members of this regulus as
By + o'B{ as i varies between 0 and q. We will use this representation in later
chapters. The last bit of theory we will need to complete the construction will come

from the following lemma.

Lemma 2.1.9 Let [ be an (n — 1)-space in ¥ which does not meet ¥y. Then the
conjugate of 1, 17, does not intersect [, and hence | and 19 generate a (2n — 1)-space.

This (2n — 1)-space meets Xg in a Baer (2n — 1)-space of 3.

Proof: Let P and () be two distinct points on [. Then P? and Q¢ are on [?, and
the lines [p = PP? and lg = QQ? do not intersect by Lemma 2.1.5. Hence, [ and {4

do not meet and so generate a (2n — 1)-space, say II;.
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Figure 2.3: Lifting a line

For each point P on [, the line [p meets ¥ in a Baer subline. Therefore, since
these lines do not intersect, we get exactly (q2("_1) + @202 4P+ 1) (g+1)
points in ¥y N II;. A (2n — 1)-space of ¥ cannot meet ¥y in any more points, hence

the points of ¥y N II; must form a Baer (2n — 1)-space. |

The simplest case of Lemma 2.1.9 is when n = 2, and we have lines lifting to

solids. This is pictured in Figure 2.3.

2.2 Creation of a Spread in PG(4n — 1,q)

We now explain carefully how to lift a mixed partition of PG(2n — 1, ¢?) to a
spread of PG(4n—1,q). As before, let ¥ = PG(4n—1,¢%), and let Xy = PG(4n—1, q)
be the Baer subspace of ¥ in standard position. Also, let IT = PG(2n — 1,¢*) be
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a (2n — 1)-dimensional projective space in ¥ which does not intersect ¥y. Such a
(2n — 1)-space always exists as shown in Lemma 2.1.1.
Let P be a mixed partition of II which contains a Baer subspaces and [

(n — 1)-spaces. Then, by counting points, we get
a(@ g D) F BT P =Y 1 P P

or

alg+1)+4=¢"+1.

The existence of such a partition is nontrivial (except when o = 0 and § = ¢** +1),
and will be explored in Chapter 6.

Before proving the main result, we briefly describe the “lifting” procedure.
For each point P of II, consider the line [p generated by P and its conjugate point
P4, No two of these lines meet from Lemma 2.1.5, and all of these lines meet ¥, in a
Baer subline. A simple counting argument shows that these Baer sublines actually
partition the points of ¥. To create our desired (2n — 1)-spread of 3y, we will work
with these sublines in two ways. Some of them will be grouped together to form
(2n — 1)-spaces of Xy, and others will be grouped together to form the transversal
lines to a regulus in Y,. For each such set of transversal lines, we will take the
opposite ruling family of (2n — 1)-spaces of ¥ to complete our spread. We will now

show this in detail.

Theorem 2.2.1 The « Baer subspaces together with the 3 (n—1)-spaces of a mized
partition P of I can be lifted to a (2n — 1)-spread of PG(4n — 1,q).

Proof: Let B be a Baer subspace of our mixed partition and pick 2n + 1 points of
B which are in general position. For each point, we construct the line determined
by the point and its conjugate. From Lemma 2.1.4, these lines all meet Y, in Baer

sublines, and, from Lemma 2.1.8, they form a ruling family of a regulus. Moreover,
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“reversing” this regulus gives us a set of ¢ + 1 projective spaces of dimension 2n — 1
over F. Let T be the set of all such solids obtained from the reguli determined by
all of the Baer subspaces of the mixed partition P.

Now, consider an (n — 1)-space of our mixed partition. By the method de-
scribed in Lemma 2.1.9, each of these (n — 1)-spaces lifts to a single (2n — 1)-space
of ¥y. Let U be the set of all such solids obtained from (n — 1)-spaces of P.

We now claim that the set T"U U is a spread of ¥,. Note that we obtain the
appropriate number of solids since a(q + 1) + 3 = ¢** + 1, which is the proper size
for a (2n — 1)-spread of PG(4n — 1, ). What is left is to show that these solids do,
in fact, partition the point set of ¥;. We do this by simply showing that any two
such (2n — 1)-spaces are disjoint.

Certainly, no two (2n — 1)-spaces in the same regulus can intersect. Also,
since it was shown that no two lines of the form P P? for some P € II can intersect,
it is clear that no two (2n — 1)-spaces from different reguli can intersect. Consider
the method by which the remaining  (2n — 1)-spaces are generated. These (2n—1)-
spaces are formed by unions of sublines [p. Since none of these lines can intersect
by Lemma 2.1.5, it follows that no two of the (2n — 1)-spaces can intersect. Hence,

we have a spread. [ |

We now recap the observation made in the discussion above. The members
of our constructed spread come from working with the Baer sublines of the lines of
the form PP? where P € II. These sublines partition the point set of ¥, and hence
form a 1-spread of 3. With this model in mind, it should be clear that none of the
members of the (2n — 1)-spread can intersect. As a final note, we point out a very

nice property of the 1-spread {lp : P € II}.

Definition 2.2.2 A 1-spread G is geometric if for every pair of distinct lines [y
and ly of G, G induces a spread in the solid generated by Iy and ls.
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Lemma 2.2.3 The I-spread Gy of ¥y obtained from the lines lp for each P in 11 is

geometric.

Proof: Let [p, and [p, be two lines of Gy, and let T = (Ip,, [p,) be the solid generated
by them in Y,. Now, consider the line L = P, P, of II, and lift every point on L to
its corresponding Baer subline in ¥,. Then, as discussed earlier, L lifts to a solid in
Yo, and this solid is exactly T. Hence, the solid T has an induced spread from Gy;
namely, the lines l_Q for all ) on the line L. [ |

The geometric 1-spread will be very useful in finding certain automorphisms

of lifted spreads. We discuss this in detail in Chapter 4.

2.3 Associated Translation Planes

As we saw in Sections 1.4.1 and 1.4.2, both the mixed partition of PG(2n —
1,¢%) and the (2n —1)-spread of PG(4n —1,q) can be used to construct affine planes
of order ¢*". Moreover, we have just shown that mixed partitions of PG(2n — 1, ¢?)
naturally give rise to (2n — 1)-spreads of PG(4n — 1,q). Let P be a mixed partition
of IT = PG(2n — 1,¢?) and let S be its associated spread of ¥y = PG(4n — 1,q).
Also, let 7(P) and 7(S) be their associated affine planes. We can now show that
7(P) and 7(S) are isomorphic.

Embed IT into IT* = PG(2n, ¢?) as the hyperplane containing all points whose
first homogeneous coordinate is 0. Similarly, embed ¥, into ¥} = PG(4n, q) as the
hyperplane containing all points whose first homogeneous coordinate is 0. We use
the Bose/Andre model as discussed in Section 1.4.1 for 7(S), and we use the mixed
partition model from Section 1.4.2 to model 7(P). Hence, we look for a map from
IT* \ II to X \ £y which will induce a bijection from the affine points of 7 (P) to
the affine points of 7(S). Let Tr(x) be the trace function from K to F. That is,
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Tr(z) = x + x9. Also, recall the special field element o = 877!, and consider the

map ¢ defined on the points of IT* \ IT as follows:
(1,v) = (1,Tr(v), Tr(av)).

Here we let (1,v) be the (2n + 1)-dimensional vector whose first coordinate is 1

and whose last 2n coordinates are given by the 2n-dimensional vector v. Also,

Tr(v)=Tr ((v)) = (Tr(v), Tr(vy), ... Tr(va,)).
Lemma 2.3.1 The map ¢ induces a bijection between the points of m(P) and 7 (S).

Proof: Since the domain and codomain of ¢ have the same cardinality, we prove
the lemma by showing that the map is injective. Let P, and P, be two points of
7(P), induced by vectors (1,u) and (1, v) respectively, and suppose

(1, Tr(u), Tr(au)) = (1,Tr(v),Tr(av)).
Then, Tr(u) = Tr(v) and Tr(au) = Tr(av). Hence, if we let w =u — v,
Tr(w)=Tr(aw)=0.
So we have a system of equations in w and w?, namely

w+wl = 0

aw + afw? = 0.

Scalar multiplying the first equation by a? and subtracting gives us
a'w —aw = 0.

If w # 0, this implies a? = o, and so a?~! = 1. Since the order of « is ¢ + 1, this
is a contradiction. Hence, w = 0 and u = v. Therefore, P, = P, and the map is a

bijection. [ |
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Recall now that there are two types of lines of 7(P). The first type of line
is represented by an isomorphic copy of PG(n,¢?) in II* meeting II in one of the
PG(n — 1,¢%)’s of the mixed partition P. We call these lines Type A lines. The
other type of line is represented by a Baer 2n-subspace of II* meeting II in one of
the Baer subspaces of the mixed partition P . We call these lines Type B lines.
We will define the image of each type of line under the map ¢, show that these
definitions are well-defined, and then prove that the map on lines is also a bijection.
The incidence preserving property will follow from the definitions of the images of
points and lines.

First, let [ be a Type A line of w(P). Then [ is induced by all vectors in
the K-linear span of (0,u,), (0,us),...,(0,u,) and (1,v), where the vectors (0, u;)
generate the n-dimensional vector space which induces an (n — 1)-space S in the
mixed partition P and (1,v) induces an affine point of 7(P). Again, we write (0, u)
for the (2n + 1)-dimensional vector with first coordinate 0 and last 2n coordinates
given by the 2n-tuple u. We will introduce some new notation in order to simplify

writing the images of lines under ¢. Define
Ni(V) = v+ a'v?

where 0 < i < ¢. Here, the projective points induced by the vectors \;(v), as i
varies, are exactly the ¢ + 1 points on the Baer subline {p of ¥ determined by the
point P of II induced by vector v. We define the image [? to be the set of points

induced by all vectors in the F-linear span of

(0, Ai, (1), Ay, (auy))
(Ov >‘i2 (112) ) )‘i2 (au2))

(0, Ai, (an), A\, (auy,))
and

(1,Tr(v), Tr(av))
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where 41, 19, .. .1, all vary independently between 0 and ¢. Note that for any partic-

ular 7, the points induced by the vectors
(0, Ai; (u1), Ai; (auy))

as 7; varies between 0 and ¢ are exactly the points on one of the geometric spread
lines described in Lemma 2.2.3, and the set of all such points (as j varies) represents
an element of the spread S defined by the lifting of the (n — 1)-space S of the mixed
partition P. Hence, we have given a formal algebraic method for describing the
lifting process from earlier in the chapter.

The Type B lines are considerably more difficult to work with. This is mostly
because a Baer subspace of P does not lift to a single spread element. Rather, it
lifts to an entire regulus composed of ¢ + 1 spread elements. In order to work with
the Type B lines, we need to look more carefully at coordinates.

Suppose that [ is a Type B line of w(P). Then [ is induced by all of the non-
zero vectors contained in some Baer 2n-space Bj of II* which meets the hyperplane
IT in a Baer subspace By of P. Recall from Section 1.4 that a d-dimensional Baer
subspace is uniquely determined by d+ 2 points, no d+1 of them in the same (d—1)-
space. For generators of B§ we take the points Uy, Us, ..., Us, induced by vectors
(0,u1), (0,uy),...,(0,uy,) together with V; and V; induced by vectors (1,vy) and
(1,v3). Then, there exist scalars k; € K such that

Zk,(o, lli) + (1,V1) = (1,V2),

and every element of Bj is induced by a vector in the F-linear span of k;(0,uy),
ko(0,u2), ..., ko (0,us,) and (1,vy). Note that the first coordinates imply that the
coefficient of (1,vy) must be a 1. In fact, without loss of generality, we assume
that k; = 1 for each 7. That is, we simply scalar multiply each vector to meet this
assumption. With this assumption, every element of By is induced by a vector in

the F-linear span of (0,u;), (0,us),...,(0,uy,). Let U* induced by (0,u*) be the
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Figure 2.4: Defining the image of a Type B line

unique point of By where the line m determined by the two points V; and V, meets

By (see Figure 2.4). Then, we can find scalars f; € F such that

(0, 11*) = ZfZ(O, lli).

A counting argument shows that there are exactly ¢ + 1 distinct Baer 2n-spaces
through B, and the point V7, and there are exactly ¢ + 1 distinct Baer sublines of
m through V; and U*. We will now be able to use these ¢ + 1 Baer sublines to
establish a representation for the Baer 2n-spaces through By and the point V;. This
will allow us to determine the exact spread element of S representing the point at
infinity in the image of [ under ¢.

Consider the field elements 1, 3, 3%, ..., 37 as distinct representatives for the

multiplicative cosets of F* in K*. Then, for 0 <1 < ¢, the vectors

B0, u*) + (1,vy)
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all induce points on the line m and, moreover, each of these points together with
V1 and U* determines a unique Baer subline of m through U* and V;. By finding
the Baer subline containing the point V5, we can determine the unique j so that the

Baer subline of m through U*, V; and the point induced by the vector
ﬁj(oa 11*) + (17 Vl)

contains the point V5. Now recall that the Baer subspace By lifts to a family of ¢+ 1
spread elements of ¥3. As discussed in Lemma 2.1.8, these spread elements can be
represented by

By + a'B{

for 0 < i < q. We define the image of the line [ under ¢ to be the points induced
by vectors in the 2n-space spanned by By + o’/ Bl and the image of Vi, where j is
uniquely determined as above.

At this point it may seem as though the choice of the point V; is not arbitrary,
and that changing the point V] may affect value of j. This, however, is not the case

and we show this in detail now.
Lemma 2.3.2 The image of a line under the map ¢ is well-defined.

Proof: We first look at the Type A lines. Let [ be a Type A line which is induced
by all of the non-zero vectors contained in some n-space of IT* which meets the
hyperplane IT in an (n — 1)-space of the mixed partition P.

We suppose this element of the mixed partition contains the points induced
by vectors in the K-linear span of (0,s1),...,(0,s,). So, the line [ is induced by
vectors in the span of (0,s;),...,(0,s,), and (1,u), where (1,u) is a vector which
induces some affine point. To show that ¢ is well defined on these lines, we need
to show that the choice of u is arbitrary. That is, if the line induced by all non-

zero vectors in the K-linear span of (0,s;),...,(0,s,),(1,u;) is the same as the line
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induced by all non-zero vectors in the K-linear span of (0,s1),...,(0,s,), (1, us),
then the images of these lines under ¢ are the same.

Suppose that we have two affine points induced by vectors (1,u;) and (1, up)
that lie on the same line which, in our model, meets the spread element determined
by non-zero vectors in the K-linear span of (0,s;), ..., (0,s,). Then there exist scalars

ki, ks, ..., k, € K such that
(1,u1) + k1(0,81) + k2(0,82) + -+ - + £y (0,8,) = (1, u2),
which implies that
uy + kisy + koso + -+ - + kyS, = us.

If any of the k;’s is 0, then the argument will simplify. So, for generality, we assume
that k; # 0 for all <. Hence, we can find m; so that kiqfl = o™ for each 7. The
image of the line induced by vectors in the K-linear span of (0,s1), ..., (0,s,), (1,u;)

certainly contains the points induced by the vectors

(Ov >\m1 (Sl)a )‘ml (asl))
(0, Ay (82), Am, (@082))

(0, A, (S0)s Am, (@81))

and

(1, Tr(uy), Tr(auy)).

But,
(0, A (8), Am; (087)) =

(0,8 + a™s!, as; + o™ ;) ~

(0, kiSi + (kiSi)q, Olk‘iSi + (akisi)q)
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for each 7. Hence, the first n vectors can be scalar multiplied by k; respectively to

obtain
(0, Tr(klsl), Tr(aklsl))

(0, Tr(kgss), Tr(cksss))

(0, Tr(knsy), Tr(ak,sy,)) .
Adding these vectors to
(1, Tr(uwy), Tr(auy))

and recalling that the trace function is additive, we get
(1, Tr(uy + kisy + -+ kpsy), Tr (a(uy + 1Sy 4 -+ 4 knsp)))
= (1,Tr(uy), Tr(auy)) .

Hence, the image of the line induced by (0,s;),...,(0,s,) and (1,u;) contains the
image of the point induced by vector (1,us). Reversing the roles of u; and uy in this
argument, we show that the image of the line induced by vectors in the K-linear
span of (0,s1),...,(0,s,), and (1,u;) is the same as the image of the line induced
by vectors in the K-linear span of (0,s;),...,(0,s,), and (1,us). Hence, the map ¢
is well defined on Type A lines.

Now let [ be a Type B line. Then [ is induced by all of the non-zero vectors
contained in some Baer 2n-space B of [I* which meets the hyperplane II in a Baer
subspace By of P. Let Uy, Uy, . .., Us,, induced by vectors (0,uy), (0,us),. .., (0,us,),
together with V; and V3, induced by (1,v;) and (1,vsy), be 2n + 2 distinct points
which determine this Baer 2n-space B of P. Here, the points U; all lie in a Baer
subspace of II which is part of the mixed partition P. Moreover, assume that the
vectors (0, u;) are properly scalar multiplied so that every point of By is induced by
a vector in the F-linear span of the vectors (0, u;).

To show that the image of [ under ¢ is well-defined, we need to show that
the choice of points V; and Vj is arbitrary. That is, if the line determined by the
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U;’s, Vi and Vj; is the same as the line determined by the U;’s, W; and W, then the
images of these lines are also the same. Hence, we let Vi, V5, Wi, and W, induced
by vectors (1,v1), (1,vg), (1, wy), and (1, wy), respectively, be 4 such points. Then,

there is a unique j such that 0 < 7 < ¢ and
2n
Iog Zfi(oa w;) + (1, vi) = (1,va).
i=1

Here, the vector 37" £i(0,u;) = (0,u*) induces the point U* as shown in Figure

2.4. Moreover, every point of Bj is in the F-linear span of
{#(0,u;) : 0 <i<2n}uU{(1,v1)}.

Hence, we can conclude that there are scalars fl(i) and fz(i) such that

2n
ﬁj Z fl(l)(oa ui) + (17 Vl) = (17 Wl)
=1

and on
B3 150, w) + (1, v1) = (1, wa),
1=1

To finish the argument, we show that the images of the points W; and W, are
contained in the image of the line determined by the unique Baer 2n-subspace B;
containing By and the points V; and V5.

Recalling the way images of Type B lines were defined earlier, the spread
element representing the point at infinity on the line [ is given by B+ a7 B{. Hence,

the image of Bj under ¢ certainly contains the points induced by vectors

(0, 4(w), Aj(aw))
(0, 4;(u2), Aj(awy))

(0, Aj(u2n), Aj(omzy))
and

(L, Tr(vy), Tr(avy)).
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Multiplying the first 2n vectors by 4/ and noting that 3/ - o/ = 3% gives us

(0, Fuy + (Fwy)?, affuy + (affu;)?)
(0, Fluy + (Fus)?, affuy + (afuy)?)

(07 ﬁju2n + (Bju2n)qa aﬁju2n + (aﬁju2n)q) )

and so all 2n + 1 vectors can be rewritten as

(0, Tr(Bay), Tr(afay))
(0, Tr(Bay), Tr(afuy))

(0, Tr(Bay,), Tr(afus,))
(1L, Tr(vy), Tr(avy)).

Since the trace function is addition, the F-linear span of these vectors certainly
contains the vectors which induce the images of the projective points W; and W
under the map ¢.

By reversing the roles of the V;’s and the W;’s, this shows that the images of

lines as defined above are well-defined. |

Lemma 2.3.3 The image of a line of n(P) under the map ¢ is a line of w(S).

Proof: To prove this statement we take an arbitrary line [ of 7(P) and show that
[ is a set of points of ¥} which forms a 2n-space meeting Yy in an element of the
spread S. Let [, a Type A line, be the set of points induced by vectors in the
K-linear span of (0,s;),...,(0,s,), and (1,u). To prove the lemma, we need to
take any K-linear combination of these vectors (with the coefficient for (1, u) being

non-zero) and show that the image of the point induced by this vector, say w, is in
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the image of the line [. Hence, we need to show that w is an F-linear combination

of the vectors
(Ov >‘i1 (Sl)a )\il (asl))
(Ov >‘i2 (52)7 )‘i2 (aSQ))

(0, Ai, (sn), Ai, (asy))

and

(0, Tr(u), Tr(au))

where 0 < i; < ¢ for each j. But we have already shown that this is the case in the

proof of Lemma 2.3.2. The argument is essentially the same for Type B lines. M

Lemma 2.3.4 The map ¢ induces a bijection between the lines of m(P) and 7(S).

