
Isomorph-free exhaustive
generation algorithms
for association schemes

Isomorfvrije exhaustieve

generatiealgoritmen

voor associatieschema’s

Jan Degraer

Promotor: prof. dr. dr. K. Coolsaet

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

Vakgroep Toegepaste Wiskunde en Informatica
Voorzitter: prof. dr. G. Vanden Berghe
Faculteit Wetenschappen
Academiejaar 2006-2007

To Lien with all my love.

Acknowledgements

I may not have gone where I intended to go, but I think I have
ended up where I needed to be. [D. ADAMS]

First and foremost, my thanks go to my promotor Prof. Kris Coolsaet for follo-
wing my research with interest and for giving me support and guidance count-
less times. During the last six years I have learnt a lot from your profound
knowledge in computer science and mathematics and your talent to simplify
anything that looks difficult. Your confidence in my abilities has been a stimu-
lating challenge for me. Thanks Kris !

Further I would like to thank all my colleagues and ex-colleagues in the depart-
ment for a friendly and sociable atmosphere. It is nearly impossible to list all
these people here. However, the following people deserve a special mention.
Thank you Veerle and Gunnar for being there for me over the past years. Thank
you Adriaan, Guy and Reza – my office mates – for your friendship.

I am grateful to my parents for their trust and love. And last but certainly not
least, I would like to thank Lien. However, I just do not know how to thank
you for all your support, patience and love, especially during the final months
of writing this dissertation.

Jan Degraer
march 2007

Inhoudsopgave

Acknowledgements . i

Contents . vi

1 Introduction 1

2 Association schemes 9

2.1 Graphs . 10

2.2 Association schemes . 13

2.3 Distance regular and strongly regular graphs 18

2.4 The Bose-Mesner algebra . 22

2.5 Feasibility criteria . 32

3 Generation algorithms. 35

3.1 Exhaustive generation . 36

3.2 Isomorphism in a group-theoretic framework 41

3.2.1 Group theory . 41

iv Inhoudsopgave

3.2.2 Isomorphism in terms of induced group actions 45

3.3 Isomorphism rejection . 48

4 Isomorph-free generation of association schemes 55

4.1 Exhaustive generation . 55

4.1.1 Combinatorial constraints 57

4.1.2 Combinatorial look-ahead strategies 59

4.1.3 Dynamic variable ordering 61

4.1.4 Algebraic constraints . 62

4.2 Isomorph-free generation . 63

4.2.1 Row order canonical form 65

4.2.2 Column order canonical form 68

4.2.3 Lexically ordered matrices 71

4.3 Checking algebraic properties . 73

4.3.1 Positive semidefiniteness algorithm 74

4.3.2 Preemptive positive semidefiniteness checking 80

4.3.3 Elimination of numerical errors 81

4.3.4 Look-back strategy . 81

4.3.5 Checking the rank constraint 83

4.4 Row versus column . 84

4.4.1 Recorded objects . 85

4.4.2 Look-ahead on lexical ordering 86

4.4.3 Constraint recording and learning 90

4.5 Generic generator . 90

5 Canonicity test 95

Inhoudsopgave v

5.1 Representation of permutations groups 96

5.2 The classical algorithm . 97

5.2.1 Traversal of the symmetric group 97

5.2.2 Partial permutation . 99

5.2.3 Analysis and empirical data 103

5.3 Using the automorphism group 106

5.3.1 Discovering a new automorphism 106

5.3.2 Minimal in orbit . 110

5.3.3 Maintaining an orbit partition 115

5.3.4 Analysis and empirical data 116

5.4 Image partitioning . 121

5.4.1 Drawbacks of the partial permutation criterion 121

5.4.2 Canonicity algorithm with image partitioning 129

5.4.3 Refinement algorithm . 149

5.4.4 Refinement data structure 158

5.4.5 Analysis and empirical data 165

5.5 Minimality and automorphism group submatrices 165

5.5.1 Minimality of the leading principal submatrices 168

5.5.2 Automorphism group of the leading principal submatrices 175

5.5.3 Analysis and empirical data 186

6 Case studies 193

6.1 Strongly regular graphs . 194

6.1.1 Introduction . 194

6.1.2 Verification known results 196

6.1.3 Strongly regular (45, 12, 3, 3) graphs 196

6.1.4 Strongly regular subgraphs of the McLaughlin graph . . . 202

vi Inhoudsopgave

6.1.5 Strongly regular (126, 50, 13, 24) graphs 204

6.1.6 Strongly regular (96, 38, 10, 18) graphs 204

6.2 Three-class association schemes 205

6.3 The Perkel graph . 213

Bibliography 217

Nederlandse samenvatting 225

1 Introduction

”Not everything that counts can be counted, and not everything
that can be counted counts.”[A. EINSTEIN]

Combinatorics is a branch of discrete mathematics dealing with finite numbers
of objects satisfying a certain set of constraints. A wide spectrum of combinato-
rial objects are of interest to combinatorists, ranging from rather basic objects
such as all the subsets of a finite set, permutations, partitions, trees, . . . to more
complex combinatorial objects such as graphs [9, 12], designs [26, 65], geo-
metries [60], posets [11] . . . whether satisfying various structural properties or
not. In the study of such combinatorial objects the following principal problems
arise frequently [65]:

existence problem Does a combinatorial object that satisfies a given set of con-
straints exist?

counting problem Given a set of constraints, count, up to some notion of iso-

morphism, the number of combinatorial objects meeting these constraints.

classification problem Given a set of constraints, describe, up to some noti-
on of isomorphism, all combinatorial objects meeting these constraints or
establish non-existence.

2 1 Introduction

Probably the most fundamental problem is the problem of existence. In gene-
ral, it is straightforward to verify that a combinatorial object meets the required
constraints, however, an explicit construction of such an object is often difficult
to realize. In the case of counting and classification problems it is customary
to suppose that the combinatorial objects under consideration are subject to so-
me relation “is isomorphic to”, which partitions these combinatorial objects into
equivalence classes. In this way, exactly one representative from each equiva-
lence class, or isomorphism class, is counted or described and combinatorial ob-
jects within a given equivalence class are considered mathematically identical,
or so-called isomorphic. In general, two combinatorial objects can be regarded
as isomorphic, if the one can be acquired from the other, and vice versa, by
renaming or reordering (or both) the elementary objects – such as elements or
subsets of a finite set – of which these combinatorial objects are composed.

The following well-known problem posed by the Reverend Thomas Penyngton
Kirkman in 1850 in a popular magazine called The Lady’s and Gentleman’s Diary

might serve to clarify the terms combinatorial object, combinatorial classificati-
on and isomorphism.

Kirkman’s schoolgirl problem: Fifteen young ladies in a
school walk out three abreast for seven day in successi-
on: it is required to arrange them daily, so that no two
walk twice abreast.

In order to classify all such week schedules, any two schedules are considered
identical (isomorphic) when one such schedule can be obtained from the other
by renaming the schoolgirls and reordering the days. Taking into account this
particular definition of isomorphism, the valid week schedules turn out to be
partitioned into exactly seven isomorphism classes. Representatives of each
such class are shown in Table 1.1, where letters represent schoolgirls, groups of
three schoolgirls are listed vertically.

When we look at the 7 distinct week schedules of Kirkman’s schoolgirl problem,
it is rather easy to verify that each week schedule is correct. However, there are
5 040 ways to reorder the days and 1 307 674 368 000 ways to rename the school-
girls. Taking into account this vast amount of possibilities, verifying whether or
not these 7 solutions represent exactly one solution from every isomorphism

1 Introduction 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

adefg abcdf abcdg abcfg abcde abcef abceg

bjhik hemkj jmehi dlikh fhlik lidjh ndhij

cnmol ignol kofln enjmo gjomn mkgon ofklm

adefg abcdf abcdg abcfg abcde abceg abcef

bjhik hemkj jmehi dilhj flhij ldikh nhdik

cnmol ignol kofln ekonm gnkmo mfjno ojglm

adefg abceg abcdf abcfg abcde abcef abcdg

bjikh hdlkj jemhi dlihk fmhij lidhj nheki

comln ifonm kgnlo enjmo goknl mkgon ojfml

adefg abceg abcdf abcfg abcde abcdg abcef

bjikh hdlkj jemhi dmhji flikh lheik nidjh

comln ifonm kgnlo eoknl gnmjo mjfno okglm

abcfg abcde abceg abcdf adefg abcdg abcef

dihmj fhikl ldkih nejih bhkji hmejk jldhi

eklno gjnmo mfojn ogmlk conlm iofnl kngmo

abcfg abcde abceg abcdf adefg abcef abcdg

dihmj fhikl ldkih nejih bjhik hmdkj jlehi

eklno gjnmo mfojn ogmlk cnmol iognl knfom

adefg abcfg abcde abcdf abcdg abcef abceg

bijlh dijhk fhimk heljk jmehi lkdhi ndhij

cknom elmno gjonl ignom kofln mngoj ofkml

Tabel 1.1: The 7 distinct solutions to Kirkman’s schoolgirl problem [27].

4 1 Introduction

class involved, is certainly far less straightforward. In these cases, where clas-
sification results can not be established by means of combinatorial arguments,
combinatorial classification by means of manual calculations turns out to be a
onerous, tedious and error-prone task.

Nowadays combinatorial classification is inextricably bound up with compu-
ters and classification algorithms. Algorithms have become essential tools, in
successfully solving both existence problems [38, 45, 81, 84, 90] as well as
classification problems [37, 66, 79, 82, 95] for a wide variety of combinatori-
al objects. Combinatorial objects are both finite and discrete structures which
makes corresponding existence and classification problems suitable to be tac-
kled with local and exhaustive search algorithms. Local search algorithms, such
as hill climbing, simulated annealing, . . . are commonly used to solve existence
problems. Such methods do not guarantee to find a solution even if one or more
solutions exist, however, in practice these methods turn out to be efficient.

Exhaustive search algorithms on the other hand are often used to solve classifi-
cation problems or even to establish non-existence – probably one of the most
well-known classification results is the nonexistence of the projective plane of
order 10 [68] (see also [65, chapter 12]). Such exhaustive methods examine
all candidate solutions within a given search space, that is why they guarantee
to find all solutions if such solutions exist – under the assumption that one is
willing to wait long enough. Probably the most well-known exhaustive search
method is backtracking [49], in which partial solutions are recursively extended
and collapsed one step at a time until a solution is encountered. Backtracking
can be seen as a depth first traversal of a search tree, in which nodes corres-
pond to partial solutions and branches correspond to the systematic extension
of a partial solution, or in the opposite direction, the systematic collapse of a
partial solution.

In this text we concentrate on algorithms for classifying combinatorial objects
up to isomorphism, or so-called isomorph-free exhaustive generation algorithms.
The combinatorial objects under consideration are association schemes [1, 47]
and in particular strongly regular [13, 14] and distance regular graphs [12].
Our ambition is dual. The emphasis is primarily from a computer science per-

spective, but also the mathematical results we have obtained are of independent
interest.

We try to design, improve and study such classification algorithms for hard com-

1 Introduction 5

binatorial problems. These algorithms essentially require a recursive traversal
of a tree-like search space which exhibits an exponential behaviour. Typically,
various intelligent pruning methods are used to limit the search space, and thus
at the same time, to control the execution time of the classification algorithm.

Basically, there are two distinct types of pruning methods. On the one hand, we
may prune branches of the recursion tree which correspond to partial solutions
for which it can be established that they cannot possibly be extended to a full
solution satisfying the required constraints. In practice, establishing the non-
extensibility of a partial solution is based on the mathematical properties that
are specific to the combinatorial objects at hand. On the other hand, we need
methods for determining isomorphic (partial) solutions so as to detect symmetry
in, and eliminate symmetry from the tree-like search space. More precisely, we
can prune branches of the recursion tree which correspond to partial solutions
for which it can be proved that they are isomorphic to partial solutions we have
already considered earlier during search. Note that these methods are also used
to guarantee that exactly one representative of each isomorphism class is listed
as result of the classification algorithm.

Despite the usage of clever, well-designed pruning methods, the search spa-
ce associated with the classification of certain combinatorial objects can easily
exceed the capacity of the finite computing resources available. Two funda-
mentally distinct problems – or even the combination of both – may underlie
this phenomenon. A first type of problem which may occur is that there are
far more non-isomorphic combinatorial objects than we can process with the
computer resources at our disposal. For example, the classification of the Stei-
ner triple systems1 of order 15 (abbreviated by STS(v) where v denotes the
order) – one of the most renowned paper-and-pencil calculations – resulted in
the discovery of 80 pairwise non-isomorphic designs [25]. For STS(19), the
usage of approximately two years of CPU time – on a 500-MHz computer – was
needed in order to obtain 11 084 874 829 pairwise non-isomorphic designs [63].
For STS(21), a complete classification is currently out of reach [64]. Using
the same classification algorithm as for STS(19), an estimation of hundreds of
thousands CPU-years is given in [63]. Because the aforementioned numbers of
pairwise non-isomorphic STS(15), STS(19) and STS(21) are lower bounds on
the number of pairwise non-isomorphic strongly regular graphs with parameters

1For lower and upperbounds on the number of non-isomorphic Steiner triple systems we refer to
[107].

6 1 Introduction

(35, 16, 6, 8), (57, 24, 11, 9) and (70, 27, 12, 9) respectively, the same problem is
applicable to the classification of at least some of the combinatorial objects un-
der consideration in this text.

When designing a classification algorithm, we face the challenge to discover
and prove mathematical properties of the combinatorial objects at hand which
might contribute to a great extent in reducing the corresponding search space.
A second type of problem which may occur is that despite a clever usage of
these mathematical properties, the classification algorithm may still end up in
traversing large parts of the search space which do not contain a single solution.
It was long an open problem whether a 2− (22, 8, 4) block design exists [3, 57,
73, 85]. Even with a highly sophisticated generation algorithm, recently still
more than 263 CPU years – on a 2-GHz computer – were used to establish that
no 2− (22, 8, 4) block designs exist [4].

From a more mathematical perspective, results obtained using classification al-
gorithms are an objective by itself. Classification results are of interest to mathe-
maticians since a complete catalogue of such objects may provide a better com-
prehension of their structure or, even more, of a larger family of combinatorial
objects to which they belong. Furthermore, catalogues of combinatorial objects
can be used for testing existing conjectures, formulating new conjectures or to
find objects within this catalogue which satisfy certain mathematical properties
of interest. For example, the classification of the strongly regular (45, 12, 3, 3)
graphs [22] – one of the results of this thesis – was used in [42] to determine
all primitive strongly regular graphs with chromatic number equal to 5 and in
[39] to conjecture that the isomorphism classes of strongly regular graphs are
characterized by the spectrum of certain matrices associated with each graph.
As a second example, the classification of the Perkel graph – another result of
this thesis – was used in [102, 103] to determine which distance-regular graphs
are characterized by their graph spectrum. A catalogue of combinatorial objects
can also serve as a starting point in the classification of related combinatori-
al structures. For example, the strongly regular (45, 12, 3, 3) graphs were used
in [61] to classify all primitive non-symmetric 3-class association schemes on
at most 100 vertices and applied in [31] to construct new symmetric 3-class
association schemes.

The organization of the remainder of this text is as follows. Chapter 2 outlines
the theoretical background on association schemes, strongly regular graphs and
distance regular graphs. In Chapter 3 we introduce, in a group-theoretic frame-

1 Introduction 7

work, several generic algorithms used for exhaustively generating a collection
of combinatorial objects up to isomorphism. Specific algorithms for associa-
tion schemes are discussed in Chapters 4 and 5. More precisely, Chapter 4
focuses on specific methods to generate at least one representative from eve-
ry isomorphism class, while Chapter 5 emphasizes specific methods to remove
isomorphic association schemes from consideration so as to obtain isomorph-
free generation. Finally we present in Chapter 6 several case studies together
with new complete classifications results on association schemes, strongly re-
gular and distance regular graphs obtained using (variants of) the generation
algorithms described in Chapters 4 and 5. Several of these classification results
appear in [21, 22, 30, 31]. Attacking computational hard classification problems
sometimes requires to tackle such problems as individual instances, because no
algorithm that applies to a general class, will be feasible for some particular
instances. If so, we outline for each such instance the principal modifications to
the general generation algorithm.

2 Association schemes

”Someone told me that each equation I included in the book
would halve the sales.”[S. HAWKING]

In this chapter we give an introduction to the theory of association schemes,
placing emphasis on the concepts that will be necessary for the remainder of
this text. At the same time, the concepts of distance regular and strongly regular
graphs and their connection with association schemes are introduced.

Association schemes play an important role in the field of combinatorics. They
have their roots in the statistical design of experiments [7] and in the study
of groups acting on finite sets [59]. Besides, associations schemes are used
in coding theory [32], design theory and graph theory. In terms of graphs,
association schemes can be regarded as colourings of the edges of the complete
graph satisfying nice regularity conditions.

Many books are devoted to the theory of association schemes and serve as basis
for parts of this introduction. For a more elaborate introduction to the theory of
association schemes, the reader might wish to consult [1, 2, 12, 47].

10 2 Association schemes

2.1 Graphs

First we recall some general concepts from graph theory. For an extensive over-
view of graph theory we refer to [28, 36, 105].

Definition 2.1.1. A graph G is an ordered pair (V, E), where V is a finite set of
vertices and E is a finite set of two-element subsets of vertices, called edges. ⋄

The vertex set of a graph G is denoted by V(G), its edge set by E(G). We
shall write V instead of V(G) and E instead of E(G) whenever the graph G is
clear from context. The cardinality of V(G) is called the order of G while the
cardinality of E(G) is called the size of G. An edge {x, y}, commonly written as
xy or yx, joins the vertices x and y. Two vertices are adjacent if they are joined
by an edge. We shall write x ∼ y to indicate that two vertices are adjacent
(and distinct) and x 6⊥ y to indicate that they are not adjacent (and distinct). A
vertex x is incident with an edge e if x ∈ e. The neighbourhood NG(x) = N(x)
of a vertex x is the set of all vertices adjacent to x. The degree or valency d(x) of
a vertex x is the number of vertices adjacent to x (hence d(x) = |N(x)|).

The complement G of G is the graph with the same vertex set V such that
two vertices are adjacent in G if and only if they are not adjacent in G. If
all vertices of G are pairwise adjacent, then G is complete. A complete graph
on n vertices is denoted by Kn. The complement of a complete graph is an
empty graph. A path is a non-empty graph G with V = {x1, x2, . . . , xk} and
E = {{x1, x2}, {x2, x3}, . . . , {xk−1, xk}}. The number of edges of a path is its
length. A non-empty graph G is connected if any two vertices are linked by
a path. A connected graph G is a tree if the path linking any two vertices is
unique.

The distance d(x, y) in a graph G of two of its vertices is the length of the shortest
path linking x and y. The greatest distance between any two vertices of a graph
G is the diameter of G. The i-th neighbourhood Ni(x) of a vertex x is the set of
all vertices that lie at distance i from x (hence N(x) = IN1(x)). The distance-k
graph Gk, 0 ≤ k ≤ d, of a connected graph G of diameter d, is the graph with
the same vertex set V such that any two vertices are adjacent whenever they
are at distance k in G. Hence Ni(x) = NGi

(x). A graph G of diameter d is an
antipodal graph if, for any vertex x ∈ V, the set {x} ∪Nd(x) consists of vertices
which are mutually at distance d. Hence, there exists a partition of the vertex

2.1 Graphs 11

set into classes such that any two vertices are in the same class if and only if
they are at distance d.

If all the vertices of G have the same degree k, then G is called regular of degree
k or k-regular. A 3-regular graph is also called a cubic graph. A reg(k, n) is a
regular graph of degree k on n vertices. A graph G is bipartite if its vertex set
V can be partitioned into two partite sets V1 and V2 such that every edge of E
joins a vertex of V1 to a vertex of V2. A complete bipartite graph G is a bipartite
graph with partite sets V1 and V2 such that all vertex pairs with one vertex in
V1 and the other in V2 are joined by an edge.

Graphs can be represented in several ways. Most commonly a graph is depicted
by drawing a point for each vertex, where two points are connected with a line
if the corresponding vertices form an edge.

Example 2.1. The graph G with E(G) = {{1, 2}, {2, 3}, {2, 5}, {3, 4}, {4, 5}}
and V(G) = {1, 2, 3, 4, 5}may be represented by1 2354
•

A graph can also be described by means of its adjacency matrix.

Definition 2.1.2. Let G = (V, E) with V = {x1, . . . , xn, then the correspon-
ding adjacency matrix of G is the n× n matrix A = A(G) where for all i, j ∈
{1, . . . , n} its matrix entry Ai j at row i and column j is defined as follows:

Ai j =







1 if xi ∼ x j

0 otherwise.

⋄

Hence the adjacency matrix of a graph is a symmetric (0, 1) matrix having en-
tries equal to zero along the main diagonal. Note that the adjacency matrix of
G depends on the chosen ordering of its vertices. (When V = {1, . . . , n}, we
usually choose xi = i.)

12 2 Association schemes

Example 2.2. The adjacency matrix A of the graph in Example 2.1 is given by

A =









0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0









•

The spectrum of a graph G is the multiset

spec(G) = {λ0, . . . , λ0, λ1, . . . , λ1, . . .}

of all eigenvalues of A(G). (Note that these eigenvalues are independent of the
choice of the ordering of the vertices of G.) We usually write

spec(G) = {(λ0)
m0 , (λ1)

m1 , . . .}

where the superscripts denote the multiplicities of the corresponding eigenva-
lues.

Some graphs have the same structure, differing only in the way their vertices
and edges are labeled. To formalize the meaning of “the same structure”, we
introduce the concept of isomorphism.

Definition 2.1.3. A graph G and H are isomorphic, written G ∼= H, if there
exists a bijectionϕ : V(G)→ V(H) such that, for all x, y ∈ V(G), we have
xy ∈ E(G) if and only if ϕ(x)ϕ(y) ∈ E(H). Such a map ϕ is called an iso-

morphism; if G = H then it is called an automorphism. ⋄
Example 2.3. Three isomorphic graphs are shown below.

4
10 8615 9 2

3
7 k l m npq

s
otrfe i d
bj hg a

2.2 Association schemes 13

The map ϕ such that ϕ(1) = a, ϕ(2) = b , ϕ(3) = g, ϕ(4) = e, ϕ(5) = f ,
ϕ(6) = h, ϕ(7) = c, ϕ(8) = j, ϕ(9) = d, ϕ(10) = i, is an isomorphism of the
first graph onto the second graph.

The map φ such that φ(1) = k, φ(2) = l , φ(3) = m, φ(4) = n, φ(5) = o,
φ(6) = s, φ(7) = q, φ(8) = t, φ(9) = r, φ(10) = p, is an isomorphism of the
first graph onto the third graph.

Finally, the map σ such that σ(a) = k, σ(b) = l , σ(c) = q, σ(d) = r, σ(e) = n,
σ(f) = o, σ(g) = m, σ(h) = s, σ(i) = p, σ(j) = t, is an isomorphism of the
second graph onto the third graph. •

Definition 2.1.4. A graph H is a subgraph of a graph G if V(H) ⊆ V(G) and
E(H) ⊆ E(G). ⋄

A subgraph H of G is spanning if V(H) = V(G). An induced subgraph H of G
is induced by V ′ ⊆ V(G) if it has V ′ as its vertex set and if it contains all edges
xy of E(G) such that x, y ∈ V ′. A clique in a graph G is a set of vertices whose
induced subgraph is a complete graph. The clique number of a graph G is the
number of vertices in the largest clique of G.

2.2 Association schemes

In this section we successively describe association schemes in terms of relati-
ons, graphs and matrices. We also provide some well-known examples.

Definition 2.2.1. A d-class association scheme Ω on a finite set V is an orde-
red set {R0 , R1, . . . , Rd} of relations on the set V which satisfies the following
axioms:

1. {R0 , R1, . . . , Rd} is a partition of V ×V.

2. R0 is the identity relation, i.e., (x, y) ∈ R0 if and only if x = y, whenever
x, y ∈ V.

3. Every relation Ri is symmetric, i.e., if (x, y) ∈ Ri then also (y, x) ∈ Ri, for
every x, y ∈ V.

14 2 Association schemes

4. Let 0 ≤ i, j, l ≤ d. Let x, y ∈ V such that (x, y) ∈ Rl , then the number

pl
i j = |{z ∈ V : (x, z) ∈ Ri and (z, y) ∈ R j}|

only depends on i, j and l.

⋄

The relations R0 , R1, . . . , Rd are called the associate classes of the scheme; two
elements x, y ∈ V are i-th associates if (x, y) ∈ Ri. We use the notation xRi y to
indicate that (x, y) ∈ Ri. The numbers pl

i j are called the intersection numbers of

Ω. It is common practice to write the intersection numbers pl
i j as entries of the

so-called intersection matrices L0, L1 , . . . , Ld where

(Li)l j = pl
i j (2.1)

with 0 ≤ i, j, l ≤ d. Note that L0 = 1, the identity matrix. Define v = |V| ,
and ki = p0

ii. The valency or degree ki denotes the number of elements y ∈ V in
relation Ri to a fixed element x ∈ V. This number also does not depend on the
choice of x. The set of all d-class association schemes on V = {1, . . . , n} with
intersection matrices L0 , L1 , . . . , Ld shall be denoted by XL0 ...Ld

. (We assume

that n = ∑d
k=0 p0

kk.)

A d-class association scheme Ω on a finite set V is called imprimitive if some
union of relations is an equivalence relation distinct from R0 and V ×V.

Example 2.4. Define the n-class Hamming scheme H(n, q) as follows: the ele-
ments are the qn q-tuples over an alphabet of cardinality q, two elements are i-th
associates if they differ in i positions. Hence for q = 2, this is the n-dimensional
hypercube, where two elements x, y are i-th associates if they are at distance
i = d(x, y). •
Example 2.5. Define the q-class Johnson scheme J(n, q) as follows: the elements
are the (n

q) q-subsets of a fixed n-set, two elements are i-th associates if they

intersect in exactly q− i points. •
Example 2.6. Define the 3-class Rectangular scheme R(n, m) with m, n ≥ 2 as
follows: the elements are the n m entries of an n× m array, two elements are
1-st associates if they are in the same row, 2-th associates if they are in the same
column and 3-th associates if they are in different rows and columns. •

2.2 Association schemes 15

We can also consider d-class association schemes in terms of graphs. Let i ∈
{1, . . . , d}. With every relation Ri we may associate a simple graph Gi = (V, Ri)
of order v. Two vertices x, y ∈ V are adjacent in Gi if and only if xRi y. Clearly
Gi must be a regular graph of degree ki. Since the ordered set of relations
{R0 , R1, . . . , Rd} is a partition of V × V, we may consider association schemes
as partitions of the complete graph Kv into d regular subgraphs, which by the
fourth defining axiom are interrelated in a specific way.

If for every graph Gi with i ∈ {1, . . . , d}, we colour all of its edges with colour
i, then we may also consider a d-class association scheme as a colouring of
the complete graph Kv with d colours. In particular the fourth defining axiom
induces an additional condition about the number of triangles of various types
through an edge of a specified colour. Consider two distinct vertices x, y ∈ V
with edge xy of colour l, then the number

pl
i j = |{z ∈ V : edge xz is of colour i and edge zy is of colour j}|

only depends on i, j and l with 0 < i, j, l ≤ d .

This condition states that if we fix two distinct vertices x, y ∈ V, and colours
i, j and l, then the number of triangles with as edges the l-coloured edge xy,
an i-coloured edge through x and a j-coloured edge through y is exactly pl

i j,

irrespective of the choice of the vertex x and the vertex y.

x y
plij verti
es
olour i
olour j
olour l

Moreover, if we attach a loop to all vertices of V and colour each loop with the
colour 0, then we find that k0 = 1, ki = p0

ii and pi
0 j = pi

j0 = δi j. This means that

every vertex x ∈ V is contained in exactly ki edges of colour i.

Example 2.7. Let V = {1, . . . , 8} be the set of eight vertices of the cube shown
below.

16 2 Association schemes

1
2 3

4

5 8
6 7

Colour the edges of the cube with colour 1 (solid lines), the main diagonals with
colour 2 (dashed lines) and the face diagonals with colour 3 (not shown). Then
we find a 3-class association scheme with valencies k1 = 3, k2 = 1 and k3 = 3,
and intersection matrices

L1 =







0 3 0 0
1 0 0 2
0 0 0 3
0 2 1 0







L2 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







L3 =







0 0 0 3
0 2 1 0
0 3 0 0
1 0 0 2







•

Finally we can consider association schemes in terms of matrices. With every
relation Ri, i ∈ {0, . . . , d}, we may associate a (0, 1)-matrix Ai of dimension
v× v as follows: rows and columns of Ai are indexed by the elements of V and
for every x, y ∈ V the matrix entry (Ai)xy is defined by

(Ai)xy =







1 when xRi y,

0 otherwise.
(2.2)

Clearly, the (0, 1)-matrix Ai is the adjacency matrix of the ki-regular graph Gi =
(V, Ri). In terms of the (0, 1)-matrices A0 , A1, . . . , Ad, an association scheme Ω
can be represented by its square symmetric relation matrix MΩ of dimension n
such that

MΩ =
d

∑
k=0

k Ak (2.3)

In other words, the matrix entry (MΩ)xy = i if and only if (x, y) ∈ Ri.

Example 2.8. Consider the 3-class association scheme Ω on V = {1, . . . , 8}
with intersection matrices L1, L2, L3 are defined as in Example 2.7. Then the

2.2 Association schemes 17

corresponding relation matrix MΩ is shown below.

MΩ =















0 1 3 1 1 3 2 3
1 0 1 3 3 1 3 2
3 1 0 1 2 3 1 3
1 3 1 0 3 2 3 1
1 3 2 3 0 1 3 1
3 1 3 2 1 0 1 3
2 3 1 3 3 1 0 1
3 2 3 1 1 3 1 0















•

In terms of the (0, 1)-matrices A0 , A1, . . . , Ad the four defining axioms of a d-
class association scheme translate to the following four statements:

d

∑
l=0

Al = J, A0 = 1, Ai = AT
i and Ai A j =

d

∑
l=0

pl
i jAl (2.4)

with 0 ≤ i, j ≤ d and where 1 denotes the v × v identity matrix, J the v × v
all-one matrix and AT is the transpose of A. The first three statements are
straightforward. The fourth statement is valid as for every x, y ∈ V, the matrix
entry (Ai A j)xy is equal to pl

i j whenever xRl y with 0 ≤ i, j ≤ d.

Lemma 2.2.2. The matrices A0, A1, . . . , Ad of a d-class association scheme satisfy

Ai A j = A j Ai with 0 ≤ i, j ≤ d.

Proof : By the third and fourth statement of (2.4) we have

Ai A j = AT
i AT

j = (A j Ai)
T =

d

∑
l=0

pl
jiA

T
l =

d

∑
l=0

pl
jiAl = A j Ai .

Lemma 2.2.3. Let 0 ≤ i, j, l ≤ d. Then the intersection numbers pl
i j and valencies

ki of a d-class association scheme satisfy the following statements:

1. pl
0 j = δ jl, p0

i j = δi jk j, pl
i j = pl

ji,

2. ∑d
j=0 pl

i j = ki, ∑d
i=0 ki = v,

18 2 Association schemes

3. pl
i jkl = p

j
ilk j,

4. ∑d
l=0 pl

i jp
m
ln = ∑d

l=0 pm
il pl

jn.

Proof : Statements 1–3 are straightforward. The fourth statement is valid as the
expressions at both sides count quadruples (u, v, x, y) with uRiv, vR jx, xRn y,
for a fixed pair (u, y) with uRm y.

2.3 Distance regular and strongly regular graphs

In this section we introduce the concept of distance regular and strongly re-
gular graphs and their connection with association schemes. For an extensive
overview of the theory of distance regular graphs we refer to [12].

Definition 2.3.1. A connected graph G = (V, E) with diameter d is called dis-
tance regular if it is regular of valency k, and there are positive integers bi and
ci with 0 ≤ i ≤ d such that for any two vertices x, y ∈ V at distance i = d(x, y),
there are precisely ci neighbours of y in Ni−1(x) and bi neighbours of y in
Ni+1(x). ⋄

The sequence
{b0 , b1, . . . , bd−1; c1, c2, . . . , cd} (2.5)

is called the intersection array of G. We also write

ai = k− bi − ci, (2.6)

for the number of neighbours of y in Ni(x), The numbers ci, bi and ai are called
the intersection numbers of the distance regular graph G. Note that b0 = k,
bd = c0 = 0 and c1 = 1.

By counting all edges yz with y, z ∈ V, d(x, y) = i and d(x, z) = i + 1 we see
that Ni(x) contains ki vertices with 0 ≤ i < d, where

k0 = 1, k1 = k, ki+1 = kibi/ci+1. (2.7)

We have |V| = 1 + k1 + . . . + kd.

2.3 Distance regular and strongly regular graphs 19

A distance regular graph G of diameter d is called imprimitive when for some i,
0 ≤ i ≤ d the distance graph Gi is disconnected. In [100], Smith proved that
an imprimitive distance regular graph of valency k > 2 is either bipartite (with
distance graph G2 disconnected) or antipodal (graphs such that their distance
graph Gd is an equivalence relation) or both.

Example 2.9. Simple examples of distance regular graphs are the polygons. A
polygon has intersection array {2, 1, . . . , 1; 1, . . . , 1, cd}, where cd = 2 for the
2d-gon and cd = 1 for the (2d + 1)-gon. •
Example 2.10. A Platonic graph corresponds to the skeleton of a Platonic solid.
The five Platonic graphs, that is, the tetrahedron, octahedron, cube, icosahedron
and dodecahedron are distance regular graphs with intersection arrays given by
{3; 1}, {4, 1; 1, 4}, {3, 2, 1; 1, 2, 3}, {5, 2, 1; 1, 2, 5} and {3, 2, 1, 1, 1; 1, 1, 1, 2, 3},
respectively. •
Example 2.11. The Desargues graph, the Pappus graph and the Coxeter graph
are shown below.

All three graphs are cubic distance regular graphs with intersection arrays given
by {3, 2, 2, 1, 1; 1, 1, 2, 2, 3}, {3, 2, 2, 1; 1, 1, 2, 3} and {3, 2, 2, 1; 1, 1, 1, 2}, respec-
tively. •

Let G = (V, E) be a distance regular graph of diameter d and order v, then
for each i ∈ {0, . . . , d} we may define a (0, 1)-matrix Ai of dimension v× v as
follows: rows and columns of Ai are indexed by the vertices of V and for every
x, y ∈ V the matrix entry (Ai)xy is defined by

(Ai)xy =







1 when d(x, y) = i,

0 otherwise.
(2.8)

Clearly A1, also denoted as A, is the adjacency matrix of G and for every i ∈

20 2 Association schemes

{0, . . . , d} the distance matrices Ai satisfy the following four statements

d

∑
l=0

Al = J, A0 = 1, Ai = AT
i , AAi = bi−1Ai−1 + ai Ai + ci+1Ai+1 (2.9)

where A−1 = Ad+1 = 0 and b−1 and cd+1 are both undefined. The first three
statements are straightforward. The fourth statement is valid as for every x, y ∈
V, the matrix entry (AAi)xy is equal to either bi−1 when d(x, y) = i − 1, ai

when d(x, y) = i or ci+1 when d(x, y) = i + 1.

Lemma 2.3.2. Let G = (V, E) be a distance regular graph of diameter d and order

v, then there exist real polynomials F0 = 1, F1, . . . , Fd with deg Fi = i such that

Ai = Fi(A). The coefficients of these polynomials can be expressed in terms of the

intersection numbers ai, bi and ci of G.

Proof : From the second statement of (2.9) we find that F0(A) = 1 and F1(A) =
A are both polynomials in A with deg F0 = 0 and deg F1 = 1. Suppose that
also for each i ∈ {2, . . . , l} with l < d we have that Fi is a polynomial in A with
deg Fi = i and coefficients which can be expressed in term of the intersection
numbers of G. From the fourth statement of (2.9) we find

Fl+1(A) =
(A− ai)Fl(A)− bi−1Fl−1(A)

cl+1
, (2.10)

a polynomial in A with deg Fl+1 = l + 1. Again the coefficients can be expressed
in terms of the intersection numbers of G. By induction we find that Fi is a
polynomial in A with deg Fi = i for each i ∈ {0, . . . , d}.

By the fourth statement of (2.9) we can express Ak as ∑d
l=0 ql Al for certain

numbers ql. Hence, by Lemma 2.3.2 we can express

Ai A j = Fi(A) Fj(A) =
d

∑
l=0

pl
i jAl (2.11)

for certain numbers pl
i j with 0 ≤ i, j, l ≤ d.

From statements 1–3 of (2.9) and (2.11) if follows that the vertex set V of a
distance regular graph of diameter d, together with an ordered set of relations

2.3 Distance regular and strongly regular graphs 21

{R0 , . . . , Rd} where the relation Ri with 0 ≤ i ≤ d and x, y ∈ V, is defined by

xRi y ⇐⇒ d(x, y) = i,

forms a d-class association scheme. When we look at the matrix entries (Ai A j)x,y,
we can observe that for each vertex x, y ∈ V with d(x, y) = l, the number of
vertices z ∈ V with d(x, z) = i and d(y, z) = j is exactly the number pl

i j for

some i, j, l ∈ {0, . . . , d}. The numbers pl
i j are integers and satisfy the relations

of Lemma 2.2.3. Moreover we have that

pl
i j = 0 if l > i + j or l < |i− j|, (2.12)

pi−1
1i = bi−1, pi

1i = ai, pi+1
1i = ci+1. (2.13)

Consider finally all matrix entries ((AAi)A j)x,y and (A(Ai A j))x,y with x, y ∈ V
and d(x, y) = l, then from the fourth statement of (2.9) and (2.11) we find

bi−1 pl
i−1 j + ai p

l
i j + ci+1 pl

i+1 j = pl−1
i j cl + pl

i jal + pl+1
i j bl , (2.14)

which can be used to compute the number pl
i j recursively.

A special class of distance regular graphs are those of diameter 2. This class of
distance regular graphs is equivalent to strongly regular graphs. For an overview
of the theory of strongly regular graphs we refer to [14].

Definition 2.3.3. A connected graph G = (V, E) of order v is strongly regular

with parameters (v, k, λ, µ) if and only if it satisfies the following conditions:

• Each vertex x ∈ V is adjacent to k vertices of V;

• For each pair of adjacent vertices x, y ∈ V there are exactly λ vertices of
V adjacent to both x and y;

• For each pair of non-adjacent vertices x, y ∈ V there are exactly µ vertices
of V adjacent to both x and y.

⋄

The complement G of a strongly regular (v, k, λ,µ) graph G is again a strongly
regular graph with parameters

(v, v− k− 1, v− 2k +µ − 2, v− 2k + λ). (2.15)

22 2 Association schemes

A graph of diameter 2 is distance regular if and only if it is strongly regular with
µ > 0. The intersection array of a strongly regular (v, k, λ,µ) graph G is given
by the sequence

{k, k− 1− λ ; 1, µ}. (2.16)

The intersection matrices L0 = I, L1 and L2 of a strongly regular (v, k, λ,µ)
graph G can easily be expressed in terms of its parameters v, k, λ and µ:

L1 =





0 k 0
1 λ k− λ− 1
0 µ k−µ



 L2 =





0 0 v− k− 1
0 k− λ− 1 v− 2k + λ
1 k−µ v− 2k +µ − 2



 (2.17)

If µ = k then we obtain trivial strongly regular graphs that are equivalent to
complete multipartite graphs. A strongly regular graph is called non-trivial whe-
never 0 < µ < k < v− 1.

Example 2.12. The Petersen graph and Clebsch graph are shown below.

Both graphs are strongly regular graphs with (v, k, λ,µ) = (10, 3, 0, 1) and
(16, 5, 0, 2), respectively. •

2.4 The Bose-Mesner algebra

First we recall some concepts from linear algebra. Let A be a real symmetric
v× v matrix. Then all eigenvalues of A are real numbers. Denote the distinct
eigenvalues of A by θ0,θ1, The minimal polynomial MA of A,

MA(x)
def
= (x−θ0)(x−θ1) · · ·

satisfies MA(A) = 0. If F is any other polynomial with F(A) = 0, then F must
be a multiple of MA. In particular, F = 0 or deg F ≥ deg MA. The multiplicity

2.4 The Bose-Mesner algebra 23

fi of eigenvalue θi is the rank of the space generated by all eigenvectors of θi.
The sum f0 + f1 + · · · of all multiplicities is equal to v. A is called positive

semidefinite if and only if
x A xT ≥ 0 (2.18)

for every row vector x ∈ R1×v and its transpose xT ∈ Rv×1.

Now, let A0 , . . . , Ad be as in (2.2). Consider the vector space

A =

{
d

∑
i=0

ci Ai : ci ∈ R

}

(2.19)

of all linear combinations of A0 , . . . , Ad. Consider two elements of the vector
space A. By the fourth statement of (2.4) the product of any two elements
again belongs to A and by Lemma 2.2.2 this product is commutative, hence the
vector space A is a commutative algebra. This algebra A was first studied by
Bose and Mesner [6] and is called the Bose-Mesner algebra of the association
scheme. As the matrix entries of the elements A0, A1, . . . , Ad are either 0 or 1,
we see from the first statement of (2.9) that the elements A0 , A1, . . . , Ad are
linearly independent, hence A has dimension d + 1.

The algebra A has many interesting properties which we will consider below. It
is beyond the scope of this text to give proofs of all these properties in the most

general case of association schemes. We shall therefore only prove them in the
restricted case where the association scheme is a (connected) distance regular
graph. For proofs of these properties in the general case, we refer to [1, 12].

Recall that we write A = A1 for the adjacency matrix of a distance regular
graph and k = k1 for the degree of this graph, and that by Lemma 2.3.2 each
Ai = Fi(A) with 0 ≤ i ≤ d and Fi(A) a polynomial in A with deg Fi = i.

Lemma 2.4.1. Let G = (V, E) be a (connected) distance regular graph, then
{1, A, A2, . . . , Ad} is a basis for A.

Proof : From Lemma 2.3.2 we see that for each Ai with i ∈ {0, . . . , d}, there
exists a polynomial Fi with deg Fi = i such that Ai = Fi(A). Hence the set
{1, A, A2, . . . , Ad} is a basis for A.

Since Ad+1 ∈ A and {1, A, A2, . . . , Ad} is a basis for A, we can express Ad+1

in terms of a linear combination of 1, A, A2, . . . , Ad. Let Ad+1 = ∑d
i=0 ei A

i with

24 2 Association schemes

ei ∈ R. Consider the polynomial

Q(x) = xd+1 −
d

∑
i=0

eix
i,

then Q(A) = 0, therefore the polynomial Q must be a multiple of the minimal
polynomial MA and thus clearly Q = MA as deg Q is minimal. Hence the
minimal polynomial MA of A must have degree d + 1 and therefore A has d + 1
distinct eigenvalues θ0, . . . ,θd. It is customary to set θ0 = k, the degree of
G, which is an eigenvalue of A with eigenvector the all-one vector [19]. The
corresponding multiplicities shall be denoted by f0, . . . , fd. (Later we shall prove
that the multiplicity of the eigenvalue θ0 is f0 = 1.)

Let i ∈ {0, . . . , d}, then we have for each eigenvector u of θi that uA = θiu,
hence for each j ∈ {1, . . . , d},

uA j = (uA)A j−1 = θiuA j−1 = . . . = (θi)
ju. (2.20)

By Lemma 2.3.2 and (2.20) we find

uAl = uFl(A) = Fl(θi)u (2.21)

for each i, l ∈ {0, . . . , d}. It follows that Fl(θi) is an eigenvalue of Al with the
same eigenvectors u of θi and hence also the same multiplicity fi.

The (d + 1)× (d + 1) matrix P with entries

Pi j = Fj(θi) (2.22)

is called the eigenmatrix of the scheme. By the above, Pi j is an eigenvalue of
A j. (Later we shall prove that the eigenmatrix P can be computed from the
intersection numbers.)

Lemma 2.4.2. Define

Ei =
d

∏
k=0,k 6=i

A−θk

θi −θk
. (2.23)

Then we have

Ei A = θiEi (2.24)

EiE j =

{
Ei, when i = j,
0, when i 6= j.

(2.25)

2.4 The Bose-Mesner algebra 25

The matrix Ei
2 = Ei has eigenvalue 1 with multiplicity fi and eigenvalue 0 with

multiplicity v− fi. Hence Ei has rank fi.

Proof : For every i ∈ {0, . . . , d} we have

Ei (A−θi) =

(
d

∏
k=0,k 6=i

1

θi −θk

)

MA(A) = 0.

Hence we find that Ei A = θiEi.

By (2.24) we have for every i, j ∈ {0, . . . , d}

EiE j = Ei

(
d

∏
k=0,k 6= j

A−θk

θ j −θk

)

= Ei

(
d

∏
k=0,k 6= j

θi −θk

θ j −θk

)

and hence EiE j = Ei when i = j and EiE j = 0 when i 6= j.

For every i ∈ {0, . . . , d} define the polynomial

Hi(x) =
d

∏
k=0,k 6=i

x−θk

θi −θk
,

then Ei = Hi(A). Every eigenvector u for an eigenvalues θ j of A, is an eigen-
vector for the eigenvalue Hi(θ j) of Ei. Because Hi(θi) = 1 and Hi(θ j) = 0 when
i 6= j, it follows that Ei has eigenvalue 1 with multiplicity fi, and eigenvalue 0
with multiplicity

d

∑
k=0,k 6=i

fk = v− fi.

Ei is called the minimal idempotent associated with eigenvalue θi.

Lemma 2.4.3. For every i ∈ {0, . . . , d} we have Ei is positive semidefinite.

Proof : By Lemma 2.4.2 we find that Ei
2 = Ei. Hence for every row vector

26 2 Association schemes

x ∈ R1×v and its transpose xT ∈ Rv×1, we have

x Ei xT = x Ei
2 xT

= (x Ei)(Ei
T xT)

= (x Ei)(x Ei)
T

= y1
2 + . . . + yv

2 ≥ 0

with y = x Ei.

From (2.25) we find for each j ∈ {0, . . . , d} that

(
d

∑
i=0

ciEi

)

E j = c jE j

with ci ∈ R. Since E j has eigenvalue 1 with multiplicity f j 6= 0, we find that

E j 6= 0. Hence ∑d
i=0 ciEi = 0 if and only if c j = 0 for all j ∈ {0, . . . , d}. The-

refore all minimal idempotents Ei are linearly independent. Consequently the
set of minimal idempotents {E0 , . . . , Ed} forms a basis of the d + 1 dimensional
algebra A.

The following lemma shows how the matrices Ai can be expressed in terms of
the minimal idempotents E0, . . . , Ed.

Lemma 2.4.4. For every j ∈ {0, . . . , d} we have

A j =
d

∑
i=0

Pi jEi .

Proof : From (2.24) we have that Ei A = θiEi for each i ∈ {0, . . . , d}. Hence

Ei A
j = (θi)

jEi (2.26)

with i, j ∈ {0, . . . , d}. Using Lemma 2.3.2 and by (2.22) and (2.26) we find that

Ei A j = EiFj(A) = Fj(θi)Ei = Pi jEi (2.27)

for each i, j ∈ {0, . . . , d}.

2.4 The Bose-Mesner algebra 27

Since the minimal idempotents E0 , . . . , Ed form a basis for A, we have that

Ai =
d

∑
j=0

ai jE j.

for each i ∈ {0, . . . , d} and for some ai j ∈ R. Let i, j ∈ {0, . . . , d} then by (2.25)
the product

E j Ai = E j

d

∑
l=0

ailEl = ai jE j, (2.28)

hence by (2.27) we find that ai j = Pji.

We may also express each minimal idempotent Ei in terms of A0 , . . . , Ad in a
unique way. Using this property we may define the unique coefficients Q ji as
follows :

vEi =
d

∑
j=0

Q jiA j. (2.29)

(Note the extra factor v in this expression). The (d + 1)× (d + 1) matrix Q with
matrix entries (Q)i j = Qi j is called he dual eigenmatrix of the scheme.

From Lemma 2.4.4 and (2.29), we find that

vEi =
d

∑
j=0

Q ji

d

∑
l=0

Pl jEl =
d

∑
l=0

(PQ)liEl

vAi =
d

∑
j=0

Pji

d

∑
l=0

Ql jAl =
d

∑
l=0

(QP)liAl

for every i ∈ {0, . . . , d}. Hence the eigenmatrix P and the dual eigenmatrix Q
satisfy

PQ = QP = v. (2.30)

We shall now prove that the eigenmatrix P, the dual eigenmatrix Q and the
multiplicities fi can be computed from the intersection parameters.

Let B be an element of A. Consider the linear operator ρ(B) on A which maps

X ∈ A onto ρ(X) · B def
= BX ∈ A.

28 2 Association schemes

Since A0, . . . , Ad is a basis for A, for every B ∈ A we have that B = ∑d
i=0 bi Ai

is a linear combination of A0, . . . , Ad with bi ∈ R. We may represent every
B ∈ A as a column vector (b0, . . . , bd)

T. For example: the identity matrix 1 is
represented by (1, 0, . . . , 0)T, A is represented by (0, 1, 0, . . . , 0)T and J, the all–
1 matrix by (1, 1, . . . , 1)T. With this representation, every linear operator on A
corresponds to a (d + 1)× (d + 1) matrix which acts on the left.

Let i ∈ {0, . . . , d} and B ∈ A then using (2.1) we find,

ρ(Ai) · B = ρ(Ai) ·
d

∑
j=0

b j A j =
d

∑
j=0

b j ρ(Ai) · A j

=
d

∑
j=0

b j

d

∑
l=0

pl
i j Al =

d

∑
j=0

d

∑
l=0

b j pl
i j Al

=
d

∑
l=0

d

∑
j=0

(Li)l j b j Al .

Then the linear operator ρ(Ai) corresponds to

ρ(Ai)↔ Li =






p0
i0 · · · p0

id
...

. . .
...

pd
i0 · · · pd

id




 ,

that is, the (d + 1)× (d + 1) intersection matrix.

In the following Lemma we give the connection between the eigenvalues of the
matrices Ai and the eigenvalues of the intersection matrices Li.

Lemma 2.4.5. Let i ∈ {0, . . . , d}, then the eigenvalues of the intersection matrix

Li are the eigenvalues of Ai but with multiplicities 1. The eigenvectors of Li are the

vectors (Q0 j, . . . , Qd j)
T, with j ∈ {0, . . . , d}.

Proof : Let i, j ∈ {0, . . . , d} then by (2.27) and (2.29) we have

ρ(Ai) ·
d

∑
l=0

Ql j Al = (
d

∑
l=0

Ql j Al)Ai = v E j Ai = v Pji E j = Pji

d

∑
l=0

Ql j Al ,

2.4 The Bose-Mesner algebra 29

or in coordinate vector representation

ρ(Ai)






Q0 j
...

Qd j




 = Li






Q0 j
...

Qd j




 = Pji






Q0 j
...

Qd j




 .

Hence Pji is an eigenvalue of the intersection matrix Li with corresponding
eigenvector (Q0 j, . . . , Qd j). Since all eigenvalues of Ai are distinct, we find that
each of the eigenvalues P0i, . . . , Pdi must have multiplicity 1.

In the following Lemma we show how to compute the multiplicities f0, . . . , fd

of the eigenvalues θ0, . . . ,θd of A.

Lemma 2.4.6. The minimal idempotent associated with eigenvalue θ0 is E0 = 1
v J

and for each i ∈ {0, . . . , d} the multiplicity of the eigenvalue θi of A is fi = Q0i.

Moreover Q j0 = 1 for each j ∈ {0, . . . , d} and in particular f0 = 1.

Proof : Let i ∈ {0, . . . , d}. Then we have

d

∑
j=0

Pji f j = Tr(Ai) =

{
v whenever i = 0,
0 otherwise.

Let l ∈ {0, . . . , d}. Then we have

d

∑
i=0

d

∑
j=0

QilPji f j =
d

∑
i=0

Qil Tr(Ai) = v Q0l

and
d

∑
i=0

d

∑
j=0

QilPji f j =
d

∑
j=0

(PQ)l j f j = v fl .

since PQ = QP = v. Hence fl = Q0l. Also we have

ρ(Ai) · J = J Ai = ki J.

and by (2.27)
ρ(A1) · E0 = P01 E0 = k1 E0

30 2 Association schemes

since θ0 = P01 = k1. Hence both E0 and J are eigenvectors of ρ(A1) with the
same eigenvalue k1 of multiplicity 1. Therefore E0 = c J with c ∈ R \ {0}.
By (2.25) we have (E0)

2 = E0 and therefore E0 = 1
v J. Hence AiE0 = ki

v J =
ki
v ∑d

l=0 Ql0 Al, and therefore Ql0 = 1.

