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Preface

The work presented in this thesis falls under two main topics, Incidence Geometry and
Polynomial Method. The former deals with incidence structures that are motivated by
geometrical notions like projective spaces, affine spaces and polar spaces, while the lat-
ter is a loosely defined mathematical technique of using polynomials to solve problems
in combinatorics, finite geometry, discrete geometry and number theory. The thesis is
accordingly divided into two parts which can be read independently of each other:

I Incidence Geometry: Chapters 1 to 6.

II Polynomial Method: Chapters 7 to 9.

The incidence structures that we will be dealing with in the first part of the thesis are
generalized polygons and near polygons, while the polynomial method in the second part
is related to zeros of an n variable polynomial over a ring R in certain finite subsets of
Rn, which we will call grids.

I started my thesis work in August 2013 by learning the theory of valuations of generalized
polygons which was developed by my supervisor Bart De Bruyn to obtain characteriza-
tions of small generalized polygons. He had successfully applied this theory to prove a
spectacular result that the Ree-Tits octagon of order (2, 4) is the unique generalized oc-
tagon of order (2, 4) which contains a suboctagon of order (2, 1). The basic idea in this
theory is to first compute certain integer valued functions on the point set of a given
generalized polygon, the so-called valuations, and a particular incidence structure formed
by these valuations called the valuation geometry of the generalized polygon. This valu-
ation geometry is then used to obtain the required information about every generalized
polygon that contains the given generalized polygon as a full subgeometry. He saw fur-
ther potential in this theory and gave me a result on semi-finite generalized hexagons,
which he knew how to prove, as a “toy problem” that I could work on after mastering
the techniques that he had developed. At around November 2013, I successfully solved
this problem, which I consider as my first milestone in mathematical research. We had
proved that (a) no (possibly infinite) generalized hexagon can contain the split Cayley
hexagon H(2) as a proper full subgeometry, and (b) every generalized hexagon containing
the dual split Cayley hexagon H(2)D as a proper full subgeometry is finite, and hence
isomorphic to the dual twisted triality hexagon T(2, 8) by the classification result of Co-
hen and Tits. Within a couple of months we generalized the techniques further so that
we could prove similar results for near hexagons (which are more general than general-
ized hexagons) containing these subhexagons. This work became my first research paper.
We have recently extended our results further by considering generalized hexagons with
q + 1 ∈ {4, 5} points on each line containing one of the known generalized hexagons of
order q as a subgeometry. All of these results constitute Chapter 4 of this thesis.

As an offshoot of our work on semi-finite generalized polygons, Bart and I thought it would
be nice to compute the valuation geometry of some other well-known near polygons with
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three points on each line (many of our techniques were limited to point-line geometries
with three points on each line). The most natural choice for us was the Hall-Janko
near octagon HJ, which corresponds to the sporadic finite simple group J2 and contains
subgeometries isomorphic H(2)D. I computed the valuation geometry of HJ, and as a result
we noticed that there might exist a near octagon with three points on each line containing
HJ which can be constructed using certain valuations of HJ. Since there was no known
example of such a near octagon, this was unexpected (and exciting!). I checked, using a
computer, that indeed we have a near octagon containing HJ, and quickly started finding
its properties with the help of the mathematical software SageMath. My computations
revealed that the automorphism group of this new near octagon acted vertex-transitively
on the collinearity graph, which was a bit surprising due to the asymmetrical nature of
our construction using certain valuations of HJ. Moreover, SageMath gave me the order
of the full automorphism group and the fact that its derived subgroup is a simple group.
From this we conjectured that the automorphism group of our new near octagon must
be isomorphic to G2(4):2, where G2(4) is the well-known finite simple group of Lie type.
We finally arrived at a group theoretical construction of this near octagon using central
involutions of G2(4):2 and proved our conjecture. Sitting inside this new near octagon,
we discovered another new near octagon, which corresponds to the finite simple group
L3(4) (the projective special linear group). Both of these near octagons are new and they
share many common properties; for example, both of them can be defined by a suborbit
diagram of central involutions which look quite similar. We give a common treatment
of these two new incidence geometries in Chapter 5, where we derive several important
structural properties.

The new near octagon corresponding to the group G2(4), let’s call it O1, has HJ as a
subgeometry, which in turn has H(2)D has a subgeometry. In this manner we get a
“tower” of near polygons, H(2, 1) ⊂ H(2)D ⊂ HJ ⊂ O1, where H(2, 1) is the unique
generalized hexagon of order (2, 1) (it is the dual of the incidence graph of Fano plane).
The automorphism groups of these near polygons are L3(2):2, U3(3):2, J2:2 and G2(4):2,
respectively. Thus we have the first four members of the Suzuki tower of finite simple
groups, L3(2) < U3(3) < J2 < G2(4) < Suz, where Suz is the sporadic simple group
discovered by Michio Suzuki in 1969. Suzuki constructed Suz as an automorphism group
of the largest graph in a sequence Γ0, . . . ,Γ4 of graphs in which Γ1, . . . ,Γ4 are strongly
regular graphs and for each i ∈ {0, . . . , 3}, the graph Γi is the local graph of Γi+1. Using
our Suzuki tower of near polygons, we can show that all of these graphs can be constructed
in a uniform geometrical fashion. Moreover, we have proved that every near polygon in
this tower, except the first one, is the unique near polygon of its order and diameter
containing the previous near octagon as a subgeometry. These results constitute Chapter
6 of the thesis.

A significant part of my work in incidence geometry involved computations on computer
models of near polygons and generalized polygons using mathematical software like GAP
and SageMath. We had to design reasonably fast ways of finding certain substructures
of near polygons called hyperplanes, which would then be used to construct the valuation
geometry of a given near polygon. While working on these algorithms, I realised that that
they can help us answer some open questions on distance-j ovoids of generalized polygons.
In collaboration with Ferdinand Ihringer, I was able to show non-existence of distance-2
ovoids in the dual split Cayley hexagon H(4)D. The techniques that we developed for this
work are quite general and they might be helpful in resolving other such “small cases” of
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open problems in finite geometry. All my computational work, some of which is required
in subsequent chapters, is contained in Chapter 3.

Towards the end of 2014, I started getting interested in the so-called polynomial method
after reading Terence Tao’s blog post on Zeev Dvir’s two page solution of the famous
finite field Kakeya problem using a slick polynomial argument. I quickly learned about
Noga Alon’s Combinatorial Nullstellensatz, Tom H. Koornwinder’s proof of the absolute
bound on equiangular lines, Andries Brouwer and Lex Schrijver’s proof of the bound
on affine blocking sets, and several other such important results involving (elementary)
polynomial arguments. By March 2015, I started writing some notes on the polynomial
method in collaboration with my friends Abhishek Khetan and Aditya Potukuchi who
were also interested in understanding these techniques. We read several papers and ex-
pository articles to get acquainted with some of the basic ideas involved. In particular, we
started reading the papers “Combinatorial Nullstellensatz Revisited” by Pete Clark and
“Warning’s Second Theorem with Restricted Variables” by Pete Clark, Aden Forrow and
John Schmitt. In April 2015, I emailed Pete and John saying that one can easily obtain a
generalization of the classical Chevalley-Warning theorem (which is a corollary of Warn-
ing’s second theorem) using a result of Simeon Ball and Oriol Serra called the Punctured
Combinatorial Nullstellensatz. My new result is in fact a generalization of David Brink’s
restricted variable Chevalley-Warning theorem, which he proved using Alon’s Combinato-
rial Nullstellensatz. We give the exact statement in Chapter 8 where we also lay down the
basics of grid reduction of polynomials and give a new proof of Punctured Combinatorial
Nullstellensatz.

Pete and John responded promptly to my email(s) and shared with me a lot of material
related to the things they have been working on. The discussions that followed with Pete,
John and Aditya resulted in a collaborative work which I believe is my main contribution
to the polynomial method. The main tool used by Clark, Forrow and Schmitt to obtain
their generalization of Warning’s second theorem on the minimum number of common
zeros of a system of polynomial equations over a finite field is a result of Alon and Füredi
from 1993 that gives a lower bound on the number of non-zeros of a polynomial in a
finite grid. They gave several combinatorial applications of their result along the general
theme of refining “combinatorial existence theorems into theorems which give explicit (and
sometimes sharp) lower bounds on the number of combinatorial objects asserted to exist”.
Within a few weeks of our discussions, I noticed that this Alon-Füredi theorem is in
fact related to Reed-Muller type affine variety codes, and to the famous Schwartz-Zippel
lemma. I also came up with an alternate proof of the Alon-Füredi theorem, and then
Aditya discovered an even simpler proof which helped me in obtaining a new generalization
of the Alon-Füredi theorem. Ultimately, we discovered a lot more about this result and
its connection with different areas of mathematics, including incidence geometry. All of
this work is contained in the last chapter, Chapter 9.
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1. Preliminaries

We assume a basic level of familiarity with linear algebra, projective geometry, graph
theory and group theory (especially group actions and permutation groups). Here we
note down some definitions and results related to the main players of the first part of this
thesis, generalized polygons and near polygons.

1.1. Point-Line Geometries

A point-line geometry is a triple S = (P ,L, I) of sets where P is non-empty, P and L
are disjoint and I is a subset of P × L such that for every L ∈ L there exist at least two
x ∈ P for which (x, L) ∈ I. We refer to the elements of P as points of S, elements of L
as lines of S and I as the incidence relation between the points and lines. We will often
use geometrical language by writing the statement (x, L) ∈ I as “the point x and the line
L are incident”, “the point x lies on the line L”, “the line L contains the point x,” etc.
Two points x, y are called collinear if there is a line L incident with both x and y. We
say that a point-line geometry has order (s, t), for possibly infinite cardinal numbers s
and t, if every line is incident with s + 1 points and every point is incident with t + 1
lines. If s = t, then we simply say that the point-line geometry has order s. When every
point is incident with at least three lines and every line is incident with at least three
points, we call the point-line geometry thick. The point-line dual of a point-line geometry
S = (P ,L, I), when L is non-empty and every point is incident with at least two lines,
is the point-line geometry SD = (PD,LD, ID) where PD = L, LD = P , ID ⊆ L × P and
(L, x) ∈ ID if and only if (x, L) ∈ I.

A point-line geometry S is called a partial linear space if for every pair of distinct points
in S, there is at most one line which contains both of these points. When there is exactly
one line through every pair of distinct points, we get a linear space. Important examples of
linear spaces are projective spaces and affine spaces. When a point-line geometry (P ,L, I)
satisfies the condition that {x ∈ P | x I L1} 6= {x ∈ P | x I L2} for every L1 6= L2 ∈ L,
we can uniquely identify each line with the set of points that are incidence with it, and
thus we get a hypergraph (V,E) corresponding to the geometry, where V = P and
E = {{x ∈ P | x I L} | L ∈ L}. For partial linear spaces this condition is automatically
satisfied; hence we can, and often will, treat a partial linear space like a hypergraph with
the incidence relation being set containment.

Let S = (P ,L, I) be a point-line geometry. The incidence graph of S is the graph whose
vertex set is P ∪ L and two vertices are adjacent when they are incident in S. The
point graph or collinearity graph of S is the graph whose vertex set is P and two vertices
are adjacent when they are collinear. The distance function on pairs of vertices of the
incidence graph will be denoted by δS(·, ·), while the distance function on pairs of vertices
of the collinearity graph will be denoted by dS(·, ·). When no confusion arises we will
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Preliminaries

Figure 1.1.: The unique GQ of order (2, 2)

simply write δ and d, without the subscript. We call the geometry S connected if the
diameter of its incidence graph, or equivalently the diameter of its collinearity graph, is
finite. For a point x and a line L, we define d(x, L) as min{d(x, y) | y I L}, and for two
lines L,M , we define d(L,M) as min{d(x, y) | x I L, y I M}. For two nonempty subsets
A,B of P , we define d(A,B) as min{d(x, y) | x ∈ A, y ∈ B}. When A is a singleton {x},
we simple denote d({x}, B) as d(x,B). Let Γ denote the collinearity graph of S. Then
the set of points at distance i (at most i) from a point/line/subset X in Γ is denoted
by Γi(X) (respectively Γ≤i(X)).1 Unless stated otherwise, the distances measured in this
thesis will be in the collinearity graph of a point-line geometry. The following proposition
relates the two distance functions d and δ of S. We leave its proof to the reader.

Proposition 1.1.1. Let (P ,L, I) be a connected point-line geometry, let δ(·, ·) denote
the distance function in its incidence graph and let d(·, ·) denote the distance function
in its collinearity graph. Let x, y ∈ P and L,M ∈ L with L 6= M . Then we have
δ(x, y) = 2 · d(x, y), δ(x, L) = 2 · d(x, L) + 1 and δ(L,M) = 2 · d(L,M) + 2.

Two point-line geometries (P ,L, I) and (P ′,L′, I′) are called isomorphic if there exists a
bijective map f : P ∪ L → P ′ ∪ L′ such that f(P) = P ′, f(L) = L′ and (x, L) ∈ I if and
only if (f(x), f(L)) ∈ I′. An isomorphism from a point-line geometry to itself is called an
automorphism, and the group formed by all automorphisms is called the automorphism
group of the geometry.

Example. Let P be the set of all two element subsets of {1, 2, 3, 4, 5, 6} and L the set
of all partitions of {1, 2, 3, 4, 5, 6} into two element subsets. Then by taking incidence
relation I as set containment, we get a point-line geometry (P ,L, I) of order (2, 2) with
15 points and 15 lines. This point-line geometry is isomorphic to its point-line dual and
has the automorphism group isomorphic to the symmetric group S6. In Figure 1.1 we
have given a drawing of this geometry which explains the common name given to it, Doily
(the 15 lines are the 5 lines of the regular pentagon, 5 angle bisectors and 5 incomplete
circles). As we will see in the next section, this point-line geometry is an example of a
generalized quadrangle. In fact, this is the unique generalized quadrangle of order (2, 2)
up to isomorphism.

1For any arbitrary graph Γ, we denote the set of vertices at distance i from a given vertex x by Γi(x).
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Figure 1.2.: Doily with GQ(2, 1) inside

A point-line geometry S = (P ,L, I) is called a subgeometry of another point-line geometry
S ′ = (P ′,L′, I′) if P ⊆ P ′, L ⊆ L′ and I = I′ ∩ (P × L). The subgeometry is called full
if for every line L ∈ L, the set {x ∈ P | x I L} is equal to the set {x ∈ P ′ | x I′ L}.
It is called isometrically embedded if the distances measured in the collinearity graph of
S are equal to the distances in the collinearity graph of S ′, i.e., for every pair of points
x, y in S, we have dS(x, y) = dS′(x, y). Figure 1.2 shows a full isometrically embedded
subgeometry of Doily. The subgeometry is in fact isomorphic to the unique generalized
quadrangle of order (2, 1). By abuse of notation, we will denote the set Γi(P) of points
of S ′ at distance i from P by Γi(S).

The books [72], [93] and [127] are some of the standard references for point-line geometries.
For an introduction to incidence geometry, see [12] and [63].

1.2. Generalized Polygons

Generalized polygons were introduced by Tits in the Appendix of his famous paper on
triality [138], and they are now an integral part of incidence geometry. They have connec-
tions with several areas of mathematics like group theory, extremal graph theory, coding
theory and design theory. The standard reference for generalized polygons is [140], and
the older survey by Kantor [95, Section A] gives a succinct introduction to the basic theory
of these point-line geometries. For proofs of statements in this section which are stated
without a proof, we refer to [140] and [63, Chapter 5].

One of the easiest ways to define generalized polygons is as follows.

Definition. For an integer n ≥ 2, a generalized n-gon is a point-line geometry whose
incidence graph has diameter n and girth 2n.2

A generalized polygon is a generalized n-gon for some integer n ≥ 2. Note that a bipartite
graph of diameter n which contains a cycle has girth (length of the shortest cycle) at most
2n. Therefore, generalized polygons correspond to bipartite non-tree graphs of a given

2Sometimes the condition that every vertex of the incidence graph has degree at least 3 is also added,
for example in [95]. We will simply call the generalized polygons satisfying that condition as thick
generalized polygons.
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diameter and maximum possible girth, the so-called bipartite Moore graphs [86, Chapter
5]. From the definition it directly follows that the point-line dual of a generalized n-gon
is also a generalized n-gon. A generalized 2-gon is simply a point-line geometry whose
incidence graph is a complete bipartite graph. A generalized 3-gon (triangle) is equivalent
to a possibly degenerate projective plane. Generalized quadrangles as defined above can
be shown to be equivalent to partial linear spaces satisfying the following axioms:

GQ1 there exist at least two disjoint lines;

GQ2 for every point x and a line L not containing x, there exists a unique point π(x) on
L which is collinear with x.

Similarly, we have the following equivalent definition of generalized n-gons for any n ≥ 3.
An ordinary n-gon for n ∈ N \ {0, 1, 2} is a point-line geometry which is isomorphic to
the partial linear space that has point set {1, . . . , n}, line set {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}} and set containment as incidence relation. A generalized n-gon with n ∈
N \ {0, 1, 2} is a partial linear space S = (P ,L, I) satisfying:

GP1 S has no subgeometries that are ordinary m-gons with m ∈ {3, 4, . . . , n− 1};

GP2 S has subgeometries that are ordinary n-gons;

GP3 for every X, Y ∈ P ∪ L with X 6= Y , there exists a subgeometry of S containing X
and Y which is isomorphic to an ordinary n-gon.

One of the most basic properties of thick generalized polygons is that they have an order.
We state it here without proof.

Proposition 1.2.1. Let S be a generalized n-gon for n ∈ N \ {0, 1, 2} and let Γ̃ be its
incidence graph.

(1) For every two vertices u and v of Γ̃ at maximal distance n from each other, there
exists a bijection between the set of neighbors of u and the set of neighbors of v.

(2) If S is thick, then S has an order (s, t). Moreover, if n is odd, then s = t.

(3) S is thick if and only if it has ordinary (n+ 1)-gons as subgeometries.

For generalized quadrangles, we can say something more. An (n1×n2)-grid, with n1, n2 ∈
N \ {0, 1}, is a point-line geometry that is isomorphic to the partial linear space whose
point set is equal to {1, . . . , n1}×{1, . . . , n2} and whose lines are all sets of the form {i}×
{1, . . . , n2} for i ∈ {1, . . . , n1} and those of the form {1, . . . , n1}×{i} for i ∈ {1, . . . , n2}. If
n1 = n2, then we call the grid symmetrical and otherwise it is nonsymmetrical. The point-
line dual of a symmetrical/nonsymmetrical grid is called a symmetrical/nonsymmetrical
dual grid.

Proposition 1.2.2 ( [63, Theorem 5.16]). If S is a finite generalized quadrangle in which
every point is incident with precisely two lines, then S is a grid. Dually, if S is a finite
generalized quadrangle in which every line is incident with precisely two points, then S is
a dual grid.

Proposition 1.2.3 ( [63, Theorem 5.17]). Let S be a finite generalized quadrangle. Then
precisely one of the following holds.

(1) S is a nonsymmetrical grid.

Page 6



Preliminaries

(2) S is a nonsymmetrical dual grid.

(3) S has an order (s, t).

In finite generalized polygons with an order, we can do elementary counting to obtain the
total number of points and lines. This information is collected in the following result.

Proposition 1.2.4 ( [140, Lemma 1.5.4]). Let S = (P ,L, I) be a finite generalized n-gon
of order (s, t) with n ≥ 3 and let x be a point of S. For i ∈ {0, . . . , n}, let Si(x) denote
the set of elements of P ∪ L that are at distance i from x in the incidence graph of S.
Then

(1) for 1 ≤ i ≤ n− 1, we have |Si(x)| = (t+ 1)sbi/2ctb(i−1)/2c, and |Sn(x)| = sn/2tn/2−1 for
n even while |Sn(x)| = sn−1 for n odd;

(2) if n is even, then

|P| = (s+ 1)
(st)

n
2 − 1

st− 1
and |L| = (t+ 1)

(st)
n
2 − 1

st− 1
;

(3) if n is odd, then s = t and

|P| = |L| = sn − 1

s− 1
.

Since subgeometries of a generalized polygon are going to play an important role in this
thesis, we include the following results.

Lemma 1.2.5. Let S be a generalized n-gon contained in another generalized n-gon S ′
as a full subgeometry.3 Then S is isometrically embedded in S ′.
Proof. If there are two points x, y in S such that bn/2c ≥ dS(x, y) > dS′(x, y), then we
will get a subgeometry of S ′ isomorphic to an ordinary m-gon for some m < n.

Two points/lines of a generalized 2n-gon are called opposite if they lie at distance 2n from
each other in the incidence graph. By Proposition 1.1.1, two points of a generalized 2n-gon
are opposite if and only if they are at distance n from each other in the collinearity graph,
and two lines are opposite if and only if they are at distance n− 1 from each other in the
collinearity graph. Proposition 1.2.1(1) implies that opposite lines in a generalized 2n-gon
have the same number of points on them and that opposite points have the same number
of lines through them. Note that for every point x and every line L of a generalized
2n-gon, there exists a unique point πL(x) on L which is nearest to x, i.e., for every point
y on L with y 6= πL(x) we have d(x, y) = d(x, πL(x)) + 1.

Lemma 1.2.6. Let S be a generalized 2n-gon that is contained in a generalized 2n-gon
S ′ as a full subgeometry. Then:

(1) every point of S ′ is opposite to a point of S;

(2) every line of S ′ is opposite to a line of S;

(3) if S is thick, then S ′ is thick (and hence has an order).
3The condition of being a full subgeometry is not necessary here, but we include it because all our
subgeometries will be full.
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Proof. (1) Let x be a point of S ′ and let y be a point of S at distance i := d(x,S) from
x (by Lemma 1.2.5 we can simply denote the distance funtions dS′ and dS by d). Let
z be a point of S which is at distance n− i from y. Then there cannot exist any path
of length less than n between x and z as otherwise we will get an ordinary m-gon as
a subgeometry for some m < n, which is not possible since S ′ is a generalized n-gon.
Therefore, d(x, z) = n, i.e., x and z are opposite.

(2) Let L be a line of S ′ and x an arbitrary point on L. By (1), there exists a point z
in S which is opposite to x. Let πL(z) be the unique point on L nearest to z. Then
d(z, πL(x)) = n − 1. There exists a unique line through z which contains a point at
distance n− 2 from πL(z). Let L′ be any other line through z which is contained in
S. Then we must have d(L′, L) = n− 1, i.e., L and L′ are opposite.

(3) This now follows from Proposition 1.2.1(1).

1.2.1. Important Examples

For every field F, we have the Desarguesian projective plane PG(2,F) constructed from
the vector space F3 by taking the 1-dimensional subspaces as points and 2-dimensional
subspaces as lines, with incidence as set containment This is a generalized triangle. When
F is the finite field of order q, for some prime power q, then we get a finite generalized
triangle of order q which has 1 + q + q2 points and equally many lines.

Every nonsingular quadric of Witt index 2 gives rise to a generalized quadrangle if we take
the points to be the 1-dimensional subspaces contained in the quadric, and lines to be
the 2-dimensional subspaces contained in the quadric. In fact, every rank 2 polar space
is a generalized quadrangle (see [63, Chapter 7] or [12, Chapter 4] for an introduction
to polar spaces). For example, the generalized quadrangle given in Figure 1.1 can be
obtained from the symplectic polarity of PG(3, 2) defined by the alternating bilinear
form f((x0, x1, x2, x3), (y0, y1, y2, y3)) = x0y1 − x1y0 + x2y3 − x3y2 (the map U 7→ {x ∈
PG(3, 2) | f(x, u) = 0 ∀u ∈ U} gives the polarity), and it is denoted by W (2). For more
on generalized quadrangles see the standard reference [118].

There is a natural doubling construction which allows us to construct generalized 2n-gons
from generalized n-gons. Let S = (P ,L, I) be a point-line geometry. Then the double
of S is the point-line geometry S ′ = (P ′,L′, I′) where P ′ = P ∪ L, L′ is the set of all
sets {x, L} where (x, L) ∈ I and I′ is set containment.4 It can be easily shown that if
S is a generalized n-gon, then its double is a generalized 2n-gon in which every line is
incident with precisely two points. In fact, the converse also holds. Every generalized
2n-gon with two points on each line is the double of a generalized n-gon. Therefore, we
get a generalized hexagon Hπ by doubling a projective plane π. If π is isomorphic to
PG(2, q), then we denote Hπ by H(1, q), noting that this generalized hexagon has order
(1, q). The dual of H(1, q) will be denoted by H(q, 1); thus the points of H(q, 1) are the
edges of the incidence graph of PG(2, q) (the flags of the projective plane), and the lines
are the vertices of the incidence graph. The automorphism group of H(q, 1) is isomorphic

4This is basically the incidence graph of S treated as a point-line geometry in itself.

Page 8



Preliminaries

to a semi-direct product PΓL3(q) o C2, and thus has size 2r(q3−1)(q3−q)(q3−q2)/(q−1)
when q is the r-th power of a prime.

Let L be a 2-dimensional subspace of Fn+1
q (or equivalently a line of the n-dimensional

projective space PG(n, q)), where q is a prime power. Let x = (x0, . . . , xn) and y =
(y0, . . . , yn) form a basis of L. Then the Grassmann coordinates of L are pij = xiyj −xjyi
for 0 ≤ i < j ≤ n. Note that these coordinates are independent of the choice of basis
of L, up to a scalar factor. Thus, the Grassman coordinates map a line of PG(n, q) to a
point of PG(

(
n+1

2

)
−1, q). The split Cayley hexagon H(q) is a generalized hexagon of order

(q, q), when q is a prime power, which can be defined as follows [138], [140, Section 2.4.13].
Consider the quadratic form Q : F7

q → Fq defined as Q(x) = x0x4 + x1x5 + x2x6 − x2
3.

(a) The points of H(q) are all 1-dimensional subspaces of F7
q which vanish on Q.

(b) The lines of H(q) are all 2-dimensional subspaces of F7
q which vanish on Q, and whose

Grassmann coordinates satisfy p12 = p34, p54 = p32, p20 = p35, p65 = p30, p01 = p36

and p46 = p31.

We will not be using this definition directly in this thesis, but only some of the well-known
properties of split Cayley hexagons. The automorphism group of H(q) is isomorphic to
the semi-direct product G2(q) o Aut(Fq) and thus it has size rq6(q6 − 1)(q2 − 1) when q
is an r-th power of a prime [140, Proposition 4.6.7]. We also note that by [140, Corollary
3.5.7], the split Cayley hexagon H(q) is isomorphic to its point-line dual H(q)D if and only
if q is a power of 3.

For every prime power q, we also have a generalized hexagon of order (q3, q) known as the
twisted triality hexagon, which we denote by T(q3, q). Its point-line dual is denoted by
T(q, q3). We do not give its definition here and refer the interested reader to [140, Chapter
2]. We have the following well known inclusion of geometries between the classes of
generalized hexagons we have discussed so far :

H(q, 1) ⊂ H(q)D ⊂ T(q, q3).

Clearly this is a sequence of full isometrically embedded subgeometries.

The doubling construction can also be used to construct generalized octagons of order
(q, 1) from generalized quadrangles of order (q, q). There is another class of generalized
octagons known as the Ree-Tits octagons, which have order (q, q2), for q an odd power of
2, and are denoted by GO(q, q2). For the definition of this geometry see [139]. If q = 22e+1,
then |Aut(GO(q, q2))| = (2e + 1)q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) (see [140, Proposition
4.6.10]).

1.2.2. Classification of Finite Generalized Polygons

One of the most important results in the theory of generalized polygons is the following
theorem due to Feit and G. Higman [81] (also see [140, Theorem 1.7.1]).

Theorem 1.2.7. Let S be a finite generalized n-gon, with n ≥ 3, of order (s, t). Then
one of the following holds:

• S is an ordinary n-gon, and thus s = t = 1.
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• S is a non-degenerate projective plane of order s = t ≥ 2.

• S is a generalized quadrangle and the number st(1 + st)/(s+ t) is an integer.

• S is a generalized hexagon; the number st is a square if s, t > 1, and in that case
the following numbers are integers for u =

√
st and w = s+ t,

u2(1 + w + u2)(1 + u+ u2)

2(w + u)
,
u2(1 + w + u2)(1− u+ u2)

2(w − u)
.