Proof: To prove that this map is a bijection, we simply show that the map on lines
is onto. Let [ be any line of 7(S) and let P and @ be two distinct points of . Then
by Lemma 2.3.1, there exist two distinct 2n-dimensional vectors u and v such that
(1,Tr(u),Tr(au)) and (1,Tr(v), Tr(av)) induce the projective points P and Q).
Then, the two distinct points of 7 (P) induced by (1,u) and (1, v) clearly determine

a line m of 7(P) whose image under ¢ contains P and Q. Hence, m? = [. |

Theorem 2.3.5 The affine planes 7(P) and w(S) are isomorphic.

Proof: To prove the theorem, we show that ¢ is a bijection on the points and lines
of the two planes, and that ¢ preserves incidence. The fact that ¢ is a bijection
on the points is given by Lemma 2.3.1, and the bijection on the lines is given by
Lemma 2.3.4. The incidence preserving property follows from the definition of the

map. Hence 7(P) and 7(S) are isomorphic. |

In particular, Theorem 2.3.5 shows that the affine plane 7(P) constructed

from a mixed partition P of PG(2n — 1,¢) is also a translation plane. In fact, 7 (P)

20



is isomorphic to 7(S), where S is the (2n — 1)-spread of PG (4n — 1, q) that is lifted
from P. Having thoroughly discussed the lifting process, we are now ready to look

at some classical examples.
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Chapter 3

THE CLASSICAL EXAMPLES

We are now ready to look at some special mixed partitions. In this chapter,
we describe two different ways to construct a mixed partition which might be con-
sidered classical. The translation planes which they determine will be shown to be
Desarguesian (or classical). Moreover, we will eventually show that these are the
only partitions that lift to regular spreads, and hence generate Desarguesian planes.
The proof of this fact requires much more knowledge of the associated automor-
phism groups. Hence, we save the proof for Chapter 4, where we give a thorough

discussion of groups. For now, we give the two constructions.

3.1 The Regular Spread

The first classical example we will discuss is a mixed partition which con-
tains no Baer subspaces. As was discussed in Section 1.4.2, the method of con-
structing translation planes directly from mixed partitions is exactly the same as
the Bose/Andre construction of Section 1.4.1 when one uses a spread for the mixed
partition.

The classical example of a spread of Il = PG(2n — 1,¢?) can most easily be
described by modeling projective spaces with finite fields. If we let L = GF(¢*),
and choose H = GF(¢**) and K = GF(¢*) as subfields of L, then L can be viewed

as a 2n-dimensional vector space over K. Similarly, H is an n-dimensional vector
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space over K. Hence, L serves as a model for IT and H models an (n—1)-dimensional

subspace of II. If we let i be a primitive element for L, then the subspaces
HopH,p*H,...n""H

form a set of ¢*" + 1 distinct (n — 1)-dimensional vector spaces, any two meeting
only in the zero vector. Hence, they model a set of ¢** + 1 skew (n — 1)-spaces of II
and so form a spread. In fact, this model produces a spread S which is regular (the
proof can be found in [8]). Thus, 7(S) is a Desarguesian affine plane by Theorem

1.4.7.

3.2 The “Classical” Mixed Partition

We will describe the other classical example of a mixed partition using group
theory. The end result will be a partition of II = PG(2n — 1,4¢?%) with exactly
2 distinct (n — 1)-spaces and all of the remaining points partitioned into Baer
subspaces. We will build the partition by considering one of its Baer subspaces
By =2 PG(2n—1,q). Consider By modeled as L = GF(¢*"); that is, a 2n-dimensional
vector space over F' = GF(q), and let n be a primitive element of L. Then we can

think of the points of By as the field elements

9 B S
]‘777777 7"'777 *

Notice that we stop at ¢2"~! + - + ¢ + ¢ since ¢~ +F++0+1 hag order ¢ — 1, is
therefore in F', and so represents the same projective point as the field element 1.
Multiplication by n on these field elements induces a cyclic collineation which acts
regularly on the points of PG(2n — 1, ¢). This group is often called Singer cycle. We
now try to find a matrix representation for this collineation.

To find the matrix representation for multiplication by 7 we need the com-
panion matrix for the minimal polynomial for . We can think of this polynomial as

an irreducible polynomial of degree 2n over GF'(q), or as a product of two irreducible
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polynomials of degree n over GF(¢?). Letting P(z) be the minimal polynomial for
1, we know that P(z) has 7,77 ...,7¢"" " as its roots. Hence, the companion matrix
for the minimal polynomial of 7 over GF(q), which we will call A,, is similar over

GF(¢*) to the matrix

Also, A, is similar over GF(¢?) to the block diagonal matrix

S10
Ap = ,
0T
where S and T are n X n companion matrices for the minimal polynomials for » and

n? over GF(q?), respectively. Let N € GL(2n,¢*) be the matrix such that
N7'AN = Agp.

The matrix A, is an element of GL(2n,q), but we think of A, as an element of
GL(2n,¢?) and consider the induced action of A, on the points of IT. Let V be the
underlying vector space for the space II, and let © 4, and © Ap be the collineations
on Il induced by A, and Ag: respectively. Also, let (©,,) and (O, ,) denote the
cyclic groups generated by ©4, and © A respectively. We will make use of the

following term.

Definition 3.2.1 Let S and T be two geometric objects in a projective space PG(n, q).
We say S and T are projectively equivalent if there exists a projectivity ¢ of
PG (n,q) such that S =T.

Lemma 3.2.2 There exists a projectivity of II mapping the point orbits under the
group (O4,) to the point orbits under (G4 ,).
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Proof: Let O be the set of orbits of II under the collineation group (©4,), and
let O € O. Then, for some vector v, the orbit O is induced by vectors in {vAf] :
i=0,1,...,¢°" " +---+¢q}. But {vAl} is projectively equivalent to {vA!N} =
{vNAL}, and {vNAL} is the orbit containing the point induced by vector vV
under the collineation group (© AqQ). Since N induces a collineation on the points
of TI, we have the result. In other words, the orbit partitions determined by the
collineation groups (©.,) and (4 ,) are projectively equivalent, and the collineation

mapping one partition to the other is induced by the matrix N. [ |

Because of Lemma 3.2.2, we can now work back and forth between the point
orbits of (©,,) and those of (©4 ,). To start, we work with (€4 ,) and examine the
various orbits. Let w be a non-zero vector whose last n coordinates are all 0, and
let Py be the point of II induced by vector w. Then the orbit of P under (©, ,)
will be completely determined by the n x n matrix .S, which is a companion matrix
for the minimal polynomial for n over GF(¢?). Hence, (©.4,,) is a Singer subgroup
whose point orbit containing Py, is of length ¢** 2+ --+¢+1 and forms an (n—1)-
space of II. The same is true about non-zero vectors whose first n coordinates are
all 0. Hence, (04 ,) creates two orbits (at least) of length ¢**~*+- - +¢+1 forming
(n — 1)-spaces of II. We now examine the other orbits.

Since (0 4,) acting on PG(2n —1, q) forms a Singer cycle, we get immediately
that one point orbit of (©4,) on II is the natural Baer subspace By; that is, the
points induced by the vectors, all of whose homogeneous coordinates are in the
subfield GF'(g). By Lemma 3.2.2, we get that one of the full point orbits of (O ,),
say O, is a Baer subspace as well. Fix a vector v which induces a point P, in O.

Then, since the points of O form a Baer subspace, we can find a set of 2n integers

" 2n
7 )i=1

m; such that

forms a basis for V.
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Lemma 3.2.3 Let w € V' be any vector whose first n coordinates are not all zero
2n

and whose last n coordinates are not all zero. Then the vectors in the set {WAZQZ}
1=1

form a basis for V.

Proof: We only need to show that these vectors are linearly independent. Suppose

2n
E aiWAZSi =0.
i=1

We show that a; = 0 for all <.
Write w = (x,y) where x and y are n-dimensional vectors. Then we can

write

or

Since neither x nor y is the zero vector, we can conclude that the matrices 22221 a; S™
and Zle a;T™ are singular. But the matrix algebra generated by S (or T') over
GF(¢?) is isomorphic to the finite field GF(¢?) (see [25], for instance). Therefore,
the only singular matrix in this matrix algebra is the zero matrix. Referring back

to the vector v, we obtain
2n
v Z aZ-AZQi =0
i=1
which means

2n
E aivAZQi =0.
i=1

are linearly independent. Hence, a; = 0 for all ¢ which
1

2n
But the vectors in {qum;}

=

proves the lemma. [ |

Lemma 3.2.4 Let w € V' be any vector whose first n coordinates are not all zero

and whose last n coordinates are not all zero. Then the points in the orbit of the
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point induced by vector w under the collineation group <@Aq2> form a Baer subspace

of II.

Proof: We have shown that each orbit containing a point induced by a vector w,
whose first or last n coordinates are not all 0, contains a basis. Since GL(2n, ¢?)

acts transitively on ordered bases, we let M be a matrix which maps the basis
2n
{VA"?} to the basis {WA"?}
T Ji= T Ji=1
WA;2 for j = my,ma, ..., ma,. Let P, be an arbitrary point in the orbit of P, under

2n .
. In particular, we assume that vAf] , maps to

(@Aq2>, say induced by the vector u = vA'q“Z. Then, it is clear by linearity that the
collineation induced by M maps the point P, to the point induced by vector WA’JQ.
Hence, the orbit of the point induced by w is projectively equivalent to the orbit
of the point induced by vector v. Therefore, each full orbit of (©,,) is a Baer

subspace. [ |

Theorem 3.2.5 The orbits of (©a,) form a mized partition of PG(2n — 1,¢%)
containing two copies of PG(n—1,¢%) and (¢ —1)(¢** 2+ ¢**+---+¢*+1) Baer

subspaces.

Proof: By Lemmas 3.2.3 and 3.2.4, we know that there are exactly 2 distinct orbits
forming (n — 1)-spaces, and all remaining orbits are Baer subspaces. The total

number of points of PG(2n — 1,¢?) is
e Lo S S
and so the total number of points covered by Baer subspaces is
(q4n72 T _|_q2n) _ (q2n72 e P 1)
_ (an—z e I 1) (an _ 1)
which factors as
(q2n72+q2n74+_._+q2+1) (g—1) (q2n71+q2n72+._.+q+1)‘
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Hence, the number of Baer subspaces is exactly (¢ —1)(¢®" 2+ ¢*" *+---+¢2 +1).
|

We will use Py to denote this mixed partition in subsequent chapters. We
are now ready to examine some properties of lifted spreads which we can ascertain

from the associated mixed partition.
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Chapter 4

AUTOMORPHISM GROUPS

In this chapter, we cover some general results about group actions both on
the mixed partition and on the lifted spread. The goal is to find as much information
as possible about the full automorphism group of the spread, or equivalently, the
translation complement. As discussed in Chapter 2, there is an embedding A of

PG(2n — 1,¢%) into PG(4n — 1, ¢*), namely
v = (v, av)

where PG (2n—1, ¢?) maps to the space which we call II. Recall that o = 897!, where
3 is a primitive element for the field GF(¢?). For the remainder of this chapter,
we will assume that the space II is the space which arises from this particular
embedding. Also, we will use S to denote the spread which arises from the lifting

of a mixed partition P.

4.1 General Results

We start by examining a very natural group which arises from the lifting
routine described in Chapter 2. For any regular spread (or more generally, any
normal spread, see [26]) of PG(2n—1, q), there is always an associated Bruck Kernel.
That is, a cyclic group which fixes each element of the regular spread and acts
regularly on the points of any spread element. We have a similar group which arises
from the construction given in Chapter 2. As discussed in Chapter 2, the Baer

sublines coming from the lifted points of II form a geometric 1-spread of ¥,. This
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1-spread will also admit a cyclic group which fixes each line. The group will act
on the lifted spread by fixing each (n — 1)-space coming from a lifted line, and
permuting the (n — 1)-spaces within a regulus coming from a lifted Baer subspace
in a single orbit of length ¢+ 1. We will call this group x and now develop a matrix

representation for it.

Let
l_ai+2
a;, = ————
’ 1—a?
a — oft!
bizi2
1l -«
d o — o
ol —a?

and let A; be the 2n x 2n matrix defined by

a;

a;

We define B; and D; similarly, and consider the set of 4n x 4n matrices

A; B .
M,= M,,; = :1€40,1,2,...,q}
—B; D,

Now, letting v = ﬁ%;l and multiplying the " matrix, denoted by M, ;, in this set
by 7~% we can easily check that we obtain a matrix, all of whose entries are in F.

Hence, these matrices can be viewed as elements of PGL(4n, q).

Lemma 4.1.1 The set of matrices M, forms a cyclic group of order ¢ + 1 under

matriz multiplication.

Proof: To show that this finite set forms a group, we simply show closure. The
fact that these matrices are non-singular will follow from computations in the next

lemma. By multiplying M, ; and M, ;, we see that we only need to show that
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a;a; — bib; = a;44,
a;bj + b;d; = b,
and
—bib; + did; = d;.
With these identities in hand, we can easily see that first matrix A, ; will be a

generator for the cyclic group. To prove the first identity, note that

aiaj — bzb]

1 — oit? 1 — qi+? o — oitl o — oJ+!
_<1—a2><1—a2 )_< 1—a2>< 1—a? )
1

= m [(1 S ai+j+4) _ (a2 —aft? _git2 ai+j+2)]

= o [+ 0™ = (0 )]

1 (

1—a?

1— 062) (1 - ai+j+2)

= Q.
Next, observe that
az-bj + bld]

B 1 — o2 o — aitl . o — aitl o — a2
S \1-a? 1—a? 1—a? 1—a?

o — aj—i—l - ai+3 4 ai+j+3) + (aj-i-l - 013 _ ai-l—j-l-l + OZH_B”

1 . .
— (1 — a2)2 [CY 4 az+]+3 _ 0[3 - al+]+1]

1
Eron

1— CY2)(CY - ai+j+1)
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o — ai-l—j-i—l

1—a?
= biyj-
Finally,
—b;ib; + d;d,;
_ a— ottt a—ot! N al —a? ol —a?
N 1 — a? 1 — o? 1 — a? 1 — a?
= o 07— 07— 0 (@ 072 )]
—
1 . .
= m [—0[2 — OZH_]—'_Q + OtH_] + &4]
1 2\( it 2
:m(l—a )(@ = a”)
ot — o2
1—a?
= diy;.
Hence, M, ;M, ; = M, ;;; and M, is closed. Again, to show M, is cyclic, we note

that M, , will generate the group. In other words, M, = M, ,. Since M, 411 =
I = M, o, M, forms a cyclic group of order ¢q + 1. [ |

We will abuse notation and write M, for the group generated by the matrices

in the set M,,.

Lemma 4.1.2 The cyclic group M, induces a collineation group k of order q + 1
acting on ¥y which stabilizes a lifted spread S by fizing each lifted (n — 1)-space
and mouving the spread elements within the reguli coming from lifted Baer subspaces

around in a single orbit.

Proof: First we note that the group M, does not contain any scalar multiples of
the identity matrix apart from M, , = I. Hence, no two matrices of M, induce the

same collineation on ¥,. We will now show that the group acts regularly on the
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points of every line [p. More specifically, we show that for any point P, P 4+ o/ P?
is moved to the point P + /"7 P4 by application of the collineation «; induced by
the matrix M, ;. Since every point of ¥y can be written in the form P + o'P? for a
unique point P of II and a unique i, where 0 < i < ¢, this will also show that the
matrices in M, are all non-singular.

Let w + o’w? be the first coordinate of a vector which induces the point
P +a'PY. Then, the (2n+ 1) coordinate of P + a'P? is aw + o' 'w? since P € II.
We compute the first and (2n+ 1) coordinates of a vector which induces the image
point (P + a’P?)% . This result can be extended to all of the remaining coordinates.

Now, the first coordinate of the image (P + a'P9)%i is

a;(w + a'w?) — b;(aw + o' 'w?)

1 — J+2 ) _ A+l
= a2 (w—l—alwq)—a1 a2 (aw + o' tw?)
-« -«
—w 1—a’™? —a(a—al™) i 1—adt? — Lo —a/th)
1—a? 1—a?
1—a? : (1 — a?)

:w<1_a2)—|—alwq< 1 —a?

= w+ o

Also, the (2n + 1)* coordinate of the image is

bi(w + a'w?) + dj(aw + o'~ w)

a—alt! . ol — o?
= ——(w+a'w?) + 5
1l -« 1l -«

_ it Ji_ 52 ) a—altt 4+ gl — g2
:w<a oIt + o Oé))—i—cﬂuﬂ( =( ))

(aw + o' twT)

1— a2 1—a?2

a(l —a?) , a1 — a?)
= (ﬁ) ot (ﬁ
i+j—1

=ow+ « w?.
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Extending this result to the other coordinates, we have
(P + o'P9)% = P+ o/t P1

for any projective point P in II, and the result follows. In other words, x; : P +
a' P+ P+ o't P for all points P of IT, where the exponents on « are read modulo

q+ 1. ]

Corollary 4.1.3 Let P be a mized partition of IT1 = PG(2n — 1,q?) which consists
solely of (n —1)-spaces (i.e. no Baer subspaces), and let S be the (2n — 1)-spread of
Yo 2 PG(4n — 1,q) which arises from the lifting of P. Then the translation plane

7(8S) determined by the spread S is at most n-dimensional over its kernel.

Proof: The easiest proof follows from the correspondence established in Theorem
2.3.5. Since P is an (n—1)-spread in this case, the translation plane 7(P) is at most
n-dimensional over its kernel, which implies that 7(S) is also at most n-dimensional
over its kernel.

We can give another proof which relies only on the group relations. The group
k as described above is an automorphism of any lifted (2n — 1)-spread, regardless
of the mixed partition. Since x fixes any (2n — 1)-space of & which comes from
a lifted (n — 1)-space of P, every element of S is fixed under k. Hence, by the
correspondence given in Section 1.4.1, the multiplicative group of the kernel of 7(S)
contains at least (¢ — 1)(¢ + 1) = ¢®> — 1 elements. As a result, 7(S) cannot be
2n-dimensional over its kernel. Therefore, the largest possible dimension for 7(S) is

n. |

We are now ready to investigate the most important result of this chapter.
That is, we can obtain a great deal of information about the automorphism group
of a lifted spread simply by examining the automorphism group of the associated

mixed partition.
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Theorem 4.1.4 Any linear automorphism of the mized partition P will induce an

automorphism on the lifted spread S by acting on the orbits of the group k.

Proof: Any automorphism of P must send Baer subspaces to Baer subspaces and
(n—1)-spaces to (n — 1)-spaces. Let T' = [t; ;] be any 2n x 2n matrix which induces
an automorphism ¢ of PG(2n — 1,¢%). Then, referring to the embedding A from
Chapter 2, the 4n x 4n matrix

T 0
0 T

T =

will induce a collineation on IT in ¥ which acts on the embedded mixed partition in
the same way that ¢ acts on the mixed partition of PG(2n — 1, ¢?).

We abuse notation a bit and let ¢ be this automorphism acting on II, the
(2n — 1)-space of ¥ disjoint from Xy. Each point of IT corresponds to a unique Baer
subline in g, that is, a k-orbit in X;. We look for a collineation ® of ¥y which
acts on these lines the same way that ¢ acts on the points of II. In other words, if
¢ moves the (n — 1)-space L; to the (n — 1)-space Ly in II, then the corresponding
automorphism of 33, ®, would move the spread element coming from the lifting
of L; to the spread element coming from the lifting of Ly. Similarly, if ¢ moves
the Baer subspace B; to another Baer subspace B>, then @ would move the entire
regulus in ¥, determined by B; to the entire regulus determined by Bs.

Define the 4n x 4n matrix My as follows:
My = (m; ;)

where
mi; € F for1 <i,j<dn
Mij + OMitonj = i for1 <i,7 <2n

1 . . .
M jron + Miyonjom = iy for 1<, 7 < 2n.
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We can describe Myp in the following way. Write T' =T + o1, = éTg + T where T;
has all of its entries in F' for ¢ = 1,2,3,4. Then

Ty T
T, T,

Mp =

We now define ® to be the collineation acting on ¥ induced by the matrix
M. Notice that ® leaves ¥ invariant. Using the notation from Chapter 2, we let
Ip be the line determined by P and P9, and we let Ip = [pNY,. We now prove that
® acts as desired. Namely, we show that the following diagram describes the action

of ¢ and P:

p 2, pe

llift llz’ft

[p L) E{;
Let (v,av) be any vector which induces a point P in II. Then the points on the

Baer subline determined by P in ¥, are
P+a'Plfor0<i<yg.