Example 2.13. As a first example we compute the values of the eigenmatrix P
and the dual eigenmatrix Q for the Perkel graph G on 57 vertices. The Perkel
graph is the unique (up to isomorphism) distance regular graph of degree 6 and
diameter 3 with intersection array {6, 5, 2; 1, 1, 3}. Using (2.12–2.14) we can
compute the corresponding intersection matrices

L1 =







0 6 0 0
1 0 5 0
0 1 3 2
0 0 3 3







L2 =







0 0 30 0
0 5 15 10
1 3 14 12
0 3 18 9







L3 =







0 0 0 20
0 0 10 10
0 2 12 6
1 3 9 7







in a recursive manner. Hence using Lemma 2.4.5 we find that

P =








1 6 30 20

1 3+
√

5
2

−5+3
√

5
2 −2

√
5

1 3−
√

5
2

−5−3
√

5
2 2

√
5

1 −3 3 −1








By (2.30) we have Q = 57 P−1. Hence we find that

Q =








1 18 18 20

1 9
2 + 3

√
5

2
9
2 − 3

√
5

2 −10

1 − 3
2 + 9

√
5

10 − 3
2 − 9

√
5

10 2

1 −9
√

5 9
√

5 −1








For every i ∈ {0, 1, 2, 3} the matrix entry P1i is an eigenvalue of the adjacency
matrix A with multiplicity Q0i. Hence the graph spectrum of the Perkel graph
is given by

spec(G) =






61,

(

3 +
√

5

2

)18

,

(

3−
√

5

2

)18

, (−3)20







•

2.4 The Bose-Mesner algebra 31

Example 2.14. As a second example we consider the general case of strongly
regular graphs. Let G = (V, E) be a non-trivial strongly regular graph with
parameter set (v, k, λ,µ). The intersection matrices are given by (2.17), which
allow us to compute the eigenmatrix P and the dual eigenmatrix Q for a strongly
regular (v, k, λ,µ) graph G. Using Lemma 2.4.5 we find that

P =





1 k v− k− 1
1 r −r− 1
1 s −s− 1



 (2.31)

where r and s can be found as solutions of

θ2 + (µ − λ)θ+µ − k = 0 (2.32)

with r ≥ 0 and s ≤ −1. By (2.30) we have Q = v P−1. Hence we find that

Q =





1 f g

1
f r
k

gs
k

1 − f r+1
v−k−1 −g s+1

v−k−1



 (2.33)

where f and g can be found as solutions of

1 + f + g = v

k + f r + gs = 0 (2.34)

For every i ∈ {0, 1, 2} the matrix entry P1i is an eigenvalue of the adjacency
matrix A with multiplicity Q0i. Hence the graph spectrum of a strongly regular
(v, k, λ,µ) graph G is given by

spec(G) = {k1 , r f , sg} (2.35)

•
Example 2.15. As a last example we show how the eigenmatrix P and the dual
eigenmatrix Q can be computed in the general case of an association scheme.
The example we have chosen is not typical, but illustrates very well the differen-
ces between the general case and the more specific case of the distance regular
graphs. We consider the intersection numbers of a cyclotomic three class asso-
ciation scheme of order 16, i.e.,

L1 =







0 5 0 0
1 0 2 2
0 2 2 1
0 2 1 2







L2 =







0 0 5 0
0 2 2 1
1 2 0 2
0 1 2 2







L3 =







0 0 0 5
0 2 1 2
0 1 2 2
1 2 2 0







32 2 Association schemes

Also in this general case we are allowed to use Lemma 2.4.5 to compute te
eigenmatrix P. We find

P =







1 5 5 5
1 −3 1 1
1 1 −3 1
1 1 1 −3







By (2.30) we have Q = 16 P−1. It turns out that the dual eigenmatrix Q is equal
to P. What makes this case different from the distance regular case, is that each
of the matrices Ai has only 3 distinct eigenvalues, while the number of relations
of Ω, and hence the dimension of the Bose-Mesner algebra, is 4. •

2.5 Feasibility criteria

In what follows we will only consider non-trivial cases of d-class association
schemes and in particular strongly regular and distance regular graphs.

A list of feasible intersection matrices for 3-class association schemes on at most
100 vertices together with spectra of their relations, known constructions and
known nonexistence results can be obtained from [101]. In the case of distance
regular graphs, the following proposition gives some restrictions on putative
intersection arrays.

Proposition 2.5.1 ([12]). For any distance regular G = (V, E) of diameter d the

intersection array must satisfy the following restrictions.

• k = b0 > b1 ≥ b2 ≥ . . . ≥ bd−1 > bd = 0 and 1 = c1 ≤ c2 ≤ . . . ≤ cd ≤ k.

• ci ≤ b j whenever i + j ≤ d

• for every i, j, l ∈ {0, . . . , d} the numbers pl
i j and ki are nonnegative integers

• the multiplicities of the eigenvalues of A must be integers.

Proof : For any x, y ∈ V at distance d, let x = γ0,γ1 , . . . ,γd = y be a path
of length d. Counting the number of neighbours of γi at distance i − 2 from
γ1 yields ci ≥ ci−1, and counting neighbours of γi at distance i from γ1 yields

2.5 Feasibility criteria 33

bi ≤ bi−1. Hence the first statement is valid. The second statement is also valid
as counting the neighbours of γi at distance i− 1 from γ0 yields ci ≤ b j. Finally,
statements 3–4 are straightforward.

We shall call an intersection array feasible whenever it satisfies each of these
restrictions. A list of all feasible intersection arrays together with graph spec-
tra, known constructions and known nonexistence results for primitive distance
regular graphs with diameter 3 on at most 1024 vertices, for non-bipartite dis-
tance regular graphs with diameter 4 on at most 4096 vertices, and arbitrary
distance-regular graphs of diameter at least 5 on at most 4096 vertices can be
obtained from [12].

For strongly regular graphs, we have the following proposition.

Proposition 2.5.2. For any non-trivial strongly regular (v, k, λ,µ) graph G the

parameters v, k, λ, µ and the multiplicities of the eigenvalues of the adjacency

matrix A must be nonnegative integers. Moreover the parameters v, k, λ, µ must
satisfy the following restrictions:

• 0 < µ < k < v− 1

• µ(v− k− 1) = k(k− 1− λ)
• v− 2k +µ − 2 ≥ 0 and v− 2k + λ ≥ 0

Proof : The first restrictions are obvious. Choose a vertex x of G. Counting
in two ways the number of edges between the set of vertices adjacent to x
and the set of vertices non-adjacent to x yields the restriction µ(v− k− 1) =
k(k − 1 − λ). Restrictions v− 2k + µ − 2 ≥ 0 and v− 2k + λ ≥ 0 stem from
(2.17).

We shall call a (v, k, λ,µ) parameter set feasible whenever it satisfies all these
restrictions. If (v, k, λ,µ) is feasible, then either the eigenvalues r and s are
integral, or there is a t such that v = 4t + 1, k = 2t, λ = t − 1, µ = t and

r, s = (−1±√v)
2 , the so-called half case. All feasible (v, k, λ,µ) parameter sets

for strongly regular graphs on at most 280 vertices together with graph spec-
tra, known constructions and known nonexistence results can be obtained from
[14].

3 Generation

algorithms.

”Space is big. You just won’t believe how vastly, hugely, mind-
bogglingly big it is.”[D. ADAMS, THE HITCHHIKER’S GUIDE TO THE

GALAXY]

Combinatorial classification deals with the problem of exhaustively generating,
up to isomorphism, all combinatorial objects satisfying a set of constraints. Qui-
te often in an algorithmic context, the more common term isomorph-free ex-
haustive generation is used instead. Generation algorithms consist of two major
components. A first component deals with exhaustively generating at least one
representative from every isomorphism class, while the second component is
responsible for removing isomorphic objects from consideration so as to obtain
isomorph-free generation.

In this chapter we describe some of the general techniques which are common-
ly used in the design of such generation algorithms. Parts of this chapter are
based on [17, 29, 65, 67, 70, 94]. In Section 3.1 we introduce the concepts
of constraint networks and backtracking which allow us to describe exhaustive
generation in a general framework, while in Sections 3.2 and 3.3 we discuss
isomorphism and isomorphism rejection techniques in a group-theoretic frame-
work. These general techniques will serve as a basis for the more customized

36 3 Generation algorithms.

generation algorithms used in the classification of d-class association schemes,
and in particular strongly regular and distance regular graphs. These more spe-
cific algorithms shall be discussed throughout Chapters 4, 5 and 6.

3.1 Exhaustive generation

Combinatorial objects are finite and discrete structures which makes correspon-
ding classification problems susceptible to be tackled with exhaustive search
methods. Exhaustive search methods systematically build or investigate all pos-
sible states within some search space. In the context of combinatorial classifica-
tion, exhaustive generation is typically exemplified by backtracking or backtrack

search [49] — probably the most faimiliar exhaustive search technique. In order
to outline the backtracking paradigm in the context of combinatorial classifica-
tion, we first introduce some concepts and notations. Generally, combinatorial
classification can be regarded as finding all solutions of a constraint network

[29].

Definition 3.1.1. A constraint network R = (X, D, C) consists of a finite set
of variables X = {x1 , . . . , xn} with respective set of non-empty domains D =
{D1, . . . , Dn} and a set of constraints C = {C1 , . . . , Ct}. ⋄

A domain Di lists all possible values for its corresponding variable xi. A cons-
traint C j involves a certain subset of variables and specifies the allowable com-
binations of values for that particular subset. When a variable is assigned a
value from its domain, we say that the variable is instantiated, otherwise we
say that the variable is uninstantiated. For notational simplicity we assign an
uninstantiated variable the undefined value ′?′. An instantiation of a subset
of variables is an assignment from its domain to each variable in that subset.
More precisely, an instantiation of a set of variables {xi1, . . . , xik} is a tuple of
ordered pairs (〈xi1, di1〉, . . . , 〈xik, dik〉), where each ordered pair 〈x, d〉 denotes
an assignment of the value d to the variable x, where d is in the domain of x.
We shall abbreviate such instantiation to (di1, . . . , dik) whenever the subset of
variables is clear from context. A solution of a constraint network is a complete
instantiation of all of its variables such that all of its constraints are satisfied.
A partial instantiation of a constraint network is feasible if it satisfies all of its
constraints which have no uninstantiated variables. If a partial instantiation,

3.1 Exhaustive generation 37

say (d1, . . . , dk) is feasible, then all partial instantiations
(
d1, . . . , d j

)
with j < k

are also feasible. Hence if a partial instantiation (d1, . . . , dk) is not feasible, then
also all extensions (d1, . . . , dl) with l > k are not feasible, or to put it differently,
no extension of the partial instantiation (d1, . . . , dk) could ever lead to a solution
of the constraint network.

Example 3.1. Consider the exhaustive generation of the set ∆ of all regu-
lar graphs of order 4 and degree 2. In terms of a constraint network, such
graphs are solutions of the constraint network R = (X, D, C) with variables
X = {x1 , x2, . . . , x6} and corresponding domains D = {D1, D2, . . . , D6} such
that each domain Di = {0, 1}.

A =







0 x1 x2 x4

x1 0 x3 x5

x2 x3 0 x6

x4 x5 x6 0







The set of constraints C can easily be expressed using the matrix representation
A above. An instantiation, partial or complete, is feasible if each row and co-
lumn of A contains at most 2 ones and at most 2 zeros. Given a solution of R,
the resulting matrix A — with each variable instantiated — corresponds to the
adjacency matrix of a regular graph of order 4 and degree 2. •

Backtracking is a recursive algorithm in which at each time a partial instanti-
ation of the set of variables X = {x1 , . . . , xn} of the constraint network R =
(X, D, C) is maintained. The algorithm starts with all n variables uninstantiated.
At each step in the recursion, one particular variable is chosen, and systemati-
cally all values from its domain are assigned to it in turn. For each such value,
the feasibility of the partial instantiation is checked, that is, the consistency of
the partial instantiation with all constraints which have no uninstantiated va-
riables is evaluated. In case of feasibility, a recursive call is invoked. Otherwise,
no recursive call is invoked since no extension of the partial instantiation could
ever lead to a solution of the constraint network. If all values turn out to be
infeasible, then a dead-end occurs. When all values of its domain have been
tried in turn, the algorithm backtracks to the invoking procedure. A pseudo co-
de description of a general backtracking algorithm is given in Algorithm 3.1. As
control strategy, at each step in the recursion the uninstantiated variable with
the smallest index is selected.

We can easily visualize backtrack search as a depth-first traversal of a search

38 3 Generation algorithms.

Algorithm 3.1 General backtrack algorithm for a constraint network R =
(X, D, C) with n variables.

procedure search()

1: backtrack((),0)

procedure backtrack((d1, . . . , dk): instantiation, k: int))

1: if k = n then
2: report (d1, . . . , dn) as a solution
3: else
4: for all dk+1 ∈ Dk+1 do
5: if (d1, . . . , dk+1) is feasible then
6: backtrack((d1, . . . , dk+1),k+1)

tree or a so-called recursion tree. Nodes of this search tree correspond to partial
feasible instantiations, while branches represent the systematic extension and
collapsing from which one partial feasible instantiation can be obtained from
another. In the forward phase of the backtrack algorithm, the extension of a
partial feasible instantiation corresponds to a traversal of the search tree to a
deeper level, while in the backward phase of the backtracking algorithm the
collapsing is represented by a traversal in the opposite direction. If a partial
instantiation is not feasible, then the entire subtree rooted at the corresponding
node can be pruned. A leaf at the deepest level n in the recursion tree corres-
ponds to a solution of the constraint network R = (X, D, C). The set of all
nodes in the recursion tree shall be denoted by NR.

Example 3.2. For the constraint network R = (X, D, C) as defined in Example
3.1, the corresponding search tree is shown in Figure 3.1. The control strategy
applied during backtrack search is to select at each step in the recursion, the
uninstantiated variable xi with smallest index i. At the root of the tree, all
variables are uninstantiated. Left children correspond to the extension of a
partial feasible instantiation by assigning the current variable the value 1 from
its domain, while right children correspond to the extension of a partial feasible
instantiation by assigning the current variable the value 0 from its domain. A
cross means that the extension leads to a partial instantiation which is no longer
feasible and therefore the subtree rooted at that particular node can be pruned.
•

3.1 Exhaustive generation 39

0??0
100?

0110
100?

1010
0101

010?
1O?0

0011
0011

110?
11?0

1??0
110?

0011
001?

0110
1001

0110
1001

1001
0110

100?
01?0

1010
0101

0101
1010

1??0
010?

0101
101?101?

0110

110?
0??0

101?
010?

010?
???0

001?
001?

110?
???0

100?
011?

100?
???0???0

110?

011?
101?

10??
011?

1?0?
???0 ???0

0?0?

010?
10??

???0
1?0?

001?
00??

00??
00??

??0?
???0???0

??0?

01??
10??

?0??
0???

??0?
???0

0011
0011

1100
1100

dead end

Figuur 3.1: Search tree corresponding to the exhaustive generation of all regu-
lar graphs of order 4 and degree 2.

40 3 Generation algorithms.

Constraint networks and backtracking merely provide us with a general frame-
work which we can use to solve combinatorial classification problems. When de-
signing such exhaustive generation algorithms for concrete combinatorial clas-
sifications problems, a translation of these problems into this framework is still
required. Mostly, an adequate translation depends on how we can exploit the
mathematical properties of the combinatorial objects at hand effectively during
traversal so as to reduce the size of the corresponding search tree, which of itself
exhibits an exponential behaviour. A series of basic principles for designing fast
backtracking algorithms occurs in [74].

When designing generation algorithm, it is good to keep in mind that a general
backtracking algorithm suffers from trashing [29, 67], that is, repeatedly redis-
covering the same partial inconsistencies and the same partial successes during
search. The performance of general backtracking algorithms can be improved
by dynamically adapting the algorithm’s control strategy during search. The-
se methods for dynamically improving the performance of general backtrack
search, can be divided into two classes corresponding with the algorithm’s for-
ward and backward phase.

During the forward phase of the bactracking algorithm typically two different
types of methods are invoked when the algorithm is about to select a new va-
riable or to assign a new value to the currently selected variable [58, 67].

looking ahead When the algorithm assigns a value to the currently selected va-
riable, values from the domains of all still uninstantiated variables which
conflict with the current partial instantiation can be removed. We denote
by D′i, the subset of the domain Di which has it conflicting values remo-
ved. When selecting xi as the current variable, only the still remaining
values from D′i have to be assigned to xi in turn. When a variable d ∈ Di

has been removed when instantiating a previous variable xc, then the va-
lue d has to be restored when that variable is reassigned a new value.
Note that not necessarily all uninstantiated variables and all constraints
have to be evaluated.

dynamic variable ordering When the algorithm is about to select a new va-
riable, its control strategy can dynamically decide during search which
variable to select next. A frequently used heuristic is to choose the varia-
ble which is most constrained, that is, the variable with the least number
of values remaining in its domain. If the domain of some uninstantiated

3.2 Isomorphism in a group-theoretic framework 41

variable is empty, then that variable is selected as the new variable and
a dead-end occurs immediately. Applying this dynamic variable ordering
strategy implies that the order of variable instantiation does not need to
be the same in different branches of the recursion tree.

Look-ahead strategies involve an extra cost after each variable instantiation.
However, dead-ends occur sooner during search, and mostly a smaller portion
of the search space needs to be traversed.

For the backward phase there are two types of techniques which are typically
used when preparing to backtrack after encountering a dead-end.

looking back When the algorithm encounters a dead-end, then normally the
current partial instantiation is collapsed one step backwards. Identifica-
tion of the reasons for this particular dead-end often allows us to avoid
irrelevant backtrack points. The backtrack algorithm is modified so that
it goes back immediately to the origin of failure — instead of just to the
preceding variable.

constraint recording When the algorithm encounters a dead-end, the reasons
for this dead-end are recorded in the form of new constraints. This is done
to avert that the same conflicts reappear later in the search.

3.2 Isomorphism in a group-theoretic framework

Any profound discussion of the isomorphism relation associated with most com-
binatorial objects and — from a more algorithmic point of view — of iso-
morphism rejection techniques should be treated within a group-theoretic fra-
mework.

3.2.1 Group theory

First we recall some concepts from group theory [17, 94].

42 3 Generation algorithms.

Definition 3.2.1. A group (G, ∗) is a non-empty set G with a binary operator ∗,
such that:

• π1 ∗ π2 ∈ G for all π1, π2 ∈ G (closure)

• (π1 ∗ π2) ∗ π3 = π1 ∗ (π2 ∗ π3) for all π1, π2, π3 ∈ G (associativity)

• there exists id ∈ G such that π ∗ id = id ∗ π for all π ∈ G (identity

element)

• for all π ∈ G, there exists π−1 ∈ G such that π ∗ π−1 = π−1 ∗ π = id
(inverse element)

⋄

If the binary operator ∗ is clear from context, it is customary to simply state that
G is a group. Also we often write π1 π2 instead of π1 ∗ π2. A group G is finite if
G is a finite set. We will only consider finite groups. The size |G| of the set G is
called the order of the group G. When G is finite, for each element π ∈ G there
is always a smallest positive integer m such that

πm = π ∗ π ∗ . . . ∗ π
︸ ︷︷ ︸

m times

= id

The integer m is called the order of the element π . Let S be a subset of G. The
set S generates G if each element π ∈ G can be written as π = σ1 ∗σ2 ∗ . . . ∗σm

with σ1,σ2, . . . ,σm ∈ S for some m only depending on π . We call S a set of
generators for G and denoted this by G = 〈S〉.

A permutation is a bijection of a non-empty set X onto itself. Let π be permuta-
tion of X, then xπ denotes the image of x ∈ X under π . The product π σ of two
permutations π and σ of X satisfies xπ σ = (xπ)σ .

Definition 3.2.2. The symmetric group on a non-empty set X, is the group who-
se underlying set is the set of all permutation from X onto itself and whose
binary operation is the multiplication of permutations. ⋄

The symmetric group on X shall be denoted by Sym(X) or by Sym(n) whenever
X = {1, . . . , n}. Note that |Sym(n)| = n!. The degree of a permutation group
on X is |X|.
Definition 3.2.3. A permutation group is a group G whose elements are per-
mutations of a given set X and whose group operator is the multiplication of
permutations in G. ⋄

3.2 Isomorphism in a group-theoretic framework 43

Let x ∈ X and π ∈ Sym(X), then π stabilizes x if xπ = x; otherwise π mo-

ves x. Two permutations π , σ ∈ Sym(X) are called disjoint if and only if for
every element of x ∈ X either π stabilizes x and σ moves x or vice versa. Let
x1, x2, . . . , xr ∈ {1, . . . , n}, r ≥ 2 be distinct. The permutation π ∈ Sym(n)
with images xπ1 = x2, xπ2 = x3, . . ., xπr−1 = xr, xπr = x1, and which stabilizes
all remaining integers, is called an r-cycle and is denoted by (x1 x2 . . . xr). Eve-
ry permutation π ∈ Sym(n) is either the identity or product of one or more
pairwise disjoint cycles.

Example 3.3. The permutation π ∈ Sym(6) with 1π = 2, 2π = 4, 3π = 6, 4π =
1, 5π = 5 and 6π = 3 can be written as a product of cycles π = (1 2 4) (3 6). •
Definition 3.2.4. Let (G, ∗) be a group. Let H ⊂ G. Then (H, ∗) is called a
subgroup of (G, ∗) when (H, ∗) is itself a group. ⋄

When the binary operator ∗ is clear from context, we shall say that H is a
subgroup of G and write H ≤ G to indicate this fact. If H 6= G then H is said
to be a proper subgroup of G, and we write H < G.

Example 3.4. The 5-cycle (1 2 3 4 5) generates a subgroup C5 of Sym(5).

C5 = {id, (1 4 2 5 3), (1 2 3 4 5), (1 5 4 3 2), (1 3 5 2 4)}.

•
Definition 3.2.5. Let G be a group, H ≤ G and π ∈ G. A right coset H π of H
in G is the set of elements H π = {h π : h ∈ H}. Similarly π H = {π h : h ∈ H}
is a left coset of H in G. ⋄
Theorem 3.2.6. Let G be a group, H ≤ G. The right (left) cosets of H in G form

a partition of G. All cosets of H in G have the same size.

Let G be a group, H ≤ G. The index of H in G is the number of disjoint right
(left) cosets of H in G. The number of left cosets is equal to the number of right
cosets of H in G. We shall denote the index of H in G by [G : H]

Example 3.5. Consider C3 = {id, (1 3 2), (1 2 3)} < Sym(3). The right cosets
of C3 in Sym(3) are given by C3 id = C3 = {id, (1 3 2), (1 2 3)} and C3 (2 3) =
{(1 2), (2 3), (1 3)}. •
Theorem 3.2.7 (Lagrange). Let G be a finite group and H ≤ G. Then |H| divides

|G| and [G : H] = |G| / |H|.

44 3 Generation algorithms.

Definition 3.2.8. Let G be a group, H ≤ G. A subset T ⊆ G is a right (left)

transversal of H in G if T contains exactly one element from each right (left)
coset of H in G. ⋄

Elements of T are sometimes called coset representatives. We have that G is equal
to the disjoint union of all right cosets H t with coset representatives t ∈ T. If
π is an element of G then there is a unique coset representative t ∈ T and a
unique element h of H such that π = h t.

Example 3.6. Consider C4 = {id, (1 2 3 4), (1 3) (2 4), (1 4 3 2)} < Sym(4).
The set

T = {id, (3 4), (2 4), (2 3), (2 3 4), (2 4 3)}
is a right transversal of C4 in Sym(4). •
Definition 3.2.9. Given a group (G, ∗) and a non-empty set X. A binary opera-
tor · is called a left action of G on X if π · x ∈ X, id · x = x and (π1 ∗ π2) · x =
π1 · (π2 · x) for all π , π1, π2 ∈ G, and all x ∈ X ⋄
Definition 3.2.10. Given a group (G, ∗) and a non-empty set X. A binary
operator · is called a right action of G on X if x · π ∈ X, x · id = x and
x · (π1 ∗ π2) = (x · π1) · π2 for all π , π1, π2 ∈ G, and all x ∈ X. ⋄

We shall write π x instead of π · x and use the exponential notation xπ instead
of x · π (with x ∈ X, π ∈ G) whenever the operator · is clear from context.
Throughout this text the following elementary group action will frequently oc-
cur.

Definition 3.2.11. The natural (right) action of a permutation group G ≤
Sym(X) on X is defined by x · π = xπ for every x ∈ X and π ∈ G. ⋄
Definition 3.2.12. Consider the right (or left) action of a group G onto a set X.
For each x ∈ X, the set xG = {xπ : π ∈ G} (or G x = {π x : π ∈ G}) is called
the orbit of x under G. ⋄
Example 3.7. Consider the natural right action of G = 〈(1 4 3 2) , (2 4)〉 on the
set X = {1 . . . , 4}. Then 2G = {1, 2, 3, 4}. •

The definition of a group guarantees that the set of orbits of X under the right
(left) action of G form a partition of X. The associated equivalence relation ∼
is defined by saying x ∼ y with x, y ∈ X if and only if there exists a π ∈ G
with xπ = y (or π x = y). The orbits are then the equivalence classes under ∼.

3.2 Isomorphism in a group-theoretic framework 45

We write G
 X for the set of all orbits of X under the right (or left) action of a
group G.

Example 3.8. Let g1 = (1 4 2 3) (5 11 10 6), g2 = (1 4 5 11 6 10 3 2) (8 9) and
g3 = (1 4 5 11 6 10 3 2) (7 8). Consider the action of G = 〈g1, g2, g3〉 on the set
X = {1 . . . , 11}. Then G
 X = {{1, 2, 3, 4, 5, 6, 10, 11}, {7, 8, 9}}. •
Definition 3.2.13. Consider the right (or left) action of a group G on a set X.
For each x ∈ X, the set Gx = {π ∈ G : xπ = x} (or Gx = {π ∈ G : π x = x}) is
called the stabilizer of x in G. ⋄

It is easily seen that Gx is a subgroup of G.

Example 3.9. Consider the action of G = 〈(1 4 3 2) , (2 4)〉 on the set X =
{1 . . . , 4}. Then G2 = {id, (1 3)}. •

For each x ∈ X, the orbit xG (or G x) and the corresponding stabilizer subgroup
Gx are connected by the following result:

Theorem 3.2.14. Consider the right (or left) action of a group G on a non-empty

set X and let T be a right (or left) transversal of the stabilizer Gx in G with x ∈ X.

Then the mapping t 7→ xt (or t 7→ t x) for all t ∈ T is a bijection of the transversal

T onto the orbit xG (or G x).

A bijection tells us that two sets have the same size, hence we find immediately
the following consequence:

Theorem 3.2.15 (Orbit-Stabilizer). Let the group G act right (or left) on the set

X and let x ∈ X, then |xG| = [G : Gx] (or |G x| = [G : Gx]).

Example 3.10. Consider the action of G = 〈(1 4 3 2) , (2 4)〉 on X = {1 . . . , 4}.
Consider the stabilizer G2 = {id, (1 3)}. Then 2G = {1, 2, 3, 4} and a right
transversal of G2 in G is T = {id, (1 2 3 4), (1 2) (3 4), (2 4)}. •

3.2.2 Isomorphism in terms of induced group actions

The isomorphism relation associated with virtually all combinatorial objects —
among which the combinatorial objects covered in this text — can be natu-
rally characterized in terms of group actions. Recall the definition of graph

46 3 Generation algorithms.

isomorphism given by Definition 2.1.3. The following example illustrates how
we can capture this particular isomorphism relation in terms of induced group
actions.

Example 3.11. Consider the three isomorphic graphs I, J and K, respectively
shown from left to right in the figure below.

4

10

8

6

1

5

9

2

3

7

9

2

3

4

5

6 7

810

1 2

3

4

5

6

7

8

9

10

1

Since the isomorphic graphs I, J and K have the same vertex set, each iso-
morphism of one of these graphs onto another must correspond to a permuta-
tion of that vertex set. E.g. , π = (3 7) (4 5 6 8 9) ∈ Sym(10) is an isomorphism
of I onto J, while σ = (6 9 8 10) ∈ Sym(10) is an isomorphism of J onto K. We
leave it for the reader to verify that π · I = J, σ · J = K and π σ · I = K. •

Consider Sym(n), then its induced action on the finite set Gn of graphs of order
n can be defined by g · X such that V(g · X) = V(X) and

E(g · X) = {{x, y} : {xg , yg} ∈ E(X)}

for every X ∈ Gn and every g ∈ Sym(n). In other words, x and y are joined
in g · X if and only if xg and yg are joined in X. Clearly (g h) · X = g · (h · X)
for every X ∈ Gn and every g, h ∈ Sym(n). After all, we have V(g · (h · X)) =
V(g h · X) = V(X) and

E(g · (h · X)) = {{x, y} : {xg , yg} ∈ E(h · X)}
= {{x, y} : {(xg)h, (yg)h} ∈ E(X)}
= E(g h · X))

In terms of this induced group action, two graph graphs X, Y ∈ Gn are isomorp-
hic if there exists a g ∈ Sym(n) such that g ·X = Y. The associated permutation
g is called an isomorphism of X onto Y.

3.2 Isomorphism in a group-theoretic framework 47

In a more general context, we are equipped with a finite set of combinatorial
objects ∆ and a group G whose induced actions on ∆ correspond to all the
isomorphisms between the objects of ∆. More precisely, for every π ∈ G and
every X ∈ ∆ there corresponds an object π · X, obtained by the induced action
of π on X. Two objects X, Y ∈ ∆ are isomorphic, and we write X ∼=G Y, if
there exists a π ∈ G such that π · X = Y. If the group G acting on ∆ is clear
from context, we shall write X ∼= Y instead. If there exists a σ ∈ G such that
σ ·X = X, thenσ is called an automorphism of X. The set of all automorphisms
of X forms a group, called the automorphism group of X. The automorphism
group of X shall be denoted by Aut X. In terms of a finite set of combinatorial
objects ∆, the orbit of X ∈ ∆ under G translates to

G X = {π · X : π ∈ G} = {Y ∈ ∆ : X ∼=G Y}

that is, the set of combinatorial objects of ∆ which are isomorphic to X. More-
over, the stabilizer of X in G translates to

GX = {π ∈ G : π · X = X} = Aut X

that is, the automorphism group of X.

Example 3.12. Consider the graph I as defined in Example 3.11, then Aut I =
〈(1 2 3 4 5) (6 7 8 9 10), (1 2 3 4 9 6) (5 7 8)〉 and |Aut I| = 120. •

Explicitly checking whether two objects X, Y ∈ ∆ are isomorphic, requires fin-
ding an isomorphism of X onto Y, or vice versa, an isomorphism of Y onto X.
However, in practice it is customary to check whether X ∼=G Y by comparing
the canonical representatives of X and Y with respect to some canonical repre-

sentative map:

Definition 3.2.16. A canonical representative map for the induced action of G
on ∆ is a function ϕ : ∆ → ∆ such that ϕ(X) ∼=G X for every X ∈ ∆ and
X ∼=G Y impliesϕ(X) =ϕ(Y) for every X, Y ∈ ∆. ⋄

Given such a canonical representative map ϕ, an object X ∈ ∆ is said to be
in canonical form if ϕ(X) = X. Moreover, ϕ(X) is said to be the canonical

representative or canonical labeled object of G X, the orbit of X under G. Since
X ∼=G Y if and only ifϕ(X) =ϕ(Y), checking whether X and Y are isomorphic
essentially comes down to testing whether their canonical representatives are
identical.

48 3 Generation algorithms.

Definition 3.2.17. A canonical labeling map for the induced action of G on ∆ is
a function ϑ : ∆→ G such that

ϑ(π X) π X = ϑ(X) X

for every π ∈ G and every X ∈ ∆. ⋄

The isomorphism ϑ(X) of X onto ϑ(X) X is said to be a canonical labeling. A
canonical representative map and a canonical labeling map are closely related.
On the one hand, given a canonical labeling map ϑ for the induced action of G
on ∆ , then the mapϕ : ∆→ ∆ such that

ϕ(X) = ϑ(X) X

for every X ∈ ∆ is the canonical representative map. On the other hand, given
a canonical representative map ϕ for the induced action of G on ∆, then any
map ϑ : ∆→ G such that

ϑ(X) ∈ {π ∈ G : π X = ϕ(X)}
is a canonical labeling map.

Definition 3.2.18. An invariant for the induced action of G on ∆ is a function
ξ with domain ∆ such that ξ(X) = ξ(Y) if X ∼=G Y for every X, Y ∈ ∆. ⋄
Definition 3.2.19. A certificate is an invariant ξ for the induced action of G on
∆ such that ξ(X) = ξ(Y) if and only if X ∼=G Y for every X, Y ∈ ∆. ⋄

An invariant is an attribute of the objects of ∆ which remains constant under
the induced action of G on ∆. Since ξ(X) 6= ξ(Y) implies X 6∼=G Y, we may
apply invariants to distinguish between non-isomorphic objects of ∆. However,
it is not necessarily so that X 6∼=G Y implies ξ(X) 6= ξ(Y). This is true if and
only if ξ is a certificate.

Example 3.13. The clique number of graph G of order n is a graph invariant

under the induced action of Sym(n) on Gn, but not a certificate. •

3.3 Isomorphism rejection

A central theme in virtually all exhaustive generation algorithms is the detection
and elimination of isomorphic combinatorial objects. In general, let ∆ denote

3.3 Isomorphism rejection 49

the set of combinatorial objects on which a finite group G induces actions, then
the aim of isomorphism rejection essentially is to generate exactly one repre-
sentative from each orbit of G
 ∆. Moreover, failure to remove isomorphic
copies results in the traversal of superfluous regions of the associated search
tree, proportional with the number of isomorphic combinatorial objects. Even
when considering relatively small combinatorial objects, this would render the
exhaustive generation process inefficient or make it even completely infeasi-
ble. Furthermore, the application of isomorphism rejection techniques avoids
traversing regions of the search tree which are identical in terms of the exhaus-
tive generation process but which do not contain leaf nodes corresponding to
combinatorial objects of the set ∆.

McKay [70] divides advanced algorithms for isomorph-free exhaustive genera-
tion into three categories. A slightly modified classification appears in [8, 65].
McKay distinguishes between the following approaches:

Orderly generation In this approach there is exactly one canonical labeled ob-
ject in each orbit and that is the orbit representative being generated. It is
customary to choose a canonical form such that specific subobjects of ca-
nonical labeled objects are also in canonical form. The term orderly stems
from the fact that objects are generated subject to some total order on
them. Orderly algorithms were independently introduced by Read [87]
and Faradžev [41]. Applications of this orderly approach can be found
for the classification of many combinatorial objects including designs and
their resolutions [33, 34, 35, 82, 83], cubic graphs [9], regular graphs
[79, 80], one factorizations [37] and fullerenes [10].

Canonical augmentation This approach was introduced by McKay in [70]. A
slightly simplified version, called weak canonical augmentation, appears
in [65]. In this approach, combinatorial objects are constructed in a ca-
nonical way, instead of the combinatorial objects being canonical them-
selves. Essentially an axiomatic model is imposed on the search tree such
that two isomorphic nodes are constructed by a sequence of isomorphic
subobjects. Isomorph-free generation is obtained by systematically rejec-
ting isomorphic siblings during traversal. Applications of this (weak) ca-
nonical augmentation approach can be found for the classification of many
combinatorial objects including Steiner triple systems [63], posets [11],
Latin squares, quasigroups and loops [75].

Homomorphism principle This approach was introduced by Grüner, Laue and

50 3 Generation algorithms.

Meringer in [51]. In this approach combinatorial objects are constructeda-
long a path of combinatorially determined subobjects, using elementary
group computations which describe the relationship between the auto-
morphism structure of consecutive subobjects [70]. Applications of this
homomorphism principle approach can be found for the exhaustive ge-
neration of many combinatorial objects including t-designs [89], polyhex
hydrocarbons [18] and molecular graphs [50].

In studying tailored isomorph-free exhaustive generation algorithms for associ-
ation schemes and in particular strongly regular and distance regular graphs,
we shall concentrate [76] on orderly generation algorithms. For a detailled
introduction on canonical augmentation and the homomorphism principle we
refer the reader to [8, 65, 70] and [8, 51, 65], respectively.

In a more general setting, orderly generation algorithms can be described in
detail in terms of constraint networks and search trees. Consider a constraint
network R = (X, D, C) with n variables, where the finite set of leaf nodes at
depth n in the associated search tree corresponds to a finite set ∆ of combinato-
rial objects on which a finite group G induces actions. So as to describe orderly
generation, we need to extend the induced action of G to the finite set NR,
consisting of all nodes – partial and complete – of the search tree.

Consider a canonical representative mapϕ for the induced action of G on the set
NR. In an orderly approach, it is customary to prune all nodes in the search tree
which are not in canonical form with respect toϕ. However, in order to generate
exactly one representative from each orbit of G
∆, the canonical representative
map ϕ must satisfy ϕ(X) ∈ NR for every X ∈ NR and if ϕ(Y) = Y then also
ϕ(Z) = Z for every Y, Z ∈ NR with Z the parent of Y.

As a result of these requirements, only one representative of each orbit of G
∆
is generated. Indeed, it is straightforward to see that at most one representative
is generated for each orbit, since only canonical representatives are considered
as solutions of the constraint network R = (X, D, C). Moreover, for every
X ∈ ∆ we have that all nodes on the path from the root of the search tree to
the leaf node ϕ(X) are in canonical form. Hence at least one representative of
each orbit is generated.

A pseudo code description of a general orderly algorithm is given in Algorithm
3.2. The same control strategy as in Algorithm 3.1 is applied, that is, at each step

3.3 Isomorphism rejection 51

in the recursion the uninstantiated variable with the smallest index is selected.

Algorithm 3.2 General orderly algorithm for a constraint network R =
(X, D, C) with n variables subject to a canonical representative map ϕ for the
induced action of G on NR.

procedure search()

1: orderly((),0)

procedure orderly((d1, . . . , dk): instantiation, k: int))

1: if ((d1, . . . , dk) is in canonical form then
2: if k = n then
3: report (d1, . . . , dn) as a solution
4: else
5: for all dk+1 ∈ Dk+1 do
6: if (d1, . . . , dk+1) is feasible then
7: orderly((d1, . . . , dk+1),k+1)

Below we give an example to illustrate the preceding general discussion of the
orderly approach in terms of constraint networks and search trees.

Example 3.14. Recall the constraint network R = (X, D, C) which describes
the corresponding exhaustive generation of the set ∆ of all regular graphs of
order 4 and degree 2 as outlined in Example 3.1–3.2. The group Sym(4) induces
an action on ∆, and at the same time on the set NR of 4 × 4 matrices of the
corresponding recursion tree. More precisely, the induced action of Sym(4) on
NR can be defined for every M ∈ NR, π ∈ Sym(4) by

(π ·M)x,y = (M)xπ ,yπ ,

for all x, y ∈ {1, . . . , 4}. Hence, two matrices of NR are isomorphic if and only
if the one can be obtained from the other by permuting its rows and columns at
the same time.

Define the ordering ? < 0 < 1, and associate with each M ∈ NR a 6-tuple
over {?, 0, 1}, which is formed by concatenating the upperdiagonal columns of
M. The control strategy applied in Example 3.2 is defined in such a way that
the 6-tuples associated with each node in the search tree occur in lexicographic
order. A matrix M ∈ NR is in canonical form, when the 6-tuple associated with

52 3 Generation algorithms.

each matrix in the orbit of M under Sym(4) is lexicographically smaller or equal
than the 6-tuple associated with M.

The canonical representative of every M ∈ NR occurs as a node in the search
tree. Moreover, for every nonroot node which is in canonical form, it holds
that its parent is also in canonical form. Hence under the assumption of the
above canonical form, Figure 3.2 corresponds to the search tree traversed by
Algorithm 3.2. The subtrees shown in the light gray areas are discarded by the
algorithm. The leftmost subtree can be pruned since

π ·







0 1 0 ?
1 0 1 ?
0 1 0 ?
? ? ? 0







=







0 1 1 ?
1 0 0 ?
1 0 0 ?
? ? ? 0







with π = (1 2 3) ∈ Sym(4), while the rightmost subtree can be pruned since

σ ·







0 0 1 ?
0 0 ? ?
1 ? 0 ?
? ? ? 0







=







0 1 0 ?
1 0 ? ?
0 ? 0 ?
? ? ? 0







with σ = (2 3) ∈ Sym(4). Indeed, the matrices associated with the root of
these subtrees are not in canonical form. •

3.3 Isomorphism rejection 53

0??0
100?

0110
100?

1010
0101

010?
1O?0

0011
0011

110?
11?0

1??0
110?

0011
001?

0110
1001

0110
1001

1001
0110

100?
01?0

1010
0101

0101
1010

1??0
010?

0101
101?101?

0110

110?
0??0

101?
010?

010?
???0

001?
001?

110?
???0

100?
011?

100?
???0???0

110?

011?
101?

10??
011?

1?0?
???0 ???0

0?0?

010?
10??

???0
1?0?

001?
00??

00??
00??

??0?
???0???0

??0?

01??
10??

?0??
0???

??0?
???0

0011
0011

1100
1100

dead end

Figuur 3.2: Search tree corresponding to the isomorph-free exhaustive genera-
tion of all regular graphs of order 4 and degree 2.

4
Isomorph-free

generation of

association schemes

”Real stupidity beats artificial intelligence every time.”[T. PRATCHETT,
HOGFATHER]

In this chapter we concentrate on tailored, isomorph-free exhaustive generation
algorithms for the classification of d-class association schemes, and strongly re-
gular and distance regular graphs in particular. Our focus is on developing and
improving orderly generation algorithms which provide a complete classificati-
on for a given parameter set and which ultimately turn out to be fast enough in
practice to yield new classification results of combinatorial interest.

4.1 Exhaustive generation

In the most general context of association schemes, we are interested in the
classification, up to isomorphism, of the set of all d-class association schemes

56 4 Isomorph-free generation of association schemes

on V = {1, . . . , n}, given a set of intersection matrices1 {L0 , . . . , Ld}. Recall
that the set of all such d-class association schemes shall be denoted by XL0...Ld

.
This set XL0...Ld

can be expressed as the set of solutions of a constraint network

R = (X, D, C) consisting of a finite set of (n2 − n)/2 variables

X = {xi j : 1 ≤ i < j ≤ n} (4.1)

together with a corresponding set of domains D

D = {Di j : 1 ≤ i < j ≤ n}. (4.2)

For now, all domains Di j associated with the variables xi j are the same and
equal to {1, . . . , d}.

When translating this classification problem into the constraint network R, we
face the challenge to identify mathematical properties of the d-class association
schemes in XL0 ...Ld

, which may serve as a basis for the set of constraints C
of the constraint network. These constraints should guarantee that for each
solution of R, the resulting matrix M as defined in (4.3) — with each variable
of X instantiated — corresponds to the relation matrix MΩ of a unique d-class
association scheme Ω ∈ XL0...Ld

.

M =












0 x1,2 . . . x1,n−1 x1,n

x1,2 0 . . . x2,n−1 x2,n
...

...
.

x1,n−1 x2,n−1

... 0 xn−1,n

x1,n x2,n

... xn−1,n 0












(4.3)

The exhaustive generation algorithm, which we shall develop throughout this
chapter, initially starts with a matrix M where all non diagonal matrix entries
are still uninstantiated. (Recall that we write Mi j =? when the variable at
the corresponding position is uninstantiated.) Each upperdiagonal matrix entry
Mxy — and at the same time its symmetric counterpart Myx — is systematically
recursively instantiated with each value from the associated domain Dxy. Nodes
at depth k in the corresponding recursion tree represent partially instantiated

1It is customary to express the intersection matrices of strongly regular and distance regular in
terms of (v, k, λ,µ) parameter sets and intersection arrays, respectively.

4.1 Exhaustive generation 57

matrices M where exactly k upperdiagonal entries of M are already filled in.
During this recursive traversal, we may prune nodes of the recursion tree which
correspond to partially instantiated matrices M which are not feasible, that is,
which violate at least one of the constraints listed in C. The constraint set C
consists of constraints which are defined based on both combinatorial as well as
algebraic properties of the d-class association schemes in XL0 ...Ld

.

4.1.1 Combinatorial constraints

Several combinatorial properties of the d-class association schemes in XL0 ...Ld

may serve as a basis for some of the constraints in C. The following constraints,
derived from the defining axioms (2.4) of a d-class association scheme, are used
as a pruning technique in our exhaustive generation algorithms. Recall that NR
denotes the set of all nodes, and thus equivalently, all partially and completely
instantiated matrices M, which are considered during exhaustive generation.

Constraint 4.1.1 (Regularity constraint). Let M ∈ NR, let x ∈ V and 1 ≤ i, j ≤
d. Define

Zx
i = {z ∈ V : Mxz = i} and kx

i = |Zx
i |. (4.4)

Then kx
i ≤ ki = p0

ii.

The value kx
i is called a tentative valency.

Constraint 4.1.2 (Intersection constraint). Let M ∈ NR, let x, y ∈ V and 1 ≤
i, j, l ≤ d. Define

Z
xy
i j = {z ∈ V : Mxz = i and Mzy = j} and p

xy
i j = |Zxy

i j |. (4.5)

Then p
xy
i j ≤ pl

i j if Mxy = l.

The value p
xy
i j is called a tentative intersection number.

Constraint 4.1.3 (Tentative intersection constraint). Let M ∈ NR, let x, y ∈ V
and 1 ≤ i, j ≤ d, such that Mxy =?. Then p

xy
i j ≤ maxd

l=1 pl
i j.

58 4 Isomorph-free generation of association schemes

These combinatorial constraints can be used to prune the recursion tree as fol-
lows. Let i ∈ {1, . . . , d}. If during the traversal of the recursion tree we en-
counter a partially instantiated matrix M ∈ NR, we may reject M and prune
the corresponding branch of the recursion tree,

• if at least one of its rows or columns contains more than ki = p0
ii entries

with value i;

• if the number of elements r for which the matrix entry Mpr = i and the

matrix entry Mrq = j is more than pk
i j, where the matrix entry Mpq = k;

• if the matrix entry Mpq is uninstantiated and the number of elements r
for which the matrix entry Mpr = i and the matrix entry Mrq = j is more

than maxd
k=1 pk

i j.

Indeed, in each case M cannot possibly be extended to a completely instantiated
matrix which corresponds to the relation matrix MΩ of a d-class association
scheme Ω ∈ XL0...Ld

.

Note that in order to check the regularity constraints in practice, not every pos-
sible element x ∈ V needs to be considered, but only those elements for which
x is a row or column number of the matrix entry of M that was instantiated in
the last step of the recursion. Similarly, in order to check the (tentative) inter-
section constraints, not every possible pair x, y ∈ V needs to be considered, but
only those pairs for which x or y is a row or column number of the matrix entry
of M that was instantiated in the last step of the recursion.

Example 4.1. Consider a two-class association scheme with p1
2,1 = 2 , k1 =

p0
1,1 = 3 and a partially instantiated matrix M as depicted below.

0

0

0

0

0

0

0

0

0

0

1 1 2 2 2 2 2 2

1

1

2

2

2

2

2

2

2

2

1

1

2 2 1 1 1

1

1

1

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

4.1 Exhaustive generation 59

The extension of this matrix M by instantiating the matrix entry M2,7 with value
1 (and the same value at the symmetric position) can be rejected because then

on the one hand k2
1 = 4 > k1 = 3 and on the other hand p1,2

2,1 = 3 > p1
2,1 = 2

with matrix entry M1,2 = 1, which violates Constraint 4.1.1 and 4.1.2, respecti-
vely. •

4.1.2 Combinatorial look-ahead strategies

Basic backtracking has the problem that some of the domain values are inconsis-
tent with the matrix M as it is instantiated thus far: adding them to the matrix
at the given position would violate some of the given combinatorial constraints.
This can be avoided by applying the following look-ahead strategy. For each
matrix entry Mx,y we keep track of the domain of values which can safely be
instantiated at that position. After every recursion step we examine the domain
for each entry which at that point has not yet been instantiated. Any value for
that entry which is found to violate at least one combinatorial constraint is then
(temporarily) removed from the domain of that entry. Note that the application
of these domain reductions induces an additional constraint: whenever a do-
main for an uninstantiated entry becomes empty, then the matrix M cannot be
further extended.

In practice we implement this concept in a somewhat different manner: instead
of examining every uninstantiated entry at each step, we only select entries for
domain reduction according to the following rules :

Look-ahead 4.1.1. Let M ∈ NR. Let x ∈ V, 1 ≤ i, j ≤ d. If kx
i = ki, then

w ∈ V \ Zx
i cannot satisfy Mwx = i.

As before, not every possible element x ∈ V needs to be considered in practice,
but only those elements for which x is a row or column number of the matrix
entry of M that was instantiated in the last step. Moreover, only the domains of
still uninstantiated matrix entries should be reduced.

Look-ahead 4.1.2. Let M ∈ NR. Let x, y ∈ V, 1 ≤ i, j ≤ d. Then the following

rules must hold:

1. If Mxy = k and p
xy
i j = pk

i j, then w ∈ V \ Z
xy
i j such that Mwx = i cannot

60 4 Isomorph-free generation of association schemes

satisfy Mwy = j at the same time. Similarly, any w ∈ V \ Z
xy
i j for which

Mwy = j cannot also satisfy Mwx = i.

2. If Mxy =? and p
xy
i j = maxk pk

i j then w ∈ V \ Z
xy
i j such that Mwx = i cannot

satisfy Mwy = j at the same time. Similarly, any w ∈ V \ Z
xy
i j for which

Mwy = j cannot also satisfy Mwx = i.

3. If p
xy
i j > pk

i j for some k, 1 ≤ k ≤ d then x, y cannot satisfy Mxy = k.

Again, not every possible pair x, y ∈ V needs to be considered, but only tho-
se pairs for which x or y is a row or column number of the matrix entry of
M that was instantiated in the last step. As before, only the domains of still
uninstantiated matrix entries should be reduced.

Example 4.2. Consider a two-class association scheme with p2
11 = 1 and a

partially instantiated matrix M as depicted below.

0

0

0

0

0

0

0

0

0

0

1 1 1 2 2 2 2 2 2

1

1

1

2

2

2

2

2

2

2

2 2

2

1

1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

10

Clearly M2,3 = 2 and p2,3
11 = p2

11. Hence applying the first domain reduction
rule of Look-ahead 4.1.2, reduces the domain of the matrix entry M3,5 to {2}.
•

Example 4.3. Consider a two-class association scheme with p1
11 = 0, p2

11 = 1
and a partially instantiated matrix M as depicted below.

4.1 Exhaustive generation 61

0

0

0

0

0

0

0

0

0

0

1 1 2 2 2 2 2 2

1

1

2

2

2

2

2

2

2

2

1

1

2 2 1 1

1

1

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Clearly M5,6 =? and p5,6
11 = 1 > p1

11. Similarly, M3,4 =? and p3,4
11 = 1 > p1

11.
Hence applying the third domain reduction rule of Look-ahead 4.1.2, reduces
the domains of the matrix entries M5,6 and M3,4 to {2}. •

4.1.3 Dynamic variable ordering

Experiments show that the order in which matrix entries of M are chosen for
instantiation substantially influences the running time of the backtrack algo-
rithm. We have tried several heuristics for selecting an optimal ordering. In
some cases an ordering was determined in advance and remained fixed during
the algorithm, in other cases the next entry to be considered was chosen dyna-
mically at each step. We obtained the best results by extending each node in the
recursion tree with the matrix entry whose remaining domain had the smallest
cardinality at that time.

However, the orderly isomorphism reduction techniques which we shall intro-
duce in Section 4.2 require a fixed order in which matrix entries are chosen for
instantiation. Nevertheless, this domain information can still be used to deviate
from this fixed order whenever a domain of an uninstantiated matrix entry has
size 1. In other words, when a domain value is forced for a certain uninstanti-
ated matrix entry, we instantiated that matrix entry first. Note that a dynamic

variable ordering strategy like this implies that the order of instantiation does
not need to be the same in different branches of the recursion tree.

62 4 Isomorph-free generation of association schemes

4.1.4 Algebraic constraints

Also several algebraic properties related to the Bose-Mesner algebra of the d-class
association schemes in XL0...Ld

may serve as a basis for some of the constraints
in C. First, recall that a principal submatrix of a square symmetric n× n matrix
is any m × m submatrix obtained by deleting n − m rows and corresponding
columns, while a leading principal submatrix is any m×m submatrix obtained
by deleting the last n−m rows and columns.

In Chapter 2 we have shown that the eigenmatrix P and the dual eigenma-
trix Q of an association schemes can be computed from its intersection matri-
ces L0 , . . . , Ld. Hence P and Q are the same for all elements of XL0 ...Ld

. The
constraints which we shall introduce below, are based on the properties of the
minimal idempotents Ei of the schemes. In particular

• Ei is positive semidefinite (Lemma 2.4.3) and hence each principal sub-
matrix of Ei is positive semidefinite.

• Ei has rank Q0i, and hence each principal submatrix of Ei has rank at most
Q0i.

Also recall that the entry of Ei at position x, y is equal to Qki
n , when x and y are

k-th associates, by (2.29).

The following constraints, derived from these algebraic properties of the mi-
nimal idempotents, are used as a pruning technique in our exhaustive gene-
ration algorithms. For each partially instantiated matrix M ∈ NR and each
i ∈ {0, . . . , d}, these constraints are expressed in terms of a closely related
n× n matrix MEi

with entries

(MEi
)xy =







1
n Qki if Mxy = k

? if Mxy =?
(4.6)

for every x, y ∈ V with k ∈ {0, . . . , d}. Note that when M is completely instan-
tiated and corresponds to a relation matrix MΩ of a d-class association scheme
Ω ∈ XL0 ...Ld

, then the related matrix MEi
is identical to the minimal idempotent

Ei of Ω.

Constraint 4.1.4 (Positive semidefinite constraint). Let 0 ≤ i ≤ d and let M ∈

4.2 Isomorph-free generation 63

NR with corresponding matrix MEi
. Then any completely instantiated principal

submatrix of MEi
must be positive semidefinite.

Constraint 4.1.5 (Rank constraint). Let 0 ≤ i ≤ d and let M ∈ NR with

corresponding matrix MEi
. Then any completely instantiated principal submatrix

of MEi
must have rank at most Q0i.

In other words, let 1 ≤ i ≤ d. If during the traversal of the recursion tree we
encounter a partially instantiated matrix M ∈ NR, we may reject M and prune
the corresponding branch of the recursion tree, if any principal submatrix of the
related matrix MEi

— with all its matrix entries filled in — is not positive semi-
definite or has a rank more than Q0i. Indeed, M cannot possibly extended to a
completely instantiated relation matrix M′ since the corresponding matrix M′Ei

cannot be equal to the minimal idempotent Ei of a d-class association scheme
in XL0...Ld

. Checking both algebraic constraints during traversal is conceptually
straightforward, however incorporating both algebraic constraints in an explicit
generation algorithm turns out to be complicated in practice. A more detailed
discussion on how both constraints are actually checked during traversal of the
recursion tree is given in Section 4.3.

4.2 Isomorph-free generation

The set of solutions of the constraint networkR outlined in the previous section,
consists of all d-class association schemes of XL0...Ld

. However, as in Section
3.3, it is our objective to generate only one representative for each isomorphism
class. In the particular case of d-class association schemes, the isomorphism
relation can be expressed using the following action of Sym(n) on XL0...Ld

.

Definition 4.2.1. Let i ∈ {0, . . . , d}. Let π ∈ Sym(n) and Ω ∈ XL0...Ld
. Then

π ·Ω is the association scheme of XL0 ...Ld
such that (xπ , yπ) are i-th associates

in Ω if and only if (x, y) are i-th associates in π ·Ω for every x, y ∈ {1, . . . , n}.
⋄

Note that the relation matrix Mπ ·Ω of π ·Ω satisfies

(Mπ ·Ω)xy = (MΩ)xπ ,yπ . (4.7)

64 4 Isomorph-free generation of association schemes

Note that this is indeed a left action, as

(Mπ ·(σ ·Ω))x,y = (Mσ ·Ω)xπ ,yπ = (MΩ)xπσ ,yπσ . (4.8)

Two d-class association schemesΩ1, Ω2 ∈ XL0...Ld
are called isomorphic if there

exists a π ∈ Sym(n) such that π ·Ω1 = Ω2. In terms of this induced action,
generating only one representative from each isomorphism class is equivalent
with generating one representative from each orbit of Sym(n)
XL0 ...Ld

.