• S is a generalized octagon; the number 2st is a square if s, t > 1, and in that case
the following numbers are integers for u =

√
st
2
and w = s+ t,

u2(1 + w + 2u2)(1 + 2u2)(1 + 2u+ 2u2)

2(w + 2u)
,
u2(1 + w + 2u2)(1 + 2u2)(1− 2u+ 2u2)

2(w − 2u)
.

• S is a generalized dodecagon, and either s = 1 or t = 1.

For thick finite generalized polygons, Proposition 1.2.1 combined with Theorem 1.2.7 tells
us that besides the projective planes, there are only generalized quadrangles, hexagons,
and octagons. There are further restrictions on the parameters of these geometries due
to Higman, Haemers and Roos [89,91,92].

Theorem 1.2.8. Let S be a finite generalized 2n-gon of order (s, t) with s, t, n ≥ 2. Then
the following hold:

(1) if n = 2, then s ≤ t2 and t ≤ s2;

(2) if n = 3, then s ≤ t3 and t ≤ s3;

(3) if n = 4, then s ≤ t2 and t ≤ s2.

Even with all these restrictions, we are nowhere near a full classification of finite general-
ized polygons. There are infinitely many parameters which satisfy the conditions above
but for which we have no idea about existence or non-existence of a generalized polygon
with those parameters (see [63, Section 5.8] for a full list of parameters for which the ex-
istence is known). While there are many families of finite generalized quadrangles besides
those coming from rank 2 polar spaces that we discussed in Section 1.2.1 (see [118, Chapter
3]), the situation is quite different for generalized hexagons and octagons. The examples
mentioned in Section 1.2.1 are the only known thick finite generalized hexagons and oc-
tagons. Moreover, even when there exists a generalized n-gon of a given order, we usually
do not have a classification of all generalized n-gons of that order, except for some small
cases. For example, it is not known whether H(3) is the unique generalized hexagon of
order 3.

For s = 2, a finite generalized quadrangle of order (s, t) necessarily has t ∈ {1, 2, 4} by
the restrictions above, and for all these cases there is a unique generalized quadrangle of
the given order. For s = 3, we have t ∈ {1, 3, 5, 6, 9}. There is no GQ of order (3, 6).
For t ∈ {1, 5, 9} there is a unique GQ. For t = 3 there are exactly two GQ’s, dual to
each other. There is a unique GQ of order (4, t) for t ∈ {1, 2, 4}, but the uniqueness
is not known for orders (4, 6), (4, 8) and (4, 16) (existence of GQ’s of order (4, 11) and
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(4, 12) is still unknown). See [118, Chapter 6] for the proofs of all these results and the
relevant references. Again by the restrictions above, a finite generalized hexagon of order
(2, t) must have t ∈ {1, 2, 8}. In [53], Cohen and Tits proved that H(2, 1), H(2), H(2)D

and T(2, 8) are the only finite generalized hexagons of order (2, t). For s = 3, we have
t ∈ {1, 3, 27}, and only for t = 1 we know that the generalized hexagon is unique. For the
case of generalized octagons, we do not even know if the smallest known thick generalized
octagon, the Ree-Tits octagon of order (2, 4), is the unique generalized octagon of order
(2, 4).

We finally note that the situation is not so hopeless if we assume some extra conditions
on the generalized polygon. For example, using the classification of finite simple groups,
Buekenhout and Van Maldeghem [40] have classified all finite generalized polygons whose
automorphism group acts distance transitively on the set of points. There are several
other interesting conditions that one can impose which give rise to some classification
results, see for example [121] and [140, Chapters 4,5].

1.3. Near Polygons

Near polygons were introduced by Shult and Yanushka in 1980 [128] for studying the so-
called tetrahedrally closed line systems in Euclidean spaces. They now form an important
class of point-line geometries and have close connections to distance-regular graphs [34]
and polar spaces [42]. The standard reference for near polygons is [58], which along
with [63] will be our main reference for this section.

Definition. A near 2n-gon, for n ∈ N, is a partial linear space S = (P ,L, I) which
satisfies the following axioms:

NP1 the collinearity graph of S is connected with diameter n;

NP2 for every point x ∈ P and every line L ∈ L, there exists a unique point πL(x)
incident with L that attains the minimum distance between x and points incident
with L.

A near polygon is a near 2n-gon for some n ∈ N. A near 0-gon is just a point while a
near 2-gon is a line. It is easy to see that every generalized 2n-gon is also a near 2n-gon.
In fact, every generalized 2n-gon is a special kind of near 2n-gon, as the following result
shows.

Proposition 1.3.1 ( [63, Theorem 5.14]). For an integer n ≥ 2, every near 2n-gon S
that satisfies the following conditions is a generalized 2n-gon.

(1) Every point of S is incident with at least two lines.

(2) For every pair of points x, y at distance i ∈ {1, 2, . . . , n− 1} in the collinearity graph
of S, there exists a unique point of S at distance i− 1 from x and distance 1 from y.

Looking at generalized 2n-gons as special kinds of near 2n-gons will be quite useful to
us, and we will do so whenever convenient. If we remove Condition (1) in Proposition
1.3.1, then we get the so-called degenerate generalized polygons; for example, a set of lines
through a common point gives rise to a degenerate generalized quadrangle.
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A simple class of near polygons which are not generalized polygons is the class of Hamming
near 2n-gons, n ≥ 3, defined as follows: for arbitrary nonempty sets L1, . . . , Ln, take
P = L1 × · · · × Ln and let L to be the union of sets Li’s, for i ∈ {1, . . . , n}, where
Li = {{x1} × · · · × {xi−1} × Li × {xi+1} × · · · × {xn} | xj ∈ Lj for j ∈ {1, . . . , n} \ {i}};
then (P ,L) with incidence as set containment is a near 2n-gon. Another example is the
near 2n-gon Hn of order (2,

(
n+1

2

)
−1) obtained by taking the partitions of {1, . . . , 2n+ 2}

into n+ 1 pairs as points and partitions into n− 1 pairs and a 4-subset as lines, a point
being incident with a line if it is a refinement of the line. When n is equal to 2, this gives
us the generalized quadrangle of Figure 1.1. For a proof of the fact that Hn is a near
2n-gon, see [58, Section 6.2]. There are also some near polygons related to sporadic finite
simple groups. For example, the near hexagon E2 of order (2, 14) related to the Mathieu
group M24, which is constructed by taking the 759 blocks of the Witt design S(5, 8, 24)
as points and triples of pairwise disjoint blocks as lines (see [58, Chapter 6] for more on
this near polygon). We will later encounter the Hall-Janko near octagon HJ related to
the Hall-Janko group J2 (see [30, 52] for its definition and properties).

Since a near polygon does not have any ordinary triangles as subgeometries, the maximal
cliques of its collinearity graph correspond bijectively to the lines of the near polygon.
This leads to the following result on isomorphisms between near polygons.

Lemma 1.3.2 ( [63, Theorem 6.2]). If S1 and S2 are two near polygons with collinearity
graphs Γ1 and Γ2, respectively, then S1 is isomorphic to S2 if and only if Γ1 is isomorphic
to Γ2.

For near polygons that have an order, we have the following easy but rather useful result.

Lemma 1.3.3 ( [58, Theorem 1.2]). Let S = (P ,L, I) be a finite near polygon of order
(s, t) and let x be a point of S. Then

∑
y∈P

(
−1

s

)d(x,y)

= 0.

Proof. By NP2, for every line L the sum
∑

y I L(−1
s

)d(x,y) is 0. Therefore, we have

0 =
∑
L∈L

∑
y I L

(
−1

s

)d(x,y)

=
∑
y∈P

∑
L I y

(
−1

s

)d(x,y)

= (t+ 1)
∑
y∈P

(
−1

s

)d(x,y)

.

Definition. A regular near 2n-gon is a near 2n-gon S with an order (s, t) and constants
ti, for i ∈ {0, . . . , n}, such that for every two points x and y of S at distance i from
each other, there are precisely ti + 1 lines through y containing a point at distance i− 1
from x. Clearly, t0 = −1, t1 = 0 and tn = t. We say that S is regular with parameters
(s, t; t2, . . . , tn−1).

Lemma 1.3.4 ( [58, Theorem 1.25]). The regular near 2n-gons, n ≥ 1, are precisely those
near 2n-gons whose collinearity graph is distance regular.

For the definition and properties of distance regular graphs, we refer to [34]. We note
that the Hall-Janko near octagon is a regular near octagon of parameters (2, 4; 0, 3) and
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in fact Cohen and Tits proved that it is the unique regular near octagon with these
parameters [53]. It is also well-known that the Hall-Janko near octagon contains the
generalized hexagon H(2)D as a subgeometry. Note that generalized 2n-gons with an
order (s, t) are precisely the regular near 2n-gons with parameters (s, t; 0, . . . , 0). Just
like the case of generalized polygons, elementary counting gives us the following result for
regular near polygons.

Lemma 1.3.5 ( [58, Chapter 3]). Let S be a near 2n-gon with parameters s, t, ti with
i ∈ {0, . . . , n}. Let x be a point of S and Γ the collinearity graph of S. Then the number
|Γi(x)|, for i ∈ {0, . . . , n} is independent from the chosen point x and is equal to

ki =
si
∏i−1

j=0(t− tj)∏i
j=1(tj + 1)

,

and the total number of points in S is equal to v = k0 + · · ·+ kn.

We include another characterization of generalized 2n-gons in terms of near 2n-gons.
Recall that the number of points in a generalized 2n-gon of order (s, t) is equal to (1 +
s)(1 + st+ s2t2 + · · ·+ sn−1tn−1) (see Proposition 1.2.4).

Lemma 1.3.6. Let S = (P ,L, I) be a near 2n-gon, n ≥ 2, of order (s, t). Then we have

|P| ≤ (1 + s)(1 + st+ s2t2 + · · ·+ sn−1tn−1),

with equality if and only if S is a generalized 2n-gon.

Proof. Let x be a point of S and denote the set of points at distance i from x by Γi(x). By
NP2, for every i ∈ {1, . . . , n} there is no line completely contained in Γi(x). Since there
are t + 1 lines through x, each containing s points besides x, we have |Γ1(x)| = s(t + 1).
Similarly, every point of Γ1(x) is collinear with exactly st points of Γ2(x), and every
point of Γ2(x) is collinear with at least one point of Γ1(x). Therefore, we have |Γ2(x)| ≤
st|Γ1(x)| = s2t(t + 1). Similarly for each i ∈ {2, . . . , n − 1} we get |Γi(x)| ≤ st|Γi−1(x)|,
and |Γn(x)| ≤ st|Γn−1(x)|/(t+ 1). From all these inequalities we can see that

|P| ≤ 1 +
n−1∑
i=1

siti−1(t+ 1) + sntn−1 = (1 + s)(1 + st+ s2t2 + · · ·+ sn−1tn−1),

with equality if and only if equality occurs at each “level”, which is equivalent to S being
a regular near polygon of parameters (s, t; 0, . . . , 0), i.e., a generalized 2n-gon.

1.3.1. Substructures of a Near Polygon

One of the most fundamental structural results for near polygons is the existence of certain
substructures called quads, which is going to be crucial in many of our proofs later. This
result was proved by Shult and Yanushka in [128] and later generalized by Brouwer and
Wilbrink in [38] to include existence of sub near polygons of larger diameter. We mention
the main results regarding quads and convex subspaces that we will need and refer the
reader to [58] for more details.
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A subset X of points in a partial linear space S = (P ,L, I) is called a subspace if for every
pair of distinct collinear points in X, all the points of the line joining these points are
contained in X. A subspace is called convex if for every pair of points x, y ∈ X, every
point on every shortest path between x and y in the collinearity graph is contained in
X. It is easy to see that every subset X of points of a partial linear space S = (P ,L, I)
is contained in a unique smallest convex subspace C(X). For every nonempty convex
subspace X of S, we can define a full isometrically embedded subgeometry of S by taking
the elements of X as the points of the subgeometry and all the lines L whose every point is
contained in X as the lines of the subgeometry. We call this subgeometry, the subgeometry
induced by X. We begin with the simplest non-trivial convex subspaces, the lines.

Lemma 1.3.7 ( [38, Lemma 1]). Let L1, L2 be two lines of a near polygon S. Then one
of the following two cases occurs:

(1) There exits a point y1 ∈ L1 and a point y2 ∈ L2 such that d(L1, L2) = d(y1, y2) and
for every x1 ∈ L1 and x2 ∈ L2, we have d(x1, x2) = d(x1, y1) + d(y1, y2) + d(y2, x2).

(2) For every point x1 ∈ L1, there exists a unique point x2 ∈ L2 such that d(x1, x2) =
d(L1, L2), and for every point y2 ∈ L2, there exists a unique point y1 ∈ L1 such that
d(y1, y2) = d(L1, L2). In this case we say that the lines L1 and L2 are parallel.5

Definition. A quad Q of a near polygon S is a convex subspace of S that induces a
subgeometry isomorphic to a (non-degenerate) generalized quadrangle.

The following result of Shult and Yanushka on existence of quads in a near polygon will
be used implicitly in our arguments later.

Theorem 1.3.8 ( [128, Proposition 2.5]). Let a, b be two points of a near polygon S at
distance 2 from each other with more than one common neighbor. Let c, d be two common
neighbors of a and b. If at least one of the lines ac, ad, bc, bd contains at least three points,
then a and b are contained in a unique quad of S.

Most of the near polygons studied in this thesis will have three points on each line, for
which Theorem 1.3.8 says that every two points at distance 2 from each other which
have more than one common neighbor have a unique quad through them. This quad is
a generalized quadrangle of order (2, t) for some possibly infinite cardinal number t. It
was proved by Cameron in [41] that for every generalized quadrangle of order (2, t), the
parameter t must be finite. Thus by Theorems 1.2.7 and 1.2.8, we must have t ∈ {1, 2, 4}.
In view of Theorem 1.3.8, this implies the following useful lemma.

Lemma 1.3.9. If S is a (possibly infinite) near polygon with three points on each line,
then every two points of S at distance 2 from each other have either 1, 2, 3 or 5 common
neighbors.

It is not difficult to classify all finite generalized quadrangles of order (2, t) (see for example
[58, Section 1.10]). For t = 1 we have the (3 × 3)-grid. The remaining cases, t = 2 and
t = 4 give us W (2) (see Figure 1.1) and Q(5, 2) (see [118, Section 3.1] for its definition),
respectively. The corresponding quads of a near polygon with three points on each line
will be called grid-quads, W (2)-quads and Q(5, 2)-quads, respectively. We will also need
the following property of quads which is a direct consequence of Theorem 1.3.8.

5Note that parallelism is not a transitive relation here.
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Lemma 1.3.10. Let L1, L2 be two intersecting lines of a near polygon S. Then there is
at most one quad of S which contains both L1 and L2.

Let x be a point of a near polygon S and F a convex subspace of S (for example, a quad
or a line). Then we say that the point x is classical with respect to F , if there exists a
(necessarily unique) point πF (x) ∈ F such that d(x, y) = d(x, πF (x)) + d(πF (x), y) for
every y ∈ F . The point πF (x) is called the projection of x on F . It follows from NP2,
that every point is classical with respect to a given line. We call a convex subspace F
of S classical if every point of S is classical with respect to F . This notion of classical
subspaces will be studied in a much more general setting in Chapter 2. Cameron proved
in [42] that every near polygon in which every pair of points at distance 2 have a unique
quad through them and every quad is classical must be a dual polar space.

Lemma 1.3.11 ( [63, Theorem 6.8]). Let F be a nonempty convex subspace of a near
polygon S and let x be a point of S such that d(x, F ) ≤ 1. Then x is classical with respect
to F .

Lemma 1.3.12 ( [63, Theorem 6.9]). The intersection of two classical convex subspaces
F1, F2 of a near polygon S is either empty or a classical convex subspace.

1.3.2. Near Hexagons of Order 2

In this section we apply the basic theory of near polygons mentioned so far, along with
some well-known results, to classify all near hexagons of order 2. This result fits better
in Chapter 6 where – among other things – we prove that the dual split Cayley hexagon
H(2)D is the unique near hexagon of order (2, 2) which contains the generalized hexagon
H(2, 1) as a full isometrically embedded subgeometry. But due to its elementary nature
we prove the result here.

Both the split Cayley hexagon H(2) and its dual H(2)D are examples of near hexagons of
order 2. Another example is the Hamming near hexagon L3 ×L3 ×L3 where L3 is just a
set (line) of three elements (points)6. We will show that there are no more near hexagons
of order 2. Note that in a generalized hexagon of order 2 every pair of points at distance
2 have a unique common neighbor, while in the Hamming near hexagon of order 2 every
pair of points at distance 2 from each other have exactly 2 common neighbors.

Lemma 1.3.13. Let S be a finite near hexagon of order (s, t) and Q a quad of S that
has order (s, t′). Then t′ < t.

Proof. We know that t′ ≤ t. For the sake of contradiction, assume that t′ = t. Let x be
a point of Q. Since t = t′, all lines of S through x are already contained in Q, and thus
x cannot be collinear with any point that is not contained in Q. But then, there cannot
be any points of S that lie outside Q, as the collinearity graph of S is connected. Thus
S = Q, which is a contradiction.

Lemma 1.3.14. Let S be a near hexagon of order 2. Then the number of common
neighbors of a pair of points at distance 2 from each other is a constant k ∈ {1, 2}.

6Picture it as a Rubik’s cube.
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Proof. Let v denote the total number of points of S. For a fixed point x let ni(x) denote
the number of points at distance i ∈ {0, 1, 2, 3} from x (in the collinearity graph). For all
x ∈ P , we have n0(x) = 1, n1(x) = 6, and thus

n2(x) + n3(x) = v − 7. (1.1)

By Lemma 1.3.3 we have

n0(x)− n1(x)

2
+
n2(x)

4
− n3(x)

8
= 0. (1.2)

Solving equations (1.1) and (1.2) we get that n2(x) = (v + 9)/3 and n3(x) = (2v − 30)/3
for all x ∈ P . Therefore these numbers only depend on v, and we can define constants

n0 = 1, n1 = 6, n2 = (v + 9)/3, n3 = (2v − 30)/3. (1.3)

By Lemma 1.3.13 all quads of N are grid-quads. For a point x, let N(x) be the number
of grid-quads that contain x. Then the number of points at distance 2 from x that are
contained in a grid along with x is equal to 4N(x) since there is a unique quad through a
pair of points at distance 2 which have more than one common neighbor by Theorem 1.3.8.
Double counting edges between Γ1(x) and Γ2(x) we get that 2 ·4N(x)+1 · (n2−4N(x)) =
n1 · 4, and hence N(x) = (63− v)/12. So, the total number of grid-quads through a point
is a constant given by N := (63− v)/12.

By Lemma 1.3.10, we must have N ∈ {0, 1, 2, 3} as there are only 3 lines through a point.
Since v = 63− 12N , using double counting we get that the total number of grid-quads in
N is

N(63− 12N)/9.

This number is not an integer if N ∈ {1, 2}. Therefore, N must be 0 or 3. If N is 0,
then there are no quads, and hence every two points at distance 2 from each other have a
unique common neighbor. Say N is equal to 3 and let x, y be a pair of points at distance 2
from each other. Every line through x is contained in precisely two of the three grid-quads
through x. Thus for every neighbor z of x, the two lines through z that contain a point
of Γ2(x) are contained in grids through x. This implies that there is a grid through x and
y, i.e., the number of common neighbors between x and y is 2.

Now let S be a near hexagon of order 2 and let k ∈ {1, 2} be the constant which is equal to
the number of common neighbors between any pair of points at distance 2 from each other
in S. If k = 1, then it follows from Proposition 1.3.1 that S is a generalized hexagon, and
hence by the classification result of Cohen and Tits [53] it is either isomorphic to H(2)
or H(2)D. So, suppose that k = 2. Then we can either use the classification result of
Brouwer et al. [35] (see number (xi) in Theorem 1.1 of the paper) or simply draw some
pictures and convince ourselves that S must be isomorphic to L3 × L3 × L3.

Remark. The classification of finite near polygons is much harder than the classification
of finite generalized polygons. But some success has been achieved for certain classes of
near polygons, like the dense near hexagons and octagons with k ∈ {3, 4} points on each
line (see [58]).

Page 16



2. Valuations of Near Polygons

2.1. Introduction

Consider the following problem:

Given a near polygon S, determine all near polygons which contains an iso-
morphic copy of S as a full subgeometry.

One of the most fruitful tools to tackle this problem has been the theory of valuations,
introduced by De Bruyn and Vandecasteele in [64], where one computes certain integer
valued functions on the point set of a near polygon S satisfying some well chosen axioms
and then uses them to determine how near polygons containing S as a full subgeometry
look like. For example, De Bruyn and Vandecasteele used this theory to classify certain
classes of dense near polygons, i.e., near polygons in which every two points at distance
2 have more than one common neighbor, by exploiting the fact that dense near 2n-
gons contain convex subspaces which induce near 2m-gons, for every m ∈ {2, . . . , n− 1}
[65] (also see [58, Chapters 6–9]). Another important example is the use of valuations,
satisfying a different set of axioms than before, by De Bruyn in [62] to prove that the Ree-
Tits octagon of order (2, 4) is the unique generalized octagon of order (2, 4) containing a
suboctagon of order (2, 1). In fact, a similar result of De Medts and Van Maldegehem [67]
on uniqueness of H(3) as a generalized hexagon of order 3 containing a subhexagon of
order (3, 1) can also be proved using this theory of valuations. For a survey on the various
applications of valuations of a near polygon, see [61].

We now define and study the notion of valuations which will be used in this thesis. The
basic definitions and results of this chapter will be used in Chapter 4 to prove non-existence
of certain semi-finite generalized hexagons and in Chapter 6 to obtain characterizations of
certain Suzuki tower near polygons. Almost all of these results on valuations are already
implicit in the literature (for example, in [59, Section 2]), but for the ease of the reader
we provide proofs.

2.2. Definitions and Properties

Definition. Let S = (P ,L, I) be a near 2n-gon. A function f : P → Z is called a
semi-valuation of S if for every line L ∈ L, there exists a unique point xL incident with
L such that f(x) = f(xL) + 1 for every x 6= xL incident with L. A valuation of S is a
semi-valuation which attains a minimum value of 0. Two valuations f, g of S are called
isomorphic if there exists an automorphism θ of S such that f(x) = g(θ(x)) for all x ∈ P .
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It directly follows from the definition that given a valuation f of a near polygon S and a
point x with f -value 0, the points at distance i from x have f -value at most i. Thus, the
values taken by a valuation of a near 2n-gon lie in the set {0, 1, . . . , n}. If f is a valuation
of a near 2n-gon S, then we denote by Of the set of points of S which have f -value 0,
and by Mf the maximum value that f attains.

Definition. A hyperplane of a partial linear space S is a proper subset H of the set of
points of S with the property that every line of S is either contained in H or intersects
H in a unique point1. If a hyperplane does not contain any line of S, then it is called a
1-ovoid of S.

For a valuation f of a near polygon S = (P ,L, I), let Hf be the set {x ∈ P | f(x) < Mf}.
For every line L, there exists a point xL on L such that f(xL) = f(x)−1 for all x ∈ L\{xL}
and thus f(xL) ≤ Mf − 1 < Mf . Therefore, the point xL belongs to Hf . Now say there
are two points x and y on L which are contained in Hf . Without loss of generality, let y be
distinct from the unique point xL. Then every point of L has f -value at most f(y), which
is less than Mf since y is in Hf . Thus all the points of the line L are contained in Hf . We
have just proved that for every valuation f of S (in fact, one can take a semi-valuation),
there is a corresponding hyperplane Hf of S consisting of those points of S that have
non-maximal f -value. This correspondence between valuations and hyperplanes of S will
be crucial in many of our results. We note that it is possible for two distinct valuations
to give rise to the same hyperplane. A hyperplane H will be called of valuation type if
there exists a valuation f such that H = Hf . We now give some standard examples of
valuations.

Example. Let S = (P ,L, I) be a near 2n-gon, for some positive integer n ≥ 2, such that
Γn(x) 6= ∅ for every point x.

(1) Let x be a fixed point of S. Define fx(y) = d(x, y) for all y ∈ P . Then the function
fx is a valuation of S, which is known as a classical valuation of S. Its hyperplane
Hfx is the set of points at distance at most n− 1 from x, and such a hyperplane will
be called the singular hyperplane with center x.

(2) Let O be a 1-ovoid of S. Define a function fO : P → Z by fO(x) = 0 if x ∈ O
and fO(x) = 1 if x 6∈ O. Then fO is a valuation of S, which is known as an ovoidal
valuation, and its associated hyperplane is equal to O.

(3) Suppose n ≥ 3. Let x be a fixed point of S and let O′ be a 1-ovoid of the subgeometry
of S induced on the set Γn(x) of points at distance n from x. Define fx,O′(y) := d(x, y)
for all points y at distance at most n − 1 from x, fx,O′(y) = n − 2 for y ∈ O′ and
fx,O′(y) = n − 1 for all the remaining points of S. Then fx,O′ is a valuation of S,
which is known as a semi-classical valuation. The associated hyperplane of fx,O′ is
equal to O′∪Γ≤n−1(x), and this will be called a semi-singular hyperplane with center
x.

We will now show that in a generalized quadrangle which is not a dual grid (recall the
definition from Section 1.2), every valuation is either classical or ovoidal. This will later

1This definition is motivated by the same property of hyperplanes in projective spaces, and in fact when
we embed a partial linear space in a projective space as a full subgeometry, the hyperplanes of the
projective space give rise to the hyperplanes of the partial linear space [63, Section 4.5].
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Figure 2.1.: Lemma 2.2.1

be used to derive the point-quad relationships in near polygons, as originally obtained by
Shult and Yanushka in [128, Proposition 2.6]2.

Lemma 2.2.1. Let S be a generalized quadrangle which is not a dual grid and let x be
a point of S. Then the subgraph of the collinearity graph Γ induced on the set Γ2(x) of
points at distance 2 from x is connected and has diameter at most 3.

Proof. If S is a grid then Γ2(x) is either a subline, or another grid3; and thus the graph
has diameter at most 2. So assume that S is neither a grid, nor a dual grid. Then by
Proposition 1.2.3, S has an order (s, t). If t = 1 or s = 1, then S is a grid or a dual grid.
Therefore s, t ≥ 2, and in particular every line of S has at least three points.

Now let x1, x2 be two non-collinear points of Γ2(x). Then d(x1, x2) = 2 in S. Say, there
exists a common neighbor of x1 and x2 which also lies in Γ2(x). Then x1, x2 have distance
2 in the graph induced on Γ2(x). Therefore, assume that all common neighbors of x1

and x2 lie in Γ1(x). Let y1, y2 be two such common neighbors. Since every line has at
least three points, we can pick a point y′1 on the line x1y1 which is not equal to x1 or
y1. Then y′1 must lie in Γ2(x). Clearly y′1 is not collinear with either x2 or y2 as that
would contradict the axiom GQ2 (see Figure 2.1). Let y′2 be the unique point of the line
x2y2 which is collinear with y′1. Then y′2 is also contained in Γ2(x), which gives us the
path x1, y

′
1, y
′
2, x2 between x1 and x2 of length 3. Therefore, the graph is connected with

diameter at most 3.

Theorem 2.2.2. Let S be a generalized quadrangle which is not a dual grid. Then every
valuation of S is either classical or ovoidal.

Proof. Let f be a valuation of S. If Mf = 1, then every line contains a unique point of
value 0, and hence Of is a 1-ovoid and f is ovoidal. So, assume that Mf = 2. We will
show that f is classical. Let x ∈ Of and let y be a point with f -value 2. Then every point
in Γ1(x) has f -value 1. Let y′ be a point of Γ2(x) which is collinear with y, and let y′′ be
the unique point on the line yy′ which is collinear with x. Then f(y′′) = 1, f(y) = 2, and
therefore f(y′) must be equal to 2 by the property of valuations. Now by Lemma 2.2.1,
every point in Γ2(x) has f -value 2. This shows that f is a classical valuation with x as
the unique point with f -value 0.

2The proof using valuations is essentially the same as the proof of Shult and Yanushka.
3The case where Γ2(x) is a singleton is not possible as then S must be a 2 × 2 grid, which contradicts
the fact that S is not a dual grid since a 2× 2 grid is also a dual grid.
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Recall the main problem stated in Section 2.1. We will now see why valuations can be
useful in tackling that problem.