The image of the point induced by (v, av) under ¢ is induced by the vector (T'v,aTV),
which lifts to the Baer subline containing the points induced by vectors (T'v +
a'TIv9 oTv + ot 1T9v9), for 0 < i < g. Moreover, the original point P induced
by (v,av) lifts to the Baer subline induced by vectors (v + a've, av + a'~'v?) for

0 < i < ¢q. Here we are using the fact that a? = a~!. But then, for any i,
(V +a'vi av + aiilvq) My
= ((v+ V)T + (av + V)T, (v + o'V T3 + (av + o/ 7'V TY)
— <V(T1 +aTy) + a've <T1 + én) V(T3 + aTy) + a'vi <T3 + én))
= (v(T1 + aTy) + o'vI(T) + oT3)?, av (éTg + T4> + o'yt <éT3 + T4> q)
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= (VT + o'vIT? avT + ai_lvqTq)

Hence, the collineation ® moves the points on the Baer subline [p to the points on
the Baer subline [ps. In other words, I3 = [ps for each point P in II. Moreover,
from the work above, we see that points at the i'" level stay at the i'" level under
®; that is, if P? = Q for P € II, then (P + o'P%)® = (Q + o'Q?)?® for 0 < i < q.

Assume now that ¢ leaves invariant the mixed partition P of I, and let ® be
the induced collineation of X as above. Further, let S be any (2n — 1)-space of the
lifted spread S in Xg. If S comes from an (n — 1)-space L of P, then S is the union
of Baer sublines [p for all P on L. The image of these Baer sublines under ® will be
the Baer sublines [ps, whose union is the (2n — 1)-space coming from the lifting of
the (n—1)-space L?, which is another (n—1)-space of the mixed partition P. Hence,
the image of S under ® is another element of S. Now, let S be a (2n — 1)-space in
a regulus coming from a lifted Baer subspace B of P. Then the ruling lines of the
regulus are the lines [p for all points P in B, and S meets each of these ruling lines
in exactly one point. Now, the image under ® of these Baer sublines will be the
Baer sublines [ps, which form the set of transversal lines for another regulus, and
the image of S, S?®, will meet each of these lines in exactly one point. But the only
(2n — 1)-spaces meeting each transversal line of a regulus in exactly one point are
the elements of the regulus. Hence, S gets mapped under ® to a (2n — 1)-space in
the regulus coming from the lifted Baer subspace B? of P. This (2n — 1)-space is
also a member of S.

Therefore, for any automorphism ¢ of the mixed partition of II, we can find
a lifted automorphism ® whose action on the geometric 1-spread of ¥, is consistent
with the action of ¢ on the points of II. Since (n — 1)-spaces move to (n — 1)-spaces
and Baer subspaces move to Baer subspaces under ¢, this automorphism of the
geometric 1-spread will preserve S as well, hence giving us an automorphism of §.
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We have shown that any linear automorphism of a mixed partition will nec-
essarily induce an automorphism of the lifted spread. We can prove more about this
relationship when the mixed partition is “proper”. By proper, we mean that the

mixed partition has at least one Baer subspace.

Lemma 4.1.5 Let ¢ be an automorphism of a proper mixed partition P of 11 and
let @ be the lifted automorphism of the associated spread S of ¥y. Moreover, let S
be a (2n — 1)-space in a requlus which comes from the lifting of a Baer subspace of

P. Then, for any k € k, S** = Sk?,

Proof: Let B be any Baer subspace of P. Then, as discussed in Chapter 2, the
elements of S which come from the lifting of B can be written as B; = B + a'B? as
1 varies between 0 and ¢. Let S = B; for some fixed . From the proof of Theorem

4.1.4, it is clear that
B? = (B+a'B")" = B? + a/(B%)" = (B?),.

Now, let k be any arbitrary element of k. From Lemma 4.1.2, we know that
k maps B; = B+a'B? to B4+a’/BY = B; for some j. In fact, we know that P+a’P?

gets mapped to P + o/ P? for all points P of II. Hence,

Ok _ Nk _ no
B _(B)i_Bj

)

and

Bf* = (B;)* = BY,

)

which proves the lemma. [ |

With this lemma in hand, we can show that the group x commutes with any
other lifted linear automorphism group, say G, of a lifted spread, as long as the
associated mixed partition is proper. This will allow us to form the group x x G as

a subgroup of Aut(S).
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Theorem 4.1.6 Let G be a linear automorphism group of a proper mized partition
P of 1 =2 PG (2n—1, ¢%) which lifts to the automorphism group G acting on the lifted
spread S of Yo = PG(4n —1,q). Then G centralizes r in PGL(4n,q). Moreover, k

and G intersect in only the identity collineation.

Proof: Let P be a point of the lifted spread S which lies in a (2n — 1)-space S of
a regulus which comes from the lifting of a Baer subspace of P. Let [ be the line of
the geometric 1-spread associated with the lifting of P which contains the point P.
Then, [ is fixed under the group « (in fact, [ is a k-orbit). Hence, letting g be any
arbitrary element of the group G, P € SNl implies P*¥ € S¥N{, and so P* € SkIN}9.
On the other hand, P € SN[ implies PY € S9N 19, and so P%* € S9% N 9. From
Lemma 4.1.5, we conclude that P*¥ = P9 for every point P in S. Since S was an
arbitrary (2n — 1)-space which comes from the lifting of a Baer subspace of P, we
know that there are at least ¢ + 1 such spaces S. Since ¢+ 1 > 2, and any 2 disjoint
(2n — 1)-spaces of Xy will span all of ¥4, we conclude that the collineation kg has
the same action as gk on all of the points of ¥3. Here we use the fact that ¢ and &
are both linear. Hence, kg = gk for any k € k and g € G.

The only automorphism of the group G which fixes each x orbit is the identity.
This follows from the way the lifting of an automorphism of P is defined in Theorem
4.1.4; that is, the group G acts on the x orbits in the same way that the group G
acts on the points of II. Hence, x and G intersect in only the identity collineation.

Our last theorem on the relationship between collineation groups of a mixed
partition P and its associated lifted spread S will help in future kernel arguments.
We have already shown in Theorem 4.1.4 that every collineation of P lifts to a
collineation of §. We now show that some special collineations of & must come from

the lifting of a collineation of P.
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Theorem 4.1.7 Let P be a proper mized partition of 11 = PG(2n — 1,4¢*) and
let S be its associated lifted spread of ¥y = PG(4n — 1,q). Suppose that 1y is a
linear collineation of ¥y leaving each element of S invariant. Then there exists
a linear collineation of 11 leaving every element of P invariant which lifts to the

automorphism .

Proof: Using the same notation as in Chapter 2, we consider a Baer subspace B
of the mixed partition of I1. Let Py, P, ..., Py, be 2n+ 1 points in general position
in By. Then, from Lemma 2.1.6, the 2n + 1 lines [p, have the property that any
2n of them will generate the whole space ¥ = PG(4n — 1,¢?). From this, it follows
from Lemma 2.1.7 that if Q) is any point of [p,, then there is exactly one (2n — 1)-
space of ¥ through (), say Ilg,, which meets each of the other lines in exactly one
point each. Hence, we can build a regulus R from these transversal lines and the
associated (2n — 1)-spaces through them. The transversal lines of this regulus will
be all of the lines [p as P varies over II, and II will be one of the elements of the
regulus.

We now extend 1y to an automorphism v of the whole space ¥ and try to
determine the action which 1 induces on II. Note that this extension is not unique.
We simply let ¢/ be any extension of 1)5. Contained in the above regulus R is the
sub-regulus Ry of Xy which comes from the lifting of By. Since each (2n — 1)-space
in § is fixed under ¢ by the hypothesis of the theorem, the images under ¢ of the
2n + 1 lines [p, must contain sublines which are ruling lines of Ry. In other words,
if a regulus R is fixed under some collineation ¢, then the transversal lines of R
are fixed under ¢ as a set of lines. But, as in Lemma 2.1.7, the (2n — 1)-spaces of
R are uniquely determined by these lines. We conclude that R must also be fixed
under 1. It is well known (see [17]) that the linear automorphism group for such
a regulus is isomorphic to PGL(2,¢*) x PGL(2n,¢*). Now, q + 1 of the elements

of R, say Ry, ..., R4+1, meet Xy in Baer subspaces; these are the elements of Ry in
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Y. Since the elements of Ry are fixed, and the whole regulus R is fixed, each of
Ry, ..., R,11 must also be fixed. Hence, ¢ 4+ 1 of the elements of R are fixed under
1. Since ¢ > 2, we know that at least 3 of the elements of R are fixed under ¢. It
follows that all of the elements of R are fixed under 1. In particular, this means
that IT is fixed under . More importantly, we note that v acts as a collineation on
the set of lines [p for P in IT and, moreover, if P¥ = Q, then [ = lg.

Therefore, ¢/ induces an automorphism of ¥ which fixes II. So now we con-
centrate on the action which v induces on the points of II. Since v restricted to X
fixes all of the elements of the spread S, ¢ must fix each (n—1)-space and each Baer
subspace of the mixed partition of II. Since the Baer sublines [p, for P € II, form
the orbits of the group x, we see that ¢) acts on the s orbits in the same fashion as
a lifted automorphism of the mixed partition P. Hence, any collineation of & which
fixes all of the spread elements must come from a lifted automorphism of P fixing

all of the elements of P. [ ]

We note that the result above is only true about linear automorphisms. How-
ever, from the discussion on the kernel given in Section 1.4.1, we know that any
automorphism which fixes each element of a spread must be linear.

The last general group theory result will also be useful in the computation
of the kernel of some of the planes described in subsequent chapters. For this, we
restrict to projective 3-space. It is well known (see [18]) that a 1-regulus and one
additional skew line of PG(3,¢*) uniquely determine a regular spread. In addi-
tion, PGL(4,q*) is 3-transitive on lines. From these two results, we can prove the

following:

Theorem 4.1.8 Let L be a set of four distinct lines of a reqular spread S of
PG (3,q?), which are not all contained in the same requlus, and suppose that all
four lines are fized line-wise by a linear collineation ¢. Then ¢ is an element of the

Bruck Kernel of the regular spread S.
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Proof: Since PGL(4,q?) is 3-transitive on lines, we assume £ contains the lines
leo = {(0,0,1,0),(0,0,0,1))

ly =((1,0,0,0),(0,1,0,0))

and

I, = ((1,0,0,1), (0,1,1,0)).

Let R be the unique regulus determined by these three lines. It is not hard to check
that the quadratic form associated with this regulus is given by xgrs — z123 = 0
when we write vectors as (zy, x1, T2, 3). Hence, the lines of this regulus, apart from
l, are given by

I, = ((1,0,0,k), (0,1, k,0))

for £k € K. Also, by the conditions of the theorem, the fourth line of L, say m, is
not in R.

Let T = [t; j| be any matrix which induces ¢. Then, since ly, is fixed, ¢, ; =0
for 7 = 3,4 and j = 1,2. Additionally, since [, is fixed, ¢;; = 0 for 7 = 1,2 and
j = 3,4. Finally, since [; is fixed, we get that T has the form

for some choice of a, b, ¢, d with ad — bc # 0. From the form of T', it should be clear
that ¢ fixes all of the lines of R. Since S is regular, R C S and hence the line m of
S must be skew to each line of R. That is, the ¢ 4+ 1 points of m are all distinct
from the (¢? 4+ 1) points covered by R.
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Let G be the group of all collineations induced by matrices of the above form.
Now, let v = (v, v1, v2,v3) be any vector which induces a projective point P not on

any line of R, and suppose that ¢ fixes the point P. Then
vT = (avg + cvy, bvg + dvy, dvy + bus, cvg + avs) = kv
for some scalar k € GF(q). Hence,
avy + cvy = kvg

and

cvy + avsy = kus.

This system has a unique solution for a/k and ¢/k if and only if vyvy — vivg # 0.
This is certainly the case since, if not, then the vector v would satisfy the quadratic
form, and hence the point P would be on one of the lines of R. So, the unique
solution must be the obvious solution: a/k = 1 and ¢/k = 0. Applying this result
to the similar equations involving b and d, we get b/k = 0 and d/k = 1. Thus, we
have shown that the G-stabilizer of any one point not on a line of R is simply the
identity. The number of such points is ¢® + ¢* + ¢* + 1 — (¢* + 1)? = ¢° — ¢?, and

the number of such matrices is

(" — D" —¢*) _ £
¢>—1 '

Since the group G has the same size as the number of points on which it acts, and
any one point stabilizer is the identity, the group of all such matrices acts regularly
on the points not covered by the lines of the regulus R. Therefore, there are only
q?> +1 elements of G’ which can fix the line m. These are exactly the elements of the

associated Bruck Kernel. [ ]

This previous result will prove useful for the following reason. Suppose we

have a mixed partition which contains four skew lines from a regular spread as
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described in the hypothesis of the theorem. Then, the only automorphism which
could possibly fix each member of the mixed partition is an element of the associated
Bruck Kernel. If we can rule out the nonidentity elements of the Bruck Kernel as
possible automorphisms, we would show that the only automorphism fixing each
member of the mixed partition is the identity. From Theorem 4.1.7, this would
imply that the only automorphism fixing each member of the lifted spread is the
identity. Hence, we would have a spread which produces a translation plane of order

¢* which is 4-dimensional over its kernel.

4.2 Regular Spreads
In this final section of the chapter, we will prove a classification result about
regular spreads. We show that the only proper mixed partition of II which lifts to

a regular spread is the classical mixed partition discussed in Chapter 3.

Theorem 4.2.1 Let P be a proper mized partition of 1 = PG(2n—1,¢*) that gives
rise to a reqular spread S of g =2 PG (4n — 1,q) via the geometric lifting of Chapter
2. Then P 1is projectively equivalent to the classical mixed partition Py described in

Section 3.2.

Proof: Suppose that the partition P is proper. Then, by Theorem 4.1.7, we know
that any automorphism which fixes each member of the spread S is a lifted auto-
morphism of the mixed partition P. Moreover, since S is regular, we know that the
group ® fixing each element of S is a cyclic group of order ¢>"~! + - - -+ ¢+ 1 which
acts regularly on the points of any spread element. Applying Theorem 4.1.7, we
know that there is a collineation group ¢ of II which lifts to ®, and this group ¢ is
also a cyclic group of order ¢>*~' +---+q+1. Let P+ o'P?, for some i, be a point
of ¥y which lies in a (2n — 1)-space which comes from the lifting of a Baer subspace
in II. From the proof of Theorem 4.1.4, we know that ® acts on the point P + o P?

in the same way that ¢ acts on the point P. Since (P + o'P%)® is a (2n — 1)-space
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of ¥y, we know that P? is a Baer subspace B’ of II. Since ¢ acts regularly on the
points of B’, ¢ acts as a Singer cycle for B’. We now consider the other point orbits
of ¢ on II.

From Lemma 2.12 of [21] we know that any two Baer subspaces of II are
projectively equivalent. In particular, there exists a linear collineation p such that
B'? = By where By is the Baer subspace consisting of all the points induced by
vectors all of whose homogeneous coordinates are in the subfield GF(g). Now the
group p ‘¢p acts as a Singer cycle for By. From Theorem 3.2.5 and its preceding
lemmas, we know that the orbits of the group p~'¢p form the classical mixed parti-
tion Py. It follows that P? = Py and so P is projectively equivalent to the classical

mixed partition Py. [ |

After the discussion of the next chapter, we will see that there are only two
types of mixed partitions which lift to regular spreads. The first, of course, is
Po. The other type will arise when we look at lifting non-proper mixed partitions,

namely spreads.
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Chapter 5

EQUIVALENT SPREADS

As seen in Theorem 1.4.8, it is possible for two distinct spreads of PG(2n —
1,q) to give rise to isomorphic translation planes. It is also possible for two spreads
of projective spaces of distinct dimensions to give rise to isomorphic translation
planes. In this chapter we will prove a relationship between (n — 1)-spreads of
PG(2n—1,q") and (nr — 1)-spreads of PG(2nr — 1, ¢) which give rise to isomorphic
translation planes via the Bose/Andre construction. We will start by following the

construction given in Chapter 2, but with ¢ generalized to ¢" for any r > 2.

5.1 Lifting a Spread

Let K be the finite field GF(¢") with primitive element 3, and let F' be its
subfield GF(q). Also, as before, we let a = 397'. Let I' = PG(2n — 1,4¢") with
underlying vector space W over K, and let ¥ = PG(2nr — 1,¢") with underlying
vector space V over K. Also, let X 22 PG(2nr — 1,¢) be an r'-root sub-(2nr — 1)-
space of ¥ in standard position. That is, ¥y consists of those points of X induced by
vectors in V' all of whose components lie in the subfield F' of K. For the remainder

h_root space. Also,

of this section we will use the term “subgeometry” to mean an r®
note that our notation is consistent with that of Chapter 2. In Chapter 2 we were
simply focusing on the special case when r = 2.

Just as in Chapter 2, we have a semi-linear map which arises from the Frobe-

nius automorphism of the field K. We call this map conjugation and the images of
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a point under this map are called conjugates. This collineation has order r rather

than 2, but still maintains many of the properties proven earlier.

Lemma 5.1.1 The points of ¥ which are fixed under conjugation are precisely the

points of X.

Proof: Clearly the points of ¥y are fixed under conjugation. We show that no other
point can be fixed. Let P be a point of ¥\, and let v = (v;) be some non-zero
vector which induces the point P. If P? = P, then v? ~ v and there is a k € K
such that v? = kv. Thus,

v© = (v0)! = (kv) = kv = kv

and consequently,

v — <Vq2>q _ (kl]+lv)q _ Ry — Rt tatly
Continuing in this fashion, we obtain
qr _ qu—l+qr—2+m+q2+q+lv.
This means that the field element £ must be some power of a.. Let k = o' for some
t. Then v = alv; = B4 Dy, for all i. But this means that v; = f;3*, where f; € F
and f; = 0 precisely when v; = 0. So, (v;) = (8'f;) = B(fi) ~ (fi). Hence, the

projective point P is induced by a vector which has all of its coordinates in F', and

so lies in the subgeometry . [ |

We will again need a representation for the space IT 2 PG(2n—1,¢") which is
disjoint from >y. We define an embedding similar to the one in Chapter 2. Consider

the K-linear transformation © : W — V given by



where V = @,_, W. One can easily check that ker(©) = {0} and hence © induces
an embedding of I' into . By a slight abuse of notation, we also let © denote the
induced embedding. For the construction we are leading up to, we need I'°N¥, = 0.
Using the same argument as before, this is clearly the case. Let II be the image of
['in .

We are now in a position to generalize the construction of the geometric
spread. In the case when r = 2, the Frobenius map is an order 2 collineation, so we
only have one conjugate of a point. However, when r > 2, we have more than just
one conjugate. We use all of the conjugates to construct a geometric spread of .

We start with some theory about the space II.

Lemma 5.1.2 The (2n—1)-spaces 11,117, 119, ..., TI9 " together generate the entire

(2nr — 1)-space X.

Proof: Consider the following set of 2n vectors which induce points of [I. Here, we

use “;” to separate 2n-tuples:

(1,0,0,...,0;,0,0,...,0;02,0,0,...,0;...;0"1,0,0,...0)
(0,1,0,...,0:0,,0,...,0;0,02,0,...,0;...;0,a"",0,...0)
(0,0,1,...,0;0,0,c,...,0;0,0,a?% ...,0;...;0,0,a"%,...0)

(0,0,0,...,1;0,0,0,...,0;0,0,0,...,a%...;0,0,0,...a"").

In other words, letting e; be the vector with 1 in the 7*" position and 0 everywhere
else, we consider the points (v,av,a?v,...,a" 1v) as v varies over the vectors e;
for i € {1,2,...,2n}. These 2n vectors are certainly linearly independent. We
now consider the set of 2nr vectors consisting of all of the vectors above together
with all of the conjugates of all of these vectors. The claim is that all of these

vectors together form a linearly independent set. To show this, we take a linear

combination of all 2nr vectors and set it equal to zero. Let k; ; be the coefficient in

78



front of the j™ conjugate of the vector coming from e;. By looking at coordinates
i,2n + i, 4n +14,...,2n(r — 1) + 4, for 1 < i < 2n, we get the following system of

equations:

kio+kii+kio+---+ki, 1=0
ki,r—l =0

r—1

O‘/kuo + Oéqk'i,l + aq2ki,2 4+ e+ af
CYZk'i,O + CYZQk'i,l + &2(12]%,2 + -+ Oé2qr_lk'i,r_1 =0

Oér_lki70 + a(’"_l)qkm + a(r_l)qzkig + -+ a(r_l)qrilki,rfl = 0.