The isomorphism rejection techniques incorporated in our exhaustive generati-
on algorithm are based on an orderly approach. Recall from Section 3.3 that in
order to describe these techniques, we need to extend the action of Sym(n) to
the finite set NR consisting of all nodes of the search tree. These nodes corres-
pond to partially and completely instantiated square symmetric n× n matrices
M with zero-diagonal. Let π ∈ Sym(n), then π ·M is a square symmetric n× n
matrix with zero-diagonal such that

(π ·M)xy = (M)xπ ,yπ (4.9)

for every x, y ∈ {1, . . . , n}. Hence two square symmetric n× n matrices with
zero-diagonal — and thus similarly for two matrices of NR — are called iso-
morphic if the one can be obtained from the other by permuting its rows and
columns at the same time. Moreover, let Ω ∈ XL0 ...Ld

, then clearly

π ·MΩ = Mπ ·Ω (4.10)

according to (4.7) and (4.9).

Integrating orderly isomorphism rejection techniques in an exhaustive generati-
on algorithm requires selecting eligible canonical representatives in such a way
that the applied control strategy, maximally constrains the partially instantiated
matrices of NR. In this section we discuss two types of canonical representatives
which we shall evaluate later in this chapter. Both types have in common that
they are defined to be minimal in their orbits with respect to some lexicographic
ordering. Subject to the type of canonical form at hand, the control strategy of
the exhaustive generation algorithm shall be adapted in such a way that these
extremal matrices of NR turn up first during the traversal of the recursion tree.
Furthermore both types have in common that their canonical representatives
satisfy the same necessary condition — called lexical ordering — as outlined in
[20, 40].

4.2 Isomorph-free generation 65

To introduce both types of canonical representatives we first need to define an
ordering on tuples. Consider the k-tuples a = (a1, . . . , ak) and b = (b1 , . . . , bk).
Then we write

(a1, . . . , ak) < (b1, . . . , bk)

if and only if there exists an index i ∈ {0, . . . , k− 1} such that

a1 = b1 , . . . , ai = bi and ai+1 < bi+1.

The ordering defined in this way is called the lexical ordering on k-tuples. If
a tuple a is defined over Σ = {0, 1, . . . , d, ?}, then the undefined value ? is
considered to be the maximal element of Σ. We shall denote the set of all
square symmetric n× n matrices having an all zero diagonal and non-diagonal
entries in Σ byMn,d.

4.2.1 Row order canonical form

Let A ∈ Mn,d, then we define the row order certificate certr(A) of A to be the tu-

ple over Σ \ {0} of length
n (n−1)

2 obtained by concatenating the upperdiagonal
entries of A in a row-by-row order, that is,

certr(A) = (A1,2,...,A1,n, A2,3,...,A2,n, . . .

. . . , An−2,n−1, An−2,n, An−1,n). (4.11)

Using the lexicographic ordering on tuples, we may define a total ordering on
the setMn,d as follows. Let A, B ∈ Mn,d, then we define A <r B if and only if
certr(A) < certr(B). Consider the orbit Sym(n) A of A ∈ Mn,d, then we define

canonr(A) = minr (Sym(n) A)

= minr ({π A : π ∈ Sym(n)}) (4.12)

The matrix canonr(A) is minimal in its orbit and is called the row order canonical

representative of A. If A = canonr(A), we say that A is in row order canonical

form2.

2This standard type of canonical form was used e.g. in [9, 41, 79, 80, 87]

66 4 Isomorph-free generation of association schemes

Example 4.4. Consider the matrices A, B ∈ M5,2 as shown below.

A =









0 2 1 1 2

2 0 2 1 1
1 2 0 2 1

1 1 2 0 ?
2 1 1 ? 0









B =









0 2 1 1 2

2 0 2 1 2
1 2 0 2 1

1 1 2 0 ?
2 2 1 ? 0









The corresponding row order certificates are

certr(A) = (2, 1, 1, 2, 2, 1, 1, 2, 1, ?)

certr(B) = (2, 1, 1, 2, 2, 1, 2, 2, 1, ?)

and therefore A <r B. •

Orderly generating one representative of each orbit of Sym(n)
XL0...Ld
, subject

to the canonical representative map canonr, is equivalent to generating the set
of row order canonical representatives

repr(XL0...Ld
) =

{
Ω ∈ XL0...Ld

: MΩ = canonr(MΩ)
}

(4.13)

However, recall that in order to generate exactly one representative from each
orbit of Sym(n)
 XL0...Ld

, the control strategy of the exhaustive generation
should be defined in such a way that

canonr(A) ∈ NR (4.14)

for every A ∈ NR and

canonr(C) = C if canonr(B) = B (4.15)

for every B, C ∈ NR with C the parent of the nonroot node B.

Definition 4.2.2. The node B ∈ NR shall be called row order compatible if and
only if certr(B) is of the form

certr(B) = (a1, . . . , ak, ?, . . . , ?) (4.16)

for some k ∈ {1, . . . , (n2 − n)/2} and ai ∈ {1, . . . , d} for all i ∈ {1, . . . , k}. B is
called a root node if k = 0 in the above. If B is not a root node, then the unique
matrix C ∈ NR such that

certr(C) = (a1, . . . , ak−1, ?, ?, . . . , ?) (4.17)

is called the row order parent of B. ⋄

4.2 Isomorph-free generation 67

Theorem 4.2.3. Let B ∈ NR be row order compatible with row order parent

C ∈ NR. If canonr(B) = B then also canonr(C) = C.

Proof : Take certr(B) and certr(C) as in (4.16) and (4.17). Suppose that
canonr(C) 6= C. Then there must exist a π ∈ Sym(n) such that π C <r C,
or equivalently, certr(π C) < certr(C). Assume that l ∈ {1, . . . , (n2 − n)/2} is
the index of the first entry in which certr(π C) and certr(C) differ, and then

certr(π C)l < certr(C)l .

By (4.17), any undefined value ? appears in the least significant entries of
certr(C). Moreover, since ? is the maximal element of Σ, certr(π C)l 6= ? and
therefore l < k. This proves that π , when regarded as a permutation of cer-
tificate indices, permutes the set {1, . . . , k − 1} and hence the k − 1-prefix of
certr(π B) and certr(π C) as the same. Hence

certr(π B)l = certr(π C)l < certr(C)l = certr(B)l ,

a contradiction to canonr(B) = B.

Corollary 4.2.1. Let k ∈ {2, . . . , (n2 − n)/2} and let B j ∈ NR be row or-

der compatible with row order parent B j+1 ∈ NR for each j ∈ {1, . . . , k}. If

canonr(B1) = B1 then also canonr(B j) = B j for each such j. ⋄

The previous theorem provides a natural way to structure the search. Recall
that the exhaustive generation algorithm starts with a matrix M ∈ Mn,d where
all non-diagonal entries are still uninstantiated. The control strategy applied
during exhaustive generation is defined in such a way that the upperdiagonal
matrix entries of M are systematically instantiated according to the following
instantiation order:

M1,2, . . . , M1,n, M2,3, . . . , M2,n, M3,4, . . .
. . . , Mn−3,n, Mn−2,n−1, Mn−2,n, Mn−1,n

(4.18)

It is easy to see that this row by row instantiation order naturally coincides with
the order in which row order certificates of matrices in Mn,d are constructed.
Therefore (4.17) and (4.16) hold for every B, C ∈ NR such that B is row order
compatible with row order parent C. Hence, subject to the above control stra-
tegy and the canonical representative map canonr, the orderly generation algo-
rithm generates exactly one representative from each orbit of Sym(n)
XL0...Ld

.

68 4 Isomorph-free generation of association schemes

Furthermore, if we instantiate each matrix entry of M by systematically assig-
ning – in increasing order – all values of its domain to it in turn, then it is
guaranteed that row order canonical representatives of matrices in NR turn up
first during the traversal of the search tree.

Note that it is not required to check the row order canonicity at each level in
the search tree, by Corollary 4.2.1. Of course, it is still necessary to test the row
order canonicity at the deepest level (n2 − n)/2 in the recursion tree. Typically
we shall only perform a canonicity test each time another row of M becomes
completely instantiated. Applying this canonicity test strategy allows us to de-
viate from the fixed column by column instantiation order of (4.18). Whenever
a domain of an uninstantiated matrix entry has size 1, we may instantiated this
forced matrix entry first.

4.2.2 Column order canonical form

The column canonical form which we introduce in this section is very similar
to the row canonical form from the previous section but is less frequently en-
countered in the literature. Let A ∈ Mn,d, then we define the column order

certificate certc(A) of A to be the tuple over Σ \ {0} of length (n2 − n)/2 ob-
tained by concatenating the upperdiagonal entries of A in a column-by-column

order ,

certc(A) = (A1,2, A1,3, A2,3, A1,4,...,A3,4, . . .

. . . , A1,n−1,...,An−2,n−1, A1,n,...,An−1,n). (4.19)

We can again use the lexicographic ordering on tuples to define a total ordering
on the set Mn,d. Let A, B ∈ Mn,d then we define A <c B if and only if
certc(A) < certc(B) and

canonc(A) = minc (Sym(n) A)

= minc ({π A : π ∈ Sym(n)}) (4.20)

The matrix canonc(A) is defined to be minimal in its orbit and is called the
column order canonical representative of A. If A = canonc(A), we say that A is
in column order canonical form.

4.2 Isomorph-free generation 69

Example 4.5. Consider the matrices A, B ∈ M5,2 as shown below.

A =









0 2 1 1 2
2 0 2 1 1
1 2 0 2 1
1 1 2 0 ?
2 1 1 ? 0









B =









0 2 1 1 2
2 0 2 1 2
1 2 0 2 1
1 1 2 0 ?
2 2 1 ? 0









The corresponding column order certificates are

certc(A) = (2, 1, 2, 1, 1, 2, 2, 1, 1, ?)

certc(B) = (2, 1, 2, 1, 1, 2, 2, 2, 1, ?)

and therefore A <c B. •

In terms of the canonical representative map canonc, the set of column order
canonical representatives is defined by

repc(XL0...Ld
) =

{
Ω ∈ XL0 ...Ld

: MΩ = canonc(MΩ)
}

. (4.21)

Similar as for the row order case, in order to generate repc(XL0...Ld
), the control

strategy of the orderly exhaustive generation should be defined in such a way
that

canonc(A) ∈ NR (4.22)

for every A ∈ NR and

canonc(C) = C if canonc(B) = B (4.23)

for every B, C ∈ NR with C the parent of the nonroot node B.

Definition 4.2.4. The node B ∈ NR shall be called column order compatible if
and only if certc(B) is of the form

certc(B) = (a1, . . . , ak, ?, . . . , ?) (4.24)

for some k ∈ {1, . . . , (n2 − n)/2} and ai ∈ {1, . . . , d} for all i ∈ {1, . . . , k}. B is
called a root node if k = 0 in the above. If B is not a root node, then the unique
matrix C ∈ NR such that

certc(C) = (a1, . . . , ak−1, ?, ?, . . . , ?) (4.25)

is called the column order parent of B. ⋄

70 4 Isomorph-free generation of association schemes

Theorem 4.2.5. Let B ∈ NR be column order compatible with column order

parent C ∈ NR. If canonc(B) = B then also canonc(C) = C.

Proof : The column order case is proved in a similar way as in Theorem 4.2.3.

Corollary 4.2.2. Let k ∈ {2, . . . , (n2 − n)/2} and let B j ∈ NR be column order

compatible with column order parent B j+1 ∈ NR for each j ∈ {1, . . . , k}. If

canonc(B1) = B1 then also canonc(B j) = B j for each such j. ⋄

The previous theorem provides a natural way to structure the search. Similar
as in the row order case, we define the generation algorithm’s control strategy
in such a way that the instantiation order naturally coincides with the order
in which column order certificates of matrices in Mn,d are constructed. Mo-
re precisely, upperdiagonal matrix entries of M are systematically instantiated
according to the following instantiation order:

M1,2, M1,3, M2,3, M1,4, . . . , M3,4, M1,5, . . .
. . . , Mn−3,n−2, M1,n−1, . . . , Mn−2,n−1, M1,n, . . . , Mn−1,n

(4.26)

Therefore (4.25) and (4.24) hold for every B, C ∈ NR such that B is column
order compatible with column order parent C and hence the orderly generation
algorithm shall generate exactly one representative from each orbit of Sym(n)

XL0...Ld

. Furthermore, if we instantiate each matrix entry of M by systematically
assigning – in increasing order – all values of its domain to it in turn, then again
it is guaranteed that column order canonical representatives of matrices in NR
turn up first during the traversal of the search tree.

Checking column order canonicity at each level in the search tree is not re-
quired, by Corollary 4.2.2. We shall only perform a canonicity test each time
another upperdiagonal column of M becomes completely instantiated. At that
point, it suffices to check the canonicity of the fully instantiated leading prin-
cipal submatrix of M. Again, whenever a domain of an uninstantiated matrix
entry has size 1, we may instantiated this forced matrix entry first.

4.2 Isomorph-free generation 71

4.2.3 Lexically ordered matrices

Definition 4.2.6. A matrix A ∈ Mn,d is called lexically ordered if and only if

(Ai,1, . . . , Ai,n) ≤ (Ai+1,1, . . . , Ai+1,n)

for every i ∈ {1, . . . , n− 1}. ⋄
Theorem 4.2.7. Let A ∈ Mn,d. If A = canonr(A), then A is lexically ordered.

Similarly, if A = canonc(A), then A is lexically ordered.

Proof : Assume that A is not lexically ordered. Let i be the smallest row number
for which the i + 1-th row of A is lexically smaller than the i-th row of A. Let j
be the smallest column number for which those rows differ. More precisely we
have

Ai, j > Ai+1, j and Ai,k = Ai+1,k

for each k ∈ {1, . . . , j− 1}, and hence by symmetry,

A j,i > A j,i+1 and Ak,i = Ak,i+1.

Because A has zero diagonal, we must have j < i. But then it is easily seen
that the transposition σ = (i i + 1) which interchanges the i-th and i + 1-th row
(and column) maps A onto a matrixσ A such that certr(σ A) < certr(A). Hence
A 6= canonr(A). The column order case is proved in exactly the same way.

The following example illustrates Theorem 4.2.7.

Example 4.6. Let σ = (3 4) ∈ Sym(5). Consider the matrix A ∈ M5,2 as
shown below.

A =









0 2 1 1 2
2 0 2 1 1
1 2 0 2 1

1 1 2 0 ?
2 1 1 ? 0









σ A =









0 2 1 1 2
2 0 1 2 1
1 1 0 2 ?
1 2 2 0 1

2 2 ? 1 0









The matrix A is not lexically ordered since the fourth row of A is lexically
smaller than the third row of A. Note that σ A <r A and σ A <c A, hence A is
not in row or column order canonical form.

72 4 Isomorph-free generation of association schemes

•

Checking whether a matrix of Mn,d is in row or column order canonical form
is a computational demanding task. Lexical ordering is a necessary condition
for a matrix of Mn,d being in row or column order canonical form. From an
algorithmic point of view, this necessary condition turns out to be straightfor-
ward and easy to verify. That is why we opt to check this necessary condition
at each level in the recursion tree. An even stronger necessary condition for the
minimality of the matrices ofMn,d can be establish as follows.

Definition 4.2.8. A matrix A ∈ Mn,d is called 0-lexically ordered if and only

(Ai,1, . . . , Ai,i−1, Ai,i+2, . . . , Ai,n) ≤
(Ai+1,1, . . . , Ai+1,i−1, Ai+1,i+2, . . . , Ai+1,n)

for every i ∈ {1, . . . , n− 1}. ⋄
Corollary 4.2.3. Let A ∈ Mn,d. If A is 0-lexically ordered, then A is also lexically

ordered. ⋄

Theorem 4.2.9 establishes a connection between minimality and 0-lexically or-
dering for row and column order representatives.

Theorem 4.2.9. Let A ∈ Mn,d. If A = canonr(A), then A is 0-lexically ordered.

Similarly, if A = canonc(A), then A is 0-lexically ordered.

Proof : Assume that A is not 0-lexically ordered. Let i be the smallest row
number for which

(Ai,1, . . . , Ai,i−1, Ai,i+2, . . . , Ai,n) >
(Ai+1,1, . . . , Ai+1,i−1, Ai+1,i+2, . . . , Ai+1,n)

Let j be the smallest column number for which those tuples differ. If j < i then
according to Theorem 4.2.7 we find that A 6= canonr(A). Otherwise, there must
exist a k ∈ {i + 2, . . . , n} such that

Ai,k > Ai+1,k Ai,l = Ai+1,l Ai,p = Ai+1,p

for each l ∈ {1, . . . , i− 1} and each p ∈ {i + 2, . . . , k− 1}, and hence by sym-
metry,

Ak,i > Ak,i+1 Al,i = Al,i+1 Ap,i = Ap,i+1.

4.3 Checking algebraic properties 73

Because A is symmetric and has zero diagonal, it is easily seen that the trans-
position σ = (i i + 1) which interchanges the i-th and i + 1-th row (and co-
lumn) maps A onto a matrix σ A such that certr(σ A) < certr(A). Hence
A 6= canonr(A). The column order case is proved in exactly the same way.

The following example illustrates Theorem 4.2.9.

Example 4.7. Let σ = (3 4) ∈ Sym(5). Consider the matrix A ∈ M5,2 as
shown below.

A =









0 2 1 1 2
2 0 2 2 1
1 2 0 2 2

1 2 2 0 1

2 1 2 1 0









σ A =









0 2 1 1 2
2 0 2 2 1
1 2 0 2 1

1 2 2 0 2

2 2 1 2 0









The matrix A is not 0-lexically ordered. Indeed the tuple (A4,1, A4,2, A4,5) is
lexically smaller than the tuple (A3,1, A3,2, A3,5). Note that σ A <r A and
σ A <c A, hence A is not in row or column order canonical form. •

4.3 Checking the algebraic properties of the mini-

mal idempotents

In Section 4.1.4 we described in general how we can prune the recursion tree
based on the positive semidefiniteness and the rank of the minimal idempotents
Ei of the d-class association schemes in XL0...Ld

. We could indeed use the strate-
gy to check for every partially instantiated matrix M ∈ NR we encounter during
traversal, whether any fully instantiated principal submatrix of the related ma-
trices MEi

is not positive semidefinite and has a rank more than Q0i, where Q
denotes the dual eigenmatrix of the association schemes in XL0...Ld

. However,
during the actual generation algorithm we shall use a somewhat more relaxed
version of this strategy. Define lead(MEi

) to be the largest leading principal sub-
matrix of MEi

which is fully instantiated. Then roughly, we will only check the
positive semidefiniteness and the rank of lead(MEi

), instead of checking these
algebraic constraints for all principal submatrices of MEi

.

74 4 Isomorph-free generation of association schemes

4.3.1 Positive semidefiniteness algorithm

Recall from linear algebra that a real symmetric matrix A ∈ Rv×v is positive

semidefinite if and only if
x A xT ≥ 0 (4.27)

for every row vector x ∈ R1×v and its transpose xT ∈ Rv×1. If the matrix A is
not positive semidefinite then we define a witness for A to be any row vector x
such that x A xT < 0.

Theorem 4.3.1. Consider a real symmetric matrix A ∈ Rv×v, where

A =

(
α a
aT A′

)

(4.28)

with α ∈ R, a ∈ R1×v−1 and A′ ∈ Rv−1×v−1. Then we distinguish between the

following cases:

1. If α < 0, then A is not positive semidefinite. Moreover, x = (1 0 . . . 0) ∈
R1×v is a witness for A.

2. If α > 0, then A is positive semidefinite if and only if

A′ − aTa

α
(4.29)

is positive semidefinite. If y ∈ R1×v−1 is a witness for A′ − aTa
α then

x = (− yaT

α
y)

is a witness for A.

3. If α = 0, then A is positive semidefinite if and only if A′ is positive semidefi-
nite and a = 0. If a 6= 0, then we may find y ∈ R1×v−1 such that yaT ≥ 0
and then each vector x = (λ y) is a witness for A whenever

λ <
−yA′yT

2yaT
.

If A′ is not positive semidefinite, then every witness y for A′ can be extended

to a witness x = (0 y) for A.

4.3 Checking algebraic properties 75

Proof : Let λ ∈ R, y ∈ R1×v−1 and set x = (λ y). We have

xAxT = (λ y)

(
α a
aT A′

)(
λ

y

)

= λ2α + 2λyaT + yA′yT . (4.30)

We consider the following three different cases:

1. If α < 0, then the right hand side of (4.30) is less than zero for λ ∈ R+

and y = 0. Hence we find that the matrix A is not positive semidefinite
with witness (1 0 . . . 0).

2. If α > 0, then we may rewrite the right hand side of (4.30) as

xAxT = α

(

λ+
yaT

α

)2

+ y

(

A′ − aTa

α

)

yT, (4.31)

using yaT = ayT. This expression is positive or zero for every x if and only
if

y

(

A′ − aTa

α

)

yT ≥ 0

for every y, i.e., if and only if the matrix A′ − aTa
α
∈ Rv−1×v−1 is positive

semidefinite. If this matrix is not positive semidefinite, and y is a witness
for the matrix, then for

λ = − yaT

α

the vector (λ y) provides a witness for A.

3. Finally if α = 0, then the right hand side of (4.30) reduces to

xAxT = 2λyaT + yA′yT , (4.32)

which is linear in λ. This expression is positive for all λ if and only if
the coefficient 2yaT of λ is zero and the constant term yA′yT is positive.
Hence the matrix A is positive semidefinite if and only if yaT = 0 and
yA′yT ≥ 0 for all y, or equivalently, if and only if a = 0 and the matrix A′

is positive semidefinite.

76 4 Isomorph-free generation of association schemes

As a consequence, if A′ is not positive semidefinite and y is a witness for
A′, then the vector (0 y) provides a witness for A. Also, if a 6= 0, then we
may find y such that yaT > 0 and then any λ satisfying

λ < − yA′yT

2yaT

will make (4.32) less than zero.

This theorem can easily be used as the basis for an algorithm which checks
whether a given real symmetric matrix A ∈ Rv×v is positive semidefinite. To
simplify notations, we denote the element on the i-th row and j-th column of
A by A[i, j] (and not by Ai, j as customary in other circumstances). Submatrices
(or matrices derived from submatrices) keep the row and column numbering of
the matrices they are part of. For example, the rows and columns of the matrices
A and A′ in Theorem 4.3.1 would be numbered from 1 up to v and from 2 up
to v respectively.

Using the notations of Theorem 4.3.1, we define

A(2) =







A′, when α = 0,

A′ − aTa

α
, when α 6= 0.

(4.33)

The matrix obtained by applying the same process to A(2) shall be denoted by
A(3), and in a similar way we may define A(4), A(5), . . . , A(v). We also write
A(1) = A.

In general, the matrix A(k) is a symmetric (v− k + 1)× (v− k + 1) matrix with
rows and columns numbered from k up to v, by the numbering conventions
introduced earlier. This yields the following recurrence relation, for all i, j ≥
k + 1 :

A(k+1)[i, j] =







A(k)[i, j], when A(k)[k, k] = 0,

A(k)[i, j]− A(k)[i, k]A(k)[k, j]

A(k)[k, k]
, when A(k)[k, k] 6= 0.

(4.34)

4.3 Checking algebraic properties 77

Theorem 4.3.1 leads to Algorithm 4.1 which takes a real symmetric v× v ma-
trix A as input and returns true or false depending on whether A is positive
semidefinite or not. It is easily seen that Algorithm 4.1 needs O(v3) operations

in the worst case. Storage requirements are only O(v2) because A(k+1)[i, j] can

be stored in the same place as A(k)[i, j]. Also note that every A(k) is symmetric
and therefore only about half of each matrix needs to be stored.

Algorithm 4.1 Checks whether a real symmetric v× v matrix A is positive se-
midefinite or not.
function isPSD(A : matrix) : boolean

1: k ← 1
2: while k < v do
3: if A(k)[k, k] < 0 then
4: return false
5: else if A(k)[k, k] = 0 then
6: for j← k + 1 . . . v do

7: if A(k)[j, k] 6= 0 then
8: return false
9: compute A(k+1) according to (4.34)

10: k ← k + 1
11: else
12: compute A(k+1) according to (4.34)
13: k ← k + 1
14: return A(v)[v, v] ≥ 0

The next version of the positive semidefiniteness algorithm stems from the ob-
servation that all comparisons in Algorithm 4.1 are performed on elements
A(k)[i, j] with either k = i or k = j. Define B ∈ Rv×v with entries B[i, j] =

A(i)[i, j]. Note that B[i, j] is only defined when i ≤ j and that B[1, j] = A[1, j].

We may now reformulate (4.34) as follows, for all i, j ≥ k + 1 :

A(k+1)[i, j] =







A(k)[i, j], when A(k)[k, k] = 0,

A(k)[i, j]− B[k, i]B[k, j]

B[k, k]
, when A(k)[k, k] 6= 0.

78 4 Isomorph-free generation of association schemes

and hence, by repeated application for different k

A(k+1)[i, j] = A(1)[i, j]− B[1, i]B[1, j]

B[1, 1]
− B[2, i]B[2, j]

B[2, 2]
− · · ·

· · · − B[k− 1, i]B[k− 1, j]

B[k− 1, k− 1]
− B[k, i]B[k, j]

B[k, k]
, (4.35)

where all fractions with zero denominator B[j, j] must be regarded as equal to
zero. From (4.35) we obtain a recurrence relation for B :

B[i, j] = A[i, j]− B[1, i]B[1, j]

B[1, 1]
− B[2, i]B[2, j]

B[2, 2]
− · · ·

· · · − B[i− 2, i]B[i− 2, j]

B[i− 2, i− 2]
− B[i− 1, i]B[i− 1, j]

B[i− 1, i− 1]
, (4.36)

again omitting all terms with a zero denominator.

In terms of (4.36), Theorem 4.3.1 leads to Algorithm 4.2 which again takes a
real symmetric v × v matrix A as input and returns true or false depending
on whether A is positive semidefinite or not. Algorithm 4.2 again needs O(v3)
operations and O(v2) storage.

As stated before, during traversal of the recursion tree, we shall typically only
check the positive semidefiniteness of leading principal submatrices lead(MEi

).
Moreover, consider two matrices M and M′ ∈ NR such that M′ is the pa-
rent of M in the recursion tree, then obviously we only have to check whether
lead(MEi

) is positive semidefinite if lead(M′Ei
) 6= lead(MEi

). If so, a straightfor-

ward way to check lead(MEi
) would be to apply Algorithm 4.2 with lead(MEi

)
as input. However, during the course of the generation algorithm we will fre-
quently have to check whether a given leading principal submatrix is positive
semidefinite. This repeated application will allow us to improve Algorithm 4.2.

According to (4.36), the value of B[i, j] with i ≤ j depends only on the value
of A[i, j] and the values of B[k, l] such that k < i and l ≤ j. Hence by repeated
application of (4.36), we find that the value of B[i, j] can be expressed entirely
in terms of entries A[k, l] such that k ≤ i and l ≤ j. Given two matrices A
and A′ such that A[k, l] 6= A′[k, l] only when either k > i or l > j, then if we
subsequently apply Algorithm 4.2 to first A and then A′, we can reuse the value
of B[i, j] = B′[i, j] (and a fortiori, all values of B[x, y] = B′[x, y] with x ≤ i and
y ≤ j) when applying Algorithm 4.2 to A′.

4.3 Checking algebraic properties 79

Algorithm 4.2 Checks whether a real symmetric v× v matrix A is positive se-
midefinite or not.
function isPSD(A : matrix) : boolean

1: for j← 1 . . . v do
2: B[1, i]← A[1, i]
3: k ← 1
4: while k < v do
5: if B[k, k] < 0 then ❶

6: return false
7: else if B[k, k] = 0 then
8: for j← k + 1 . . . v do
9: if B[k, j] 6= 0 then

10: return false
11: k ← k + 1
12: else
13: for j← k + 1 . . . v do
14: compute B[k + 1, j] according to (4.36)
15: k ← k + 1
16: return B[v, v] ≥ 0

80 4 Isomorph-free generation of association schemes

Furthermore, assume that A and A′ are subsequentially checked by Algorithm
4.2 during traversal, then at least A[x, y] = A′[x, y] for every x < q and y < q
where q denotes the order of A′. Hence, in the worst case Algorithm 4.2 should
only compute the values B′[k, q] such that k ≤ q, when checking the positive
semidefiniteness of A′.

4.3.2 Preemptive positive semidefiniteness checking

Sometimes it is possible to decide that A is not positive semidefinite before
the leading principal submatrix is completely instantiated. One of the decision
criteria to abort the iteration in Algorithm 4.2, is when the value of B[k, k] <
0 for some k ∈ {1, . . . , v} (cf. ❶ in Algorithm 4.2). From (4.36) we obtain a
recurrence relation for B[k, k] :

B[k, k] = A[k, k]− B[1, k]2

B[1, 1]
− B[2, k]2

B[2, 2]
− · · ·

· · · − B[k− 2, k]2

B[k− 2, k− 2]
− B[k− 1, k]2

B[k− 1, k− 1]
, (4.37)

again omitting all terms with a zero denominator. Note that when we check
the value of B[k, k] in Algorithm 4.2, all denominators in (4.37) are necessarily
positive or zero. Suppose that we instantiate the matrix entry A[i, k] for some
i < k. If all A[x, y] such that x ≤ i and y ≤ k are instantiated, then we can
already compute the value of

Bi[k, k] = A[k, k]− B[1, k]2

B[1, 1]
− B[2, k]2

B[2, 2]
− · · ·

· · · − B[i− 2, k]2

B[i− 2, i− 2]
− B[i− 1, k]2

B[i− 1, i− 1]

If Bi[k, k] < 0, then we can decide that A is not positive semidefinite, as
Bi[k, k] ≥ B[k, k].

Remark 4.1. Prematurely checking positive semidefiniteness allows us to prune
our generation process substantially higher in the recursion tree. Especially
when using a row by row instantiation order, this technique turns out to be
effective. After all, in contrast to the column by column approach, large leading

4.3 Checking algebraic properties 81

principal submatrices which are fully instantiated are not immediately obtained.
•

4.3.3 Elimination of numerical errors

In order to check positive semidefiniteness, we need to perform a lot of floating
point computations, which by their nature only yield approximate results. It
is important to be absolutely certain that these numerical errors are sufficient-
ly small as not to invalidate classification results obtained by our generation
algorithm.

To ensure correctness, Algorithm 4.2 is modified in such a way that before false
is returned, a witness x for A is computed according to Theorem 4.3.1. Af-
terwards, to catch accumulations of rounding errors, the expression xAxT is
re-evaluated and compared to −ǫ for a suitably small ǫ > 0. Rounding errors
on the value of xAxT can be estimated very accurately. If the witness x fails
this test, then we opt not to prune the recursion tree. Of course this may mean
that we sometimes falsely assume that a matrix is positive semidefinite when it
is not. This, however, is not a problem.

4.3.4 Look-back strategy

The witness x constructed when A is not positive semidefinite is not only used
to eliminate numerical errors but also allows us to identify a smaller principal
submatrix A′′ of A which is also not positive semidefinite. Indeed, assume
that only for the elements l ∈ { j1, . . . , jw} ⊆ {1, . . . , v} with ji < jk if i < k
the corresponding witness entry xl 6= 0. Then the principal submatrix A′′ of A
which is indexed by the elements of { j1, . . . , jw} is also not positive semidefinite.
After all, the vector y ∈ R1×w such that yp = x jp for every p ∈ {1, . . . , w} is a

witness for A′′, as yA′′yT < 0.

This leads to the following look-back strategy which we can incorporate into
our generation algorithm. Suppose that the instantiation of a matrix entry A
completes the submatrix A′′ with the properties above, then this instantiation

82 4 Isomorph-free generation of association schemes

remains forbidden until a backtrack occurs to the second last instantiated matrix
entry of A which contributed to the submatrix A′′.

A wiutness for A needs not necessarily be constructed according to Theorem
4.3.1, indeed any other vector z ∈ R1×v such that zAzT < 0 can be used as a
witness for A. Theorem 4.3.2, a slight improvement to this theorem, provides us
with a witness z for which many of the entries are zero. Using this alternative,
we usually can identify smaller principal submatrices A′′ of A which are not
positive semidefinite. This allows us to further improve the look-back strategy
outlined above.

Theorem 4.3.2. Consider a real symmetric matrix A ∈ Rv×v, where

A =

(
α a
aT A′

)

with α ∈ R, a ∈ R1×v−1 and A′ ∈ Rv−1×v−1. Then we distinguish between the
following cases:

1. If α < 0, then A is not positive semidefinite. Moreover, z = (1 0 . . . 0) ∈
R1×v is a witness for A.

2. If α > 0, then A is positive semidefinite if and only if A′ − aTa
α

is positive

semidefinite. If y ∈ R1×v−1 is a witness for A′ − aTa
α

, then z = (λ y) is a

witness for A, with

λ =







0 if
(yaT)

2

α + y
(

A′ − aTa
α

)

yT < 0

− yaT

α
otherwise

(4.38)

3. If α = 0, then A is positive semidefinite if and only if A′ is positive semi-

definite and the vector a = 0. If a 6= 0, the we may find y ∈ R1×v−1 such

that yaT ≥ 0 and then each vector z = (λ y) is a witness for A whenever

λ < −yA′yT

2yaT . If A′ is not positive semidefinite, then every witness y for A′

can be extended to a witness z = (0 y) for A.

Proof : The case where α < 0 or α = 0 is equivalent with Theorem 4.3.1. If
α > 0, then only the witness is constructed differently. Setting λ = 0 in (4.31)
yields condition (4.38).

4.3 Checking algebraic properties 83

4.3.5 Checking the rank constraint

In the more relaxed version of the rank constraint, we shall typically only check
the rank of the leading principal submatrices lead(MEi

). Moreover, consider
two matrices M and M′ ∈ NR such that M′ is the parent of M in the recur-
sion tree. Obviously the rank of lead(MEi

) needs only to be checked if the
order of lead(MEi

) is larger than the rank Q0i of the minimal idempotent Ei and
lead(M′Ei

) 6= lead(MEi
). Finally, note that if lead(MEi

) is of order k and has rank

q such that q = Q0i − p, then for all partially instantiated matrices M′′ ∈ NR
which are part of the subtree rooted at M, it is pointless to check the rank of
the associated matrix lead(M′′Ei

) unless its order is larger than k + p + 1.

A straightforward manner to compute the rank of lead(MEi
) is to use standard

Gaussian elimination. However, some of the entries of lead(MEi
) may be non-

integral. Since using floating point computations for Gaussian elimination only
yields approximate results, this method is almost useless for our purposes. Re-
call from linear algebra that the rank of a matrix A with integral entries, is
always greater than or equal to the rank of the matrix Ā obtained by reducing
every matrix entry of A modulo a fixed prime number p. Indeed, if the i-th and
j-th row of A are linearly dependent, then also the i-th and j-th row of A are
linearly dependent. However, if the i-th and j-th row of A are linearly indepen-
dent, then it is not necessarily so that the i-th and j-th row of A are also linearly
independent. If we choose p < 215 (e.g. p = 32749), then computing the rank
of A can be done exactly, because then integer overflow can be avoided.

Depending on the actual matrix entries, we may transform A = lead(MEi
) to an

appropriate integral matrix A, as follows:

Rational numbers If all matrix entries of A are rational numbers, then each
entry is multiplied by the least common multiple of the denominators of
these matrix entries so as to obtain an integral matrix A.

Irrational numbers If some matrix entries of A are irrational numbers, then it
is still possible to find a suitable p and to transform A into an appropriate
integral matrix A. Example 4.8 illustrates this in the case of the Perkel
graph.

Finally, note that the rank of A modulo p is less than or equal to the rank of A.

84 4 Isomorph-free generation of association schemes

Of course this may mean that if we check the rank of A modulo p, we sometimes
falsely assume that A has rank less than or equal to Q0i when it is not. This,
however, is not a problem.

Example 4.8. The Perkel graph is the unique (up to isomorphism) distance
regular graph of order 57, degree 6 and diameter 3 with intersection array
{6, 5, 2; 1, 1, 3}. Recall from Example 2.13 that its dual eigenmatrix Q is given
by

Q =








1 18 18 20

1 9
2 + 3

√
5

2
9
2 − 3

√
5

2 −10

1 − 3
2 + 9

√
5

10 − 3
2 − 9

√
5

10 2

1 −9
√

5 9
√

5 −1








Consider the minimal idempotent E2 defined by

E2 =
1

57

3

∑
j=0

Q j2 A j. (4.39)

To handle the irrational element
√

5, we choose p = 30011. Then 65832 = 5

mod p and we may first subsitute 6583 for
√

5 in Q12, Q22 and Q32 and then
multiply each coefficient of (4.39) by 570 to construct an appropriate integral
matrix. •

4.4 Row versus column

When designing orderly generation algorithms we face the challenge to select
an appropriate canonical form which interacts well with both the control stra-
tegy of the backtrack algorithm as well as its associated set of constraints. This
requires some experimentation with different ways of structuring the search and
different types of canonical forms. In Sections 4.2.1 and 4.2.2 we introduced
two distinct types of canonical forms which we shall evaluate in this section.

4.4 Row versus column 85

4.4.1 Recorded objects

Typically the application of a row order canonical form requires that the the
backtrack algorithm instantiates matrix entries of M in a row by row manner,
whereas the application of a column order canonical form requires that entries
are instantiated column by column. When using a row order or column order
canonical form, we shall only perform an explicit canonicity test at intermediate
levels in the recursion tree, that is, when a new row or column of M becomes
completely instantiated, respectively.

Testing whether a matrix is in canonical form subject to some lexicographic
order is often computational hard. The only known approach is to execute this
canonicity test using backtrack search through all possible permutations of the
rows and columns of M. Different pruning criteria may be used to prune the
recursion tree. Nevertheless, designing an effective canonicity algorithm which
turns out to be fast enough in practice is a quite complicated and subtle task.

Experimenting with both types of canonical forms would require that we design
and implement a canonicity algorithm for each type. However, the effort expen-
ded in designing two different algorithms can be avoided by simulating such a
canonicity test. Since the control strategy of the backtrack algorithm guarantees
that row and column order representatives turn up first during traversal of the
search tree, we could maintain a global set ∆ of matrices encountered so far.
Whenever during traversal a matrix M is considered, we then first check whe-
ther it is isomorphic with one of the recorded matrices in ∆. If M turns out to
be isomorphic, then the subtree rooted at M can be pruned, after all M cannot
be in canonical form.

In practice, the set ∆ contains certificates of the matrices encountered so far
– instead of the matrices themselves. These certificates are computed using
nauty [71] and typically the set ∆ is implemented using a hash table or a trie

[91] which both support fast access. In order to check whether M is isomorphic
with one of the recorded matrices in ∆, we first compute the certificate of M.
Afterwards, we check whether this certificate is already stored in ∆. If so, we
may prune the search tree rooted at M, otherwise this certificate is added to ∆.

Using this approach of recorded objects, we can evaluate how both canonical
forms interact with the applied control strategy and constraints without having

86 4 Isomorph-free generation of association schemes

to implement a canonicity algorithm. Only for the canonical form with the best
interaction, we shall design an effective canonicity algorithm. This canonicity
algorithm is described in detail in Chapter 5.

Remark 4.2. The software package nauty supports the computation of a cano-
nical labeling of a colored graph. Typically the matrices M we encounter are
transformed into colored graphs and nauty is applied to these colored graphs
so as to obtain certificates for M. For a discussion of the actual algorithm used
by nauty, we refer the reader to [65, Section 5.6] and [71, 77]. •

Remark 4.3. Isomorph-free exhaustive generation can be obtained using the
technique of recording objects. However some fundamental problems are in-
trinsic to this isomorphism rejection technique. First of all, the fact that we
need to store each object we encounter, strongly limits the application of this
approach. Indeed, when the search space is characterized by a large amount
of partially instantiated matrices, storage space can rather soon turn out to be
insufficient. A second problem is that it is hard to parallelize exhaustive search,
since each search process must be able to access the objects recorded by other
parallel search processes. •

4.4.2 Look-ahead on lexical ordering

The application of a row order as well as a column order canonical form in
our generation algorithm were experimentally evaluated by generating, up to
isomorphism, several strongly regular graphs with certain (v, k, λ,µ) parameter
sets. The generation algorithm used for our experiments, differs only from the
general generation algorithm – as previously described in this chapter – in the
following points:

• Any explicit canonicity test is replaced by the isomorphism rejection tech-
nique of recording objects. Note that nauty is used to compute certificates.

• It is easily seen that the first two rows (and at the same time also the
first two columns) of the v× v matrix M being generated are completely
defined by the given (v, k, λ,µ) parameter set and the lexical ordering
constaint imposed on M [20, 40]. More precisely, the first row of M is

4.4 Row versus column 87

necessarily of the form

M1,2 = . . . = M1,k+1 = 1
M1,k+2 = . . . = M1,v = 2

(4.40)

while the second row is necessarily of the form

M2,3 = . . . = M2,2+λ = 1
M2,3+λ = . . . = M2,k+1 = 2
M2,k+2 = . . . = M1,v−µ = 1
M2,v−µ+1 = . . . = M2,v = 2

(4.41)

The domains of the matrix entries of the first two rows are reduced – be-
fore the actual start of the search process – in such a way that the first two
rows of M are intially forced to be instantiated according to (4.40) and
(4.41). Note that similar restrictions on the first two rows and columns
can be deduced in the more general case of d-class association schemes.

Our experiments indicate that both the runtime as well as the size of the search
tree are substantially smaller when applying a row order canonical form during
generation. However, if we analyze the behaviour of the generation algorithm in
detail, we observe that when we use a column order canonical form, the lexical
ordering constraint imposed on M suffers heavily from trashing. This behaviour
is largely due to the fact that the control strategy applied, instantiates the matrix
entries of M in a column by column order.

As stated in Section 3.1, trashing behaviour in backtrack algorithms can be
improved by dynamically using look-ahead techniques during the search. The
explicit lexical ordering on the rows of M gives rise to the concept of a cell

structure. This concept is central to the look-ahead techniques which we shall
introduce to reduce the trashing behaviour of the lexical ordering constraint.
Fix a row number r. The set of elements j ∈ {1, . . . , v} for which the vectors
(M1, j, . . . , Mr, j) are equal, is called a cell3 at row r of M. The set of all cells
at a row r of M, is called the cell structure at row r. Due to the lexicographic
ordering imposed on M, all elements which belong to the same cell correspond
to adjacent columns in M. Hence cells are intervals.

Example 4.9. Consider the lexically ordered 6× 6 matrix M as shown below.

3See also Section 5.4.2 in a more general setting.

88 4 Isomorph-free generation of association schemes

Vertical bars represent cell boundaries down to the third row.

M=











0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 ?
1 2 2 0 ? ?
1 2 2 ? 0 ?
2 1 ? ? ? 0











•

Suppose that – when using a column or row instantation order – we instantiate
the upperdiagonal matrix entry Mx,y such that y is the first element of a cellΦ at
row x of M. Then we systematically apply the following look-ahead techniques:

• If we assign the value 2 to the matrix entry Mx,y, then we may temporarily
remove the value 1 from the domain of matrix entries Mx,z such that
z ∈ Φ \ {y}. Indeed, assigning 1 to a matrix entry Mx,z, would violate the
lexical ordering constraint imposed on M (see Example 4.10).

• Let j < r such that M j,r = b ∈ {1, 2} and M j,y = c ∈ {1, 2} with tentative
intersection numbers

p
j,r
c,1 = k and p

j,r
c,2 = l.

If |Φ| = (pb
c,1 − k) + (pb

c,2 − l), then we may temporarily reduce the do-

main of the matrix entries Mr,t to {1} and the domain of matrix entries
Mr,u to {2} where t ∈ {y, . . . , y + pb

c,1 − k− 1} and u ∈ Φ \ {y, . . . , y +

pb
c,1 − k − 1}. Indeed, if we would assign different values to these ma-

trix entries, then either the lexical ordering constraint or the intersection
constraint (or both) would be violated (see Example 4.10).

• Before we actually assign a value to the matrix entry Mx,y, we first pro-
visionally check for each value a of the domain of Mx,y in turn, whether
the preemptive positive semidefinite check would fail when assigning a to
Mx,y. If so, then the value a can be temporarily removed from the domain
of each matrix entry Mx,z such that z ∈ Φ.

Example 4.10. Consider a srg(10, 3, 0, 1) with corresponding partially filled
matrix M as depicted below.

4.4 Row versus column 89

0

0

0

0

0

0

0

0

0

0

1 1 1 2 2 2 2 2 2

1

1

1

2

2

2

2

2

2

2

2 2

2

1

1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

10

1 2 2 2 2

2 2 2

2 2

222

2

1

2

2

2

2

When we extend M by instantiating the matrix entry M3,7, then 7 is the first ele-
ment of the cell Φ = {7, 8, 9, 10} at row 3. The first two look-ahead techniques
outlined above can be applied, as follows:

• Clearly if we would assign the value 2 to M3,7, then the value 1 can be
removed temporarily from the domains of M3,8, M3,9, M3,10.

• Furthermore, note that M1,3 = 1, M1,7 = 2, p1,3
21 = 0 while p1

21 = 2

whereas p1,3
22 = 2 while p1

22 = 4. Hence, as |Φ| = 4, we may temporarily
reduce the domains of M3,7 and M3,8 to {1} and the domains of M3,9 and
M3,10 to {2}.

•

Incorporating the look-ahead techniques4 above into our generation algorithm,
our experiments indicate that both the runtime as well as the size of the search
tree are substantially smaller when applying a column order canonical form
during generation. If we analyze the behaviour of the lexical ordering constraint
in detail, we observe an almost complete reduction of its trashing behaviour.
Furthermore, we see that the positive semidefiniteness and the rank constraint
interact better with the column by column control strategy. The fact that large
leading principal submatrices which are fully instantiated turn up faster during
search, certainly amounts to this.

4Note that similar look-ahead techniques can be developed for the more general case of d-class
association schemes

90 4 Isomorph-free generation of association schemes

4.4.3 Constraint recording and learning

When we apply Algorithm 4.2 with a v× v matrix A as input, a witness x ∈ R1×v

for A is constructed if A is not positive semidefinite. When using a column by
column instantiation order, this witness x allows us to record new constraints.
Quite often x is of the form

x = (x1, . . . , xk, 0, . . . , 0, xv)

for some k ∈ {1, . . . , v− 2} such that xk = xv 6= 0. Let Ak denote the leading
principal submatrix of A. Then any w× w matrix A′ with k < w such that

(A′1,w, . . . , A′k,w) = (A1,v, . . . , A′k,v) and Ak = A′k

is also not positive semidefinite. Indeed, let y ∈ R1×w such that

y = (x1, . . . , xk, 0, . . . , 0, xv),

then is y a witness for A′, as yA′yT < 0.

This leads to the following constraint recording technique which we can incor-
porate into our generation algorithm. The vector (A1,v, . . . , Ak,v) is recorded
in a trie Υ [91], until a backtrack occurs to the last instantiated matrix entry
of A which contributed to Ak. Note that each entry Al,v with l < k such that
xl = 0 is replaced by a wildcard character. Vectors in Υ represent prefixes of
upperdiagonal columns of the matrix being generated which can be excluded
from consideration. Finally, each time we insert a new vector in Υ, we check
whether this vector can be combined with the existing vectors of Υ so as to
enable exclusion of shorter prefixes of upperdiagonal columns.

4.5 Generic generator

Throughout this chapter we described our orderly algorithm for the classificati-
on of d-class association schemes at a conceptual level. However the practical
effectiveness of a generation algorithm is to a large extent determined by the
design decisions made when transforming this conceptual description into an

4.5 Generic generator 91

explicit generation algorithm. The development of this explicit generation algo-
rithm for d-class association schemes relies on a generic generator which basi-
cally applies a recursive backtrack search to generate square symmetric integer
matrices with all-zero diagonal of a given order, satisfying some user defined
constraints.

A pseudo code version of this generic generator5 is given in Algorithm 4.3. Be-
fore starting the actual generation process, the user should provide a generation
description containing:

Matrix The order n of the square symmetric matrices being generated. Inter-
nally a n× n matrix M is constructed with all-zero diagonal and where all
non-diagonal matrix entries are still left uninstantiated.

Domain An upperbound d for the domains associated with each uninstantiated
matrix entry of M. Internally a n×n matrix D is constructed in such a way
that a non-diagonal matrix entry Dx,y consist of an ordered set {1, . . . , d}
which represents the domain values of the domain associated with the
uninstantiated matrix entry Mx,y.

Path An object path which determines the order in which matrix of M are in-
stantiated during the during the generation process. The generic genera-
tor typically calls the function prepare to determine the matrix entry to
be instantiated at the next step in the generation process (cf. ❷ in Algo-
rithm 4.3). If this function returns true, then the row and column indices
of that entry should be retrieved by invoking the functions getRow and
getCol, respectively. Otherwise, no valid entry could be found. When
the generator calls the function prepare there may occur internal chan-
ges which must systematically be undone by calling the method restore
(cf. ❸ in Algorithm 4.3). Note that restore is not called when prepare
returned false.

Constraint checkers One or more constraint checkers which are registered in
the array checkers. Each constraint checker is responsible for checking
whether a certain constraint is satisfied during the generation process.
After instantiating a certain matrix entry, the generator forces every regis-
tered constraint checker to call the function setAndCheck in turn (cf. ❹ in

5This generic generator is part of a Java-library which was developed in collaboration with se-
veral people of the research group CAAGT. The specific components for the generation of d-class
association schemes are ours. See also [106].

92 4 Isomorph-free generation of association schemes

Algorithm 4.3). This function determines whether the associated cons-
traint is valid for the current partially instantiated matrix M and if so, to
store extra internal information to speed up a future call of setAndCheck
when further entries are added to the same matrix. In the process of back-
tracking, the generator is guaranteed to call unset for every position for
which setAndCheck returned true (cf. ❺ in Algorithm 4.3). This enables
the checker to rollback all changes in the opposite order in which they ha-
ve been made by subsequentially invoking setAndCheck. Note that unset
is not called when setAndCheck returned false.

Leaf node The user also needs to provide a leaf object which will be activated
for each fully instantiated matrix M that passes all constraint checks. No-
tification is done by calling the method ship (cf. ❶ in Algorithm 4.3). An
example of a leaf is provided by one which writes fully instantiated matrix
M to a file in some user-defined format.

4.5 Generic generator 93

Algorithm 4.3 Generic generator

method generate()

1: generate(0)

method generate(d : int)

1: if d = leafdepth then ❶

2: leaf.ship()
3: else if path.prepare(d) then ❷
4: r← path.getRow()
5: c← path.getCol()
6: for all i ∈ Dr,c do
7: Mr,c ← i
8: Mc,r ← i
9: if checkCheckers(r, c) then

10: generate(d + 1)
11: rollback(r, c, |checkers|)
12: Mr,c ←?
13: Mc,r ←?
14: path.restore(d) ❸

function checkCheckers(r, c : int) : boolean

1: for i← 1 . . . |checkers| do
2: if not checkers[i].setAndCheck(r, c) then ❹

3: rollback(r, c, i− 1)
4: return false
5: return true

method rollback(r, c, l : int)

1: for i← l . . . 1 do
2: checkers[i].unset(r, c) ❺

5 Canonicity test

”For many are called, but few are chosen.”[MATTHEW, BIBLE

XXII. 14.]

During the orderly generation algorithm we frequently – that is each time a
new column becomes completely instantiated – have to check whether a given
symmetric n× n matrix M with zero diagonal and integral offdiagonal entries is
in column order canonical form. Each such canonicity test computes whether M
is the lexicographic minimum of its isomorphism class. Note that this canonicity
check is a decision problem which merely gives as answer yes or no, depending
on whether the matrix given as input is in column order canonical form or not.

In this Chapter we will discuss the design of an algorithm that does exactly
this. We shall develop this algorithm in subsequent stages. At each stage we
will introduce the design decisions made and illustrate the impact of each of
these decisions with empirical data. This empirical data is mainly obtained
from the classification of strongly regular graphs. Most design decisions are
however applicable in a broader context than the classification of association
schemes. Therefore we present also data obtained from the classification of
more general classes of graphs. In Section 5.2 and 5.3 we will first develop
the canonicity algorithm only taking into account that the algorithm takes such

96 5 Canonicity test

a matrix M as input, whereas the improvements to the canonicity algorithm
introduced in Section 5.4 and 5.5 result from the repeated application of the
canonicity algorithm during the course of an orderly generation algorithm.

Remark 5.1. Each column order canonicity test takes a fully instantiated matrix
as input. Troughout this chapter we shall denote the set of all integral symmetric
n× n matrix M with zero diagonal byMn. The notation Mi shall be used as an
abbreviation for the i× i leading principal submatrix of M ∈ Mn. •
Remark 5.2. Throughout this chapter we shall only consider a column order
canonical form. Therefore, to simplify notations, we shall write A < B, instead
of A <c B with A, B ∈ Mn. •

5.1 Representation of permutations groups

In order to describe the canonicity test in this chapter, we need to introduce
some additional group-theoretic concepts.

Definition 5.1.1. Consider the right (left) action of a group G onto a set X,
then the subgroup

Gx1,x2,...,xi
= (Gx1,x2,...,xi−1

)xi

with {x1 , x2, . . . , xi} ⊆ X is called the pointwise stabilizer of x1, x2, . . . , xi in G.
⋄
Example 5.1. Let G = 〈(1 4 3 2) , (2 4)〉. Consider the right action of the group
G onto the set X = {1 . . . , 4}, then the pointwise stabilizer of 1, 3 in G is
G1,3 = {id, (2 4)}. •

According to Theorem 3.2.14 there is a one-to-one correspondence between the
elements in the orbit of xi under Gx1,x2,...,xi−1

and the cosets of Gx1,x2,...,xi
in

Gx1,x2,...,xi−1
. We have that

|xGx1,x2,...,xi−1
i | = |Gx1,x2,...,xi−1

: Gx1,x2,...,xi
|.

A fixed set of coset representatives of Gx1,x2,...,xi
in Gx1,x2,...,xi−1

is denoted by

T(i) and is called a basic transversal. We have that

x
Gx1,x2,...,xi−1
i = {xt

i : t ∈ T(i)}.

5.2 The classical algorithm 97

Note that for each g ∈ Gx1,x2,...,xi−1
with x

g
i = γ there exists a unique element

h ∈ Gx1,x2,...,xi
such that g = h t with t ∈ T(i) and xt

i = γ with γ ∈ X \
{x1 , x2, . . . , xi−1}.
Definition 5.1.2. Let G be a group acting right (left) on a set X. Consider a
sequence [x1, . . . , xk] of elements of X, such that Gx1,...,xk

is the trivial group
{id}. Then

G ≥ Gx1 ≥ . . . ≥ Gx1,...,xk
= {id}

is called a stabilizer chain for G with base [x1, . . . , xk]. ⋄

The pointwise stabilizers in the chain are sometimes denoted by

G(i) = Gx1,...,xi

and where G(0) = G. A subset S of the group G is called a strong generating set if
S contains generators for each pointwise stabilizer in the chain, i.e. G(i) = 〈S(i)〉
with

S(i) = S ∩ G(i).