Theorem 2.2.3. Let S = (P ,L, I) be a near polygon which is a full subgeometry of another
near polygon S ′ = (P ′,L′, I′)4. Then for every point x in P ′, the function fx : P → Z
defined by fx(y) = d(x, y) − d(x,P) is a valuation of S. Moreover, if S is isometrically
embedded, then for every x ∈ P the valuation fx is a classical valuation of S.
Proof. Let L ∈ L be a line of S, and let xL = πL(x) be the unique point on L which
is nearest to x in S ′. Since S is a full subgeometry, xL ∈ P . Then for every point y on
L, we have d(x, y) = d(x, xL) + 1, and hence xL is the unique point on L with minimum
fx-value. Taking a point y ∈ P with d(x, y) = d(x,P), we see that fx attains the value
0. Thus, fx is a valuation of S.

Now assume that S is isometrically embedded and let x ∈ P . Then for every y ∈ P we
have fx(y) = d(x, y) = dS(x, y), and hence fx is classical with center x.

In view of Theorem 2.2.3, whenever we have a near polygon S = (P ,L, I) as a full
subgeometry of another near polygon S ′ = (P ′,L′, I′) and x is a point of S ′, then fx
will denote the valuation of S defined by fx(y) = d(x, y) − d(x,P) for y ∈ P . This will
sometimes be referred as the valuation of S corresponding to the point x of S ′.

Lemma 2.2.4. Let S = (P ,L, I) be a near polygon which is a full subgeometry of a near
2n-gon S ′ = (P ′,L′, I′). For every x ∈ P ′, let fx be the corresponding valuation of S.
Then we have the following:

(1) If d(x,P) ≥ i, then Mfx ≤ n− i.

(2) If d(x,P) = 1 and |Ofx| = 1, then x is collinear with a unique point of S.
Proof. For a point x ∈ P ′, the maximum possible distance between x and a point of P
is n. Since fx(y) = d(x, y) − d(x,P) ≤ n − i for every y ∈ P , we have Mfx ≤ n − i. If
d(x,P) = 1, then the set Ofx corresponds to the points of S which are at distance 1 from
x.

Theorem 2.2.3 shows that if we are given a near polygon S, and if we can somehow
determine the set V of all possible valuations of S, then given any near polygon S ′
containing S as a full subgeometry, to each point of S ′ we can associate an element of
V . This mapping is usually neither injective, nor surjective. But in some cases — as we
will see later — we can reconstruct S ′ using some well chosen elements of V (which we
have already computed). But first, we derive the well-known point-quad relations in a
near polygon. Given a quad Q of a near polygon S, recall that we call a point x classical
with respect to Q if there exists a point πQ(x) ∈ Q such that for every y ∈ Q we have
d(x, y) = d(x, πQ(x)) + d(πQ(x), y). We call a point ovoidal with respect to Q if the set
of points in Q which are at distance d(x,Q) from x, i.e., points of Q which are nearest to
x, form a 1-ovoid of Q.

Theorem 2.2.5. Let x be a point and Q a quad of a near polygon S such that Q is not
a dual grid. Then either x is classical with respect to Q or x is ovoidal with respect to Q
Proof. This is an immediate corollary of Theorems 2.2.2 and 2.2.3 as d(x, y) = fx(y) +
d(x,Q) for every y ∈ Q.

4Note that we do not make the assumption that these near polygons have the same diameter.
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For a near polygon S, we have associated points of an arbitrary near polygon S ′ containing
S as a full subgeometry to elements of the set V of all valuations of S. Of course, it will
help if we can associate lines of S ′ to certain subsets of V . This motivates the following
definition.

Definition. Let f, g be two valuations of a near polygon S. Then we say that f and g
are neighboring valuations if there exists an integer ε such that |f(x)− g(x) + ε| ≤ 1 for
every point x of S.

Note that the integer ε defined above must belong to the set {−1, 0, 1}. This can be shown
as follows. If ε ≤ −2, then for a point x in Of we have f(x)−g(x)+ ε = 0−g(x)+ ε ≤ −2
since g(x) ≥ 0, which is a contradiction to the fact that |0 − g(x) + ε| ≤ 1. Therefore
ε ≥ −1. Similarly, if ε ≥ 2, then for a point y ∈ Og we have f(y)−g(y)+ε = f(y)−0+ε ≥ 2
since f(y) ≥ 0, which is again a contradiction as |f(x) − 0 + ε| ≤ 1. Therefore, ε ≤ 1.
Moreover, the number ε is uniquely determined by f and g unless f = g, in which case ε
can be taken to be any number in {−1, 0, 1} (see for example [59, Corollary 2.3]).

Theorem 2.2.6. Let S = (P ,L, I) be a near polygon which is a full subgeometry of
another near polygon S ′ = (P ′,L′, I′). Then for every line L of L′, {fx | x I′ L} is a set
of pairwise neighboring valuations of S.
Proof. Let L be a line of S ′, and x, y two points on L. Then for every point z ∈ P , we
have |d(z, x)−d(z, y)| ≤ 1 by the triangle inequality. Now write d(z, x) = fx(z)+d(x,P),
d(z, y) = fy(z) + d(y,P) and ε = d(x,P) − d(y,P). Then for every z ∈ P , we have
|fx(z)− fy(z) + ε| ≤ 1, which shows that fx and fy are neighboring valuations.

2.3. Three Points on Each Line

We now restrict to the case when the near polygons have three points on each line, i.e.,
we have a near polygon S contained in another near polygon S ′ as a full subgeometry and
every line of S ′ is incident with exactly three points. Then by applying Theorems 2.2.3
and 2.2.6, to the points of S ′ we can associate valuations of S and to the lines of S ′ we can
associate triples of pairwise neighboring valuations of S. We will show that it suffices to
focus on triples of distinct valuations and see how all the information regarding valuations
can be written in a “compact form”. All the results of this section are essentially contained
in [59]. But there the notation used is different and the results proved are slightly more
general. Therefore, it is worthwhile to revisit the proofs.

Let S = (P ,L, I) be a near polygon with three points on each line. Let f1 and f2 be two
neighboring valuations of S and let ε ∈ {−1, 0, 1} be such that |f1(x) − f2(x) + ε| ≤ 1
for all x ∈ P . We define a function f ′3 : P → Z as follows. For a point x ∈ P , if
f1(x) = f2(x)− ε, then we define f ′3(x) := f1(x)− 1 = f2(x)− ε− 1. For every other point
x, we define f ′3(x) := max{f1(x), f2(x) − ε}. Let m (necessarily belonging to {−1, 0, 1})
be the minimum value taken by f ′3, and define f3 : P → N as f3(x) := f ′3(x)−m (so that
f3 attains the value 0). Then we denote this function f3 by f1∗f2. Note that this function
is well defined in the sense that if f1 = f2, then for any of the three possible values of ε,
we have f1 ∗ f2 = f1 = f2. It also follows directly from the definition that f1 ∗ f2 = f2 ∗ f1.

Lemma 2.3.1. Let f1 and f2 be two neighboring valuations of a near polygon S that has
three points on each line. Let f3 = f1 ∗ f2. Then
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(1) f3 is also a valuation of S;

(2) f1, f2 and f3 are all pairwise neighboring;

(3) we have f2 ∗ f3 = f1 and f1 ∗ f3 = f2.

Proof. (1) It suffices to show that the function f ′3 defined above is a semi-valuation. We
show this under the weaker assumption that f1 and f2 are semi-valuations, and thus
we can simply assume that |f1(x) − f2(x)| ≤ 1 for all x ∈ P (every translate of a
valuation is a semi-valuation and there is a unique translate of a semi-valuation which
is a valuation).

Let L be a line of S. For i ∈ {1, 2}, let xi be the unique point on L such that
fi(x) = fi(xi) + 1 for all x ∈ L \ {xi}. Say x1 = x2. Then for all x ∈ L \ {x1}, we
have f2(x) = f2(x2) + 1 = f1(x1) + c + 1 = f1(x) + c, where c = f2(x1) − f1(x1). If
c = 0, then f ′3 = f1 − 1, and otherwise f3 is either equal to f1 or f2 depending on the
sign of c. Thus, in all these cases f ′3 is a semi-valuation.

Now say x1 6= x2. If f1(x1) > f2(x2), then f1(x2)− f2(x2) = f1(x1) + 1− f2(x1) ≥ 2,
a contradiction. Similarly, we cannot have f1(x1) < f2(x2) and therefore f1(x1) =
f2(x2) = a. Let x3 be the third point of L. Then f ′3(x1) = f ′3(x2) = a + 1 and
f ′3(x3) = a. Thus, f ′3 is a semi-valuation.

(2) We show that f1 and f3 are neighboring and the other cases follow from symmetry.
Let x be a point for which f ′3(x) = f1(x)−1. Since f3(x) = f ′3(x)−m, where m is the
minimum value of f ′3, we get f1(x)−f3(x)+(−m) = 1. Now let x be any other point.
Say f1(x) ≥ f2(x)−ε. Then f1(x)−f3(x)+(−m) = 0. Otherwise, f2(x)−ε = f3(x)+m,
but since |f1(x) − f2(x) + ε| ≤ 1, we get |f1(x) − f3(x) + (−m)| ≤ 1. This shows
that there exists an integer −m such that |f1(x)− f3(x) + (−m)| ≤ 1 for all x, which
means that f1 and f3 are neighboring.

(3) Again, we will only prove that f1 ∗ f3 = f2. We have just seen that f1 and f3 are
neighboring with |f1(x)− f3(x) + (−m)| ≤ 1 for all x ∈ P , where m is the minimum
value taken by the function f ′3 defined before. Define f ′ as f ′(x) = f1(x)−1 whenever
f1(x) = f3(x) − (−m) and f ′(x) = max{f1(x), f3(x) − (−m)} otherwise. Note that
f3(x) − (−m) = f ′3(x). Let x be a point where f1(x) = f ′3(x). This only holds for
f1(x) > f2(x)−ε and then f ′(x) = f1(x)−1 = f ′3(x)−1. Since |f1(x)−f2(x)+ε| < 1,
we must have f1(x)− 1 = f ′3(x)− 1 = f2(x)− ε; thus f ′(x) = f2(x)− ε.

Now let x be a point where f1(x) 6= f ′3(x). Then we must have f2(x)− ε ≥ f1(x). If
there is equality, then f ′3(x) = f1(x)−1 and thus f ′(x) = max{f1(x), f ′3(x)} = f1(x) =
f2(x)−ε. If not, then f ′3(x) = f2(x)−ε > f1(x), and hence f ′(x) = f2(x)−ε. Therefore,
f ′ is just a translate of the valuation f2 by −ε, which implies that f1 ∗ f3 = f2.

The main addition to Theorems 2.2.3 and 2.2.6 for the case of three points per line is the
following result, which leads us to the definition of Valuation Geometry of a near polygon
with three points on each line.

Theorem 2.3.2. Let S = (P ,L, I) be a near polygon that is a full subgeometry of another
near polygon S ′ = (P ′,L′, I′) and suppose every line in S ′ is incident with precisely three
points. Let {x1, x2, x3} be a line of S ′ and let f1, f2, f3 be the valuations of S induced by
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the points x1, x2, x3, respectively. Then (a) f3 = f1 ∗ f2; (b) if every point of the line is at
the same distance from P, then all three valuations are mutually distinct.

Proof. For each i ∈ {1, 2, 3}, let di = d(xi,P). We have seen that f1 and f2 are neighbor-
ing valuations with ε = d1−d2. Define f ′3 as before. We will show that f3 is a translate of
f ′3, and since there is only one possible translate of a semi-valuation which is a valuation
this will show that f3 = f1 ∗ f2.

Let x be a point of S. Say d(x, x1) = d(x, x2). This is equivalent to f1(x) = f2(x) + d2 −
d1 = f2(x)−ε. Then byNP2, we have d(x, x3) = d(x, x1)−1, which in terms of valuations
means f3(x) + d3 = f1(x) + d1 − 1. Therefore, f3(x) = f1(x)− 1 + ε′, where ε′ = d1 − d3.
Now say d(x, x1) 6= d(x, x2). Then again by NP2, d(x, x3) = max{d(x, x1), d(x, x2)}. In
terms of valuations, we have f3(x)+d3 = max{f1(x)+d1, f2(x)+d2 = f2(x)+d2−d1+d1},
which is equivalent to f3(x) = max{f1(x) + ε′, f2(x)− ε+ ε′} = max{f1(x), f2(x)− ε}+ ε′.
Therefore, f3(x) = f ′3(x) + ε′ for all x ∈ P and hence f3 = f1 ∗ f2.

This shows that if any two of these valuations coincide, then all of them coincide. There-
fore, it suffices to prove that we cannot have all of the valuations equal if d1 = d2 = d3.
Say f := f1 = f2 = f3 and look at a point y in Of . Then we have d(xi, y) = fi(y) + di for
each i, which implies that d(x1, y) = d(x2, y) = d(x3, y). This contradicts NP2.

Definition. Let S be a near polygon with three points on each line and let V be the
set of all valuations of S. Then the valuation geometry V of S is the partial linear space
defined by taking the set V as the point set and the set of 3-element subsets {f1, f2, f3}
of pairwise distinct and neighboring valuations which satisfy f3 = f1 ∗ f2 as the line set.

Note that the valuation geometry of S does not directly give us any information about
those lines of a near polygon S ′ containing S as a full subgeometry for which all three
points on the line induce the same valuation. But in all of the cases considered in this
thesis, we will show that no two collinear points of S ′ can induce the same valuation of
S, from which it will follow directly that each line of S ′ induces a line of the valuation
geometry of S.

We now see an example of how this valuation geometry can be useful, which will also be
used to set up the notation for valuation geometries of near polygons. As a by product, we
will get a proof of the uniqueness of the generalized quadrangle of order 2 using valuations.
While this proof is in no way simpler than other proofs of uniqueness, it sets the template
for more complicated arguments involving valuations that we will see in Chapters 4 and
6.

2.3.1. An Example – the Doily

For this section let S be the (3× 3)-grid, i.e., the unique generalized quadrangle of order
(2, 1).5 Then by Theorem 2.2.2, every valuation of S is either classical or ovoidal. From
the transitivity of the automorphism group on the point set of S, it follows that all
classical valuations of S are isomorphic to each other. It is also easy to show that all
ovoidal valuations of S are isomorphic. Let’s call the members of the isomorphism class
of classical valuations as “type A” valuations, and the ovoidal ones as “type B” valuations

5Its uniqueness is quite easy to show using the GQ axioms.
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(in general we will be giving labels to elements of an equivalence class of the valuation
isomorphism). To every line of the valuation geometry V of S, assign a type based on the
types of the valuations it contains; which in this case is just a sorted string of A’s and
B’s. For example, if in a line {f1, f2, f3}, f1 is classical and f2, f3 are ovoidal, then we
will call the line to be of “type ABB”. Then the valuation geometry V , which can either
by computed by hand or by the computer algorithms of Chapter 3, can be described by
Tables 2.1 and 2.2.

Recall that for a valuation f , the maximum value of f is denoted by Mf , the set of points
with f -value 0 is denoted by Of and the hyperplane formed by the set of points that have
f -value less than Mf is denoted by Hf . The column “Value Distribution” in Table 2.1
contains arrays whose i-th element is the number of points of S with f -value i− 1, for a
valuation of the given row type. The columns of Table 2.2 contain the number of lines of
the valuation geometry V of a given type incident with an arbitrary point of the type of
the column. For example, the second entry in the first column tells us that through each
valuation of type A, there is exactly 1 line of V that has type ABB.

Type # Mf |Of | |Hf | Value Distribution
A 9 2 1 5 [1, 4, 4]
B 6 1 3 3 [3, 6, 0]

Table 2.1.: The valuations of GQ(2, 1)

Type A B

AAA 2 −
ABB 1 3
BBB − 1

Table 2.2.: The lines of the valuation geometry of GQ(2, 1)

Now for any near polygon S ′ which contains S as a full subgeometry and has three points
on each line, we can associate points and lines of S ′ to the points and lines of V by using
Theorems 2.2.3, 2.2.6 and 2.3.2, unless all three valuations induced by points on a line of
S ′ are equal. We assign a type to the points of S ′ based on the type of the points of V
they induce. The type of a line of S ′ is simply a sorted string of the types of the points
contained in the line. Thus, every point of S ′ has type A or B, and every line of S ′ has
type AAA, ABB or BBB.

Lemma 2.3.3. Let S ′ be a generalized quadrangle which contains S as a full subgeometry.
Then

(1) every point of S ′ is at distance at most 1 from S;

(2) every point of S ′ which is contained in S has type A;

(3) every point of S ′ which is not contained in S has type B and is collinear with precisely
three points of S forming a 1-ovoid.
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Proof. (1) Let x be a point of S ′. If d(x,S) ≥ 2, then by Lemma 2.2.4, Mfx ≤ 0, which
is a contradiction.6

(2) Since S is a full subgeometry, by Lemma 1.2.5 it is isometrically embedded. Thus,
for every point x of S the valuation fx is classical.

(3) Let x be a point of S ′ which is not contained in S, and hence it is at distance 1
from S. Then by Lemma 2.2.4, Mfx ≤ 1, and hence x must be of type B by Table
2.1. Moreover, the points of S collinear with x are in bijection with the set Ofx , and
therefore x is collinear with exactly three points of S, which form a 1-ovoid.

Corollary 2.3.4. Let S ′ be a generalized quadrangle containing S as a full subgeometry.
Then for every line L = {x1, x2, x3} of S ′, the valuations fx1 , fx2 and fx3 of S are all
mutually distinct.
Proof. If L is contained in S, then these are three distinct classical valuations; so assume
that L is not contained in S. Then by Lemma 2.3.3, L either intersects S in a unique
type A point, or it lies at distance 1 from S and has only type B points. In the former
case, one of the three valuations is of type A while the rest are of type B, and hence all
of them are distinct (note that fx1 = fx2 ∗ fx3). In the latter case, we see from Theorem
2.3.2(b) that the valuations are distinct.

By Corollary 2.3.4, every line {x1, x2, x3} of S ′ gives rise to a line {fx1 , fx2 , fx3} of the
valuation geometry V .

Lemma 2.3.5. Let S ′ be a generalized quadrangle of order (2, 2) containing S as a full
subgeometry. Then the map x 7→ fx between the points of S ′ and the points of V is a
bijection.
Proof. By Proposition 1.2.4, S ′ has 15 points, 6 of which belong to S. Since S is isomet-
rically embedded by Lemma 1.2.5, each of the 6 points of S are in bijective correspondence
with the 6 type A points of V . The 9 points of S ′ which are not in S are at distance 1
from S and each of them is collinear with exactly three points of S forming a 1-ovoid by
Lemma 2.3.3. Since there are exactly 9 points of type B in V (see Table 2.1), it suffices
to show that two distinct points of S ′ which are not contained in S induce distinct valu-
ations. Let x, y be two such distinct points. Suppose fx = fy = f and let z be a point of
Of , which is then collinear to both x and y. Then z is incident with two lines in S and
since the order of S is (2, 2), it is incident with at most one other line. Thus, {x, y, z} is
a line of S ′. Now let z′ be any other point of Of . Then z′ is collinear with both x and y,
which contradicts NP2.

Lemma 2.3.6. Let S ′ be a generalized quadrangle of order (2, 2) containing S as a full
subgeometry. Then the map {x1, x2, x3} 7→ {fx1 , fx2 , fx3} is a bijective map between the
lines of S ′ and the lines of V that have type AAA or ABB.
Proof. By Corollary 2.3.4 and Lemma 2.3.5, two distinct lines of S ′ induce distinct lines
of V . By a double count using Table 2.2, there are 6 lines of type AAA and 9 lines of type
ABB in V . The lines contained in S are of type AAA, and since there are 6 of them, they
correspond bijectively to the type AAA lines of V . Let x be a point of type B in S ′. Then

6Of course a more elementary reasoning based on the GQ axiom also proves this, but we prove it this
way since a similar argument will appear in other cases later.
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x is collinear with three points of S by Lemma 2.3.3, giving rise to three lines through
x, all necessarily of type AAB as they contain a point of type A. Since the order of S
is (2, 2), there are no other lines through x. Therefore, there are no lines of type ABB
in S ′. Since there are 9 lines in S ′ besides those contained in S, these must bijectively
correspond to the type ABB lines of V .

Corollary 2.3.7. Up to isomorphism, there is at most one generalized quadrangle of order
(2, 2) containing S as a full subgeometry.
Proof. Every such GQ, if it exists, must be isomorphic to the subgeometry of V formed
by taking all the lines of type AAA and ABB.

We can in fact show that every GQ of order (2, 2) contains S as a full subgeometry. Take
two disjoint lines L1 = {x11, x12, x13}, L2 = {x21, x22, x23} in such a GQ and assume that
for each i ∈ {1, 2, 3} the point x1i is collinear with the point of x2i. For each i, let x3i denote
the third point on the line joining x1i and x2i. Then from GQ2 it follows that x31, x32

and x33 are pairwise collinear and mutually distinct. Therefore, L3 = {x31, x32, x33} is a
line, and we get a (3×3)-grid formed by these lines. Corollary 2.3.7 now shows that up-to
isomorphism, there is at most one GQ of order (2, 2). Since we already know that there
exists a generalized quadrangle of order (2, 2), the W (2) quadrangle (see Figures 1.1 and
1.2), it must be unique.

2.4. Some valuation geometries

In this section we record the data for valuation geometries of the split Cayley hexagon
H(2), its dual H(2)D, and the Hall-Janko near octagon HJ, that will be used later. This
data was obtained using the computer algorithms described in Chapter 3.

Type # Mf |Of | |Hf | Value Distribution
A 63 3 1 31 [1, 6, 24, 32]
B 252 3 1 47 [1, 14, 32, 16]
C 252 2 1 23 [1, 22, 40, 0]
D 1008 2 5 31 [5, 26, 32, 0]

Table 2.3.: The valuations of H(2)D
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Type A B C D

AAA 3 − - -
ABB 2 1 - -
ACC 2 - 1 -
ADD 24 - - 3
BBB - 4 - -
BCC - 1 2 -
BDD - 4 - 2
CCC - - 8 -
CCD - - 40 5
CDD - - 4 2
DDD - - - 10

Table 2.4.: The lines of the valuation geometry of H(2)D

Type # Mf |Of | |Hf | Value Distribution
A 63 3 1 31 [1, 6, 24, 32]
B1 126 2 1 23 [1, 22, 40, 0]
B2 252 2 3 27 [3, 24, 36, 0]
B3 504 2 4 29 [4, 25, 34, 0]
B4 72 2 7 35 [7, 28, 28, 0]
B5 378 2 9 39 [9, 30, 24, 0]
C 36 1 21 21 [21, 42, 0, 0]

Table 2.5.: The valuations of H(2)
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Type A B1 B2 B3 B4 B5 C

AAA 3 - - - - - -
AB1B1 1 1 - - - - -
AB2B2 6 - 3 - - - -
AB3B3 16 - - 4 - - -
AB4B4 4 - - - 7 - -
AB5B5 3 - - - - 1 -
B1B1B1 - 3 - - - - -
B1B1B2 - 16 4 - - - -
B1B1B5 - 6 - - - 1 -
B1B2B4 - 4 2 - 7 - -
B1B3B3 - 12 - 6 - - -
B1B3C - 12 - 3 - - 42
B2B2B2 - - 12 - - - -
B2B2B5 - - 6 - - 2 -
B2B3B3 - - 10 10 - - -
B2CC - - 1 - - - 14
B3B3B5 - - - 3 - 2 -
B4B4C - - - - 1 - 1
B5B5B5 - - - - - 1 -
B5CC - - - - - 1 21

Table 2.6.: The lines of the valuation geometry of H(2)

Type # Mf |Of | Value Distribution
A 315 4 1 [1,10,80,160,64]
B 630 3 1 [1,10,112,192,0]
C 3150 3 1 [1,26,128,160,0]
D 1008 2 5 [5,110,200,0,0]
E 2016 2 25 [25,130,160,0,0]

Table 2.7.: The valuations of HJ

Page 28



Valuations of Near Polygons

Type A B C D E

AAA 5 – – – –
ABB 1 1 – – –
ACC 5 – 1 – –
BBB – 5 – – –
BBC – 10 1 – –
CCC – – 9 – –
CDD – – 4 25 –
DDD – – – 6 –
DEE – – – 1 1
EEE – – – – 6

Table 2.8.: The lines of the valuation geometry of HJ
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3. Computing Hyperplanes, Ovoids
and Valuations

3.1. Introduction

In this chapter we describe the computational techniques we have used in our work to
compute hyperplanes, ovoids and valuations of near polygons. We will construct all the
Tables given in Section 2.4 by using computer models of these near polygons. We will also
give a computer-aided proof of nonexistence of distance-2 ovoids (which are equivalent
to 1-ovoids) in the dual split Cayley hexagon H(4)D. Furthermore, these techniques
will be applied in Chapter 4 to obtain some results on intersections of hyperplanes in
split Cayley hexagons and their duals which will help us prove non-existence of certain
generalized hexagons (see Theorem 4.3.11).

The study of distance-j ovoids in generalized polygons was initiated by Thas, who in-
vestigated the existence of distance-2 ovoids in generalized quadrangles and distance-3
ovoids in generalized hexagons [137] (these were simply called ovoids). In their general
form, distance-j ovoids were introduced by Offer and Van Maldeghem in [115]. These are
important objects in finite geometry, with connections to perfect codes in distance-regular
graphs [44], cores of graphs [43] and several other topics. Our focus is on distance-2 ovoids
in the dual split Cayley hexagons H(q)D, where q is a prime power. While for the split
Cayley hexagon H(q), existence of these ovoids is known for q ∈ {2, 3, 4} [68], and the
ovoids are completely classified [69, 119]; for H(q)D, only the nonexistence for q = 2 and
the existence for q = 3 (noting that H(3) ∼= H(3)D) is known. Therefore, our result on
nonexistence of distance-2 ovoids in H(4)D is the natural next step.

In [115], it was shown that a distance-3 ovoid in a generalized octagon of order (s, t) can
only exist if s = 2t. This directly implies that there are no distance-3 ovoids in the Ree-
Tits octagons GO(q, q2), or their duals GO(q2, q), where q is an odd power of 2, except
for the case of GO(4, 2). We will show that this last remaining case does not have any
distance-3 ovoids either1.

To be able to understand the computer code given in this, the reader needs to be familiar
with the computer algebra system GAP [83] and the mathematical software SageMath
[74]. But we have tried to explain the basic ideas without referring to any specific software,
so that one can implement all the algorithms in whichever language or software one is
comfortable with.

1After we solved this last “open case”, we found out that Brouwer had already verified it using a different
computation [33]. Brouwer’s result is mentioned as a remark in a liber amicorum in Dutch, which
leaves out some details of the used techniques. So, we still see some value in including this result in
the thesis.
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3.2. Definitions and Basic Techniques

We first recall the definition of hyperplanes and 1-ovoids, since they are going to be central
to this chapter.

Definition. A hyperplane of a point-line geometry is a proper subset of the set of points
with the property that every line is either contained in it or intersects it in a unique point.
If a hyperplane does not contain any line, then it is called a 1-ovoid.

Definition. Let S = (P ,L, I) be a near polygon and let d(·, ·) denote the distance function
of its collinearity graph.

(a) A partial distance-j ovoid of S is a set O of points such that for every two distinct
points x and y in O we have d(x, y) ≥ j.

(b) A distance-j ovoid of S is a partial distance-j ovoid O such that (1) for every point
a of S there exists a point x of O such that d(a, x) ≤ j/2; (2) for every line L of S
there exists a point x ∈ O such that d(L, x) ≤ (j − 1)/2.

Remark. The definition of distance-j ovoids given in [115] looks different as it employs the
distance function in the incidence graph, which is a common convention in the literature
on generalized polygons. But, it can easily be shown using Proposition 1.1.1 that these
two definitions are equivalent.

The exact cover problem in a hypergraph (V,E) asks for the existence of a subset S of
E such that for every vertex v there exists a unique edge e in S which contains v. The
dual of this problem is the exact hitting set problem where we need to find a subset O of
V such that for every edge e there is a unique vertex v in O which is contained in E. As
noted before, 1-ovoids in point-line geometries, where the lines can be treated as subsets
of points, are equivalent to exact hitting sets in the corresponding hypergraph. It is clear
from the definitions that in a near polygon distance-2 ovoids are equivalent to 1-ovoids.
We will now show that in general, distance-j ovoids can be linked to exact hitting sets in
certain hypergraphs.