This system of linear equations has a unique solution if the determinant of the

coefficient matrix is non-zero. This matrix is given by

1 1 1 1
2 r—1
2 r—1

a? a4 a4 a4

a(r_l)qT71

Hence, we have a Vandermonde matrix whose second row consists of the roots of

the minimal polynomial for ae. The determinant of this matrix (see [14]) is given by

H(ay - aw),

<y

where 0 < 2 < y < ¢q. The only power of « equal to 1 in this specified range is a?,
which immediately gives us that a® # oY when = # y. Hence, this determinant is
non-zero and the system has a unique solution. Therefore k; ; =0 for 0 < j <r—1,
implying that all of the £; ;’s are 0, and the vectors are linearly independent.

Since these vectors form a linearly independent set, we immediately see that

the projective spaces II,I19,..., e generate the entire space Y. [ |
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Lemma 5.1.3 For any point P € 11, the points P, pa, pe .. P generate an

(r — 1)-space of ¥ which meets the subgeometry g in a subgeometry of dimension
(r—1).

Proof: The fact that the r points generate an (r — 1)-space follows immediately
from Lemma 5.1.2. We only need to show that the space meets ¥; in a subgeometry
of dimension (r — 1).

Let P be any point of I and let v be any vector which induces P. Consider
the points P; induced by the vectors \;(v) defined as follows:

r—1

Xi(V) = v+ afv? 4 oty e I @ Ha D)y L i T g e ) g

for 0 <i<q'+---4+¢*+q+1. By applying the Frobenius map and multiplying
by o, we see that a’\;(v)? = )\;(v) and so P! = P; for each i. Here we use the
fact that the order of o is ¢" ' + -+ + ¢*> + ¢ + 1. Therefore, we have at least
¢ '+ -+ ¢>+ g+ 1 points in the space spanned by P and all of its conjugates

that also lie in the space ;. Since an (r — 1)-space of ¥ could not possibly meet

Yy in any more points, we have the result. u

For convenience, we let gp be the intersection of the space spanned by

P, Pi,... P

r—1

with ¥y. Note that in Chapter 2 we let [p denote this intersection.

Corollary 5.1.4 Let P and @) be two distinct points of II. Then gp and go do not

intersect.

Proof: By Lemma 5.1.2, the points P, (), and all of their conjugates form a linearly
independent set. Hence, the space spanned by the conjugates of P and the space

spanned by the conjugates of () cannot meet. [ |

We can now generate a geometric (r — 1)-spread of ¥, the same way that

we did in the r = 2 case from Chapter 2. For each point P of II, we look at the
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subgeometry of dimension (r — 1), say gp, generated by P and all of its conjugates.

We let Gy denote the set of all such spaces.

Theorem 5.1.5 The set of spaces Gy forms a geometric (r — 1)-spread of ¥y =
PG(2nr —1,q).

Proof: The fact that the spaces gp form a spread follows from a counting argument
and by Lemma 5.1.3 and Corollary 5.1.4. We only need to show that G is geometric.

Let gp and g¢ be two (r —1)-spaces of Gy and let T be the projective space of
Yo spanned by gp and gq. In other words, 7 is the intersection of the GF'(¢")-span
of gp and gg with ;. Let R be any point on the line determined by P and () in
IT and consider the space gr (see Figure 5.1). We claim that gg is contained in 7.
To show this, let U be any point of gg. Letting u be any vector which induces the
point R, from the proof of Lemma 5.1.3 we know that U is induced by a vector of

the form
(1) = u + oFu? + YA LRI L s S DI A

for some k with 0 < k < ¢"~' +--- + ¢. The vector u can be written as v + aw,
where v and w are any two vectors which induce the points P and @, respectively,
and a € GF(¢") U {oo}. We now find two points in gp and gg which determine a
line containing the point U.

We know that the points of gp are induced by vectors of the form
Ai(v) = v+ aivl 4 o/ 0HyE g i@ et g
as 7 varies, and the points of gg are induced by vectors of the form
r—1

Aj(w) =w+/wi+ @)W 4oy (@ T e )

as j varies. We let 4 = k and, since a? ! must be a power of o, we choose j so that

ol = oFa7!. Substituting for 7 and j, we consider the line [ of 3, determined by
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Figure 5.1: Creating the geometric spread

the points induced by vectors \;(v) and Aj(w). That is, [ is the intersection of the
line L determined by the points induced by vectors \;(v) and \j(w) with the space
Y. We claim that this subline [ contains the point U. One can easily check that

Ai(V) +adj(w) = A (v + aw) = Mg (u).

Hence, the line [ contains the point U, and since U was arbitrary, all of the points
of gr are in the space T.

There are exactly ¢" + 1 possible choices for a point R (including P and Q).
Hence, the space T, which has dimension 2r — 1, contains ¢" + 1 disjoint spaces from

the set Gy. Therefore, 7 has an induced spread from Gy, and G, is geometric. MW

Theorem 5.1.6 Let S, be an (n — 1)-spread of 11 2 PG(2n —1,¢"). Then S,
can be lifted to an (nr — 1)-spread S,,—1 of ¥9 = PG(2nr —1,q).
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Figure 5.2: Lifting a spread

Proof: Let [; be any spread element of S,,_; and consider the space spanned by [;
and all of its conjugates. By Lemma 5.1.2 these r copies of PG(n—1,¢") generate an
(nr —1)-space S; of ¥ and, by Lemma 5.1.3 and Corollary 5.1.4, this (nr — 1)-space
meets Yy in an isomorphic copy of PG(nr — 1, q).

We can now vary [; over all the elements of S,,_;. Each of the lifted spread
elements consists of the union of spaces gp as P varies over all points of ;. Since
none of the spaces gp intersect, none of the spaces S; intersect. There are exactly
q"" + 1 spread elements of S,,_y, and hence we obtain ¢"" + 1 disjoint copies of
PG(nr —1,q) in 3y. That is, we have constructed a spread of 3, (see Figure 5.2).
|
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5.2 Equivalence of Spreads

We are now ready to prove the main result of this chapter. We will show that
if one applies the construction process of Section 5.1 to a spread in the space II,
the lifted spread is equivalent to the original spread. By equivalent, we mean that
the two spreads generate isomorphic translation planes via the Bose/Andre model
described in Section 1.4.1.

Let S,—1 be an (n — 1)-spread of II = PG(2n — 1,¢"), and let S,,—1 be the
lifted spread of ¥y = PG(2nr—1, ¢). In order to show the relationship between these
spreads, we will need to construct the associated translation planes and exhibit an
isomorphism between them. For this we refer to the Bose/Andre model discussed
in Section 1.4.1.

Embed IT in IT* =2 PG(2n,q") as the “hyperplane at infinity” so that IT is
the set of all points in IT* which are induced by vectors whose first coordinate is 0.
Similarly, let X5 = PG (2nr, ¢) and (using the same notation as in Chapter 2) embed
Yo in X as the “hyperplane at infinity”, where again ¥, consists of those points
induced by vectors whose first coordinate is 0.

Any spread element of IT is an (n — 1)-space and therefore is generated by
n points, say S; for 0 < i < n — 1. For simplicity, we will say S; is induced by the
vector (0,s;) where s; represents a 2n-tuple over GF(¢"). Also, in order to simplify
the representation of the image of spread elements, we recall the notation from the

previous section. Let
(V) = v +alvi + Qe oy i@ Tt )

for any vector v and for any 7. Now letting v be any linear combination of the s;’s,
the map
L: Sn—l — Sm"—l
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defined on the spread elements of S, is given by the lifting process described in

Lemma 5.1.3. In vector form,
(07 V) = {(07 )‘i(v)a )‘i(av)a teey )\i(arilv)) : 0 S v S qril + - q2 + Q} .

Let 7(S, 1) be the affine translation plane of order ¢"" which arises from
the spread S,_1, and let 7(S,,_1) be the affine translation plane of the same order

which arises from the spread S,,_;. We define a map

¢ :m(Sp1) = 7(Snro1)

as follows: If P € 7(S,,_1) is represented by the vector (1,v) (where v is a 2n-tuple),

then P? is the affine point of 7(S,,, 1) represented by the vector
(L, Tr(v), Tr(av), Tr(av?),..., Tr(av'™h).

Here, we write Tr(x) for the trace function from the field K to the field F', and
Tr(v) =Tr((v;)) = (Tr(v1),Tr(va),...,Tr(vey,)). Recall that every affine point of

7(S,-1) and 7(S,,—1) is represented by a vector whose first coordinate is 1.

Lemma 5.2.1 The map ¢ defined above sets up a bijection between the points of

7T(Sp—1) and 7(Spr—1).

Proof: Since the domain and codomain of ¢ have the same cardinality, we prove
the lemma by showing that the map is injective. Let P, and P, be two points of

7(Sn_1), represented by vectors (1,u) and (1,v) respectively, and suppose
(1,Tr(u), Tr(ou),...,Tr(a" ') = (1,Tr(v), Tr(av),...., Tr(a""'v)) .
Then, Tr(u) = Tr(v), Tr(au) = Tr(av) and so on. Hence, if we let w =u — v,

Tr(w) =Tr(aw) =Tr(a*w) =--- = Tr(a"'w) = 0.
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So we have a system of equations in the conjugates of w, namely

r—1

WA w w4t wl =0

r—lwqr—l

=0
T—IZO

2 2
aw + af'w?! +a? wi + .-+ af

2 2 r—1

r—1

arflw + a(rfl)qwq + 05(7"71)‘12‘;‘,‘12 + e+ a(rfl)qr_lwq — 0,

and we can apply the same technique as in Lemma 5.1.2. Thinking of w as the
variable, this system of r equations in r variables (the conjugates of w) has a unique
solution since the coefficient matrix is a Vandermonde matrix with determinant not

equal to zero. Hence, the unique solution must be wi' =0 for all t, and so u = v.

Therefore, P, = P, and the map is a bijection. [ |

We will now define the image of a line under the map ¢, show that this
definition is well-defined, and prove that the image of a line is a line. The fact that
¢ preserves incidence will follow from the definitions of the images of points and
lines. This will prove that ¢ is the desired isomorphism.

If [ is the line of 7(S,—1) induced by non-zero vectors in the K-linear span
of (0,s1), (0,82),...,(0,s,), and (1, u), then we will define its image [ to be the set

of all points induced by all non-zero vectors in the F-linear span of

Aiy ( 1))
A

(07 )\il(sl)7)\il(a ) arils
, Ay (@ 's2))

S1
(0, Aiy(82), Aiy (a82)

g e ey
PICEEE

and

(1, Tr(u), Tr(cu),--- ,Tr(a’"_lu))
where, for every j, i; varies between 1 and ¢" '+ --- 4+ ¢+ 1.
Lemma 5.2.2 The action of ¢ on lines of m(S,_1) is well-defined.
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Proof: Suppose [ is a line of 7(S,_1). Then [ is represented by an n-space of IT*
that meets II in an element of the spread S,,_;. We suppose this spread element is
generated by the points induced by vectors in the K-linear span of (0,s;),..., (0,s,).
So, the line [ is induced by vectors in the span of (0,s1),...,(0,s,), and (1, u), where
(1,u) is a vector which induces some affine point. To show that ¢ is well-defined
on lines, we need to show that the choice of u is arbitrary in the following sense:
if the line induced by ((0,s1),...,(0,s,), (1,u;)) is the same as the line induced by
((0,81),...,(0,85), (1,u3)), then the images of these lines under ¢ are the same.
Suppose that we have two affine points induced by vectors (1,u;) and (1, up)
that lie on the same line which, in the Bose/André model, meets the spread element

determined by ((0,s1), ..., (0,s,)). Then

((0,81),...,(0,8,), (1,uy)) = ((0,81),...,(0,8,), (1,us))
and there exists ki, ks, ..., k, € K such that
(1,uy) + k1(0,81) + ko(0,89) + - - - + £k, (0, 8,) = (1, u2)
which implies that
uy + kisy + koso + -+ - + kS, = us.

If any of the k;’s is 0, then the argument will simplify. So, for generality, we assume
that k; # 0 for all 7. Hence, we can find m; so that kffl = " for each 7. The image
of the line induced by vectors in ((0,s1),...,(0,s,), (1,uy)) certainly contains the

points induced by the vectors

(0, )\m1 (Sl), >\m1 (&Sl), ceey
(0, Ay (S2), Ay (@0S2), . oy

(0, My, (S0)5 A, (@S0) 5 ooy A, (@7 1sy))
and

(1, Tr(wm), Tr(aw), -+, Tr(a’ "u)).
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The first n vectors can be scalar multiplied by k;, respectively, to obtain

(0,Tr(kis1), Tr(akisy), ..., Tr(a” kisi))
(0, Tr(kgs2), Tr(akssy), .., Tr(a” kysy))

(0, Tr(kpsn), Tr(akysy), ..., Tr(a" Yk,;sy,)) .

Adding these vectors to the last vector
(1L, Tr(w), Tr(aw),...,Tr(e" "))
and recalling that the trace function is additive, we obtain

(1, Tr(uy + ks + -+ knsy), Tr (a(uy + kisy + - - -+ knSn))
o Tr (@ Hay + kst + -+ Egsy)))

= (1,Tr(u), Tr(auy),..., Tr(a"'uy)) .

Hence, the image of the line induced by (0,s;),...,(0,s,) and (1,u;) contains
the image of the point induced by vector (1,u). Reversing the roles of u; and
uy in this argument, we show that the image of the line induced by vectors in
((0,81),...,(0,8,),(1,uy)) is the same as the image of the line induced by vectors

in ((0,81),...,(0,s,), (1,uz)). Hence, the map ¢ is well-defined on lines. |

Lemma 5.2.3 The image of a line under the map ¢ defined above is a line of

71-(Snr—l) .

Proof: To show that the image of a line [ of 7(S,,—1) is a line of 7(S,,—1), we need to
show that [? is a set of points induced by all non-zero vectors in an nr-dimensional
subspace of X§ which meets ¥y in an element of its (nr — 1)-spread S,,—1. Let
[ be the set of points induced by vectors in ((0,s;),...,(0,s,),(1,u)). To prove

the lemma, we need to take any K-linear combination of these vectors (with the
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coefficient for (1,u) being non-zero) and show that the image of the point induced

by this vector is induced by some F-linear combination of the vectors

(0, )\il (51), )\il (CYS1),
(0, >‘i2 (52), )\i2 (052),

Ay (@ 'sy))
) )‘i2 (arilsQ))

(0, Xi, (Sn), Ai, (a8n), -, Ai, (@7 1sy))

and

(1,Tr(u), Tr(cu),..., Tr(a" 'u))
for some i;’s in {0, 1,...,¢}. But we have already shown that this is the case in the
proof of Lemma 5.2.2. [ |

Theorem 5.2.4 The affine planes (S, 1) and 7(S,r—1) are isomorphic.

Proof: To prove the theorem, we show that ¢ is a bijection on points and lines, and
that ¢ preserves incidence. The fact that ¢ is a bijection on the points is given by
Lemma 5.2.1, and the bijection on the lines follows from Lemma 5.2.1 and Lemma
5.2.3. The incidence preserving property follows from the definition of the map.

Hence 7(S,, 1) and 7(S,,_1) are isomorphic. [ |

5.3 Constructing Equivalent Spreads

The most useful application of the previous section comes from the geometric
(r —1)-spread of Theorem 5.1.5. This geometric spread will be the key to construct-
ing equivalent spreads for translation planes of order ¢ which are not m-dimensional
over their kernel. We let Gy be the geometric spread of ¥, which arises from the
lifting of the points in the projective space II as defined before Lemma 5.1.2.

Let S,,—1 be an (m — 1)-spread of PG(2m — 1,q), and suppose that S,,_1

generates a translation plane 7(S,, 1) which is not m-dimensional over its kernel.
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Let n be the dimension of 7(S,,—1). Then m can be written as nr for some r > 1,
and we know that there is some (n — 1)-spread S,,—1 of PG(2n — 1,¢") generating
a plane 7(S,,_1) which is isomorphic to 7(S,,—-1). We now have a way to construct

Sn_1.

Lemma 5.3.1 The space PG(2m — 1,q) as described above has a unique geometric
(r — 1)-spread G with the property that every element of G is contained in some

element of S,,_1.

Proof: Embed PG(2m —1,q) in ¥ = PG(2m — 1,¢") as the canonical subgeometry
of dimension 2m — 1. Let Xy be the image of PG(2m — 1,¢) under this embedding.
Hence, ¥y contains all of the points of ¥ induced by non-zero vectors, all of whose
homogeneous coordinates are in GF(q). We again abuse notation and let S,,_;
represent the embedded S,,—;. Since 7(S,,—1) is n-dimensional, we know that there
exists an (n — 1)-spread S,, 1 of I' = PG(2n — 1, ¢") which generates a plane which
is isomorphic to 7(S,, 1). Take I" and embed it in ¥ in the manner described in
Section 5.1. Now, using the method described in Section 5.1, lift the embedded
spread, which we continue to call S,,_1, to an (m —1)-spread S’ of Xy. From Section
5.2, we know that 7(S') = 7(S,1). But n(S, 1) = 7(S,_1) by the assumptions
of the theorem. Hence, 7(S") 2 7(S,,—1). Thus, by Theorem 1.4.8, we know that
the spread S’ can be mapped to the spread S,,_; via some collineation, say ¥ (i.e.
Smo1 = S’q'). The spread elements of S’ are made up of a union of spaces from the
geometric spread of Theorem 5.1.5. Applying ¥ to this geometric spread, we see
that S,,_; also has an associated geometric spread with the desired property.

To show uniqueness, suppose there were two different geometric spreads with
the desired property. Then, each of these spreads would have an associated cyclic
group which fixes each of the spread elements of S,,_; (see [26]). Hence, the group H
leaving each element of §,,_; invariant would contain two different cyclic subgroups

of the same order. Since H is a cyclic group, this is a contradiction. [ |
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As shown previously, any geometric (r — 1)-spread G of PG(nr — 1,¢) has
a nontrivial subgroup of its full automorphism group which acts as the identity
on each spread element. This group, which we will called x, has projective order
¢ '+ -+ ¢+ 1 and the orbits of x are exactly the elements of G. We can now

apply this theory to construct equivalent spreads.

Algorithm for Constructing Equivalent Spreads

Let S;,—1 be an (m—1)-spread of PG(2m—1, q) which generates a translation
plane 7(S,,—1) which is not m-dimensional over its kernel. Let n be the dimension
of 7(S,—1) over its kernel. Embed PG(2m — 1,¢q) in ¥ = PG(2m — 1,¢") as the
canonical subgeometry of dimension (2m — 1), and again let its image under the
embedding be denoted by ;. We continue to write S,,—; for the image of S,,_;
under this embedding in . By Lemma 5.3.1 the orbits of the group x associated
with S, 1 (i.e. the group leaving each element of S,,, ; invariant) form a geometric
spread G of ¥y. Since all geometric spreads of Yy are projectively equivalent [26],
we can map G to Gy via some collineation ). We can now think of the spread

Sy = 8

._1 as being in “standard position”, and we can extend the elements of S

to the whole space Y. These extended spread elements will each meet the space
IT =2 PG(2n —1,q¢") (as defined in Section 5.1) in an (n — 1)-space, and together,
these (n — 1)-spaces will form a spread S, ; of II. By Theorem 5.2.4, S, ; will
generate the same translation plane as S, ;. Hence, §,,_; is equivalent to S,,, ;.
By combining this result with Theorem 1.4.8, we now have a unifying theory
for spreads which generate isomorphic translation planes. In particular, we can

finish the characterization of mixed partitions which lift to regular spreads.

Theorem 5.3.2 Let P be a non-proper mized partition (i.e. a spread) of PG(2n —
1,¢%) that gives rise to a reqular spread S wvia the geometric lifting of Chapter 2.
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Then P is a regular spread of I1.