Note that S(0) = S, and hence S generates G. Finally we define

S̄(i) = S(i) \ S(i+1)

with i ∈ {0, . . . , k− 1} and S̄(k) = {id}.
Example 5.2. Let π1 = (1 4 3 2), π2 = (2 4) and let the group G = 〈π1, π2〉 act
right on the set X = {1 . . . , 4}. Consider a base [1, 2] for the group G, then
a strong generating set S relative to this base is S = {π1, π2}. The pointwise

stabilizers are G(0) = 〈π1, π2〉 and G(1) = 〈π2〉, while the basic transversals are

i.e. T(1) = {id, π1, π2
1 , π3

1} and T(2) = {id, π2}. •

5.2 The classical algorithm

5.2.1 Traversal of the symmetric group

A first canonicity test (as described in Algorithm 5.1) runs through all permuta-
tions π ∈ Sym(n) and tests whether πM ≤ M . A search through all permuta-
tions π of Sym(n) can be implemented as a backtrack search. Let i ∈ {1, . . . , i}.

98 5 Canonicity test

Define U(i) = Sym(n)1,...,i, i.e., U(i) is the subgroup of Sym(n) that stabilizes
all vertices 1, . . . , i pointwise. We have

Sym(n) = U(0) > U(1) > · · · > U(n−1) = U(n) = {id} (5.1)

with base [1, . . . , n]. A transversal T(i) for U(i) in U(i−1) is given by

T(i) = {id = (i i), (i i + 1), . . . , (i n)}. (5.2)

Hence each pointwise stabilizer subgroup U(i−1) can be written as a disjoint
union of right cosets of the next group U(i) in the chain with only transpositions
as coset representatives, that is,

U(i−1) =
n⋃

j=i

U(i) (i j). (5.3)

It also follows that each π ∈ U(i−1) can be uniquely written as π = u (i j)

with u ∈ U(i) and i ≤ j ≤ n (take j = iπ). By induction, each permutation

π ∈ U(i−1) can be uniquely written as

π = (n− 1 jn−1) (n− 2 jn−2) . . . (k jk) . . . (i ji) (5.4)

with k ≤ jk ≤ n.

Algorithm 5.1 below provides a straightforward canonicity test based on the
above properties. We use the chain of stabilizer subgroups (5.1) to search
through all permutations of Sym(n). A natural way to traverse Sym(n) = U(0)

would be to apply (5.3) to recursively traverse U(i−1). However, it turns out to
be advantageous to treat the case j = i separately, and instead successively run

through all permutations of U(n−2)−U(n−1), . . . , U(0)−U(1), using

U(i−1)−U(i) =
n⋃

j=i+1

U(i) (i j). (5.5)

Note that U(n−1) = U(n) = {id}. Algorithm 5.1 is split up into three major
parts:

1. The main function isCanonical(M) uses the method outlined above to
check whether g M < M for any g ∈ Sym(n). The function returns false

as soon as a permutation g is found such that g M < M. Otherwise, the
function returns true.

5.2 The classical algorithm 99

2. The function diffStab(i) checks whether g M < M for any g ∈ U(i−1)−
U(i) by successively traversing all U(i)(i j) with i + 1 ≤ j ≤ n (cf. (5.5)).

A strictly negative integer is returned as soon as a g ∈ U(i)(i j) is found

such that g M < M. Otherwise if U(i−1)−U(i) does not contain a coun-
terexample to the minimality M, we return a positive integer.

3. The function rightCoset(π , i) checks whether g M < M for any g ∈
U(i−1)π . We distinguish between the following cases:

• If i 6= n, then the function successively traverses all U(i) (i j) π with
i ≤ j ≤ n (cf. (5.3)). As before, a strictly negative integer is returned

as soon as a g ∈ U(i) (i j) π is found such that g M < M; again if

U(i−1) π does not contain a counterexample to the minimality M,
we return a positive integer.

• Otherwise U(n−1) π = {π}. This is the base case of the recursive
traversal. For each such π , we effectively test whether π M < M (cf.
function compare(M, π) in Algorithm 5.1). Moreover, if π ∈ Aut M,
we store π in a set GAut (❶ in Algorithm 5.1). Finally, a strictly
negative integer is returned if π M < M, otherwise a positive integer
is returned.

Note that if M is minimal, the set GAut contains all automorphisms of M except
the identity permutation id.

5.2.2 Partial permutation

Lemma 5.2.1. Let g, π ∈ Sym(n). Let i ∈ {1, . . . , n}. Then π ∈ U(i)g if and

only if 1π = 1g, 2π = 2g, . . . , iπ = ig.

Proof : Let π ∈ U(i) g. Let x ∈ {1, . . . , i}. Write π = u g with u ∈ U(i). Then
xπ = (xu)g = xg, because u stabilizes 1, . . . , i pointwise. Conversely, if xπ = xg,

then π g−1 stabilizes 1, . . . , i pointwise and hence belongs to U(i).

This means that each such coset of U(i) is uniquely characterized by the images
of (1, . . . , i) of any of its elements π . We shall call the i-tuple (1π , . . . , iπ) the

100 5 Canonicity test

Algorithm 5.1 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . , 1 do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for j← i + 1, . . . , n do
2: if rightCoset((i j), i + 1) < 0 then
3: return −1
4: return 1

function rightCoset(π ∈ Sym(n), i : int) : int

1: if i = n then
2: d← compare(π)
3: if d = 0 then
4: GAut ← GAut ∪ π ❶

5: return d
6: else
7: for j← i, . . . , n do
8: π ′ ← (i j) π
9: if rightCoset(π ′, i + 1) < 0 then

10: return −1
11: return 1

function compare (π ∈ Sym(n)) : int

1: for i ← 2, . . . , n do
2: for j← 1, . . . , i− 1 do
3: if Miπ , jπ < Mi, j then
4: return −1
5: else if Miπ , jπ > Mi, j then
6: return 1
7: return 0

5.2 The classical algorithm 101

prefix of π of size i. In other words : two permutations belong to the same right
coset of U(i) if and only if they have the same prefix of size i.

Lemma 5.2.2. Let g ∈ Sym(n), u ∈ U(i). Let i ∈ {1, . . . , n}. Then (u g M)i =
(g M)i. In particular, (u M)i = Mi.

Proof : Let x, y ∈ {1, . . . , i}. Then (Mi)x,y = Mx,y and ((u g M)i)x,y =
(u g M)x,y = (M)xu g,yu g = (M)xg,yg = (g M)x,y = ((g M)i)x,y, because u stabi-
lizes 1, . . . , i pointwise.

It follows that (π M)i is determined by the right coset of U(i) to which π be-
longs, i.e., by the prefix of π of length i. A more informal way to see this is the
following: in order to determine the matrix entry (π M)x,y when x, y ≤ i, we
only need to know the values of 1π , 2π , . . . , iπ .

Corollary 5.2.1. Let π ∈ Sym(n). Let i ∈ {1, . . . , n} such that (π M)i > Mi.

Then g M > M for each g ∈ U(i) π . ⋄

Whenever M ∈ Mn is in canonical form, Algorithm 5.1 runs through all n!
permutations of Sym(n). Algorithm 5.2 provides an improvement based on the
above corollary. The differences between Algorithm 5.2 and 5.1 are essentially
the following:

1. The function rightCoset(π , i) is only called if (π M)i−1 = Mi−1 (❶ in
Algorithm 5.2). Indeed, using Corollary 5.2.1, if (π M)i−1 > Mi−1, then

g M > M for each g ∈ U(i−1)π . Hence no such g would lead to a coun-
terexample of the minimality of M and we can consequently discard the
entire right coset U(i−1) π . If (π M)i−1 < Mi−1, then π is a counter-
example of the minimality of M. As before, we then can terminate the
canonicity test (❷ in Algorithm 5.2).

2. The function compare(π , i) takes an additional parameter i. It now
checks whether (π M)i is smaller, equal or greater than Mi (❸ in Algo-
rithm 5.2). We may assume that the function compare is only called
when (π M)i−1 = Mi−1. Otherwise, let k be the smallest integer such
that (π M)k 6= Mk. If (π M)k < Mk, then the canonicity test would ha-
ve been terminated earlier as we would have found a counterexample
to the minimality of M whereas if (π M)k > Mk the entire right coset

U(k) π ⊃ U(i) π would have been discarded. As a result of this, it suffices
to compare (π M)1...i−1,i with M1...i−1,i, instead of (π M)i with Mi.

102 5 Canonicity test

If M is minimal, then as in Algorithm 5.1, the set GAut contains all automorphis-
ms of M. After all, (g M)i = Mi for each g ∈ U(i) h with h ∈ Aut M.

Algorithm 5.2 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for (i← n− 1, . . . 1) do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for j← i + 1, . . . , n do
2: d← compare((i j), i) ❸

3: if d < 0 then ❷
4: return d
5: else if d = 0 then ❶

6: d← rightCoset((i j), i + 1)
7: if d < 0 then
8: return d
9: return 1

function rightCoset(π ∈ Sym(n), i : int) : int

1: if i = n + 1 then
2: GAut ← GAut ∪ π
3: return 0
4: else
5: for j← i, . . . , n do
6: π ′ ← (i j) π
7: d← compare(π ′, i) ❸

8: if d < 0 then ❷

9: return d
10: else if d = 0 then ❶

11: d← rightCoset(π ′, i + 1)
12: if d < 0 then
13: return d
14: return 1

5.2 The classical algorithm 103

Algorithm 5.2 Checks whether M ∈ Mn is in column order canonical form.

function compare (π ∈ Sym(n), i : int) : int

1: for j← 1, . . . , i− 1 do
2: if Miπ , jπ > Mi, j then
3: return j
4: else if Miπ , jπ < Mi, j then
5: return − j
6: return 0

Example 5.3. Consider the matrix M ∈ M4 below. The recursion tree shown,
corresponds to the traversal of both U(1) and U(1) (1 2) by Algorithm 5.1. For
each node at depth d in the recursion, the coset representative of the correspon-
ding right coset U(d) π is denoted. The right cosets situated in one of the light
gray areas correspond to the right cosets which are additionally discarded by
Algorithm 5.2. More precisely, as soon as Algorithm 5.2 considers a right U(d)π

such that (π M)d > Md, the recursion tree is pruned (the corresponding nodes
are colored light gray).

M =







0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0







(2 4) (1 2 3)

(2 3 4)

id

(1 2)

(1 2)

(1 2 4)

(1 2 3 4)

(1 2 3)

(1 2 3)(1 2)(3 4)

(1 2)(2 4 3)

(2 4 3)(2 4)(2 3 4)

(2 4)

(2 3)id

id

id

id

(2 3)

(3 4)

(2 3)

(1 2) (1 2 3 4) (1 2 4)

(1 2 4) (1 2 4 3)

(1 2 4 3)

(1 2)(3 4)

(3 4)

•

5.2.3 Analysis and empirical data

We will consider the worst-case time complexity of Algorithm 5.1 and Algorithm
5.2. If M ∈ Mn is minimal, Algorithm 5.1 traverses all n! permutations of
Sym(n). Otherwise, it terminates prematurely, that is, as soon as a permutation
π such that π M < M is encountered. Hence the worst-case clearly occurs

104 5 Canonicity test

when M is in canonical form. The corresponding recursion tree then contains
exactly [U(0) : U(d)] = n!/(n− d)! nodes at depth d, i.e., the number of disjoint

right cosets of U(d) in Sym(n). For each π we encounter, we have to check

at its corresponding leaf node whether π M < M. This costs at most
n (n−1)

2
matrix entry comparisons, that is, if π M = M. Hence the worst-case time
complexity of Algorithm 5.1 is O(n! n2). Algorithm 5.2 will generally traverse

only a fraction of Sym(n). For each right coset U(d) π considered at depth d
in the recursion, the algorithm checks whether (π M)1...d−1,d = M1...d−1,d. This
costs at most d − 1 matrix entry comparisons. If (π M)1...d−1,d 6= M1...d−1,d

then either U(d) π can be discarded entirely or the canonicity test can even be
terminated prematurely. The worst-case clearly occurs when M is minimal and
the recursion tree is never pruned. The total cost is then given by

n

∑
d=1

n! (d− 1)

(n− d)!
≤ (n− 1) n!

n−1

∑
k=0

1

k!
≤ (n− 1) n! e ≤ n! n e

as ∑∞

k=0
1
k! = e [92]. Hence the worst-case time complexity of Algorithm 5.2 is

O(n! n). It is no surprise that the worst-case time complexity of Algorithm 5.2 is
better than that of Algorithm 5.1. Indeed, even when the recursion tree is never
pruned, Algorithm 5.2 takes advantage of the fact that the certificate C(π M)

and C(π ′ M) have the same prefix of length
l (l−1)

2 whenever the permutations
π and π ′ have the same prefix of length l ∈ {1 . . . n}. Although the worst-
case for Algorithm 5.2 only occurs when M is minimal and the recursion tree
is never pruned, the analysis suggests that if M has a large automorphism, the
size of the recursion tree will tend to increase. However also the structure of M
will determine the number of times and the depth at which we can prune the
recursion tree.

The effectiveness of the in Algorithm 5.2 introduced ”partial permutation”criterion
is examined by comparing data obtained from the orderly generation of simple
graphs of a given order v, regular graphs of a given order v and degree k and
strongly regular graphs with certain (v, k, λ,µ) parameter sets. In Table 5.1 the
total number of graphs generated by the orderly algorithm, along with total
number of permutations (partial or complete) checked by all canonicity tests
which have been executed, is denoted. The empirical data obtained illustrates
that the application of Algorithm 5.1 during an orderly generation algorithm
turns out to be infeasible for graphs of relatively small small order. Just merely
the application of the canonicity test for each graph being generated, requires

5.2 The classical algorithm 105

the traversal of v! permutations.

The in Algorithm 5.2 introduced pruning criterion turns out to be an enormous
improvement over Algorithm 5.1. The total number of permutations conside-
red, is drastically smaller and increases much more slowly with increasing order
of v. The empirical data shows that mostly only a fraction of the full recursi-
on tree is effectively considered. This makes the application of the canonicity
test of Algorithm 5.2 in the orderly generation of graphs feasible for graphs of
significantly larger order.

Algorithm 5.1 Algorithm 5.2
v k λ µ ∃ No. of perm. checked No. of perm. checked

8 − − − 12346 1 460 991 941 11 686 005
9 − − − 274668 - 414 180 087

9 4 − − 16 24 418 500 93 267
9 6 − − 4 4 677 199 52154

10 4 − − 60 982 122 577 740 636
11 4 − − 266 5 364 303 086 5 123 710
11 6 − − 266 - 11 825 305

5 2 0 1 1 393 120
9 4 1 2 1 1 112 028 2 918

10 3 0 1 1 10 976 118 5 038
10 6 3 4 10 976 178 8 658
13 6 2 3 1 1 834 834 209 19 331
15 6 1 3 1 - 80 932
15 8 4 4 - 130 624

Tabel 5.1: Comparison of Algorithm 5.1 and 5.2 applied in the orderly genera-
tion of simple, regular and strongly regular graphs.

The effect of the size of the automorphism group of a graph (which is in column
order canonical form) on the total number of permutations checked by Algo-
rithm 5.2 is examined. A selection of the data obtained is depicted in Figure
5.1. Based on this empirical data we can observe, in the case of simple and
regular graphs, an apparent correlation between the size of the automorphism
group and the number of nodes in the corresponding recursion tree. The num-
ber of nodes generally tends to increase as the size of the automorphism group
increases. However, for a given automorphism group size, the number of nodes

106 5 Canonicity test

in the recursion tree can differ significantly. Based on the canonicity tests on
minimal representatives of strongly regular graphs, we finally can observe that
the impact on the size of the recursion tree is only apparent for those graphs
graphs with the largest automorphism group. After all, not only the size of the
automorphism group determines the size of the recursion, the graph itself plays
an important role in the number of times and the depth at which the recursion
tree is pruned.

5.3 Using the automorphism group

In this section we shall introduce additional pruning criteria which ensure us
that not the full automorphism group of M has to be traversed. Automorphisms
of M encountered so far during traversal are employed in two distinct manners
in pruning the recursion tree.

5.3.1 Discovering a new automorphism

Lemma 5.3.1. Let i ∈ {1 . . . n}. Let g ∈ Aut M. If u M ≥ M for each u ∈ U(i),

then also h M ≥ M for each h ∈ U(i) g.

Proof : Each h ∈ U(i) g can uniquely be written as h = u g for some u ∈ U(i).
Hence h M = u (g M) = u M ≥ M as g M = M.

This lemma provides a first improvement to Algorithm 5.2 as outlined in Algo-
rithm 5.3. The function rightCoset(π , i, s) takes an additional parameter s.
This parameter refers to the stabilizer group difference U(s)−U(s+1) of which
the right coset U(i−1)π is a subset. When the function is called with i = n + 1,
an automorphism π is discovered. We then can discard the entire remaining
part of the right coset U(s+1)π . The extra equality (❷ in Algorithm 5.3) en-
sures us that the remainder of U(s+1) π is pruned. Clearly u M ≥ M for each
u ∈ U(s+1), otherwise the canonicity test would have been terminated prece-
ding the traversal of U(s)−U(s+1). Using Lemma 5.3.1 we find that h M ≥ M

5.3 Using the automorphism group 107

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut graph order 8|

Partial permutation

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(16,3)|

Partial permutation

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(18,3)|

Partial permutation

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut reg(14,4)|

Partial permutation

 100000

 1e+06

 1 10 100 1000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(25,12,5,6)|

Partial permutation

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(35,16,6,8)|

Partial permutation

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(36,14,4,6)|

Partial permutation

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(40,12,2,4)|

Partial permutation

Figuur 5.1: Number of recursive calls of Algorithm 5.2 for minimal representa-
tives of simple, regular and strongly regular graphs.

108 5 Canonicity test

Algorithm 5.3 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . , 1 do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for j← i + 1, . . . , n do
2: d← compare((i j), i)
3: if d < 0 then
4: return d
5: else if d = 0 then
6: d← rightCoset((i j), i + 1, i− 1)
7: if d < 0 then
8: return d
9: return 1

function rightCoset(π ∈ U(s)−U(s+1), i, s : int) : int

1: if i = n + 1 then

2: T
(s+1)
Aut ← T

(s+1)
Aut ∪ π ❶

3: return 0
4: else
5: for j← i, . . . n do
6: π ′ ← (i j) π
7: d← compare(π ′, i)
8: if d < 0 then
9: return d

10: else if d = 0 then
11: d← rightCoset(π ′, i + 1, s)
12: if d < 0 ∨ d = 0 then ❷

13: return d
14: return 1

function compare (π ∈ Sym(n), i : int) : int

1: {cf. function “compare” in Algorithm 5.2}

5.3 Using the automorphism group 109

for each h ∈ U(s+1)π . Hence no permutation of U(s+1) π could lead to a coun-
terexample to the minimality of M.

Moreover, π is now stored in the set T
(s+1)
Aut (❶ in Algorithm 5.3). This set is

initially empty, but will contain all automorphisms of M encountered during
the traversal of the difference U(s)−U(s+1). If M is minimal, both Algorithm
5.1 and Algorithm 5.2 have as a side effect that all automorphisms of M are
obtained during traversal. This is no longer true in Algorithm 5.3.

Let i ∈ {1, . . . , n}. Define the group

(Aut M)(i) = (Aut M)1,...,i (5.6)

i.e., (Aut M)(i) is the subgroup of Aut M that stabilizes, like the group U(i), all
vertices 1, . . . , i pointwise. As a consequence of the following proposition, we
find that if M is minimal, Algorithm 5.3 obtains for each s ∈ {0, . . . , n− 2} a

transversal of (Aut M)(s+1) in (Aut M)(s).

Proposition 5.3.1. Let i ∈ {0, . . . , n− 2}. If u M ≥ M for each u ∈ U(i), then

the set T
(i+1)
Aut ∪ {id} obtained by Algorithm 5.3 is a transversal of (Aut M)(i+1)

in (Aut M)(i).

Proof : Algorithm 5.3 traverses all right cosets U(i+1) (i + 1 j) with j ∈ {i +

2, . . . , n}, after all u M ≥ M for each u ∈ U(i). Consider such a right coset

U(i+1) (i + 1 k) and assume its intersection with Aut M is non-empty. Then

exactly one element π of this intersection is added to the set T
(i+1)
Aut and the

remaining permutations of U(i+1) (i + 1 k) are discarded. If h ∈ Aut M is

discarded at this point, then h π−1 ∈ Aut M and h π−1 ∈ U(i). Hence also

h ∈ (Aut M)(i+1) π . Therefore the set T
(i+1)
Aut ∪ {id} contains one representati-

ve for every right coset of (Aut M)(i+1) in (Aut M)(i).

Example 5.4. Consider again the matrix M ∈ M4 below. The recursion tree
shown, corresponds to the traversal of Sym(4) by Algorithm 5.2.

110 5 Canonicity test

M=







0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0







(1 4)

(1 4)

(1 4) (1 4 3)

(1 4)(2 3)
(1 4 3)(1 3)(2 4)

(1 3)

(1 3 2)

(1 3)

(1 3 2) (1 3 4 2)

(1 2 3)

(1 2 4) (1 2 4 3)

(1 2 4)

(3 4)

id

id

id

id

(2 3)

(2 3)

(2 3)

(2 4)

(2 3 4)

(1 2)

(1 2 4 3)

(1 2)(3 4)

(1 2)(3 4)

(1 2)

(1 2)

id

When Algorithm 5.3 traverses all elements of U(1) it encounters no counter-
examples to the minimality of M. Then upon the discovery of the automorphism
(1 2) (3 4) ∈ U(1) (1 2) (its corresponding node in the recursion tree is colored

black), the entire remaining part of U(1) (1 2) can be discarded (cf. light grey
area). •

5.3.2 Minimal in orbit

A second improvement makes use of the automorphisms of M encountered pre-
viously during traversal.

Lemma 5.3.2. Let i ∈ {1, . . . , n} and ϕ ∈ (Aut M)(i−1). Let π , σ ∈ U(i−1)

such that g M ≥ M for each g ∈ U(i) π . If iσ = iπϕ, then h M ≥ M for each

h ∈ U(i)σ.

Proof : Because π , σ and ϕ ∈ U(i−1), we find that jπϕ = jσ for each j ∈
{1, . . . , i − 1}. Moreover, also iσ = iπϕ. Hence πϕ and σ have the same i-

prefix. Therefore U(i)σ = U(i) πϕ and each h ∈ U(i)σ can uniquely be written
as h = u πϕ for some u ∈ U(i). Hence h M = u πϕM = u π M ≥ M as
ϕ ∈ Aut M.

Corollary 5.3.1. Let i ∈ {1, . . . , n}, j ∈ {i, . . . , n} and π , σ ∈ U(i−1) such that

iπ = j. Let H ≤ (Aut M)(i−1) and g M ≥ M for each g ∈ U(i) π . If iσ ∈ jH, then

h M ≥ M for each h ∈ U(i)σ. ⋄

This corollary provides an improvement to Algorithm 5.3, as outlined in Algo-
rithm 5.4. The main differences are in essence the following:

5.3 Using the automorphism group 111

1. When the function rightCoset(π , i, s) is called with i = n + 1, an auto-
morphism π ∈ (Aut M)(s) is discovered which is now stored in the set

S̄
(s)
Aut M (❶ in Algorithm 5.4). For notational simplicity we set the set

S
(s)
Aut M =

s⋃

q=n−2

S̄
(q)
Aut M. (5.7)

2. The function diffStab(i) runs through U(i−1)-U(i) by successively traver-
sing the right cosets

U(i) (i i + 1), U(i) (i i + 2), . . . , U(i) (i n).

Preceding the traversal of such a right coset U(i) (i j) with j ∈ {i +
1, . . . , n}, we now additionally check whether j is the minimal element

in its orbit under H = 〈S(i−1)
Aut M〉 ≤ (Aut M)(i−1), i.e., the group generated

by the so far discovered automorphisms of M (❷ in Algorithm 5.4). If
k = min(jH) < j, then we discard the entire right coset U(i) (i j) from
traversal. After all, by the structure of the algorithm, h M ≥ M for each
h ∈ U(i) (i l) with l ∈ {i, . . . , j− 1}, among which U(i) (i k). Hence ac-

cording to Corollary 5.3.1 we find that g M ≥ M for each g ∈ U(i) (i j).
Hence no such permutation g could ever lead to a counterexample of the
minimality of M.

Example 5.5. Consider the matrix M ∈ M4 below.

M=







0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0







(1 4)(1 3)

(1 3 2)

(1 3)

(1 3 2)

(1 3)(2 4)
(1 4)

(1 4) (1 4 3)

(1 4)(2 3)
(1 4 3)

(1 3 4 2)(3 4)

id

id

id (2 3)

(2 3)

(2 3)

(2 3 4)

(2 4)

(1 2) (1 2)(3 4)

(1 2)(3 4)

id

(1 2)id

(1 2)

When Algorithm 5.4 has traversed all permutations of U(1), U(1) (1 2) and U(1) (1 3),
no counterexample to the minimality of M has been found. At that point

S
(0)
Aut M = {(1 2) (3 4)}. Let H = 〈S(0)

Aut M〉 and X = {1, . . . , 4}, then H
 X =

112 5 Canonicity test

Algorithm 5.4 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . 1 do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for j← i + 1, . . . n do

2: if j = min(j〈S
(i−1)
Aut M〉) then ❷

3: d← compare((i j), i)
4: if d < 0 then
5: return d
6: else if d = 0 then
7: d← rightCoset((i j), i + 1, i− 1)
8: if d < 0 then
9: return d

10: return 1

function rightCoset(π ∈ U(s)−U(s+1), i, s : int) : int

1: if i = n + 1 then

2: S̄
(s)
Aut M ← S̄

(s)
Aut M ∪ π ❶

3: return 0
4: else
5: for j← i, . . . , n do
6: π ′ ← (i j) π
7: d← compare(π ′, i)
8: if d < 0 then
9: return −d

10: else if d = 0 then
11: d← rightCoset(π ′, i + 1, s)
12: if d < 0 ∨ d = 0 then
13: return d
14: return 1

function compare (π ∈ Sym(n), i : int) : int

1: {cf. function “compare” in Algorithm 5.2}

5.3 Using the automorphism group 113

{{1, 2}, {3, 4}}. According to Corollary 5.3.1 we can now discard the enti-

re right coset U(1) (1 4), as 4 is not the minimal element in its orbit under H
(cf. grey area). •

Algorithm 5.3 has as a side effect that when M is minimal, a transversal of
(Aut M)(s+1) in (Aut M)(s) is obtained for each s ∈ {n− 2, . . . , 0} (Propositi-
on 5.3.1). This is no longer true for Algorithm 5.4. As a consequence of the
following proposition we find that when M is minimal, Algorithm 5.4 obtains

a strong generating set S
(0)
Aut M for the automorphism group Aut M with base

[1, . . . , n] like in (5.1).

Proposition 5.3.2. Let i ∈ {2, . . . , n}. If u M ≥ M for each u ∈ U(n−i), then the

set S
(n−i)
Aut M obtained by Algorithm 5.4 is a strong generating set for (Aut M)(n−i).

Proof : We shall prove this proposition by induction on i. Without loss of gene-
rality we may assume that Algorithm 5.4 traverses the stabilizer group U(n−1)

prior to the stabilizer difference U(n−2)−U(n−1). Let i = 1. Since both U(n−i)

and (Aut M)(n) are trivial and n is the minimal element in n(Aut M)(n)
, we find

that (Aut M)(n−1) = 〈S(n−1)
Aut M〉 = 〈id〉.

Assume this proposition is valid for i = p ∈ {2, . . . , n − 1}. Let k = n − p.

Hence (Aut M)(k) = 〈S(k)
Aut M〉. For i = p + 1 Algorithm 5.4 first traverses the

stabilizer group U(k) and then successively the right cosets

U(k) (k k + 1), U(k) (k k + 2), . . . , U(k) (k n). (5.8)

Let H = 〈S(k−1)
Aut M〉. Consider a right coset U(k) (k j) with j ∈ {k + 1, . . . , n}.

Distinguish between the following cases:

1. If j = min(jH) then U(k) (k j) is traversed. Assume U(k) (k j) contains one
or more automorphisms of M. Let π be the first automorphism discover-

ed in U(k) (k j) and let H′ = 〈S(k−1)
Aut M, π〉. Then π is added to S̄

(k−1)
Aut M, the

remaining permutations of U(k) (k j) are neglected and the traversal con-

tinues at the next coset. For each h ∈ U(k) (k j) such that also h ∈ Aut M

we have h ∈ (Aut M)(k) π according to Proposition 5.3.2. Hence h ∈ H′.

2. Otherwise, let l = min(jH), then we discard U(k) (k j) from traversal.

Suppose U(k) (k j) contains a π ∈ Aut M. Since l ∈ jH we have lh = j

114 5 Canonicity test

where h ∈ H. As (k l) h ∈ U(k−1) (k j) we have π M = u (k l) h M =

u (k l) M = M for some u ∈ U(k−1). As l = min(jH) the right coset

U(k) (k l) was considered prior to the right coset U(k) (k j). We therefore
find that u (k l) ∈ H (cf. first case). Hence also π ∈ H.

After the traversal of (5.8), we have for each automorphism h ∈ U(k) (k m) with

m ∈ {k + 1, . . . , n} that h ∈ H = 〈S(k−1)
Aut M〉. Since (Aut M)(k) = 〈S(k)

Aut M〉 we

therefore find that (Aut M)(k−1) = 〈S(k−1)
Aut M〉. Hence this proposition is also

valid for i = p + 1.

Example 5.6. Consider the matrix M ∈ M4 below. When Algorithm 5.4
has traversed all permutations of U(2) and U(1) (2 3), no counterexamples to

the minimality of M have been found. Moreover, S̄
(2)
Aut M = {(3 4)} where-

as S̄
(3)
Aut M = {(2 3)}. Let H = 〈S(2)

Aut M〉 and X = {1, . . . , 4}, then H
 X =
{{1}, {2, 3, 4}}. According to Corollary 5.3.1 we can now discard the enti-

re right coset U(2) (2 4), as 4 is not the minimal element in its orbit under H
(cf. dark grey area). Note that the transposition (2 4) is an automorphism of M.
We leave it to the reader to verify that (2 4) ∈ H.

M=







0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0







(1 2 4)

(1 2)(3 4)

(1 2 3)

(1 3)

(1 3)(2 4)

(1 3) (1 3 2)

(1 3 2) (1 3 4 2)

(1 4)

(1 4)

(1 4)(2 3)

(1 4 2) (1 4 3 2)

(1 4 2)

id

id

id (2 3)

(2 3)

id

(3 4)

id (3 4) (2 3)

(2 4)

(2 4)

(1 2)

(2 4)

(1 2)

(1 2)

When Algorithm 5.4 has traversed all permutations of U(1) and U(1) (1 2), no
counterexamples to the minimality of M have been found. According to Co-
rollary 5.3.1 we can discard the entire right cosets U(1) (1 3) and U(1) (1 4), as
both 3 and 4 are not the minimal elements in their orbit under H (cf. light grey
area). •

5.3 Using the automorphism group 115

5.3.3 Maintaining an orbit partition

The incorporation of the “minimal in orbit” criterion into our canonicity algo-
rithm, requires the facility to check whether a given element is minimal in its
orbit under a group H generated by the so far encountered automorphisms of
M ∈ Mn. In order to do so we keep track of the corresponding orbit par-
tition P. This partition should be updated each time a new automorphism is
encountered. The orbit partition P is represented as a forest F(P) with vertex
set X = {1, . . . , n} such that each cell of P corresponds to a unique tree in F(P).
At the same time an array M(P) of integers is maintained. The value M(P)[x] at
index x in this array is equal to min(xH). The main benefit of this array is that
it allows to check in constant time whether a given element is minimal in its
orbit. After all, an element x in minimal in its orbit if and only if M(P)[x] = x.

Initially P is discrete. Each time Algorithm 5.4 encounters an automorphism

π ∈ U(k) − U(k+1) with k ∈ {0, . . . , n − 2}, we add π to S̄
(k)
Aut M. Before we

actually add π to S̄
(k)
Aut M, we now first have to update the orbit partition

P = 〈S(k)
Aut M〉
 X, (5.9)

i.e., refine P to the orbit partition

Q = 〈S(k)
Aut M ∪ {π}〉
 X. (5.10)

This refinement essentially amounts to determining the set of orbits in P which
merge under the action of π . To put it differently, the resulting orbit partition
Q can be seen as the union of the orbit partitions P and 〈{π}〉
 X. The orbit
partition 〈{π}〉
 X can quite easily be obtained by decomposing π into disjoint
cycles, which demands time linear in |X|. More precisely, decomposing π requi-
res n− k image computations. Let l ≤ |〈{π}〉
 X| − k, then π can be written
as a product of disjoint cycles

π =
(
x1,1 x2,1 ... xp1,1

) (
x1,1 x2,2 ... xp2 ,2

)
. . .

(

x1,l x2,l ... xpl ,l

)

(5.11)

where
⋃l

i=1

⋃pi
j=1 x j,i ⊆ {k + 1, . . . , n} and the elements which make up a cycle

correspond to a unique cell of 〈{π}〉
 X. We can now merge P and 〈{π}〉
 X
as follows. While decomposing π into disjoint cycles, we check for each i ∈
{1, . . . , l} and j ∈ {1, . . . , pi− 1} whether the values at indices x j,i and x j+1,i of

116 5 Canonicity test

M(P) differ. If M(P)[x j,i] 6= M(P)[x j+1,i] then x j,i and x j+1,i do not belong to
the same cell of P. Hence we connect x j,i with x j+1,i in F(P). As a result of these
operations we obtain a disconnected graph G(Q) with vertex set X = {1, . . . , n}
such that each cell of Q corresponds to a unique connected component in G(Q).
Finally, we can transform G(Q) into F(Q), that is, removing redundant edges in
the connected components in G(Q), and meanwhile construct the array M(Q)
in time linear in |X| using depth-first search on G(Q).

Remark 5.3. A set-union algorithm [93, 104] provides an alternative for main-
taining orbit partitions. •

5.3.4 Analysis and empirical data

A worst-case analysis of Algorithm 5.3 and 5.4 is certainly not straightforward.
We restrict the analysis to the actual cost involved in checking both pruning cri-
teria. The criterion outlined in Section 5.3.1 requires only a minor modification
to the canonicity algorithm. Each call to the function rightcoset (❷ in Algorithm
5.3) results in an additional equality check. Therefore, even when the recursion
tree is not additionally pruned, the application of the criterion itself does not
affect the run-time of the canonicity algorithm.

The pruning criterion outlined in Section 5.3.2 requires somewhat more modi-
fications. When M is minimal, we now have to check exactly 1

2 n(n− 1) times
whether a given element is the minimal element in its orbit under a group 〈S〉
where S is the set of automorphisms of M encountered so far (❶ in Algorithm
5.4). Each such operation takes constant-time and therefore has only a mini-
mal impact on the run-time of the canonicity algorithm. Each time we disco-
ver an automorphism π , we have to update 〈S〉
 X to 〈S ∪ {π}〉
 X where
X = {1, . . . , n}. Each update entails the merger of distinct orbits and thus the
possibility to discard more right coset in the remainder of the traversal.

The effectiveness of both criteria is examined by comparing data obtained from
the orderly generation of the same classes of graphs as in Section 5.2.3. In Ta-
ble 5.2 and 5.3 Algorithm 5.2, 5.3 and 5.4 are compared. The total number of
graphs along with the total number of permutations (partial or complete) which
are checked during all executed canonicity tests is given. The empirical data
illustrates that the degree of additional pruning differs considerably. Both pr-

5.3 Using the automorphism group 117

uning criteria turn out to be particularly effective when a substantial part of the
(sub)matrices encountered, have a relatively large automorphism group. When
both criteria are less effective, it turns out that the additional cost involved in
checking both criteria has only a minor impact on the overall performance of
the orderly generation algorithm itself.

Finally we examine the effect of the size of the automorphism group of minimal
representatives on the total number of permutations checked by both Algorithm
5.3 and 5.4. We consider canonicity tests on the same representatives as in
Section 5.2.3. Figure 5.2 and 5.3 indicate that the number of nodes in the re-
cursion tree tends to decrease as the size of the automorphism group increases.
This correlation is even more explicit for Algorithm 5.4 than for Algorithm 5.3.
This confirms the interpretation of the results in Table 5.2 and 5.3.

Algorithm 5.2 Algorithm 5.3 Algorithm 5.4
v k ∃ No. of perm. No. of perm. No. of perm.

8 − 12346 11 686 005 9 727 187 7 574 532
9 − 274668 414 180 087 377 494 839 327 260 260

9 4 16 93 267 71 628 51 393
9 6 4 52 154 28 715 11 564

10 3 21 209 220 133 861 97 183
10 4 60 740 636 535 224 425 935
11 4 266 5 123 710 4 450 581 3 847 835
11 6 266 11 825 305 10 818 023 9 346 277
12 3 94 3 415 505 2 086 198 1 670 123
12 4 1547 44 723 209 41 001 545 37 525 543
12 5 7849 280 177 784 266 973 129 254 373 579
13 4 10786 443 200 687 419 663 282 397 968 566
14 3 540 58 971 987 35 043 524 30 365 138
14 4 88193 4 842 350 124 4 668 546 811 4 527 310 381
15 4 805579 57 568 896 199 56 084 159 733 55 037 048 650
16 3 4207 2 307 251 665 646 566 172 592 273 253
18 3 42110 275 808 095 342 13 226 739 376 12 551 512 846

Tabel 5.2: Comparison of Algorithm 5.1, 5.2 and 5.3 applied in the orderly
generation of simple graphs of order v and regular graphs of order v and degree
k.

118 5 Canonicity test

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut graph order 8|

Right coset

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(16,3)|

Right coset

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(18,3)|

Right coset

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut reg(14,4)|

Right coset

 10000

 100000

 1e+06

 1 10 100 1000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(25,12,5,6)|

Right coset

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(35,16,6,8)|

Right coset

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(36,14,4,6)|

Right coset

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(40,12,2,4)|

Right coset

Figuur 5.2: Recursive calls of Algorithm 5.3 for classes of minimal representati-
ves.

5.3 Using the automorphism group 119

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut graph order 8|

First in orbit

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(16,3)|

First in orbit

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ec

ur
si

ve
 c

al
ls

|Aut reg(18,3)|

First in orbit

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut reg(14,4)|

First in orbit

 1000

 10000

 100000

 1e+06

 1 10 100 1000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(25,12,5,6)|

First in orbit

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(35,16,6,8)|

First in orbit

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(36,14,4,6)|

First in orbit

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

R
ec

ur
si

ve
 c

al
ls

|Aut srg(40,12,2,4)|

First in orbit

Figuur 5.3: Recursive calls of Algorithm 5.4 for classes of minimal representati-
ves.

120 5 Canonicity test

Algorithm 5.2 Algorithm 5.3 Algorithm 5.4
v k λ µ ∃ No. of perm. No. of perm. No. of perm.

5 2 0 1 1 120 75 40
9 4 1 2 1 2 918 1 065 457

10 3 0 1 1 5 038 1 615 721
6 3 4 8 658 3 720 1 214

13 6 2 3 1 19 331 9 836 5 643
15 6 1 3 1 80 932 23 395 7 906

8 4 4 130 624 49 240 12 224
16 5 0 2 1 279 324 61 244 21 687

10 6 6 416 214 178 510 36 090
16 6 2 2 2 199 408 53 820 23 507

9 4 6 300 935 142 364 47 539
17 8 3 4 1 129 214 75 088 41 109
21 10 3 6 1 964 046 326 334 75 091

10 5 4 2 095 791 696 204 144 207
25 8 3 2 1 10 595 498 1 303 854 458 845

16 9 12 17 598 702 9 524 965 2 654 299
25 12 5 6 15 38 797 658 37 755 287 34 546 360
26 10 3 4 10 13 682 715 13 481 781 12 714 925

15 8 9 282 392 851 279 477 345 257 672 546
27 10 1 5 1 26 170 822 5 242 960 1 289 795

16 10 8 44 774 766 20 439 982 3 281 897
28 12 6 4 4 43 370 983 16 902 610 4 828 422

15 6 10 23 207 607 13 230 035 4 068 141
29 14 6 7 41 9 317 917 605 3 315 667 998 3 291 720 746
36 10 4 2 1 934 984 410 85 113 426 23 754 480

25 16 20 1 427 025 661 793 689 302 143 366 816
40 12 2 4 1 159 203 098 390 157 300 885 219 154 334 556 518
36 14 4 6 180 30 786 263 393 30 758 028 420 30 634 602 941
36 14 7 4 1 612 920 754 155 708 418 22 069 825
45 16 8 4 1 11 170 823 310 2 509 788 844 305 971 694
50 7 0 1 1 162 019 899 199 53 081 900 507 9 016 393 600

Tabel 5.3: Comparison of Algorithm 5.2, 5.3 and 5.4 applied in an orderly
algorithm for strongly regular graphs

5.4 Image partitioning 121

5.4 Image partitioning

Up to now we have considered our column order canonicity algorithm for ge-
neral matrices M ∈ Mn. Since our canonicity algorithm is repeatedly applied
during a single orderly generation, we can impose some additional restrictions
on M. These restrictions will enable us to further optimize our canonicity algo-
rithm. In this section we will make use of the knowledge that M must always
be lexically ordered. After all, assume that M is not lexically ordered, then
the (partially instantiated) matrix M would already have been discarded by the
orderly generation algorithm before the actual execution of the canonicity test.

5.4.1 Drawbacks of the partial permutation criterion

The way in which we check the partial permutation criterion during traversal of
Sym(n) is open to improvement. The manner in which we check this criterion
causes the recursion tree to be pruned in different parts of the recursion for
exactly the same reasons. Below we give a formal description of this drawback.
First we shall illustrate this by means of an example.

Example 5.7. Consider M ∈ M6 below. Let σ = (1 2). The recursion tree

shown corresponds to the traversal of U(1)σ by Algorithm 5.4.

M=










0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 2
1 2 2 0 1 1
1 2 2 1 0 2
2 1 2 1 2 0










(1 2 3)(4 6) (1 2 3)(4 6 5)

(1 2 3)(1 2)

(1 2)

(1 2)

(1 2)(4 6)

(1 2)(4 6) (1 2)(4 6 5)

(1 2)(3 6)

(1 2)(3 5)

(1 2)

(1 2 3)

(1 2 4) (1 2 5)

(1 2 6)

(1 2 3)

(1 2 3)(4 6)

(1 2 3 5)

(1 2 3 6)(1 2)(3 4) (1 2 3 4)

(1 2 6)(3 5) (1 2 6)(3 5)(1 2 6)

(1 2 6 3)

(1 2)(4 5) (1 2 3)(4 5)

Note that

M1,5 = 1, M1g ,4 = M1σ ,4 = 2 and M1g,5 = M1σ ,5 = 2, (5.12)

for each g ∈ U(1)σ. Each right coset U(5) π ⊂ U(1)σ with either 5π = 4

122 5 Canonicity test

or 5π = 5 which is still to be considered at level 5 in the recursion can be
discarded entirely. Indeed (h M)4 = M4 for each h ∈ U(5) π; otherwise the
recursion tree would have been pruned at a higher level. Using (5.12) we find
that (h M)5 > M for each such h. This behaviour can be predicted even before

we traverse U(1)σ, after all, discarding U(5) π at level 5 in the recursion only
depends on the value of 5σ . Consider the following examples:

• Let g1 = (1 2) (4 6), g2 = (1 2 3) (4 6) ∈ U(1)σ. Note that (g1 M)4 =
(g2 M)4 = M4 and 5g1 = 5g2 = 5, hence

(g1 M)1,5 = (g2 M)1,5 = M1σ ,5 > M1,5.

As a result of this, U(5) g1 and U(5) g2 (light gray area) can both be
discarded upon consideration at level 5 in the recursion.

• Let h1 = (1 2) (4 6 5), h2 = (1 2 3) (4 6 5) ∈ U(1)σ. Note that (h1 M)4 =
(h2 M)4 = M4 and 5h1 = 5h2 = 4, hence

(h1 M)1,5 = (h2 M)1,5 = M1σ ,4 > M1,5.

As a result of this, U(5) h1 and U(5) h2 (light gray area) can both be
discarded upon consideration at level 5 in the recursion.

In both cases the partial permutation criterion prunes the recursion tree in diffe-
rent parts of the recursion for the same reason. This behaviour can be predicted
higher up in the recursion, that is, before U(1)σ is traversed. Let l ∈ {2, . . . , 4}.
Clearly M1,l = 1. We leave it for the reader to verify that similar behaviour can

be observed for right cosets U(l) τ with either lτ = 4 or lτ = 5 considered at
level l (dark gray areas). •

In order to give a formal description of this phenomenon, we first need to define
the concepts of pivot level and error level.

Definition 5.4.1. Let M ∈ Mn and π ∈ Sym(n) such that π M 6= M. Define
the error level errπ (M) of π on M to be the smallest integer l ∈ {2, . . . , n} such
that (π M)l 6= Ml and the corresponding pivot level pivπ (M) of π on M to be
the smallest integer q ∈ {1, . . . , l − 1} such that (π M)1...q,l 6= M1...q,l. ⋄

Note that l = errπ (M) and q = pivπ (M) correspond to the first position where
the certificates C(π M) and C(M) differ. It follows immediately that M can

5.4 Image partitioning 123

not be in canonical form when (π M)q,l < Mq,l. For each g ∈ U(l) π we have

errg(M) = l and pivg(M) = pivπ(M) because π and g have the same l-prefix.
For future notational simplicity we define errπ (M) = n + 1 and pivπ (M) = 0
when π M = M.

The following theorem translates this phenomenon in terms of error level and
pivot level.

Theorem 5.4.2. Let M ∈ Mn, σ ∈ Sym(n), q ∈ {1, . . . , n − 1} and k, l ∈
{q + 1, . . . , n} such that

(σ M)q = Mq, (σ M)1...q−1,k = M1...q−1,l and (σ M)q,k 6= Mq,l . (5.13)

Then for each π ∈ U(q)σ with (π M)l−1 = Ml−1 and lπ = kσ we have errπ (M) =
l and pivπ (M) = q. Moreover, we have (σ M)q,k > Mq,l if and only if (π M)l >
Ml whereas (σ M)q,k < Mq,l if and only if (π M)l < Ml.

Proof : Both σ and π have the same q-prefix. Hence

(π M)1...q,l = M1π ...qπ ,lπ = M1σ ...qσ ,lπ = M1σ ...qσ ,kσ = (σ M)1...q,k 6= M1...q,l

as lπ = kσ . Moreover (π M)l−1 = Ml−1 and therefore errπ (M) = l and
pivπ (M) = q by definition.

We reconsider Example 5.7 in these terms.

Example 5.8. Let M and σ = (1 2) be as before. Theorem 5.4.2 states that

errπ (M) = 5 and pivπ (M) = 1 for each π ∈ U(1)σ with either 5π = 4 or

5π = 5 such that (π M)4 = M4. E.g., reconsider g1 = (1 2) (4 6) ∈ U(1)σ.
Note that (g1 M)4 and 5g1 = 5. Hence (g1 M)1,5 = M1σ ,5 > M1,5 and therefore
errg1(M) = 5 and pivg1(M) = 1. Similarly for l ∈ {2, . . . , 4}we have errτ (M) =

5 and pivτ (M) = 1 for each τ ∈ U(1)σ with either lτ = 4 or lτ = 5 such that
(τ M)l−1 = Ml−1. •

In general, let M ∈ Mn and l ∈ {2, . . . , n}. Assume that we are at level l in

the recursion of Algorithm 5.4 and are about to consider the right coset U(l) π .
Recall that at this point (π M)l−1 = Ml−1; otherwise the recursion tree would
have been pruned at a higher level in the recursion. Before we actually traver-
se U(l) π recursively, the partial permutation criterion compares (π M)1...l−1,l

124 5 Canonicity test

with M1...l−1,l. Based on this comparison the canonicity algorithm may either

recurse, discard U(l) π entirely or even terminate. If (π M)1...l−1,l = M1...l−1,l,

then the canonicity algorithm recurses by considering U(l) as a disjoint union of
right cosets of U(l+1). If not, then errπ (M) = l and the course of the algorithm
is determined by (π M)q,l where q = pivπ (M). Now let σ be the representa-

tive of the right coset of U(q) considered previously at level q in the recursion.

Clearly π ∈ U(q)σ. Hence, as π and σ have the same q-prefix, we find that
(σ M)q = Mq and (σ M)1...q,k = (π M)1...q,l for some k ∈ {q + 1, . . . , n} such
that kσ = lπ . We distinguish between the following cases.

1. If (σ M)q,k = (π M)q,l < Mq,l, then according to Theorem 5.4.2 we find
that at recursion level q, that is, when the q-prefix of π is known and in
particular the image of q is fixed, we may already predict for π the action
to be taken at a deeper level l in the recursion, that is, terminating the
canonicity test.

2. Similarly, if (σ M)q,k = (π M)q,l > Mq,l, then at the same recursion level
q we may already predict for π the action to be taken at a deeper level l

in the recursion, that is, discarding U(l) π entirely.

Within this context the error level errπ (M) corresponds to the level in the re-
cursion at which the recursion tree is actually pruned, whereas the pivot level
pivπ (M) identifies the level in the recursion at which this pruning can be predic-

ted. Not only for π we can predict the action to be taken. Now let π ′ ∈ U(q)σ

satisfy (π ′ M)l−1 = Ml−1. If also lπ
′

= lπ , then errπ
′
(M) = errπ (M) and

pivπ
′
(M) = pivπ (M). After all π ′ has the same q-prefix as π . Hence the action

to be taken at level l in the recursion will be the same for π ′ as it is for π .

More generally, we can predict for each g ∈ U(q)σ with lg = lπ (among which
π and π ′) we encounter at a deeper level l in the recursion the action to be
taken. Naturally, if the action to be taken is to terminate then only the first
such g we encounter causes the canonicity algorithm to terminate. The parti-
al permutation criterion clearly tends to prune the recursion tree in different
parts of the recursion for exactly the same reason, what’s more, a reason which
depends only on lg and which can be determined higher up, that is, at pivot
level pivπ (M) in the recursion. This repeated pruning for the same reason has
a negative impact on the performance of the criterion. In the next sections we
will improve the way in which the criterion is checked by using the information

5.4 Image partitioning 125

already available at pivot level pivπ (M).

Below we give some examples to illustrate the points made in the previous
discussion.

Example 5.9. Consider M ∈ M4 below. The recursion tree shown corresponds
to the traversal of Sym(4) by Algorithm 5.4.

M=







0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0







(1 4)(1 3)

(1 3 2)

(1 3)

(1 3 2)

(1 3)(2 4)

(1 3 4 2)(3 4)

id

id

id (2 3)

(2 3)

(2 3)

(2 3 4)

(2 4)

(1 2) (1 2)(3 4)

id

(1 2)id

(1 2)

(1 2)(3 4)

Let τ = (2 3). Consider the traversal of U(2)τ (light gray area). The right coset

U(4) τ is discarded because

(τ M)4 =







0 1 2 2
1 0 2 2

1 2 0 1
2 2 1 0







> M4.

Clearly errτ (M) = 4 and pivτ (M) = 2. The fact that (τ M)1...2,4 > M1...2,4 is

established before the traversal of U(2) τ allows us to predict the discarding of
U(4) τ .

Let σ = (1 3). Consider the traversal of U(1)σ (dark gray area). Let ρ = (1 3 2).

The right coset U(3)ρ is discarded because

(ρM)3 =





0 1 2

1 0 1
2 1 0



 > M3.

Clearly errρ(M) = 3 and pivρ(M) = 1. The fact that (σ M)1,2 > M1,3 is establis-

hed before the traversal of U(1)σ allows us to predict the discarding of U(3)ρ.

126 5 Canonicity test

Let ψ = (1 3 4 2). The right coset U(3)ψ is discarded because

(ψM)3 =





0 1 2

1 0 2
2 2 0



 > M3.

Clearly errψ(M) = 3 and pivψ(M) = 1. The fact that (σ M)1,4 > M1,3 is

established before the traversal of U(1)σ allows us to predict the discarding of
U(3)ψ. Note that the actual reason of discarding U(3)ψ and U(3)ψ is not the
same as 4ψ 6= 4ρ. •
Example 5.10. Consider M ∈ M5 below. Let σ = (1 2). The recursion tree

shown corresponds to the traversal of U(1)σ by Algorithm 5.4.

M=









0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 2
1 2 1 2 0







 (1 2)(3 4)

(1 2)(4 5)

(1 2)(3 4)

(1 2)(3 4)(1 2)

(1 2)(3 5)

(1 2)(3 4 5)

(1 2 3)

(1 2 3 4)

(1 2 3)(1 2) (1 2 5)(1 2 4)

(1 2 4 3)
(1 2 3 5) (1 2 4)

(1 2 4 3)(1 2 3) (1 2 3)(4 5) (1 2 4 5 3)

(1 2 4)(3 5)

(1 2)

(1 2)

(1 2)

Let π1 = (1 2) (4 5), π2 = (1 2) (3 4 5), π3 = (1 2 3)(4 5), π4 = (1 2 4 5 3) and

i ∈ {1, . . . , 4}. Each corresponding right cosets U(4) πi is discarded (light gray
areas) because

(π1 M)4 =







0 1 1 2

1 0 1 1
1 1 0 1
2 1 1 0







> M4 (π2 M)4 =







0 1 1 2

1 0 1 1
1 1 0 2
2 1 2 0







> M4

(π3 M)4 =







0 1 1 2

1 0 1 1
1 1 0 1
2 1 1 0







> M4 (π4 M)4 =







0 1 1 2

1 0 1 2
1 1 0 1
2 2 1 0







> M4 .