Lemma 3.2.1. 2 Let S = (P ,L, I) be a near 2n-gon. For any i ∈ {0, . . . , n} and an
element a ∈ P ∪L, let Γ≤i(a) denote the set of points at distance at most i from a in the
collinearity graph of S. Let O be a set of points and j ∈ {2, . . . , n}. Then

(1) for j even, O is a distance-j ovoid if and only if for all L ∈ L we have

|Γ≤(j−2)/2(L) ∩ O| = 1;

(2) for j odd, O is a distance-j ovoid if and only if for all x ∈ P we have

|Γ≤(j−1)/2(x) ∩ O| = 1.

Proof. We only prove the first case, when j is even, and note that the second part has
a similar proof. Say O is a distance-j ovoid and let L ∈ L. Then by the definition of
distance-j ovoids there exists a point x in O such that d(x, L) ≤ (j − 1)/2, but since j
is even and distances are integral we have d(x, L) ≤ (j − 2)/2. Say there was another

2One side of this Lemma was proved in [57, Lemma 2].
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point y 6= x in O with d(y, L) ≤ (j − 2)/2. Then d(x, y) ≤ d(x, L) + d(y, L) + 1 = j − 1
which is a contradiction. Now say O is a set of points such that for every line M we have
|Γ≤(j−2)/2(M)∩O| = 1. Let x, y be two distinct points in O. If d(x, y) ≤ j−1, then there
exits a line L in the path joining x to y such d(x, L) ≤ (j − 2)/2 and d(y, L) ≤ (j − 2)/2,
which is not possible. Now let x be an arbitrary point of S. Let L be any line through
x, and let y be the unique point in O such that d(L, y) ≤ (j − 2)/2. Then d(x, y) ≤
1 + d(L, y) = j/2. Let L be an arbitrary line of S; then by the assumption on O there
exists a point in O at distance at most (j − 2)/2 ≤ (j − 1)/2 from L. Therefore, O is a
distance-j ovoid.

Lemma 3.2.1 makes it clear that the existence of a distance-j ovoid in a near 2n-gon
S is equivalent to the existence of an exact hitting set in a hypergraph derived from
the collinearity graph of S. For j even the edges of this hypergraph are the subsets
Γ≤(j−2)/2(L) of P where L is a line, and for j odd the edges of this hypergraph are the
subsets Γ≤(j−1)/2(x) where x is a point.

Note that the exact cover problem is a well-known NP-hard problem, and hence we cannot
expect a “really efficient” algorithm for computing distance-j ovoids in general. Still, we
can do better than brute force search. One of the fastest known algorithms for computing
exact covers is Knuth’s Dancing Links [99]. It can be implemented from scratch in any
programming language, or one can use some existing implementation. We will be using
the standard implementation in SageMath [74], which is due to Carlo Hamalainen3. The
following function written in SageMath will give us an iterator for all exact hitting sets
in a hypergraph, or equivalently all 1-ovoids in the corresponding point-line geometry.

def ovoids(P,L):
"""
Find all exact hitting sets (1-ovoids) in a hypergraph (geometry).

Args:
P -- the vertices (points) of the hypergraph (geometry)
L -- the edges (lines) of the hypergraph (geometry)
Returns:
an iterator for exact hitting sets (1-ovoids) in the hypergraph (geometry).
"""
map = dict() # to construct the dual problem of exact covers
for p in P:

map[p] = []
for i in range(len(L)):

for p in L[i]:
map[p].append(i)

E = [map[p] for p in P]
for match in DLXCPP(E):

yield [P[i] for i in match]

To see how one can use this function, we determine all 1-ovoids of a (3 × 3)-grid (this
corresponds to the type B valuation given in Table 2.1).

3https://carlo-hamalainen.net/blog/2008/3/1/an-exact-cover-solver-for-sage
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P = [1,2,3,4,5,6,7,8,9]
L = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9]]
O = ovoids(P, L)
print list(O)

[[1, 5, 9], [1, 6, 8], [2, 4, 9], [2, 6, 7], [3, 4, 8], [3, 5, 7]]

Finally we mention that distance-j ovoids in near polygons also give rise to valuations as
follows. Let O be a distance-j ovoid of a near polygon S = (P ,L, I) for j even. Then the
function f : P → N defined by f(x) = d(x,O) is a valuation of S, with Mf = j/2. We
will not encounter distance-j ovoidal valuations in this thesis, and we refer the interested
reader to [64] for more details.

3.3. Computer Models of Geometries

Since we want to compute the valuation geometries of some “small” near polygons, and
compute certain substructures like distance-j ovoids and hyperplanes in these near poly-
gons, we will need computer models that we can work with. In this section we discuss
how we can obtain the computer models of some small split Cayley hexagons, their duals,
the Ree-Tits octagon GO(2, 4), and the Hall-Janko near octagon HJ.

To construct a computer model of the split Cayley hexagons (and their duals), one can use
the definition mentioned in Section 1.2.1 which involves a particular quadric in PG(6, q).
This is what the GAP [83] package FinIng [15] does. However, for the small cases that
we consider in this thesis, we prefer a different construction. Observing that the auto-
morphism groups of these geometries act primitively and distance transitively (see for
example [40]) on both points and lines of the geometry, we can use the permutation rep-
resentations given in the database of primitive permutation groups of GAP (works only
for q ∈ {2, 3, 4}) or the permutation representations given in the ATLAS of finite simple
group [54]4 (works for q ∈ {2, 3, 4, 5}) to construct the points and lines of these geome-
tries. This method also works for other geometries, like the generalized hexagons of order
(q, 1) obtained from PG(2, q) (for small q), the generalized octagons of order (q, 1) (for
small even q), the Ree-Tits octagons and for the Hall-Janko near octagon.

Since for characteristic not equal to 3 we have two non-isomorphic permutation repre-
sentations of the automorphism group of the split Cayley hexagons, one on the points of
split Cayley hexagon and another one on the points of its dual (which is non-isomorphic
in this case), we need a way to distinguish between these two. An easy combinatorial
method of doing so was given by Ronan in [122], which we have used to find out which
permutation representation corresponds to the dual split Cayley. The following function,
written in GAP, constructs a near polygon with permutation group G acting distance
transitively on its points, and transitively on the lines. As input, the function only re-
quires the permutation group G acting on the set {1, . . . , v} for some integer v and an
array partition_sizes whose i-th entry denotes the number of points at distance i− 1
from a fixed point in the geometry5. We assume that all these entries are distinct, a
condition which is satisfied by all our examples. Since we have a near polygon, we can

4see http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/
5the index of an array in GAP start from 1
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construct a line (and hence all lines via transitivity of the group) by taking the intersec-
tion x⊥ ∩ y⊥ of two collinear points x and y (p⊥ is equal to the set of points at distance
at most 1 from p for any point p).

construct_geometry := function(G, partition_sizes)
local v, i, j, k, temp, points, orbs, perp1, perp2, lines, partition, D, d;
v := Sum(partition_sizes);
points := [1..v];
orbs := Orbits(Stabilizer(G,1),points);;
partition := [];
for i in partition_sizes do
Add(partition, Filtered(orbs, x -> Size(x) = i)[1]);
# this is where we use the assumption that the entries are distinct

od;
perp1 := Union([1],partition[2]);
perp2 := OnSets(perp1,RepresentativeAction(G,1,partition[2][1]));
lines := Orbit(G, Intersection(perp1, perp2), OnSets);
D := NullMat(v, v);
for i in [1..v] do
for j in [i+1..v] do
k := j^RepresentativeAction(G,i,1);
temp := 0;
while not(k in partition[temp+1]) do temp := temp + 1; od;
D[i][j] := temp; D[j][i] := temp;
od;

od;
d := function(x,y)
return D[x][y];

end;
return [points, lines, d];

end;

Using this function, we can construct the computer models of all the geometries we will
need in this thesis. We include the GAP code that can be used along with the function
defined above to make these models. Recall that the number of points in H(q) is (1+q)(1+
q2 + q4) and its automorphism group has size rq6(q6 − 1)(q2 − 1) where q = pr for some
prime p. The automorphism group of the Hall-Janko near octagon HJ is J2:2 and has size
1209600, which acts primitively and distance-transitively on its 315 points with suborbit
sizes (the entries of partition_sizes) 1, 10, 80, 160 and 64. The automorphism group
of the Ree-Tits octagon GO(2, 4) has size 35942400, and it acts primitively and distance-
transitively on its 1755 points with suborbit sizes 1, 10, 80, 640, 1024.

# H(2)
G := AllPrimitiveGroups(DegreeOperation, 63, Size, 12096)[2];
H2 := construct_geometry(G, [1, 6, 24, 32]);

# H(2)^D
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G := AllPrimitiveGroups(DegreeOperation, 63, Size, 12096)[1];
H2D := construct_geometry(G, [1, 6, 24, 32]);

# HJ
G := AllPrimitiveGroups(DegreeOperation, 315, Size, 1209600)[1];
HJ := construct_geometry(G, [1, 10, 80, 160, 64]);

# H(3)
G := AllPrimitiveGroups(DegreeOperation, 364, Size, 4245696)[1];
H3 := construct_geometry(G, [1, 12, 108, 243]);

# H(4)
G := AllPrimitiveGroups(DegreeOperation, 1365, Size, 503193600)[1];
H4 := construct_geometry(G, [1, 20, 320, 1024]);

# H(4)^D
G := AllPrimitiveGroups(DegreeOperation, 1365, Size, 503193600)[2];
H4D := construct_geometry(G, [1, 20, 320, 1024]);

# GO(2, 4)
G := AllPrimitiveGroups(DegreeOperation, 1755, Size, 35942400)[1];
Ree-Tits := construct_geometry(G, [1, 10, 80, 640, 1024]);

Finally we note that there is a database of small generalized polygons maintained by
Moorhouse [112] that one can use to construct these computer models.

3.4. Valuation Geometries

While ovoidal, semi-classical and distance-j ovoidal valuations of a near polygon S can in
principle be computed using the Dancing Links algorithm in a reasonably fast way, we do
not have any efficient way of doing so for other valuations (except of course the classical
valuations). The case when every line of S has three points is different. Then we have
the following characterization of hyperplanes, which can be turned into an algorithm for
computing valuations and valuation geometries of these near polygons.

Proposition 3.4.1. Let S = (P ,L, I) be a (finite) partial linear space with three points
on each line and let v = |P|. For any subset S of P, let χ(S) denote the binary vector in
the vector space Fv2 whose i-th entry is 1 if the i-th point (after fixing an ordering of P)
of S lies in S and 0 otherwise. Then a proper subset H of P is a hyperplane of S if and
only if χ(P \H) 6= 0 is orthogonal to χ(L) for every L ∈ L with respect to the standard
inner product on Fv2.

Proof. Let L be a line of S. Since |L| = 3, the statement “L is either contained in H
or intersects H in exactly one point” is equivalent to |L ∩H| ∈ {1, 3}. Therefore, H is a
hyperplane if and only if for all lines L, we have |L∩ (P \H)| ∈ {0, 2} which is equivalent
to χ(L) · χ(P \H) = 0 in Fv2.
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Corollary 3.4.2. Let H be the set of hyperplanes of a (finite) near polygon S = (P ,L, I)
that has three points on each line. Then the set {χ(P \H) | H ∈ H}∪ {0} is equal to the
null space of the |L| × |P| incidence matrix of S over F2.

By Corollary 3.4.2, computing the set of hyperplanes of near polygons with three points
on each line is equivalent to a computation of the null space of a binary matrix.6 Instead of
storing all the elements of this null space, we would like to store only the non-isomorphic
ones under the action of the automorphism group of the near polygon. To do so we use
Linton’s smallest image set algorithm [107], which has been implemented in the GRAPE
package [132] of GAP. The function SmallestImageSet(H, S) returns the lexicographi-
cally smallest element of the orbit of the set S under the action of the group H. For the
rest of this section assume that we are only talking about near polygons with three points
on each line.

In the following GAP code, we compute the distinct representatives of the isomorphism
classes of hyperplane complements of a near polygon S that has three points on each line.
It requires the automorphism group, points, lines, diameter and the distance function of
S, stored in the variables G, points, lines, diam and dist, respectively. We also assume
that G acts transitively on the points so that all singular hyperplanes are isomorphic. To
speed up the process we start with the singular hyperplanes, for which we have a variable
singular_compl that contains the set of points opposite to a fixed point.

SetVect := function(S)
#I: subset of points
#O: characteristic vector of S
return One(GF(2))*List(points,function(i) if i in S then return 1;

else return 0; fi; end);
end;

VectSet:=function(v)
#I: characteristic vector
#O: subset of points corresponding to v
return Set(Filtered(points,i->v[i]=One(GF(2))));

end;

IncidenceMatrix := TransposedMat(List(lines, SetVect));;
Y := NullspaceMat(IncidenceMatrix);;
U := Subspace(GF(2)^(Size(points)),Y);;

LoadPackage("grape");
hypcomplements := NewDictionary(Set([1,2,3]), false);
singular_compl := Filtered(points, x -> dist(x, 1) = diam);
AddDictionary(hypcomplements, SmallestImageSet(G,Set(singular_compl)));
balance := 2^(Dimension(U))- 1 - Size(points);

while balance > 0 do
w := Random(U);
6I learned this trick from Bart De Bruyn, who in turn learned it from Sergey Shpectorov.
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if w <> Zero(U) then
compl := VectSet(w);
S := SmallestImageSet(G, compl);
if not KnowsDictionary(hypcomplements, S) then
AddDictionary(hypcomplements, S);
balance:=balance-Index(G,Stabilizer(G,S,OnSets));

fi;
fi;

od;

hypcomplements := hypcomplements!.list;

At the end of this computation we will have a list of all hyperplane complements, and hence
hyperplanes of the near polygon S. As an example, let S be isomorphic to H(2). Then
computation done by the code above quickly shows that S has 25 distinct hyperplanes up
to isomorphism. This number coincides with that obtained by Frohardt and Johnson [82]
who classified all hyperplanes of H(2) and H(2)D.

From these hyperplanes, we would now like to construct the valuation geometry of S.
Firstly, while every valuation f of S gives rise to a hyperplane Hf , not every hyperplane
is going to give rise to a valuation of S. An example of this situation is given in Figure
1.2 where the subgrid is a hyperplane which is not of valuation type (try to see this using
the Algorithm described below). So, we will pick a hyperplane complement and use it to
try to construct a semi-valuation in which every point in the hyperplane complement has
a constant value and every point not in the hyperplane complement has value strictly less
than that constant. Note that once we have assigned values to two points of a line of S,
then the value of the third point is automatically determined. Using these ideas, we have
Algorithm 1. We note that this idea of constructing valuations is due to De Bruyn [62].

We define a partial valuation of S as a function f defined on a subspace Sf of S such
that f is a semi-valuation on the subgeometry of S induced on Sf . In Algorithm 1 we use
a function AssignValue which takes as input a function f defined on a set S of points,
a point x and a value i, and finds a partial valuation g such that: (i) Sg is the smallest
subspace containing S and {x}; (ii) g(y) = f(y) for all y ∈ S; (iii) g(x) = i. If such
a function g does not exist then AssignValue returns fail. An implementation of this
function and Algorithm 1 in GAP will follow. Note that we start with assigning value
0 to all points of a given hyperplane complement, and thus every other point will get a
value from the set {−1,−2, . . . ,−n} where n is the diameter of S.

We now give the GAP code based on Algorithm 1 which we have used to compute all
valuations.

MakeClosure := function(val)
local X,x,L,f,S,V;
f := ShallowCopy(val);
X := Filtered(points, x -> val[x] <> fail);
for L in lines do
S := Intersection(L,X);
if Size(S) = 2 then
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Algorithm 1 Create valuations
input: a hyperplane complement H
output: list of all semi-valuations f for which Hf = H and for which the maximal value
is equal to 0

complete ← []
incomplete ← []
val← function which is 0 on all points of H and undefined on other points
f = AssignValue(val, H[1], 0)
if f is fail then
return fail

end if
if f is defined on all points then

Add f to complete
else

Add f to incomplete
end if
while incomplete is not empty do
val ← an element popped from incomplete
x← a random point for which val is not defined
for i in {−1,−2, . . . ,−n} do
f ← AssignValue(val, x, i)
if f is fail then
return fail

end if
if f is defined on all points then

Add f to complete
else

Add f to incomplete
end if

end for
end while
return complete
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x := Difference(L,X)[1];
if AbsInt(val[S[1]] - val[S[2]]) > 1 then return [false,val]; fi;
if val[S[1]] = val[S[2]] then f[x] := val[S[1]] - 1;
else f[x] := Maximum(val[S[1]], val[S[2]]); fi;

fi;
if Size(S) = 3 then
V := val{S};
Sort(V);
if not ((V[1] = V[2] - 1) and (V[2] = V[Size(V)]))
then return [false, val];

fi;
fi;

od;
return [true,f];

end;

AssignValue := function(val, x, i)
local f,g,temp;
f := [];
g := ShallowCopy(val);
g[x] := i;
while f <> g do
f := ShallowCopy(g);
temp := MakeClosure(g);
if not temp[1] then return [false, val]; fi;
g := temp[2];

od;
return [true,f];

end;

AreIsomorphicVal := function(val1,val2)
return val2 in Set(G, g -> List(points, x -> val1[x^g]));

end;

CreateVal := function(compl)
#I: a hyperplane complement compl
#O: all possible valuations corresponding to compl
local i, p, x, q, X, temp, complete, incomplete,val;
complete := [];
incomplete := [];
val := ListWithIdenticalEntries(Size(points), fail);
for x in compl do val[x] := 0; od;
temp := AssignValue(val, compl[1], 0);
if not temp[1] then return []; fi;
if ForAll(points, x -> temp[2][x] <> fail) then Add(complete, temp[2]);
else Add(incomplete, temp[2]);

fi;
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while incomplete <> [] do
val := Remove(incomplete);
p := Filtered(points, x -> val[x] = fail)[1];
for i in [1..diam] do
temp := AssignValue(val, p, -i);
if temp[1] then
if ForAll(points, x -> temp[2][x] <> fail) then
if not ForAny(complete, f -> AreIsomorphicVal(f, temp[2])) then
Add(complete,temp[2]);

fi;
else Add(incomplete, temp[2]);
fi;

fi;
od;

od;
return Set(complete, L -> List(L, x -> x - Minimum(L)));

end;

Valuations := [];
for h in hypcomplements do
S := CreateVal(h);
if S <> [] then
Append(Valuations,S);
fi;

od;

Once we have all the valuations of S, we can easily construct the first table in the de-
scription of the valuation geometry V of S. For the second table, and to verify other
properties of V , we still need the lines of V . To construct the lines, we simply go through
pairs {f1, f2} of all valuations, check if they are neighboring, and if they are then compute
f1 ∗ f2 to construct the line {f1, f2, f1 ∗ f2} of V . We do so in the following GAP code.
We assume that there is a user defined function TypeVal which takes as input a valuation
and returns its type, which can be any string that identifies the different non-isomorphic
valuations. For example, we use the following function for H(2)D (see Table 2.3).

TypeVal := function(val)
local h, M, x;
M := Maximum(val);
h := Filtered(points, x -> val[x] = M);
if Size(h) = 32 and M = 3 then return ’A’; fi;
if Size(h) = 40 then return ’C’; fi;
if Size(h) = 16 then return ’B’; fi;
return ’D’;

end;

As noted in Section 2.4, these point types are used to give types to the lines of V . In
the following code, we give some functions that can be used to find the types of all lines

Page 41



Computing Hyperplanes, Ovoids and Valuations

through a fixed point of V , which is what we need to construct the second table that
describes the valuation geometry V .

Isneighboring := function(val1, val2)
#I: two valuations val1 and val2
#O: returns whether they are distinct and neighboring
local S;
if val1 = val2 then return false; fi;
S := List(points, x -> val1[x] - val2[x]);
Sort(S);
if S[Size(S)] - S[1] > 2 then return false; fi;
return true;

end;

Epsilon := function(val1, val2)
#I: two distinct neighboring valuations val1 and val2
#O: the integer e for which |val1(x) - val2(x) + e| <= 1
local e, p, L, x1, x2;
for L in lines do
x1 := Filtered(L, x -> val1[x] = Minimum(val1{L}))[1];
x2 := Filtered(L, x -> val2[x] = Minimum(val2{L}))[1];
if x1 <> x2 then break; fi;

od;
return val2[x2] - val1[x1];

end;

ThirdFromTwo := function(val1, val2)
#I: two valuations val1 and val2
#O: the new valuation val1*val2
local e, x, val3;
e := Epsilon(val1, val2);
val1 := val1 + e;
val3 := 0*points;
for x in points do
if val1[x] = val2[x] then val3[x] := val1[x] - 1;
else val3[x] := Maximum([val1[x], val2[x]]);
fi;

od;
return val3 - Minimum(val3);

end;

ThroughPoint := function(s, S)
#I: a member s of the list Valuations and a list S of some valuations
#O: the types of lines through point s of the valuation geometry
# when the other two points (valuations) lie in set S
local val1, val2, val3, L, types, x, g, i, T;
val1 := s;
types := Set([]);
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for val2 in S do
if Isneighboring(val1, val2) then
val3 := ThirdFromTwo(val1, val2);
if val3 in S then
L := [val1, val2, val3];
T := [TypeVal(val1), TypeVal(val2), TypeVal(val3)]; Sort(T);
i := Position(List(types, x -> x[1]), T);
if i <> fail then types[i][2] := types[i][2] + 1/2;
else AddSet(types, [T,1/2]); fi;

fi;
fi;

od;
return types;

end;

GenerateOrbit := function(s)
#I: a valuation s
#O: the orbit of this valuation under the action of group G
return Set(G, g -> List(points, x -> s[x^Inverse(g)]));

end;

Table2 := [];
S := Set([]);
for s in Valuations do S := Union(S,GenerateOrbit(s)); od;
for s in Valuations do
Add(Table2,[TypeVal(s), ThroughPoint(s,S)]);

od;

After this computation, the variable Table2 contains a list whose i-th entry corresponds
to a type of the valuation and the number of lines of each type through a valuation of
that type. For example, when S is isomorphic to H(2)D we have the following entries (see
Table 2.4):

[’C’,[["ACC",1],["BCC",2],["CCC",8],["CCD",40],[ "CDD",4]]]
[’D’,[["ADD",3], ["BDD",2],["CCD",5],["CDD",2],["DDD",10]]]
[’A’,[["AAA",3],["ABB",2],["ACC",2],["ADD",24]]]
[’B’,[["ABB",1],["BBB",4],["BCC",1],["BDD",4]]]

3.5. Distance-2 ovoids in H(4)D

While it can be directly shown using the Dancing Links algorithm that H(2)D does not
have any distance-2 ovoids, for H(4)D this does not work. We can use the automorphism
group of H(4)D to perform some sort of symmetry breaking (see for example [119]), but
even then it does not seem likely that we will get any results in a reasonable time frame.
The main idea that makes this computational problem feasible is as follows:
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First classify all distance-2 ovoids in a fixed subhexagon isomorphic to H(4, 1)
up to isomorphism under the action of the stabilizer of H(4, 1), and then see
if any of these ovoids can be extended to a distance-2 ovoid of H(4)D.

We have implicitly assumed that every distance-2 ovoid of H(4)D will induce a distance-2
ovoid of its subhexagon isomorphic to H(4, 1). This is justified by the following lemma.

Lemma 3.5.1. Let S be a generalized hexagon of order (s, t). Let H be a subhexagon of
S that has order (s, t′) and let O be a distance-2 ovoid of S. Then O ∩H is a distance-2
ovoid of H and

|O ∩ H| = s2t′2 + st′ + 1.

Proof. By Lemma 3.2.1, O is a distance-2 ovoid if and only if it meets every line in a
unique point. If each line of S meets O in exactly 1 points, then the same is true for H.
Moreover, the number of lines in a generalized hexagon of order (s, t) is (1+t)(1+st+s2t2),
and thus by double counting, the number of points in a distance-2 ovoid is (1 + st+ s2t2).
Therefore, we have |O ∩ H| = s2t′2 + st′ + 1.

We note that the stabilizer of a subgeometry of H(4)D which is isomorphic to H(4, 1),
under the action of the automorphism group of Aut(H(4)D) is in fact isomorphic to
Aut(H(4, 1)). From the definition of H(q, 1) as the dual of the incidence graph of PG(2, q),
it directly follows that a distance-2 ovoid in H(q, 1) corresponds to a perfect matching of
the incidence graph of PG(2, q). It is folklore that the number of perfect matchings in a
balanced bipartite graph corresponds to the permanent of the biadjacency matrix of that
graph. The following can be verified by computing the corresponding permanent.

Lemma 3.5.2 ( [129, A000794]). The number of perfect matchings in the incidence graph
of PG(2, 4) is 18534400.

Since a perfect matching of a bipartite graph is nothing but an exact cover, we can use
Knuth’s Dancing Links algorithm to enumerate all of these 18534400 distance-2 ovoids
of H(4, 1), and then by using Linton’s smallest image set algorithm in exactly the same
way as done in Section 3.4 we can find out the number of distinct distance-2 ovoids up to
isomorphism.

Proposition 3.5.3. Let G be the automorphism group of H(4)D. Let H be a subhexagon
of H(4)D ismormorphic to H(4, 1). Then there are exactly 350 non-isomorphic distance-2
ovoids in H with respect to GH, the stabilizer of H under the action of G.

Once we have computed these 350 partial distance-2 ovoids of H(4, 1), it remains to show
that none of them can be extended to a full distance-2 ovoid. For this, we use the following
approach suggested by F. Ihringer which involves Integer Linear Programming (ILP). Let
S = (P ,L, I) be a near 2n-gon. Let O′ be a possibly empty set of points which forms
a partial distance-j ovoid for some j ∈ {2, . . . , n}, i.e., every pair of points in O′ are at
distance at least j in the point graph. Let H = (V,E) be the hypergraph as defined
above, with V = P and

E =

{
{Γ≤(j−2)/2(L) : L ∈ L} if j is even
{Γ≤(j−1)/2(p) : p ∈ P} if j is odd.
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For each p ∈ P let Xp ∈ {0, 1} be a binary variable. Then the equations

Xp = 1 for all p ∈ O′∑
p∈e

Xp = 1 for all e ∈ E (3.1)

have an integer solution if and only if S possesses a distance-j ovoid that contains O′.
Similarly, the equations

Xp = 1 for all p ∈ O′∑
p∈e

Xp ≤ 1 for all e ∈ E (3.2)

have an integer solution is and only if S possesses a partial distance-j ovoid that contains
O′.

Once we have cast the given problem as such an integer linear programming (ILP), we
can use fast ILP solvers like Gurobi and CPLEX to solve the original problem. In fact, if
we take O′ = ∅, then this method can alternately be used to test existence of distance-j
ovoids in near polygons. This is what we do for the case of GO(4, 2), where by using
Gurobi we have verified that there is no distance-3 ovoids.7

For each of the 350 partial distance-2 ovoids O′ of H(4)D we can now define a integer
linear optimization problem as in (3.1). Then the ILP solvers quickly show that these
equations are infeasible for all of the 350 cases.8 Our full code for this computation is
available online9.

Remark. For the next open case, H(5)D, our algorithmic approach fails for several reasons:

(1) The incidence graph of PG(2, 5) has 4598378639550 perfect matchings while the au-
tomorphism group of PG(2, 5) has size only 744000. So a classification of all non-
isomorphic distance-2 ovoids of H(5, 1) seems out of reach via current methods.

(2) Even for one given distance-2 ovoid of H(5, 1), the corresponding integer linear pro-
gram takes too long to solve with state-of-the-art ILP solvers.

Finally we note that our techniques can also be used to give upper bounds on the size of
a partial distance-2 ovoid in H(q)D, via the following lemma.