Proof: Because of the equivalence established in Theorem 5.2.4, we know that 7(P)

must be a classical plane. Hence, by Theorem 1.4.7, P is a regular spread. |

Combining this result with Theorem 4.2.1, we have a complete classification

of mixed partitions which lift to regular spreads.
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Chapter 6

EXAMPLES OF MIXED PARTITIONS AND THEIR
ASSOCIATED TRANSLATION PLANES

In this final chapter we discuss the existence of mixed partitions. We start
with a complete classification of mixed partitions in PG(3,4) and follow with sev-
eral examples (some previously known) of infinite families of mixed partitions of
PG(3,¢%). For each partition we will describe certain subgroups of the full auto-
morphism group of the partition. Finally, at the end of the chapter, we will discuss

the translation planes obtained from each of the partitions.

6.1 A Complete Classification for PG(3,4)

To effectively search for mixed partitions of II = PG(3,4), we use some
transitivity properties of G = PI'L(4,q). For instance, it is well known that G acts
3-transitively on lines of II. Additionally, G' acts transitively on Baer subspaces.
Since the Baer subspaces contain more points than the lines, we start trying to build
our mixed partition with the Baer subspaces. Since |PG(3,4)| = 85, |PG(3,2)| = 15,
and |PG(1,4)| = 5, we obtain the numerical possibilities given in Table 6.1.

As the 1l-spreads of PG(3,4) are well known (see [13]), we concentrate on
constructing proper mixed partitions; that is, those containing at least one Baer
subspace. We start by constructing a list of all Baer subspaces in II. As the stabilizer
in GG of a given Baer subspace Il acts transitively on the Baer subspaces disjoint

from Il;, we may start by fixing 2 disjoint Baer subspaces, say By and B;. We
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Table 6.1: Possible mixed partition types for PG(3,4)

# Baer subspaces | # Lines
5 2
4 5
3 8
2 11
1 14
0 17

then eliminate any Baer subspaces which have points in common with either of
the two starters. From here, we can construct the set of 3-tuples, 4-tuples, and 5-
tuples of disjoint Baer subspaces using the two starters and the list of disjoint Baer
subspaces. Combining these tuples with the single Baer subspace By and the pair
{Bo, B1}, we obtain a collection of all tuples of Baer subspaces which could be used
to construct a mixed partition. Each tuple is then completed to a mixed partition in
all possible ways by adjoining disjoint lines. This completion was done exhaustively
using the set of all lines disjoint from the given tuple of Baer subspaces. The software
package Magma [12] was then used to check for equivalences under PI'L(4,q) among
the mixed partitions obtained. The 10 mutually inequivalent partitions found are
summarized in Table 6.2.

First note the description of the partition types. In the case where there
are five lines, these lines could potentially form a regulus. Hence, the number of
transversal lines to these five lines is listed to illustrate that this occurs in two cases.
The translation planes of order 16 were classified in [13], and their automorphism
groups were determined by [30]. The plane in the table refers to the translation
plane determined from the mixed partition (or equivalently, the lifted 3-spread of
PG(7,2)) via the method discussed in Section 1.4.2. The group size is the order of

the full automorphism group of this associated translation plane, and the dimension
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Table 6.2: Mixed partitions of PG(3,4)

‘ # ‘ Partition Type ‘ Plane ‘ Size of Group ‘ Dim ‘
1 | 5 Subspaces, 2 lines | Desarguesian 2M.33.52.7. 1 1
13-17
2 | 4 Subspaces, 5 lines | Semifield Plane with | 73728 4
(1 transversal) Kernel GF(2)
3 | 4 Subspaces, 5 lines | Derived Semifield | 55296 4
(5 transversals) Plane
4 | 4 Subspaces, 5 lines | Semifield Plane with | 442368 2
(5 transversals) Kernel GF(4)
5 | 4 Subspaces, 5 lines | Hall Plane 921600 2
(2 transversals)
6 | 3 Subspaces, 8 lines | Dempwolff Plane 92160 4
7 | 3 Subspaces, 8 lines | Derived Semifield | 55296 4
Plane
8 | 1 Subspace, 14 lines | L-R OR J-W 258048 4
9 | 1 Subspace, 14 lines | L-R OR J-W (differ- | 258048 4
ent from above)
10 | 1 Subspace, 14 lines | Derived Semifield | 55296 4
Plane
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is the dimension of this plane over its kernel. Since the Johnson-Walker (J-W) plane
and the Lorimer-Rahilly (L-R) plane have isomorphic automorphism groups, it was
difficult to determine which plane arises from the two partitions with 1 Baer subspace
which have the same automorphism group. However, it was possible to check using
Magma that the planes determined by these partitions are non-isomorphic.

It is interesting to note that every translation plane of order 16 can be con-
structed from one of the mixed partitions in Table 6.2. Also, the derived semifield
plane appears in the table three different times. Hence, three non-isomorphic mixed
partitions generate the same translation plane. Finally, notice that there does not
exist a mixed partition with exactly 2 Baer subspaces. This is the only configuration
from Table 6.1 which does not exist.

Some of the partitions in Table 6.2 are discussed elsewhere in this thesis. For
instance, the partition containing 5 Baer subspaces is the classical mixed partition
discussed in Section 3.2. Hence, it generates the Desarguesian plane as shown in
Section 4.2. We look at a construction in the next section by which we can obtain
partition #5 from the classical mixed partition. Finally, partitions #3 and #4 will

be generalized in Section 6.3.

6.2 Pseudo-Reguli and Partitions from the Classical Partition

Let Py be the classical mixed partition of II = PG(3,¢*) as discussed in
Chapter 3. Recall that Py contains 2 lines and (¢ — 1)(¢? + 1) Baer subspaces. We
will use this mixed partition to construct new mixed partitions. First, we will prove
a few lemmas about how the lines of IT can meet P,.

Let [y and [, be the two distinct lines of the partition P,. Recall that the
partition Py is made up of orbits of a group © of order ¢ + ¢ + ¢+ 1 which acts as

a Singer cycle on the points of the Baer subspaces of Py. Let o be a generator of O.

Lemma 6.2.1 If a line [ of II meets each of the lines ly and l, in a point, then [
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meets ¢ — 1 of the Baer subspaces of Py in a Baer subline and is disjoint from the

remaining q>(q — 1) Baer subspaces.

Proof: Let [ be a line of II meeting each of [y and [/, in a point, say R; and Ry
respectively. Furthermore, suppose that [ meets a Baer subspace By of Py in a
unique point (). Because of the structure of the group © (see Section 3.2), we know
that qu2+l = R; for each i. Hence [ = [, which implies that Q"q2+l = (. But

this contradicts the action of © on the points of By. [ |

This small result leads to the first new type of partition. Let [ be any line
of IT which meets each of [, and [, in a point and consider the orbit of [ under the
cyclic group H = (o%t!) of order ¢> + 1. The lines in this orbit each meet l; and I,
in a single point, and it is not hard to show that these lines induce a regular spread
in ¢ — 1 of the Baer subspaces of Py. Replacing these Baer subspaces and the two
lines ly and I, with the lines of [/, we generate a partition of IT containing ¢ + 1
lines and ¢*(q — 1) Baer subspaces. We will call this new partition Py.

We should note that the lines of [ form a pseudo-regqulus, which was originally

defined in [15].

Definition 6.2.2 Given a reqular spread S of Iy = PG(3,q) embedded in 11 =
PG (3,q?), let F be the partial spread of 11 obtained by extending the lines of S to
the space 1. This partial spread F s called o pseudo-regulus of II.

Theorem 6.2.3 (Freeman, [15]) If F is a pseudo-requlus of PG(3,q%), then F is
contained in a spread of PG(3,q?).

With this result, other mixed partitions arise. It is shown in [15] that the point
set covered by the lines of a pseudo-regulus can always be partitioned into ¢ — 1
disjoint (transversal) Baer subspaces and 2 transversal lines. Hence, by taking any

spread containing a pseudo-regulus, one can replace the pseudo-regulus with the
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q — 1 transversal Baer subspaces and 2 transversal lines, yielding a mixed partition

with ¢* — ¢® + 2 lines and ¢ — 1 Baer subspaces.

Lemma 6.2.4 If a line | of II meets exactly one of the lines ly and |, in a point,
then | meets ezactly ¢ of the Baer subspaces of Py in a single point and is disjoint

from the remaining (q — 1)(¢*> + 1) — ¢* Baer subspaces.

Proof: Without loss of generality, let [ be a line of II meeting [y in a point, say R,
with [ Ny = 0. Also, for contradiction, suppose that [ meets a Baer subspace B
of Py in a Baer subline [. Then, as before, R"q2+1 = R, which means that the lines
I and 1°*" share at least one common point. If [ # l"q2+1, then [ and ZGqZH are
coplanar and, since they are both contained in B, they must intersect in a point of
B. Hence, we have two distinct lines sharing two common points, a contradiction.
Therefore, [ = Z"qul which implies [ = 1°° **. The orbit of / under © could not be
of any shorter length because of the action of © on the points of /y. Therefore, the
orbit [® contains exactly ¢® + 1 lines.

The points of any Baer subspace in P, form a ©-orbit of length ¢ +¢?+¢+1.
This means that [ could not possibly meet a Baer subspace in a single point. Thus, [
meets every Baer subspace of Py in 0 or ¢+ 1 points. Therefore, ¢>+1 = 1+k(qg+1)

where k is the number of Baer subspaces which meet [ in a Baer subline. This implies

(g +1)|¢?, a contradiction. u

Lemma 6.2.5 If a line | of 11 is disjoint from both ly and l,, then | meets at most

one of the Baer subspaces of Py in a Baer subline.

Proof: We prove the contrapositive. Let [ be a line of IT and suppose that [ meets
two distinct Baer subspaces of Py, say B,, and B,, in Baer sublines m and n,

(C]

respectively. Now consider the orbit of m under the group ©. Either m® is a full

orbit of length ¢* + ¢?> + ¢ + 1, or m® forms a regular spread of B, (see [4]). If m®
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is a full orbit, then there are two distinct lines of m® which intersect, forcing the
corresponding Baer sublines of B,, to be coplanar and, therefore, to intersect in a
point of B,,. Since they have two points in common, this implies that the two lines
are the same, contradicting their distinctness.

® must be a line-orbit of length ¢ + 1. Now suppose that [ meets

Hence, m
another Baer subspace different from B,, and B, in a unique point R. Then R® is a
point orbit of length ¢ + 1, a contradiction. Hence, [ must meet all Baer subspaces
in 0 or ¢ 4+ 1 points. By a simple counting argument, this implies that [ meets each

of [y and [ in a unique point. [ |

It is interesting to note that the conclusion in the proof of Lemma 6.2.5 is
stronger than stated in the lemma. Hence, we could weaken the hypothesis by
letting [ be disjoint from at least one of the lines [y and [,,. However, the case when
[ is disjoint from exactly one of the lines [y and [, is covered in Lemma 6.2.4.

Putting all of the above lemmas together, we find that there are exactly
four different intersection patterns of lines of II (different from [y and [) with the
partition Py.

Type 1 Lines which meet both [y and [, in a point, meet exactly ¢ — 1 of the Baer

subspaces in a Baer subline, and are disjoint from the remaining ¢*(¢—1) Baer
subspaces

Type 2 Lines which meet exactly one of [y and [, in a unique point, meet exactly
q®> Baer subspaces in a unique point, and are disjoint from the remaining
(¢ —1)(¢* + 1) — ¢* Baer subspaces

Type 3 Lines skew to both [y and [, which meet exactly one Baer subspace in a
Baer subline, exactly ¢ — ¢ Baer subspaces in a unique point, and are disjoint
from the remaining ¢ — 2¢? + 2¢ — 2 Baer subspaces

Type 4 Lines skew to both [, and [, which meet exactly ¢ + 1 Baer subspaces
in a unique point, and are disjoint from the remaining (¢ — 2)(¢* + 1) Baer
subspaces
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For the purposes of this section, we are particularly interested in the Type
1 and Type 4 lines. Each of these will give rise to a mixed partition. We start
by counting the number of lines of each type. There are clearly (¢*> + 1)? Type 1
lines. The lines of Type 1 or Type 2, along with [y and [, can be counted by

inclusion /exclusion giving us
2[(¢*+ (" +¢*) +1] = (¢ +1)° =

2¢° +3¢* + 1.

Hence there are
(2¢° +3¢* +1)— (*+1)* -2 =
2¢° +2¢* —2¢° — 2 =
2q? +1)%(q* — 1)

Type 2 lines. The total number of Baer sublines of Il contained in a Baer subspace
of Py is (¢* — 1)(¢*> + 1)%, but (¢* + 1)*(¢ — 1) of these Baer sublines generate Type
1 lines. Hence, the total number of Type 3 lines is ¢(¢> + 1)?(¢*> — 1). We can now
count the number of Type 4 lines by subtracting the total number of Type 1, 2,
and 3 lines (plus an extra 2 for [p and /) from the total number of lines of II,
(¢* +1)(¢* + ¢* +1). This gives us exactly ¢(¢ —1)(¢* = ¢* —q¢—1)(¢* +¢* + ¢+ 1)
Type 4 lines. A summary of the number of lines of the different types appears in

Table 6.3.

Theorem 6.2.6 There exists a mized partition P} of 11 with ¢* + ¢*> + q + 3 lines

and (¢ — 2)(¢> + 1) Baer subspaces.

Proof: We construct such a mixed partition from the classical partition Py. From
the discussion above, one can always find a line [ of II which meets exactly ¢ + 1

Baer subspaces of Py in a unique point. By starting with Py and replacing these
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Table 6.3: Numbers of lines of different types

Line Type ‘ Number
Type 1 (¢* +1)?
Type 2 22 +1)%(¢* — 1)
Type 3 (> +1)*(¢* = 1)
Typed |qlg—1)(@* —¢*—q¢-1(¢*+¢* +q+1)

q> + 1 Baer subspaces with the set of lines in [©, we get the desired mixed partition.

6.3 The Existence of a Regulus Type Mixed Partition

Having given some basic constructions of mixed partitions, we are now ready
to start looking at some new and more involved constructions. The idea is to gen-
eralize some of the examples in PG (3,4) found by computer. Two of the partitions
in Table 6.2 are particularly interesting, namely #3 and #4. Here we see examples
of mixed partitions containing exactly ¢ + 1 lines which form a regulus. One can

only naturally wonder whether this partition is part of an infinite family.

6.3.1 Preliminaries

As above, we work in IT = PG(3,¢%). We let F' = GF(q), K = GF(¢?), and
let 5 be a primitive element of K. Also, as we have used throughout this thesis,
we let o = 397!, whose order is ¢ + 1. Our proofs in this section are almost all
coordinate arguments. We start by recalling the method given in Chapter 1 for

constructing Baer subspaces, but we restrict to the 3-dimensional case.
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Lemma 6.3.1 Let A,B,C,D, and E be five points in general position in I1. That is,
the five points satisfy the property that no four of them lie in the same plane. Then,
there is a unique Baer subspace of 11 containing A,B,C,D, and FE.

Proof: The projective space II can be modeled as a 4-dimensional vector space over
K. Call this vector space V. We let v 4 be any vector in V' which induces the point A
and define vg,ve, vp and vy similarly. Since no four of these points lie in the same
plane, any four of the corresponding vectors are linearly independent. Since V' is
4-dimensional over K, there are unique non-zero field elements x4, x5, vc,zp € K*,
such that

ZUAVA—l-a?BVB —|—$CVC—|—ZUDVD = VEg.

Consider the projective points induced by vectors in the F-linear span
<$AVA,$BVB, $CVC,$DVD>-

Clearly, v is in this span (letting all of the coefficients in a linear combination be
1). Hence, we have a 4-dimensional vector space over F' which contains the vectors
Va,VB,Ve,Vp, and vg. This vector space induces a desired Baer subspace of II.

What is left is to show that no other Baer subspace contains these five points.
This follows simply from the uniqueness of representation of vectors with respect
to a given basis. Since v4,vpg,ve and vp form a basis for V, there is exactly one
linear combination of them which produces the vector vz. The only other linear
combinations of v 4, vg, ve and vp which would produce a vector which induces the
point E are

kxava+ kxpvp + kxcve + kxpvp = kvg

for some k € K. But the F-linear span

(kxava, krpvp, kxcve, kxpvp)
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produces the same set of projective points as the F'-linear span
<$AVA,$BVB; $CVC,$DVD>-
Hence, there is only one Baer subspace through these five points. [ |

We will construct the Baer subspaces for our mixed partition in Section 6.3.2.
Our method will be exactly what was described above. For now, we define the point
set, covered by the lines of our partition. Since these lines are supposed to form a
regulus, their point set must be a hyperbolic quadric as discussed in Section 1.4.1.

We give the quadratic form here. Let
Q = {{(xg, 1, T2, x3)) : Toxe — 123 = 0}.
Lemma 6.3.2 The quadric Q is a non-degenerate hyperbolic quadric.
Proof: Clear by the general form for non-degenerate quadrics given in [17]. |

Now consider a certain set of matrices. Let

( T )

ca€ K,be F* ),

=]

—
o o O O
S O O O

a 0

\ L . /

where F'* is the set of non-zero elements in the finite field F'.

Lemma 6.3.3 The set G induces a collineation group of order ¢*(q— 1) which fizes
the quadric Q.

Proof: The proof that G forms a group is a straightforward computation. We take

two elements of the set G and multiply:
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_1 0 0 0-—1 0 0 O-
0 1 0 0 0 1 0 0]
0 ap by O 0 ay by O B

| @ 0 0 bl__aQ 0 0 b2_

1 0 0 0
0 1 0 0
0 a; + b1 a b1 bg 0

a; + brasy 0 0 biby
Since a; + bias € K and bi1by € F*, the set is closed, and we have a faithful matrix
representation of the group GG. To show that G fixes O, we take an arbitrary point
of the quadric, say P, induced by vector (z, 1, 2, x3), and show that P9 is also in

the quadric for any g € GG. By multiplication, we get that P? is induced by vector
(xo + ax3, T1 + axq, bxg, br3).

Using the definition of the quadric Q, the point PY is in Q if and only if
(o + ax3)bry = (11 + axy)bxs.

This equation is equivalent to xobxre = x1bx3, or xroxys = x1x3 since b # 0. This,

however, is clear since the original point P is in Q. [ |

Hence, we have shown that the set G induces a collineation group which
leaves invariant the quadric Q. We slightly abuse notation from this point on and
also call the induced collineation group GG. This group has a nice orbit structure
on the points off the quadric. In fact, the number of G-orbits off the quadric Q is

exactly the same as the number of points in a Baer subspace.

Lemma 6.3.4 The points of IT\ Q are partitioned into exactly ¢ +q*>+q+1 orbits
of length ¢*(q — 1) under the group G.
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Proof: We first show that there are no short orbits on the points off @ by show-
ing that there are no non-trivial stabilizers and appealing the the orbit-stabilizer
theorem. Let T', induced by vector (zg,x1,x2,23), be an arbitrary point not on the
quadric Q. Then, TY is induced by vector (x¢ + axs, 1 + axy, bxs, bxs), where a and
b are the parameters in the matrix representation of g. We assume that T = TY
and show that a = 0 and b = 1, therefore showing that the group element g is the
identity. Since T'= T, there is some k € K* such that

( \
ka?() = Ty + aT3

kl‘l =T + aZs

kQTQ = bZUZ

kafg = biUg

Now, x5 and x3 cannot both be 0, otherwise zyxs = x1x3 and the point T’
would be in Q. Without loss of generality, assume x3 # 0. Then, from the last
equation, we get £k = b. Note that if x5 # 0, we get the same result from the third

equation. Substituting into the first two equations, we get

b!L‘O =T+ ars
b!L‘l =T + axs

ToT2
z3

If b # 1, we may solve simultaneously to obtain z; = , OF T1T3 = XToTs.

But this is a contradiction since if xqzs —x123 = 0, then 7" would be a point of
the quadric Q. Therefore, we must have b = 1. This implies kxy = x5 and kzs = x3.
Since 5 and x3 cannot both be 0 (7" outside Q), k = 1. But then we necessarily
have a = 0. Hence, the group G has no non-trivial point stabilizers on the points
outside the quadric Q. Therefore, since the group has order ¢*(q — 1), each point
orbit outside @ must have length ¢*>(¢ — 1). Since the number of points outside Q
is ¢+ gt +¢2+1—(¢>+1)% = ¢° — ¢% we see that we get exactly ¢®> +¢> +q+1
orbits. [ |
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This nice orbit structure suggests a method of producing a mixed partition.
If we could find a Baer subspace, say B, disjoint from Q, which shares exactly one
point with each of the G-orbits off Q, we could let G act on B. The G-orbit of
B would consist of ¢*(¢ — 1) pairwise disjoint Baer subspaces which, together with
one of the ruling families of Q, would create a mixed partition of II. In order to
find such a Baer subspace B, we will restrict ourselves to the case when ¢ is
even for the remainder of Section 6.3. To continue, we certainly need more
information about the orbits of G off Q. We start by giving a short lemma which

will prove quite useful in future arguments.