Clearly errπi (M) = 4 and errπi(M) = 1 for each such πi. The fact that (σ M)1,5 >

M1,4 is established prior to the traversal of U(1)σ allows us to predict the dis-
carding of these cosets. Note that the actual reason of discarding is the same as
4πi = 5 for each such πi. •

5.4 Image partitioning 127

One can expect this behaviour to occur more frequently when the difference
between error levels and the corresponding pivot levels is rather large. Empiri-
cal data obtained from the orderly generation of strongly regular graphs shows
that large differences do indeed arise. In Figure 5.4 we represent the frequency
of occurrence of error and pivot levels among all canonicity tests executed du-
ring orderly generation, whereas in Figure 5.5 we represent for each such error
level the average corresponding pivot level. For each parameter set we can ob-
serve a relatively large distance between the error levels and the corresponding
average pivot levels. Moreover, most pivot levels are highly concentrated at
the more shallow levels in the recursion. Both observations affirm that altering
the way in which we check the partial permutation criterion could improve its
performance.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25

fr
eq

ue
nc

y

level

srg(25,12,5,6)

error
pivot

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30

fr
eq

ue
nc

y

level

srg(26,10,3,4)

error
pivot

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30

fr
eq

ue
nc

y

level

srg(28,12,6,4)

error
pivot

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 5 10 15 20 25 30

fr
eq

ue
nc

y

level

srg(29,14,6,7)

error
pivot

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40

fr
eq

ue
nc

y

level

srg(36,14,7,4)

error
pivot

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 5 10 15 20 25 30 35 40

fr
eq

ue
nc

y

level

srg(40,12,2,4)

error
pivot

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 5 10 15 20 25 30 35 40 45

fr
eq

ue
nc

y

level

srg(45,16,8,4)

error
pivot

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 5 10 15 20 25 30 35 40 45 50

fr
eq

ue
nc

y

level

srg(50,7,0,1)

error
pivot

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 20 40 60 80 100

fr
eq

ue
nc

y

level

srg(105,32,4,12)

error
pivot

Figuur 5.4: Frequency of pivot and error levels.

128 5 Canonicity test

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25

av
g

pi
vo

t l
ev

el

error level

srg(25,12,5,6)

avg pivot level

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

av
g

pi
vo

t l
ev

el

error level

srg(26,10,3,4)

avg pivot level

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

av
g

pi
vo

t l
ev

el

error level

srg(28,12,6,4)

avg pivot level

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 5 10 15 20 25 30

av
g

pi
vo

t l
ev

el

error level

srg(29,14,6,7)

avg pivot level

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40

er
ro

r
le

ve
l

avg pivot level

srg(36,14,7,4)

avg pivot level

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40

av
g

pi
vo

t l
ev

el

error level

srg(40,12,2,4)

avg pivot level

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45

av
g

pi
vo

t l
ev

el

error level

srg(45,16,8,4)

avg pivot level

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

av
g

pi
vo

t l
ev

el

error level

srg(50,7,0,1)

avg pivot level

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

av
g

pi
vo

t l
ev

el

error level

srg(105,32,4,12)

avg pivot level

Figuur 5.5: The average pivot level per error level.

5.4 Image partitioning 129

5.4.2 Canonicity algorithm with image partitioning

The discussion in the above section shows that the manner in which we check
the partial permutation criterion is open to improvement. In subsequent secti-
ons we give a top-down description of the actual modifications to the canonicity
algorithm. The current section introduces a framework which serves for descri-
bing these modification at a high conceptual level. A somewhat more detailed,
low-level description is deferred until the next section.

The improvement to our canonicity algorithm will allow us to further restrict
the number of right cosets we have to consider. In order to do so we need to
introduce an ordering on the set of images of the permutations involved. We

use the lexicographic ordering ≤ on tuples to define the binary relation
i,π ,M

. on
the set {1, . . . , n}, as follows:

Definition 5.4.3. Let M ∈ Mn, π ∈ Sym(n) and i, p, q ∈ {1, . . . , n}. Then

p
i,π ,M

. q if and only if M1π ...iπ ,p ≤ M1π ...iπ ,q. ⋄

If π = id then we write
i,M
. instead of

i,id,M
. . If π and π ′ have the same i-prefix,

then
i,π ,M

. is equivalent to
i,π ′,M

. . The relation
i,π ,M

. is a weak order since it is both
complete and transitive. Therefore i,π ,M∼ is an equivalence relation on {1, . . . , n}.

Definition 5.4.4. Let M ∈ Mn, π ∈ Sym(n) and i, p, q ∈ {1, . . . , n}. Then

p i,π ,M∼ q if and only if p
i,π ,M

. q and q
i,π ,M

. p. ⋄

As before we write i,M∼ instead of
i,id,M

. and again
i,π ,M

. only depends on the i-prefix
of π . We denote the equivalence class of p ∈ {1, . . . , n} by [p]i,π ,M. Since only
the diagonal entries of M are zero, it follows immediately that [pπ]i,π ,M = {pπ}
when p ≤ i. The weak order

i,π ,M
. induces a total order

i,π ,M
≤ on the set of

equivalence classes of i,π ,M∼ , as follows:

Definition 5.4.5. Let M ∈ Mn, π ∈ Sym(n) and i, p, q ∈ {1, . . . , n}. Then

[p]i,π ,M
i,π ,M
≤ [q]i,π ,M if and only if p

i,π ,M
. q. ⋄

Again we write
i,M
≤ instead of

i,π ,M
≤ . Note that

i,π ,M
≤ is antisymmetric while

i,π ,M
.

not necessarily. Recall from set theory that weak orders are in one-to-one cor-
respondence with ordered partitions on the same set.

130 5 Canonicity test

An ordered partition P of a set V is a sequence P = (V1 , V2, . . . , Vr) of disjoint
non-empty subsets of V whose union is V. The number r of subsets in P shall be
denoted by |P|. The set of all ordered partitions of V shall be denoted by P(V).
Usually the elements of an ordered partition P ∈ P(V) are called its cells. The
a-th cell of P is denoted by P[a]. A trivial cell of P is a cell of cardinality one.
If every cell of P is trivial, then P is called a discrete ordered partition. P is the
unit partition on V if P = (V).

Let P ∈ P(V) and x ∈ V, then we define cell(P, x) to be the index i of the unique
cell P[i] to which x belongs. Let P′, P′′ ∈ P(V), then P′ is a refinement of P′′,
denoted by P′ ≤ P′′, if every cell of P′ is a subset of some cell of P′′. Moreover,
P′ is a cell order preserving refinement of P′′, denoted by P′ � P′′, if P′ ≤ P′′

and cell(P′, x) < cell(P′, y) implies cell(P′′, x) ≤ cell(P′′, y) for all x, y ∈ V. For
example, ({1}, {3}, {2}) ≤ ({1, 2}, {3}), ({1}, {3}, {2}) 6� ({1, 2}, {3}) and
({2}, {1}, {3}) � ({1, 2}, {3})

Definition 5.4.6. Let M ∈ Mn, π ∈ Sym(n) and i ∈ {1, . . . , n− 1}. Define
lexπi (M) to be the ordered partition on {(i + 1)π , . . . , nπ} that uniquely corres-

ponds to the weak order
i,π ,M

. . ⋄

The cells of lexπi (M) are the equivalence classes of i,π ,M∼ on {(i + 1)π , . . . , nπ}
and lexπi (M)[a]

i,π ,M
≤ lexπi (M)[b] if and only if a ≤ b. Note that we do not consider

ordered partitions on the entire set {1, . . . , n}. In other words, its cells are the
equivalence classes of i,π ,M∼ on {1, . . . , n}, except that the equivalence classes
[pπ]i,π ,M = {pπ} with p ≤ i have been omitted. Note that since the cells of
lexπi (M) are the equivalence classes of i,π ,M∼ , we find that the tuple M1π ...,iπ ,p with
p ∈ lexπi (M)[a] is independent of the choice of p. As before we write lexi(M)

instead of lexid
i (M) and again lexπi (M) only depends on the i-prefix of π . We say

that lexπi (M) is the lexically ordered image partition of M defined by the prefix of
length i of π while lexi(M) is the lexically ordered partition of the first i rows of
M. For future notational simplicity we set lexπ0 (M) = lex0(M) = ({1, . . . , n}),
the unit partition.

Example 5.11. Let π = (1 2 3 5). Consider M ∈ M5 below, then lexi(M) and

5.4 Image partitioning 131

lexπi (M) for i ∈ {1, . . . , 4} are as listed.

M=









0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 2
1 2 1 2 0









lex0(M) = ({1, 2, 3, 4, 5})
lex1(M) = ({2, 3, 4, 5})
lex2(M) = ({3, 4}, {5})
lex3(M) = ({4}, {5})
lex4(M) = ({5})

lexπ0 (M) = ({1, 2, 3, 4, 5})
lexπ1 (M) = ({1, 3, 4}, {5})
lexπ2 (M) = ({1}, {4}, {5})
lexπ3 (M) = ({1}, {4})
lexπ4 (M) = ({1})

•
Example 5.12. Let π = (1 3) (2 4). Consider M ∈ M5 below, then lexi(M) and
lexπi (M) for i ∈ {0, . . . , 4} are as listed.

M=









0 1 2 2 2
1 0 2 2 2
2 2 0 1 1
2 2 1 0 2
2 2 1 2 0









lex0(M) = ({1, 2, 3, 4, 5})
lex1(M) = ({2}, {3, 4, 5})
lex2(M) = ({3, 4, 5})
lex3(M) = ({4, 5})
lex4(M) = ({5})

lexπ0 (M) = ({1, 2, 3, 4, 5})
lexπ1 (M) = ({4, 5}, {1, 2})
lexπ2 (M) = ({5}, {1, 2})
lexπ3 (M) = ({5}, {2})
lexπ4 (M) = ({5})

•

We now define the sequence tuπi (M) of i-tuples.

Definition 5.4.7. Let M ∈ Mn, π ∈ Sym(n) and i ∈ {1, . . . , n− 1}. Define

tuπi (M) =
(

M1π ...iπ , j1
, M1π ...iπ , j2

, . . . , M1π ...iπ , jn−i

)

such that { j1, . . . , jn−i} = {(i + 1)π , . . . , nπ} and such that ja ≤ jb if and only

if M1π ...iπ , ja ≤ M1π ...iπ , jb
, or equivalently if and only if ja

i,π ,M
. jb. ⋄

We denote the a-th entry M1π ...iπ , ja of tuπi (M) by tuπi (M)a. As before we write

tui(M) instead of tuid
i (M) and again tuπi (M) only depends on the i-prefix of

π . We say that tuπi (M) is the sequence of lexically ordered image tuples defined
by the prefix of length i of π , while tui(M) is the sequence of lexically ordered

tuples of the first i rows of M.

To put it differently, tuπi (M) is the sequence of tuples M1π ...iπ , j with j ∈ {(i +
1)π , . . . , nπ}, sorted according to the lexicographic ordering on tuples. This
means that tuπi (M) can be uniquely written as a sequence of i-tuples

tuπi (M) = (u1,...,u1, u2,...,u2, . . . , ur−1,...,ur−1, ur ,...,ur) (5.14)

132 5 Canonicity test

satisfying ua < ub if and only if a < b. We write tuπi (M)[a] for ua, that is, the

a-th unique tuple of tuπi (M). From the above we find that there is a strong
relation between tuπi (M) and lexπi (M), as illustrated by the following theorem.

Theorem 5.4.8. Let M ∈ Mn, π ∈ Sym(n), i ∈ {1, . . . , n− 1}. Then tuπi (M)[a]

is well-defined if and only if a ∈ {1, . . . , |lexπi (M)|} and then tuπi (M)[a] = M1π ,...,iπ ,p

for each p ∈ lexπi (M)[a].

In other words, with each cell lexπi (M)[a] we can associate a unique tuple

tuπi (M)[a] = M1π ...,iπ ,p

which is independent of the choice of p ∈ lexπi (M)[a]. Moreover, it must hold

that tuπi (M)[a] ≤ tuπi (M)[b] if and only if a ≤ b.

Example 5.13. Let π and M as in Example 5.11, then

tu1(M) = ((1), (1), (1), (1)) tu2(M) = ((1, 1), (1, 1), (1, 2))
tuπ1 (M) = ((1), (1), (1), (2)) tuπ2 (M) = ((1, 1), (1, 2), (2, 1))

•

Example 5.14. Let π and M as in Example 5.12, then

tu1(M) = ((1), (2), (2), (2)) tu2(M) = ((2, 2), (2, 2), (2, 2))
tuπ1 (M) = ((1), (1), (2), (2)) tuπ2 (M) = ((1, 2), (2, 2), (2, 2))

•

The concept of lexically ordered image partitions allows us to outline the central
idea behind the improvements to the canonicity algorithm. In general, let M ∈
Mn and l ∈ {2, . . . , n}. Assume we are at level l − 1 in the recursion and

Algorithm 5.4 considers the right coset U(l−1)ϕ satisfying (ϕM)l−1 = Ml−1.
We then successively traverse

U(l)ϕ, U(l) (l l + 1)ϕ, . . . , U(l) (l n− 1)ϕ, U(l) (l n)ϕ, (5.15)

or to put it differently, successively extend the (l − 1)-prefix of ϕ by each ele-
ment of {lϕ , . . . , nϕ} in turn. Note that if we set the image of l to be q ∈

5.4 Image partitioning 133

{lϕ , . . . , nϕ}, or equivalently consider the right coset U(l) (l qϕ
−1

)ϕ, then for

each h ∈ U(l) (l qϕ
−1

)ϕ we find that (h M)l can be written as

(h M)l =

(
Ml−1 vT

q

vq 0

)

(5.16)

where in this context vq serves as an abbreviation for M1ϕ...(l−1)ϕ,q. After all,

(h M)l−1 = (ϕM)l−1 = Ml−1 and M1h ...(l−1)h,q = M1ϕ ...(l−1)ϕ,q because ϕ

and h have the same (l − 1)-prefix. Moreover vq = tuϕl−1(M)[a] with a =

cell(lexϕl−1(M), q).

We can use lexϕl−1(M) to restrict the number of cosets in (5.15) we have to con-
sider. The first cell of lexϕl−1(M), that is the subset of {lϕ , . . . , nϕ} corresponding
to the lexicographically smallest tuple tuϕl−1(M)[1], will allow us to either dis-

card each right coset in (5.15) or to consider only the right cosets U(l) (l qϕ
−1

)ϕ
where q ∈ lexϕl−1(M)[1]. Let u = M1...l−1,l, then depending on the relation bet-

ween u and tuϕl−1(M)[1], that is, the l-th upperdiagonal column of respectively

M and (l pϕ
−1

)ϕM with p ∈ lexϕl (M)[1], we can decide the action to be taken.
We distinguish between the following three cases:

1. If u < tuϕl−1(M)[1], then we may discard U(l−1)ϕ entirely. Since u <

tuϕl−1(M)[1] ≤ tuϕl−1(M)[a] for each a ∈ {1, . . . , |lexϕl−1(M)|} we have u <

M1ϕ ...(l−1)ϕ,r for each r ∈ {lϕ , . . . , nϕ}. Therefore we find that

(h M)l =

(
Ml−1 vT

r
vr 0

)

>

(
Ml−1 uT

u 0

)

= Ml

for each h ∈ U(l) (l rϕ
−1

)ϕ. Hence no permutation of U(l−1)ϕ could lead
to a counterexample to the minimality of M.

2. If u > tuϕl−1(M)[1], then we may terminate the canonicity algorithm. Let

h ∈ U(l−1)ϕ such that lh = p ∈ lexϕl−1(M)[1], then

(h M)l =

(
Ml−1 vT

p

vp 0

)

<

(
Ml−1 uT

u 0

)

= Ml .

Hence h provides a counterexample to the minimality of M.

134 5 Canonicity test

3. If u = tuϕl−1(M)[1], then we may discard the right cosets U(l) (l rϕ
−1

)ϕ

with r ∈ {lϕ , . . . , nϕ} \ lexϕl−1(M)[1] in (5.15) entirely. Because u =

tuϕl−1(M)[1] < tuϕl−1(M)[b] for each b ∈ {2, . . . , |lexϕl−1(M)|} we have

u < M1ϕ ...(l−1)ϕ,r for each r ∈ {lϕ , . . . , nϕ} \ lexϕl−1(M)[1]. Therefore we
find that

(h M)l =

(
Ml−1 vT

r
vr 0

)

>

(
Ml−1 uT

u 0

)

= Ml

for each h ∈ U(l) (l rϕ
−1

)ϕ. Therefore no permutation of U(l) (l rϕ
−1

)ϕ
could ever lead to a counterexample to the minimality of M.

However we still have to consider the right cosets U(l) (l qϕ
−1

)ϕ with
q ∈ lexϕl−1(M)[1] in (5.15). Because u = tuϕl−1(M)[1] we have u =

M1ϕ...(l−1)ϕ,q for each q ∈ lexϕl−1(M)[1]. Therefore we find that

(h M)l =

(
Ml−1 vT

q

vq 0

)

=

(
Ml−1 uT

u 0

)

= Ml

for each h ∈ U(l) (l qϕ
−1

)ϕ. Hence each permutation of U(l) (l qϕ
−1

)ϕ
could still lead to a counterexample of the minimality of M.

Below we present some examples to illustrate the points made in the above
discussion.

Example 5.15. Let π and M as in Example 5.11. Recall that lexπ2 (M) =
({1}, {4}, {5}). Clearly (π M)2 = M2 and M1...2,3 = tuπ2 (M)[1]. Write u =

M1...2,3 = (1 1) and z = tuπ2 (M)[1] = (1 1), then

(ϕM)3 =

(
M2 zT

z 0

)

=

(
M2 uT

u 0

)

= M3

for eachϕ ∈ U(3) (3 qπ
−1

) π with q ∈ lexπ2 (M)[1] = {1}. Moreover, for each ρ ∈
U(3) (3 rπ

−1
) π and σ ∈ U(3) (3 sπ

−1
) π with respectively r ∈ lexπ2 (M)[2] = {4}

and s ∈ lexπ2 (M)[3] = {5} we have

(ρM)3 =

(
M2 vT

v 0

)

>

(
M2 uT

u 0

)

= M3

5.4 Image partitioning 135

(σ M)3 =

(
M2 wT

w 0

)

>

(
M2 uT

u 0

)

= M3

where v = tuπ2 (M)[2] = (1 2) and w = tuπ2 (M)[3] = (2 1). •

Example 5.16. Let π and M as in Example 5.12. Recall that lexπ2 (M) =
({5}, {1, 2}). Clearly (π M)2 = M2 and M1...2,3 < tuπ2 (M)[1]. Write u =

M1...2,3 = (2 2) and v = tuπ2 (M)[1] = (1 2), then

(ϕM)3 =

(
M2 vT

v 0

)

<

(
M2 uT

u 0

)

= M3

for eachϕ ∈ U(3) (3 qπ
−1

) π with q ∈ lexπ2 (M)[1] = {5}. •

If we would like to reduce the number of right cosets in (5.15) we have to
consider, using the strategy above, then we need to compute lexϕl−1(M) in some
way or other. This essentially amounts to sorting the set {lϕ, . . . , nϕ} according
to the lexicographic ordering on the tuples M1ϕ ...(l−1)ϕ, j with j ∈ {lϕ , . . . , nϕ},
or to put it differently, to construct tuϕl−1(M). During traversal, we need to
compute lexϕl−1(M) for many values of l and ϕ, that is, for each right coset
considered. Performing the actual sort at each step would clearly be to slow
and therefore would undo the advantages of these modifications. Fortunately,
the fact that M is known always to be lexically ordered, will allow us to do these
computations in a more efficient manner.

Lemma 5.4.9. Let M ∈ Mn be lexically ordered, i ∈ {1, . . . , n− 1} such that

p, r, q ∈ {i + 1, . . . , n} and p ≤ r ≤ q. If cell(lexi(M), p) = cell(lexi(M), q) = a
then cell(lexi(M), r) = a.

Proof : As M is lexically ordered, we have M1...i,p ≤ M1...i,r ≤ M1...i,q, or

equivalently p
i,M
. r

i,M
. q. Since cell(lexi(M), p) = cell(lexi(M), q) we have p i,M∼ q.

Therefore p i,M∼ r i,M∼ q and thus cell(lexi(M), r) = a.

In other words, any cell of a lexically ordered partition is a complete interval,
uniquely determined by its minimal and maximal element.

Lemma 5.4.10. Let M ∈ Mn be lexically ordered, i ∈ {1, . . . , n− 1} such that

p, q ∈ {i + 1, . . . , n}. Then cell(lexi(M), p) ≤ cell(lexi(M), q) if and only if p ≤ q.

136 5 Canonicity test

Proof : If p ≤ q then M1...i,p ≤ M1...i,q as M is lexically ordered. Hence p
i,M
. q

and therefore cell(lexi(M), p) ≤ cell(lexi(M), q). Conversely, if cell(lexi(M), p) ≤
cell(lexi(M), q) then p

i,M
. q, or equivalently M1...i,p ≤ M1...i,q. Since M is lexi-

cally ordered we find that p ≤ q.

The fact that M is lexically ordered tells us something about the structure of
tui(M). We have

tui(M) = (M1...i,i+1, M1...i,i+2, . . . , M1...i,n)

We defer the low-level discussion of the algorithm and data structure which
we use to determine lexically ordered image partitions during traversal, till the
next section. In the remainder of this section, we will describe, at a higher
conceptual level the actual modifications to the canonicity algorithm itself. In
order to do so, we introduce three extra concepts. The tentative error level

errπi (M) identifies the first tuple in which tuπi (M) and tui(M) differ, whereas
the corresponding tentative pivot level pivπi (M) serves as identification of the
first distinct entry of these tuples. Finally the tentative action actπi (M) identifies
the order of these two entries.

Definition 5.4.11. Let M ∈ Mn be lexically ordered, π ∈ Sym(n) and i ∈
{1, . . . , n− 1} such that tuπi (M) 6= tui(M). Let c be the index of the first two
tuples, tuπi (M)c and tui(M)c, in which both sequences differ, then we define
errπi (M) = i + c. ⋄
Definition 5.4.12. Let M ∈ Mn be lexically ordered, π ∈ Sym(n) and i ∈
{1, . . . , n − 1} such that tuπi (M) 6= tui(M). Let errπi (M) = i + c, then we
define pivπi (M) = q where q ∈ {1, . . . , i} such that tuπi (M)c = (x1, . . . , xi),
tui(M)c = (y1, . . . , yi) satisfying (x1, . . . , xq−1) = (y1, . . . , yq−1) and xq 6= yq.
⋄
Definition 5.4.13. Let M ∈ Mn be lexically ordered, π ∈ Sym(n) and i ∈
{1, . . . , n− 1} such that tuπi (M) 6= tui(M). Let errπi (M) = i + c and pivπi (M) =
q ∈ {1, . . . , i}. Let tuπi (M)c = (x1, . . . , xi) and tui(M)c = (y1, . . . , yi). Then we
define actπi (M) = 1 if xq > yq whereas actπi (M) = −1 if xq < yq. ⋄

As before we write erri(M), pivi(M) and acti(M) instead of resp. errid
i (M),

pivid
i (M) and actid

i (M). Again errπi (M), pivπi (M) and pivπi (M) only depend
on the i-prefix of π . For future notational simplicity we set errπi (M) = n + 1,
pivπi (M) = 0 and actπi (M) = 0 when tuπi (M) = tui(M). Clearly erri(M) =
n + 1, pivi(M) = 0 and acti(M) = 0.

5.4 Image partitioning 137

Example 5.17. Let π and M as in Example 5.11 and recall that

tu1(M) = ((1), (1), (1), (1)) tu2(M) = ((1, 1), (1, 1), (1, 2))
tuπ1 (M) = ((1), (1), (1), (2)) tuπ2 (M) = ((1, 1), (1, 2), (2, 1))

The definitions imply that errπ1 (M) = 5, pivπ1 (M) = 1 and actπ1 (M) = 1. Also
errπ2 (M) = 4, pivπ2 (M) = 2 and actπ2 (M) = 1. •
Example 5.18. Let π and M as in Example 5.12 and recall that

tu1(M) = ((1), (2), (2), (2)) tu2(M) = ((2, 2), (2, 2), (2, 2))
tuπ1 (M) = ((1), (1), (2), (2)) tuπ2 (M) = ((1, 2), (2, 2), (2, 2))

The definitions imply that errπ1 (M) = 3, pivπ1 (M) = 1 and actπ1 (M) = −1. Also
errπ2 (M) = 3, pivπ2 (M) = 1 and actπ2 (M) = −1. •

The following theorems make us of these concepts above to express the central
idea behind the modifications to our canonicity algorithm.

Theorem 5.4.14. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and i ∈
{1, . . . , n− 1} such that (π M)i = Mi. If errπi (M) = i + 1 and actπi (M) = 1,

then

(h M)i+1 > Mi+1

for all h ∈ U(i) π . Moreover we have errh(M) = errπi (M) and 0 < pivh(M) ≤
pivπi (M) for each such h.

Proof : Write l = pivπi (M). Because errπi (M) and pivπi (M) only depend on
the i-prefix of π , it is sufficient to prove the theorem for h = π . The spe-
cial case errπi (M) = i + 1 and actπi (M) = 1 means that tuπi (M)[1] must be

lexicographically larger than tui(M)[1], which, because M is lexically ordered,

is equal to M1...i,i+1. Since tui(M)[1] < tuπi (M)[1] ≤ tuπi (M)[a] for each a ∈
{1, . . . , |lexπi (M)|} we have M1π ...iπ , j > M1...i,i+1 for all j ∈ {(i + 1)π , . . . , nπ}.
Note that l indicates the first entry in which both tuples differ. More precisely
for each p ∈ lexπi (M)[1] we have M1π ...lπ ,p > M1...l,i+1, hence also M1π ...lπ , j >

M1...l,i+1. In particular this is true for j = (i + 1)π−1, hence

(π M)1...l,i+1 > M1...l,i+1.

As (π M)i = Mi, it follows that (π M)i+1 > Mi+1. Moreover errπ (M) =
errπi (M) and 0 < pivπ (M) ≤ pivπi (M).

138 5 Canonicity test

Theorem 5.4.15. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and i ∈
{1, . . . , n− 1} such that (π M)i = Mi. If errπi (M) = i + 1 and actπi (M) = −1,

then

(h M)i+1 < Mi+1

for all h ∈ U(i) π such that (i + 1)h ∈ lexπi (M)[1]. Moreover we have errh(M) =

errπi (M) and pivh(M) = pivπi (M) for each such h.

Proof : Write l = pivπi (M). Note that lexπi (M)[1] only depends on the i-prefix
of π . Hence as in Theorem 5.4.14, it is sufficient to prove the theorem for
h = π with (i + 1)π ∈ lexπi (M)[1]. The special case errπi (M) = i + 1 and

actπi (M) = −1 means that tuπi (M)[1] must be lexicographically smaller than

tui(M)[1], which, because M is lexically ordered, is equal to M1...l,i+1. Note that
l indicates the first entry in which both tuples differ. More precisely for each
p ∈ lexπi (M)[1] we have M1π ...(l−1)π,p = M1,...l−1,i+1 and Mlπ ,p < Ml,i+1. In

particular this is true for p = (i + 1)π−1, hence

(π M)1,...l−1,i+1 = M1,...l−1,i+1 and (π M)l,i+1 < Ml,i+1.

As (π M)i = Mi, it follows that (π M)i+1 < Mi+1. Moreover errπ (M) =
errπi (M) and pivπ (M) = pivπi (M)

Theorem 5.4.16. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and i ∈
{1, . . . , n− 1} such that (π M)i = Mi. If errπi (M) > i + 1, then for all h ∈ U(i) π

we have

(h M)i+1 = Mi+1

when (i + 1)h ∈ lexπi (M)[1]. Otherwise when (i + 1)h 6∈ lexπi (M)[1] we have

(h M)i+1 > Mi+1.

Moreover errh(M) = i + 1 and 0 < pivh(M) ≤ i for each such h with (i + 1)h 6∈
lexπi (M)[1].

Proof : As in Theorem 5.4.15, it is sufficient to prove the theorem for h =
π . The special case errπi (M) > i + 1 means that tuπi (M)[1] must be equal to

tui(M)[1], which, because M is lexically ordered, is equal to M1...l,i+1. More

5.4 Image partitioning 139

precisely for each p ∈ lexπi (M)[1] we have M1π ...iπ ,p = M1...i,i+1. If (i + 1)π ∈
lexπi (M)[1], then in particular this is true for p = (i + 1)π−1, hence

(π M)1...i,i+1 = M1...i,i+1.

As (π M)i = Mi, it follows that (π M)i+1 = Mi+1. Moreover we have tui(M)[1] =

tuπi (M)[1] < tuπi (M)[b] for each b ∈ {2, . . . , |lexπi (M)|}. Hence we find that

M1π ...iπ ,r > M1...i,i+1 for each r ∈ {(i + 1)π , . . . , nπ} \ lexπi (M)[1]. If (i + 1)π 6∈
lexπi (M)[1], then in particular this is true for r = (i + 1)π−1, hence

(π M)1...i,i+1 > M1...i,i+1.

As (π M)i = Mi, it follows that (π M)i+1 > Mi+1. Moreover errh(M) = i + 1
and 0 < pivh(M) ≤ i for each such h with (i + 1)h 6∈ lexπi (M)[1].

The concepts of tentative error and pivot level and tentative action allow us to
extend the central idea behind the modifications still somewhat further. Theo-
rems 5.4.14 and 5.4.15 both assume that errπi (M) = i + 1. Similar theorems
can be established under the assumption that errπi (M) = i + 2. In order to do
so, we first need to introduce the following theorem.

Theorem 5.4.17. Let M ∈ Mn be lexically ordered, let ϕ,ρ ∈ Sym(n) and

l ∈ {2, . . . , n− 1} such thatϕ ∈ U(l−1)ρ with lϕ ∈ lex
ρ
l−1(M)[1]. If err

ρ
l−1(M) >

l then errϕl (M) ≤ err
ρ
l−1(M). Moreover, errϕl (M) = err

ρ
l−1(M) if and only if

pivϕl (M) = piv
ρ
l−1(M), while errϕl (M) < err

ρ
l−1(M) if and only if pivϕl (M) = l.

Proof : As err
ρ
l−1(M) and lex

ρ
l−1(M) only depend on the (l − 1)-prefix of ρ and

ϕ ∈ U(l−1)ρ, it is equivalent to prove the theorem for ρ = ϕ. Note that as M
is lexically ordered, the a-th tuple of tul(M) is equal to M1...l,l+a. There exists a
set {al+1, . . . , an} = {(l + 1)ϕ, . . . , nϕ} such that tuϕl (M)k = M1ϕ ...lϕ ,ak

for each
k ∈ l + 1, . . . , n. Write e = errϕl (M). This means that tuϕl (M) j−l = tul(M) j−l

for each j ∈ {l + 1, . . . , e− l − 1}. More precisely, M1ϕ ...lϕ,a j
= M1...l, j for each

such j. Moreover, M1ϕ ...lϕ,a j
≤ M1ϕ ...lϕ ,ap

for each p ∈ {e, . . . , n}. Hence for

each such j and p we have

M1ϕ ...(l−1)ϕ,a j
= M1...l−1, j and M1ϕ...(l−1)ϕ,a j

≤ M1ϕ ...(l−1)ϕ,ap
(5.17)

Besides, since errϕl−1(M) > l and lϕ ∈ lexϕl−1(M)[1] we have

(ϕM)1...l−1,l = M1...l−1,l and (ϕM)1...l−1,l ≤ M1ϕ ...(l−1)ϕ,aq
(5.18)

140 5 Canonicity test

for all q ∈ {l + 1, . . . , n}. Combining (5.17) and (5.18) we find that at least the
first e − l tuples of tuϕl−1(M) and tul−1(M) must coincide. Hence errϕl (M) ≤
errϕl−1(M).

If errϕl (M) = n + 1 then clearly errϕl−1(M) = n + 1. Hence we have pivϕl (M) =
pivϕl−1(M) = 0. Otherwise, if errϕl (M) < n + 1, then tuϕl (M)e−l 6= tul(M)e−l.
More precisely, we have

M1ϕ ...lϕ,ae
6= M1...l,e and M1ϕ...lϕ ,ae

≤ M1ϕ...lϕ ,as
. (5.19)

for each s ∈ {e + 1, . . . , n}. We distinguish between the following cases:

• If M1...l−1,e = M1ϕ ...(l−1)ϕ,ae
, then Ml,e 6= Mlϕ ,s. Hence pivϕl (M) = l.

Moreover, as M1ϕ ...(l−1)ϕ,ae
≤ M1ϕ ...(l−1)ϕ,as

, we find that M1ϕ ...(l−1)ϕ,ae
=

tuϕl−1(M)e−l+1, combining (5.17) and (5.18). Hence errϕl (M) < errϕl−1(M).

• If M1...l−1,e 6= M1ϕ...(l−1)ϕ,s, then clearly 1 ≤ pivϕl (M) < l. Moreover, as
M1ϕ...(l−1)ϕ,ae

≤ M1ϕ ...(l−1)ϕ,as
, we find that

M1ϕ ...(l−1)ϕ,ae
= tuϕl−1(M)e−l+1,

combining (5.17) and (5.18). Hence we have errϕl (M) = errϕl−1(M) and
pivϕl−1(M) = pivϕl (M).

Corollary 5.4.1. Let M ∈ Mn be lexically ordered, let ϕ,ρ ∈ Sym(n) and l ∈
{2, . . . , n − 1} such that ϕ ∈ U(l−1)ρ with lϕ ∈ lex

ρ
l−1(M)[1] and such that

err
ρ
l−1(M) > l. Write e = errϕl (M). If pivϕl (M) = piv

ρ
l−1(M) then actϕl (M) =

act
ρ
l−1(M). Otherwise, if pivϕl (M) = l then actϕl (M) = 1 if xl > yl whereas

actϕl (M) = −1 if xl < yl where tuϕl (M)e−l = (x1, . . . , xl) and tui(M)e−l =
(y1, . . . , yl). ⋄

The following theorem extends the central idea behind Theorem 5.4.14.

Theorem 5.4.18. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and i ∈
{1, . . . , n− 2} such that (π M)i = Mi. If errπi (M) = i + 2 and actπi (M) = 1,

then

(h M)i+2 > Mi+2

for all h ∈ U(i) π . Moreover we have errh(M) ≤ errπi (M) and 0 < pivh(M) ≤
pivπi (M) for each such h.

5.4 Image partitioning 141

Proof : As in Theorem 5.4.15, it is sufficient to prove the theorem for h = π .
Let (i + 1)π 6∈ lexπi (M)[1]. Since (π M)i = Mi and errπi (M) > i + 1, Theorem
5.4.16 states that

(π M)i+1 > Mi+1, errπ (M) = i + 1 and 0 < pivi(M) ≤ i.

We still have to prove that pivπ(M) ≤ pivπi (M). Write l = pivπi (M). Then
tuπi (M)1 = tui(M)1 while tuπi (M)2 > tui(M)2. Because M is lexically orde-
red, tui(M)1 and tui(M)2 are resp. equal to M1...l,i+1 and M1...l,i+2. Clearly
tuπi (M)1 = tuπi (M)[1] and tuπi (M)2 = tuπi (M)[2]. Hence tui(M)2 < tuπi (M)[a]

for each a ∈ {2, . . . , |lexπi (M)|}. More precisely, we have M1...l,i+2 < M1π ...lπ ,r

for all r ∈ {(i + 1)π , . . . , nπ} \ lexπi (M)[1]. Since M is lexically ordered also

M1...l,i+1 < M1π ...lπ ,r for each such r. In particular this is true for r = (i + 1)π−1,
hence

M1...l,i+1 < (π M)1...l,i+1.

As (π M)i = Mi, it follows readily that pivπ (M) ≤ pivπi (M).

Otherwise, let (i + 1)π ∈ lexπi (M)[1]. Since (π M)i = Mi and errπi (M) > i + 1,

Theorem 5.4.16 states that (π M)i+1 = Mi+1. Moreover, according to Theorem
5.4.17 we have

errπi+1(M) = errπi (M) and pivπi+1(M) = pivπi (M).

Hence substituting i + 1 for i in Theorem 5.4.14 we find that (π M)i+2 > Mi+2,
errπ (M) = i + 2 and pivπ (M) ≤ pivπi+1(M) = pivπi (M).

The following theorem extends the central idea behind Theorem 5.4.15.

Theorem 5.4.19. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and i ∈
{1, . . . , n − 2} such that (π M)i = Mi. Let τ ∈ U(i) π such that (i + 1)τ ∈
lexπi (M)[1]. If errπi (M) = i + 2 and actπi (M) = −1, then

(h M)i+2 < Mi+2

for all h ∈ U(i+1)τ such that (i + 2)h ∈ lexτi+1(M)[1]. Moreover errh(M) =

errπi (M) and pivh(M) = pivπi (M) for each such h.

Proof : Note that lexτi+1(M)[1] only depends on the (i + 1)-prefix of τ . Hence

it is sufficient to proof the theorem for h = τ with (i + 2)τ ∈ lexτi+1(M)[1].

142 5 Canonicity test

Moreover, as τ ∈ U(i) π and lexπi (M)[1] only depends on the i-prefix of π , it

is sufficient to proof the theorem for h = π with (i + 1)π ∈ lexπi (M)[1] and

(i + 2)π ∈ lexπi+1(M)[1]. Since π ∈ lexπi (M)[1], (π M)i = Mi and errπi (M) >

i + 1 we find according to Theorem 5.4.16 that (π M)i+1 = Mi+1. Moreover,
according to Theorem 5.4.17 we have

errπi+1(M) = errπi (M) and pivπi+1(M) = pivπi (M).

Hence, as (i + 2)π ∈ lexπi+1(M)[1] we that (π M)i+2 < Mi+2, errπ (M) = i + 2

and pivπ (M) = pivπi+1(M) = pivπi (M), by Theorem 5.4.15.

Each of the theorems introduced above shall play an important role in the im-
provements Algorithm 5.5 makes on Algorithm 5.4. The differences between
these canonicity algorithms are essentially the following:

• The function diffStab(i) checks whether a permutation g ∈ U(i−1)−U(i)

can be found such that g M < M. In order to do so, all right cosets in

U(i) (i i + 1), U(i) (i i + 2), . . . , U(i) (i n− 1), U(i) (i n) (5.20)

are successively considered. Since (g M)i−1 = Mi−1 and erri−1(M) =
n + 1, we can easily restrict the number of right cosets in (5.20) we have
to consider. On the one hand Theorem 5.4.16 states that

(g M)i > Mi

for all g ∈ U(i) (i k) with k 6∈ lexi−1(M)[1]. Hence no such g could ever
lead to a counterexample to the minimality of M. Therefore each such
right coset U(i) (i k) can be discarded from traversal. Note that errg(M) =
i and pivg(M) ≤ i− 1 for each such g. On the other hand Theorem 5.4.16
states that

(g M)i = Mi

for all g ∈ U(i) (i j) with j ∈ lexi−1(M)[1] \ {i}. Hence each such g could
still lead to a counterexample to the minimality of M.

The canonicity algorithm proceeds by successively considering each of the-
se right cosets U(i) (i j). Before we traverse U(i) (i j), we first invoke the
method refine((i j), i) (❷ in Algorithm 5.5). By calling this method,

lex
(i j)
i (M), err

(i j)
i (M), piv

(i j)
i (M) and act

(i j)
i (M) are computed. For a de-

tailed description of these computations we refer to the next section. Fi-
nally, note that these right cosets U(i) (i j) still need to be traversed in

5.4 Image partitioning 143

increasing order of j; otherwise the “minimal in orbit” criterion could no
longer be applied.

• The function rightCoset(π , i, s) checks whether any permutation g ∈
U(i−1)π can be found such that g M < M. If in Algorithm 5.4 the func-

tion rightCoset(π , i, s) is invoked with i = n + 1 then π ∈ (Aut M)(s).
Theorem 5.4.16 allows us to alter the way in which we detect such auto-
morphisms. More precisely, if i = n and errπi−1(M) > n (❽ in Algorithm
5.5), then we find according to Theorem 5.4.16 that (π M)n = Mn. Hen-

ce π ∈ (Aut M)(s). We return actπi−1(M) = 0 so that the canonicity
algorithm proceeds correctly (❸ in Algorithm 5.5).

Otherwise, if in Algorithm 5.4 the function rightCoset(π , i, s) is invoked
with i 6= n + 1, then the function successively considers all right cosets in

U(i) π , U(i) (i i + 1) π , . . . , U(i) (i n− 1) π , U(i) (i n) π . (5.21)

Theorems 5.4.14–5.4.19 allow us to restrict the number of right cosets in
(5.21) we have to consider. We distinguish between the following cases:

1. If errπi−1(M) = i (❼ in Algorithm 5.5) and actπi−1(M) = −1, then
Theorem 5.4.15 states that

(g M)i < Mi

for all g ∈ U(i) (i kπ
−1

) π with k ∈ lexπi−1(M)[1]. Hence each such g

is a counterexample to the minimality of M. We return actπi−1(M) =
−1 so that the canonicity algorithm terminates correctly (❸ in Algo-
rithm 5.5). Note that errg(M) = i and pivg(M) = pivπi−1(M) for each
such g.

2. Let τ = (i qπ
−1

) π with q ∈ lexπi−1(M)[1]. If errπi−1(M) = i + 1 (❼ in

Algorithm 5.5) and actπi−1(M) = −1, then Theorem 5.4.19 states
that

(g M)i+1 < Mi+1

for all g ∈ U(i+1) (i + 1 pτ
−1

) τ with p ∈ lexτi (M)[1]. Hence each such

g is a counterexample to the minimality of M. We return actπi−1(M) =
−1 so that the canonicity algorithm terminates correctly (❸ in Algo-
rithm 5.5). Note that errg(M) = i + 1 and pivg(M) = pivπi−1(M) for
each such g.

144 5 Canonicity test

3. If errπi−1(M) = i (❼ in Algorithm 5.5) and actπi−1(M) = 1, then
Theorem 5.4.14 states that

(g M)i > Mi

for all g ∈ U(i−1)π . Hence U(i−1)π does not contain a counter-
example to the minimality of M. Therefore each right coset in (5.21)
can be discarded. We return actπi−1(M) = 1 so that the canoni-
city algorithm proceeds correctly (❸ in Algorithm 5.5). Note that
errg(M) = i and 0 < pivg(M) ≤ pivπi−1(M) for each such g.

4. If errπi−1(M) = i + 1 (❼ in Algorithm 5.5) and actπi−1(M) = 1, then
Theorem 5.4.18 states that

(g M)i+1 > Mi+1

for all g ∈ U(i−1)π . Hence no such g could ever lead to a coun-
terexample to the minimality of M. Therefore each right coset in
(5.21) can be discarded. We return actπi−1(M) = 1 so that the cano-
nicity algorithm proceeds correctly (❸ in Algorithm 5.5). Note that
errg(M) = i + 1 and 0 < pivg(M) ≤ pivπi−1(M) for each such g.

5. If errπi−1(M) > i + 1 (❹ in Algorithm 5.5) then on the one hand
Theorem 5.4.16 states that

(g M)i > Mi

for all g ∈ U(i) (i kπ
−1

) π with k ∈ {iπ , . . . , nπ} \ lexπi−1(M)[1]. Hence
no such g could ever lead to a counterexample to the minimality of

M. Therefore each such right coset U(i) (i kπ
−1

) π can be discarded
from traversal. Note that errg(M) = i and pivg(M) ≤ i− 1 for each
such g.

On the other hand Theorem 5.4.16 states that

(g M)i = Mi

for all g ∈ U(i) π ′ with π = (i lπ
−1

) π and l ∈ lexπi−1(M)[1]. Hence
each such g could still lead to a counterexample to the minimality of
M. The canonicity algorithm proceeds by considering each of these
right cosets U(i) π ′ (❺ in Algorithm 5.5). Before we traverse U(i) π ′,
we first invoke the method refine(π ′, i) (❻ Algorithm 5.5). By

5.4 Image partitioning 145

calling this method, lexπ
′

i (M), errπ
′

i (M), pivπ
′

i (M) and actπ
′

i (M) are
computed. We postpone a detailed, low-level description of these
computations until the next section.

Write e = errπi−1(M). Theorem 5.4.17 states that errπ
′

i (M) ≤ e for

each such π ′. Hence by the recursive structure of the canonicity
algorithm, we can predict even before we actually traverse the right
coset U(i−1)π that we will never consider a right coset U(k) τ ⊂
U(i−1) π in the recursion at level k > e− 2. Moreover, if we would
encounter at level e − 2 in the recursion a right coset U(e−2)σ ⊂
U(i−1) π , then errσe−2(M) = e.

In this particular case, Theorem 5.4.17 and Corollary 5.4.1 state that
pivσe−2(M) = pivπi−1(M) and actσe−2(M) = actπi−1(M). Hence the

action to be taken, that is, either discard U(e−2)σ entirely, terminate
the canonicity test or detect that σ ∈ (Aut M)(s), depends only on
the value of actπi−1(M).

Finally the question remains whether we still obtain, as in Algorithm 5.4, a
strong generating set S = S(0) with base [1, . . . , n] for Aut M when M is mi-
nimal. Assume that π ∈ Aut M. Then for each i ∈ {1, . . . , n − 1} we have
errπi (M) = n + 1 because M1...i,p = (π M)1...i,p for each p ∈ {i + 1, . . . , n}.
Therefore the modifications introduced in Algorithm 5.5 never discard a right
coset that contains an automorphism of M. Hence Algorithm 5.5 still obtains
such a strong generating set S.

Below we present some examples to illustrate the points made in the previous
discussion. We reconsider Examples 5.7, 5.9 and 5.10. These example serve to
demonstrate that the improvements to our canonicity algorithm indeed avoid
the drawbacks established in the previous section.

Example 5.19. Consider the lexically ordered matrix M ∈ M6 as in Example
5.7. Let σ = (1 2) and π = (1 2 6). The recursion tree shown corresponds to

the traversal of U(1)σ = U(1) π by Algorithm 5.4.

146 5 Canonicity test

Algorithm 5.5 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . 1 do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for all j ∈ (lexi−1(M)[1] \ {i}) do ❶

2: if j = min(j〈S
(i−1)
Aut M〉) then

3: refine((i j), i) ❷

4: d← rightCoset((i j), i + 1, i− 1)
5: if d < 0 then
6: return d
7: return 1

function rightCoset(π ∈ U(s)−U(s+1), i, s : int) : int

1: if checkErrorLevel(π , i, s) then
2: return actπi−1(M) ❸
3: else ❹

4: for all j ∈ lexπi−1(M)[1] do ❺

5: π ′ ← (i jπ
−1

) π
6: refine(π ′, i) ❻

7: d← rightCoset(π ′, i + 1, s)
8: if d < 0 ∨ d = 0 then
9: return d

10: return 1

function checkErrorLevel(π ∈ U(s)−U(s+1), i, s : int) : boolean

1: if errπi−1(M) ≤ i + 1 then ❼

2: if errπi−1(M) = n + 1 then ❽

3: S̄
(s)
Aut M ← S̄

(s)
Aut M ∪ π

4: return true
5: else
6: return false

5.4 Image partitioning 147

M=











0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 2
1 2 2 0 1 1
1 2 2 1 0 2
2 1 2 1 2 0











(1 2 6 3)

(1 2 3)(4 6) (1 2 3)(4 6 5)

(1 2 3)(1 2)

(1 2)

(1 2)

(1 2)(4 6)

(1 2)(4 6) (1 2)(4 6 5)

(1 2)(3 6)

(1 2)(3 5)

(1 2)

(1 2 3)

(1 2 4) (1 2 5)

(1 2 6)

(1 2 3)(4 5)
(1 2 3)(4 6)

(1 2 3 5)

(1 2 3 6)(1 2)(3 4) (1 2 3 4)

(1 2 6)(3 5) (1 2 6)(3 5)(1 2 6)

(1 2)(4 5)

(1 2 3)

The shaded areas contain the right cosets which are now also discarded Algo-
rithm 5.5.

1. We have lexσ1 (M) = ({1, 3, 6}, {4, 5}), tu1(M) = {(1), (1), (1), (1), (2)}
and tuσ1 (M) = {(1), (1), (1), (2), (2)}. Hence errσ1 (M) = 5, pivσ1 (M) = 1

and actσ1 (M) = 1. Therefore we find that only the right cosets U(2) (1 2),

U(2) (1 2 3) and U(2) (1 2 6) need to be considered because lexσ1 (M)[1] =

{1, 3, 6}.
2. Clearly lexσ2 (M) = ({3}, {6}, {4, 5}), tu2(M) = {(1, 1), (1, 2), (1, 2), (2, 1)}

and tuσ2 (M) = {(1, 1), (1, 2), (2, 1), (2, 1)}. Hence errσ2 (M) = 5, pivσ2 (M) =

1, actσ2 (M) = 1. Therefore we find that only the right coset U(3) (1 2)
needs to be considered because lexσ2 (M)[1] = {3}.

3. We have lexσ3 (M) = ({6}, {4, 5}), tu3(M) = {(1, 2, 2), (1, 2, 2), (2, 1, 2)}
and tuσ3 (M) = {(1, 2, 2), (2, 1, 2), (2, 1, 2)}. Hence we have errσ3 (M) = 5,
pivσ3 (M) = 1 and actσ3 (M) = 1. Therefore we find that (g M)5 > M5 for

all g ∈ U(3)σ. Hence no such g could ever lead to a counterexample to
the minimality of M.

4. Clearly lexπ2 (M) = ({1, 3}, {4}, {5}), tu2(M) = {(1, 1), (1, 2), (1, 2), (2, 1)},
tuπ2 (M) = {(1, 2), (1, 2), (2, 1), (2, 2)}. Hence errπ2 (M) = 3, pivπ2 (M) = 2,

actπ2 (M) = 1. Therefore we find that (g M)3 > M3 for all g ∈ U(2) π .
Hence no such g could ever lead to a counterexample to the minimality of
M.

•
Example 5.20. Consider the lexically ordered matrix M ∈ M4 below. The
recursion tree shown corresponds to the traversal of Sym(4) by Algorithm 5.4.

148 5 Canonicity test

M =







0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0







(1 4)(1 3)

(1 3 2)

(1 3)

(1 3 2)

(1 3)(2 4)

(1 3 4 2)

(2 3)

(3 4)

id

id (2 3)

(2 3)

(2 3 4)

(2 4)

(1 2) (1 2)(3 4)

(1 2)(3 4)

id

(1 2)id

(1 2)id

The shaded areas contain the right cosets which are now also discarded by
Algorithm 5.5. Write π = (1 3), σ = (1 2 3) and σ = (1 2) (3 4).

1. We have lexπ1 (M) = ({1}, {2, 4}), tu1(M) = {(1), (1), (1)} and tuσ1 (M) =
{(1), (2), (2)}. Hence errπ1 (M) = 3, pivπ1 (M) = 1 and actπ1 (M) = 1.

Therefore we find that (g M)3 > M3 for each g ∈ U(1) π . Hence no such
g could ever lead to a counterexample of the minimality of M.

2. We have lex1(M) = ({2, 3}, {4}). Clearly err1(M) = 5, piv1(M) = 0 and

act1(M) = 0. Hence we find that only the right coset U(2) (2 3) needs to
be traversed because lex1(M)[1] \ {2} = {3}.

3. We have lexσ3 (M) = ({3}) and tu3(M) = tuσ3 (M) = {(2, 1, 2)}. Hence
errσ3 (M) = 5 and pivσ3 (M) = 0. Therefore we find that σ ∈ Aut M.

•
Example 5.21. Consider the lexically ordered matrix M ∈ M5 below. Let
σ = (1 2). The recursion tree shown corresponds to the traversal of U(1)σ by
Algorithm 5.4.

M =









0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 2
1 2 1 2 0







 (1 2)(3 4)

(1 2)(4 5)

(1 2)(3 4)

(1 2)(3 4)(1 2)

(1 2)(3 4 5)

(1 2 3 4)

(1 2 3)(1 2) (1 2 5)(1 2 4)

(1 2 4 3)
(1 2 3 5)

(1 2 4 3)(1 2 3) (1 2 4 5 3)

(1 2 4)(3 5)

(1 2)

(1 2)

(1 2)

(1 2 3)(4 5)

(1 2)(3 5)

(1 2 3) (1 2 4)

5.4 Image partitioning 149

The shaded areas contain the right cosets which are now also discarded by
Algorithm 5.5.

1. We have lexσ1 (M) = ({1, 3, 4}, {5}) and both tu1(M) = {(1), (1), (1), (1)}
and tuσ1 (M) = {(1), (1), (1), (2)}. Hence errσ1 (M) = 5, pivσ1 (M) = 1 and

actσ1 (M) = 1. Therefore only the right cosets U(2) (1 2), U(2) (1 2 3) and

U(2) (1 2 4) need to be considered because lexσ1 (M)[1] = {1, 3, 4}.

2. We have lexσ2 (M) = ({3, 4}, {5}) and both tu2(M) = {(1, 1), (1, 1), (1, 2)}
and tuσ2 (M) = {(1, 1), (1, 1), (2, 1)}. Hence errσ2 (M) = 5, pivσ2 (M) = 1

and actσ2 (M) = 1. Therefore we find that only the right cosets U(3) (1 2)

and U(3) (1 2) (3 4) need to be considered because lexσ2 (M)[1] = {3, 4}.

3. We have lexπ3 (M) = ({3}, {5}) and both tu3(M) = {(1, 1, 2), (1, 2, 1)} and
tuπ3 (M) = {(1, 1, 2), (2, 1, 2)}. Hence errπ3 (M) = 5, pivπ3 (M) = 1 and

actπ3 (M) = 1. Therefore we find (g M)5 > M5 for all g ∈ U(3) π . Hence
no such g could ever lead to a counterexample of the minimality of M.

4. We have lexσ2 (M) = ({1}, {4}, {5}), tu2(M) = {(1, 1), (1, 1), (1, 2)} and
tuσ2 (M) = {(1, 1), (1, 2), (2, 1)}. Hence errσ2 (M) = 4, pivσ2 (M) = 2 and

actσ2 (M) = 1. Therefore we find that (g M)4 > M4 for all g ∈ U(2)σ.
Hence no such g could ever lead to a counterexample to the minimality of
M.

•

5.4.3 Refinement algorithm

In the previous section we introduced several improvements to our canonicity
algorithm, at a rather high level of abstraction. These improvements rely on an
efficient computation of both lexically order partitions as well as tentative error
levels, tentative pivot levels and tentative actions which are required throughout
the entire course of the canonicity test. In this section we shift our focus to a
detailed, low-level description of these computations.

In general, let M ∈ Mn and i ∈ {1, . . . , n − 1}. Assume we are at level i in

the recursion and Algorithm 5.5 is about to traverse the right coset U(i) π . The

150 5 Canonicity test

changes incorporated into our algorithm require an efficient computation of
both lexπi (M) as well as errπi (M), pivπi (M) and actπi (M). On the one hand the
computation of lexπi (M) essentially amounts to sorting the elements j ∈ {(i +
1)π , . . . , nπ} according to the lexicographic ordering on the tuples M1π ...iπ , j, or
to put it differently, to construct tuπi (M). On the other hand the computation
of pivπi (M), errπi (M) and actπi (M) essentially amounts to running through the
tuples of tui(M) and tuπi (M) simultaneously, until we either have encountered
two tuples which differ or have considered all such tuples.