Lemma 3.5.4. Let O be a partial distance-2 ovoid of H(q)D. Suppose that no subhexagon
H of H(q)D isomorphic to H(q, 1) contains q2 + q+ 1 points of O, which necessarily form
a distance-2 ovoid of H. Then |O| ≤ (q2 − q + 1)(q2 + q)

Proof. We double count (p,H), where H a subhexagon of H(q)D isomorphic to H(q, 1)
and p ∈ O ∩H. From [140, Corollary 1.8.6] it follows that through every pair of opposite
lines in H(q)D, there is a unique subhexagon isomorphic to H(q, 1). Via an easy counting

7The running time was about one day with Gurobi Optimizer version 6.5.0 build v6.5.0rc1 (linux64)
with an Intel Core i5-3550 CPU @ 3.30GHz processor.

8We verified this with CPLEX (several versions), Gurobi Optimizer (several versions) and the constraint
solver Minion. The 350 ILPs in 350 files in the LP format took 540.3 seconds with Gurobi Optimizer
version 6.5.0 build v6.5.0rc1 (linux64) with an Intel Core i5-3550 CPU @ 3.30GHz processor. Minion’s
running times were similar.

9http://math.ihringer.org/data.php
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argument, we then know that each point is contained in (1 + q)q3/2 subhexagons isomor-
phic to H(q, 1), which tells us that there are |O|(1 + q)q3/2 such pairs. We also know that
there are q3(1 + q)(q2 − q + 1)/2 subhexagons of H(q)D which are isomorphic to H(q, 1).
Under the condition |O ∩ H| ≤ q2 + q this yields |O| ≤ (q2 − q + 1) · (q2 + q).

For q = 2, Lemma 3.5.4 gives us |O| ≤ 18 and for q = 4 it gives us |O| ≤ 260 under the
given assumption that O does not intersect a given subhexagon in q2 + q + 1 points. We
can now use the following computational approach. If the ILP defined in (3.2) does not
have a solution larger than some integer b ≥ (q2 − q + 1)(q2 + q) for all non-isomorphic
distance-2 ovoids of H(q, 1), then we obtain b as an upper bound on the size of a partial
distance-2 ovoids. Using this approach, so far we have been able to show that every partial
distance-2 ovoid in H(4)D has size at most 265. With more time, we might be able to
determine the exact bound in this case.
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4. Generalized Hexagons Containing
a Subhexagon

4.1. Introduction

Tits posed the following question about generalized polygons (see [140, Section 1.7.8]):

Does there exist a generalized 2n-gon, n ≥ 2, of order (s,∞) where s ∈ N \
{0, 1} and ∞ is any infinite cardinal?

Such a generalized polygon is called semi-finite. Note that by Proposition 1.2.1(1), no
such generalized (2n+1)-gon can exist. This problem turned out to be extremely hard and
the only progress that has been made so far is in the case of n = 2 and s ∈ {2, 3, 4}, where
non-existence is proved by Cameron [41] for s = 2, Brouwer [32] and Kantor (unpublished)
for s = 3, and Cherlin [46] for s = 4. A modified, and easier, version of the question that
can be asked is as follows:

Given a finite generalized 2n-gon S, n ≥ 2, of order (s, t), with s ∈ N \
{0, 1}, does there exist a generalized 2n-gon of order (s,∞) containing S as a
subgeometry?

In this chapter, we will solve this problem for n = 3 and s, t ∈ {2, 3, 4} with s = t, when
S is one of the known generalized hexagons of order s, by proving non existence of a
semi-finite generalized hexagon containing S. In fact, we will prove much more in some
specific cases. We will show that for s ∈ {2, 4}, if S is isomorphic to the split Cayley
hexagon H(s), then there is no generalized hexagon with s+ 1 points on each line which
contains H(s) as a proper subgeometry. And in Section 4.2 we will prove our results in
the more general setting of near hexagons.

4.2. Near Hexagons of Order (2, t)

In this section we prove the following theorem by using valuation theory and the classi-
fication result of Cohen and Tits [53] which states that every finite generalized hexagon
with 3 points on each line is isomorphic to H(2, 1), H(2), H(2)D or T(2, 8).

Theorem 4.2.1. Let S ′ be a near hexagon with three points on each line containing a
generalized hexagon S of order 2 as an isometrically embedded subgeometry. Then the
following holds:

(1) S ′ is finite;
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(2) if S is isomorphic to H(2)D, then S is a generalized hexagon and hence isomorphic
to H(2)D or T(2, 8);

(3) if S is isomorphic to H(2) and S is a generalized hexagon, then S ′ = S.

4.2.1. Near Hexagons Containing H(2)D

For this section, let S ′ be a near hexagon which contains S ∼= H(2)D isometrically embed-
ded in it as a full and proper subgeometry. Let V be the valuation geometry of S. From
Table 2.3 and the basic theory of valuations discussed in Chapter 2 we see that every
point x of S ′ has type A, B, C or D, depending on the type of the valuation fx of S it
induces. If L = {x1, x2, x3} is a line of S ′, then {fx1 , fx2 , fx3} is either a line of V and
thus has one of the 11 types mentioned in Table 2.4, or fx1 = fx2 = fx3 in which case L
has the type XXX for some X ∈ {A,B,C,D}. We will sometimes refer to the points
and lines of V as V-points and V-lines.

Lemma 4.2.2. (1) Every point of S ′ has distance at most 1 from S.

(2) Every point x of S has type A, and the valuation fx is classical with center x.

(3) Every point x at distance 1 from S has type C and is collinear with a unique point x′
of S. Moreover, Ofx = {x′}.

Proof. Let x be a point of S ′. If d(x,S) ≥ 2, then by Lemma 2.2.4, Mfx ≤ 1, which
is not possible since every valuation of S has maximum value at least 2 by Table 2.3.
Therefore, every point is at distance at most 1 from S. We have already seen in Theorem
2.2.3, that points of S induce classical valuations of S, and hence they are of type A.

Let x be a point not contained in S. Then since d(x,S) = 1, by Lemma 2.2.4 we have
Mfx ≤ 2, and therefore x is either of type C orD (type A and B valuations have maximum
value 3). Suppose that x is of type D. From Table 2.3 we see that there are five points
of S with fx-value 0 giving rise to five points in S collinear with x, and thus five lines
through x intersecting S in a point. By Table 2.4, each of these lines must have type
ADD. The five lines of V induced by these five lines of S ′ are mutually distinct since
the five classical valuations contained in them are mutually distinct (as their centers are
distinct). A contradiction follows from the fact that through a given V-point of type D,
there are only three distinct V-lines of type ADD (see the entry in row ADD and column
D in Table 2.4). Therefore, x is of type C and thus |Ofx| = 1, which implies that x is
collinear with a unique point x′ of S such that Ofx = {x′}.

Corollary 4.2.3. Every point of S ′ has type A or C and every line of S ′ has type AAA,
ACC or CCC. Moreover, every point of type C is incident with a unique line of type
ACC.

Corollary 4.2.4. For every line L = {x1, x2, x3} of S ′ the valuations fx1 , fx2 and fx3 are
mutually distinct and hence they form a line of V.
Proof. The proof is similar to that of Corollary 2.3.4.

Let ψ be the map between points and lines of S ′ and points and lines of V defined by
ψ(x) = fx and ψ({x1, x2, x3}) = {fx1 , fx2 , fx3}. Then Corollary 4.2.3 implies that ψ maps
a point of S ′ to a V-point of type A or C and maps a line of S ′ to a V-line of type AAA,
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ACC or CCC. Also note that every point of S ′ which is not contained in S, and hence
lies in Γ1(S) by Lemma 4.2.2, is incident with a unique line that intersects S and this line
has type ACC.

Lemma 4.2.5. Let V ′ be the subgeometry of V formed by taking the points of type C and
the lines of type CCC. Then V ′ is connected.

Proof. This can be easily checked in the computer model of V constructed via the code
given in Chapter 2, as we just need to determine if a 16-regular graph on 252 vertices is
connected (see Tables 2.3 and 2.4).

Lemma 4.2.6. Suppose there are no quads in S ′ that contain a point of S. Then the
following holds:

(1) every point of Γ1(S) in S ′ is incident with precisely nine lines, exactly one of which
intersects S;

(2) if x is a point of Γ1(S) and L1, . . . , L8 are the eight lines of type CCC through x,
then the V-lines ψ(L1), . . . , ψ(L8) in V are precisely the eight V-lines of type CCC
through fx (see Table 2.4).

(3) every valuation of type C is induced equally many times by the points of Γ1(S).

Proof. (1) Let x be a point of Γ1(S) and x′ the unique point of S which is collinear
with x. Let Y denote the set of neighbors of x which do not lie on the line xx′. For
any y ∈ Y , let y′ denote the unique point of S collinear with y. The point y′, for
any given y ∈ Y , must be noncollinear with x′ as otherwise x′ and y will have two
common neighbors giving rise to a quad in S ′ which intersects S. Let Y ′ denote the
set of all points of Γ2(x) ∩ S which are non-collinear with x′. Then we have shown
that y′ ∈ Y ′ for all y ∈ Y .

The points of Γ2(x) ∩ S are precisely those points of S that have fx-value 1, and
by Table 2.3, there are precisely 22 of them. Out of these 22, 6 are neighbors of x′
and hence |Y ′| = 16. We now show that the map ϕ : Y 7→ Y ′ where ϕ(y) = y′ is a
bijection.

For every z ∈ Y ′, there exists a unique common neighbor y of x and z, since if there
are more than one, then we will get a quad intersecting S. This y cannot lie in S
since otherwise it will coincide with the unique neighbor of x in S, the point x′, which
will contradict the fact that the points of Y ′ are noncollinear with x′. Therefore, ϕ
is a bijection. This proves that |Y | = 16 and thus the total number of lines of type
CCC through x (which are precisely the lines through x which do not intersect S) is
equal to |Y |/2 = 8. Hence, there are 9 lines through x, exactly one of which, the line
of type ACC, intersects S.

(2) If y1, y2 ∈ Y with y1 6= y2, then fy1 6= fy2 , since Ofy1 6= Ofy2 . Therefore, all points of
the 8 lines of type CCC through x induce distinct valuations of type C. This gives
rise to 8 distinct V-lines of type CCC through the valuation fx. By Table 2.4, these
are all the type CCC lines of V through fx.

(3) In view of Lemma 4.2.5, it suffices to prove that for any two type C valuations f1

and f2 which are collinear in V , the number of times f1 is induced by a point of S ′
is equal to the number of times f2 is induced. This follows directly from (2), as for
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every point x for which fx = f1, there is a unique point y for which fy = f2, and vice
versa.

Corollary 4.2.7. Every generalized hexagon containing S ∼= H(2)D as a full subgeometry
is finite.
Proof. Let S ′ be such a generalized hexagon. Then by Lemma 1.2.6, S ′ is also thick, and
hence has an order. Therefore, it suffices to show that there exists a point in S ′ through
which there are only finitely many lines. By Lemma 1.2.5, S is isometrically embedded
in S. Since there are no quads in a generalized hexagon, we see that every point of Γ1(S)
has exactly nine lines through it, and thus S ′ is finite.

Lemma 4.2.6(3) shows that the map ψ when restricted to the points of S ′ is a surjection
between the set of points of S ′ and the valuations of S that have type A or C. Moreover,
if there are no quads intersecting S, then the preimage of each valuation under this map
has exactly k elements for some constant k. Clearly this condition is satisfied if S ′ is a
generalized hexagon, which does not have any quads. We will now show that in general
S ′ does not have any quads that intersect S, from which we will later deduce that S ′ is a
generalized hexagon.

We already know of one generalized hexagon which contains S ∼= H(2)D as a full proper
subgeometry, the dual twisted triality hexagon T(2, 8). From Proposition 1.2.4, T(2, 8)
has 819 = 63 + 3 · 252 points. Since there are precisely 252 type C valuations in V , from
the discussion so far we deduce that every type C valuation is induced exactly 3 times in
T(2, 8). This embedding of H(2)D in T(2, 8) can now further help us in obtaining certain
properties of the valuation geometry V which will be useful to us. These properties can
alternatively be checked in the computer model of V .

Lemma 4.2.8. Let V ′ be the subgeometry of V obtained by taking only points of type C
and the lines of type CCC. Then the following holds.

(1) If f1, f2 are distinct collinear points of V ′, then the unique points in Of1 and Of2 are
at distance 3 from each other.

(2) Suppose G is a (3 × 3)-subgrid of V ′. Let f1, f2 be two noncollinear points of G and
for i ∈ {1, 2}, let xi denote the unique point of S in Ofi. Then x1, x2 are distinct and
d(x1, x2) = 3.

Proof. Just for the scope of this proof, let S ′ ∼= T(2, 8).

(1) Let f1, f2 be two distinct collinear points of V ′. We know that the map ψ in this case
is surjective, and therefore we can pick two collinear type C points x1, x2 in S ′ such
that f1 = fx1 and f2 = fx2 . Let x′1 and x′2 be the unique points of S ∼= H(2)D collinear
with x1 and x2, respectively. Then we have {x′1} = Of1 and {x′2} = Of2 . The distance
between x′1 and x′2 must be at least 3 as otherwise we will get an ordinary m-gon for
m < 6. Therefore, d(x′1, x

′
2) = 3.

(2) The fact that d(x1, x2) ≥ 2 follows from a similar reasoning as (1) inside S ′ ∼= T(2, 8).
To prove that the points are in fact at distance 3 from each other, we use the computer
model of V as we cannot find an easy argument using T(2, 8) which shows this.
(Computationally we can see that if f1 and f2 are any two non-collinear points of V ′
which have a common neighbor, then it is not necessarily true that d(x1, x2) = 3.)
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Figure 4.1.: Lemma 4.2.9 (5)

Lemma 4.2.9. There are no quads in S ′ which contain a point of S.
Proof. Let Q be a quad in S ′ which contains a point of S. Since Q has three points on
each line, we can find a (3× 3)-subgrid G which also contains a point of S. Therefore we
have two subspaces of S ′, the grid G and the subhexagon S, which intersect non-trivially.
The intersection G ∩ S must also be a subspace and thus we have the following cases.

(1) The grid G is completely contained in S, which is impossible since S is a generalized
hexagon.

(2) G intersects S in a union L1 ∪ L2 of two intersecting lines. But then, any point of
G \ (L1 ∪ L2), which is necessarily in Γ1(S) and of type C, will be collinear with two
points of S, a contradiction to Lemma 4.2.2.

(3) G intersects S in 2 or 3 mutually non-collinear points. Then take a common neighbor
of any two points in G∩S. Just like in (2), this gives us a contradiction as this point
is collinear with at least two points of S.

(4) G intersects S in a line L. Take a line L′ of G which is disjoint from L. Take
two points x1 and x2 on L, necessarily of type C, and let y1 and y2 be the unique
points of L collinear with x1 and x2, respectively. Then fx1 and fx2 are two distinct
type C valuations of S for which the unique points in Ofx1 and Ofx2 are collinear,
contradicting Lemma 4.2.8(1).

(5) G intersects S in a point x. We label the points of G by xij, i, j ∈ {1, 2, 3}, such that
x = x33 and xij is collinear with xi′j′ if and only if either i = i′ or j = j′ (see Figure
4.1). Let fij denote the valuation induced by the point xij of the grid. Then by a
direct reasoning in T(2, 8), we must have f31 = f23 and f31 = f13. Which means that
in the line {x13, x23, x33} of S ′, we have f13 = f23, contradicting Theorem 2.3.2.

Corollary 4.2.10. Every point of S ′ not contained in S is incident with precisely nine
lines.
Proof. This follows from Lemmas 4.2.6 and 4.2.9.
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One way to proceed now would be to directly show that there are no quads in S ′, but
this seems to be difficult. We proceed indirectly by first proving that every point of S ′ is
incident with precisely 9 lines.

Lemma 4.2.11. Let x be a point of S ′ not contained in S, let x′ be the unique point of S
collinear with x and let y be a point of S which is at distance 2 from x′. Then d(x, y) = 3
and every neighbor of y has at most one common neighbor with x.

Proof. Let u denote the unique common neighbor of x′ and y, which necessarily lies in
S by Lemma 4.2.2(3). Then d(x, u) = 2. If d(x, y) 6= 3, i.e., d(x, y) ≤ 2, then NP2 would
imply that the line uy contains a point at distance 1 from x, contradicting the fact that
Ofx is a singleton (see again Lemma 4.2.2(3)).

Now let z be a neighbor of y such that x and z have more than one common neighbor.
Then by Theorem 1.3.8 there exists a quad Q, and thus a (3 × 3)-subgrid G, through x
and z. By Lemma 4.2.9, we have Q∩S = G∩S = ∅, and in particular z lies outside S. If
two points of Q induce the same valuation, then they would have a common neighbor in
S which by the convexity of Q would lie in Q, thus contradicting Lemma 4.2.9. Therefore,
each of the 9 points in G induce distinct type C valuations, and hence G induces a grid
G′ in the subgeometry V ′ of V formed by taking type C points and type CCC lines. Since
x, z are noncollinear in G, fx, fz are noncollinear in V ′. We now get a contradiction to
Lemma 4.2.8(2) because Ofx = {x′}, Ofz = {y} and d(x′, y) = 2.

Lemma 4.2.12. Every point of S is incident with exactly 9 lines in S, and hence S ′ has
order (2, 8).

Proof. Let x be a point of S and y another point of S at distance 2 from x. Let f be a
valuation of type C for which Of = {y} (such a valuation always exists). Then by Lemma
4.2.6(3), there exists a point z in S ′ such that fz = f . This point z is collinear with y.
By Lemma 4.2.11, d(z, x) = 3. We will show that there is a bijection between the lines
through z (there are exactly 9 of them by Lemma 4.2.6) and the lines through x.

We count the number of paths z, u, v, x of length 3 between z and x. On each of the 9
lines through z, by NP2, there exists a unique point of Γ2(x), and therefore there are 9
possibilities for u. Since there are no quads through x, every point of Γ1(z) ∩ Γ2(x) has
a unique common neighbor with x. Therefore, for each of the 9 possibilities for u, there
is a unique possibility for v, giving rise to exactly 9 such paths. Now let tx + 1 be the
(possibly infinite) number of lines through x. Each such line contains a unique point at
distance 2 from z, giving rise to tx + 1 choices for v. By Lemma 4.2.11, for each such v
there is a unique u (which is a common neighbor of z and v). Therefore the number of
such paths is tx + 1, and hence tx + 1 = 9.

Now Theorem 4.2.1(2) can be proved as follows. The total number of points in S ′ is
|S|+ 12 · |S| = 63 + 12 · 63 = 819 since each point of S is incident with precisely 6 lines of
type ACC, each of which gives rise to 2 points of S ′ not contained in S and this covers
all points of S ′ by Lemma 4.2.2. It now follows from Lemma 1.3.6 that S ′ is a generalized
hexagon of order (2, 8) as 819 = (1 + 2)(1 + 2 · 8 + 22 · 82). This generalized hexagon is
necessarily isomorphic to T(2, 8) by [53].
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4.2.2. Near Hexagons Containing H(2)

For this section, let S ′ be a near hexagon with three points on each line which contains
S ∼= H(2) isometrically embedded in it as a full subgeometry. We will use the same
convention as before in assigning types to the points and lines of S ′ based on the types in
the valuation geometry of H(2) (see Tables 2.5 and 2.6). Again from the basic theory of
valuations we see that every point of S ′ has one of the 7 types mentioned in Table 2.5 and
every line has one of the 20 types mentioned in Table 2.6. Note that the type C valuation
is ovoidal.

Lemma 4.2.13. (1) Every point of S ′ is at distance at most 2 from S.

(2) Every point x of S has type A, and the valuation fx is classical with center x.

(3) Every point of S ′ at distance 1 from S has type Bi for some i ∈ {1, . . . , 5}.

(4) Every point of S ′ at distance 2 from S has type C.

Proof. The proof is similar to Lemma 4.2.2, with the only complication occurring in the
case when there is a point x at distance 1 inducing a type C (ovoidal) valuation. So let
x be such a point, and let O = Ofx be the ovoid of S induced by points of S that are
collinear with x. We show that there exist two points in O which are at distance 3 from
each other, thus contradicting the assumption that S is isometrically embedded in S ′.

Let y, z ∈ O such that d(y, z) = 2 (if no such pair exists, then there is nothing to prove).
Let w be their common neighbor in S. Since O is a 1-ovoid, w 6∈ O. Now let w′ be
the third point on the line wz, and L any line through w′ other than the line wz. Then
w′ 6∈ O, and every point in L \ {w′} has distance 3 from y because S is a generalized
hexagon. At least one of the points in L \ {w′} must be contained in O, giving us two
points of O at distance 3 from each other.

We can now prove (without invoking the classification result of [53]) that if S ′ is a gener-
alized hexagon then it must be equal to S, and in particular finite. We will give another
proof of this result in Section 4.3.1.

Theorem 4.2.14. There exists no generalized hexagon which contains H(2) as a full
proper subgeometry.

Proof. Let S ′ be a generalized hexagon containing S ∼= H(2) as a full subgeometry.
By Lemma 1.2.6, it has an order (2, t) where t is a possibly infinite cardinal. We shall
show that the only possible valuations of S that points of S ′ can induce are the type A
(classical) valuations, which by Lemma 4.2.13 would imply that S ′ = S. We do so in the
following sequence of steps.

(1) There is no point in S ′ of type Bi with i > 1. Let x be such a hypothetical point.
By Lemma 4.2.13, x must be at distance 1 from S. Since |Ofx| ≥ 2 (see Table 2.5)
we can take two distinct points y1, y2 in Ofx . These points are at distance 2 in S ′ as
x is their common neighbor, and hence at distance 2 in S because S is isometrically
embedded. Therefore, they have a common neighbor y 6= x in S. This contradicts
the fact that every pair of points at distance 2 in a generalized hexagon have a unique
common neighbor.
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(2) There is no point in S ′ of type B1. Let x be a point of type B1 in S ′. Then by Lemma
4.2.13, x is at distance 1 from S and since Ofx is a singleton, there is a unique point
π(x) in S collinear with x. The valuation fx has 22 points of value 1 (by Table 2.5)
which by Theorem 2.2.3 is equivalent to the fact that there are exactly 22 points in
S which are at distance 2 from x. Out of these 22 points, 6 are neighbors of π(x)
in S and therefore each of the remaining 16 must have a common neighbor with x
which lies outside S. Since x is collinear with only type B1 points in Γ1(S) (as by
(1), there are no such points of type Bi for i > 2 and by Lemma 4.2.13 there are no
type C points in Γ1(S)), all of which have a unique neighbor in S, we get at least 16
points of type B1 in Γ1(S) collinear with x. All of these neighbors of x must induce
distinct valuations since their zero sets (Of ) are distinct. Therefore, we get 16 type
B1 neighbors of the valuation fx in the valuation geometry V , which contradicts the
entry in row B1B1B1 and column B1 of Table 2.6 which says that there are only 6
such neighbors.

(3) There is no point in S ′ of type C. By Table 2.6, we see that every line through such
a point must contain a point of type Bi for some i > 1, but no such point exists by
(1).

We now prove that every near hexagon S ′ containing S ∼= H(2) as a full isometrically
embedded subgeometry is finite. The reasoning below gives an alternate proof of Theorem
4.2.14 if we invoke the classification of finite generalized hexagons with three points on
each line [53] and the observation that none of the hexagons appearing in the classification
contain H(2) as a proper subgeometry. One of the main results we use in these proofs is
Lemma 1.3.9 which in particular shows that every pair of points in S ′ at distance 2 from
each other have finitely many common neighbors.

Lemma 4.2.15. For every i ∈ {2, 3, 4, 5} there are only finitely many points in S ′ of type
Bi.
Proof. Let x be a point of type Bi for some i > 1. From Table 2.5 there are at least
two distinct points y and z of S in Ofx , necessarily collinear with x. By NP2 y and z
must be at distance 2 from each other. Now, y and z have at most five common neighbors
(Lemma 1.3.9) and one of these must be contained in S. From this it follows that the
number of points of type Bi for some i ∈ {2, 3, 4, 5} is at most 4 times the number of
unordered pairs {p, q} of points of S at distance 2 from each other, which is finite (in fact
equal to 3024).

Lemma 4.2.16. There are only finitely many points of type B1 in S ′.
Proof. Let B denote the set of those points of S ′ that have typeBi for some i ∈ {2, 3, 4, 5}.
Then B is finite by Lemma 4.2.15. Let A denote the set of those points of S ′ that have
type A, i.e., the points of S. Then the set A ∪ B is also finite. Let x be a point of type
B1 in S. Then by Lemma 4.2.13, x is at distance 1 from S, and since Ofx is a singleton,
there exists a unique point π(x) in S collinear with x. If x is only collinear with points
of type A, B1 or C, then by the same reasoning as in the proof of Theorem 4.2.14, we
get a contradiction. So, x is collinear with at least one point of B, and we have already
seen that it is collinear with at least one point of A. Thus we see that x is the common
neighbor of two points at distance 2 in the finite set A∪B. Since each such pair of points
at distance 2 in the near polygon S ′ has finitely many (at most 5) common neighbors, we
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see that the set of points of type B1 must be finite; in fact, the cardinality of this set is
bounded above by 5 times the number of pairs of points at distance 2 in A ∪ B.

Lemma 4.2.17. There are only finitely many points of type C in S ′.
Proof. Let x be a point of type C in S ′. Then the set Γ2(x) ∩ S is a 1-ovoid of S,
and hence it has cardinality 21. Let Sx be the set of common neighbors between x and
elements of Ofx (the 1-ovoid of S induced by x). By Lemma 4.2.13, each element y of Sx
has type Bi for some i ∈ {1, . . . , 5} and hence by Table 2.5 y is collinear with at most 9
points of S. Therefore |Sx| ≥ 2, and we get two points of the set Γ1(S) at distance 2 from
each other having x as a common neighbor. By Lemmas 4.2.15 and 4.2.16, the set Γ1(S)
is finite, and thus by a same reasoning as before there are only finitely many points in S ′
of type C.

From Lemmas 4.2.15, 4.2.16 and 4.2.17 it follows that S ′ must be finite. We finally note
that there are near hexagons which are not generalized hexagons and contain S ∼= H(2) as
a full isometrically embedded subgeometry, for example, the dual polar spaces DW(5, 2)
and DH(5, 4).1 We do not provide any classification of these near hexagons.

4.3. Polygonal Valuations and Intersections of
Hyperplanes

While the theory of valuations outlined in Chapter 2 works quite well for near polygons
with three points on each line, for other near polygons it is difficult in practice. Firstly, in
the case when there are more than three points on a line, we do not have a good way of
computing hyperplanes; and thus the approach outlined in Section 3.4 does not work. So,
we might have to stick to a direct backtrack search to find all the valuations, which will
only work for really small cases. Second, we lose the power of Theorem 2.3.2 which lets us
define the valuation geometry by simply taking pairs of distinct neighboring valuations,
instead of arbitrary triples of pairwise neighboring valuations.

In this section, we will give a short summary of the theory of so-called polygonal valuations
(developed by De Bruyn in [60]) which is more restrictive than the one specified in Chapter
2 and only suitable to study generalized polygons containing a subpolygon. This theory
will be used to derive some counting based results on intersections of hyperplanes in
arbitrary generalized hexagons with an order (Lemma 4.3.7), which will help us prove some
results for generalized hexagons containing H(3), H(4) or H(4)D as a full subgeometry
(Theorem 4.3.11). Note that in contrast with Section 4.2 we will not be able to say
anything about near hexagons which are not generalized hexagons and contain these
subhexagons.

Definition. Suppose S = (P ,L, I) is a generalized 2n-gon with n ∈ N \ {0, 1}. Then a
polygonal valuation of S is a map f : P → N that satisfies the following axioms:

(PV1) There exists at least one point with f -value 0.

(PV2) Every line L of S contains a unique point xL such that f(x) = f(xL) + 1 for all
points x 6= xL incident with L.

1In fact, this kind of explains why the valuation geometry of H(2) is much larger than that of H(2)D.
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(PV3) Let Mf denote the maximum value of f over the points of S. If x is a point with
f(x) < Mf , then there is at most one line through x containing a (necessarily
unique) point y satisfying f(y) = f(x)− 1.

Or in other words, a polygonal valuation is a valuation of S which satisfies the condi-
tion (PV3). It turns out that with this one extra condition, we have a much stronger
theory where several interesting and new results hold. For example, from the following
result it follows that the polygonal valuations of a generalized polygon are in bijective
correspondence with its hyperplanes of valuation type.