Lemma 6.3.5 Fori € {0,1,2,...,q}, the only i such that o* € F isi = 0. In this

case, o' = 1.

Proof: Suppose o' € F. Then since every non-zero element of F' has order which
divides ¢ — 1, o*~Y = 1. But « has order ¢ + 1. So that means (g + 1)]i(g — 1).
Now, ¢ is even, so ¢ + 1 and ¢ — 1 do not have any factors in common. Hence,

(¢ + 1)|i. Because of the restrictions on i, the only possibility is that i = 0. |

We are now in a position to get a complete description of the GG-orbits off the

quadric Q.

Lemma 6.3.6 The point orbits under G of the points outside Q are given by the

points induced by the following sets of vectors:
Ly ={(ta?,r,1,0) : t € F*,r € K}

M; = {(r,ta?,0,1) : t € F*,r € K}
Nij={(rtad +rp,5,1):t € F*,r € K}

forie {0,1,2,....¢* =2} and j € {0,1,2, ..., q}.
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Proof: To prove this lemma, consider the following (q + 1)(¢? + 1) vectors, which
induce distinct projective points: (a’,0,1,0), (0,a7,0,1), and (0,a’, 3,1), where
i € {0,1,2,...,¢> — 2} and j € {0,1,2,...,q}. We call the induced points L-type,
M-type, and N-type points, respectively. First, we note that none of these vectors
induce points in the hyperbolic quadric simply by checking the quadratic form on its
coordinates. We now show that none of the induced points lie in the same G-orbit,
and thus these (¢ + 1)(¢> + 1) points form a system of distinct representatives for
the G-orbits off O.

Let g be any element of G. Then g is induced by some matrix M, , where
a and b are the parameters described in the definition of G. First consider an L-
type point. Let v, = (a?,0,1,0) be any vector which induces an L-type point and
consider its image, v, M,; = (a?,0,1,0)M,;, = (a?,a,b,0), under the matrix M, .
Since the image under M, ; has last coordinate 0, v M, cannot induce an M-type
or an N-type point. Now, suppose that v; M, induces another L-type point. Then,
there is some k£ € K and some j' € {0,1,2,...,q} so that

(o, a,b,0) = k(a?",0,1,0).

This immediately tells us that « = 0 and k& = b. But then o/ = ba?’, which means
that o7 = b € F. By Lemma 6.3.5 and because of the restrictions on j and 7,
j = j" and thus b = 1. Hence, M,; must be the identity matrix. Therefore, all of
the L-type points are in distinct G-orbits, and, moreover, no L-type point is in the
same G-orbit as an M-type or an N-type point.

Now consider an M-type point. Let vy, = (0,a7,0,1) be any vector which
induces an M-type point and consider its image vy M,;, = (0,043',0,1)]\/[,17,7 =
(a,a7,0,b), under the matrix M,;. As discussed above, vyrM,; cannot induce
an L-type point. Suppose that vy, M, induces another M-type point. Then, as
before, there is some k£ € K and some ;' € {0,1,2,...,q} so that

(a,0?,0,b) = k(0,0",0,1)
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This immediately tell us that a = 0 and b = k, which leads to the same conclusion
as above that g must be the identity. Also vy, M, cannot induce an N-type point
since all N-type points are induced by vectors having non-zero entries in their third
coordinate.

The only possibility left is that an N-type point maps to another N-type
point under some group element g. If this were possible, then there must be some

ke K, some ' € {0,1,2,...,¢°> — 2}, and some j' € {0,1,2,...,q} so that
(0,0, 87, 1) My = (a, 07 + aff', b3, b) = k(0,07 57, 1)

This implies that a = 0 and b = k, and again leads to the same conclusion. Hence,
we have shown that all of the L-type, M-type, and N-type points lie in distinct
G-orbits.

We can now find a representation for the points in any orbit. The points in
an L-type orbit are induced by the vectors of the form (a7, a,b,0) as a varies over
K and b varies over F*. Similarly, the points in an orbit of an M-type point are
induced by vectors of the form (a,a’,0,b), and the points in an orbit of an N-type
point are induced by vectors of the form (a,a’ + af%,b6,b). By dividing by b,
letting r = ¢ and t = %, we get the parametrization described in the statement of
the lemma.

We can now do a quick count to check that all points are covered. There
are ¢ + 1 L-type points, ¢ + 1 M-type points, and (¢*> — 1)(q + 1) N-type points,
for a total of 2(¢ +1) + (¢ + 1)(¢*> — 1) = (¢ + 1)(¢* + 1) = ¢® + ¢* + ¢ + 1 total

points. This is exactly the number of G-orbits outside of Q. Hence, we have found

a representation for each G-orbit off the quadric Q. [ |

6.3.2 Finding a G-perfect Baer Subspace
Our goal now is to find a G-perfect Baer subspace. That is, we want to find

a Baer subspace B that meets each of the G-orbits off the quadric Q in exactly one
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N AN

Figure 6.1: A G-perfect Baer subspace

point (see Figure 6.1). Using the software package Magma, it was possible to find
such a Baer subspace for small even values of ¢, and moreover, to generalize the
example to all even q. We will represent B by five points in general position whose
linear span over F' generates all of the points of By.

In order to simplify the computations, we choose a primitive element 3 of K
such that Try/p(8) = 1. Therefore, 87+ 3 = 1 or equivalently, § = qu_l = o
The existence of such a primitive element is given in [11]. This extra trace condition
on the primitive element 3 allows for many identities with the field element o. We
will frequently use identities such as af =1+ 3, af + 237 =  + (7 and so on in

our computations.

Consider the following five vectors:
P11 = (a47 a3’ ]-7 0)
P2 = (O[, a27 07 ]-)
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Lemma 6.3.7 The five vectors defined above satisfy the following:

1. Any four are linearly independent.

2. fp1 + Bp2 + P3 + P4 = afps.

Proof: To prove that any four vectors are linearly independent, we first consider
{pP1, P2, P3, P4}. By looking at the last two coordinates of these vectors, one can eas-
ily check that no three of them are linearly dependent. Now consider the possibility
that apy 4+ bps + cp3 = p4 for some triple of scalars a, b, c € K. We immediately get
that b = 1 and a = ¢ by looking at the last two coordinates. But then, by looking

at the first two coordinates,
act + a+ac’ =1

and
ac® + o + ac’ = a,
which together means

a(l+a?) =1+ a’.

Since a # 1, it must be the case that o* = 1 and since « has order g + 1, (g + 1)[2.
But this is clearly false since ¢ > 2.

Now consider {p1, p2, P3, P5}. Again, one can easily check that no three of
these four vectors are linearly dependent. Now, suppose that ap; + bps + cp3 = ps
for some triple of scalars a,b,c € K. Then by looking at the last two coordinates,
b=1 and a + ¢ = 1. Looking at the first two coordinates,

341
aa4+a+(a+1)a3:a+ :
o
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and
ac® + o + (a+1)a? =

which together means that

Replacing % with a + 1, we get

(6]
a(l+a)+

and hence,

a' =1.
But, as before, o has order ¢+ 1 and thus (¢ + 1)|4 which is clearly false since ¢+ 1

is odd. Similar computations show that no four of the points are coplanar.

To show that, Bp1 + Bp2 + P3s + P4 = affps, we simply do the computations
on the left hand side of the equality.

First component:
Ba' + pa+ o’ +1=(af+1)(a’ +1) = (’+1).
Second component;:
Ba’ +Ba’+a’+a=ala+1)(fa+1l)=ala+1)8=a.
Third and fourth components:
B+1=ap.
Hence, we get p; + Op2 + P3 + ps = afips. u

We now appeal to the result given in Section 6.3.1. By Lemma 6.3.1, the
five vectors p1, P2, P3, P4 and ps induce five projective points which are in general

position, and they determine a unique Baer subspace
By = {{(afp1 + bBp2 + cp3 + dpy4) : a,b,c,d € F, not all 0}.
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We will show in the next section that By is precisely the Baer subspace we need.
To establish the desired result, we need a series of technical lemmas which we now

prove.

Lemma 6.3.8 Any point of K* can be written uniquely in the form ta?, where

te F*andje{0,1,2,..,q}.

Proof: We let A = {(t,a’) : t € F*,j5 € {0,1,2,...,q}} and consider the map
f: A — K~ defined by f(t,a’) = ta’. Since the domain and the codomain of
this function have the same cardinality, we only need to show that this function is
injective.

Suppose that there is some element of K*, say /3, such that ¢;a’* = 3° and
tsa’> = (. Then o>~ = & € F*. But, from Lemma 6.3.5, the only non-zero
powers of o which are in F' are multiples of ¢ + 1. This means that (¢ +1)|(ja — j1)-
Since j1,j2 € {0,1,2,...,q}, the only possibility is that j, — j; = 0, or jo, = j;. This
implies that t; = t5 and the result follows. |

Lemma 6.3.9 For b,d € F', not both zero, b:ﬂﬂjdd 15 a power of a. Moreover, every

power of a can be written this way for some choice of b and d.

Proof: First note that b3+d # 0 since ¢ F. Raising % to the (¢4 1)* power,

(baﬁ+d>q+1 B <baﬂ+d>" (baﬁ+d>
bG +d S\ b3+d bG +d
(b3 +d baf +d
_< b3t +d ) ( bﬂ+d>
PPt B bd(aff + 1Y) + d?

B b2 B9+ + bd(3 + 39) + d?

(
VBT + bd(B1 + B) + P
©b2BetL 4 bd(B 4 9) 4 d?

we obtain
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BT bd + P
2B+ bd + d?
=1

Here, we strongly use the condition that 57+ 3 =1 and a8 = 9. The first part of
the lemma now follows from the fact that (¢ + 1)* roots of unity in K are precisely
the various powers of «.

To show the second part, suppose that

bl&ﬁ + d1 . sz[ﬁ + d2
biB+d b+ dy

and thus
bidaa3 + diby B = badiaB + daby 5.

Cancelling 3 and regrouping, we get
(b1d2 + del)& = d1b2 + dgbl.

Since a ¢ F', necessarily bydy = bod;. If by = 0, then d; # 0 and thus b, = 0.
Similarly for b,. Hence, b; and b, are either both 0 or both non-zero. Thus we can
write by = Aby, for some A € ™, and we obtain Abydy = body. Now, either by = 0,
which would force by = 0, or Ads = d;. Note that if by = by = 0, then d; # 0 # ds.

Hence, in either case, we get that

bl&ﬁ + d1 . bQOZﬁ + d2
biB+d b+ ds

= (bl, dl) - )\(bz, d2)

-1

T =q+ 1 different choices for ordered

for some A € F*. Therefore, since there are

pairs (b,d) up to F*-scalar multiples, there must be at least ¢ + 1 different values

for %. Since there are exactly ¢ + 1 distinct powers of «, every power of o can
be written this way. [ |

The final lemma of this section seems a bit unusual at first, but it will prove

to be incredibly useful in the proof of Theorem 6.3.11 in the subsequent section.
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Lemma 6.3.10 As before, let 3 be a primitive element of K whose trace from K

to F is 1, and let « = 97, Then, the expression
M; = 0*(0'8) + o + § (*(0'f) + 1)
is never 0 for 0 < i < ¢* — 2.

Proof: We prove this lemma by considering the trace of éMZ from K to F. If M,
is 0, then this trace must also be zero. We show that this cannot be the case. Since

(af) = B, 7 = af, and o = X, we see that

Lot =) 4145 (') + 1),
« «
and hence
1 ¢ 1 YA
<—Mi> =—0+1+ (af) <—26l + a) .
« o

Adding 2M; + (£01;), we get

(07

(o) - (43 (52) - ()

where w = af8? = 397! is a primitive element of F'. Hence, this trace is not 0, and

thus M; # 0. [ |

6.3.3 Proving the Existence

We are now in a position to state the main result of this section. We will
prove the existence of a mixed partition of the type described earlier; that is, a
mixed partition containing ¢? + 1 lines which form a regulus and ¢?(q — 1) Baer
subspaces. This partition involves our previously described Baer subspace B.

The goal in the following arguments will be to show that By meets all of the

G-orbits off the quadric @ in exactly one point. This will be done indirectly and
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requires establishing a bijection between the points of By and each of the G-orbits.

First we establish some notation.

Let
A={(a:b:c:d):a,b,c,d € F,a and ¢ not both 0,b and d not both 0}

and
I={(,5):i€{0,1,2,...,¢*=2},7 € {0,1,2,...,¢} } .
In the set A, the notation (a : b : ¢ : d) means that non-zero F-scalar multiples of
vectors are considered equal. Hence (a1 : by : ¢y 1 dy) = (ag : by : ¢y @ dy) in A if and
only if there is a non-zero element k € F' such that (ay, by, c1,dy) = k(ag, b, 2, ds).
Using inclusion/exclusion and dividing out F-scalar multiples, we see that
42 2
|A| = % = (¢+1)(¢* — 1). Also, |I| = (¢ + 1)(¢* — 1). Hence, to show that
there is a bijection from A to I, we only need to find an injection.

Letting A = {a* : 0 < i < ¢}, we define
B=K"xA={(3a":i€{0,1,2,...¢" —2},k € {0,1,2,....,q} }.
Note that |B] = (¢+1)(¢? — 1). Thus, using Lemma 6.3.9, we may define a function
0 A— B

via

b d
dr(a:b:c:d)= <Z§i_§, :ﬂﬂ:d>

It is easy to see that ¢; is well-defined. From Lemma 6.3.10, we know that the

expression
OszZ' _ (a2(ai+kﬂi) + ak+1) + 51 (Ozg(OéiJrkﬂi) + ak)
is not equal to 0. Hence, from Lemma 6.3.8, o*M; can be written uniquely in the

form ta? where t € F* and 0 < j < g. We now define ¢,
Gy B — 1
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via
¢2(ﬁi7 ak) = (27])7
where j is the unique exponent of o such that

It € F* with to? = oF M,.

The map ¢, is clearly surjective from Lemma 6.3.9 and thus bijective by a simple
cardinality argument. Similarly, ¢, is surjective by Lemma 6.3.8 and Lemma 6.3.9.
Hence, ¢, is bijective by the same cardinality argument. Thus, the composition

® = ¢1 0 ¢y is a bijection from A to I.

We can now prove the main theorem which will leads to the existence of our

desired mixed partition.

Theorem 6.3.11 The Baer subspace By contains exactly one point from each of

the G-orbits outside the hyperbolic quadric Q.
Proof: Recall the Baer subspace
By = {{afp1 + bBpPs + cp3 + dp4) : a,b,c,d € F, not all 0}

as defined in Section 6.3.2. We will identify the point P = (afp; +bfp2+cps+dpas)
with (a : b: ¢ :d) and then find the corresponding G-orbit in which the associated
point lies. Moveover, we will show that every G-orbit contains a point from By,
thereby giving us the result. First we consider the tuples where b = d = 0. Then

the associated projective point can be represented by the vector
afp1 + cps = (aBa’ + ca®, afa® + ca’, af + ¢, 0)

= (a3(aﬂoz + ¢), oﬂ(aﬂa +¢),af +c, ()) .
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Since the zero vector does not induce a projective point, ¢ and ¢ cannot both be

zero. Hence, since 3 ¢ F, af3 + ¢ # 0, and dividing by af3 + ¢ to right normalize the

afa + ¢ affa+c
(o (5) o (575) 1),

From Lemma 6.3.9, the first and second coordinates are both powers of «, and

vector, we get

moreover, every power of o can be obtained for some choice of ¢ and ¢. Letting ¢

; , [afBa+c
o' =" | ——— |,
afl + ¢

we obtain the following right-normalized vectors as a and ¢ vary:

be such that

I, = {(ai+1, ai, 1, 0) 11 E {0, 1,..., q}} .
Similarly, if we consider linear combinations where a = ¢ = 0, we obtain
l2 = {(ai, ai+1, 0, 1) 11 E {0, 1, vy q}} .

Note that the vectors in [y and I, will induce points on two projective lines (they
actually form Baer sublines), and these two lines meet each of the L-type and M-
type orbits in exactly one point. What remains is to show that the other linear
combinations of the p;’s will yield vectors which induce exactly one point from each

of the N-type orbits.

To this end, we claim that for any element (a : b : ¢ : d) in A the linear
combination afp; + bBps + cps + dp4 is an element of the (7, 7)™ orbit, N; ;, where
(1,7) = (¢ 0 ¢1)(a: b: c:d). Note that

afBpi + bBp2 + cps + dps

= (aﬁa4 + bfa + ca® + d, afa® + bBa® + ca® + da, aff + ¢, b + d) )
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Now b3+ d # 0 as b and d are not both 0 and 3 ¢ F. Hence we can right normalize

to obtain the equivalent projective point
o acf3 + ¢ N baf +d o2 acfl + ¢ ta baf +d a5+cl
b3 +d bg+d )’ b3 +d b3+d ) bs+d )
Using aff = 47 and b37 + d # 0 (again because (37 ¢ F'), we have
aaf+c\  [(af'+c\ (0B1+d\  [aB+c\? (baB+d
bv3+d ) \bpB1+d b3+d) \bs+d bo+d )

But now the bijection established by ¢, gives us the unique ¢ and k£ such that

<a5+c> _ 5 and <baﬁ+d> _

b3+ d b3+ d
and thus
aeff+c\ ik ik
<bﬂ+d>—ﬂqa — (af)iat.

Similar computations involving the various components allow us to rewrite the vector

p which induces P as

p = (0*(0B)'0* + ¥, ?(a) ot + a(ah), 5, 1)

= (P (a'F3") + ¥, (") + T B 1)

Now, letting 7 = a®(a**3%) + of, we get
p= (7”, OéZ(OéiJrkﬂi) + ak+1,ﬂi, 1)
_ (7”, a2(ai+kﬁz’) + ak+1 + Tﬂi +Tﬁi,ﬁi, 1)
_ (r, a2(aitE Gl 4 of 4 (a3(ai+k5i) n ak) + g g 1) .

Recalling the definition of M; from Lemma 6.3.10, we see that the second coordinate

is a* M; +7r /3. So our second bijection ¢, gives us the unique j so that we may write

coordinates for p as
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Figure 6.2: The partitions P; and Ps

where ¢ is the unique element of F™* so that
ta’ = o/“Mi.

That is, p € N; ; and the result follows from the fact that ¢ = ¢; o ¢, is a bijection
from A to I. [ |

Theorem 6.3.12 Let ¢ = 2% for some k > 1. Then there exists a mized partition of
the projective space PG(3,q*) consisting of exactly ¢> + 1 lines and exactly ¢*(q — 1)

Baer subspaces.

Proof: For the lines of our partition, we may use either ruling family of the hyper-
bolic quadric @. Now, consider the group G and the Baer subspace By as defined
earlier. Note that By is disjoint from the hyperbolic quadric since, by Theorem

6.3.11, it meets each of the G-orbits outside Q in exactly one point and there are
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exactly ¢® + ¢ + ¢ + 1 such orbits. Thus, the orbit of By under G is a collection of
¢*(q — 1) mutually disjoint Baer subspaces, all of which are disjoint from Q. Hence
the Baer subspaces in this orbit together with the one of the sets of ruling lines from
the hyperbolic quadric create a mixed partition of PG (3, ¢%) of the desired type (see
Figure 6.2). We will refer to these two mixed partitions as P; and Ps. [ |

6.3.4 Automorphisms of P; and P,

The first step in determining the translation planes associated with P; and
P, is to exhibit certain subgroups of Aut(P;) and Aut(P,). We can exhibit two
such groups here. First we establish some notation for the lines of each partition.
As noted earlier, the hyperbolic quadric Q contains two sets of ruling lines. One

can easily check that one such ruling family consists of the lines
Iy =((0,1,k,0),(1,0,0,k)), k€ K
lvo = {(0,0,1,0),(0,0,0,1)),
and the other ruling family consists of the lines
I, ={(1,%,0,0),(0,0,k, 1)), ke K

I'. = ((0,1,0,0), (0,0, 1,0)).