Performing the actual sort and at the same time comparing the corresponding
tuples would cancel out the benefits we obtain from reducing the number of
right cosets we have to consider. Fortunately, in order to compute lexπi (M),
errπi (M), pivπi (M) and actπi (M) we can exploit the preceding computation of
lexσi−1(M), errσi−1(M), pivσi−1(M) and actσi−1(M), where σ is the representative
of the coset considered one level higher in the recursion. To be able to outline
these more efficient computations, we introduce the following theorems:

Theorem 5.4.20. Let M ∈ Mn, let ρ, ϕ ∈ Sym(n) and l ∈ {1, . . . , n− 1} such

that ϕ ∈ U(l−1)ρ. Then the ordered partition P ∈ P({1, . . . , n}) defined by
l,ϕ,M

.

is a cell order preserving refinement of the ordered partition Q ∈ P({1, . . . , n})
defined by

l−1,ρ,M
. .

Proof : Because ϕ ∈ U(l−1)ρ, we have M1ρ...(l−1)ρ,p = M1ϕ ...(l−1)ϕ,p and

M1ρ...(l−1)ρ,q = M1ϕ ...(l−1)ϕ,q. If [p]l,ϕ,M = [q]l,ϕ,M, then M1ϕ ...lϕ,p = M1ϕ ...lϕ ,q.

Hence also M1ρ...(l−1)ρ,p = M1ρ...(l−1)ρ,q and therefore [p]l−1,ρ,M = [q]l−1,ρ,M.

Otherwise if [p]l,ϕ,M
l,ϕ,M

< [q]l,ϕ,M, then M1ϕ ...lϕ,p < M1ϕ ...lϕ ,q. We distinguish
between the following two cases:

• If M1ϕ ...(l−1)ϕ,p = M1ϕ...(l−1)ϕ,q and Mlϕ ,p < Mlϕ ,q, then M1ρ...(l−1)ρ,p =

M1ρ...(l−1)ρ,q. Hence we find that [p]l−1,ρ,M = [q]l−1,ρ,M.

• If M1ϕ ...(l−1)ϕ,p < M1ϕ ...(l−1)ϕ,q, then also M1ρ...(l−1)ρ,p < M1ρ...(l−1)ρ,q.

Hence we find that [p]l−1,ρ,M
l−1,ρ,M

< [q]l−1,ρ,M.

Hence in both subcases we find that [p]l−1,ρ,M
l−1,ρ,M
≤ [q]l−1,ρ,M.

Corollary 5.4.2. Let M ∈ Mn, let ρ, ϕ ∈ Sym(n) and l ∈ {1, . . . , n− 1} such

that ϕ ∈ U(l−1)ρ and p, q ∈ {(l + 1)ϕ, . . . , nϕ}. Then the following relations

5.4 Image partitioning 151

hold:

• If cell(lexϕl (M), p) = cell(lexϕl (M), q), then we have cell(lexρl−1(M), p) =

cell(lexρl−1(M), q).

• If cell(lexρl−1(M), p) < cell(lexρl−1(M), q), then we have cell(lexϕl (M), p) <

cell(lexϕl (M), q).

• If cell(lexρl−1(M), p) = cell(lexρl−1(M), q), then we have cell(lexϕl (M), p) ≤
cell(lexϕl (M), q) if and only if Mlϕ,p ≤ Mlϕ,q.

⋄

Each cell of lexϕl (M) is clearly a subset of a unique cell of lex
ρ
l−1(M). Besides

that, lexϕl (M) preserves the cell order of lex
ρ
l−1(M). More precisely, any two

distinct cells of lexϕl (M) which are subsets of two distinct cells of lex
ρ
l−1(M)

preserve the cell order of those cells. Moreover, we find that if two distinct
cells are subsets of the same cell of lex

ρ
l−1(M), then their relative cell order

is determined by the order of Mlϕ ,p and Mlϕ,q where p and q are respectively
elements of those two distinct cells.

Example 5.22. Let τ = (1 2), ρ = (1 2 3) and π = (1 2 6). Consider the lexi-

cally ordered matrix M ∈ M6 and some associated partitions lexh
i (M) below.

Above each cell lexh
i (M)[a] we have listed the corresponding tuple tuh

i (M)[a].

M=











0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 2
1 2 2 0 1 1
1 2 2 1 0 2
2 1 2 1 2 0











lexτ1(M) = ({
(1)

1, 3, 6}, {
(2)

4, 5})

lex
ρ
2(M) = ({

(1
1)
1 }, {

(1
2)
6 }, {

(2
2)

4, 5})

lexπ2 (M) = ({
(1

2)
1, 3}, {

(2
1)
4 }, {

(2
2)
5 })

Distinguish between the following cases:

• The partition lex
ρ
2(M) preserves the cell order of lexτ1(M). Moreover, note

that cell(lexρ2(M), 1) < cell(lexρ2(M), 6) as M2ρ,1 < M2ρ,6 while clearly
cell(lexρ2(M), 4) = cell(lexρ2(M), 5) as M2ρ,4 = M2ρ,5.

• The partition lexπ2 (M) preserves the cell order of lexτ1(M). Moreover, note

152 5 Canonicity test

that cell(lexπ2 (M), 1) = cell(lexπ2 (M), 3) as M2π ,1 = M2π ,3 while clearly
cell(lexπ2 (M), 4) < cell(lexπ2 (M), 5) as M2π ,4 < M2π ,5.

•

In the general context of the description of the refinement algorithm in the
remainder of this section and the refinement data structure in the next section,
it will be convenient to write lexπi−1(M), pivπi−1(M), errπi−1(M) and actπi−1(M)
instead of respectively lexσi−1(M), pivσi−1(M), errσi−1(M) and actσi−1(M) because
σ and π have the same i− 1 prefix.

Furthermore, according to Corollary 5.4.2 we may assume that lexπi−1(M) and
lexπi (M) are of the form

lexπi−1(M) =
(

lexπi−1(M)[1], lex
π
i−1(M)[2], . . . , , lexπi−1(M)[r]

)

(5.22)

lexπi (M) =
(

lexπi (M)[a1]
,...,lexπi (M)[b1]

, lexπi (M)[a2]
,...,lexπi (M)[b2]

, . . .

. . . , lexπi (M)[ar] ,...,lex
π
i (M)[br]

)

(5.23)

where
⋃b1

j=a1
lexπi (M)[j] = lexπi−1(M)[1] \ {iπ},

⋃bk
j=ak

lexπi (M)[j] = lexπi−1(M)[k]

and r = |lexπi−1(M)| for all k ∈ {2, . . . , r}.

Similarly, we may assume that lexi−1(M) and lexi(M) are of the form

lexi−1(M) =
(

lexi−1(M)[1], lexi−1(M)[2], . . . , , lexi−1(M)[s]

)

(5.24)

lexi(M) =
(

lexi(M)[c1]
,...,lexi(M)[d1]

, lexi(M)[c2]
,...,lexi(M)[d2]

, . . .

. . . , lexi(M)[cs] ,...,lexi(M)[ds]

)

(5.25)

where
⋃d1

j=c1
lexi(M)[j] = lexi−1(M)[1] \ {i},

⋃dk
j=ck

lexi(M)[j] = lexi−1(M)[k] and

s = |lexi−1(M)| for all k ∈ {2, . . . , s}.

Lemma 5.4.21. Let M ∈ Mn, let ρ ∈ Sym(n) and l ∈ {2, . . . , n− 1} such that

ϕ ∈ U(l−1)ρ and tul−1(M)[a] = tu
ρ
l−1(M)[b]. Assume lexl(M)[a′] ⊆ lexl−1(M)[a]

and lexϕl (M)[b′] ⊆ lex
ρ
l−1(M)[b]. Then tul(M)[a′] = tuϕl (M)[b′] if and only if

Ml,p = Mlϕ ,q where p ∈ lexl(M)[a′] and q ∈ lexϕl (M)[b′]

5.4 Image partitioning 153

Proof : Since lex
ρ
l (M) and tu

ρ
l−1(M)[b] only depends on the (l − 1)-prefix of ρ

andϕ ∈ U(l−1)ρ, it is sufficient to prove this lemma for ρ =ϕ. As tul−1(M)[a] =

tuϕl−1(M)[b], lexl(M)[a′] ⊆ lexl−1(M)[a], lexϕl (M)[b′] ⊆ lexϕl−1(M)[b] we have

M1...l−1,p = M1ϕ ...(l−1)ϕ,q. Hence M1...l,p = M1ϕ...lϕ ,q, or equivalently tul(M)[a′] =

tuϕl (M)[b′], if and only if Ml,p = Mlϕ,q.

Theorem 5.4.22. Let M ∈ Mn be lexically ordered, let π ∈ Sym(n) and

i ∈ {1, . . . , n − 1} such that errπi−1(M) > i. Write e = errπi−1(M) and t =
cell(lexi(M), e− 1). If for each a ∈ {1, . . . , t} we have

|lexi(M)[a]| = |lexπi (M)[a]| and Mi,qa = Miπ ,pa

with qa ∈ lexi(M)[a] and pa ∈ lexπi (M)[a], then errπi (M) = errπi−1(M). Otherwise,

let b ∈ {1, . . . , t} be the minimal element such that

|lexi(M)[b]| 6= |lexπi (M)[b]| or Mi,qb
6= Miπ ,pb

with qb ∈ lexi(M)[b] and pb ∈ lexπi (M)[b]. Then the following relations hold:

1. If Mi,qb
6= Miπ ,pb

, then errπi (M) = min(lexi(M)[b]). Moreover, if errπi (M) <

errπi−1(M) then actπi (M) = 1 if Mi,qb
< Miπ ,pb

and actπi (M) = −1 other-

wise.

2. Otherwise errπi (M) = min(lexi(M)[b])+ min(|lexπi (M)[b]|, |lexi(M)[b]|). Be-

sides, if errπi (M) < errπi−1(M) then actπi (M) = 1 if |lexi(M)[b]| > |lexπi (M)[b]|
and actπi (M) = −1 otherwise.

Proof : Write s = |lexi−1(M)| and r = |lexπi−1(M)|, then lexi−1(M) and lexπi−1(M)
correspond to (5.24) and (5.22), respectively. Hence, as a result of Theorem
5.4.8, tui−1(M) and tuπi−1(M) can be uniquely written as

tui−1(M) = (

|lexi−1(M)[1]| times
︷ ︸︸ ︷

tui−1(M)[1],...,tui−1(M)[1], . . . ,

|lexi−1(M)[s]| times
︷ ︸︸ ︷

tui−1(M)[s],...,tui−1(M)[s])

tuπi−1(M) = (

|lexπi−1(M)[1]| times
︷ ︸︸ ︷

tuπi−1(M)[1],...,tu
π
i−1(M)[1], . . . ,

|lexπi−1(M)[r]| times
︷ ︸︸ ︷

tuπi−1(M)[r],...,tu
π
i−1(M)[r]).

Write t′ = cell(lexi(M), e− 1). As M is lexically ordered, we have M1...i−1,e−1 =
tui−1(M)e−l = tui−1(M)[t′]. Because e = errπi−1(M), the first e − i tuples of

154 5 Canonicity test

tui−1(M) and tuπi−1(M) must coincide. Hence tui−1(M)[k] = tuπl−1(M)[k] for

each k ∈ {1, . . . , t′}. Moreover |lexi−1(M)[j]| = |lexπi−1(M)[j]| for each j ∈
{1, . . . , t′ − 1}. Note that |lexi−1(M)[t′]| needs not necessarily to be equal to

|lexπi−1(M)[t′]|.

According to Corollary 5.4.2 we find that lexi(M) and lexπi (M) correspond to
(5.25) and (5.23), respectively. Hence, as a result of Theorem 5.4.8 we find
that tui(M) can be uniquely written as

tui(M) = (

|lexi(M)[c1] | times
︷ ︸︸ ︷

tui(M)[c1]
,...,tui(M)[c1]

,...,

|lexi(M)[d1] | times
︷ ︸︸ ︷

tui(M)[d1]
,...,tui(M)[d1]

, . . .

. . . ,

|lexi(M)[cs] | times
︷ ︸︸ ︷

tui(M)[cs] ,...,tui(M)[cs] ,...,

|lexi(M)[ds] | times
︷ ︸︸ ︷

tui(M)[ds] ,...,tui(M)[ds])

(5.26)

while tuπi (M) takes the form

tuπi (M) = (

|lexπi (M)[a1] | times
︷ ︸︸ ︷

tuπi (M)[a1]
,...,tuπi (M)[a1]

,...,

|lexπi (M)[b1] | times
︷ ︸︸ ︷

tuπi (M)[b1]
,...,tuπi (M)[b1]

, . . .

. . . ,

|lexπi (M)[ar] | times
︷ ︸︸ ︷

tuπi (M)[ar] ,...,tu
π
i (M)[ar] ,...,

|lexπi (M)[br] | times
︷ ︸︸ ︷

tuπi (M)[br] ,...,tu
π
i (M)[br])

(5.27)

Note that t ∈ {ct′ , . . . , dt′}.

First consider the case where |lexi(M)[a]| = |lexπi (M)[a]| and Mi,qa = Miπ ,pa

for each a ∈ {1, . . . , t} with qa ∈ lexi(M)[a] and pa ∈ lexπi (M)[a]. Lemma

5.4.21 states that tui(M)[a] = tuπi (M)[a] for each such a. Hence at least the first
e− i− 1 tuples of (5.26) and (5.27) must coincide. Using Theorem 5.4.17 we
therefore find that errπi (M) = errπi−1(M).

Otherwise, let b ∈ {1, . . . , t} be the minimal element for which |lexi(M)[b]| 6=
|lexπi (M)[b]| or Mi,qb

6= Miπ ,pb
with qb ∈ lexi(M)[b] and pb ∈ lexπi (M)[b]. We

distinguish between the following cases:

1. If Mi,qb
6= Miπ ,pb

, then Lemma 5.4.21 states that tui(M)[c] = tuπi (M)[c]

for each c ∈ {1, . . . , b− 1}. Hence the tuples of (5.26) and (5.27) with

5.4 Image partitioning 155

index numbers up to

b−1

∑
k=1

|lexi(M)[k]|,

or equivalently

min(lexi(M)[b])− i− 1,

(as M is lexically ordered), must coincide whereas the next tuple must
differ. Hence clearly errπi (M) = min(lexi(M)[b]). Moreover, if errπi (M) <

errπi−1(M) then we find according to Corollary 5.4.1 that actπi (M) = 1 if
Mi,qb

< Miπ ,pb
whereas actπi (M) = −1 otherwise.

2. If Mi,qb
= Miπ ,pb

, then Lemma 5.4.21 states that tui(M)[d] = tuπi (M)[d]

for each d ∈ {1, . . . , b}. Hence the tuples of (5.26) and (5.27) with index
numbers up to

b−1

∑
k=1

|lexi(M)[k]|+ min(|lexπi (M)[b]|, |lexi(M)[b]|),

or equivalently

min(lexi(M)[b]) + min(|lexπi (M)[b]|, |lexi(M)[b]|)− i− 1

(as M is lexically ordered), must coincide whereas the next tuple must dif-
fer. Hence errπi (M) = min(lexi(M)[b]) + min(|lexπi (M)[b]|, |lexi(M)[b]|).
Moreover, if errπi (M) < errπi−1(M) then we find according to Corollary
5.4.1 that actπi (M) = 1 if |lexi(M)[b]| > |lexπi (M)[b]| whereas actπi (M) =
−1 otherwise.

Example 5.23. Let τ = (1 2), ρ = (1 2 3) and π = (1 2 6). Consider the

lexically ordered matrix M ∈ M6 below. Some associated partitions lexh
i (M)

and tuple sequences tuh
i (M) are given aside. Above each cell lexh

i (M)[a] we have

listed the corresponding tuple tuh
i (M)[a].

156 5 Canonicity test

M=











0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 2
1 2 2 0 1 1
1 2 2 1 0 2
2 1 2 1 2 0











lex1(M)=({
(1)

2,3,4,5},{
(2)

6}) tu1(M)=((1),(1),(1),(1),(2))

lex
τ
1 (M)=({

(1)

1,3,6},{
(2)

4,5}) tuτ1 (M)=((1),(1),(1),(2),(2))

lex2(M)=({
(1
1)

3},{
(1
2)

4,5},{
(2
1)

6}) tu2(M)=((1
1),(1

2),(1
2),(2

1))

lex
ρ
2(M)=({

(1
1)

1},{
(1
2)

6},{
(22)

4,5}) tu
ρ
2(M)=((1

1),(1
2),(2

2),(2
2))

lex
π
2 (M)=({

(12)

1,3},{
(2
1)

4},{
(2
2)

5}) tuπ2 (M)=((1
2),(1

2),(2
1),(2

2))

Distinguish between the following cases:

• Because tu1(M)4 < tuτ1(M)4 we have errτ1(M) = 5, pivτ1(M) = 1 and

actτ1(M) = 1. Clearly ρ ∈ U(1) τ such that 2ρ ∈ lexτ1(M)[1]. Moreover

M2,3 = M2ρ,1 and |lex2(M)[1]| = |lexρ2(M)[1]|, while M2,4 = M2ρ,6 and

|lex2(M)[2]| > |lexρ2(M)[2]|. Hence Theorem 5.4.22 states that

err
ρ
2(M) = min(lex2(M)[2]) + min(|lex2(M)[2]|, |lexρ2(M)[2]|) = 5.

• Because err
ρ
2(M) = errτ1(M), we have piv

ρ
2(M) = pivτ1(M) and act

ρ
2(M) =

actτ1(M), according to Theorem 5.4.17 and Corollary 5.4.1. Clearly π ∈
U(1)τ such that 2π ∈ lexτ1(M)[1]. Moreover M2,3 < M2π ,1. Hence Theo-

rem 5.4.22 states that errπ2 (M) = min(errπ2 (M)[1]) = 3.

• Because errπ2 (M) < errτ1(M), we find that pivπ2 (M) = 2 and actπ2 (M) = 1,
according to Theorem 5.4.22 and Theorem 5.4.17.

•

Theorems 5.4.17 and 5.4.22 as well as Corollaries 5.4.1 and 5.4.2 allow a far
more efficient computation of lexπi (M), errπi (M), pivπi (M) and actπi (M) ba-
sed on the preceding computations of lexπi−1(M), pivπi−1(M), errπi−1(M) and
actπi−1(M). The complete refinement algorithm is described in Algorithm 5.6.
Recall that we assume that lexπi−1(M), lexπi (M), lexi−1(M) and lexi(M) corres-
pond to (5.22), (5.24), (5.23) and (5.25) respectively. Note that both lexi−1(M)
and lexi(M) can already be computed at the outset of the canonicity algorithm.
Moreover, we may assume that errπi−1(M) > i, after all, if errπi−1(M) = i, then
the canonicity test would already have been pruned higher up in the recursion.

5.4 Image partitioning 157

Write e = errπi−1(M), t′ = cell(lexi−1(M), e− 1) and t = cell(lexi(M), e− 1).
The refinement algorithm itself is divided into two major parts:

• The method refine (π , i) subsequently refines

lexπi−1(M)[1] \ {iπ}, lexπi−1(M)[2], . . .

, . . . , lexπi−1(M)[t′−1], lex
π
i−1(M)[t′]

(5.28)

According to Corollary 5.4.2, we can refine each entry of (5.28) by simply
sorting each of their respective elements j according to their correspon-
ding matrix entries Miπ , j (❷ and ❸ in Algorithm 5.6). The computation of
errπi (M), pivπi (M) and actπi (M) runs parallel to the systematic refinement
of (5.28). After each refinement of either lexπi−1(M)[k] \ {iπ} with k = 1

or lexπi−1(M)[k] with k ∈ {2, . . . , t′}, we systematically invoke the function
checkRefined(π , i, k) to check whether

|lexi(M)[j]| = |lexπi (M)[j]| and Mi,q j
= Miπ ,p j

for each j ∈ {ak, . . . , bk}, independent of the choice of q j ∈ tui(M)[j] and

p j ∈ tuπi (M)[j]. If not the function checkRefined(π , i, k) returns false,
causing the systematic refinement of (5.28) to terminate.

If the refinement of (5.28) is not terminated prematurely, then

|lexi(M)[l]| = |lexπi (M)[l]| and tui(M)[l] = tuπi (M)[l]

for each l ∈ {1, . . . , bt′ = t}. Hence errπi (M) = errπi−1(M), according to
Theorem 5.4.22. Combining Theorem5.4.17 and Corollary 5.4.1 we the-
refore find that pivπi (M) = pivπi−1(M) and actπi (M) = actπi−1(M) (❶ in
Algorithm 5.6). Otherwise, if the refinement of (5.28) is terminated pre-
maturely, both pivπi (M), errπi (M) and actπi (M) are determined by the call
to the function checkRefined which causes the refinement to terminate.

• The function checkRefined(π , i, k) with k ∈ {1, . . . , t′} checks whether

|lexi(M)[j]| = |lexπi (M)[j]| and Mi,q j
= Miπ ,p j

(5.29)

for each j ∈ {ak, . . . , bk}. If so, true is returned; otherwise false is returned
and both pivπi (M), errπi (M) and actπi (M) are computed. By the structure
of the refinement algorithm we have

|lexi(M)[l]| = |lexπi (M)[l]| and Mi,ql
= Miπ ,pl

158 5 Canonicity test

for each l ∈ {a1 , . . . , bk−1} and therefore ck = ak. In order to check (5.29)
we run through

lexi(M)[ck]
, . . . , lexi(M)[dk]

and lexπi (M)[ak]
, . . . , lexπi (M)[bk]

simultaneously. For each such pair of cells lexi(M)[j] and lexπi (M)[j] with

j ∈ {ak, . . . , bk}, we distinguish between the following cases:

1. If Mi,q j
6= Miπ ,p j

(❹ in Algorithm 5.6) then Theorem 5.4.22 states

that errπi (M) = min(lexi(M)[j]). Clearly errπi (M) < errπi−1(M). Hen-

ce we find according to Theorem 5.4.17 that pivπi (M) = i. Moreover
Theorem 5.4.22 states that actπi (M) = 1 if Mi,q j

< Miπ ,p j
whereas

actπi (M) = −1 otherwise. Note that false is returned so that the
refinement of (5.28) terminates.

2. If Mi,q j
= Miπ ,p j

and |lexi(M)[j]| 6= |lexπi (M)[j]| (❺ and ❻ in Algo-

rithm 5.6) then Theorem 5.4.22 states that

errπi (M) =

{
min(lexi(M)[j])+|lexi(M)[j]|, if |lexi(M)[j]|<|lexπi (M)[j]|,
min(lexi(M)[j])+|lexπi (M)[j]|, if |lexi(M)[j]|>|lexπi (M)[j]|.

If errπi (M) < errπi−1(M), then we find according to Theorems 5.4.22
and 5.4.17 that pivπi (M) = i and

actπi (M) =

{ −1 if |lexi(M)[j]| < |lexπi (M)[j]|,
1 if |lexi(M)[j]| > |lexπi (M)[j]|.

Otherwise, if errπi (M) = errπi−1(M), then we find according to The-
orem 5.4.17 and Corollary 5.4.1 that pivπi (M) = pivπi−1(M) and
actπi (M) = actπi−1(M) (❶ in Algorithm 5.6). Note that false is re-
turned so that the refinement of (5.28) terminates.

3. If |lexi(M)[j]| = |lexπi (M)[j]|, then the next pair of cells lexi(M)[j+1]

and lexπi (M)[j+1] is considered when j < bk; otherwise (5.29) holds
and true is returned.

5.4.4 Refinement data structure

Throughout the canonicity test on M, Algorithm 5.6 must keep track of in-
formation about lexically ordered image partitions, tentative error levels, . . .

5.4 Image partitioning 159

Algorithm 5.6 Refinement algorithm

method refine (π ∈ Sym(n), i : int)

1: k ← 1, errπi (M)← errπi−1(M)
2: pivπi (M)← pivπi−1(M)
3: actπi (M)← actπi−1(M) ❶

4: compute lexπi (M)[ak]
, . . . , lexπi (M)[bk]

from lexπi−1(M)[k] \ {iπ} ❷

5: while (checkRefined (π , i, k) ∧
max(lexi−1(M)[k]) < errπi−1(M)− 1) do

6: k ← k + 1
7: compute lexπi (M)[ak]

, . . . , lexπi (M)[bk]

from lexπi−1(M)[k] ❸

function checkRefined (π ∈ Sym(n), i, k : int) : boolean

1: for j← ak, . . . , bk do
2: let p j ∈ lexi(M)[j], q j ∈ lexπi (M)[j]

3: if Mi,p j
6= Miπ ,q j

then ❹

4: errπi (M)← min(lexi(M)[j]), pivπi (M)← i

5: if Mi,p j
< Miπ ,q j

then

6: actπi (M) = 1
7: else
8: actπi (M) = −1
9: return false

10: else if |lexi(M)[j]| < |lexπi (M)[j]| then ❺

11: errπi (M)← min(lexi(M)[j]) + |lexi(M)[j]|
12: if errπi (M) 6= errπi−1(M) then
13: pivπi (M)← i, actπi (M)← −1
14: return false
15: else if |lexi(M)[j]| > |lexπi (M)[j]| then ❻

16: errπi (M)← min(lexi(M)[j]) + |lexπi (M)[j]|
17: if errπi (M) 6= errπi−1(M) then
18: pivπi (M)← i, actπi (M)← 1
19: return false
20: return true

160 5 Canonicity test

for every recursion level separately. Besides, each lexically ordered partition
should be available already at the outset of the canonicity test rather than be
recomputed each time. To perform successive refinements of lexically ordered
partitions as well as lexically ordered image partitions, we construct an explicit
data structure which maintains these partitions in such a way that it allows a
more straightforward (and at the same more efficient) version of the refinement
algorithm.

This refinement data structure consists of a d-ary tree where d is equal to the
maximum value of the matrix entries of M. An array lex is used to maintain
certain nodes of this d-ary tree. If we reconsider the general case where we
are at level i in the recursion and the canonicity algorithm is about to traverse
the right coset U(i) π , then the element lex[i− 1] at index i− 1 in the array lex

consists of a dynamic array whose element at index a is denoted by lex[i− 1][a].
Each such element lex[i− 1][a] corresponds to a unique node in the d-ary tree
and contains the following information:

• The minimum and maximum of lexi−1(M)[a], denoted by min and max,

respectively. These values uniquely determine the elements of lexi−1(M)[a]
(cf. Lemma 5.4.9).

• An array ref of d references. If a = 1 and |lexi−1(M)[a]| = 1, then ref[l] is a

null-reference. Otherwise, if there exists an element b ∈ {1, . . . , |lexi(M)|}
such that

lexi(M)[b] ⊆ lexi−1(M)[a] and Mi,p = l

with p ∈ lexi(M)[b], then ref[l] refers to the node lex[i][b]. If no such

b exists then ref[l] refers to a dummy leaf node for which ref[l].min =
ref[l].max + 1 and

ref [l].min =

{
ref[l − 1].max + 1, if l > 1,
ref[l + 1].min− 1, if l < d.

• A dynamic array denoted by img. This array contains the elements of
lexπi−1(M)[a] in increasing order if and only if

a ≤ cell(lexi−1(M), errπi−1(M)− 1).

We write |img| for the number of elements of img.

5.4 Image partitioning 161

Note that the values of min and max together with the references in the array
ref can already be computed at the outset of the canonicity algorithm, while the
contents of img depend on the actual right coset we consider at level i in the
recursion. For each node we set size = max−min + 1. Hence size = 0 if and
only if the corresponding node is a dummy leaf node.

Example 5.24. Consider the lexically ordered matrix M ∈ M7 below.

M =













0 1 1 1 2 2 2
1 0 2 2 1 1 2
1 2 0 2 2 2 1
1 2 2 0 2 2 2
2 1 2 2 0 2 1
2 1 2 2 2 0 2
2 2 1 2 1 2 0













The binary trees T5, T6 and T7 shown, correspond to the refinement data struc-
ture of respectively M5, M6 and M7. For each internal node, the left child refers
to ref[1] and the right child refers to ref[2].

node dummy node

1,5

2,4

3,4

4,44,3

3,2

5,5

5,5

5,5

5,4

5,4

6,5

5,5

2,4

3,4

4,44,3

3,2

5,4

5,4

5,6

6,66,5

5,6

5,6

5,4

5,4

5,6

6,66,5

5,6

5,4

5,4

5,6

6,66,5

5,6

1,7

5,7

5,7

7,7

7,7

7,7

7,7

7,6

8,7

8,7

7,6

1,5

2,4

3,4

4,44,3

3,2

5,5

5,5

5,5

5,4

5,4

6,5

5,5

1,6

2,4

3,4

4,44,3

3,2

5,4

5,4

5,6

5,6

5,6

6,66,5

5,6

7,6min;maxmin;max
T5 T6 T7

Note that the array lex in which all non-dummy nodes are stored is not shown.
Although we can easily envision this array. More precisely, if we pass through
all non-dummy nodes at a given depth l in the binary tree from left to right,
then the b-th non-dummy node corresponds to lex[l][b]. Note that the min-value
of a dummy node is equal to the min-value of the next non-dummy node on the
same level in the tree. Similarly the max-value is equal to the max-value of the
previous non-dummy node. It is worth noting that T5, T6 and T7 share a lot of
structure. •

162 5 Canonicity test

Algorithm 5.7 Refinement algorithm

method refine(π ∈ Sym(n), i : int)

1: k ← 1, errπi (M)← errπi−1(M)
2: pivπi (M)← pivπi−1(M), actπi (M)← actπi−1(M)
3: distribute lex[i− 1][k].img \ {iπ}

among children of lex[i− 1][k] ①

4: while (checkRefined (π , i, k) ∧
lex[i− 1][k].max < errπi−1(M)− 1) do

5: k ← k + 1
6: distribute lex[i− 1][k].img

among children of lex[i− 1][k] ②

function checkRefined (π ∈ Sym(n), i, k : int) : boolean

1: for j← 1, . . . , d do
2: c j ← lex[i− 1][k].ref[j]
3: if c j.size < |c j.img| then ③

4: errπi (M)← c j.min + c j.size
5: if errπi (M) 6= errπi−1(M) then
6: pivπi (M) = i
7: actπi (M) = −1
8: return false
9: else if c j.size > |c j.img| then ④

10: errπi (M)← c j.min + |c j.img|
11: if errπi (M) 6= errπi−1(M) then
12: pivπi (M) = i
13: actπi (M) = 1
14: return false
15: return true

5.4 Image partitioning 163

Algorithm 5.7 reformulates the general refinement algorithm as described in
Algorithm 5.6, in terms of the refinement data structure outlined above. Recall
that we assume that lexπi−1(M), lexπi (M), lexi−1(M) and lexi(M) correspond to
(5.22), (5.24), (5.23) and (5.25), respectively. The differences between Algo-
rithm 5.7 and Algorithm 5.6 are then in essence the following:

1. The method refine(π , i) subsequently refines

lexπi−1(M)[1] \ {iπ}, lexπi−1(M)[2], . . .

. . . , lexπi−1(M)[t′−1], lex
π
i−1(M)[t′]

by sorting each of their respective elements j according to their corres-
ponding matrix entries Miπ , j. The refinement data structure provides us
with a rather straightforward method to sort these elements. Indeed, let
k ∈ {2, . . . , t′}, then sorting the elements j ∈ lexπi−1(M)[k] according to

Miπ , j simply amounts to scanning through the elements of lex[i− 1][k].img

and distributing them among the children of lex[i − 1][k], that is, each
element j of lex[i − 1][k].img is appended to the array img of its child
lex[i − 1][k].ref[Miπ , j] (cf. ② in Algorithm 5.7). Note that the refinement
of lexπi−1(M)[1] \ {iπ} is slightly different. All elements of lex[i− 1][1].img,

except for iπ , are distributed among the children of lex[i − 1][1] (cf. ① in
Algorithm 5.7).

2. The function checkRefined(i, k) checks whether

|lexi(M)[j]| = |lexπi (M)[j]| and Mi,q j
= Miπ ,p j

(5.30)

for each j ∈ {ak, . . . , bk}. If so, true is returned; otherwise false is returned
and both pivπi (M), errπi (M) and actπi (M) are computed. Further recall
that by the structure of the refinement algorithm we have

|lexi(M)[l]| = |lexπi (M)[l]| and Mi,ql
= Miπ ,pl

(5.31)

for each l ∈ {a1 , . . . , bk−1}. In terms of the refinement data structure,
(5.30) is equivalent to checking whether

lex[i− 1][k].ref[j].size = |lex[i− 1][k].ref[j].img| (5.32)

for each j ∈ {1, . . . , d}, that is the children of lex[i − 1][k]. After all, the
x-th non-dummy child corresponds to lexi(M)[ak+x−1], while the y-th child

164 5 Canonicity test

with |img| > 0 corresponds to lexπi (M)[ak+y−1]. In order to check (5.32)
we now subsequently run through

lex[i− 1][k].ref[1], lex[i− 1][k].ref[2], . . . , lex[i− 1][k].ref[d] (5.33)

until we either encounter a child of lex[i − 1][k] such that its value size

differs from the size of its associated array img or we have considered each
child of lex[i− 1][k]. Assume that we already have considered the first l− 1
children of lex[i][k], among which are z non-dummy nodes with size =
|img| (and thus l − 1− z dummy nodes with |img| = 0). So for the l-th
child of lex[i][k], in this context abbreviated by cl, we distinguish between
the following cases independent of the choice of qak+z ∈ lexi(M)[ak+z] and

pak+z ∈ lexi(M)[ak+z]:

• If cl .size < |cl .img| then we consider the following subcases (③ in
Algorithm 5.7):

– If cl .size 6= 0, then |lexi(M)[ak+z]| < |lexπi (M)[ak+z]| and Mi,qak+z =

Miπ ,pak+z (❺ Algorithm 5.6) and therefore we have

errπi (M) = min(lexi(M)[ak+z]) + |lexi(M)[ak+z]|.
– If cl .size 6= 0, then Mi,qak+z < Miπ ,pak+z (❹ Algorithm 5.6) and

therefore we have errπi (M) = min(lexi(M)[ak+z]).

Clearly, in both subcases we find that errπi (M) = cl .min + cl .size.
• If cl .size > |cl .img|, then we consider the following subcases (④ in

Algorithm 5.7):

– If |cl .img| = 0, then we have |lexi(M)[ak+z]| > |lexπi (M)[ak+z]|
and Mi,qak+z = Miπ ,pak+z (cf. ❻ Algorithm 5.6) and therefore we

have errπi (M) = min(lexi(M)[ak+z]) + |lexπi (M)[ak+z]|.
– If |cl .img| = 0, then Mi,qak+z < Miπ ,pak+z (❹ Algorithm 5.6) and

therefore we have errπi (M) = min(lexi(M)[ak+z]).

Clearly in both subcases we find that errπi (M) = cl .min + |cl .img|.
• If cl .size = |cl .img|, then we consider the following subcases:

– If cl .size 6= 0, then we have |lexi(M)[ak+z]| < |lexπi (M)[ak+z]| and
Mi,qak+z = Miπ ,pak+z .

– If cl .size = 0, then in this particular case cl neither identifies
lexi(M)[ak+z] nor lexπi (M)[ak+z].

Clearly if l < d, we find in both subcases that we should continue
with the next child of lex[i− 1][k].

5.5 Minimality and automorphism group submatrices 165

5.4.5 Analysis and empirical data

The effectiveness of our refinement technique is examined by comparing data
obtained from the orderly generation of the same classes of graphs as in Section
5.2.3. In Table 5.4, Algorithm 5.4 and 5.5 are compared. The total number of
graphs along with the total number of permutations which are checked during
all executed canonicity tests is given. The empirical data illustrates that our
refinement technique systematically reduces the number of permutations which
are checked during orderly generation.

In Figure 5.6 we represent the frequency of occurrence of error levels among all
canonicity tests executed during orderly generation. For each parameter set, we
can observe a systematic decrease in the number of error levels. This reduction
is most apparent for error levels with a large distance between error levels and
corresponding average pivot levels as outlined in Figure 5.5. Clearly, our refine-
ment technique improves the performance of the partial permutation criterion
by reducing its tendency to repeatedly prune the recursion tree in different parts
of the recursion for exactly the same reason (cf. Section 5.4.1).

5.5 Minimality and automorphism group of the lea-

ding principal submatrices

The improvements introduced in Section 5.4 all stem from the restriction that
the canonicity algorithm takes a lexically ordered matrix M ∈ Mn as input. In
this section we will focus on two additional restrictions on M which allow us to
further improve our canonicity algorithm. Our canonicity algorithm is repeated-
ly applied during the course of an orderly generation algorithm. Hence when
we check the canonicity of M, each leading principal submatrix of M is known
to be in column order canonical form. Indeed, each leading principal subma-
trix of Mn must be minimal; otherwise the generation algorithm would already
have been pruned. On the other hand, the minimality of each leading principal
submatrix of M guarantees us that a strong generating set for the automorphism

group of each such submatrix has been obtained.

166 5 Canonicity test

Algorithm 5.4 Algorithm 5.5
v k λ µ ∃ No. perm. checked No. perm checked

5 2 0 1 1 40 15
9 4 1 2 1 457 123

10 3 0 1 1 721 161
6 3 4 1 214 286

13 6 2 3 1 5 643 737
15 6 1 3 1 7 906 1 172

8 4 4 12 224 1 731
16 5 0 2 1 21 687 2 762

10 6 6 36 090 4 530
16 6 2 2 2 23 507 2 953

9 4 6 47 539 5 600
17 8 3 4 1 41 109 3 751
21 10 3 6 1 75 091 6 966

10 5 4 14 4207 14 205
25 8 3 2 1 458 845 35 626

16 9 12 2 654 299 211 670
25 12 5 6 15 34 546 360 2 027 435
26 10 3 4 10 12 714 925 714 234

15 8 9 257 672 546 18 139 933
27 10 1 5 1 1 289 795 95 807

16 10 8 3 281 897 231 653
28 12 6 4 4 4 828 422 338 610

15 6 10 4 068 141 256 250
29 14 6 7 41 3 291 720 746 203 348 967
36 10 4 2 1 23 754 480 1 194 185

25 16 20 143 366 816 9 066 020
36 14 4 6 180 30 634 602 941 1 415 391 817
36 14 7 4 1 22 069 825 1 114 843

21 10 15 10 334 741 524 654
40 12 2 4 28 154 334 556 518 8 787 084 036
45 16 8 4 1 305 971 694 15 685 156

28 15 21 162 721 707 6 755 242
50 7 0 1 1 9 016 393 600 331 518 926

105 32 4 12 1 58 191 699 167 592 209 059

Tabel 5.4: Comparison of algorithm 5.4 and 5.5 used in an orderly algorithm
for strongly regular graphs

5.5 Minimality and automorphism group submatrices 167

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25

coset level

failure srg(25,12,5,6)

first in orbit
partition

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30

coset level

failure srg(28,12,6,4)

first in orbit
partition

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30 35 40

coset level

failure srg(36,14,7,4)

first in orbit
partition

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 5 10 15 20 25 30 35 40

coset level

failure srg(40,12,2,4)

first in orbit
partition

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 5 10 15 20 25 30 35 40 45 50

coset level

failure srg(50,7,0,1)

first in orbit
partition

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 20 40 60 80 100

coset level

failure srg(105,32,4,12)

first in orbit
partition

Figuur 5.6: Frequency of error levels for all canonicity tests executed during a
single generation of strongly regular graphs.

168 5 Canonicity test

5.5.1 Minimality of the leading principal submatrices

Let us first consider the implications of the fact that each leading principal sub-
matrix of M is minimal.

Lemma 5.5.1. Let M ∈ Mn and let Mn−1 be in canonical form. Let l ∈
{1, . . . , n− 1} and π ∈ Sym(n) such that iπ 6= n for each i ∈ {1, . . . , l}, then

(π M)l ≥ Ml.

Proof : Let g′ = π (nπ n) (restricted to {1, . . . , n− 1}), then g′ ∈ Sym(n− 1)
and g′ and π have the same l-prefix. It follows that (π M)l = (g′ Mn−1)l ≥ Ml,
because Mn−1 is in canonical form.

Lemma 5.5.2. Let M ∈ Mn be lexically ordered and let π ∈ Sym(n) and i ∈
{1, . . . , n− 2} such that h ∈ U(i)π and i + 1 < errπi (M) ≤ n. Write e = errπi (M).
If (h M) j = M j with j ∈ {i + 1, . . . , e− 1}, then for each l ∈ {i + 1, . . . , j} we

have

M1...i, j = tui(M) j−i and (h M)1...i, j = tuπi (M) j−i.

Proof : Since errπi (M) and tuπi (M) only depend on the i-prefix of π and h ∈
U(i)π , it is sufficient to prove this lemma for h = π . If (π M) j = M j, we have
M1...i, j = (π M)1...i, j for each j ∈ {i + 1, . . . , e − 1}. Since e = errπi (M) we
find that tui(M) j−i = tuπi (M) j−i. Moreover M1...i, j = tui(M) j−i because M is
lexically ordered. Hence (π M)1...i, j = tuπi (M) j−i.

Theorem 5.5.3. Let M ∈ Mn be lexically ordered and Mn−1 be in canonical

form. Let π ∈ Sym(n) and i ∈ {1, . . . , n − 2} such that (π M)i = Mi and

i + 1 < errπi (M) ≤ n. Write e = errπi (M). If actπi (M) = 1 and

M1...i,e < M1π ...iπ ,n (5.34)

then h M > M for each h ∈ U(i) π .

Proof : Since (π M)i, errπi (M), actπi (M) and M1π ...iπ ,n only depend on the i-
prefix of π , it is sufficient to prove this theorem for h = π . Suppose that
π M ≤ M. Hence also (π M)e−1 ≤ Me−1. If (π M)e−1 = Me−1, then M1...i, j =
tui(M) j−i and (π M)1...i, j = tuπi (M) j−i for each j ∈ {i + 1, . . . , e− 1}, according
to Lemma 5.5.2. Since actπi (M) = 1, we therefore find that M1...i,e < (π M)1...i,k

5.5 Minimality and automorphism group submatrices 169

for each k ∈ {e, . . . , n}. Hence (π M)e > Me, which clearly is a contradiction to
π M < M.

Otherwise if (πM)e−1 < Me−1, then there must exist an element l ∈ {i +
1, . . . , e− 1} such that (π M)l−1 = Ml−1 and (π M)l < Ml. Clearly we find that
M1...i, j = tui(M) j−i and (π M)1...i, j = tuπi (M) j−i for each j ∈ {i + 1, . . . , l− 1},
according to Lemma 5.5.2. Since l < e and (5.34), we therefore find for each
such j that jπ 6= n. We distinguish between the following cases:

• If lπ = n, then (π M)l > Ml as M1...i,l ≤ M1...i,e and (5.34).

• If lπ 6= n, then we find according to Lemma 5.5.1 that (π M)l ≥ Ml as
g Mn−1 ≥ Mn−1 for each g ∈ Sym(n− 1).

Hence in both subcases (π M)l ≥ Ml which clearly is a contradiction to (π M)l <
Ml.

Theorem 5.5.4. Let M ∈ Mn be lexically ordered and let g Mn−1 ≥ Mn−1 for

each g ∈ Sym(n − 1). Besides, let π ∈ Sym(n) and i ∈ {1, . . . , n − 2} such

that (π M)i = Mi and i + 1 < errπi (M) < n + 1. Write e = errπi (M). If

actπi (M) = −1 and
M1...i,e ≤ M1π ...iπ ,n (5.35)

then h M > M for each h ∈ U(i) π .

Proof : Since (π M)i, errπi (M), actπi (M) and M1π ...iπ ,n only depend on the i-
prefix of π , it is sufficient to prove this theorem for h = π . Suppose that
π M ≤ M. Hence also (π M)e−1 ≤ Me−1. If (π M)e−1 = Me−1, then M1...i, j =
tui(M) j−i and (π M)1...i, j = tuπi (M) j−i for each j ∈ {i + 1, . . . , e− 1}, accor-
ding to Lemma 5.5.2. Since actπi (M) = −1 and (5.35), we therefore find that
tuπi (M)e−i < M1π ...iπ ,n. Hence there exists an element k ∈ {e, . . . , n} such that
kπ 6= n and M1...i,e > (π M)1...i,k. Hence we find that

(σ ′ M)e < Me . (5.36)

where σ = (e kπ
−1

) π . However, as g Mn−1 ≥ Mn−1 for each g ∈ Sym(n− 1),
we find according to Lemma 5.5.1 that (σM)e ≥ Me, which is a contradiction
to (5.36).

Otherwise, if (πM)e−1 < Me−1, then there must exist an element l ∈ {i +
1, . . . , e− 1} such that (π M)l−1 = Ml−1 and (π M)l < Ml. Clearly we find that

170 5 Canonicity test

M1...i, j = tui(M) j−i and (π M)1...i, j = tuπi (M) j−i for each j ∈ {i + 1, . . . , l− 1},
according to Lemma 5.5.2. Since l < e, actπi (M) = −1 and (5.35), we therefore
find for each such j that jπ 6= n. Consider the following subcases:

1. If lπ = n, then (π M)l ≥ Ml as M1...i,l ≤ M1...i,e and (5.35).

2. Otherwise; we find according to Lemma 5.5.1 that (π M)l ≥ Ml, after all
g Mn−1 ≥ Mn−1 for each g ∈ Sym(n− 1).

Hence in both subcases (π M)l ≥ Ml which is a contradiction to (π M)l < Ml.

Theorems 5.5.3 and 5.5.4 play a central role in the improvements Algorithm
5.8 makes on Algorithm 5.5. Recall that the function rightCoset(π , i, s) checks
whether a permutation h ∈ U(i−1) π can be found such that h M < M. If
errπi−1(M) > i + 1, then this function successively considers each right coset

U(i) (i jπ
−1

) π with j ∈ lexπi−1(M)[1]. Write ei−1 = errπi−1(M). Whenever

lπ 6= n for each l ∈ {1, . . . , i − 1}, Algorithm 5.8 now invokes the function
rightCosetLast(π , i, s) instead (❷ in Algorithm 5.8). If errπi−1(M) > i + 1,
then the function checkLast(i) additionally checks whether either one of the
following conditions holds (❶ in Algorithm 5.8):

actπi−1(M) = 1 and M1...i−1,ei−1
< M1π ...(i−1)π,n (5.37)

actπi−1(M) = −1 and M1...i−1,ei−1
≤ M1π ...(i−1)π,n. (5.38)

Recall that g Mn−1 ≥ Mn−1 for each g ∈ Sym(n − 1). If (5.37) holds, then

we find that h M > M for each h ∈ U(i−1) π , according to Theorem 5.5.3.
Otherwise, if (5.38) holds, then we find that h M > M for each h ∈ U(i−1)π ,
according to Theorem 5.5.4. Hence in both cases no permutation of U(i−1)π

could ever lead to a counterexample of the minimality of M.

Checking conditions (5.37) and (5.38) requires the systematic comparison of
the matrix entries of M1...i−1,ei−1

and M1π ...(i−1)π,n. A more efficient way to
check these conditions is in in terms of the refinement data structure. During
the canonicity test an array last is used to keep track of certain nodes in the
refinement tree. More precisely, let π ∈ U(s−1)−U(s) with s ∈ {1, . . . , n− 1}.
Then before we actually traverse U(s−1)−U(s), we store the last node of lex[s−
1] into last[s − 1]. Recall that the values min and max of this node, uniquely
determine the last cell of lexs−1(M). This particular node is stored because for

5.5 Minimality and automorphism group submatrices 171

each h ∈ U(s−1)−U(s), among which π , we have

M1...s−1,q < M1h...(s−1)h,n = M1...s−1,p (5.39)

where p ∈ {last[s − 1].min, . . . , n} and q ∈ {s, . . . , last[s − 1].min− 1}. While

traversing U(s−1)−U(s), the canonicity algorithm subsequently encounters the
right cosets

U(s) π , U(s+1)π , U(s+2)π . . . , U(i−1)π , U(i) π

descending each time one level further in the recursion tree. When the canoni-
city algorithm is about to traverse a right coset U(l) π with l ∈ {s, . . . , i}, then
we adjust last[l] to contain either the node last[l − 1].ref[Mlπ ,n] if last[l − 1] is a
non-dummy node or the node last[l − 1] otherwise. To put it differently, at the
same time as we descend on level in the recursion tree, we descend one level in
the refinement tree.

Moreover, if the node last[l] itself is a non-dummy node, then for each h ∈ U(l) π

we have
M1...l,p < M1h...lh ,n = M1...l,q < M1...l,r (5.40)

where p ∈ {l + 1, . . . , last[l].min− 1}, q ∈ {last[l].min, . . . , last[l].max} and r ∈
{last[l].max + 1, . . . , n}. Otherwise, if the node last[l] itself is a dummy node,

then for each h ∈ U(l) π we have

M1...l,p < M1h ...lh,n < M1...l,r (5.41)

where p ∈ {l + 1, . . . , last[l].max} and r ∈ {last[l].min, . . . , n}. Before we ac-

tually traverse the right coset U(l) π , we can now use the information stored
in last[l] to check conditions (5.37) and (5.37) for i = l + 1. More precisely,
by (5.39), (5.40) and (5.41), condition (5.37) translates to checking whether
actπl (M) = 1 and errπl (M) < last[l].min, whereas condition (5.38) translates
to checking whether actπl (M) = −1 and errπl (M) ≤ last[l].max. Note that this
translation is independent of the node last[l] being a non-dummy node or not.

Finally, the question remains whether we still obtain, as in Algorithm 5.5, a
strong generating set S = S(0) for the automorphism group Aut M with base
[1, . . . , n] whenever M is minimal. Let π ∈ (Aut M)(s) − (Aut M)(s+1), then

errπp (M) = n + 1 and actπp (M) = 0

172 5 Canonicity test

Algorithm 5.8 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . 1 do
2: if diffStab(i) < 0 then
3: return false
4: return true

function diffStab(i : int) : int

1: for all j ∈ (lexi−1(M)[1] \ {i}) do

2: if j = min(j〈S
(i−1)
Aut M〉) then

3: refine((i j), i)
4: if j 6= n then ❷
5: d← rightCosetLast((i j), i + 1, i− 1)
6: else
7: d← rightCoset((i j), i + 1, i− 1)
8: if d < 0 then
9: return d

10: return 1

function rightCoset(π ∈ U(s)−U(s+1), i, s : int) : int

1: if checkErrorLevel(π , i, s) then
2: return actπi−1(M)
3: else
4: for all j ∈ lexπi−1(M)[1] do

5: π ′ ← (i jπ
−1

) π
6: refine(π ′, i)
7: d← rightCoset(π ′, i + 1, s)
8: if d < 0 ∨ d = 0 then
9: return d

10: return 1

5.5 Minimality and automorphism group submatrices 173

Algorithm 5.8 Checks whether M ∈ Mn is in column order canonical form.

function rightCosetLast(π ∈ U(s)−U(s+1), i, s : int) : int

1: if checkErrorLevel(π , i, s) then
2: return actπi−1(M)
3: else if checkLast(i) then ❶

4: return 1
5: else
6: for all j ∈ lexπi−1(M)[1] do

7: π ′ ← (i jπ
−1

) π
8: refine(π ′, i)
9: if j 6= n then ❷

10: d← rightCosetLast(π ′, i + 1, s)
11: else
12: d← rightCoset(π ′, i + 1, s)
13: if d < 0 ∨ d = 0 then
14: return d
15: return 1

function checkErrorLevel(π ∈ U(s)−U(s+1), i, s : int) : boolean

1: if errπi−1(M) ≤ i + 1 then
2: if errπi−1(M) = n + 1 then

3: S̄
(s)
Aut M ← S̄

(s)
Aut M ∪ π

4: return true
5: else
6: return false

function checkLast(π ∈ Sym(n), i : int) : boolean

1: ei−1 ← errπi−1(M)
2: return (actπi−1(M) = 1 ∧M1...i−1,ei−1

< M1π ...(i−1)π,n) ∨
(actπi−1(M) = −1 ∧M1...i−1,ei−1

≤ M1π ...(i−1)π,n)

174 5 Canonicity test

for each p ∈ {s + 1, . . . , n − 1}. Therefore the additional constraints incor-
porated in Algorithm 5.8 will never discard a right coset which contains an
automorphism of M. Hence when M is minimal, Algorithm 5.8 still obtains a
strong generating set S = S(0) for the automorphism group Aut M with base
[1, . . . , n].

Example 5.25. Let σ = (1 2). Consider the lexically ordered matrix M ∈ M5

below. Note that M4 is minimal. The recursion tree shown corresponds to the
traversal of U(1)σ by Algorithm 5.4.

M =









0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 2
1 2 1 2 0









(1 2)(3 4)

(1 2 3)

(1 2)(3 5)

(1 2 3)(4 5)

(1 2)

(1 2)

(1 2)

(1 2 4)(3 5)

(1 2 4 5 3)(1 2 3) (1 2 4 3)

(1 2 3 5)
(1 2 4 3)

(1 2 4) (1 2 5)(1 2) (1 2 3)

(1 2 3 4)

(1 2)(3 4 5)

(1 2) (1 2)(3 4)

(1 2)(3 4)

(1 2)(4 5)

(1 2 4)

The light shaded areas contain the right cosets discarded by Algorithm 5.5 whi-
le the dark shaded area contains the right cosets which are now also discarded
by Algorithm 5.8. Note that lexσ1 (M) = ({1, 3, 4}, {5}), lex1(M) = ({2, 3, 4, 5})
and

tu1(M) = {(1), (1), (1), (1)}
tuσ1 (M) = {(1), (1), (1), (2)}.

Hence clearly e = errσ1 (M) = 5, actσ1 (M) = 1. Therefore we find that only

the right cosets U(2) (1 2), U(2) (1 2 3) and U(2) (1 2 4) need to be considered as
lexσ1 (M)[1] = {1, 3, 4}. However, because M1,e < M1σ ,5 and M4 is minimal, we

find that h M > M for each h ∈ U(1)σ, according to Theorem 5.5.3. Hence we
may additionally discard the right cosets U(2) (1 2), U(2) (1 2 3) and U(2) (1 2 4)
from traversal. •

5.5 Minimality and automorphism group submatrices 175

5.5.2 Automorphism group of the leading principal subma-
trices

The successive application of our canonicity algorithm and the fact that each
submatrix Mi with i ∈ {2, . . . , n− 1} is minimal, guarantees us that a strong

generating set S
(0)
Aut Mi

for the automorphism group of each such submatrix Mi

has been determined. Below we shall outline three different strategies which
exploit these strong generating sets to further improve our canonicity algorithm.