Lemma 4.3.1 ( [60, Propostion 3.10]). If f is a polygonal valuation of a generalized
2d-gon S = (P ,L, I), then f(x) = Mf − d(x,P \Hf ) for every point x of S, where Hf is
the hyperplane of S corresponding to f .

It is easy to check that the classical, semi-classical and ovoidal valuations defined in
Chapter 2, all satisfy (PV3). And hence, these are all examples of polygonal valuations
as well. In fact, for generalized hexagons these are the only possible polygonal valuations,
as the following lemma shows.

Lemma 4.3.2 ( [60, Propostion 3.3]). Suppose f is a polygonal valuation of a generalized
2n-gon S. Then:

(1) f is an ovoidal polygonal valuation if and only if Mf = 1;

(2) f is a semi-classical polygonal valuation if and only if Mf = n− 1;

(3) f is a classical valuation if and only if Mf = n.

Corollary 4.3.3. If S is a generalized hexagon, then every polygonal valuation of S is
classical, semi-classical or ovoidal.
Proof. As noted in Section 2.2, the maximum value of a valuation (and hence a polygonal
valuation) is bounded above by the diameter of the near polygon. Therefore, for any
polygonal valuation f of a generalized hexagon, we have Mf ∈ {1, 2, 3}.

A quick glance at Table 2.3 of Chapter 3 will show that Corollary 4.3.3 does not hold
for valuations of near hexagons, as the type B and type D valuations are not classical,
semi-classical or ovoidal. Since we know how to compute these three types of valuations,
we can use the machinery of Chapter 3 to find out all polygonal valuations of generalized
hexagons (even those which have more than three points on each line). We now state the
analogous result of Theorem 2.2.3 for polygonal valuations.

Lemma 4.3.4 ( [60, Proposition 6.1]). Let S = (P ,L, I) be a generalized 2n-gon contained
in a generalized 2n-gon S ′ = (P ′,L′, I′) as a full subgeometry. Let x be a point of S ′ and
put m := d(x,P). Noting that m ∈ {0, 1, . . . , n − 1}, we define fx(y) := d(x, y) −m for
every point y ∈ P. Then:

(1) fx is a valuation of S with Mfx = n−m.

(2) The valuation fx is classical if and only if x is a point of S, semi-classical if and only
if m = 1 and ovoidal if and only if m = n− 1.

(3) If x1 and x2 are two distinct collinear points of S, then the valuations fx1 and fx2 are
distinct.
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For a result analogous to Theorem 2.2.6, we define the notion of L-sets and admissible sets
of polygonal valuations of a generalized 2n-gon S, which will correspond to the lines of a
generalized 2n-gons containing S as a full subgeometry. This notion will also allow us to
define the notion of polygonal valuation geometry, that is useful in classifying generalized
polygons containing a fixed subpolygon.

Definition. Let S = (P ,L, I) be a generalized 2n-gon. A collection F = {fi : i ∈ I} of
distinct polygonal valuations of S, where I is an index set of cardinality at least 2, is called
an L-set if for every x ∈ P , there exists an i ∈ I such that fj(x)−Mfj = fi(x)−Mfi + 1
for every j ∈ I \ {i}. The set F is called admissible if the following holds for all i, j ∈ I
with i 6= j, for all x ∈ P such that x is not collinear with any point with fi-value fi(x)−1,
and for all y ∈ P such that y is not collinear with any point with fj-value fj(y)− 1:

(1) if fi and fj are classical, then d(x, y) = 1;

(2) if x = y, then (fi(x)−Mfi)− (fj(x)−Mfj) ∈ {−1, 0, 1};

(3) if x 6= y and at least one of fi, fj is not classical, then d(x, y) + fi(x) + fj(y)−Mfi −
Mfj + 1 ≥ 0.

Lemma 4.3.5 ( [60, Proposition 6.2]). Let S be a generalized 2n-gon contained in a
generalized 2n-gon S ′ as a full subgeometry. For every line L of S ′ define FL = {fx : x ∈
L}, where fx denotes the valuation of S induced by the point x. Then FL is an admissible
L-set of polygonal valuations.

Definition. The polygonal valuation geometry of a generalized 2n-gon S is the point-line
geometry VS whose points are the polygonal valuations of S and lines are the admissible
L-sets of polygonal valuations of S, with incidence as set containment.

Just like the notion of valuation geometry defined in Chapter 2 for near polygons with
three points on each line, this notion of polygonal valuation geometry for generalized
polygons (with any number of lines per point) can help us study generalized polygons
containing a fixed generalized polygon as a full subgeometry. This is precisely what was
used by De Bruyn in [62] to prove that there is a unique generalized octagon of order (2, 4)
containing a suboctagon of order (2, 1). In fact, polygonal valuation geometry of the split
Cayley hexagon H(3, 1) (which is not too hard to compute using the tools described in
Chapter 3) can be used to prove the result of De Medts and Van Maldeghem [67] that
H(3) is the unique generalized hexagon containing a subhexagon of order (3, 1). This is
an unpublished proof by De Bruyn which was mentioned in [61]. For our purposes, we
do not need the full power of polygonal valuation geometry, but only the following result
on hyperplanes that follows directly from Lemma 4.3.5 and [60, Proposition 4.7], and its
consequences.

Lemma 4.3.6. Let S = (P ,L, I) be a generalized 2n-gon contained in a generalized 2n-
gon S ′ = (P ′,L′, I′) as a full subgeometry, and let L be a line of S ′. For a point x of S ′,
let Hx denote the hyperplane of S formed by points of S at distance at most n − 1 from
x. Then:

(1) the set of hyperplanes {Hx : x ∈ P ′, x I′ L} covers P;

(2) if x1, x2 and x3 are three distinct points on L, then Hx1 ∩Hx2 = Hx1 ∩Hx3.
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A finite generalized hexagon of order (s, t) has (1+s)(1+st+s2t2) points. For each of the
three types of hyperplanes in generalized hexagons corresponding to the three types of
polygonal valuations, we can determine the sizes of the hyperplanes by simple counting.
The singular, semi-singular and ovoidal hyperplanes in a finite generalized hexagon of
order (s, t) are of sizes 1 + s(t + 1) + s2t(t + 1), 1 + s(t + 1) + s2t2 and 1 + st + s2t2

respectively. The following is the main result on hyperplane intersections that we will use
to prove Theorem 4.3.11.

Lemma 4.3.7. Let S be a finite generalized hexagon of order (s, t) contained in a gener-
alized hexagon S ′ as a full subgeometry, and let L be a line of S ′ that does not intersect
S. Let nL denote the number of points on L that are at distance 2 from S. For a point
x in S ′, let Hx denote the hyperplane of S formed by taking points of S that are at
non-maximal distance from x. Then for any two distinct points x and y on L we have
|Hx ∩Hy| = s+ 1− nL.
Proof. By Lemma 1.2.6 and the fact that opposite lines are incident with the same
number of points, we know that every line of S ′ is incident with precisely s + 1 points.
By Lemma 4.3.4, for every point x on L the hyperplane Hx of S is either semi-singular or
ovoidal. The points on L that are at distance 1 from S induce semi-singular hyperplanes,
while those at distance 2 induce ovoidal hyperplanes. By Lemma 4.3.6 there exists a
fixed subset X of points of S such that Hx ∩ Hy = X for every pair of distinct points
x, y on L, and every point of S is contained in some hyperplane induced by a point on
L. Let the size of X be k. There are nL hyperplanes of size 1 + st + s2t2 (ovoidal) and
s+ 1− nL hyperplanes of size 1 + s(t+ 1) + s2t2 (semi-singular) which cover a set of size
(1 + s)(1 + st+ s2t2) (points of S) and pairwise intersect in k points. Therefore, we have

nL(1 + st+ s2t2 − k) + (s+ 1− nL)(1 + s(t+ 1) + s2t2 − k) + k = (1 + s)(1 + st+ s2t2),

which can be solved for k to get k = s+ 1− nL.
Lemma 4.3.8. Let S be a finite generalized hexagon of order (s, t) having the property
that |H1∩H2| > s+1 for any two semi-singular hyperplanes H1 and H2 of S whose centers
lie at distance 3 from each other. Then there does not exist any generalized hexagon that
contains S as a full proper subgeometry.
Proof. Say there is such a generalized hexagon S ′ and let x be a point of S ′ that is at
distance 1 from the point set of S. By Lemma 4.3.4, Hx is a semi-singular hyperplane,
corresponding to the semi-classical polygonal valuation fx defined by fx(y) = d(x, y)− 1
for points y of S. Let x′ be the unique point of S with fx-value 0, or equivalently the
unique point of S at distance 1 from x. Let O′ be the 1-ovoid in the subgeometry of
S induced on Γ3(x′) which defines the hyperplane Hx. Let y be a point of O′. Then
fx(y) = 1, and hence d(x, y) = 2. Let z be a common neighbor of x and y. Then z must
lie outside S, and the line L = xz does not contain any point of S. Note that fz is also
a semi-classical polygonal valuation since z has distance 1 from S. From Lemma 4.3.7 it
follows that |Hx ∩ Hz| ≤ s + 1. Moreover we have d(x′, y) = 3, thus contradicting the
assumption stated in the lemma.

We will use Lemma 4.3.8 to prove Theorem 4.3.11(2) in Section 4.3.1. The following result
will help us prove the finiteness of generalized hexagons containing a subhexagon.

Lemma 4.3.9. Let S be a finite generalized hexagon with only thick lines that is contained
in a generalized hexagon S ′ as a full subgeometry. If every point of S ′ is at distance at
most 1 from S, then S ′ is also finite.
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Proof. Lemma 1.2.6 implies that every line of S ′ is also thick and hence has an order.
Suppose now that every point of S ′ is at distance at most 1 from S and that S ′ 6= S.
Let x be a point in S ′ at distance 1 from S. Then it suffices to show that there are only
finitely many lines through x.

Note that x induces a semi-classical polygonal valuation on S, and thus there exists a
unique point y of S with fx-value 0, which by Lemma 4.3.4 is the unique point of S at
distance 1 from x. Therefore, there is a unique line through x in S ′ which meets S. Now,
let L be any other line through x. Pick any point z in L \ {x}. Then z is again collinear
with a unique point z′ of S as every point of S ′, and in particular z, is at distance at most
1 from S. In this manner we can associate each line of S ′ through x that does not intersect
S with a point of S. Moreover, for two distinct lines L1, L2 through x not meeting S the
points z′1, z′2 of S obtained in this manner by taking points z1 ∈ L1 \{x} and z2 ∈ L2 \{x}
must be distinct, as otherwise we will get a pair of points at distance 2 from each in the
generalized hexagon S ′ that have at least two common neighbors. Since the number of
points in S is finite, this shows that there are only finitely many lines through x.

Corollary 4.3.10. If a generalized hexagon S does not have any 1-ovoids, then it cannot
be contained in a semi-finite generalized hexagon as a full subgeometry.
Proof. Let S ′ be a generalized hexagon containing S as a full subgeometry. Say S does
not have any 1-ovoid. Then by Lemma 4.3.4 every point of S ′ is at distance at most 1
from S, and so S ′ should be finite by Lemma 4.3.9.

Remark. In [66], De Bruyn and Vanhove showed that no generalized hexagon of order
(s, s3) can have 1-ovoids, thus proving that these hexagons cannot be contained in a
semi-finite generalized hexagon as a full subgeometry (see Corollary 3.20 in [66]).

4.3.1. Generalized Hexagons Containing Split Cayley Hexagons
and their Dual

We give a computer-aided proof of the following result in this section.

Theorem 4.3.11. Let q ∈ {2, 3, 4} and let S be a generalized hexagon isomorphic to the
split Cayley hexagon H(q) or its dual H(q)D. Then the following holds for any generalized
hexagon S ′ that contains S as a full subgeometry:

(1) S ′ is finite;

(2) if q ∈ {2, 4} and S ∼= H(q), then S ′ = S.

From Corollary 4.3.10 and the non-existence of 1-ovoids in H(4)D proved in Section 3.5 it
follows that every generalized hexagon containing a subhexagon isomorphic to H(4)D is
finite. The same holds for generalized hexagons containing H(2)D as by Table 2.3, it does
not have any 1-ovoids.

Now let S ∼= H(3) and let S ′ be a generalized hexagon containing H(3) as a full subge-
ometry. Say there exists a point x in S ′ at distance 2 from S and let x, y, z be a path of
length 2 from x to a point z of S. Then by Lemma 4.3.7 we have |Hx ∩Hy| ≤ 3, where
Hx is the 1-ovoid of S induced by x and Hy is the semi-singular hyperplane of S induced
by y. Note that z ∈ Hx and z is the center of Hy. Since the geometry is small enough and
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the automorphism group acts transitively on the points, we can fix a point p of H(3) in
our computer model obtained in Chapter 3 and look at the intersection sizes of 1-ovoids
through p and semi-singular hyperplanes with center p. The following SageMath code can
be used for this computation. We assume that the SageMath function ovoids defined in
Chapter 3 is available to us, and that the function get_data gives us the points, lines
and the distance matrix of a point-line geometry (which can be implemented using the
methods of Chapter 3).

def semi_singular_hyperplanes(points,lines, D, p):
"""
Computes all semi-singular hyperplanes of a point line
geometry with a fixed point as center.

Args:
points -- a list of points
lines -- a list of lines
D -- the distance matrix of the collinearity graph
p -- the fixed point

Returns:
a list of all semi-singular hyperplanes with center p
"""
dist3 = [x for x in points if D[x][p] == 3]
L = [l for l in lines if any([x in dist3 for x in l])]
L = [[x for x in l if x in dist3] for l in L]
ov = list(ovoids(dist3, L))
return [sorted([x for x in points if x in O or D[x][p] <= 1]) for O in ov]

# H(3)
points, lines, D = get_data("H3")
p = points[0]
ovoids_p = [O for O in ovoids(points, lines) if p in O]
hyp_p = semi_singular_hyperplanes(points, lines, D, p)
S = {len(set(x) & set(y)) for x in ovoids_p for y in hyp_p}
print "Check H(3): "+ str(min(S) > 3)

We find that every pair of ovoidal and semi-singular hyperplane of H(3) through a fixed
point which is also the center of the semi-singular hyperplane intersect in more than 3
points. Therefore, every point of S must be at distance at most 1 from S. Then it follows
from Lemma 4.3.9 that S is finite.

Finally, let S be isomorphic to H(2) or H(4) and let q be the order of S. By Lemma
4.3.8, to show that S cannot be embedded in any generalized hexagon as a proper full
subgeometry, it suffices to check that for every pair of points x1, x2 ∈ S at distance 3
from each other and for every pair of semi-singular hyperplanes H1, H2 with respective
centers x1 and x2, we have |H1 ∩ H2| > q + 1. This can be checked using the following
SageMath code. Note that by distance transitivity of the automorphism group we only
need to check this for one pair of points at distance 3 from each other, thus reducing the
amount of computations.
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# H(2)
points, lines, D = get_data("H2")
p = points[0]
hyp_p = semi_singular_hyperplanes(points, lines, D, p)
dist3 = [x for x in points if D[x][p] == 3]
q = dist3[0]
hyp_q = semi_singular_hyperplanes(points, lines, D, q)
S = {len(set(x) & set(y)) for x in hyp_p for y in hyp_q}
print "Check H(2): " + str(min(S) > 3)

# H(4)
points, lines D = get_data("H4")
p = points[0]
hyp_p = semi_singular_hyperplanes(points, lines, D, p)
dist3 = [x for x in points if D[x][p] == 3]
q = dist3[0]
hyp_q = semi_singular_hyperplanes(points, lines, D, q)
S = {len(set(x) & set(y)) for x in hyp_p for y in hyp_q}
print "Check H(4): " + str(min(S) > 5)

Remark. Generalized hexagons of order greater than 4 seem to be out of reach with our
computational methods. And we do not know of any results on intersection sizes of semi-
singular and ovoidal hyperplanes of split Cayley hexagons that can help us obtain the
above results in general. It would be nice to be able to prove that for all prime powers
q = pr, with p 6= 3 prime, every pair of semi-singular hyperplanes in H(q) whose centers
are at maximum distance 3 intersect in more than q + 1 points, which will then imply
that these generalized hexagons cannot be contained in bigger generalized hexagons as
full subgeometries.
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5. Two New Near Octagons

5.1. Introduction

The well-known Hall-Janko near octagon HJ was constructed by Cohen in [52] as the
point-line geometry formed by taking a particular conjugacy class C of 315 involutions
in the Hall-Janko group J2 as points, and the sets {x, y, xy} where x, y ∈ C are distinct
commuting involutions as lines. This is a regular near octagon of order (2, 4; 0, 3) (see
Section 1.3) and has automorphism group isomorphic to J2:2 (the split extension of J2 by
the cyclic group C2) acting primitively and distance-transitively on the points. A detailed
study of this geometry was done by Yoshiara in [144] where in particular it was shown
that HJ contains H(2)D (and GO(2, 1)) as convex subgeometries. Thus it is natural to
wonder whether HJ is the unique near octagon of order (2, 4) which contains H(2)D as a
full isometrically embedded subgeometry. We address this in Chapter 6, where we give a
proof of this fact using the valuation geometry of H(2)D. In this chapter, we will see how
valuation geometries can sometimes give rise to new “interesting” near polygons.

The valuation geometry of HJ is described in Tables 2.7 and 2.8. It is easy to see from
the tables that if we take valuations of type A, B and C as points, and all valuation lines
of type AAA, ABB, ACC, BBC and CCC as lines (so we skip the valuation lines of
type BBB), then we get a partial linear space of order (2, 10) on 4095 points. Using a
computer model of this partial linear space, it can be easily checked that this is in fact a
near octagon. Moreover, computations in SageMath show that the automorphism group
G of this near octagon has the following properties:

• G acts transitively on the points;

• |G| = 503193600;

• the derived subgroup G′ is a simple group of size 251596800.

These properties suggest that G is isomorphic to the group G2(4):2 (see [54]), which is
also the automorphism group of the split Cayley hexagon H(4). We give an alternate
construction of this near octagon by directly using the group G2(4):2, which is similar to
the construction of HJ given above. This construction will allow us to give a computer-free
proof of the fact that the automorphism group of this near octagon is indeed isomorphic
to G2(4):2, and help us obtain several useful properties. Recall that a line spread of a
partial linear space is a set of lines which covers each point exactly once.

Theorem 5.1.1. (1) Let O1 be the point-line geometry whose points are the 4095 central
involutions1 of the group G = G2(4):2 and whose lines are all the three element
subsets {x, y, xy} where x, y are two commuting central involutions that satisfy [G :

1An involution of a group is called central if its centralizer contains a Sylow 2-subgroup.
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NG(〈x, y〉)] ∈ {1365, 13650}, with incidence being containment. Then O1 is a near
octagon of order (2, 10).

(2) Let S1 denote the set of all lines {x, y, xy} where x and y are two commuting central
involutions that satisfy [G : NG(〈x, y〉)] = 1365. Then S1 is a line spread of O1. If Q1

denotes the set of all quads of O1, then for every Q ∈ Q1 the lines of S1 contained in
Q define a line spread of Q. Moreover, the point-line geometry S1 with point set S1,
line set Q1 and incidence as set containment, is a generalized hexagon isomorphic to
the dual split Cayley hexagon H(4)D.

Since H(4)D contains the generalized hexagon H(4, 1) (which is the unique generalized
hexagon of this order) as a subgeometry, we can take a subset S ′1 of the line spread S1 in
Theorem 5.1.1 corresponding to the points of H(4, 1), a subset Q′1 of Q1 corresponding to
the lines of H(4, 1) and then look at the points and lines of the near octagon O1 which are
contained in elements of S ′1 and Q′. It turns out that this gives us a subgeometry of O1

which is a near octagon of order (2, 4). This near octagon can alternately be described in
a similar way as O1.

Theorem 5.1.2. (1) Let O2 be the point-line geometry whose points are the 315 central
involutions of the group G = L3(4):222 and whose lines are all the three element
subsets {x, y, xy} where x, y are two commuting central involutions x, y that satisfy
[G : NG(〈x, y〉)] ∈ {105, 420}, with incidence being containment. Then O2 is a near
octagon of order (2, 4).

(2) Let S2 denote the set of all lines {x, y, xy} where x and y are two commuting central
involutions that satisfy [G : NG(〈x, y〉)] = 105. Then S2 is a line spread of O2. If Q2

denotes the set of all quads of O2, then for every Q ∈ Q2 the lines of S2 contained in
Q define a line spread of Q. Moreover, the point-line geometry S2 with point set S2,
line set Q2 and incidence as set containment, is isomorphic to the unique generalized
hexagon H(4, 1) of order (4, 1).

The near octagons O1 and O2 will be called the “G2(4) near octagon” and the “L3(4) near
octagon”, respecitvely. We will prove Theorems 5.1.1(1) and 5.1.2(1) in Section 5.2. The
structure of these near octagons around a fixed point can be described by a diagram (see
Figures 5.1 and 5.2). These two diagrams are very similar and in Section 5.3 we study
geometric properties of a family of near octagons whose local structures can be described
by such diagrams. Part (2) of Theorems 5.1.1 and 5.1.2 will follow from that discussion.
At this moment, we do not know whether the G2(4) and L3(4) near octagons are the
only nontrivial members of this family of near octagons. In Section 5.4, we study the
suboctagons of O1 which are isomorphic to HJ, proving that there 416 such suboctagons
of O1. We also prove some properties of these suboctagons which will be useful later in
Section 5.5 and Chapter 6. Moreover, using these suboctagons we give a new proof of the
result of De Wispelaere and Van Maldeghem [70], that HJD as a full embedding in the
split Cayley hexagon H(4). In Section 5.5 we determine the full automorphism group of
the near octagons O1 and O2.

Theorem 5.1.3. The automorphism groups of the G2(4) near octagon and the L3(4) near
octagon are isomorphic to G2(4):2 and L3(4):22, respectively.

2It is also standard to denote the group L3(4) by PSL3(4), but we will follow the convention of referring
to it as L3(4).
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Finally, in Section 5.6 we describe the connection between these near octagons and the
distance regular graphs discovered by Soicher in [131], which also gives alternate construc-
tions for these geometries.

Remark. In general, it is hard to construct new “nice near polygons”, for example point-
transitive near polygons which are not bipartite graphs. Besides some infinite families
(the most recent one being discovered around 15 years ago [56]), there are some examples
related to sporadic simple groups which were discovered around 1980 [7], [52], [128]. We
hope that our two near polygons may lead to the discovery of some more new “nice near
polygons” (for example, by similar constructions using some other group actions).

5.2. Suborbit Diagrams

5.2.1. The G2(4) Near Octagon

The group G = G2(4):2 has precisely three conjugacy classes of involutions (see [54]). The
class 2A consists of 4095 involutions all of which are central and contained in the derived
subgroup G′ ∼= G2(4). A computer model of the group G can be easily constructed using
the computer algebra system GAP. All group theoretical claims of the present section
have been verified using such a computer model.3

Let P denote the set of all 4095 central involutions of G. The group G acts on P by
conjugation (x 7→ xg = g−1xg). Let ω denote a fixed central involution of G. The
stabilizer Gω of ω has eight orbits on P , the so-called suborbits of G with respect to ω.
Such a suborbit will be denoted by O0, O1a, O1b, O2a, O2b, O3a, O3b and O4 in accordance
with the information provided by Table 5.1. In the table, we have mentioned the sizes of
the suborbits and descriptions for the groups 〈x, ω〉, where x is an arbitrary element of
the considered suborbit. The suborbits with respect to a certain central involution x will
be denoted by O0(x),O1a(x), . . . ,O4(x).

Suborbit O0 O1a O1b O2a O2b O3a O3b O4

Size 1 2 20 40 320 640 1024 2048
〈x, ω〉 C2 C2 × C2 C2 × C2 C2 × C2 D8 D8 S3 D10

Table 5.1.: Suborbit description for G2(4):2

The central involutions distinct from ω which commute with ω are those of the set O1a ∪
O1b ∪ O2a. Moreover, if O ∈ {O1a,O1b,O2a} and x ∈ O, then ωx ∈ O. The sets O1a,
O1b and O2a consist of those central involutions x 6= ω for which [G : NG(〈x, ω〉)] has size
1365, 13650 and 27300, respectively.

Let L denote the set of all triples {x, y, xy}, where x and y are two distinct commuting
central involutions such that [G : NG(〈x, y〉)] has size 1365 or 13650 and let O1 be the
point-line geometry with point set P and line set L, where incidence is containment. Using

3In particular, we do not assume any background on Chevalley groups, as we simply obtain all the
required properties of G2(4):2 using elementary arguments along with computations in GAP, and the
information given in ATLAS [54].

Page 65



Two New Near Octagons

O2a O3a

O4

O3bO2bO1b

O1a

O0

1 1

1

1

11

1

1

1 1

2

2 2

2

2

2 2

2 2

2

10

1

1
10 1 8

2 2

6

5

8
1

6
58

2

1
1 2

8

Figure 5.1.: The suborbit diagram for the central involutions of G2(4):2

GAP we have computed the suborbit diagram for the central involutions of G2(4):2, which
is given in Figure 5.1. Each of the eight big nodes in Figure 5.1 denotes a suborbit and
an edge between two such nodes denotes the property that there is a line that intersects
both suborbits. A smaller node on each edge denotes a line and the two accompanying
numbers denote the number of points of the line that lie in the suborbits it intersects.
Each number on a big node denotes the number of lines through a given point in that
suborbit going to another suborbit.

In the literature, suborbit diagrams for finite simple groups where adjacency (in the
collinearity graph of the involution geometry) is defined by commutativity have been
studied (see for example [16], [17] and [144]). For drawing our suborbit diagram(s) we have
used similar conventions as in [16]. In our case adjacency involves both commutativity
and a condition on the index of certain normalizers. As per [34, Page 397], “Sometimes
pairs of commuting involutions from D (where D is a conjugacy class of involutions)
fall into several G-orbitals 4; choosing one orbital for adjacency, one obtains commuting
involutions graph in the wider sense”. Therefore, the collinearity graph of the point line
geometry O1 we have just constructed is a commuting involution graph in the wider sense;
noting that we have chosen two suborbits (orbitals) instead of one to define adjacency.

Theorem 5.2.1. The point-line geometry O1 is a near octagon of order (2, 10).

Proof. Let x be a fixed central involution of G = G2(4):2, i.e., a point of O1. It is clear
from the suborbit diagram that every other involution is at distance at most 4 from x.
Therefore the point-line geometry is connected and has diameter 4. Now let L be any line,
then from the suborbit diagram there exists an i ∈ {0, 1, 2, 3} such that L intersects Oi
in one point and Oi+1 in two points. Therefore there exists a unique point on L nearest
to x. Since the automorphism group acts transitively on points, O1 is a near octagon.
Since there are exactly 2 + 20 = 22 points collinear with x (the elements of O1a ∪ O1b),
this near octagon has order (2, 10).

4orbitals is synonymous with suborbits
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Figure 5.2.: The suborbit diagram for the central involutions of L3(4):22

5.2.2. The L3(4) Near Octagon

If instead of the group G2(4):2, we start with G = L3(4):22 and take the conjugacy class
2A [54] of 315 central involutions of G, then the same construction as before by fixing
an element ω in this conjugacy class gives us the suborbit diagram of Figure 5.2. The
suborbit description for this case is given in Table 5.2. By a similar argument as before
we see that this geometry is a near octagon of order (2, 4), thus proving Theorem 5.1.2(1).
We also note that the central involutions distinct from ω which commute with ω are those
of the set O1a ∪ O1b ∪ O2a. To gain a better understanding of this L3(4) near octagon,
and to determine its automorphism group, we now describe some of its properties using
the projective plane PG(2, 4).

Suborbit O0 O1a O1b O2a O2b O3a O3b O4

Size 1 2 8 16 32 64 64 128
〈x, ω〉 C2 C2 × C2 C2 × C2 C2 × C2 D8 D8 S3 D10

Table 5.2.: Suborbit description for L3(4):2

Let V be a 3-dimensional vector space over the field F4 with basis (ē1, ē2, ē3), and denote
by (f̄1, f̄2, f̄3) the dual basis in the dual space V ′ obtained by taking the functional f̄i’s
satisfying the property that f̄i(ēj) = δij for i, j ∈ {1, 2, 3}. We get a projective space
PG(V ) ∼= PG(2, 4) from this vector space V by taking the 1-dimensional subspaces of
V as points P , and the 2-dimensional subspaces as lines L; incidence is containment.
For a 1-dimensional subspace 〈f〉 of V ′, we get a 2-dimensional subspace of V given by
{u ∈ V | f(u) = 0}, implying that we can identify each line of PG(V ) with a point of
PG(V ′). A collineation of PG(V ) = (P ,L, I) is a bijective map θ : P ∪ L → P ∪ L
such that θ(P) = P , θ(L) = L and (p, L) ∈ I iff (pθ, Lθ) ∈ I (incidence preserving). A
correlation is a bijective incidence preserving map which switches the sets P and L.