We will refer to the partition containing the first set of lines as P; and the second
one as Py. The reader should note that we have redefined [, and [, from their
definition in Section 6.2.

Consider the two matrices

1 0 0 O
1

MT: @ a 0 0
0 o aiﬂ
0 O 1




and

It is easy to see that the cyclic group generated by M, and the cyclic group generated

(100 0|
010 0
00 a0
(000 a

by M, are both of order ¢ + 1. In fact,

M;

and

Moreover, one can easily check that M, and M, commute. Hence, we can consider

the internal direct product of the cyclic groups generated by M, and M,. A general

matrix in this product is given by

1

1+a’

0
0

Let 7 and v be the collineations of IT induced by M. and M., respectively. Also, let
Gy be the collineation group generated by 7 and v, and consider the action of G

on the partitions P; and P,. We will now show that G fixes the mixed partitions

1 0 0 O
alﬁiaiOO
0 0 o 5
0 0 0 1
100 0
01 0 0
00 a 0
00 0 o

0 0 0
a0 0

0 0 o

and so is a subgroup of Aut(P;) and Aut(Ps).
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We first show that G fixes the Baer subspace By. Recall that the points used

to define By are induced by the vectors
b1 = (a47 0537 17 0)7

P2 = (Oé, 042, 07 1)7
b3 = (043, a27 ]-7 0)7

P4 = (]_,O[, 07 ]-)7

a®+1 1
=—\,—=,1,1).
Ps < o 757 7)

A straightforward computation shows that

and

14 a8 1
M, = + —pu,
P1 ( B ) Bp2 + apsz + 7 P4

1
pZMT - <@> ﬂp2 + apy,

1 1 1 1
psM, = <—) Bp1 + (a—ﬁg) Bp2 + =P3 + P4,

B B B
= (5)7
P4y = ,8 P2

By scalar multiplying these equations by 32, 32, 8 and 1, respectively, we see that

and

the image under the collineation 7 of every generating point in By stays in By. This

is enough to show that By is fixed under the collineation 7. Similarly,

p1 M, = aps,

p2M, = (%) £p1,

p3M, = (%) pp1 + %P?n
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and

psM, = (%) [p2 + %pzl-

which implies that By is fixed under the collineation ~.

Now recall the group G defined in Section 6.3.1. This group certainly is a
subgroup of the full automorphism group of P, and P,. Moreover, a straight forward
computation shows that Gy is contained in the normalizer of G in PGL(4,q*). We
use this to show that G fixes the collection of Baer subspaces in P; and P,. Let g,
be an arbitrary element of Gy. Then, since G acts transitively (in fact, regularly)
on the Baer subspaces of P; and Py, for any other Baer subspace, say By, there is
a group element g € G such that B = By. Since Gy is contained in the normalizer

of G in PGL(4,q?%), there exists ¢’ € G such that g- g, = ¢» - ¢’. Hence,
Bp = (BY)" = B"" = B = (Bf")" = Bj =By

where By is the image of By under the group element ¢', and B> = By since By is
fixed under the group Gy as shown above. Hence the Baer subspace of P; and P,
are fixed under the group Gj.

Last, we look at the action of Gy on the lines of P; and P,. Since GGy fixes each
one of the Baer subspaces in P; and P,, we know that Gy must also fix the quadric
Q. It is well known (see [18]) that any collineation fixing a hyperbolic quadric of
PG (3,q?) must either leave invariant both of the associated reguli or interchange

the two. Note that the lines
lO - <(07 17 07 0)7 (17 07 07 0)>

and

I = ((1,0,0,0),(0,0,0,1))

are clearly fixed under v and 7. This implies that G, fixes the regulus in P; and

fixes the regulus in Py. Hence, we obtain the following.
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Proposition 6.3.13 The automorphism groups Aut(Py) and Aut(Ps) both admit a

subgroup of order ¢*(q¢ — 1)(q + 1).

Proof: One can see from the matrix definitions of G' and G, that G N G|, contains
only the identity collineation. Since (G| is a subgroup of the normalizer of G in
PGL(4,¢%), Aut(Py) and Aut(P,) both contain the subgroup G x Gy, which has
order ¢*(q — 1)(¢ + 1) u

Corollary 6.3.14 The plane ©(Py) is at most 2-dimensional over its kernel.

Proof: We have shown that the group generated by 7 leaves each of the Baer
subspaces of P; invariant. A straightforward computation shows that the group
generated by 7 leaves each of the lines of P; invariant as well. Hence, the group
which fixes every element of S; contains at least ¢+ 1 elements. From the discussion
of the kernel given in Section 1.4.1, we know that the multiplicative group of the
kernel contains at least (¢ — 1)(¢ + 1) elements and must therefore contain GF(q¢?).

Hence, 7(P;) is at most 2-dimensional over its kernel. |

We can now determine the kernel of 7(Py) and 7(Pz). As discussed in Section
1.4, the multiplicative group of the kernel of a translation plane is isomorphic to the
direct product of the collineation group of ¥ leaving each element of the associated
spread invariant (which is necessarily a linear subgroup) with the cyclic group of
order ¢ — 1. From Theorem 4.1.7, we know that any such group arises from a
collineation group of PG (3, ¢?) which fixes each element of the mixed partition. We
examine the conditions on a 4 x 4 matrix which induces a collineation acting on the

space II fixing each element of our mixed partition.
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First examine P;. Let Mjs be a 4 x 4 matrix inducing a collineation ¢ of II
which fixes each element of P;. Then, in particular, ¢ fixes the lines [y and [,,. This

immediately implies that M; has the general form

miy1 Mi2 0 0

M5 _ ma1 M22 0 0
0 0 m3,3 m3,4
0 0 my3 M4y

Since ¢ fixes the line [;, we can obtain even more restrictions on the entries of Mg,

giving us the general form

mi1 M2 0 0
ma1 M22 0 0
Ms =
0 0 Moo My
0 0 mio2 M1

In order to restrict this matrix further, it is easier to work with the spread of
PG(7,q). In other words, from Theorem 4.1.4, any linear automorphism ¢ of P,
lifts to an automorphism A acting on the lifted spread S; associated with P;. Take
the matrix M; inducing the automorphism ¢ and lift it to an automorphism acting
on &;. We now use the fact that A leaves each element of S; invariant to find more
restrictions on the entries of M;. In fact, it can be shown that there are at most
q + 1 collineations of ¥ leaving invariant each element of S;. The details are given

in the appendix, but we state the result here.

Theorem 6.3.15 The translation plane constructed from the mized partition Py is

2-dimensional over its kernel.
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In a similar fashion, if each line of P, is fixed by a collineation induced by a

4 x 4 matrix, we can immediately determine that the matix has the form

min 0 0 mi 4
0 mi1 Mig 0

0 mMa1 May 0

M4 0 0 myy
Again, in order to restrict this matrix further, it is easier to work with the spread S,
of PG(7,q) associated with P,. This time it can be shown that the only collineation
of ¥y leaving each element of S, invariant is the identity. The details are given in

the last part of the appendix, but we state the result here.

Theorem 6.3.16 The translation plane constructed from the mized partition Py is

4-dimensional over its kernel.

Having exhibited the subgroup G x Gy of Aut(Py) of order ¢*(¢ —1)(¢+ 1),
we now examine the point orbits induced by G' x Gy on the line at infinity of 7 (7).
First note that the line
ly = ((0,1,0,0),(1,0,0,0))
is fixed by both G and Gy. Now consider the line

I, = ((0,1,1,0), (1,0,0,1)).

Recall that every element k of K* can be written in the form f -/ for some f € F*
and some i € {0,1,...,¢}. Hence, by letting @ = 0 and b = f in the definition of
G given at the beginning of Section 6.3.1 and choosing : = 0 and the appropriate

value of j in the definition of Gy, we know that the matrix

(100 0]
0100
00k 0
000k
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induces an element of G X Gy for any £ € K*. But the image of [; under the

collineation induced by this matrix is /. Moreover, the matrix

(aw]

—
o = O O
- o O O

also induces an element of G xG,. Under the collineation induced by this matrix, the
point induced by vector (0,1, 1,0) maps to the point induced by (0,0, 1,0), and the
point induced by vector (1,0,0,1) maps to the point induced by (0,0,0,1). Hence,
and the image of [; under this collineation is /..

Recall from Theorem 4.1.6 that any collineation group of &; centralizes the

group k in PGL(4n,q). Let H = k x (G x Gy).

Theorem 6.3.17 The group H acting on S; induces a collineation group of the
plane w(Py1) which fizes a single point on the line at infinity, creates one orbit of

length ¢*, and creates one orbit of length ¢*(¢*> — 1).

Proof: Recall that every line of P; lifts to a single solid in the associated spread
81 of ¥y and that each of the ¢?(q — 1) Baer subspaces of P, lifts to a set of ¢ + 1
solids which form a regulus in ¥,. The group G x G acts transitively on the Baer
subspaces of P;. Hence, this group lifts to a subgroup of Aut(S;) which permutes
the reguli coming from lifted Baer subspaces in a single orbit of length ¢*(¢ — 1).
But the group x permutes the ¢+ 1 solids within a regulus coming from a lifted Baer
subspace. Hence, the group H induces a subgroup of Aut(w(P;)) which creates an
orbit of length ¢?(¢*> — 1) on the line at infinity of 7(P;).

The group k fixes all of the solids of &; which come from lifted lines of Py,
and the group G x G fixes one line of P; and permutes the remaining ¢ lines in
one orbit. Hence, the group H induces the desired action on the line at infinity of

W(Pl). |
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The group H is also a subgroup of Aut(S;). In this case, H induces a
collineation group acting on 7(8S,) which again creates a point orbit of length ¢?(¢g—1)
on the line at infinity of 7(S2). The remaining point orbits on the line at infinity
are not as easy to determine. We will see in Section 6.5 that this is not needed to

determine the type of the translation plane generated by Ps.

6.4 A Partition from a Regular Spread

The objective of this section will be to create a new type of mixed partition
using a special group action. For the following, we will be working in IT = PG(3, ¢?)
where we now assume ¢ is odd. As before, we let K be the finite field GF(¢?),
and let 3 be a primitive element of K. We let F' be the subfield GF(g), so that
w = B9 is a primitive element of F. We will also make use of the special element
€= ﬁ%, where one can easily show that €7 = —e.

Throughout this thesis we have always modeled a regular spread using finite
fields. This model is very convenient for some applications, but quite lacking for
others. When using fields to model odd dimensional projective spaces, there is no
convenient way of representing a Baer subspace. The best way to model a Baer
subspace is by using coordinates. For this new construction, we attempt to bridge
the gap between these two models. We use a coordinate model for a regular spread

which allows us to more easily look at Baer subspaces in the same model.

6.4.1 A Model for a Regular Spread

For our construction, we will take a regular spread in Il and find a Baer
subspace that meets each line of the regular spread in at most one point. Note that
the only possible intersection sizes are 0,1, or ¢+ 1 where the ¢ + 1 intersection size
corresponds to a Baer subline. So, we are looking for a Baer subspace that does not

meet any of the lines of the regular spread in a Baer subline (see Figure 6.3).
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Figure 6.3: A “good” Baer subspace

We start with a representation of a regular spread. In Bruck [8] it is shown

that the lines
{l(:v,y) = <(xay7 17 0)7 (6yax707 1)> 1LY € K}

together with the extra line
leo = {(1,0,0,0),(0,1,0,0))

form a regular spread of II. These lines are constructed from the ruling families
of certain quadrics, and the coordinates given here are carefully determined in [3].
We construct our desired regular spread from this model where the basis for the
underlying vector space is non-standard. Alternatively, we can think of the change

of basis as the application of some collineation.
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Let

10 0 O

01 —e O
M, =

01 € 0

00 0 1

The matrix My induces a collineation ¢ on II. Applying this collineation to II, we

can write the images of the generators for the lines of our new regular spread as
<(IL’, Y+ ]-7 _E(y - 1)7 0)>

((By, z, —ex,1)).

We will use this regular spread to construct a new mixed partition.

6.4.2 Proving the Existence
Let 8* be the spread obtained from the lines defined above, and let By be

the natural Baer subspace of II, that is, the one whose homogeneous coordinates

are in the subfield GF(q).
Theorem 6.4.1 Fvery line of 8* meets By in at most one point.

Proof: Consider the line l?’m’y) of §*. An arbitrary point on this line can be written
as
(By + e,z + My +1),—ex — eX(y — 1),1))
for some A € K, or
((z,y+1,—e(y —1),0)).
Hence, each line of the spread has just one point whose last coordinate is zero. So,
if a line of §* meets By in a Baer subline, then that Baer subline would have at

least two points whose last coordinates are non-zero. For contradiction, suppose the

following two vectors induce points of l?; Y which are also both in By:
ai = (By+ iz, z+ My +1), —ex — ey — 1), 1)

130



and

A = (By + Xz, o4+ Aoy + 1), —ex — eXa(y — 1), 1),

where A\; # A\y. We will start by looking at 2 special cases. First, suppose that
y =1. Then

a1 = (B + Mz, z + 2)\, —ex, 1)

and

A2 = (B + Aoz, x + 2), —ex, 1)

Now, q; — q2 must also induce a point of By and, moreover, since q; and qs both
have all of their coordinates in F', q; — o must have all of its coordinates in F' as
well. But

i — g2 = (z(M — A2),2(M — X2),0,0)

which means that A\ — Ay € F. Since \; — Ay # 0, we get x € F from the first
coordinate. But from the third coordinate of q;, ex € F. The only possibility is
that x = 0. If z = 0, the first coordinate of q; is # which is clearly not in F', a

contradiction.
Now consider the second special case when y = —1. Then, as before,
a1 = (=04 Mz, x, —ex + 2e)q, 1)
Qo = (=08 + e, x, —€x + 2€)o, 1)
and so

a1 — g2 = (35()\1 - >\2), 0, 2€(>\1 - )\2), 0)-

Since q; and g are both right normalized, we get from their second coordinates
that x € F. So suppose x = 0. Then the first coordinate of q; is —f which is
clearly not in F' and we get a contradiction. Therefore, x # 0. But then the first
coordinate of q; — q tells us that Ay — Ay € F, which, from the third coordinate of
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d1 — q2, tells us that € € F' which is a contradiction. Hence, we can assume from

this point on that y # 1 and y # —1.

Going back to our original forms for q; and q, we get that

i — 2 = ((A = A2), (y + 1) (A1 = Ag), —e(y — 1) (A1 — A2), 0)

also induces a point of By. Since y # 1, we can right normalize this vector and get

the homogeneous coordinates for the associated point to be

(—e(yx— I °> |

So, % € F and %y(;fl) € F. In particular, note that y # 0, and the Frobenius

map acts as the identity on these values. Hence,
( y+1 >f_ y+1
—e(y — 1) —e(y—1)

y'+1 y+1

which implies

e(yi—1) —e(y—1)
Cross multiplying gives us

—e(y =)' +1) =€y’ =y +1)

_yq+1_y+yq+1:yq+1+yq_y_1

2yt =2

Now, since ﬁ € F', we can use the Frobenius map again to get

x4 T

ey —1) —e(y—1)
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Cancelling the € and cross multiplying gives us
2 (—y+1) ==z(y?—1).
Finally, substituting é for y9,
H(1—y)=—(1-y)

and since y # 1,
xly = x.

i and z%y = x, we can now find a

With these two powerful identities, y? =
contradiction. Since, q; and gy are both normalized, z + \;(y + 1) € F fori = 1, 2.
Hence, the vector q = [x + A2(y + 1)]a; — [z + A1 (y + 1)]q2 has all of its coordinates

in F'. Now,
q= (ﬁy(y + 1)()‘2 - )\1) + xZ()‘l o )‘2)7 07
—ex(A = Ag)(y — 1) —ex(Ae — M) (y + 1), (A2 — A1) (y + 1))

and since y # —1, we can right normalize to get

—r?  ex(y—1)
= + , 0, —exr,1]).
<ﬂy y+1 0yt )

Again using the Frobenius map,
(V) = ()
€ x
y+1 y+1
() ()
—€ —x.
y!+1 y+1

Making the appropriate substitutions,

zl_
Y y+1

Hence,

which implies

@I'—‘



and simplifying gives us

_35(5_1) r x(y—1)
1+y Y 14y

Multiplying by 1+ y, we get

1 x
—x (——1) +=-1+y)=z(y—1)—z(1+y)
) Y
or
—x x
—+tr+-—+r=2y—Tr—2r—TY.
)
Finally, by cancelling terms, we obtain 2x = —2x. Since ¢ is odd, x = 0.

Now, since x = 0, we can rewrite q; as

ai = (By, Ay +1),—eAi(y — 1),1)

which implies that By € F'. But gy € F = B—yq =py=y*=p7". So
which means that
1 = yq+1 = BQZZ_I = —1

which is a contradiction. Hence, in all cases we get a contradiction if we assume

that two points of a line of §* lie in By. [ |

We now carefully explain how to use this Baer subspace to generate a new

type of mixed partition of II.

Theorem 6.4.2 In II = PG(3,q?), q odd, there exists a mized partition Ps with

q> + 1 Baer subspaces and ¢* — ¢* — ¢*> — q lines.

Proof: We start with the regular spread S* described above. By the previous

theorem, we know that the natural Baer subspace meets each line of §* in at most
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Figure 6.4: A partition from a regular spread

one point. Every regular spread has an associated Bruck Kernel [8]; that is, a cyclic
group of order ¢? + 1 which acts regularly on the points of each line of the regular
spread. Let & denote the Bruck Kernel associated with S*. By applying £ to By, we
get an orbit of ¢> + 1 Baer subspaces, pairwise disjoint by the regularity, that cover
the points on the lines of S* which intersect By in exactly one point. These ¢* + 1
Baer subspaces together with the lines of §* which do not intersect By will form the

desired mixed partition which we call Pg (see Figure 6.4). |

6.4.3 Automorphisms of Pg
We now examine the kernel of the translation plane which arises from the

mixed partition described above.

Theorem 6.4.3 The mized partition Pg constructed above generates a translation

plane which is 4-dimensional over its kernel.
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Proof: We appeal to the results from Chapter 4. Let Sg be the spread of ¥y which
arises from the lifting of Pg. Since Pg is proper, we know from Theorem 4.1.7 that
any element of the full automorphism group of the lifted spread Ss which fixes each
element of Sg must be a lifted automorphism of the mixed partition. There are
exactly ¢* — ¢®> — ¢®> — ¢ lines in our mixed partition. A short induction argument
shows that ¢* — ¢®> — ¢> — ¢ > ¢+ 1 for any ¢ > 3. Hence, there are more than
q + 1 lines in our partition, which implies that the partition contains four lines
not all contained in the same regulus. It follows, by Theorem 4.1.8, that the only
automorphism of Il which fixes all of the lines of Pg is an element of the Bruck
Kernel ¢ for the associated regular spread S*. But & permutes the Baer subspaces
in a cyclic orbit of length ¢? + 1. Hence, the only automorphism which fixes each
member of the mixed partition is the identity. By Theorem 4.1.7, this implies that
the only automorphism of Sg which fixes every element of Sg is the identity and so

the plane 7(Pg) must be 4-dimensional over its kernel. |

We can also say a word about the automorphism group of the mixed partition
Ps. As noted earlier, the Bruck Kernel of the regular spread used to construct Ps
certainly is a subgroup of the full automorphism group of Ps. This group fixes each
of the lines of Ps and acts regularly on the Baer subspaces of Pg. In practice, for
small values of ¢, there seems to be another cyclic group which acts on Pg. This

work is still in progress.

6.5 Associated Translation Planes

In this final section of Chapter 6, we will attempt to determine the type of
translation plane constructed by each of the mixed partitions previously described.
This process is, in general, quite difficult, and much of this work is still in progress.

Our method will be to obtain information about the translation complement of
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such a plane by looking at automorphisms of the associated mixed partitions and
appealing to Theorem 4.1.4.