The first strategy uses these strong generating sets to guess some of the auto-
morphisms of M. More precisely, assume that before we traverse Sym(n), we
already know a subgroup G of Aut M. Let s ∈ {n − 2, . . . , 0}, then before

we traverse U(s) −U(s+1), we could add the elements of the stabilizer G(s) to
(Aut M)(s) which we are constructing during traversal. Generally, we will know

a strong generating set SG of G. Hence the addition of the elements of G(s) to

(Aut M)(s) amounts to including the elements of S̄
(s)
G to S̄

(s)
Aut M. Note that at

the same time we should update the corresponding orbit partition accordingly.

v k λ µ type I/all type II/all v k λ µ type I/all type II/all

16 5 0 2 0.547 0.333 29 14 6 7 0.647 0.148

17 8 3 4 0.490 0.333 36 10 4 2 0.830 0.133

25 8 3 2 0.756 0.182 36 14 4 6 0.533 0.223
25 12 5 6 0.505 0.224 36 14 7 4 0.800 0.167

26 10 3 4 0.440 0.358 40 12 2 4 0.962 0.019

27 10 1 5 0.619 0.212 45 16 8 4 0.821 0.149
28 12 6 4 0.684 0.224 50 7 0 1 0.712 0.137

Tabel 5.5: Ratio of automorphisms of type I and type II obtained during the
orderly generation of strongly regular graphs.

We say that a permutation π ∈ Aut M is an automorphism of type I if it stabi-
lizes the element n. We say that π is an automorphism of type II if it satisfies
(n− 1)π = n and nπ = n− 1. Table 5.5 represents empirical data obtained from
the orderly generation of strongly regular graphs. The ratio of automorphisms
of type I and type II encountered by canonicity Algorithm 5.5 is listed. The lar-
ge ratio of automorphisms of type I, and to a lesser extent of type II, suggests

that we can use the strong generating sets S
(0)
Aut Mn−1

and S
(0)
Aut Mn−2

to easily

176 5 Canonicity test

acquire some of the generators of S
(0)
Aut M. Algorithm 5.9 illustrates the use of

these strong generating sets. For future notational simplicity we assume that

S̄
(b)
Aut Ma

denotes the empty set whenever a < 2 or b < 0. Prior to the traversal

of U(s)−U(s+1) with s ∈ {n− 2, . . . , 0}, we apply one or both of the following
techniques (❶ in Algorithm 5.9):

1. For each π ∈ S̄
(s)
Aut Mn−1

we check whether jπ is the minimal element in

(jπ)〈S
(s)
Aut M〉. If so we then check whether

M(s+1)π...(n−1)π,n = Ms+1...n−1,n.

If both tuples are equal, then extension of π to {1, . . . , n} (with nπ =
n), abbreviated by πtypeI, is an automorphism of M of type I. Note that

πtypeI is added to S̄
(s)
Aut M and the corresponding orbit partition should be

updated accordingly (❷ in Algorithm 5.9).

2. For each π ∈ S̄
(s)
Aut Mn−2

we check whether jπ is the minimal element in

(jπ)〈S
(s)
Aut M〉. If so, we then check whether

M1π ...(n−2)π,n = M1...n−2,n−1 and M1π ...(n−2)π ,n−1 = M1...n−2,n.

If both equalities hold, then the extension of π to {1, . . . , n} with (n −
1)π = n and nπ = n− 1 , abbreviated by πtypeI I, is an automorphism of

M of type II. Note that πtypeI I is added to S̄
(s)
Aut M and the corresponding

orbit partition should be updated accordingly (❸ in Algorithm 5.9).

Because of the very low overhead cost involved, we apply the first refinement
before the traversal of each stabilizer difference U(s)−U(s+1). We apply the se-
cond refinement only before the traversal of stabilizer differences U(s)−U(s+1)

with relatively small s. The occurrence of automorphism of type II is less fre-
quent and this technique involves a somewhat higher overhead cost. But still, at
shallow levels we cannot ignore the possible advantage that large cosets may be
discarded from traversal. Finally note that as a side effect of both refinements
we may find a counterexample to the minimality of M.

The application of our canonicity algorithm during a single generation guaran-
tees us that the matrix M ∈ Mn must be 0-lexically ordered. As a result of

5.5 Minimality and automorphism group submatrices 177

this we can check instantly whether or not a given transposition (k k + 1) is an
automorphism of Ml with l ∈ {2, . . . , n} and k ∈ {1, . . . , l − 1}. The second

strategy uses these transpositions to further optimize our canonicity algorithm.

Theorem 5.5.5. Let the matrix M ∈ Mn be lexically ordered, let π ∈ Sym(n)
and i ∈ {1, . . . , n− 2} such that (π M)i+1 = Mi+1 and

errπi−1(M) = errπi (M) = errπi+1(M) > i + 1 (5.42)

Write e = errπi−1(M) and ρ = (i i + 1). If (ρM)e−1 = Me−1, then we have

err
ρ π
i (M) = errπi (M), act

ρ π
i (M) = actπi (M), piv

ρ π
i (M) = pivπi (M).

Moreover, if g M > M for each g ∈ U(i) π , then h M > M for each h ∈ U(i)ρ π .

Proof : (1) For each x ∈ {i + 2, . . . , n} we may write

tuπi+1(M)x−(i+1) = (π M)1...i+1, jx (5.43)

with jx ∈ {i + 2, . . . , n}. Also note that tui+1(M)x−(i+1) = M1...i+1,x for each
such x. Moreover, by (5.42) we have

tui+1(M)k−(i+1) = tuπi+1(M)k−(i+1) (5.44)

when k ∈ {i + 2, . . . , e− 1}. Hence for such k we find that

(π M)1...i+1, jk
= tuπi+1(M)k−(i+1) = tui+1(M)k−(i+1) = M1...i+1,k

and in particular (π M)i, jk
= Mi,k and (π M)i+1, jk

= Mi+1,k. Therefore, as
(ρM)e−1 = Me−1 we have

(π M)i, jk
= Mi,k = Miρ,kρ = Mi+1,k = (π M)i+1, jk

= M(i+1)π, jk
π = M(i+1)ρ π, jk

ρ π

= (ρ π M)i, jk
. (5.45)

and similarly (π M)i+1, jk
= (ρ π M)i+1, jk

. Also we find for each j, l 6∈ {i, i + 1}
that

(π M) j,l = M jπ ,lπ = M jρ π ,lρ π = (ρ π M) j,l. (5.46)

Combining (5.46) and (5.45) we find for each k ∈ {i + 2, . . . , e− 1} and l ∈
{e, . . . , n} that

(ρ π M)1...i+1, jk
= (π M)1...i+1, jk

and (ρ π M)1...i−1, jl
= (π M)1...i−1, jl

. (5.47)

178 5 Canonicity test

Using (5.42) we find that

pivπi−1(M) = pivπi (M) = pivπi+1(M)
actπi−1(M) = actπi (M) = actπi+1(M)

(5.48)

according to Theorem 5.4.17 and Corollary 5.4.1. Write p = pivπi+1(M). Note
that p ≤ i− 1. We distinguish between the following cases:

• If actπi+1(M) = 1, then e ≤ n and p 6= 0. Hence for each l ∈ {e, . . . , n} we
have that (π M)1...p, je ≤ (π M)1...p, jl

and

M1...p−1,e = (π M)1...p−1, je Mp,e < (π M)p, je (5.49)

By (5.44), (5.47) and (5.49), we therefore find that

err
ρ π
i+1(M) = errπi+1(M)

act
ρ π
i+1(M) = actπi+1(M)

piv
ρ π
i+1(M) = pivπi+1(M). (5.50)

• If actπi+1(M) = −1, then e ≤ n and p 6= 0. Hence for each l ∈ {e, . . . , n}
we have that (π M)1...p, je ≤ (π M)1...p, jl

and

M1...p−1,e = (π M)1...p−1, je Mp,e > (π M)p, je (5.51)

By (5.44), (5.47) and (5.51), we find again that (5.50) holds.

• If actπi+1(M) = 0, then e = n + 1 and p = 0. By (5.44) and (5.47) we find
again that (5.50) holds.

Since ρ π ∈ U(i−1)π we have errπi−1(M) = err
ρ π
i−1(M). By (5.50) we find

according to Theorem 5.4.17 and Corollary 5.4.1 that err
ρ π
i (M) = errπi (M),

act
ρ π
i (M) = actπi (M), piv

ρ π
i (M) = pivπi (M) which proves the first part of the

theorem.

(2) Since (π M)i+1 = Mi+1 and errπi (M) = errπi+1(M), we have

tui(M)1 = tuπi (M)1 = (π M)1...i,i+1 (5.52)

and for each x ∈ {i + 2, . . . , e− 1} we have

tui(M)x−i = tuπi (M)x−i = (π M)1...i, jx (5.53)

5.5 Minimality and automorphism group submatrices 179

where jx is the same as in (5.43). Moreover, since (ρ π M)i+1 = Mi+1 and
err
ρ π
i+1(M) = err

ρ π
i (M) = errπi (M), we have

tui(M)1 = tu
ρ π
i (M)1 = (ρ π M)1...i,i+1 (5.54)

and using (5.47) and (5.50) we find that

tui(M)x−i = tu
ρ π
i (M)x−i = (ρ π M)1...i, jx

(5.55)

for each such x and jx. For each h ∈ U(i)ρ π there exist a unique g ∈ U(i) π such
that h = g (iπ (i + 1)π). Because g M > M, there exists an s ∈ {i + 1, . . . , n}
such that (g M)s−1 = Ms−1 and (g M)s > Ms. Hence, as g ∈ U(i) π and
errπi (M) = e we find that s ≤ e. Indeed, if s > e then (g M)e = Me and then for
all j ∈ {i + 1, . . . , e}

tui(M) j−i = M1...i, j = (g M)1...i, j = tuπi (M) j−i (5.56)

which contradicts errπi (M) = e. Hence for j ∈ {i + 1, . . . , s− 1} we find that

jg ∈ V = {(i + 1)π} ∪ { ji+2
π , . . . , je−1

π} ∪ X

jh ∈W = {iπ} ∪ { ji+2
π , . . . , je−1

π} ∪ X (5.57)

where jx
π ∈ X if and only if x ≥ e and tuπi (M)x−i = tuπi (M)e−1−i.

Write y = (i + 1)π g−1
. Hence we have

ig = iπ , yg = (i + 1)π , ih = (i + 1)π , yh = iπ and pg = ph (5.58)

when p 6∈ {i, l}. Moreover, the following relations hold:

• If k, m 6∈ {i, l}, then using (5.58) we have

(g M)k,m = (h M)k,m. (5.59)

• If k < i and m ∈ {i, y}, then using (5.58) we have

(g M)k,i = Mkg ,ig = Mkπ ,iπ = (π M)k,i

= (ρ π M)k,i = Mkρ π ,iρ π = Mkπ ,(i+1)π

= Mkh ,ih = (h M)k,i (5.60)

(g M)k,y = Mkg ,yg = Mkπ ,(i+1)π = (π M)k,i+1

= (ρ π M)k,i+1 = Mkρ π ,(i+1)ρ π = Mkπ ,iπ

= Mkh ,yh = (h M)k,y (5.61)

180 5 Canonicity test

because g, h ∈ U(i−1)π and (ρ π M)i+1 = (π M)i+1,

• If kg ∈ V \ {(i + 1)π}, among which kg with k ∈ {i + 2, . . . , s− 1} \ {y},
and m ∈ {i, y}, then using (5.45) and (5.58) we have

(g M)k,i = Mkg ,iπ = M jπx ,iπ = (π M) jx,i

= (ρ π M) jx,i = M jx
ρ π ,iρ π = M jx

π ,(i+1)π

= Mkπ ,(i+1)π = (h M)k,i (5.62)

(g M)k,y = Mkg ,(i+1)π = M jπx ,(i+1)π = (π M) jx,i+1

= (ρ π M) jx,i+1 = M jx
ρ π ,(i+1)ρ π = M jx

π ,iπ

= Mkπ ,iπ = (h M)k,y (5.63)

where x ∈ {i + 2, . . . , e− 1}.
• Finally we have (g M)i,i = (h M)l,l and

(g M)i,y = Miπ ,(i+1)π = M(i+1)π,iπ = (h M)i,y. (5.64)

Hence for each k, m ∈ {1, . . . , s− 1}we have (g M)k,m = (h M)k,m and therefore

(h M)s−1 = (g M)s−1 = Ms−1. (5.65)

Since (g M)s > Ms we have (g M)1...s−1,s > M1...s−1,s. If sg ∈ V, then by
(5.59–5.64) we have

M1...s−1,s < (g M)1...s−1,s = (h M)1...s−1,s. (5.66)

Otherwise, if sg 6∈ V, then we distinguish between the following cases:

• Let actπi (M) = 1 and let sg = jx
π with x ∈ {e, . . . , n}, then using (5.59)

we find that

M1...p,s ≤ M1...p,e < (π M)1...p, jx = (g M)1...p,s = (h M)1...p,s. (5.67)

• Let actπi (M) = −1. Note that in this particular case s 6= e; otherwise

σ M < M whereσ = g (eg je
π) ∈ U(i) π . Let sg = jx

π with x ∈ {e, . . . , n},
then using (5.59) we find that

M1...p,s ≤ M1...p,e−1 < (π M)1...p, jx = (g M)1...p,s = (h M)1...p,s. (5.68)

5.5 Minimality and automorphism group submatrices 181

• Let actπi (M) = 0. Note that in this particular case s 6= e, because e =
n + 1. Clearly we have jg ∈ V.

Hence using (5.65) and (5.66–5.68), we find that (h M)s > Ms which proves
the second part of the theorem.

Corollary 5.5.1. Let the matrix M ∈ Mn be lexically ordered, let π ∈ Sym(n)
and i ∈ {1, . . . , n− 2}, k ∈ {1, . . . , n− i− 1} such that (π M)i+k = Mi+k and

errπi−1(M) = errπi (M) = . . . = errπi+k(M) > i + k (5.69)

Write e = errπi−1(M) and ρ = (i i + k). If (ρM)e−1 = Me−1, then we have

err
ρ π
i (M) = errπi (M), act

ρ π
i (M) = actπi (M), piv

ρ π
i (M) = pivπi (M).

Moreover, if g M > M for each g ∈ U(i) π , then h M > M for each h ∈ U(i)ρ π .

⋄

Corollary 5.5.1 plays a central role in some of the improvements Algorithm
5.9 makes on Algorithm 5.8. Recall that the functions rightCoset(π , i ,s)
and rightCosetLast(π , i ,s) check whether a permutation h ∈ U(i−1)π ⊂
U(s) −U(s+1) can be found such that h M < M. If still necessary, these func-

tions successively consider each right coset U(i) π ′ with π ′ = (i jπ
−1

) and

j ∈ lexπi−1(M)[1]. If such a right coset U(i) π ′ turns out not to contain any coun-
terexample to the minimality of M nor any automorphism of M, Algorithm 5.9
now systematically invokes the method subTranspose(π ′, i ,s) (❺ in Algorithm
5.9).

For each level l ∈ {1, . . . , n − 1} in the recursion, Algorithm 5.9 maintains

an additional set Cl of marks. Write e = errπ
′

i (M), p = pivπ
′

i (M) and q =
max(s + 1, p) + 1. For each j ∈ {i − 1, . . . , q}, the method call subTranspo-

se(π ′, i ,s) adds the mark iπ
′
to the set C j whenever (j i) ∈ Aut Me−1. Once we

have considered the right coset U(i−1)π entirely and have not found a coun-
terexample to the minimality of M, Algorithm 5.9 now uses the stored marks
to discard additional right cosets. More precisely, when in the remainder of
the traversal of U(q−1) π we are about to consider a right coset U(j)τ with
j ∈ {q, . . . , i − 1} such that the mark jτ ∈ C j, we can discard this right coset

U(j) τ entirely (❹ in Algorithm 5.9). Indeed h M > M for each h ∈ U(j)τ ,
according to Corollary 5.5.1.

182 5 Canonicity test

Example 5.26. Let σ = (1 2). Consider the lexically ordered matrix M ∈
M6 below. The recursion tree shown corresponds to the traversal of U(1)σ by
Algorithm 5.4.

M =











0 1 1 1 1 2
1 0 1 2 2 1
1 1 0 2 2 2
1 2 2 0 1 1
1 2 2 1 0 2
2 1 2 1 2 0











(1 2 3)

(1 2 3)(4 6) (1 2 3)(4 6 5)

(1 2 3)(1 2)

(1 2)

(1 2)

(1 2)(4 6)

(1 2)(4 6) (1 2)(4 6 5)

(1 2)(3 6)

(1 2)(3 5)

(1 2)

(1 2 4) (1 2 5)

(1 2 6)

(1 2 3)(4 5)
(1 2 3)(4 6)

(1 2 3 5)

(1 2 3 6)(1 2)(3 4) (1 2 3 4)

(1 2 6)(3 5) (1 2 6)(3 5)(1 2 6)

(1 2)(4 5)

(1 2 3)

(1 2 6 3)

The light shaded areas contain the right cosets discarded by Algorithm 5.5
while the dark shaded area contains the right cosets which are now also dis-
carded by Algorithm 5.9. Note that lexσ1 (M) = ({1, 3, 6}, {4, 5}), lex1(M) =
({2, 3, 4, 5}, {6}) and

tu1(M) = {(1), (1), (1), (1), (2)}
tuσ1 (M) = {(1), (1), (1), (2), (2)}.

Hence errσ1 (M) = 5. Therefore we find that only the right cosets U(2) (1 2),

U(2) (1 2 3) and U(2) (1 2 6) need to be considered as lexσ1 (M)[1] = {1, 3, 6}.

While traversing the right coset U(2) (1 2) we find that g M > M for each g ∈
U(2) (1 2). Moreover errσ2 (M) = errσ3 (M) = 5. Since (2 3) ∈ (Aut M4)

(1), we

find that h M > M for each h ∈ U(2) (1 2 3), according to Corollary 5.5.1. Hence

we may additionally discard the right coset U(2) (1 2 3). •

In order to outline the third strategy we introduce the following theorems:

Theorem 5.5.6. Let M ∈ Mn be lexically ordered. Let i ∈ {2, . . . , n− 2} and

π ∈ Sym(n) such that

e = errπi−1(M) > i, actπi−1(M) = 1, and (π M)e−1 = Me−1.

Let ρ ∈ U(i−1) such that (ρM)e−1 = Me−1 and

{iρ, . . . , (e− 1)ρ} = {i, . . . , e− 1} and {eρ, . . . , nρ} = {e, . . . , n}.

5.5 Minimality and automorphism group submatrices 183

If g M > M for each g ∈ U(i) π , then h M > M for each h ∈ U(i)ρ π .

Proof : Let x, y ∈ {1, . . . , e− 1} and write k = xρ, l = yρ then k, l ∈ {1, . . . , e−
1}. Since (π M)e−1 = (ρM)e−1 = Me−1 we have

Mxπ ,yπ = Mx,y = Mxρ,yρ = Mk,l = Mkπ ,lπ = Mxρ π ,yρ π . (5.70)

Hence we find that also (ρ π M)e−1 = Me−1.

For each x ∈ {i, . . . , n} we may write

tuπi−1(M)x−(i−1) = (π M)1...i−1, jx (5.71)

with jx ∈ {i, . . . , n}. Also note that tui−1(M)x−(i−1) = M1...i−1,x for each such

x. Moreover, because e = errπi−1(M) we have

tui−1(M)k−(i−1) = tuπi−1(M)k−(i−1) (5.72)

when k ∈ {i, . . . , e− 1}. Hence for such k we find that

(π M)1...i−1, jk
= tuπi−1(M)k−(i−1) = tui−1(M)k−(i−1) = M1...i−1,k

Therefore, as actπi−1(M) = 1 and (π M)1...i−1,k = M1...i−1,k for such k, we find
that

{i, . . . , e− 1} = { ji, . . . , je−1} and {e, . . . , n} = { je, . . . , jn} (5.73)

Let now x, y ∈ {i, . . . , e− 1}, then we find that

M jx
π , jy

π = M jx
ρ π , jy

ρ π , (5.74)

according to (5.70).

For each h ∈ U(i)ρ π there exists a unique g ∈ U(i) π such that h = g π−1 ρ π .
Because g M > M, there exists an s ∈ {i + 1, . . . , n} such that (g M)s−1 = Ms−1

and (g M)s > Ms. Hence as g ∈ U(i−1)π and errπi−1(M) = e, we find that s ≤ e.
Indeed, if s > e then (g M)e = Me and then for all j ∈ {i, . . . , e} we have

tui−1(M) j−(i−1) = M1...i−1, j = (g M)1...i−1, j = tuπi−1(M) j−(i−1) (5.75)

184 5 Canonicity test

which contradicts errπi−1(M) = e. Hence for each j ∈ {i, . . . , s− 1} we find that

jg, jh ∈ V = { ji
π , . . . , je−1

π} (5.76)

Hence for each k ∈ {i, . . . , s− 1} we may write kg = jxk
π ∈ V. And then

kh = kg π−1 ρ π = (jxk
π)π

−1 ρ π = jxk
ρ π (5.77)

Moreover the following relations hold:

• Let k, m ∈ {1, . . . , i− 1} then as g, h ∈ U(i−1)π we have

(g M)k,m = (h M)k,m. (5.78)

• Let k ∈ {i, . . . , e− 1}, m ∈ {1, . . . , i− 1}, and kg = jxk
π ∈ V, then

(g M)k,m = Mkg ,mg = M jxk
π ,mπ

= M jxk
ρ π ,mh = Mkh ,mh

= (h M)k,m (5.79)

since g, h ∈ U(i−1) π and using (5.77).

• Let k, m ∈ {i, . . . , e− 1}, and then kg = jxk
π ∈ V and mg = jxm

π ∈ V,
then

(g M)k,m = Mkg ,mg = M jxk
π , jxm

π

= M jxk
ρ π , jxm

ρ π = Mkh ,mh

= (h M)k,m (5.80)

using (5.77).

Hence for each k, m ∈ {1, . . . , s− 1}we have (g M)k,m = (h M)k,m and therefore

(h M)s−1 = (g M)s−1 = Ms−1. (5.81)

Since (g M)s > Ms we have (g M)1...s−1,s > M1...s−1,s. We distinguish between
the following cases:

• If sg ∈ V, then by (5.78–5.80) we have

M1...s−1,s < (g M)1...s−1,s = (h M)1...s−1,s. (5.82)

5.5 Minimality and automorphism group submatrices 185

• Otherwise, if sg 6∈ V, say sg = jx
π with x ∈ {e, . . . , n}, then sh = jy

π with
y ∈ {e, . . . , n} and we find that

M1...p,s ≤ M1...p,e < (π M)1...p, jy = (h M)1...p,s (5.83)

Hence by (5.81) and (5.82–5.83), we find that (h M)s > Ms.

Theorem 5.5.7. Let M ∈ Mn be lexically ordered and let i ∈ {2, . . . , n− 2} and

π ∈ Sym(n) such that

e = errπi−1(M) > i, actπi−1(M) = 1, and (π M)e−1 = Me−1.

Let σ ∈ U(i−1)π such that iσ = kπ for some k ∈ i(Aut Me−1)
(i−1)

. If g M > M for

each g ∈ U(i) π , then h M > M for each h ∈ U(i)σ.

Proof : Consider τ ∈ (Aut Me−1)
(i−1) such that iτ = k. Let ρ be the extension

of τ to {1, . . . , n} (with jρ = j for each j ∈ {e, . . . , n}). Hence τ Me−1 =

(ρM)e−1 = Me−1. Therefore we find that h M > M for each h ∈ U(i)σ,
according to Theorem 5.5.6. After all, ρ π and σ have the same i-prefix.

Theorem 5.5.7 plays a central role in some of the improvements Algorithm 5.9
makes on Algorithm 5.8. Write e = errπi−1(M) and p = pivπi−1(M). Recall that
the functions rightCoset(π , i ,s) and rightCosetLast(π , i ,s) check whether a
permutation h ∈ U(i−1) π ⊂ U(s)−U(s+1) can be found such that h M < M. If
errπi−1(M) ≤ i + 1 and actπi−1(M) = 1, then the action to be taken is to discard

U(i−1) π entirely because g M > M for each g ∈ U(i−1) π . In this particular
case Algorithm 5.9 now systematically invokes the method subAutomo. More
precisely, we distinguish between the following two cases:

• If errπi−1(M) = i, then we have (π M)e−1 = Me−1. Moreover, for each
j ∈ {pivπi−1(M), . . . , i − 2} we find that errπj (M) = e and actπj (M) = 1,

according to Theorem 5.4.17 and Corollary 5.4.1. Hence, according to
Theorem 5.5.7 we find for each such j that h M > M where h ∈ U(j+1)σ

such thatσ ∈ U(j) π , (j + 1)σ = kπ and k ∈ (j + 1)(Aut Me−1)
(j)

. Clearly no

such right coset U(j+1)σ should ever be considered in the remainder of
the traversal of U(p) π . So as to avoid the traversal of these right cosets,
Algorithm 5.9 invokes the method subAutomo(π , i) (❼ in Algorithm 5.9).
For each j ∈ {pivπi−1(M), . . . , i− 2}, this method adds the mark kπ to the

set C j+1 when k ∈ (j + 1)(Aut Me−1)
(j)

.

186 5 Canonicity test

• If errπi−1(M) = i + 1, then (π ′ M)e−1 = Me−1 with π ′ = (i lπ
−1

) and

lexπi−1(M)[1] = {l}. Note that errπ
′

i (M) = e, pivπ
′

i (M) = p, actπ
′

i (M) = 1

and g′ M > M for each g′ ∈ U(i) π ′. Hence similarly as in the first ca-
se, Algorithm 5.9 invokes the method subAutomo(π ′, i) (❻ in Algorithm
5.9).

Once we have discarded the right coset U(i−1)π , Algorithm 5.9 uses the stored
marks in such a way that when in the remainder of the traversal of U(p) π

we are about to consider a right coset U(j+1)τ with j ∈ {p, . . . , i − 2} and

τ ∈ U(j) π such that (j + 1)τ ∈ C j+1, we can discard this right coset entirely
(❹ in Algorithm 5.9).

While checking the canonicity of M ∈ Mn, the incorporation of this tech-
nique into our canonicity algorithm, requires us to check whether j ∈ (j +

1)(Aut Me−1)
(j)

where e ∈ {3, . . . , n− 1} and j ∈ {0, . . . , e− 2} (❽ in Algorithm
5.9). In order to do so these particular orbits need to be stored during earlier
canonicity test on each of the leading principal submatrices of M. This can
easily be done using the orbit partition we already maintain during each such
canonicity test.

Finally, the question remains whether we still obtain, as in Algorithm 5.8, a
strong generating set S = S(0) for the automorphism group Aut M with base
[1, . . . , n] whenever M is minimal. As stated, the first technique only tries to
guess some of the generators of S before we actually encounter them during
traversal. Moreover, the second and third technique only discard right cosets
which are known not to contain any automorphism of M. Hence when M is
minimal, Algorithm 5.9 still obtains a strong generating set S = S(0) for the
automorphism group Aut M with base [1, . . . , n].

5.5.3 Analysis and empirical data

The effectiveness of using the minimality and automorphism group of leading
principal submatrices is examined by comparing data obtained from the order-
ly generation of the same classes of graphs as in Section 5.2.3. In Table 5.6,
Algorithm 5.5, 5.8 and 5.9 are compared. The total number of graphs along
with the total number of permutations which are checked during all executed

5.5 Minimality and automorphism group submatrices 187

canonicity tests is given. The empirical data illustrates that both techniques
systematically reduce the number of permutations which are checked during
orderly generation.

188 5 Canonicity test

Algorithm 5.9 Checks whether M ∈ Mn is in column order canonical form.

function isCanonical(M ∈ Mn) : boolean

1: for i ← n− 1, . . . 1 do
2: if guessGen(i) ∨

diffStab(i) < 0 then ❶

3: return false
4: return true

function guessGen(i : int) : boolean

1: for all π ∈ S̄
(i−1)
Aut Mn−1

do

2: if iπ = min((iπ)S
(i−1)
Aut M) then

3: if Miπ ...(n−1)π ,n = Mi...n−1,n then

4: S̄
(i−1)
Aut M ← S̄

(i−1)
Aut M ∪ πtypeI ❷

5: else if Miπ ...(n−1)π,n < Mi...n−1,n then
6: return true
7: for all π ∈ S̄

(i−1)
Aut Mn−2

do

8: if iπ = min((iπ)S
(i−1)
Aut M)) then

9: if M1π ...(n−2)π ,n = M1...n−2,n−1 then
10: if M1π ...(n−2)π ,n−1 = M1...n−2,n then

11: S̄
(i−1)
Aut M ← S̄

(i−1)
Aut M ∪ πtypeI I ❸

12: else if M1π ...(n−2)π ,n−1 < M1...n−2,n then
13: return true
14: else if M1π ...(n−2)π,n < M1...n−2,n−1 then
15: return true
16: return false

method subAutomo(π ∈ Sym(n), i : int)

1: e← errπi−1(M)
2: for j← pivπi−1(M), . . . , i− 2 do

3: for all k ∈ (j + 1)(Aut Me−1)
(j)

do ❽
4: C j+1 ← C j+1 ∪ {kπ}

5.5 Minimality and automorphism group submatrices 189

Algorithm 5.9 Checks whether M ∈ Mn is in column order canonical form.

function diffStab(i : int) : int

1: for all j ∈ (lexi−1(M)[1] \ {i}) do

2: if j = min(jS
(i−1)
Aut M) then

3: refine((i j), i)
4: if j 6= n then
5: d← rightCosetLast((i j), i + 1, i− 1)
6: else
7: d← rightCoset((i j), i + 1, i− 1)
8: if d < 0 then
9: return d

10: return 1

function rightCoset(π ∈ U(s)−U(s+1), i, s : int) : int

1: if checkErrorLevel(π , i, s) then
2: return actπi−1(M)
3: else
4: Ci ← ∅
5: for all j ∈ lexπi−1(M)[1] do
6: if j 6∈ Ci then ❹

7: π ′ ← (i jπ
−1

) π
8: refine(π ′, i)
9: d← rightCoset(π ′, i + 1, s)

10: if d < 0 ∨ d = 0 then
11: return d
12: else
13: subTranspose(π ′, i, s) ❺
14: return 1

190 5 Canonicity test

Algorithm 5.9 Checks whether M ∈ Mn is in column order canonical form.

function rightCosetLast(π ∈ U(s)−U(s+1), i, s : int) : int

1: if checkErrorLevel(π , i, s) then
2: return actπi−1(M)
3: else if checkLast(i) then
4: return 1
5: else
6: Ci ← ∅
7: for all j ∈ lexπi−1(M)[1] do
8: if j 6∈ Ci then ❹

9: π ′ ← (i jπ
−1

) π
10: refine(π ′, i)
11: if j 6= n then
12: d← rightCosetLast(π ′, i + 1, s)
13: else
14: d← rightCoset(π ′, i + 1, s)
15: if d < 0 ∨ d = 0 then
16: return d
17: else
18: subTranspose(π ′, i, s) ❺

19: return 1

method subTranspose(π ∈ Sym(n), i, s : int)

1: e← errπi (M), p← pivπi (M)
2: j← i− 1
3: while j > max(s + 1, p)∧ (j j + 1) ∈ Aut Me−1 do
4: C j ← C j ∪ {iπ}
5: j← j− 1

5.5 Minimality and automorphism group submatrices 191

Algorithm 5.9 Checks whether M ∈ Mn is in column order canonical form.

function checkErrorLevel(π ∈ U(s)−U(s+1), i, s : int) : boolean

1: if errπi−1(M) ≤ i + 1 then
2: if errπi−1(M) = n + 1 then

3: S̄
(s)
Aut M ← S̄

(s)
Aut M ∪ π

4: else if actπi−1(M) = 1 then
5: if errπi−1(M) = i + 1 then

6: π ′ ← (i jπ
−1

)π with lexπi−1(M)[1] = { j}
7: subAutomo(π ′, i) ❻
8: else
9: subAutomo(π , i) ❼

10: return true
11: else
12: return false

function checkLast(π ∈ Sym(n), i : int) : boolean

1: ei−1 ← errπi−1(M)
2: return (actπi−1(M) = 1 ∧M1...i−1,ei−1

< M1π ...(i−1)π,n) ∨
(actπi−1(M) = −1 ∧M1...i−1,ei−1

≤ M1π ...(i−1)π,n)

192 5 Canonicity test

Algorithm 5.5 Algorithm 5.8 Algorithm 5.9
v k λ µ ∃ No. of perm. No. of perm. No. of perm.

5 2 0 1 1 15 15 7
9 4 1 2 1 123 98 57

10 3 0 1 1 161 133 95
6 3 4 286 174 87

13 6 2 3 1 737 459 425
15 6 1 3 1 1 172 733 431

8 4 4 1 731 659 293
16 5 0 2 1 2 762 1 048 371

10 6 6 4 530 1 199 578
16 6 2 2 2 2 953 1 568 895

9 4 6 5 600 3 132 2 244
17 8 3 4 1 3 751 1 815 1 664
21 10 3 6 1 6 966 3 594 1 568

10 5 4 14 205 3 457 1 072
25 8 3 2 1 35 626 13 296 1 231

16 9 12 211 670 87 601 63 330
25 12 5 6 15 2 027435 888 703 520 977
26 10 3 4 10 714 234 298 991 159 233

15 8 9 18 139 933 5 961 926 3 600 190
27 10 1 5 1 95 807 27 456 5 931

16 10 8 231 653 33 770 11 392
28 12 6 4 4 338 610 52 808 29 220

15 6 10 256 250 112 382 86 010
29 14 6 7 41 203 348 967 74 443 194 68 443 130
36 10 4 2 1 1 194 185 384 989 3 388

25 16 20 9 066 020 3 121 180 1 853 703
36 14 4 6 180 1 415 391 817 323 762 600 304 992 125
36 14 7 4 1 1 114 843 195 496 4 910

21 10 15 524 654 225 287 48 432
40 12 2 4 28 8 787 084 036 567 121 307 414 216 280
45 16 8 4 1 15 685 156 2 064 434 9 077

28 15 21 6 755 242 2 635 462 807 244
50 7 0 1 1 331 518 926 74 210 823 8 222 217

105 32 4 12 1 592 203 059 63 654 574 11 959 857

Tabel 5.6: Comparison of Algorithm 5.5, 5.8 and 5.9 applied in an orderly
algorithm for strongly regular graphs

6 Case studies

”Forty-two!ijelled Loonquawl. ”Is that all you’ve got to show for
seven and a half million years’ work?I checked it very thorough-
ly,”said the computer, änd that quite definitely is the answer.”[D. ADAMS,THE

HITCHHIKER’S GUIDE TO THE GALAXY]

As classification results are themselves of mathematical interest, we present in
this final chapter several case studies together with new complete classifications
results on association schemes, strongly regular and distance regular graphs
obtained using (variants of) the generation algorithms as described in Chapters
4 and 5. Some of these new classification results appear in [21, 22, 30, 31],
while other classification results still remain to be published. Note that the
results in [22, 30] are listed in [14].

Attacking computational hard classification problems sometimes requires to con-
sider and tackle such problems as individual instances. After all, often an algo-
rithm that applies to a general class of combinatorial classification problems,
will not be feasible for some particular instances. If the latter applies, we out-
line for each such instance the principal modifications incorporated into the
general generation algorithm.

194 6 Case studies

The remainder of this chapter is organized as follows. In Section 6.1 we present
new (complete) classification results on strongly regular graphs. Furthermore,
a number of earlier classification results on strongly regular graphs are verified.
In [101], E. Van Dam lists all feasible parameter sets for three-class association
schemes on at most 100 vertices. In Section 6.2 we report on new classification
results for several cases in this list which were still open. Section 6.3 focuses on
the classification of the Perkel graph, a primitive distance regular graph – which
is also listed in [101] – for which the question of existence was not completely
solved.

Remark 6.1. Note that the author of this dissertation is responsible for the
design and implementation of all generation algorithms applied to obtain the
classification results listed in this chapter. Mathematical interpretations of these
classification results are largely due to the promotor of this dissertation. Howe-
ver, for matters of completeness, we sometimes opt to incorporate these inter-
pretations into this chapter. •

6.1 Strongly regular graphs

In this section we present some new classification results on strongly regular
graphs. Some of these classification results appear in [22, 30].

6.1.1 Introduction

Recall that a strongly regular graph with parameters (v, k, λ,µ), abbreviated
by srg(v, k, λ,µ), is a graph on v vertices that is regular of degree k such that
each pair of adjacent vertices has λ common neighbours, and each pair of non-
adjacent vertices has µ common neighbours. The intersection matrices L1 and
L2 are defined by (2.17) which allow us to compute the eigenmatrix P and the
dual eigenmatrix Q which are defined by (2.31) and (2.33), respectively. For
every i ∈ {0, 1, 2}, the matrix entry P1i is an eigenvalue of the adjacency matrix
A with multiplicity Q0i. From this it is easily seen that the adjacency matrix A
has three distinct eigenvalues, namely, θ0 = k of multiplicity m0 = 1 and two
others, θ1 > θ2, say, which are the solutions of x2 + (µ − λ)x + (µ − k) = 0,

6.1 Strongly regular graphs 195

of multiplicities m1 and m2, determined by the equations 1 + m1 + m2 = v
and k + m1θ1 + m2θ2 = 0. Table 6.1 lists the eigenvalues and multiplicities of
the adjacency matrix of the strongly regular graphs under consideration in this
chapter (see also [14]). The adjacency matrix A of a strongly regular graph has
some extra interesting algebraic properties. Recall that for each eigenvalue θi

we may define a corresponding minimal idempotent matrix Ei which is positive
semidefinite and has rank mi. E0 is the all-1 matrix J and E1 and E2 can be
computed as follows:

E1 =
(A−θ0 I)(A−θ2 I)

(θ1 −θ0)(θ1 −θ2)
E2 =

(A−θ0 I)(A−θ1 I)

(θ2 −θ0)(θ2 −θ1)
(6.1)

v k λ µ θ
m1

1 θ
m2

2 v k λ µ θ
m1

1 θ
m2

2

5 2 0 1 −1+
√

5
2

2 −1−
√

5
2

2
36 10 4 2 410 −225

9 4 1 2 14 −24 36 14 4 6 221 −414

10 3 0 1 15 −24 36 14 7 4 58 −227

13 6 2 3 −1+
√

13
2

6 −1−
√

13
2

6
36 15 6 6 315 −320

15 6 1 3 19 −35 40 12 2 4 224 −415

16 5 0 2 110 −35 45 12 3 3 320 −324

16 6 2 2 26 −29 45 16 8 4 69 −235

17 8 3 4 −1+
√

17
2

2 −1−
√

17
8

8
49 16 3 6 232 −516

21 10 3 6 114 −46 50 7 0 1 228 −321

25 8 3 2 38 −216 64 18 2 6 245 −618

25 12 5 6 212 −312 76 30 8 14 257 −818

26 10 3 4 213 −312 96 38 10 18 276 −1019

27 10 1 5 120 −56 105 32 4 12 284 −1020

28 12 6 4 47 −220 126 50 13 24 2105 −1320

29 14 6 7 −1+
√

29
2

14 −1−
√

29
2

14
176 70 18 34 2154 −1821

35 16 6 8 220 −414 253 112 36 60 2230 −2622

Tabel 6.1: Eigenvalues θ1 and θ2 with multiplicities m1 and m2 of the adjacency
matrix of strongly regular graphs.

A more classic alternative for our positive semidefiniteness method is based on

196 6 Case studies

the interlacing of eigenvalues of A (a very good reference for which is [52, 55]).
It is a consequence of this interlacing property that every principal submatrix P
of A has all its eigenvalues except the largest one lying in the interval [θ2,θ1].
Moreover, if P has order n it must have an eigenvalue θ2 with multiplicity at
least n−m2 − 1 and an eigenvalue θ1 with multiplicity at least n−m1 − 1.

As stated in Proposition 2.5.2, to avoid trivial examples we assume several con-
ditions on the parameters v, k, λ, µ. The question of existence, and ultimately,
classification, of strongly regular graphs satisfying these feasibility conditions
has occupied the minds of many over the years. The smallest case for which
these conditions are satisfied, but for which no strongly regular graph exists, is
given by (21, 10, 5, 4). At present all strongly regular graphs on v ≤ 36 vertices
are known. See, for example [13, 14] in conjunction with [72]. In addition
to those whose uniqueness can be established without the use of a computer,
there are some sporadic cases where the classification is complete. See [53],
[95] and [96]. The smallest set of feasible parameters (v, k, λ,µ) for which the
existence of the corresponding strongly regular graph is currently on doubt is
(65, 32, 15, 16). This is a particular example of the so-called half case.

6.1.2 Verification known results

As generation algorithms present answers to precise mathematical questions,
these algorithms should be well-tested. Each design decision outlined in Chap-
ter 4 and 5 was systematically tested against a list of known classification results
for strongly regular graphs. The corresponding (v, k, λ,µ) parameter sets are li-
sted in Table 6.2. The column labeled “CPU-time” gives the runtime of the
general classification algorithm, while the column labeled “No. nodes recursi-
on” indicates the size of the corresponding recursion tree. These results were
obtained on a single CPU with a clock speed of approximately 3 GHz. In the
comments column, references to earlier enumeration results are listed.

6.1.3 Strongly regular (45, 12, 3, 3) graphs

The strongly regular (45, 12, 3, 3) graphs are regular graphs on 45 points of de-
gree 12 such that any two distinct points have 3 neighbours in common. One

6.1 Strongly regular graphs 197

v k λ µ ∃ CPU-time No. nodes Comment
(cf. [14]) recursion

5 2 0 1 1 0.09 s 10 Coolsaet, Fack [20]

9 4 1 2 1 0.12 s 36 Coolsaet, Fack [20]

10 3 0 1 1 0.14 s 45 Coolsaet, Fack [20]

13 6 2 3 1 0.17 s 87 Coolsaet, Fack [20]

15 6 1 3 1 0.16 s 131 Coolsaet, Fack [20]

16 5 0 2 1 0.16 s 120 Coolsaet, Fack [20]

16 6 2 2 2 0.21 s 211 Coolsaet, Fack [20]

17 8 3 4 1 0.22 s 285 Coolsaet, Fack [20]

21 10 3 6 1 0.22 s 215 Coolsaet, Fack [20]

25 8 3 2 1 0.24 s 408 Coolsaet, Fack [20]

25 12 5 6 15 4.20 s 61 799 Paulus [86]

26 10 3 4 10 1.80 s 39 882 Paulus [86]

27 10 1 5 1 0.20 s 441 Coolsaet, Fack [20]

28 12 6 4 4 0.55 s 3 074
29 14 6 7 41 5 m 45 s 6 763 845 Bussemaker, Spence [97]

35 16 6 8 3854 7 h 18 m 8 s 360 810 530 McKay, Spence [72]

36 10 4 2 1 0.20 s 867 Coolsaet, Fack [20]

36 14 4 6 180 2 m 14 s 2 495 202 McKay, Spence [72]

36 14 7 4 1 0.30 s 1 666
36 15 6 6 32648 80 h 40 m 8 s 7 432 568 114 McKay, Spence [72]

40 12 2 4 28 2 m 18 s 2 900 915 Spence [96, 98]

45 16 8 4 1 0.90 s 2 302
49 16 3 6 0 53.20 s 884 431 Bussemaker, et al. [16]

50 7 0 1 1 3.50 s 1 950
64 18 2 6 167 5 h 33 m 8 s 204 853 126 Haemers, Spence [53]

Tabel 6.2: Verification known classification result for srg(v, k, λ,µ)s with v ≤
64.

198 6 Case studies

example of such an srg(45, 12, 3, 3) is provided by the point graph of the ge-
neralized quadrangle GQ(4, 2), and there are others already known, in fact 58
in total. These were found in [69] by R. Mathon and E. Spence in a search for
such graphs with a particular block structure. In this section we report on two
generation algorithms based on different techniques which have extended this
list to a total of 78 pairwise non-isomorphic graphs, providing a complete clas-
sification. The second algorithm was designed and implemented independently
by E. Spence. The complete classification has been published in [22].

The generation proceeds in several stages. In a preliminary stage both genera-
tion algorithms consider the plausible neighbourhood graphs Γ(x) of a vertex
x in an srg(45, 12, 3, 3). In what follows, we shall use the notation ∆ for any
such srg(45, 12, 3, 3). It is clear that a neighbourhood graph Γ(x) has 12 vertices
and is regular of degree 3. There exist (up to isomorphism) 94 regular graphs
of order 12 and degree 3 (they can easily be generated using geng [77]). Of
these, 21 can immediately be discarded as plausible neighbourhood graphs be-
cause they contain at least one pair of vertices that have more than two common
neighbours (which together with x violate λ = µ = 3).

In a further stage, the 73 matrices N1, . . . N73 obtained in this way are exten-
ded to (symmetric) principal submatrices M of order 21 which correspond to
possible subgraphs induced by Γ(x) ∪ Γ(y), where y ∈ Γ(x). Without loss of
generality we may reorder the rows and columns of M in such a way that
M, with vertices v1, v2, . . . , v21, say, takes the form as depicted in Figure 6.1.
Here x = v1, y = v2, Γ(x) has vertices v2, v3, . . . , v13 and Γ(y) has vertices
v1, v3, v4, v5, v14, . . . , v21. Thus, assuming Γ(x) and Γ(y) have been found, the
only part of M that is unknown corresponds to the adjacencies between vertices
v6, v7, . . . , v13 and v14, v15, . . . , v21, denoted by X in Figure 6.1.

We copy each of the matrices Ni in turn into the part of M which corresponds
to the subgraph induced by Γ(x) (cf. light grey part of Figure 6.1). In each
case, we then generate all possibilities for the adjacencies between vertices
v3, v4, . . . , v13 and vertices v14, v15, . . . , v21 and the mutual adjacencies between
vertices v14, v15, . . . , v21 (cf. X and dark grey part of Figure 6.1).

The first method recursively fills the upper diagonal matrix entries of columns
14 to 21, column by column, starting with column 14. The combinatorial cons-
traints and corresponding look-ahead strategy outlined in Section 4.1.1 together

6.1 Strongly regular graphs 199

M =























x→ 0 1 1 1 1

8 times
︷ ︸︸ ︷

1 · · · 1

8 times
︷ ︸︸ ︷

2 · · · 2
y→ 1 2 1 1 1 2 · · · 2 1 · · · 1

1 1 Γ(x)
1 1 ∩
1 1 Γ(y)
1 2
...

... X
1 2
2 1
...

... XT

2 1























Figuur 6.1: General form of the principal submatrix induced by Γ(x) ∪ Γ(y).

with the algebraic constraints outlined in Section 4.1.4 were used to constrain
this search process. Furthermore, this first method also involves a pruning cri-
terion based on the maximum clique size of ∆. From λ = 3 it follows that ∆
can have cliques of size at most 5, (and certainly must have one of size 3) and
hence that neighbourhood graphs in ∆ can have cliques of size at most 4. We
list the number of graphs Ni with a given clique size in Table 6.3.

Maximum clique size 4 3 2
Number of graphs 5 50 18

Tabel 6.3: Maximum clique size of plausible neighbourhood graphs.

Since M is to be embedded in the relation matrix of an srg(45, 12, 3, 3), if we
assume that that adjacency matrix has maximum clique size s (3 ≤ s ≤ 5), we
may also assume the same to be true for M. Moreover, we may assume that
both x and y belong to a clique of maximum size. Thus both Γ(x) and Γ(y) will
have maximum clique size s− 1. In the extension process to the matrix of order
21 we prune the search tree whenever we meet a clique which has a size larger
than s.

200 6 Case studies

Searching for such small cliques is not very expensive in time, because we alrea-
dy need to keep track of the number of common neighbours of any two points
in order to check the intersection constraints listed in Section 4.1.1. We use a
look-back strategy to further improve the clique search. Suppose that the choice
of 1 for the matrix entry (M)p,q completes a clique of size d + 1 (with d the size
of a maximum clique), which means that we are able to prune the search at this
point. Then this choice remains forbidden, so that Mp,q = 2, until a backtrack
occurs to the second last choice of matrix entry that contributed to the same
clique.

We also make use of another isomorphism rejection technique: we fix an orde-
ring of the list N1, . . . , N73 in such a way that the maximum clique size decreases
while we traverse the list from front to back. Then, whenever we have fully ge-
nerated the submatrix Γ(y) we determine using McKay’s program nauty [71],
the index of the unique graph in this list which is isomorphic to Γ(y). If this in-
dex is smaller than the index of Γ(x), we discard the result. Indeed, the matrix
we obtain by interchanging x and y in this result will also be generated during
the search and yields an isomorphic subgraph.

A final pruning criterion that avoids the construction of too many isomorphic
submatrices M, is that we require for each p, q ∈ Γ(y) \ {Γ(x)∪ {x}}with p ≤ q
that the tuple (Mp,1, . . . , Mp,21) is lexicographically smaller than or equal to the
tuple (Mq,1, . . . , Mq,21). This first method produced approximately 35, 000, 000
pairwise non-isomorphic candidates M.

The second method of generating possible 21× 21 submatrices differed essenti-
ally in only one way. When it came to filling in the entries of X in the matrix
M of Figure 6.1, these were generated column by column, starting with column
14. Similar combinatorial constraints where used as in the first method, whe-
reas the algebraic constraints were based on interlacing of eigenvalues of the
adjacency matrix. However no look-ahead strategies or dynamical variable or-
dering techniques were applied. So as to check the interlacing of eigenvalues,
an iterative procedure was used to determine eigenvalues to within a chosen er-
ror and with an upper bound to the number of iterations allowed. A candidate
matrix whose eigenvalues were not determined within the maximum number of
iterations was accepted even though its eigenvalues may well have been outsi-
de the required range. In the end this second method produced approximately
21, 000, 000 pairwise non-isomorphic candidates M.

6.1 Strongly regular graphs 201

In the last stage, having produced a list of non-isomorphic candidate submatri-
ces M, we attempt recursively to extend each of them to a full relation matrix R.
Again we apply all the constraints listed in Sections 4.1.1 and 4.1.4. Most of the
time the extension fails rather quickly. The application in this last stage of the
look-ahead strategy and dynamic variable ordering techniques certainly contri-
butes to this behaviour. Since most of the time the extension fails rather quickly
and checking which of the Ni is isomorphic to Γ(z) for a given z ∈ Γ(x) is a ra-
ther costly operation, it turns out to be no longer necessary in this last stage to
compare neighbourhood graphs of other points of Γ(x) with the list N1, . . . , N73.
We still prune on maximum clique sizes, because that check is fairly quick. As
in the first stage we we require for each p, q 6∈ Γ(y) \ {Γ(x) ∪ {x}} with p ≤ q
that the row (Rp,1, . . . , Rp,45) is lexicographically smaller or equal than the row
(Rq,1, . . . , Rq,45). Finally we use nauty [71] to filter out isomorphic matrices R
among the results obtained so that we retain exactly one representative from
each isomorphism class.

Maximum clique size 5 Maximum clique size 4

|Aut (srg)| number of srgs |Aut (srg)| number of srgs

51840 1 162 1

1152 1 54 1

216 1 18 5

72 2 9 1

48 3 6 16

36 1 3 7

18 1 2 15

12 3 1 8

10 1

8 3

4 5

2 2

Total 24 Total 54

Tabel 6.4: Automorphism group size for each srg(45, 12, 3, 3).

As stated, both computer programs independently proved that there are up
to isomorphism exactly 78 different strongly regular graphs with parameters
(v, k, λ,µ) = (45, 12, 3, 3), providing a complete classification. A file containing

202 6 Case studies

all of these graphs can be obtained from [97]. Of these 78 graphs, 24 graphs
contain a clique of size 5. There are 54 graphs which do not contain a clique of
size 5 but do have a clique of size 4. No srg(45, 12, 3, 3) exists which does not
contain a clique of size 4. In Table 6.4 we list these graphs and the sizes of their
automorphism groups. The column labeled “number of srgs” gives the number
of isomorphism classes of srg(45, 12, 3, 3)s whose automorphism group has the
size indicated in the column labeled “|Aut (srg)|”.

It may be of interest to the reader to know the extent of the computational
power and the computer languages that were used in the investigation. As
far as for the first generation algorithm, the language used was Java and the
computation done on a batch of 24 Linux-based AMD Athlon MP 1800 and 2600
PCs, while for the second generation algorithm, the computation was done on
a twin processor, 2.2 GHz Linux-based workstation with gcc’s C compiler. The
first generation algorithm took less than 2 weeks CPU-time to complete. The
second generation algorithm took substantially longer to complete. However,
an exact record of the time taken was not kept.

Remark 6.2. The classification of the strongly regular (45, 12, 3, 3) graphs was
done at at time when the canonicity algorithm in Chapter 5 was still under
development. Afterwards, this classification problem was reconsidered using
the standard column orderly approach as described in Chapter 4 and 5, yielding
the same 78 non-isomorphic srg(45, 12, 3, 3)s. •

6.1.4 Strongly regular subgraphs of the McLaughlin graph

The McLaughlin graph [46] is the well known unique strongly regular graph
with (v, k, λ,µ) = (275, 112, 30, 56). This graph contains many induced sub-
graphs which are again strongly regular. For four of the corresponding (v, k, λ,µ)
parameters sets, that is, (105, 32, 4, 12), (120, 42, 8, 18), (176, 70, 18, 34) and
(253, 112, 36, 60), the strongly regular graph is not known to be unique. In this
section we report on an exhaustive computer search which settles the unique-
ness question in the first three cases. These classification results are accepted
for publication in [30].

The general generation algorithm as outlined in Chapter 4 and 5 was used to
tackle the above parameter sets. However, one additional criterion, based on

6.1 Strongly regular graphs 203

Lemma 6.1.1, is used to speed up the search process.

Lemma 6.1.1. A graph Γ contains a clique of size s if and only if the column order

canonical form of the corresponding matrix M has a leading principal submatrix

of order s× s with all non-diagonal entries equal to 1.

Proof : If the top left principal s× s submatrix of M has the stated form, then
by definition of M the vertices of Γ numbered 1, . . . , s are mutually adjacent and
hence form a clique. If the leading principal s× s submatrix of M does not have
the stated form, then certc(M) contains at least one 2 within the first s(s− 1)/2
positions. If then Γ has a clique of size s and we renumber the vertices of Γ in
such a way that the clique vertices are numbered 1, . . . , s, we obtain a matrix M′

for which certc(M′) starts with s(s− 1)/2 ones. Hence certc(M′) < certc(M),
and M is not in column order canonical form.