It is well-known that the group of all collineations of PG(V ) is equal to the group PΓL(V ).
Thus with each collineation θ of PG(V ), there is associated a nonsingular 3× 3 matrix A
over F4 and an automorphism τ of F4 such that the point 〈x1ē1 + x2ē2 + x3ē3〉 of PG(V )
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is mapped to the point 〈x′1ē1 +x′2ē2 +x′3ē3〉 of PG(V ), where [x′1 x
′
2 x
′
3]T = A · [xτ1 xτ2 xτ3]T .

While the automorphism τ of F4 is uniquely determined by θ, the matrix A itself is only
determined up to a nonzero scalar factor. However, all matrices A corresponding to θ
have the same determinant as k3 = 1 for every k ∈ F4 \ {0}. The element θ of PΓL(V )
also permutes the lines of PG(V ). Specifically, if the “line” 〈y1f̄1 + y2f̄2 + y3f̄3〉 is mapped
to the “line” 〈y′1f̄1 + y′2f̄2 + y′3f̄3〉, then [y′1 y

′
2 y
′
3]T = (AT )−1 · [yτ1 yτ2 yτ3 ]T .

With each correlation θ of PG(V ), there is also associated a nonsingular 3 × 3 matrix
A over F4 and an automorphism τ of F4 such that the point 〈x1ē1 + x2ē2 + x3ē3〉 is
mapped to the “line” 〈y′1f̄1 + y′2f̄2 + y′3f̄3〉, where [y′1 y

′
2 y
′
3]T = A · [xτ1 xτ2 xτ3]T . Again,

the automorphism τ of F4 is uniquely determined by θ, but A is only determined up to a
nonzero scalar factor. If A and τ are as above, then θ will map the “line” 〈y1f̄1+y2f̄2+y3f̄3〉
to the point 〈x′1ē1 + x′2ē2 + x′3ē3〉, where [x′1 x

′
2 x
′
3]T = (AT )−1 · [yτ1 yτ2 yτ3 ]T .

Let G1
∼= PSL3(4) = L3(4) denote the group of all collineations of PG(V ) for which the

field automorphism τ is the identity and the matrix A has determinant 15, let G2 denote
the group of all collineations of PG(V ) for which det(A) = 1 and let G denote the group
of all collineations and correlations of PG(V ) for which det(A) = 1. Then G1 has index 2
in G2 which itself has index 2 in G. If G3 denotes the set of all elements of G for which
A = I3, then G3

∼= C2×C2. Moreover, G is the internal semidirect product G1 oG3. So,
G is a group of type L3(4):22. Note also that G1 is the derived subgroup of G, and that
the group of all collineations and correlations of PG(V ) has type L3(4):D12.

The little projective group PSL3(4) = L3(4) is generated by the elations of PG(2, 4),
which are collineations that fix every point on a line L, called the axis of the elation, and
fix every line through a point p on L, called the center of the elation. We denote the set
of all elations of PG(V ) by Σ. If we treat the axis L as the line at infinity and p as the
direction, then the elation σ ∈ Σ corresponds to a translation of the affine plane AG(2, 4)
that we get by “removing” the line L. We note the following easily proved properties
(where group elements are composed from left to right).

Lemma 5.2.2. (1) If σ ∈ Σ is an elation of PG(2, 4) with center p and axis L, and θ
is a collineation of PG(2, 4), then θ−1σθ is an elation of PG(2, 4) with center pθ and
axis Lθ.

(2) If σ ∈ Σ is an elation of PG(2, 4) with center p and axis L, and θ is a correlation of
PG(2, 4), then θ−1σθ is an elation of PG(2, 4) with center Lθ and axis pθ.

Since the characteristic of the field is 2, we see that the (non-identity) elations Σ of
PG(2, 4) form a conjugacy class of involutions in the group generated by collineations and
correlations of PG(2, 4). The elations are all contained in the group L3(4), and moreover
their conjugacy class is precisely the involution class 2A of the group L3(4):22 which has
L3(4) as its derived subgroup. Therefore, in our construction of the near octagon O1, we
are taking the 315 elations of the projective plane PG(2, 4) as points on which the group
G = L3(4):22 acts via conjugation. In Section 5.5 we will show that the group G is in fact
the full automorphism group of the near octagon O2.

We note that the group G has a natural action on the set F of 105 flags of PG(2, 4).
This action is transitive and there are four suborbits (orbits with respect to the stabilizer

5This is well-defined. There are different choices possible for A, but the determinants are always the
same.
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of a fixed flag), implying that the group G acts distance-transitively on the point set of
the unique generalized hexagon H(4, 1) of order (4, 1). Recall that this is the generalized
hexagon whose points are the elements of F and whose lines are the points and lines
of PG(2, 4), with incidence being reverse containment. The fact that G acts distance-
transitively implies that G must also act primitively on the set of 105 points of GH(4, 1)
(a property that holds for all generalized polygons). Consulting GAP’s library of primitive
permutation groups [83], we see that there exists a unique primitive permutation group
on 105 letters that is of the type L3(4):22. To verify our claims and to construct the
suborbit diagram in Figure 5.2, we have used this implementation of the group in GAP.

We now give a computer aided proof of the fact the near octagon O2 is a full subgeometry
of the near octagon O1.

Theorem 5.2.3. There exists a full embedding of O2 into O1 mapping lines of the line
spread S2 to lines of the line spread S1. Two embedded points are collinear in O1 if and
only if they are collinear in O2.

Proof. By the Atlas [54], the group G := G2(4):2 has a maximal subgroup H of type
SL3(4):22. If we regard G as naturally acting on the dual split Cayley hexagon H(4)D,
then H is the stabilizer of a subhexagon of order (4, 1). And in fact this is the presentation
of this group and its subgroup which we have used in GAP to verify the claims that follow.
Let Z := Z(H ′) be the center of the derived subgroup H ′ ∼= SL3(4) of H. Then Z ∼= C3,
J := H/Z ∼= L3(4):22 and J ′ = H ′/Z ∼= L3(4). For x ∈ H ∼= SL3(4):22, we let x denote
the element xZ of H/Z ∼= L3(4):22.

There exists a bijective correspondence between the involutions of the group H ′ ∼= SL3(4)
and the involutions of the group J ′ = H ′/Z ∼= L3(4). If σ is an involution of H ′, then
σ 6∈ Z ∼= C3 and so σ is an involution of J ′ = H ′/Z. Conversely, if τZ is an involution of
J ′ = H ′/Z, then there exists a unique involution σ of H ′ for which σ = τZ. Now let Σ
denote the set of all involutions of H ′ for which Σ = {σ | σ ∈ Σ} is the conjugacy class of
central involutions of J ′. Then Σ is a conjugacy class of involutions in both H ′ and H.
Indeed, if σ ∈ Σ and x ∈ H, then x−1σx = x−1 · σ · x ∈ Σ as x ∈ H/Z and σ ∈ Σ, and
therefore the involution x−1σx also belongs to Σ.

As Σ is a conjugacy class of involutions in H, it is contained in a conjugacy class of
involutions of G = G2(4):22. We have verified with GAP that all elements of Σ are in fact
central involutions of G. Since x−1σx = x−1 · σ · x for all σ ∈ Σ and all x ∈ H, the action
of H ∼= SL3(4):22 on the set Σ gives rise to the same suborbit diagram as the action of
H/Z ∼= L3(4):22 on Σ (depicted in Figure 5.2). We suppose that O2 is the near octagon
of order (2, 4) defined on the involutions of the set Σ, where two distinct involutions σ1

and σ2 of Σ are collinear whenever the suborbit with respect to σ1 which contains σ2 has
size 2 or 8. We suppose that O1 is the near octagon of order (2, 10) defined on the central
involutions of G = G2(4):2. Since all elements of Σ are central involutions of G2(4):2, we
have identified each point of O2 with a point of O1.

Now, fix an involutions ω ∈ Σ. We denote by O0,O1a,O1b,O2a,O2b,O3a,O3b and O4 the
suborbits with respect to ω under the action of H using the same notation as before.
We also know that the action of the stabilizer of G2(4):2 with respect to ω on its central
involutions gives similar suborbits, which we denote by O′1a,O′1b,O′2a,O′2b,O′3a,O′3b and
O′4. With the help of GAP, we have also checked that each of the suborbit O of Σ is
contained in O′. We know that the suborbits O1a and O1b contain those points of O2 that
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are at distance 1 from ω in O2. We also know that the suborbits O′1a and O1b contain
those points of O1 that are distance 1 from ω in O1. So, if x and y are two points in O2,
then we have shown that x and y are collinear in O2 if and only if they are collinear in
O2. Every line of O2, which is a collection of three mutually collinear points, is thus a line
of O1.

The unique line of S2 through ω is {ω}∪O1a, which must be equal to {ω}∪O′1a (O1a = O′1a
since they have the same cardinality). Therefore, every line of S2 is a line of S1.

5.3. A Family of Near Octagons

Suppose S = (P ,L, I) is a finite near octagon of order (s, t), s ≥ 2, and S is a line spread
of S. For every point x of S, let Lx denote the unique line of S containing x. We define
a number of additional sets of points of S.

• For every point x of S, we define Γ′1(x) := Lx \ {x} and Γ′′1(x) := Γ1(x) \ Γ′1(x).

• For every point x of S and every i ∈ {2, 3}, we define Γ′i(x) to be the set of points of
Γi(x) that are collinear with a point of Γ′i−1(x), and we put Γ′′i (x) := Γi(x) \ Γ′i(x).6

Throughout this section, we assume that there exists a positive divisor t′ of t, with t′ 6= t
such that the following hold for every point x of S:

(P1) Every point of Γ′2(x) is incident with t′ lines meeting Γ′′1(x).

(P2) Every point of Γ′′2(x) is incident with a unique line meeting Γ′′1(x).

(P3) Every point of Γ′3(x) is incident with t′ lines meeting Γ′′2(x).

(P4) Every point of Γ′′3(x) is incident with t
t′
lines meeting Γ′′2(x).

From the suborbit diagrams of O1 and O2 (see Figures 5.1, 5.2), described in the pre-
vious section, we can see that both of these near octagons satisfies these four proper-
ties. For O1, we have s = 2, t = 10 and t′ = 2, while for O2 we have s = 2, t = 4
and t′ = 2. When t′ = 1, it can be shown that any near polygon S satisfying these
properties must be the direct product of a generalized hexagon of order (s, t − 1) with
a line of size s + 1. We call this the trivial example. Therefore, all the results we
prove in this section for the near octagon S are true for both O1 and O2 (and for the
trivial example). It will also be clear from our discussion that for any point x, the
sets Γ0(x),Γ′1(x),Γ′′1(x),Γ′2(x),Γ′′2(x),Γ′3(x),Γ′′3(x) and Γ4(x) correspond to the suborbits
O0(x),O1a(x),O1b(x),O2a(x),O2b(x),O3a(x),O3b(x) and O4(x), respectively.

In the lemmas below, x denotes some fixed point of S. A point y of S is said to be of type
i ∈ {0, 1, 2, 3, 4} if y ∈ Γi(x). A point y of S is said to be of type i′ or i′′, for i ∈ {1, 2, 3},
if it belongs to Γ′i(x) or Γ′′i (x), respectively. A line L of S is said to have type (i, j) for
i, j ∈ {0, 1′, 1′′, 2′, 2′′, 3′, 3′′, 4} if it contains a unique point of type i and s points of type
j; for example, the line Lx is of type (0, 1′). We will ultimately show that, just like the
case of near octagons O1 and O2, every line of S has type (0, 1′), (0, 1′′), (1′, 2′), (1′′, 2′),
(1′′, 2′′), (2′, 3′), (2′′, 3′), (2′′, 3′′), (3′, 4) or (3′′, 4), while every line of the line spread S has
type (0, 1′), (1′′, 2′), (2′′, 3′) or (3′′, 4).

6Γ′′
2(x) and Γ′′

3(x) are assumed to be nonempty
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Lemma 5.3.1. The point x is contained in a unique line of type (0, 1′) and t lines of type
(0, 1′′). We have |Γ0(x)| = 1, |Γ′1(x)| = s and |Γ′′1(x)| = st. There is a unique line of type
(0, 1′), namely Lx, and every line of S meeting Γ0(x) ∪ Γ′1(x) coincides with Lx.

Proof. Follows directly from the definitions.

Lemma 5.3.2. Every point y ∈ Γ′2(x) is contained in a (necessarily unique) quad together
with x. This quad has order (s, t′).

Proof. By definition of the set Γ′2(x), the line Lx = {x} ∪ Γ′1(x) contains a (necessarily
unique) point collinear with y. By Property (P1), there are precisely t′ ≥ 1 points in Γ′′1(x)
collinear with y. As the points x and y have t′ + 1 ≥ 2 common neighbors (and s ≥ 2),
they are contained in a unique quad, necessarily of order (s, t′), by Theorem 1.3.8.

Lemma 5.3.3. No point of Γ′′2(x) can be contained in a quad together with x.

Proof. Let y ∈ Γ′′2(x). By Property (P2), there is a unique line through y meeting Γ′′1(x),
and by definition of the set Γ′′2(x), there are no lines through y meeting Γ′1(x). Hence,
x and y have a unique common neighbor, implying that they cannot be contained in a
quad.

Lemma 5.3.4. Every quad through a point y of S contains the line Ly.

Proof. Without loss of generality, we can take y = x. Suppose Q is a quad through x not
containing the line Lx. Then no y ∈ Γ2(x)∩Q is collinear with a point of Lx, as otherwise
Lx will be contained in Q. This implies that Γ2(x)∩Q ⊆ Γ′′2(x), which contradicts Lemma
5.3.3.

Lemma 5.3.5. For every quad Q of S, the lines of the spread S that are contained in Q
form a line spread of Q.

Proof. If this were not the case, then there would exist a line of S meeting Q in a single
point y which would contradict Lemma 5.3.4.

Lemma 5.3.6. Through every point y ∈ Γ′1(x), there is a unique line of type (0, 1′) and
t lines of type (1′, 2′).

Proof. This follows from the definition of the set Γ′2(x); every line through y which is
not equal to the unique line of type (0, 1′) (the line Lx) must be of type (1′, 2′).

Lemma 5.3.7. We have |Γ′2(x)| = s2t.

Proof. By Lemmas 5.3.1 and 5.3.6, the number of edges between Γ′1(x) and Γ′2(x) in the
collinearity graph is equal to |Γ′1(x)| · t · s = s2t. As any point of Γ′2(x) is collinear with a
unique point of Lx, from double counting these edges we see that |Γ′2(x)| = s2t.

Lemma 5.3.8. There are precisely t
t′
quads through any given point of S.

Proof. Without loss of generality, we prove this for the point x. Every quad through x
has order (s, t′) and contains s2t′ points at distance 2 from x. All these s2t′ points belong
to Γ′2(x) by Lemma 5.3.3. From Lemmas 5.3.2 and 5.3.7, it then follows that there are
precisely |Γ

′
2(x)|
s2t′

= s2t
s2t′

= t
t′
quads through x.

Lemma 5.3.9. Every line M through a point y of S distinct from Ly is contained in a
unique quad.
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Proof. Without loss of generality, we may suppose that y = x. As any quad through x
contains the line Lx by Lemma 5.3.4, there is at most one quad through M (see Lemma
1.3.10). Since every quad through x has order (s, t′), the t

t′
quads through x cover t′ · t

t′
= t

lines through x distinct from Lx. As these are all lines through x distinct from Lx, M
must be contained in a unique quad.

Lemma 5.3.10. For every y ∈ Γ′′1(x), the line Ly has type (1′′, 2′). For every z ∈ Γ′2(x),
the line Lz has type (1′′, 2′).
Proof. By Lemma 5.3.9, the line xy is contained in a unique quad Q. By Lemma 5.3.5,
Lx and Ly are two disjoint lines contained in Q, and so every point of Ly \ {y} belongs
to Γ′2(x), as it is collinear with a point of Lx \ {x}. Therefore, Ly has type (1′′, 2′). The
st mutually distinct lines Ly with y ∈ Γ′′1(x) cover s2t points of Γ′2(x). By Lemma 5.3.7,
these are all the points of Γ′2(x). So, for every z ∈ Γ′2(x), the line Lz has type (1′′, 2′).

Lemma 5.3.11. Let y ∈ Γ′′1(x). Then y is contained in a unique line of type (0, 1′′), t′
lines of type (1′′, 2′) and t− t′ lines of type (1′′, 2′′).
Proof. There is a unique line through y containing x, namely the line xy, and this line
contains precisely s points of Γ′′1(x). There is no line through y meeting Γ′1(x) since
otherwise x would be collinear with two distinct points of that line, contradicting the fact
that S is a near polygon. So, every line through y which is distinct from xy meets Γ2(x),
and necessarily contains precisely s points of Γ2(x).

By Lemma 5.3.9, there is a unique quad Q (of order (s, t′)) through the line xy. By Lemma
5.3.3, the t′ lines of Q through y which are distinct from xy all contain precisely s points
of Γ′2(x). Conversely, suppose that L is a line through y containing a point u ∈ Γ′2(x).
The unique quad through x and u is a convex subspace and therefore the lines L = yu
and xy are contained in this quad, implying that the quad coincides with Q. So, L is one
of the t′ lines of Q through y distinct from xy. The remaining t− t′ lines through y must
be of type (1′′, 2′′).

Lemma 5.3.12. We have |Γ′′2(x)| = s2t(t− t′).
Proof. By Lemmas 5.3.1 and 5.3.11, the number of edges between Γ′′1(x) and Γ′′2(x) is
equal to |Γ′′1(x)| · (t − t′)s = s2t(t − t′). By Property (P2), we know that the number of
edges is also equal to |Γ′′2(x)|.

Lemma 5.3.13. Let y ∈ Γ′2(x). Then y is incident with a unique line of type (1′, 2′), t′
lines of type (1′′, 2′) and t− t′ lines of type (2′, 3′).
Proof. The lines through y meeting Γ1(x) (necessarily in a unique point) are precisely the
t′+1 lines through y that are contained in the unique quad Q through x and y. By Lemma
5.3.3, each of these lines contains precisely s points of Γ′2(x), and hence they have type
(1′′, 2′) or (1′, 2′). Note that there is a unique line through y meeting Lx = {x} ∪ Γ′1(x),
which is the unique line of type (1′, 2′) through y. By the definition of the set Γ′3(x),
the remaining t − t′ lines through y all contain s points of Γ′3(x), and thus have type
(2′, 3′).

Lemma 5.3.14. Through every point y ∈ Γ′3(x), there is a unique line meeting Γ′2(x).
Proof. By definition of the set Γ′3(x), we know that there is at least one such line.
Suppose two lines through y meet Γ′2(x) in the points u1 and u2, respectively. By Lemma
5.3.13, ui with i ∈ {1, 2} is collinear with a unique point vi ∈ Lx. This point necessarily
coincides with the unique point v of Lx at distance 2 from y (the near polygon property).
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Hence, v = v1 = v2. Since the points y and v have two distinct neighbors, namely u1 and
u2, they are contained in a unique quad Q. The line Lx meets this quad Q in a unique
point (namely v), but this contradicts Lemma 5.3.5.

Lemma 5.3.15. We have |Γ′3(x)| = s3t(t− t′).
Proof. By Lemmas 5.3.7 and 5.3.13, the number of edges between Γ′2(x) and Γ′3(x) is
equal to |Γ′2(x)| · (t − t′)s = s3t(t − t′). By Lemma 5.3.14, the number of these edges is
also equal to |Γ′3(x)|.

Lemma 5.3.16. For every y ∈ Γ′′2(x), the line Ly has type (2′′, 3′). For every y ∈ Γ′3(x),
the line Ly has type (2′′, 3′).
Proof. Let y ∈ Γ′′2(x). By Property (P2), there exists a unique point z ∈ Γ′′1(x) collinear
with y. By Lemma 5.3.10, the line Lz has type (1′′, 2′) and so it is distinct from yz. By
Lemmas 5.3.4 and 5.3.9, there is a unique quad Q through Lz and yz. By Lemma 5.3.3,
this quad cannot contain x. So, x lies at distance 1 from Q and is classical with respect
to Q, implying that Ly \ {y} ⊆ Γ3(x). By Lemma 5.3.5, the line Ly is contained in Q and
so the line Ly is parallel and at distance 1 from Lz (see Lemma 1.3.7). Hence, every point
of Ly \ {y} is collinear with a point of Lz \ {z} ⊆ Γ′2(x), implying that Ly \ {y} ⊆ Γ′3(x).

The s2t(t− t′) mutually disjoint lines Lz with z ∈ Γ′′2(x) cover s3t(t− t′) points of Γ′3(x).
By Lemma 5.3.15, these are all the points of Γ′3(x). So y ∈ Γ′3(x) and hence the line Ly
has type (2′′, 3′).

Lemma 5.3.17. For any y ∈ Γ′′3(x) ∪ Γ4(x), the line Ly has type (3′′, 4).
Proof. This follows from Lemmas 5.3.1, 5.3.10, 5.3.16, and the fact that S is a line spread
of S.

Lemma 5.3.18. There are no lines meeting Γ′3(x) and Γ′′3(x).
Proof. Suppose L is a line containing points u′ ∈ Γ′3(x) and u′′ ∈ Γ′′3(x), and let y denote
the unique point of Γ2(x) on L. By the definition of Γ′′3(x), we must have y ∈ Γ′′2(x) since
no point of Γ′′3(x) is collinear with a point of Γ′2(x). By Lemma 5.3.14, the point u′ is
collinear with a unique point v ∈ Γ′2(x). By Lemma 5.3.10, the line Lv meets Γ′′1(x) and
so is distinct from vu′. By Lemmas 5.3.4 and 5.3.9, there exists a unique quad Q through
Lv and vu′. This quad also contains a point of Γ′′1(x), and so the t′ lines of Q through
u′ distinct from vu′ all meet Γ2(x). By Lemma 5.3.14, we know that these t′ lines meet
Γ′′2(x). By Property (P3) , we know that these are all the lines through u′ meeting Γ′′2(x).
So, the line L is contained in Q. But then every point of L\{y} is collinear with a point of
Lv \Γ′′1(x) ⊆ Γ′2(x), implying that each point of L\{y} belongs to Γ′3(x). This contradicts
the fact that u′′ ∈ Γ′′3(x).

The following is a consequence of Lemmas 5.3.1, 5.3.6, 5.3.10, 5.3.11, 5.3.13, 5.3.16, 5.3.17
and 5.3.18.

Corollary 5.3.19. • Every line of S has type (0, 1′), (0, 1′′), (1′, 2′), (1′′, 2′), (1′′, 2′′),
(2′, 3′), (2′′, 3′), (2′′, 3′′), (3′, 4) or (3′′, 4).

• Every line of the spread S has type (0, 1′), (1′′, 2′), (2′′, 3′) or (3′′, 4).

We can now draw a diagram for S which looks similar to Figures 5.1 and 5.2. This is done
in Figure 5.3, though we still need to prove some of the information that is contained in
the diagram.
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Lemma 5.3.20. Let y ∈ Γ′′2(x) and let z be the unique point of Γ′′1(x) collinear with y.
Then there exists a quad Q through y and z such that the t′ lines of Q through y distinct
from yz have type (2′′, 3′).

Proof. By Property (P2), there is a unique point z ∈ Γ′′1(x) collinear with y. By Lemma
5.3.10, the line Lz contains s points of Γ′2(x). Consider now the unique quad Q through
Lz and yz. If L is one of the t′ lines of Q through y distinct from yz, then every point of
L \ {y} is collinear with a point of Lz \ {z} ⊆ Γ′2(x) and hence is contained in Γ′3(x).

Lemma 5.3.21. Every point y of Γ′3(x) is incident with a unique line of type (2′, 3′), t′
lines of type (2′′, 3′) and t− t′ lines of type (3′, 4).

Proof. By Lemma 5.3.14, there is a unique line of type (2′, 3′) through y and by Property
(P3), there are precisely t′ lines of type (2′′, 3′) through y. The remaining t−t′ lines through
y should all have type (3′, 4).

Lemma 5.3.22. Every point y of Γ′′2(x) is incident with a unique line of type (1′′, 2′′), t′
lines of type (2′′, 3′) and t− t′ lines of type (2′′, 3′′).

Proof. By Lemmas 5.3.12 and 5.3.20, the number of edges between Γ′′2(x) and Γ′3(x) is at
least |Γ′′2(x)|·st′ = s3tt′(t−t′), with equality if and only if every point of type 2′′ is incident
with precisely t′ lines of type (2′′, 3′). By Lemma 5.3.15 and Property (P3), we know that
the number of edges between Γ′′2(x) and Γ′3(x) is precisely |Γ′3(x)| · t′ = s3tt′(t − t′). So,
the point y ∈ Γ′′2(x) is incident with precisely t′ lines of type (2′′, 3′). By Property (P2), y
is incident with a unique line of type (1′′, 2′′). The remaining t− t′ lines through y should
have type (2′′, 3′′).

Lemma 5.3.23. Every point of Γ′′3(x) is contained in t
t′
lines of type (2′′, 3′′) and t+1− t

t′

lines of type (3′′, 4).

Proof. This follows from Property (P4)7 and the discussion so far regarding the types of
lines in S, where we deduced that the only types of lines through a point of type 3′′ are
(2′′, 3′′) and (3′′, 4).

Lemma 5.3.24. We have |Γ′′3(x)| = s3t′(t− t′)2.

Proof. By Lemmas 5.3.12 and 5.3.22, the number of edges between Γ′′2(x) and Γ′′3(x) is
equal to |Γ′′2(x)| · (t − t′)s = s3t(t − t′)2. By Lemma 5.3.23, this number is also equal to
|Γ′′3(x)| · t

t′
. Hence, |Γ′′3(x)| = s3t′(t− t′)2.

Lemma 5.3.25. Let L be a line of S meeting Γ′′3(x) and Γ4(x). If Q is a quad through
L, then Q contains at most one point at distance 2 from x.

Proof. Since the quad Q contains a point at distance 4 from x, it contains a point at
distance 2 from x if and only if x is classical with respect to Q. But then d(x,Q) = 2 and
so Q contains a unique point at distance 2 from x.

Lemma 5.3.26. Let L be a line of the spread S having type (3′′, 4). Then all t
t′
quads

through L contain a unique point of type 2′′ and a unique line of type (2′′, 3′). This point
of type 2′′ is the unique point of the quad at distance 2 from x, and this line of type (2′′, 3′)
belongs to S.

7This is the first time we have used (P4).
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Figure 5.3.: The structure of S with respect to the fixed point x

Proof. Let y be the unique point of L contained in Γ′′3(x). By Property (P4), there are t
t′

lines K through y meeting Γ′′2(x) giving rise to t
t′
distinct quads through L, each of which

contains a unique point of Γ′′2(x) by Lemma 5.3.25. These are all the quads through L. Let
Q be any of these t

t′
quads and let z denote the unique point in Q ∩ Γ2(x). By Lemmas

5.3.20 and 5.3.22, the t′ lines of type (2′′, 3′) through z are all contained in a quad Q′

through z. As Q′ contains a point of Γ′′1(x), we have Q 6= Q′ and so Q ∩ Q′ is at most a
line. As Lz ⊆ Q ∩ Q′, we have Lz = Q ∩ Q′. Clearly, Lz = Q ∩ Q′ is the unique line of
type (2′′, 3′) of Q.

Lemma 5.3.27. Every point y of Γ4(x) is incident with t
t′
lines of type (3′, 4) and t+1− t

t′

lines of type (3′′, 4).
Proof. If L is a line through y meeting Γ′3(x), then Lemmas 5.3.4, 5.3.9 and 5.3.17 imply
that there is a unique quad through L and this quad contains the line Ly of type (3′′, 4).
Conversely, by Lemma 5.3.26, any of the t

t′
quads through Ly contains a unique line

through y meeting Γ′3(x). So, there are t
t′
lines through y meeting Γ′3(x) and t + 1 − t

t′

lines meeting Γ′′3(x).