We first look at the two partitions P and P constructed from the classical
mixed partition Py. Recall that the partition P} is constructed by replacing 2 lines
and ¢ — 1 Baer subspaces of P, with ¢ +1 lines. From the lifting process of Chapter
2, note that these ¢ — 1 Baer subspaces and 2 lines of Py correspond to a set N of
q*+1 solids of PG(7,q). Moreover, the ¢>+1 replacement lines used in P}, correspond
to a set N’ of ¢% + 1 different solids of PG(7,q). It is not hard to see that each solid
of N intersects each solid of A/ in exactly ¢+ 1 points which necessarily form a line.
Hence, we have replaced a set N of ¢> + 1 solids with a set N’ of ¢®> + 1 different
solids such that any solid of A/ meets any solid of A in a line. This is an example of
net replacement as discussed in Section 1.5. From Theorem 1.5.1, this replacement
corresponds to derivation in the associated plane. Since the derived Desarguesian
plane is a Hall plane (see [21], for instance), we deduce that our mixed partition P}
containing ¢ + 1 lines and ¢*(¢ — 1) Baer subspaces generates a Hall plane. Note
that this mixed partition corresponds to partition #5 in Table 6.2 when ¢ = 2.

Now consider PJ. Here we are replacing ¢® + 1 Baer subspaces of Py with
¢*+q¢*+q+1 lines. This replacement corresponds to replacing a set N of ¢>*+¢%+q+1
solids with a set N of ¢* + ¢? + ¢ + 1 different solids in the associated spread of ¥y.
From the lifting process one sees that every solid of N' meets every solid of N in
a unique point. This is another example of net replacement as described in Section
1.5.

The group © whose orbits form the members of the classical partition Py will
certainly act on the new partition P[. Let WUg be the automorphism group of ¥,
which comes from the lifting of © via Theorem 4.1.4. The members of the net N’
are all contained in the same orbit of length ¢* + ¢® + ¢ + 1 under ¥g since © acts

regularly on the points of each Baer subspace of Py. Moreover, Wq fixes every other
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element of the lifted spread since O fixes each element of Py. Thus, we have a net
with very similar properties to those of an Andre net described in [22]. Hence, it
seems likely (see [23]) that the mixed partition P{ generates a generalized Andre
plane.

We now turn to the partition P;. The orbit structure on the line at infinity
of m(Py) given in Theorem 6.3.17 is not necessarily the orbit structure of the full
automorphism group of m(P;). That is, there may be automorphisms of the spread
coming from P; which are not lifted automorphisms of the mixed partition P;.
Through additional calculations using Magma for small values of ¢, it appears as
though the full translation complement of 7(P;) has one fixed point and one orbit

of length ¢* on the line at infinity. We recall a theorem from [21].

Theorem 6.5.1 The projective plane © is a semifield plane if and only if ™ s

((00), [00]), ((0),[o¢]), and ((o0), [0])-transitive.

In particular, this says that the full automorphism group of a semifield plane
fixes one point on the line at infinity and admits one orbit of length ¢* on the line at
infinity. Computations using Magma for small ¢ together with this theorem indicate
that the plane m(P;) is likely to be a semifield plane. This seems to be confirmed
by the work of Johnson in [23].

The process of reversing the regulus of P; to get P, results in ¢ + 1 solids
of the associated spread of PG(7,q) being replaced with ¢? + 1 different solids. As
discussed in Section 1.5, this reversal process is equivalent to derivation, telling us
that the plane 7(P,) is a derived semifield plane, assuming that 7(P;) is a semifield
plane as above.

Finally, consider the partition Pg. Just as we saw at the beginning of this
chapter, the construction of this new family of mixed partitions comes from a type of
replacement. Here we are replacing ¢®>+¢%+¢+1 lines of a regular spread with ¢?+1

Baer subspaces. In the associated spread of PG(7,¢q), this amounts to replacing a

138



set N of ¢® 4+ ¢®> + g + 1 solids of the spread with a set N of ¢® + ¢ + ¢ + 1 different
solids such that any solid of N/ meets any solid of A/ in a unique point. One can see
this immediately from the lifting process. Once again the set A appears to be an
Andre net (see [23]), and the translation plane coming from this mixed partition is
believed to be a generalized Andre plane. Proving the existence of an abelian group
of order (¢ + ¢ + ¢+ 1)? acting on the spread Ss will confirm that these planes are

indeed generalized Andre planes by the following theorem given in Johnson [22].

Theorem 6.5.2 Let 7 be a translation plane of order q™, n > 2, and kernel contain-
ing GF(q). If © admits an abelian collineation group G of order ((¢" —1)/(q¢ —1))?
in the linear translation complement, then 7 is a generalized André plane. Further-

more, if n is prime or (n,q — 1) = 1, then 7 is an André plane.
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Chapter 7

CONCLUSION

We have seen that translation planes can be studied using spreads and mixed
partitions. These different partitions are closely related as was seen in Chapter
2. We examined a method by which one could use a mixed partition to construct
a translation plane directly, and we proved that this method is equivalent to the
construction from the associated spread using the Bose/Andre model.

The mixed partitions which give rise to regular spreads, and hence, Desargue-
sian affine planes, were completely determined. We examined the group theoretic
relationships between mixed partitions and their associated spreads. The work in
Chapter 4 laid the foundation for examining the automorphism groups of the spreads
constructed in Chapter 6.

The relationship between “equivalent spreads” given in Chapter 5 is probably
the most significant theoretical result of this thesis. A result of Liineburg gives
the relationship between spreads of the same dimensional space which generate
isomorphic translation planes. We now know the relationship between spreads of
different dimensional spaces which generate isomorphic translation planes. These
two results together provide a unifying theory for spreads which generate isomorphic
translation planes.

Finally, the work in Chapter 6 provides some specific examples of mixed
partitions and associated spreads. This is an area with obvious growth potential.

The examples of Chapter 6 are all in PG(3,¢*). That is, we constructed infinite
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families by allowing ¢ to vary over all prime powers (some examples had ¢ restricted
to even or odd values), but no examples were generalized for higher dimensions.
Because of the numerous examples in 3-space, the author certainly believes that
such higher dimensional examples exist, but are simply hard to find.

Many of the examples for small ¢ found in this thesis were discovered over
long periods of time using the software package Magma. For instance, all mixed
partitions of PG(3,4) were discovered by an exhaustive search. Then each partition
was analyzed for special properties (like the existence of a regulus in the partition P,
of Section 6.3). Once such a property was discovered, this property was used to try to
construct a similar partition in PG(3,9) or PG(3,16), for instance. This frequently
required searching for special lines or Baer subspaces with certain properties. It is
this type of searching which can take days, weeks, or longer. Once partitions are
discovered for several values of ¢, we then try to use the examples to construct a
general partition of PG(3,¢?) for an infinite number of values of q.

Increasing the dimension from 3 to some higher odd dimension forces the
computer to work much harder and so far has produced no results. Also, some of
the basic structures, like reguli, have quite different properties in PG(3,¢?) than
they do in PG(2n — 1,¢%), for n > 3. As a result, the partitions like P; are not
easy to generalize to higher dimensional spaces. Hence, to find mixed partitions of
higher dimensional spaces, one needs to start with a clear idea of where and how to
look.

The classification of a translation plane from its associated mixed partition
is another area which needs to be explored. As we pointed out in Section 6.5,
determining the type of translation plane generated from a mixed partition can be
quite difficult. There are many known classification results, but these results usually
require detailed knowledge of the group acting on the associated spread. It would be

interesting to find geometric properties a of spread S (or a mixed partition) which
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would help determine the type of translation plane generated by S.

There is also the possibility that other types of “mixed” partitions can be
used to construct translation planes. For instance, if we use r*'-root subspaces
of PG(2n — 1,q") rather than Baer subspaces of PG(2n — 1,¢?) to build a mixed
partition, there may be a technique similar to the one in Section 1.4.2 which can
be used to construct translation planes. The existence of such a technique has been
explored by the author and will be further examined after the completion of this
thesis.

It might also be interesting to see how the theory developed here can apply
to other areas. In recent years the study of flag-transitive affine planes has become
quite popular. It would be interesting to examine the kinds of mixed partitions
which give rise to such planes. This may eventually lead to better classification

results or maybe some new examples.
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Appendix

KERNEL ARGUMENTS

In this appendix, we will find the kernel of the translation planes 7(P;) and
7(Py) as defined in Section 6.3. These arguments are quite technical and involve
a large amount of matrix and field computations. Although most terminology is
repeated here, the reader is referred back to Section 6.3 for more details about the
mixed partitions and their construction.

In order the find the kernel of the translation planes associated with P; and
Ps, we need to take a closer look at the Baer subspaces in the partitions. We start
by examining some specific coordinates for the “lifting” of By. Recall that the mixed
partitions P; and P, are defined for ¢ even. We use this property in some of the

computations.

A.1 Lifting the Baer Subspace By
Recall the Baer subspace By of Il which lies in the mixed partitions P; and
Psy. The points induced by the vectors

P1 = (a47 0537 17 0)7

P2 = (Oé, 042, 07 1)7
P3 = (0537 042, 17 0)7

P14 = (]_,O[, 07 ]-)7
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and

generate By, and the vectors have the property that

Bp1 + Bp2 + ps + P+ = Bps.

Using the embedding of I' into ¥ from Chapter 2, the vectors which induce the
images of the points induced by the above vectors are given by
b1 = (a47 0537 17 07 045, 044, «, O)
b2 = (aa a27 07 ]-7 a27 OZS, 07 a)
b3 = (043, a27 ]-7 07 a47 a37 a, 0)
P4 = (17 a, 07 17 «, 042, 07 Oé)
3411
Ps = (ﬁ,—,l,l,a?’—l—l,g,a,a) .
o f

B

Note that we abuse notation and continue to use p; to denote the embedded p;.

The points on the line [, in Yy are induced by all vectors in the set
{/p!+p;:j€{0,1,2,....q}}.
We temporarily fix j and consider the following vectors:

o’*'pl + py = Py
o/ T'pd + py = Py
o’p§ + ps = Ps,
o’p] 4 ps = Pu;

o’ (87ps)" + (B%ps) = Ps,j

Then each of the p;’s induces a point of ¥,. Since
BP1,j + BD2;j + P3j + Paj
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= (Ba?™'p{ + fp1) + (Ba’*'pS + Bp2) + (a/P§ + Ps) + (a/P] + P4)

= (Ba?*p] + Ba?T'p] + o/ps + a’Pf) + (Bp1 + fP2 + P3 + Pu)

= o/ (fap{ + Bap] + p§ + pf) + (Bp1 + P2 + P3 + Pa)

= o (8%p{ + 4"} + p§ + Pi) + (BP1 + P2 + Ps + Pa)

= o (Bp1 + Bp2 + ps +p1)" + (Bp1 + Bp2 + Ps + P4)

= o/ (Bps)" + (3Ps)

= f>5,j
we immediately get that these vectors generate a Baer subspace Bj. By Lemma
2.1.7, there is a unique solid of ¥, through the point induced by ps ; that intersects
each of the lines [, in a point. Hence, we have found generators for one of the
3-spaces, namely Ej, in the regulus of ¥ defined by By. To get the other solids in
the regulus, simply let j vary, 0 < 5 < ¢. This gives us the ¢+ 1 solids in the regulus
determined by By.

A.2 The Kernel of 7 (P;)

Let &7 be the 3-spread of ¥ constructed by lifting the mixed partition P; as
described in Chapter 2. We look for the kernel of 7(P;) by considering restrictions
on a matrix which induces a collineation of ¥, fixing each element of the spread S;.
Let T, be an 8 x 8 matrix all of whose entries are in F', and let ¢ be the collineation
induced by T} on the space . Moreover, assume that ¢ fixes each member of the

spread &;. From the work in Section 6.3.4 and the group relations of Section 4.1,
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we can show that Ty has the following general form.

(4 b 00 e f 0 0 |

c d 0 0 g h 0 0

0 0 d c 0 h g
T¢—00ba0 0 f e
e f 00 atie b4+21f 0 0

g h 00 ct+tlg d+2ih 0 0

0 hg O 0 d+ih c+1yg

(00 fe O 0 b+ 5f a+ge |

where a, b, c and d are arbitrary elements of F'. This is obtained by assuming that
¢ fixes each solid of S; which arises from a lifted line of the mixed partition P;. To
complete our analysis of the kernel, we must assume that ¢ fixes the solid Bj. To

do this, consider the two vectors
1
Psj = (1 +w? w,0,0,—, 14+ w? W, 0)
w
and
. 1
p4,j = (07 ]-7 07 07 ]-7 B 07 17) .
w

which are generators of Bj. The images of the induced points under the collineation

¢ are induced by the vectors

1 1
P31, = <(a +9)(1 4+ w?) + cw + e, (b+ h)(1 +w?) + dw + f;,th,,ng,

b

1 N 1 \1
(e+c+—g)(1+w’)+gw+|(a+ —e) —
w W w

1 1 \1
(f+d+ ah)(1+u;2) + hw + <b+;f) a,w?dJrwh,uﬂchwg)
and

. 1 1 1 1 1
p4T¢:<c+e+—g,d+f+—h,f,e,g+—e+a+—c+—2g,
w w w wooow

1 1 1 1 1
h+—f+b+—d+—2h,b+—f,a+—e>.
w W ow w w
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To ensure that these images under ¢ are still in Bj, we use the defining
equations for Bj, or equivalently, the basis vectors for the orthogonal complement
of the vector space representing Bj inside the vector space V of dimension 8 over

G'F(q) which we use to model ¥y. These vectors are given by
0 = (].,CU,O, 1,(4),0,0,0),

0, =(0,1,1,w,0,w,w,0),

1
03 = <w70707_707w7071> )
n

1
<1, —w,l,w,1, 0,w> .
w

We now check that these vectors are linearly independent and span the above or-

and

04

thogonal complement. To show that these are linearly independent, consider a linear
combination of these vectors which yields the zero vector, and let a, b, ¢ and d be the
respective coefficients. Then by looking at the seventh coordinate, b must be 0. By
looking at the third coordinate, we see that d is 0. But now the eighth coordinate
makes ¢ = 0, which imediately implies that a = 0 as well. Hence, these vectors
are linearly independent. To show that they span the orthogonal complement of
the vector space which induces Bj, one can easily check that the appropriate dot
products are all 0.

In order to achieve more restrictions on the entries of the matrix Ty, we dot
each of the above vectors with the vectors p3T; and p4T} to achieve the following

system of linear equations:
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dot product equation

A: pily-00 0= e+h+w(ld+f+g+a)

B: P41y - 0o 0= e+h

C:  p4Ty- 03 = wle+b)+2h+(g+f+d+a)+wle+h)

D: psTy-00 0= w(f+g)+h+b

E: p3Ty- 01 = Wh+h+tetco)+w(a+d) +wb+h+e)+f
F: psTy -0y = g+ f)+w(b+h)+wf

G-

p:sTy-03 0= wl+w)la+g+f+d)+h+tet+b+if
First we note that D and F together imply that f = 0, and we can eliminate F’
since it adds no new information. We can also cancel w from E giving us
A: 0= e+h+w(d+g+a)
0= e+h
0= w(c+b)+Lih+(g+d+a)+wle+h)
0= wg+h+b

B9 QW

0= w’b+h+e+c)+wl@a+d +b+h+e

G: 0= wll+w))(la+g+d +h+e+bd
Plugging B into A, C, E and G, and then using A in C' and G reduces the system.
In particular, we get from G that b = 0. Hence, the system is reduced to

A: 0= d+g+a

B: 0= e+h

C: 0= wc+ %h

D: 0= wg+h

E: 0= wi’+w(a+d)

We can now deduce that all of the variables can be written in terms of a and c.
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Hence, we can write

[ o 0 0 0 we 0 0 0 |
¢c at+we 0 0 we  wile 0 0
0 0 a+we ¢ 0 0 w? wec
0 0 0 a 0 0 0 w?e
Ty = ,
w’c 0 0 0 at+wec 0 0 0
we  wle 0 0 0 a 0 0
0 0 Wl we 0 0 a 0
| 0 0 0 w2 0 0 0 atwe

We have already shown in Corollary 6.3.14 that the kernel of m(P;) is at least
GF(¢?) by showing that the kernel of 7(P;) has a subgroup isomorphic to the group
generated by 7. But we have just shown that the kernel can contain, at most,
collineations induced by matrices of the form given above. There are only ¢? — 1
such matrices (by letting a and ¢ vary, but not both 0). Note that all scalar multiples
of the identity matrix are in this list (let ¢ = 0). So the number of collineations
produced is exactly ¢ + 1. Hence, every matrix of the form given above induces a
collineation in the kernel of 77 (P;) and we have a plane which is exactly 2-dimensional

over its kernel. We restate Theorem 6.3.15.

Theorem A.2.1 The translation plane w(P1) is 2-dimensional over its kernel.

A.3 The Kernel of 7(P,)
By following the same basic procedure as above, we can determine that a

given 8 x 8 matrix which induces a collineation fixing each solid coming from a line
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of P, has the general form

a 0 0 b e 0 0 f
0 a b 0 0 e f 0
0 ¢c d 0 0 g h 0
T¢_000dg 0 h |
e 00 f atle 0 0 b+1if
0 e f O 0 a+ie b4+21f 0
0 g h 0 0 c+ig d+=h 0
g 00 h ctlg 0 0 d+2in

where a,b,c and d are arbitrary elements of F. To complete our analysis of the
kernel, we again assume that ¢, the collineation induced by the matrix 7, fixes the

solid B%. Consider the two vectors which generate points of B]- given by
. 2 1 2 2
b3, = 1+w7w70707;71+w7w70 )

and
1
f)4,j - (07170707 17_707 17) .
w
The images of the induced points under the collineation ¢ are induced by the vectors
. 2 1 2 2 2 2 2 1
Ds; = a(1+w)+;e,wa+(1+w)e+wg,wb+(1+w)f+w h,b(1+w)+;f,
5 1 1 9 1 9 1
e(l+w’)+—(a+—e),we+(1+w’) la+—€e)+w|[c+—g],
w w w w
5 1 5 1 5 1 1
wfi+(14+w)(b+—f)+w(d+—-h), fl+w)+—|b+—f
w w w w
and

R 1 1 1 1
p47j:<e+g,a—i——e,b—!——f,f—!—h,a—l——e—i—c—i——g,
w w w w
1 1 1 1 1 1
e+ — <a+—e),f+— <b+—f> ,b+—f+d+—h>.
w w w w w w
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To ensure that these images under ¢ are still in Bj, we recall the basis vectors

for the orthogonal complement of the vector space which induces Bj, namely
(17 w’ 07 17 w? 07 07 0) Y
(07 17 17 w’ 07 w’ w? 0) Y

1
<w707 07 —,O,UI,O, 1) )
w

1
(1, —w,l,w, 1,0,w) .
w

To achieve more restrictions on the entries of T}, we dot the images given previously

and

with the above basis vectors of the orthogonal complement. We end up with the

following system of linear equations:

dot product equation
A: vy - Oy 0= e+ f+h+we
B: Vg + 09 0= %e—l—wh—i—we—i—%g
C: Uy - 03 0= wg+a+%g+b—i—d
D: Vg - O4 0= Zetwatetwe+ 39+ f+wd
E: vy - 01 0= wig+b+w?b+1f
F: v - 0y 0= wla+w?e+wdct+w?f+wb+ f+wid
G: vy - O3 0= wbt+wdc+w?q+ f+uw?f

Adding together F' and G and dividing by w? gives us wa + e +wd + g = 0. But
%B + D + A reduces to wa + wd + e = 0. Hence, g = 0. Adding %B + A yields the
equation

H : %e—l—fﬂLwc:O.
We consider w?H +w?C + F +wE. This reduces to w?e+e = 0. The only possibility

is that e = 0. Hence, g = e = 0, and we can rewrite the system as
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A: 0= f4+h+we

B: 0= wh

C: 0= a+b+d

D: 0= wat+we+ f+wd

E: 0= b+wih+1f

F: 0= Wwa+twle+w?f+wb+ f+wid
G: 0= wb+wc+ f+uw?f

H: 0= f+wc
Hence, by equation B, h = 0 the thus f = we by A. Equation D then implies a = d
and from C' we obtain b = 0. But then E implies f = 0, which in turn implies that
¢ = 0 from H. Hence, every variable is 0, except for a and d which are equal, and

the general form for T}, is

S o o ] ]

] ] ] ] ]

e ] e e ] ]

e e ] e e ] ]

] e e ] e} e} e} S
] e e ] e e
] ] ] ] ]
] ] ] ]
] ] ]
]
S

0 0 a

Therefore, we have shown that the only linear collineation of ¥y which fixes
each element of the spread S, is the identity. Hence, the kernel of the translation

plane 7(P,) is isomorphic to GF(q). We restate Theorem 6.3.16.

Theorem A.3.1 The translation plane w(Ps) is 4-dimensional over its kernel.
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