We apply this lemma in the following way : if at a certain point in the search
process the partially instantiated matrix M has a completely instantiated lea-
ding principal submatrix of order s× s which corresponds to a clique, while the
leading principal submatrix of order s + 1× s + 1 does not, then we may prune
the search if we detect a clique of size s + 1 elsewhere in the graph. In general,
searching for cliques in a graph is a costly operation. However for the three
parameter sets we consider, the maximal clique size can be proved to be at most
4 (e.g., using the Hoffman bound [12]). Finally, to improve the clique search,
we use a similar look-back strategy as in Section 6.1.3.

v k λ µ CPU time

105 32 4 12 5 s

120 42 8 18 13 m 40 s

176 70 18 34 11 h 45 m 10 s

Tabel 6.5: Runtime generation algorithm.

The main result of our computer search is that the strongly regular graphs with
parameters (105, 32, 4, 12), (120, 42, 8, 18) and (176, 70, 18, 34) are uniquely1

determined by their (v, k, λ,µ) parameters (up to isomorphism). The generation

1Uniqueness of the strongly regular (105, 32, 4, 12) graph was afterwards established theoretical
in [23].

204 6 Case studies

algorithm was implemented in the programming language Java and the search
was carried out on a single CPU with a clock speed of approximately 1 GHz.
Table 6.5 lists the time needed to perform the exhaustive searches.

6.1.5 Strongly regular (126, 50, 13, 24) graphs

According to [56, Proposition 6.1], the Hermitian two-graph H(5) contains an
srg(126, 50, 13, 24). Using the same generation algorithm as outlined in Section
6.1.4, we found that this strongly regular graph is uniquely determined by its
(v, k, λ,µ) parameter set (up to isomorphism). The generation algorithm was
implemented in the programming language Java and the search was carried out
on a single CPU with a clock speed of approximately 1 GHz. It took less than 5
days CPU time to complete the search.

6.1.6 Strongly regular (96, 38, 10, 18) graphs

It is an open problem whether a regular two-graph on 76 and 96 vertices exists
[48, 99]. The strongly regular (73, 30, 8, 14) and (96, 30, 8, 18) graphs – if such
graphs exist – belong to the switching class of a regular two-graph on 76 and
96 vertices exists, respectively. Using the same generation algorithm as outlined
in Section 6.1.4, we found that no strongly regular graph (96, 30, 8, 18) exists.
The generation algorithm was implemented in the programming language Java
and the search was done on a batch of 24 Linux-based AMD Athlon MP 1800
and 2600 PCs. It took 286 days CPU time to complete the search.

For the classification of the strongly regular (76, 30, 8, 14) graphs, already more
than 5 years CPU-time were used on a mixed batch of 24 Linux-based AMD
Athlon MP 1800 and 2600 PCs and 12 Pentium D 3000 PCs., discarding more
than 90 percent of 72548 plausible neighbourhood graphs. Unfortunately, no
strongly regular graphs were found yet.

6.2 Three-class association schemes 205

6.2 Three-class association schemes

In [101], E. Van Dam describes several constructions of three-class association
schemes and gives theoretical conditions for existence of such three-class asso-
ciation schemes with given parameter sets. He also lists all feasible parameter
sets for three-class association schemes on at most 100 vertices. In this section
we report on a computer classification of several cases in this list which were
still left open. Note that some of these classification results appear in [31].

The results listed below use a similar notation as in [101]. The first column gives
the number of vertices, denoted by n. The second column lists the degrees ki of
the graphs for the corresponding relations Ri and columns L1 , L2, L3 denote the
intersection matrices with top row and leftmost column omitted. The column
marked # lists the number of known non-isomorphic association schemes of that
type, as given in [101], and in bold face the number of non-isomorphic sche-
mes as generated by our programs. The last column indicates some additional
information specific to the three-class association schemes under consideration.

Several parameter sets of the three-class association schemes listed in [101] ha-
ve in common that they satisfy the additional property that (at least) one of
their relations, say Rs, has a corresponding graph Gs which must be strongly
regular. In other words, if we identify the two remaining (nontrivial) relations,
we always obtain a two-class association scheme. The fact that Gs is strongly
regular and the parameters of Gs can be inferred from the intersection num-
bers of Ω. This extra property enables us to divide the generation process into
several stages, as follows:

1. We start from a complete list of non-isomorphic strongly regular graphs Γs

with the parameters of Gs.

2. For each element in this list we reduce the domain to the singleton {s} for
those pairs x, y that are adjacent in Γs.

3. We then execute an exhaustive generation process which only applies the
combinatorial constraints and corresponding look-ahead strategy with dy-
namic variable ordering as outlined in Section 4.1.1, 4.1.2 and 4.1.3.

4. Finally, we remove isomorphic solutions from this result by an explicit
isomorphism test based on the well-known program nauty [71].

206 6 Case studies

The number of isomorphic three-class association schemes we obtain from a
single strongly regular graph Γs can be at most the size |AutΓs| of the auto-
morphism group of this graph. In most cases this number is rather small, and
always significantly smaller than the number of isomorphic elements we might
expect if we started the generation from scratch. For this reason it was not
necessary to incorporate an isomorphism removal technique in the algorithm
proper.

Our approach was made possible because other authors have classified the cor-
responding strongly regular graphs Γs. Note however that each of these strongly
regular graphs can also be generated by the generation algorithms developed in
this text (cf. Section 6.1.2). The following table lists those results which were
needed for our search. For each parameter set (v, k, λ,µ) of a strongly regular
graph we also list the parameter set for the complement of that graph.

v k λ µ Nr. of graphs Author(s) References
35 16 6 8 3854 B.D. McKay, E. Spence [72, 78]
35 18 9 9 [96, 97]
40 12 2 4 28 E. Spence [78, 95, 97]
40 27 18 18
45 12 3 3 78 K. Coolsaet, J. Degraer [22, 97]
45 32 22 24 E. Spence
64 18 2 6 167 W. Haemers, E.Spence [53, 97]
64 45 32 30

To increase the reliability of the computer results listed below, we have used
a second (more classical) generation method for some of the parameter sets.
This method requires a longer execution time than the first method. We have
applied this second method in the special case where the three-class association
scheme Ω corresponds to a Hoffman-coloring of Gs (again this is a property of
the intersection numbers of Ω, not an additional requirement we impose). A
Hoffman-coloring of Gs is a partition of the vertices of Gs into 1 + k/m disjoint
cocliques of equal size, where −m is the smallest eigenvalue of the graph (see
[54]). The Hoffman-coloring defines an equivalence relation which turns out to
be one of the relations Rh of the association scheme. Note that the structure of
the graph Gh that corresponds to Rh is uniquely determined by the intersection
numbers of Ω.

6.2 Three-class association schemes 207

The second generation method runs along similar lines as the method discussed
before but now it starts by adjusting the domains of the elements according to
Gh instead of Γs. In this case we do not need to know the list of possible strongly
graphs Γs in advance. Unfortunately the automorphism group AutGh is too lar-
ge, so we need some extra orderly isomorphism removal techniques. Internally,
the relation of the scheme are reordered in such a way that Rh corresponds to
the 1-st associate class, because this allows us to use a column order canonical
form during generation. We also introduce additional constraints based on the
algebraic properties of the minimal idempotents of the association scheme as
described in Section 4.1.4

In the results listed below, the last column indicates which relation corresponds
to a strongly regular graph, and which relation is a Hoffman-coloring of that
graph (when such a coloring exists). Two of the parameter sets have the additi-
onal property that one of the relations Ri defines a distance regular graph Gi of
diameter 3 (an imprimitive distance regular cover of a complete graph). Again
this is indicated in the last column (using the abbreviation ‘drg’).

A complete list of all resulting association schemes can be retrieved from the
web page http://caagt.UGent.be/tca/.

n ki L1 L2 L3 #
35 12 4 6 1 6 9 3 1 3 0 ≥ 1

18 4 6 2 6 9 2 2 2 0 ⇓ srg(35, 18, 9, 9)
4 3 9 0 9 9 0 0 0 3 35 coloring 7 K5

The exhaustive search applied to the parameters listed above, yields 35 non-
isomorphic three-class association schemes with this parameter set, where be-
fore only 1 example was known. These 35 association schemes arise from 22
different strongly regular graphs. The following table lists the sizes of the un-
derlying automorphism groups: AutΓs for the strongly regular graph and AutΩ
for the related three-class association schemes.

208 6 Case studies

|AutΓs| |AutΩ| |AutΓs| |AutΩ| |AutΓs| |AutΩ|
40320 168 12 3 4 1
288 24, 24 8 4,4 4 1
96 4 8 4,4 3 3,3
64 8,4 8 2 3 3
32 8,8,4,4 8 2 3 3
21 21 4 4,4 2 1,1
16 4 4 2,2
12 12,12 4 2,2

The six association schemes with largest automorphism groups (|AutΩ| ≥ 12)
correspond to solutions of Kirkman’s schoolgirl problem: how to find 7 arrange-
ments (one for each day of the week) of a class of 15 schoolgirls in 5 groups of 3
such that at the end of the week every girl has shared a group with every other
girl exactly once? The 7× 5 = 35 groups are the vertices of the associationsche-
me, two groups are in relation R2 if they have a girl in common, in relation R3

if they belong to the same day and in relation R1 otherwise. There are exactly
seven non-isomorphic solutions to Kirkman’s schoolgirl problem (see Table 1.1),
leading to 6 different association schemes. (The two solutions where girls and
groups correspond to points and lines of PG(3, 2) yield the same association
scheme.)

n ki L1 L2 L3 #
40 9 2 6 0 6 18 3 0 3 0 ≥ 1 drg

27 2 6 1 6 18 2 1 2 0 ⇓ srg(40, 27, 18, 18)

3 0 9 0 9 18 0 0 0 2 3 coloring 10 K4

(G1 is a distance regular antipodal cover of the complete graph K10.)

There are 3 non-isomorphic three-class association schemes which satisfy this
parameter set, where before only 1 example was known. They arise from two
different strongly regular graphs. The table below lists the sizes of the corres-
ponding automorphism groups: AutΓs for the strongly regular graph and AutΩ
for the related three-class association schemes.. The largest automorphism
group corresponds to the association scheme generated from the symplectic ge-
neralized quadrangle W(3) colored by the lines of a spread. For a construction
of the other two, we refer to the paper [31].

6.2 Three-class association schemes 209

|AutΓs| |AutΩ|
51840 1440
432 432,144

For a second set of intersection numbers for n = 40 it turns out that no three-
class association scheme exists :

n ki L1 L2 L3 #
40 9 0 4 4 4 4 4 4 4 10 ≥ 0

12 3 3 3 3 2 6 3 6 9 ⇓ srg(40, 12, 2, 4)

18 2 2 5 2 4 6 5 6 6 0

n ki L1 L2 L3 #
45 24 12 5 6 5 0 3 6 3 3 ≥ 2

8 15 0 9 0 7 0 9 0 3 ⇓ coloring 5 K9

12 12 6 6 6 0 2 6 2 3 764 srg(45, 12, 3, 3)

There are 764 non-isomorphic three-class association schemes of the above ty-
pe, where only 2 examples were known before. Automorphism groups range in
size from 1 up to 1296. The table below lists the sizes of the corresponding auto-
morphism groups. They arise from 75 different strongly regular graphs. There
are 354 cases with a trivial automorphism group and the largest automorphism
group corresponds to an association scheme that can be constructed from the
unique generalized quadrangle with parameters (s, t) = (4, 2).

|AutΩ| # |AutΩ| # |AutΩ| #
1296 1 36 3 6 105
162 1 18 36 4 6
144 1 16 2 3 106
108 3 12 12 2 107
54 9 10 1 1 354
48 2 9 15

There are no three-class association schemes with the intersection numbers for
n = 45 below. Note that for the first parameter set, the graph G2 is also strongly
regular (and isomorphic to the triangular graph T(10)). However, using that
graph as a starting point for our algorithm takes too long to complete.

210 6 Case studies

n ki L1 L2 L3 #
45 16 6 6 3 6 4 6 3 6 3 ≥ 0

16 6 4 6 4 8 3 6 3 3 ⇓
12 4 8 4 8 4 4 4 4 3 0 srg(45, 12, 3, 3)

n ki L1 L2 L3 #
45 16 7 5 3 5 5 6 3 6 3 ≥ 0

16 5 5 6 5 7 3 6 3 3 ⇓
12 4 8 4 8 4 4 4 4 3 0 srg(45, 12, 3, 3)

n ki L1 L2 L3 #
64 15 2 12 0 12 30 3 0 3 0 ≥ 5 drg

45 4 10 1 10 32 2 1 2 0 ⇓ (64, 45, 32, 30)

3 0 15 0 15 30 0 0 0 2 94 coloring 16 K4

(G1 is a distance regular antipodal cover of the complete graph K16.)

There are 94 non-isomorphic three-class association schemes of the above ty-
pe, where only 5 examples were known before. Automorphism groups range
in size from 16 up to 23040. These 94 association schemes arise from 17 diffe-
rent strongly regular graphs. The table below lists the sizes of the underlying
automorphism groups: AutΓs for the strongly regular graph and AutΩ for the
related three-class association schemes. Among the results we find the 5 associ-
ation schemes that correspond to spreads in the unique generalized quadrangle
with parameters (s, t) = (3, 5). We have verified by computer that at least 80 of
the generated schemes can be constructed by means of the method described by
D.G Fon-Der-Flaass in [43, construction 4]. For a more detailed mathematical
discussion of these 94 non-isomorphic three-class association schemes we refer
the reader to [62, chapter 4].

6.2 Three-class association schemes 211

|AutΓs| |AutΩ|
138240 23040, 1536, 1152, 384, 120

3072 768, 256, 64, 192
3072 1536, 512, 384
1536 768, 256, 192

384 384, 384, 384, 192, 96, 96, 96, 96, 96, 64
384 384, 384, 192, 96, 96, 64
288 288, 288, 288, 288, 96, 96, 96, 96, 72
256 128, 128, 64, 64, 64
256 128, 128, 64, 64, 64
192 96, 96, 96, 96, 96, 96, 48
128 64, 64, 32, 16
64 32, 32, 32, 32, 32, 32, 16
64 32
64 64, 64, 64, 64, 32, 32, 32, 32, 32, 16, 16
32 32, 32, 32, 32, 32, 32, 32, 32, 16, 16, 16, 16
32 32
32 32

n ki L1 L2 L3 #
96 19 6 12 0 12 30 15 0 15 4 ≥ 0 primitive drg

57 4 10 5 10 36 10 5 10 4 ⇓ (96, 57, 36, 30)

19 0 15 4 15 30 12 4 12 2 0

n ki L1 L2 L3 #
96 38 14 9 14 9 4 6 14 6 18 ≥ 0

19 18 8 12 8 2 8 12 8 18 ⇓
38 14 6 18 6 4 9 18 9 10 0 (96, 38, 10, 18)

n ki L1 L2 L3 #
96 19 4 12 2 12 30 15 2 15 2 ≥ 0

57 4 10 5 10 36 10 5 10 4 ⇓ (96, 57, 36, 30)

19 2 15 2 15 30 12 2 12 4 0

Three feasible parameter sets for three-class association schemes have in com-
mon that they satisfy the additional property that (at least) one of their rela-
tions, say Rs, has a corresponding graph Gs which must be strongly regular

212 6 Case studies

with (v, k, λ,µ) parameters either (96, 38, 10, 18) or (96, 57, 36, 30). Since the
non-existence of such strongly regular graphs was established in Section 6.1.6,
non-existence follows immediately for each of these parameter sets. Note that
the first feasible parameter set listed above, corresponds to a primitive distance
regular graph of diameter 3 with intersection array {19, 2, 5; 1, 4, 15}. Non-
existence of this primitive distance regular graph was afterwards established
theoretical in [24].

n ki L1 L2 L3 #
57 6 0 5 0 5 15 10 0 10 10 ≥ 1 primitive drg

30 1 3 2 3 4 12 2 12 6 ⇓ Perkel graph

20 0 3 3 3 8 9 3 9 7 1

n ki L1 L2 L3 #
88 12 1 10 0 10 40 10 0 10 5 ≥ 0 primitive drg

60 2 8 2 8 40 11 2 11 2 ⇓
15 0 8 4 8 44 8 4 8 2 0

The above two feasible parameter sets for three-class association schemes have
in common that they correspond to primitive distance regular graphs of diame-
ter 3, with intersection array {6, 5, 2; 1, 1, 3} and {12, 10, 2; 1, 2, 8}, respectively.
The classification of the parameter set with n = 57 is described in Section 6.3.
The distance regular graphs on 88 vertices were generated using two different
programs. In a first program, we used the general generation algorithm as out-
lined in Chapter 4 and 5. A second program uses the same approach as the first
generation algorithm described in Section 6.3. Unfortunately, no such distance
regular graphs exist.

The three feasible parameter sets for three-class association schemes listed be-
low were classified using the general generation algorithm as outlined in Chap-
ter 4 and 5.

n ki L1 L2 L3 #
31 10 3 4 2 4 2 4 2 4 4 ≥ 1

10 4 2 4 2 3 4 4 4 2 ⇓
10 2 4 4 4 4 2 4 2 3 1

6.3 The Perkel graph 213

n ki L1 L2 L3 #
42 13 4 8 0 8 16 2 0 2 0 ≥ 1 drg

26 4 8 1 8 16 1 1 1 0 ⇓
2 0 13 0 13 13 0 0 0 1 2

The two association schemes found, have an automorphism group of size 2184
and 168. Only the association scheme with the largest automorphism group
was previously known. Note that G1 is a distance regular antipodal cover of the
complete graph K14.

n ki L1 L2 L3 #
51 16 5 10 0 10 20 2 0 2 0 ≥ 1 drg

32 5 10 1 10 20 1 1 1 0 ⇓
2 0 16 0 16 16 0 0 0 1 4

The four association schemes found, have an automorphism group of size 16320,
240, 192 and 48. Only the association scheme with the largest automorphism
group was previously known. Note that G1 is a distance regular antipodal cover
of the complete graph K17.

6.3 The Perkel graph

The Perkel graph is a distance-regular graph of order 57, degree 6 and diameter
3, with intersection array {6, 5, 2; 1, 1, 3}. We refer to [12] for several con-
structions of this graph and for the proof that it is distance-regular. This section
describes a computer assisted proof that all distance-regular graphs with this in-
tersection array are isomorphic. Note that the given intersection array is among
the smallest for which this classification question is not yet settled [12, 15]. This
classification result has been published in [21].

Define a pseudo Perkel graph to be a distance-regular graph with the same in-
tersection array as the Perkel graph. In what follows we shall use the notation
Γ for any such graph. The exhaustive generation process proceeds in two pha-
ses. In a first step we generate a set of plausible subgraphs of Γ with certain
prescribed properties. In a second step we try to extend each of these results to
a full pseudo Perkel graph. To increase the reliability of the computer proof we

214 6 Case studies

perform the generation process twice, choosing different subgraphs for the first
phase. Note that the two methods were programmed by different authors as an
added guard against programming errors. The programs were written in Java
and run in parallel on 20 computers with CPUs of the Pentium III and Pentium
IV type, and processor speeds ranging from 500 to 1600MHz.

For the first version we generate all plausible subgraphs ∆ induced on the ver-
tices of Γ at distance 3 of a fixed vertex ω. From the regularity properties of Γ
we may derive certain regularity properties on ∆, that is, ∆ is a regular graph
of order k3 = 20 and degree p3

13 = 3. Also, being a subgraph of Γ , ∆ has girth
at least 5. There are, up to isomorphism, 5783 connected graphs of order 20
and degree three and girth at least five [9] . We use a precomputed list of these
graphs (downloaded from [88]). Note that ∆ needs not be connected, hence in
addition we also need to consider the disjoint union of two Petersen graphs as
a candidate for ∆. Likewise the rank and positive semidefiniteness constraints
on Γ give rise to rank and positive semidefiniteness constraints on ∆. More in-
formation can be found in [21]. The first step of the algorithm generated 105
different matrices N corresponding to 20 non-isomorphic graphs ∆. This step
took approximately 4 million seconds of computer time (46 days). From these
20 graphs only a single one could be extended to a full graph, yielding the ‘true’
Perkel graph. This last step took about 7 seconds.

The second version uses the properties of the neighborhood of a pentagon in
Γ . In this version the last step of the algorithm can be replaced by a purely
mathematical proof [21]. Because p1

22 > 0, every pseudo Perkel graph must
contain at least one pentagon. Consider such a pentagon, or more accurately,
a pentagram P = {p0, . . . , p4} in Γ with adjacencies pi ∼ pi±2. (All index
arithmetic is done modulo 5). Each vertex of P is adjacent to 4 vertices of
Γ − P. We denote these vertices by qi j, i = 0, . . . , 5, j = 0, . . . , 3 with qi j ∼ pi

(cf. Figure 6.2). Because the girth of Γ is 5, no two of these vertices coincide
and therefore the neighborhood Γ(P) of P contains 20 vertices. We shall be
interested in the subgraph Φ of Γ induced on the union P∪ Γ(P).

The second algorithm generates all plausible graphs Φ and then tries to extend
them to pseudo Perkel graphs. This exhaustive generation process is based on
the following lemma :

Lemma 6.3.1. Let pi, qi j be defined as above. Then qi j can be adjacent to at

most one vertex of the form qi+1,k, and at most one vertex of the form qi−1,n.

6.3 The Perkel graph 215p0 p1p4 p2p3
q0;j q1;jq2;j

q4;j
q3;j

Figuur 6.2: A pentagon of Γ and its neighborhood.

Vertices of the form qi j and qi±2,k are never adjacent. Moreover, for each i there

are exactly two j ∈ {0, 1, 2, 3} such that qi j ∼ qi+1,k for some k ∈ {0, 1, 2, 3}, and

similarly, there are exactly two m ∈ {0, 1, 2, 3} such that qim ∼ qi−1,n for some

n ∈ {0, 1, 2, 3}.

Proof : If qi j were adjacent to two vertices of the form qi+1,k, then together
with pi these vertices would form a quadrangle, contradicting the girth of Γ
(and similarly for qi−1,m). If qi j were adjacent to qi+2,k then we would ob-
tain a quadrangle by adding the edge pi − pi+2 (and similarly for qi−2,m). As
dΓ (pi, pi+1) = 2 p2

12 = 3, there must be exactly 3 paths of length 3 in Γ joining
these vertices. There is one path pi ∼ pi+2 ∼ pi+4 ∼ pi+1 that lies entirely in
P, the other two paths must be of the form pi ∼ qi j ∼ qi+1,k ∼ pi+1.

It is fairly straightforward to generate by computer all plausible graphs Φ on 25
vertices that satisfy the properties in the lemma above. This results in 97 non-
isomorphic graphs. As with the first algorithm we use these graphs to initialize
some of the entries of a 25× 25 distance matrix K. Apart from all entries with
value 1, also some entries with value 2 and 3 can be initialized, in particular
those corresponding to pairs of vertices p, q ∈ Φ with dΦ(p, q) = 2 and those
corresponding to pairs of vertices pi ∈ P, q ∈ Φ with dΦ(pi, q) = 3.

The first step of the algorithm now recursively fills in the remaining entries of
the distance matrix K with values 2 or 3 using the constraints of Section 4.1. In
the second step of the algorithm we try to extend the generated matrices K to

216 6 Case studies

full 57× 57 matrices M using the same constraints. Again we avoid to generate
too many isomorphic results. This time we impose a lexical ordering on the
columns in the 25× 32 submatrix of M to the right of K. After approximately
15 million seconds of computer time (173 days) we obtained 33 versions of K
that belong to only 2 isomorphism classes : in the first case Γ(P) is the union
of two disjoint pentagons and 10 isolated points, in the second case Γ(P) is the
disjoint union of 1 pentagon, 5 edges and 5 isolated points. In both cases, the
union of P and a pentagon in its neighborhood induce a Petersen subgraph of
Γ . In the second step of the algorithm both graphs Φ could be extended to a
single graph (up to isomorphism) which in both cases turns out to be the ‘true’
Perkel graph. This last step took about 100 seconds.

It should be noted that the long running time for this second program is a little
misleading and is largely a consequence of the fact that the algorithms used
to check the constraints are different from the ones used in the first version.
Where in the first program they were highly optimized for speed, we use more
straightforward algorithms here whose correctness can be verified more easily
although they are less efficient (e.g. preemptive positive semidefiniteness chec-
king was omitted). We have used different algorithms on purpose, to increase
the reliability of the results. Running the second program with the faster cons-
traint algorithms we obtain the same results in approximately 320 000 seconds
of computer time (4 days).

Bibliografie

[1] BAILEY R.A., Association Schemes, Designed Experiments, Algebra and

Combinatorics, Cambridge studies in advanced mathematics, 84, 2004.

[2] BANNAI E. AND ITO T., Algebraic combinatorics I: Association schems,
Benjamin/Cummings, London, 1984.

[3] BATE J.A., HALL M. JR., VAN REES G.H.J., Structures within

(22, 33, 12, 8, 4)-designs, J. Comb. Math. Combin Comput.,4, 1988,
115–122.

[4] BILIOUS R., LAM C.W.H., THIEL L.H., LI P.C., VAN REES G.H.J.,
RADZISZOWSKI S.P., HOLZMANN W.H, KHARAGHANI H., There is no

2 − (22, 8, 4) block design, to appear in the Journal of Combinatorial
Designs.

[5] BJÄRELAND M., JONSSON P., Exploiting bipartiteness to identify yet

another tractable subclass of CSP, Lecture Notes in Computer Science,
1713, 1999,118–128.

[6] BOSE R.C. AND MESNER D.M., On linear associative algebras corres-

ponding to association schemes of partially balanced designs, Annals of
Mathematical Statistics, 23, 1959,21–38.

[7] BOSE R.C. AND SHIMAMOTO T., Classification and analysis of partially

balanced incomplete block designs with to associate classes, Journal of
the American Statistical Association, 47, 1952,151–184.

[8] BRINKMANN G., Isomorphism rejection in structure generation programs,
Discrete Mathematical Chemistry, DIMACS Ser. Discrete Math. Theoret.
Comput. 51, 2000, 25–38.

218 Bibliografie

[9] BRINKMANN G., Fast Generation of Cubic Graphs, J. Graph Th., 23,
1996, 139–149.

[10] BRINKMANN G., DRESS A.W.M, A constructive enumeration of fullerenes,
Journal of Algorithms, 23, 1997, 345–358.

[11] BRINKMANN G., MCKAY B.D., Posets on up to 16 points, Order, 19,
2002, 147–179.

[12] BROUWER A. E., A. M. COHEN & A. NEUMAIER, Distance-Regular

Graphs, Ergeb. Math. Grenzgeb. (3) 18, Springer-Verlag, Berlin (1989).

[13] BROUWER A. E., Strongly Regular Graphs, in The CRC handbook of

Combinatorial Designs, Chap. VI.5, Ch. J. Colbourn, J. H. Dinitz (eds.),
CRC Press, Boca Raton (1996).

[14] BROUWER A. E., Strongly Regular Graphs, in The CRC handbook of

Combinatorial Designs : second edition, Chap. VII.11, Ch. J. Colbourn,
J. H. Dinitz (eds.), CRC Press, Boca Raton (2006).

[15] BROUWER A. E., Email server with information on distance-regular
graphs, URL (2006): www.win.tue.nl/∼aeb/drginfo.txt

[16] BUSSEMAKER F.C., HAEMERS W.H., MATHON R., WILBRINK H.A., A

(49, 16, 3, 6) strongly regular graph does not exist, European Journal of
Combinatorics, 10(5), 1989, 413–418.

[17] BUTLER G., Fundamental Algorithms for Permutation Groups, Lectu-
re Notes in Computer Science 559, Springer-Verlag, Berlin-New York,
1991.

[18] CAPOROSSI G., HANSEN P., Enumeration of polyhex hydrocarbons to h =
21, Journal of Chemical Information and Computer Sciences, 38, 1998,
610–619.

[19] CAUCHIE S. AND KUIJKEN E. Matrix techniques for strongly regular
graphs and related geometries, Supplement to the lecture notes for the
Intensive Course on Finite Geometry and its Applications, Ghent, 2000.

[20] COOLSAET K., FACK V., Classifying strongly regular graphs using lexical

ordering of adjacency matrices, Computers Math. Applic., 21, No. 2-3,
1991, 15–21.

[21] COOLSAET K., DEGRAER J., A computer assisted proof of the uniqueness

of the Perkel graph, Designs, Codes and Cryptography, 34, 155-171,
2005.

Bibliografie 219

[22] COOLSAET K., DEGRAER J., SPENCE E., The strongly regular

(45, 12, 3, 3) graphs, Electronic Journal of Combinatorics, Vol 13(1),
R32, 2006.

[23] COOLSAET K., The uniqueness of the strongly regular graph

srg(105, 32, 4, 12), Bulletin of the Belgian Mathematical Society - Si-
mon Stevin, Vol 12, No. 5, pp. 707-718, 2005.

[24] COOLSAET K., JURIŠIĆ A., Using equality in the Krein conditions to prove

nonexistence of certain distance regular graphs, in preparation 2007.

[25] COLE F.N., CUMMINGS L.D., WHITE H.S., The complete enumeration

of triad systems of order 15, Proceedings of the National Academy of
Sciences of the United States of America 3, 1917, 197–199.

[26] COLBOURN C.J., DINITZ J. H. (EDS.), The CRC handbook of Combina-

torial Designs, , CRC Press, Boca Raton (1996).

[27] COLBOURN C.J., Triple Systems, in The CRC handbook of Combinatorial

Designs : second edition, Chap. II.2, Ch. J. Colbourn, J. H. Dinitz (eds.),
CRC Press, Boca Raton (2006).

[28] CHARTRAND C., LESNIAK L., Graphs & Digraphs, third edition, Chapman
& Hall, 1996.

[29] DECHTER R., Constraint Processing, Morgan Kaufmann, 2003.

[30] DEGRAER J., COOLSAET K., Classification of some strongly regular sub-

graphs of the McLaughlin graph, Discrete Mathematics (to appear).

[31] DEGRAER J., COOLSAET K., Classification of three-class association sche-

mes using backtracking with dynamic variable ordering, Discrete Mathe-
matics, Vol 300, No. 1-3, pp. 71-81, 2005.

[32] DELSARTE P., An algebraic approach to the association schemes of coding

theory, Philips Research Reports Suppl., 10, 1973.

[33] DENNY P.C., GIBBONS P.B., Case studies and new results in combinato-

rial enumeration, J. Combin. Des.,8(4), 2000, 239–260.

[34] DENNY P.C., MATHON R., A census of t − (t + 8, t + 2, 4) designs, 2 ≤
t ≤ 4, J. Statist. Plann. Inference, 106(1-2), 2002, 5–19.

[35] DENNY P.C., Search and Enumeration Techniques for Incidence Structu-

res, CDMTS Research Report Series, University of Auckland,1998.

[36] DIESTEL R., Graph Theory, Graduate Texts in Mathematic, 173,
Springer-Verlag New York, Inc. , 1997.

220 Bibliografie

[37] DINITZ J.H., GARNICK D.K., MCKAY B.D., There are 526, 915, 620
nonisomorphic 1-factorizations of K12, Journal of Combinatorial De-
signs,2, 1994, 273–285.

[38] DINITZ J.H., STINSON D.R., A fast algorithm for finding strong starters,
SIAM J. Alg. Disc. Meth. 2, (1981), 50–56.

[39] EMMS D. HANCOCK E.R., SEVERINI S., WILSON R.C., A matrix repre-

sentation of graphs and its spectrum as a graph invariant, The Electronic
Journal of Combinatorics, 13, R34, 2006.

[40] FACK V., COOLSAET K., An algorithm for the classification of stronly re-

gular graphs by means of lexically ordered adjacency matrices., Intern. J.
Computer Math. 33, 1990, 143–151.

[41] FARADŽEV I.A., Constructive enumeration of combinatorial objects, Pro-
blèmes Combinatoires et Théorie des Graphes Colloque Internat. CNRS
260, 1978, 131–135.

[42] FIALA N.C., HAEMERS, W.H., 5-chromatic strongly regular graphs, to
appear in Discrete Mathematics, 2006.

[43] FON-DER-FLAASS D.G., New prolific constructions of strongly regular

graphs, Adv.Geom, 2(3), 301–306, 2006.

[44] GASCHNIG J., Experimental case studies of backtrack vs. waltz-type

vs. new algorithms for satisfying assignement problems. Proceedings of
the Second Canadian Conference on Artifical Intelligence, 1978, 268–
277.

[45] GIBBONS P.B, MATHON R., The use of hill-climbing to construct ortho-

gonal Steiner triple systems Journal of Combinatorial Designs, 1, 1993,
27–50.

[46] GOETHALS J.-M., J. J. SEIDEL, The regular two graph on 276 vertices,
Discrete Mathematics, 12, 1975, 143–158.

[47] GODSIL C.D., Association Schemes, in The CRC handbook of Combina-

torial Designs, Chap. IV.1, Ch. J. Colbourn, J. H. Dinitz (eds.), CRC
Press, Boca Raton (1996).

[48] GODSIL C.D., Problems in Algebraic Combinatorics, Electronic Journal
of Combinatorics, Vol 2, F1, 1995.

[49] GOLOMB S.W., BAUMERT L.D., Backtrack programming, Journal of the
ACM, 12, 1965, 516–524.

Bibliografie 221

[50] GRUND R., KERBER A., LAUE R., MOLGEN, ein Computeralgebra-System

für die Konstruktion molekularer Graphen, MATCH, 27, 1992, 87–131.

[51] GRÜNER T., LAUE R., MERINGER M., Algorithms for Group Actions: Ho-

momorphism Principle and Orderly Generation Applied to Graphs, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 28, 1997, 113–122.

[52] HAEMERS W.H., Matrix techniques for strongly regular graphs, Lecture
notes for the Intensive Course on Finite Geometry and its Applications,
Ghent, 2000.

[53] HAEMERS W.H., SPENCE E., The Pseudo-Geometric Graphs for Genera-

lised Quadrangles of Order (3, t), European J. Combin., 22(6), 2001,
839–845.

[54] HAEMERS W.H., TONCHEV V.D., Spreads in strongly regular graphs, De-
signs Codes Cryptography, 8, 1996, 145–157.

[55] HAEMERS W. H., Eigenvalue Techniques in Design and Graph Theory,
Mathematical Centre Tracts 121, Mathematisch Centrum, Amsterdam,
(1980).

[56] HAEMERS W.H., KUIJKEN E., The Hermitian two-graph and its code,
Linear Algebra and its Applications, 356(1–3), 2002, 79–93.

[57] HALL M. JR., ROTH R., VAN REES C.H.J., VANSTONE S.A., On designs

(22, 33, 12, 8, 4), J. Combin. Theory Ser. A,47, 1998, 157–175.

[58] HARALICK R., ELLIOTT G., Increasing tree search efficiency for constraint-

satisfaction problems, Artificial Intelligence, 14(3), 1980, 263–313.

[59] HIGMAN D.G., Coherent algebras, Linear Algebra Appl., 93, 1987, 109–
239.

[60] HIRSCHFELD J.W.P., Projective geometries over finite fields, Oxford Uni-
versity Press, 1998.

[61] JØRGENSEN L.K., Non-Symmetric 3-class association schemes, preprint,
submitted to Discrete Mathematics.

[62] JOOHYUNG K., Classification of small class association schemes coming

from certain combinatorial objects, PHD dissertation, Iowa State Uni-
versity, 2006.

[63] KASKI P., ÖSTERGÅRD P.R.J, The Steiner triple systems of order 19, Ma-
thematics of Computation, 73, 2004, 2075–2092.

222 Bibliografie

[64] KASKI P., ÖSTERGÅRD P.R.J, TOPOLOVA S., ZLATARSKI R., Steiner triple

systems of order 19 with subsystems of order 7, Discrete Mathematics, to
appear.

[65] KASKI P., ÖSTERGÅRD P.R.J, Classification Algorithms for Codes and De-

signs, Algorithms and Compuation in Mathematics, Springer, 15, 2006.

[66] KOLESOVA G., LAM C.W.H., THIEL L., On the number of 8 × 8 latin

squares, Journal of Combinatorial Theory A, 54, 1990, 143-148.

[67] KUMAR V., Algorithms for Constraint-Satisfaction problems: A survey, AI
Magazine, 13(1), 1992, 32–44.

[68] LAM C.W.H., THIEL L;, SWIERCZ S., The nonexistence of finite projective

planes of order 10, Canad. J. Math., 45, 1983, 319–321.

[69] MATHON R. AND SPENCE E., On 2− (45, 12, 3) designs, Journal of Com-
binatorial Design, 4(30), 1996, 155–175.

[70] MCKAY B.D., Isomorph-free exhaustive generation, Journal Algorithms
26(2), 1998, 306–324.

[71] MCKAY B.D., Nauty users’ guide (version 2.2), Technical report, Com-
puter Science Department, Australian National University.

[72] MCKAY B., SPENCE E., Classification of regular two-graphs on 36 and 38
vertices, Australasian Journal of Combinatorics 24(1), 2001, 293–300.

[73] MCKAY B., RADZISZOWSKI S.P., Towards deciding the existence of 2 −
(22, 8, 4) designs, J. Combin. Math. Combin. Comput. 22, 1996, 211–
222.

[74] MCKAY B., MYRVOLD W., NADON J., Fast backtracking principles ap-

plied to find new cages, Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms , (San-Francisco, Jan 25–27, 1998), ACM Press, New York,
1998, 188–191.

[75] MCKAY B.D., MEYNERT A., MYRVOLD W., Small Latin squares, qua-

sigroups and loops, Journal Combinatorial Designs, to appear.

[76] MCKAY B.D., personal communication, Symnet Summer School, St An-
drews, 2004.

[77] MCKAY B. D., Practical Graph Isomorphism, Congressus Numerantium,
30 ,1981,45–87.

[78] MCKAY B.D., Combinatorial Data, http://cs.anu.edu.au/∼bdm/
data/graphs.html, (2006).

Bibliografie 223

[79] MERINGER M., Fast Generation of Regular Graphs and Construction of

Cages, Journal of Graph Theory 30, 1999, 137–146.

[80] MERINGER M., Erzeugung regulärer Graphen Master’s thesis, Universität
Bayreuth, January 1996.

[81] NURMELA K.J.,ÖSTERGÅRD P.R.J., Upper bounds for covering designs
designs by simulated annealing, Congr. Numer., 96, 1993, 93–111.

[82] ÖSTERGÅRD P.R.J., Enumeration of 2− (12, 3, 2) designs, Australas. J.
Combin., 22, 2000, 227–231

[83] ÖSTERGÅRD P.R.J., KASKI P., Enumeration of 2 − (9, 3, λ) designs and

their resolutions, Designs Codes and Cryptography, 27, 2002, 131-137.

[84] ÖSTERGÅRD P.R.J., New multiple covering codes by tabu search, The
Australasian Journal of Combinatorics, 12, 145–155.

[85] ÖSTERGÅRD P.R.J., A 2 − (22, 8, 4) design cannot have a 2− (10, 4, 4)
subdesign, Designs Codes and Cryptography, 27, 2002, 257–260.

[86] PAULUS A.J.L., Conference matrices and graphs of order 26, Technische
Hogeschool Eindhoven, report WSK 73/06, Eindhoven, 1983.

[87] READ R.C., Every one a winner or How to avoid isomorphism search

when cataloguing combinatorial configurations, Ann. Discrete Math. 2,
1978, 107–120.

[88] ROYLE G., Cubic Graphs, http://people.csse.uwa.edu.au/gordon/
remote/cubics/index.html, (2006).

[89] SCHMALZ B., The t-designs with prescribed automorphism group, Journal
Combinatorial Design, 1, 1993, 125–170.

[90] SEAH E., STINSON D.R., A perfect 1-factorisation of K40, Congr. Numer.,
68, 1989, 211-214.

[91] SEDGEWICK R., Algorithms in C++: Parts 1–4, Addisson–Wesley, 1998.

[92] SEDGEWICK R., FLAJOLET P., An introduction to the analysis of algo-

rithms, Addisson–Wesley, 1996.

[93] SEIDEL R., SHARIR M., Top-down analysis of path compression, SIAM J.
Comput. 34(3), 2005, 515-525

[94] SERESS A., Permutation group algorithms, Cambridge Tracts in Mathe-
matics, Cambridge University Press 152, 2003.

[95] SPENCE E., The Strongly Regular (40, 12, 2, 4) graphs, Electronic Journal
of Combinatorics, 7(1), 2000.

224 Bibliografie

[96] SPENCE E., Regular two-graphs on 36 vertices, Linear Algebra and its
Applications, 226-228, 1995, 459–497.

[97] SPENCE E., Strongly Regular Graphs, http://www.maths.gla.ac.uk/
∼es/srgraphs.html, (2006).

[98] SPENCE E., (40, 13, 4) designs derived from strongly regular graphs, Ad-
vances in Finite Geometry and Designs, Oxford University Press, 1990,
359–368.

[99] SPENCE E., Regular Two-Graphs, in The CRC handbook of Combinatori-
al Designs : second edition, Chap. VII.13, Ch. J. Colbourn, J. H. Dinitz
(eds.), CRC Press, Boca Raton (2006).

[100] SMITH D.H., Primitive and imprimitive graphs, Quart. J. Math. Oxford,
22(2), 1971, 551-557.

[101] VAN DAM E. Three-class association schemes, Journal of Algebraic Com-
binatorics, 10(1), 1999,69-107(39)

[102] VAN DAM E., HAEMERS W. H., KOOLEN J. H., SPENCE E., Characte-

rizing Distance Regularity of Graphs by the Spectrum, to appear in J.
Combin. Theory, Series A.

[103] VAN DAM E., HAEMERS W. H., Which graphs are determined by their

spectrum? Linear Algebra and its Applications, 373, 2003, 241-272.

[104] VAN LEEUWEN J., TARJAN R.E., Worst-case analysis of set-union algo-

rithms, Journal of the ACM, 1984.

[105] WEST D.B., Introduction to Graph Theory, Prentice Hall, 1996.

[106] WINNE J., Software tools for combinatorial algorithms, Phd dissertation,
Ghent University, 2007.

[107] WILSON R.M., Nonisomorphic Steiner triple systems, Math. Z.,135,
1974, 303–313, MR 49:4803

Nederlandse

samenvatting

Combinatoriek is een tak van de wiskunde. In de combinatoriek bestudeert men
eindige verzamelingen van objecten die aan bepaalde eigenschappen voldoen.
In het bijzonder houdt men zich bezig met volgende problemen:

• Bestaat er een object dat aan deze eigenschappen voldoet?

• Gegeven een verzameling eigenschappen, tel het aantal objecten die vol-
doen aan deze eigenschappen.

• Gegeven een verzameling eigenschappen, classificeer alle objecten die vol-
doen aan deze eigenschappen of toon aan dat deze objecten niet bestaan.

Voor tel- en classificatieproblemen is het gebruikelijk te veronderstellen dat de
objecten onderhevig zijn aan een relatie ‘is isomorf met’ die deze objecten parti-
tioneert in equivalentieklassen. Zodoende wordt slechts één representatieve van
elke equivalentieklasse geteld of geclassificeerd. Objecten in eenzelfde equiva-
lentieklasse zijn isomorf en worden wiskundig als identiek beschouwd. In het
algemeen zijn twee objecten isomorf als het ene object kan bekomen worden uit
het andere – en omgekeerd – door het hernoemen en/of herlabelen van meer
elementaire objecten waaruit deze objecten bestaan.

Algoritmen zijn een essentieel middel geworden in het succesvol oplossen van
zowel bestaans- als classificatieproblemen. Combinatorische objecten zijn zo-

226 Nederlandse samenvatting

wel eindige als discrete structuren wat maakt dat dergelijke problemen kunnen
aangepakt worden met lokale en exhaustieve zoekalgoritmen. Enerzijds wor-
den lokale zoekalgoritmen gebruikt om bestaansproblemen op te lossen. Deze
methoden blijken vaak efficiënt te zijn alhoewel ze niet garanderen dat een op-
lossing gevonden wordt, zelfs wanneer één of meerdere oplossingen bestaan.
Exhaustieve zoekalgoritmen anderzijds, worden vaak gebruikt om classificatie-
problemen op te lossen. Deze methoden overlopen systematisch alle kandidaat-
oplossingen binnen een gegeven zoekruimte en garanderen dus alle oplossingen
te vinden, indien die bestaan.

Wellicht de meest gekende exhaustieve zoekmethode is backtracking, waarbij
men een oplossing probeert te bekomen door telkens een deeloplossing recur-
sief uit te bereiden in de richting van de uiteindelijke oplossing. Deze uitbe-
reiding wordt later ongedaan gemaakt als blijkt dat die niet tot een oplossing
leidt. Backtracking kan gezien worden als een diepte-eerst overlopen van een
zoekboom waarin alle knopen overeenkomen met deeloplossingen en waarbij
takken in de zoekboom overeenkomen met het systematisch uitbereiden van
een deeloplossing, of in omgekeerde richting, met het systematisch ongedaan
maken van deze uitbereiding.

In dit doctoraat beschouwen we algoritmen voor het classificeren van combi-
natorische objecten op isomorfie na, of zogenaamde isomorfvrije exhaustieve
generatiealgoritmen. We concentreren ons op het isomorfvrij genereren van as-
sociatieschema’s [1, 47] en sterk reguliere [13, 14] en afstands reguliere [12]
grafen in het bijzonder. De nadruk ligt op het ontwerpen en verbeteren van iso-
morfvrije exhaustieve generatiealgoritmen die uiteindelijk vlug genoeg blijken
om nieuwe classificatieresultaten te bekomen.

Dit doctoraatsproefschrift is opgebouwd als volgt. In Hoofdstuk 2 geven we een
overzicht van de theoretische achtergrond omtrent associatieschema’s, sterk re-
guliere en afstands reguliere grafen. Een d-klasse associatieschema Ω met top-
penverzameling V = {1, . . . , v} bestaat uit een verzameling van d + 1 symme-
trische relaties {R0, . . . , Rd} op V, met identiteitsrelatie R0 zodanig dat twee
toppen deeluitmaken van slechts één enkele relatie. Bovendien, bestaan er in-
tersectie getallen pk

i j zodanig dat voor elke (x, y) ∈ Rk, het aantal toppen z

zodanig dat (x, z) ∈ Ri en (z, y) ∈ R j gelijk is aan pk
i j. Als de unie van sommige

relaties een niet-triviale equivalentierelatie vormt, dan noemt men Ω imprimi-
tief – anders noemt men het primitief. Een associatieschema Ω kan voorgesteld

Nederlandse samenvatting 227

worden a.d.h.v. zijn v× v symmetrische relatiematrix MΩ waarbij een matrix-
positie (MΩ)xy = i als en slechts als (x, y) ∈ Ri.

Een afstands reguliere graaf is een geconnecteerde graaf waarvan de afstands-
relaties een associatieschema vormen. Een sterk regulier graaf is een afstands
reguliere graaf met diameter 2. Een geconnecteerde graaf is sterk regulier met
parameters (v, k, λ,µ) als en slechts als deze graaf v toppen heeft, regulier is van
graad k, elk twee adjacente toppen precies λ gemeenschappelijke buren hebben
en elke twee niet-adjacente toppen precies µ gemeenschappelijke buren hebben

De niet-triviale relaties Ri van een associatieschema kunnen beschouwd worden
als regulier grafen van graad p0

ii. Voor elke corresponderende adjacentiematrix
Ai zijn de axioma’s van een d-klasse associatieschema equivalent met

d

∑
l=0

Al = J, A0 = I, Ai = AT
i en Ai A j =

d

∑
l=0

pl
i jAl .

Hieruit volgt dat de adjacentiematrices A0, . . . , Ad een (d + 1)-dimensionale
commutatieve algebra A genereren. Deze algebra A wordt de Bose-Mesner
algebra van het associatieschema genoemd. De algebra A heeft een unieke
basis van minimaal idempotenten Ei zodanig dat

EiE j =

{
Ei , als i = j
0, als i 6= j

en
d

∑
i=0

Ei = I

Elke minimaal idempotente kan als volgt worden uitgedrukt in termen van ad-
jacentiematrices (en omgekeerd),

v Ei =
d

∑
j=0

Q jiA j en A j =
d

∑
i=0

Pi jEi.

Hieruit volgt dat PQ = QP = v I en A jEi = Pi jEi waarbij Pi j een eigenwaarde
is van A j met multipliciteit mi = rang(Ei). De (d + 1)× (d + 1) matrices P en Q
worden de eigenmatrices van het associatieschema genoemd. De (d + 1)× (d +
1) intersectiematrices Li waarbij (Li)k j = pk

i j hebben dezelfde eigenwaarden Pji

waarbij de eigenvectoren gegeven zijn door de kolommen van Q.

In Hoofdstuk 3 beschrijven we enkele algemene technieken die gebruikt worden
in het ontwikkelen van isomorfvrije generatiealgoritmen. Zulke algoritmen ver-

228 Nederlandse samenvatting

eisen een recursief doorlopen van een boomachtige zoekruimte. Het is gebrui-
kelijk om verschillende intelligente snoeimethoden toe te passen om de grootte
van deze exponentiële zoekruimte te beperken. Enerzijds kunnen we takken van
de zoekboom snoeien die overeenkomen met deeloplossingen waarvan aange-
toond kan worden dat ze onmogelijk uit te bereiden zijn tot een oplossing die
aan de gespecificeerde eigenschappen voldoet. Hierbij wordt meestal gesteund
op wiskundige eigenschappen van de objecten die men wil genereren. Deze
eerste soort snoeitechnieken wordt gëıntroduceerd binnen het algemene kader
van ‘constraint’-netwerken [29].

Anderzijds kunnen kunnen we takken snoeien die overeenkomen met deelop-
lossingen waarvan aangetoond kan worden dat ze isomorf zijn met deeloplos-
singen die we reeds in de zoekboom tegengekomen zijn. Merk ook op dat deze
laatste snoeimethoden er voor moeten zorgen dat slechts één representatieve
van elke isomorfieklasse gegenereerd wordt. We leggen de nadruk op ‘orderly’-
algoritmen [87]. In deze aanpak is er één canonisch gelabeld object in elke
isomorfieklasse en dat is de representatieve die gegenereerd wordt. Hierbij is
het gebruikelijk om een canonische vorm te kiezen zodat specifieke deelobjec-
ten van canonisch gelabelde objecten ook in canonische vorm zijn. Deze tweede
soort snoeitechnieken wordt gëıntroduceerd binnen een algemeen groeptheore-
tisch kader.

Specifieke isomorfvrije exhaustieve generatiealgoritmen voor d-klasse associ-
atieschema’s die voldoen aan een gegegeven verzameling intersectiematrices
{L0 , . . . , Ld} worden besproken in Hoofdstuk 4 en 5. Deze generatiealgorit-
men starten initieel met een relatiematrix M waarbij enkel de diagonaalposities
gëınstantieerd zijn. Elke matrixpositie Mxy met x < y – en op hetzelfde mo-
ment ook zijn symmetrisch tegenhanger Myx – wordt systematisch recursief
gëınstantieerd met elk waarde van het domein {1, . . . , d}. Knopen op diepte
k in de zoekboom stellen gedeeltelijk gëınstantieerde relatiematrices M voor
waarbij exact k matrixposities boven de diagonaal ingevuld zijn.

Aan de hand van ‘constraint’-netwerken worden specifieke snoeitechnieken voor
associatieschema’s beschreven. Enerzijds zijn deze snoeitechnieken gebaseerd
op combinatorische eigenschappen bepaald door de definiërende axioma’s van
een asscociatieschema. E.g., een rij van een gedeeltelijk gëınstantieerde rela-
tiematrix M kan hoogstens p0

kk matrixposities met de waarde k bevatten. An-
derzijds worden ook algebräısche eigenschappen van de Bose-Mesner algebra
gebruikt als snoeicriterium. Elke minimaal idempotente Ei heeft een rang Q0i

Nederlandse samenvatting 229

en is positief semidefiniet. Een belangrijk kenmerk van deze algebräısche eigen-
schappen is dat elke principale deelmatrix van Ei positief semidefiniet moet zijn
en een rang hebben die hoogsten Q0i bedraagt.

In een groeptheoretisch kader worden rijgeordende en kolomgeordende cano-
nische vormen gedefinieerd. Beide canonische vormen hebben gemeen dat ze
minimaal zijn in hun isomorfieklasse, afhankelijk van een welbepaalde lexico-
grafische ordening. Meer bepaald, de rijgeordende canonische vorm van een
relatiematrix M is gedefinieerd als de lexicografisch kleinste string die beko-
men kan worden door de rijen en kolommen van M te permuteren waarbij
de rijen van het gedeelte van M boven de diagonaal geconcateneerd worden.
Bij een kolomgeordende canonische vorm daarentegen bekomt men de lexico-
grafisch kleinste string door de kolommen van het gedeelte van M boven de
diagonaal te concateneren. Merk op dat het gebruik van een rijgeorderende
en een kolomgeordende canonische vorm vereist dat de matrixposities van M
respectievelijk rij per rij en kolom per kolom gëınstantieerd worden. Als slot
van Hoofdstuk 4 wordt de interactie van beide canonische vormen met de com-
binatorische en algebräısche snoeicriteria geëvalueerd. Hieruit blijkt dat het
gebruik van een kolomgeordende canonisch vorm beter presteert. De bijhoren-
de instantiatieorde van M zorgt er voor dat grote principale submatrices van
de minimaal idempotenten Ei vlugger bekomen worden tijdens het recursieve
generatieproces.

In Hoofdstuk 5 ontwikkelen we een canoniciteitsalgoritme dat bepaald of een
gegeven matrix M in kolomgeordende canonisch vorm is. De enige gekende
aanpak is om via bactracking alle mogelijke permutaties van de rijen en ko-
lommen van M te beshouwen. Verschillende snoeitechnieken zijn mogelijk om
de corresponderende recursieboom te snoeien. Niettemin, blijft het ontwik-
kelen van een efficiënt canoniciteitsalgoritme een gecompliceerde en subtiele
opdracht. De ontwikkeling van het algoritmen wordt beschreven in opeenvol-
gende stappen. Bij elke stap worden de gemaakte ontwerpsbeslissingen en hun
impact gëıllustreerd aan de hand van empirische data. In een eerste fase wordt
het canoniciteitsalgoritmen ontwikkeld enkel rekening houdend met het feit
dat het algoritme een symmetrische matrix M als input krijgt. In een tweede
fase zijn de bijkomende verbeteringen gebaseerd op het feit dat het canonici-
teitsalgoritme herhaaldelijk gebruikt wordt gedurende de loop van een ‘orderly-
generatiealgoritme.

230 Nederlandse samenvatting

In Hoofdstuk 6 tenslotte, geven we een overzicht van verschillende nieuwe clas-
sifcatieresultaten voor associatieschema’s, sterke regulier en afstands regulier
grafen bekomen met de generatiealgoritmen beschreven in Hoofdstuk 4 en 5.
Sommige van deze classificatieresultaten werden reeds gepubliceerd in gespe-
cialiseerde wetenschappelijke tijdschriften [21, 22, 30, 31].