Lemma 5.3.28. We have |Γ4(x)| = s4t′(t− t′)2.
Proof. By Lemmas 5.3.15 and 5.3.21, the number of edges between Γ′3(x) and Γ4(x) is
equal to |Γ′3(x)| · (t − t′)s = s4t(t − t′)2. By Lemma 5.3.27, the number of such edges is
also equal to |Γ4(x)| · t

t′
. It follows that |Γ4(x)| = s4t′(t− t′)2.

We now have a full description of S in Figure 5.3, where we follow a similar convention
as in Figures 5.1 and 5.2. Note that we have |Γ0(x)| = 1, |Γ′1(x)| = s, |Γ′′1(x)| = st,
|Γ′2(x)| = s2t, |Γ′′2(x)| = s2t(t − t′), |Γ′3(x)| = s3t(t − t′), |Γ′′3(x)| = s3t′(t − t′)2, and
|Γ4(x)| = s4t′(t − t′)2. Therefore, the total number of points in S can also be given in
terms of the parameters s, t, t′.

Lemma 5.3.29. Every point-quad pair in S is classical.
Proof. Without loss of generality, we may suppose that x is the point and Q is a quad
of S. If d(x,Q) = 1, then by Lemma 1.3.11 the pair (x,Q) is classical. By Lemma 5.3.26,
(x,Q) is classical if Q contains points at distance 4 from x. So, suppose Q ⊆ Γ2(x)∪Γ3(x).
Note that Q ∩ Γ2(x) must be nonempty. Let y ∈ Q ∩ Γ2(x). Then Ly ⊆ Q implies by
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Lemma 5.3.10 that y 6∈ Γ′2(x). So, y ∈ Γ′′2(x). The line Ly meets Γ′3(x). By Property
(P2), y is collinear with a unique point z of Γ′′1(x). Denote by Q′ the unique quad through
yz and Ly. By Lemmas 5.3.4 and 5.3.9, Q′ is the unique quad through y meeting Γ′′1(x).
By Lemmas 5.3.20 and 5.3.22, the t′ lines of type (2′′, 3′) through y are the t′ lines of Q′
through y distinct from yz. Each of the t − t′ lines through y meeting Γ′′3(x) determines
a quad together with Ly and such a quad has t′ lines through y meeting Γ′′3(x). So, there
are t−t′

t′
= t

t′
− 1 quads through Ly meeting Γ′′3(x) and hence also Γ4(x) as the unique

line of S through a point of Γ′′3(x) meets Γ4(x). We see that we have accounted for all
t
t′

quads through y, and none of these quads can be equal to Q, which is contained in
Γ2(x) ∪ Γ3(x).

Lemma 5.3.30. Two distinct lines L1 and L2 of the spread S lie at distance 1 from each
other if and only if they are contained in the same quad. If d(L1, L2) = 1, then L1 and
L2 are parallel.

Proof. If L1 and L2 are contained in a quad, then they are parallel and d(L1, L2) = 1.
Conversely, suppose that d(L1, L2) = 1 and let x1 ∈ L1 and x2 ∈ L2 such that d(x1, x2) =
1. The unique quad through the line x1x2 then contains L1 and L2.

Lemma 5.3.31. Every two lines L and L′ of S are parallel.

Proof. Let x ∈ L and x′ ∈ L′ such that d(L,L′) = d(x, x′). It suffices to show that every
point of L has distance at most δ := d(x, x′) from L′. Let x = y0, y1, . . . , yδ = x′ be a path
connecting x and x′. Put Li := Lyi , i ∈ {0, 1, . . . , δ}. Then for every i ∈ {1, 2, . . . , δ},
the lines Li−1 and Li are either equal or parallel at distance 1. So, every point of Li−1

has distance at most 1 from a point of Li. This implies that every point of L = L0 has
distance at most δ from L′ = Lδ.

Let Q denote the set of quads of S, and let S ′ be the point-line geometry with point set
S and line set Q, where incidence is containment.

Lemma 5.3.32. If L1, L2 ∈ S, then the distance d between L1 and L2 in S ′ is equal to
d(L1, L2).

Proof. Put d1 := d and d2 := d(L1, L2). Suppose L1 = K0, K1, . . . , Kd1 = L2 is a
(shortest) path in S ′ connecting L1 and L2. Then the Ki’s are mutually disjoint. Let
x0 be an arbitrary point of K0 and for every i ∈ {1, 2, . . . , d1}, let xi denote the unique
point of Ki collinear with xi−1. Then x0 ∈ L1 lies at distance at most d1 from xd1 ∈ L2,
showing that d2 ≤ d1.

Suppose y0, y1, . . . , yd2 is a (shortest) path of length d2 in S connecting a point y0 ∈ L1

with a point yd2 ∈ L2. In the sequence Ly0 , Ly1 , . . . , Lyd2 , any two consecutive lines are
either equal or at distance 1 from each other (in S ′) by Lemma 5.3.30. So, we should also
have that d1 ≤ d2. We conclude that d1 = d2.

Lemma 5.3.33. S ′ has order (st′, t
t′
− 1).

Proof. By Lemma 5.3.5, every line of S ′ contains precisely 1 + st′ points (this the size
of a line spread of a generalized quadrangle of order (s, t′)). By Lemmas 5.3.4 and 5.3.8,
every line of S is contained in precisely t

t′
quads, showing that every point of S ′ is incident

with precisely t
t′
lines of S ′.

Lemma 5.3.34. S ′ is a near hexagon.
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Proof. Let L ∈ S and Q ∈ Q. Denote by SQ the set of lines of S contained in Q. By
Lemma 5.3.5, SQ is a line spread of the generalized quadrangle Q. Let x be an arbitrary
point of L. As x is classical with respect to the quad Q, there exists a unique point
x′ ∈ Q nearest to x. By Lemma 5.3.32, Lx′ is the unique line of SQ at distance d(x, x′)
from Lx = L in the geometry S ′. Every other line of SQ has distance d(x, x′) + 1 from
Lx = L.

It remains to show that S ′ has diameter 3. By Lemma 5.3.32, the diameter of S ′ is at
most 3. If x1 and x2 are two points of S at distance 4 from each other, then the fact that
Lx1 and Lx2 are parallel implies that they lie at distance 3 from each other (both in S as
S ′). So, the diameter of S ′ is indeed 3.

Lemma 5.3.35. Every two points of S ′ at distance 2 from each other have a unique
common neighbor.
Proof. Let L1, L2 ∈ S be at distance 2 from each other in the geometry S ′ and suppose
M1,M2 ∈ S are two distinct neighbors of L1, L2. The lines L1, L2,M1,M2 are mutually
parallel by Lemma 5.3.31. By Lemma 5.3.32, there exist points x1 ∈ L1 and x2 ∈ L2

at distance 2 from each other. Also, by Lemma 5.3.32, the points x1, x2 have at least
two common neighbors, one on M1 and another one on M2. So, x1 and x2 are contained
in a quad Q. This quad should contain the line Lx1 = L1, but that is impossible since
d(x2, L1) = 2.

The following is an immediate consequence of Lemmas 5.3.33, 5.3.34 and 5.3.35.

Corollary 5.3.36. S ′ is a generalized hexagon of order (st′, t
t′
− 1).

Since there is a unique generalized hexagon of order (4, 1), we have proved Theorem 5.1.2
completely. For Theorem 5.1.1(1), we still need to check if the generalized hexagon S1 of
order 4 is isomorphic to the dual split Cayley hexagon H(4)D. This can be done easily
in a computer model of S1 using the geometrical characterization of dual Split Cayley
hexagons obtained by Ronan [122].

5.4. Hall-Janko Suboctagons of O1

In this section, we construct and classify all Hall-Janko suboctagons of O1. These are
(full) subgeometries of O1 that are isomorphic to HJ. We will show that there are 416 such
subgeometries and that all of them are isometrically embedded. In the following lemma,
we already construct all these 416 subgeometries from the 416 (maximal) subgroups of
G2(4):2 isomorphic to J2:2. But first we include some group theoretical properties of the
group G2(4):2 and J2:2 that one can obtain from [54] and GAP.

The group G2(4):2 has J2:2 as a maximal subgroup of index 416. If we have H ∼= J2:2 and
G ∼= G2(4):2 such that H < G and if ΣH , ΣG denote the corresponding conjugacy classes
of central involutions, then ΣH = H ∩ ΣG. Moreover, ΣH ⊆ H ′ ∼= U3(3) (the derived
subgroup), and ΣG ⊆ G′ ∼= G2(4). We also note that if x, y are two distinct commuting
central involutions of H, then [G : NG(〈x, y〉)] = 13650. Since ΣG generates a normal
subgroup of the simple group G′, we necessarily have 〈ΣG〉 = G′. Similarly, 〈ΣH〉 = H ′.
Also, NG(H) = H, and hence H has precisely 416 conjugates in G. There exists a natural
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bijective correspondence between the subgroups of G = G2(4):2 isomorphic to J2:2 and
the subgroups isomorphic to J2. Every subgroup isomorphic to J2:2 contains a unique
J2-subgroup, namely its derived subgroup. Conversely, every J2-subgroup H of G must
be contained in a unique (maximal) subgroup isomorphic to J2:2, the normalizer of H
inside G.

Lemma 5.4.1. (1) Let H be a (maximal) subgroup of G = G2(4):2 isomorphic to J2:2.
Then the set ΣH of the central involutions of G contained in H is a subspace of the
near octagon O1 on which the induced subgeometry, denoted by SH , is isomorphic
to the Hall-Janko near octagon HJ.

(2) If H1 and H2 are two distinct maximal subgroups of G isomorphic to J2:2, then SH1

and SH2 are distinct subgeometries.
Proof. (1) On the set ΣH ⊆ H ′ ∼= J2, a Hall-Janko near octagon S ′H can be de-

fined by taking as lines all the sets {x, y, xy}, where x and y are two distinct com-
muting elements of ΣH . Recall that if the elements x, y ∈ ΣH commute, then
[G : NG(〈x, y〉)] = 13650, implying that {x, y, xy} is a line of O1, with y ∈ O1b(x) (see
Section 5.2). Conversely, if x, y ∈ ΣH such that {x, y, xy} is a line of O1, then x, y
commute and hence {x, y, xy} is also a line of S ′H .

(2) We need to show that H is uniquely determined by ΣH . The subgroup generated by
ΣH is a normal subgroup of H ′ ∼= J2 and hence coincides with H ′. Inside G = G2(4) :
2, there is a unique subgroup isomorphic to J2 : 2 that contains H ′ ∼= J2, namely its
normalizer. Hence, H = NG(〈ΣH〉).

Before proceeding to prove that every Hall-Janko suboctagon is as described in Lemma
5.4.1, we first give an alternative proof of a result of De Wispelaere and Van Maldeghem
[70].

Lemma 5.4.2. The geometry HJD has a full embedding in H(4).
Proof. LetH be a maximal subgroup ofG = G2(4):2 isomorphic to J2:2. Then by Lemma
5.4.1, SH ∼= HJ is a full subgeometry of O1. Note that no line of SH is contained in the
line spread S1 of O1 as pairs of collinear points x, y in SH satisfy [G : NG(〈x, y〉] = 13650.
Therefore, every line L of SH is contained in a unique quad QL by Lemma 5.3.9. As
any two involutions of QL ∩ H commute, QL ∩ H is at most a line of H, implying that
L = QL∩H. So, if L1, L2, . . . , L5 are the five lines of SH through a given point x, then the
quads QL1 , QL2 , . . . , QL5 are mutually distinct and hence are all the five quads through
the line Lx of the spread S1 (see Lemmas 5.3.4 and 5.3.8). This implies that the maps
x 7→ Lx, L 7→ QL define a full embedding of the dual of SH into the dual of (S1,Q1),
which is isomorphic to H(4) (see Theorem 5.1.1(2)).

In the rest of this section, H will denote an arbitrary Hall-Janko suboctagon, not neces-
sarily arising from the central involutions contained in a Hall-Janko subgroup. We will
derive several properties of H that will enable us to prove that there are at most (and
hence precisely) 416 Hall-Janko suboctagons of O1. For x, y ∈ O1, we simply denote
dO1(x, y) by d(x, y).

Lemma 5.4.3. If x and y are two points of H such that dH(x, y) ≤ 2 then dH(x, y) =
d(x, y).
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Proof. Follows directly from the fact that H is a full subgeometry of the near polygon
O1.

Lemma 5.4.4. If x and y are two points of H such that dH(x, y) = d(x, y) = 3 then
y ∈ O3b(x).
Proof. Since H is a regular near octagon with parameters (2, 4; 0, 3) there must be four
lines of H through y that contain a point at distance 2 from x in H (and hence also in
O1 by Lemma 5.4.3). But, by the suborbit diagram, if y lies in O3a(x) then there are are
only three lines through y containing a point at distance 2 from x (see Figure 5.1).

Lemma 5.4.5. Let Q be a quad of O1 and x, y two points of Q such that d(x, y) = 2. If
z is a point collinear with y and not contained in Q then z ∈ O3a(x).
Proof. As z is classical with respect to Q, d(x, z) = 3. Now this directly follows from
the suborbit diagram with respect to x and Lemma 5.3.3.

Lemma 5.4.6. A quad Q of O1 cannot contain a pair of intersecting lines of H.
Proof. Suppose L1 and L2 are two intersecting lines ofH contained in Q. Let x1 ∈ L1\L2

and x2 ∈ L2 \ L1. As there are five lines through x2 contained in H and only three
contained in Q, there exists a neighbor x3 of x2 in H \ Q. For this point x3, we have
dH(x1, x3) = d(x1, x3) = 3. By Lemma 5.4.5 x3 ∈ O3a(x1). This contradicts Lemma 5.4.4
which would imply that x3 ∈ O3b(x1).

Lemma 5.4.7. None of the lines of the line spread S1 is contained in H.
Proof. Suppose L is a line of S1 contained in H, and let M denote any other line of H
meeting L in a point. By Lemmas 5.3.4 and 5.3.9, there is a unique quad Q containing L
and M . This quad would contradict Lemma 5.4.6.

Lemma 5.4.8. Every quad which contains a point x of H contains a unique line of H
through x.
Proof. By Lemma 5.4.7, the line Lx is not contained in H. There are five lines through
x contained in H. By Lemma 5.4.6, each of the five quads through Lx contains at most
one and hence precisely one of these five lines.

Lemma 5.4.9. H is isometrically embedded into O1.
Proof. Suppose d(x, y) 6= dH(x, y) for certain points x and y of H, and suppose x and
y have been chosen in such a way that i := dH(x, y) is as small as possible. By Lemma
5.4.3, i ∈ {3, 4}. Let y′ be a point in H such that dH(x, y′) = i − 1, dH(y′, y) = 1 and
let y′′ denote the third point on the line yy′. By the near polygon property we know that
dH(x, y′′) = dH(x, y) = i. By the minimality of i, d(x, y′) = i − 1. Again by the near
polygon property, {d(x, y), d(x, y′′)} = {i− 1, i− 2}. So, still under the assumption that
the distance dH(x, y) is as small as possible, we could have chosen y in such a way that
d(x, y) = dH(x, y)− 2.

Suppose i = 3. Then we have x, y ∈ H such that dH(x, y) = 3 and d(x, y) = 1. Let x, z1,
z2, y be a shortest path between x and y in H. By Lemma 5.4.3, d(x, z2) = 2. Since x
and z2 have at least two common neighbors in G (namely y and z1), there exists a quad
Q containing x, z2 and all their common neighbors. The quad Q would then contain the
intersecting lines xz1 and z1z2, which is in contradiction with Lemma 5.4.6. Therefore, if
x and y are two points of H with dH(x, y) ≤ 3, then dH(x, y) = d(x, y).
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Now suppose i = 4, i.e., we have x, y ∈ H such that dH(x, y) = 4 and d(x, y) = 2. Let
y′ be a common neighbor of x and y in O1. There exists a quad Q through the line xy′
which by Lemma 5.4.8 must contain a line M of H through x. Let x′ be the unique point
on M satisfying dH(y, x′) = 3. From the previous case, we also have d(y, x′) = 3. So,
y ∈ O3b(x

′) by Lemma 5.4.4. Since d(y, x′) = 3, the quad Q cannot contain the point y.
Lemma 5.4.5 (with x, y and z replaced by x′, y′ and y) would then imply that y ∈ O3a(x

′),
which is in contradiction with the earlier claim that y ∈ O3b(x

′).

Lemma 5.4.10. If x and y are two points of H such that dH(x, y) = 2 then y ∈ O2b(x).
Proof. We also have d(x, y) = 2. Let x′ ∈ H be a common neighbor of x and y. If
y ∈ O2a(x), then the unique quad through x and y would contain the intersecting lines
xx′ and x′y, which would be in violation with Lemma 5.4.6. Therefore, y ∈ O2b(x).

Lemma 5.4.11. Through every pair of opposite points of O1 there is at most one Hall-
Janko suboctagon.
Proof. Let x and y be two opposite points of O1 and suppose a Hall-Janko suboctagon H
contains x and y. We will show that H is uniquely determined by x and y. In this proof
all suborbits are considered with respect to the point x. By Lemma 5.4.9, the distance
between two points of H is the same in the geometries H and O1.

There are five lines through y inside H that contain a point at distance 3 from x. By
Lemma 5.4.4 all of these lines must intersect O3b. By the suborbit diagram and Lemma
5.3.17, there are exactly six such lines through y and one of them is in the line spread S1.
By Lemma 5.4.7, the line belonging to S1 cannot be contained in H. Therefore the five
lines of H through y, going back to x are uniquely determined by x and y.

Now let y′ ∈ O3b be a point on one of these five lines and Q the unique quad through
yy′ and Ly′ 6= yy′. By Lemma 5.3.17, Ly′ meets O4. By Lemma 5.4.8 the third line of Q
through y′, call it My′ , doesn’t lie in H. We claim that My′ intersects O2b. Indeed, as the
point x is classical with respect to Q, the unique point u in Q nearest to x lies at distance
2 from x and is collinear with y′. Therefore, u ∈ O2b and My′ = y′u. The four lines of
H through y′ that go back to x are now uniquely determined. Indeed, by Lemma 5.4.10,
each of the four lines of H through y′ meets O2b. But by the suborbit diagram, there are
precisely five such lines. Moreover, one of these five lines is the line My′ and we already
know that it cannot be a line of H.

Now, let y′′ ∈ O2b be a point on one of these four lines. By the suborbit diagram there is
a unique line through y′′ containing a point y′′′ in O1b, which must necessarily be in H.
Moreover, there is a unique line through y′′′ that contains x.

So far, we have proved that given any point y in H with dH(x, y) = 4, all shortest paths
between x and y in H are uniquely determined by x and y. Moreover, all points at
distance 4 from x that are collinear with y are uniquely determined. These properties
in fact imply that the whole of H is uniquely determined. Indeed, the subgraph of the
collinearity graph induced on the set Γ4(x) ∩ H is connected (see Step 1 of the proof of
Theorem 3 in [53]), and every shortest path between x and a point of H can be extended
to a shortest path between x and a point of Γ4(x) ∩H.

Lemma 5.4.12. There are precisely 416 Hall-Janko suboctagons of O1, namely the sub-
octagons SH for maximal subgroups H ∼= J2:2 of G = G2(4):2. Through every pair of
opposite points of G, there is precisely one Hall-Janko suboctagon.
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Proof. A Hall-Janko suboctagon has 315 · 64 ordered pairs of opposite points while
O1 has 4095 · 2048 such pairs. Therefore by Lemma 5.4.11, there are at most (4095 ·
2048)/(315 · 64) = 416 Hall-Janko suboctagons in O1. By Lemma 5.4.1 there are at least
that many.

Now that we have classified all Hall-Janko sub near octagons of O1, we end this section
by proving some extra properties of these Hall-Janko suboctagons.

Lemma 5.4.13. If H is a Hall-Janko suboctagon of O1 and x a point not contained in
H, then there is a unique point x′ in H that is collinear with x.
Proof. Let H be a Hall-Janko suboctagon of O1 and x a point not contained in H. Say
x has two neighbors y, z in H. Then by Lemma 5.4.9 dH(y, z) = 2 and hence there
is a common neighbor of y, z inside H. This means that there is a quad through y, z
whose intersection withH contains a pair of intersecting lines, contradicting Lemma 5.4.6.
Therefore, if x has a neighbor in H then it has a unique neighbor.

Now we can show that x has a neighbor in H by a simple counting. There are six lines
out of the eleven through each point in H that are not contained in H, giving us a total
of 12 · 315 points of O1 at distance 1 from H. Adding this to the number of points in H
we get 315 · 12 + 315 = 4095 which is the total number of points in O1.

For a Hall-Janko suboctagon H and a point x of O1 we define the projection of x onto H,
πH(x), to be x if x ∈ H and the unique point x′ ∈ H collinear with x if x /∈ H.

Lemma 5.4.14. Let H be a Hall-Janko suboctagon of O1 and x, y be two distinct points
not contained in H such that πH(x) = πH(y). Then H ∩ Γ4(x) 6= H ∩ Γ4(y).
Proof. We consider the following two cases:

(1) The point x is collinear with y. Let x′ = πH(x) = πH(y) and z ∈ Γ4(x′) ∩ H. Since
{x, y, x′} is a line, either d(z, x) = 3 and d(z, y) = 4, or d(z, x) = 4 and d(z, y) = 3.
In either case z belongs to only one of H ∩ Γ4(x), H ∩ Γ4(y).

(2) The point x is not collinear with y. Consider the suborbit diagram with ω equal to
the common projection of x and y.

Let z be a point in O3b ∩ H. There are five lines through z going back to O2b and
four of them are contained in H. The one line that is not contained in H gives us a
unique point z′ of O2b \ H collinear with z. This in turn gives us a unique point u in
O1b \ H collinear with ω and z′. This point has distance 2 from z and cannot belong
to H by Lemma 5.4.13.

Conversely, let u be a point in O1b \H. It has sixteen neighbors in O2b none of which
is contained in H by Lemma 5.4.13. By the suborbit diagram and Lemma 5.4.4, the
projection of each of these sixteen points in H must lie in O3b. Therefore, the ten
points of O1b \ H partition the set O3b ∩ H, by the distance 2 map, into ten disjoint
sets of size sixteen.

Without loss of generality, say x ∈ O1b. Then the sixteen points of O3b ∩H that are
at distance 2 from x are at distance 4 from y. Indeed, if z ∈ O3b ∩H lies at distance
2 from x, then through ω, there are precisely five lines containing a point at distance
2 from z. Four of these lines are contained in H and the fifth line is ωx. So, y which
is still on another line through ω should lie at distance 4 from z.
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We finish this section by proving that the near octagon S constructed using the valuation
geometry of HJ, by taking the points of type A, B, C, and lines of type AAA, ABB,
ACC, BBC, CCC, is isomorphic to the near octagon O1 constructed using the central
involutions of G2(4):2.

Proposition 5.4.15. The near octagon O1 is isomorphic to S.
Proof. Regard HJ as a full subgeometry of O1. Then HJ is isometrically embedded into
O1 by Lemma 5.4.9. By Lemma 2.2.4, every point x of O1 will induce a valuation fx of
HJ. This valuation is of Type A if and only if x belongs to HJ. By Lemma 5.4.13, each
induced valuation has a unique point with value 0. So, all induced valuations have Type
A, B or C by Table 2.7. By Lemma 5.4.14, all induced valuations are distinct, implying
that the 4095 induced valuations are precisely the 4095 valuations of HJ that have Type
A, B or C. Now, every point of O1 is incident with precisely 11 lines. By looking at the
columns “A” and “C” of Table 2.8, we see that all lines of V of Type AAA, ABB, ACC,
BBC and CCC should be induced by some line of O1. The number of such lines of S is
equal to 315·5

3
+ 315 · 1 + 315 · 5 + 3150 · 1 + 3150·9

3
= 15015. Since O1 has 4095·11

3
= 15015

lines, we see that the lines of S that are induced are precisely the lines of Type AAA,
ABB, ACC, BBC and CCC. We can now conclude that O1 and S are isomorphic.

5.5. The Automorphism Groups

5.5.1. Automorphism Group of G2(4) Near Octagon

Lemma 5.5.1. The group G2(4):2 acts faithfully on points of O1 as a group of automor-
phism of O1, where the action on the point set (i.e. the central involutions) is given by
conjugation.
Proof. Each g ∈ G = G2(4):2 determines an automorphism of O1: if x is a central
involution and g ∈ G, then xg = g−1xg is again a central involution. We will show
that this action is faithful. We have seen that the central involutions generate the group
G′ = G2(4). So the centralizer of the set of central involutions is equal to the centralizer
of G′ in G, denoted by CG(G′). Since CG(G′) is a normal subgroup of G, and since G′
is simple, we must have G′ ∩ CG(G′) = {e}, where e is the identity of G. So we have
|G′CG(G′)| = |G′||CG(G′)| ≤ |G| = 2|G′|. Which shows that either CG(G′) is trivial or
isomorphic to the cyclic group C2. When it is trivial, the action is faithful. So, say it is
not. Then we must have that G is equal to the internal direct product of G′ ∼= G2(4) and
CG(G′) ∼= C2, which is a contradiction to the fact that G is a proper semi-direct product
of G2(4) and C2.

Lemma 5.5.2. Every automorphism θ of O1 permutes the elements of the line spread S1

and thus determines an automorphism of (S1,Q1) ∼= H(4)D.
Proof. The automorphism θ permutes the quads of O1 and hence the lines of O1 that
can be obtained as intersections of two quads (these are precisely the elements of S1).

Lemma 5.5.3. Suppose θ is an automorphism of O1 fixing each line of S1. Then θ is the
identity.
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Proof. Let x be an arbitrary point of O1, L = {x, y, z} a line through x not belonging
to S1 and Q the unique quad through L (see Lemma 5.3.9). The lines of S1 contained in
Q determine a spread of Q. Since Q ∼= W (2), it is easily seen that L is the unique line
of Q meeting the lines Lx, Ly and Lz of Q (see Figure 1.1). From Lθx = Lx, Lθy = Ly and
Lθz = Lz, it then follows that xθ = x.

Proposition 5.5.4. The full automorphism group of O1 is isomorphic to G2(4):2.
Proof. From Lemma 5.5.1 we see that G2(4):2 ≤ Aut(O1). By Lemmas 5.5.2 and 5.5.3,
we have |Aut(O1)| ≤ |Aut(H(4)D)| = |G2(4):2|, which shows that there is equality.

It is possible to give another proof of Proposition 5.5.4 based on the following lemma.

Lemma 5.5.5. Let H be a subgroup of G2(4):2 isomorphic to J2:2. Then every automor-
phism θ of SH ∼= HJ extends to precisely one automorphism of G.
Proof. The action of θ on the point set of SH is given by conjugation by a suitable
element of H ∼= J2:2. This conjugation also determines an automorphism of O1. To show
that θ extends to at most one automorphism of G, we must show that every automorphism
ϕ of O1 that fixes each point of SH must be trivial. But this is directly implied by Lemma
5.4.14.

Since there are 416 Hall-Janko suboctagons (see Lemma 5.4.12), Lemma 5.5.5 implies that
|Aut(O1)| ≤ 416 · |Aut(HJ)| = 416 · |J2:2| = |G2(4):2|. Lemma 5.5.1 then again implies
that Aut(O1) ∼= G2(4):2. In fact, this reasoning also gives that the automorphism group
is transitive on the Hall-Janko suboctagons, but we already knew this in advance as all
maximal subgroups isomorphic to J2:2 are conjugate.

5.5.2. Automorphism Group of L3(4) Near Octagon

In this section we prove that the automorphism group of the L3(4) near octagon O2 is
isomorphic to the group L3(4):22. Consider the chain L3(4) < L3(4):22 < L3(4):D12 of
groups and their actions on the sets of points and lines of the projective plane PG(2, 4)
(as described in Section 5.2.2). Recall that L3(4):D12 consists of all collineations and
correlations of PG(2, 4). Let Σ denote the set of all central involutions of the groups
L3(4):22, or equivalently, of L3(4). Then every element of Σ is a nontrivial elation of
PG(2, 4). From Lemma 5.2.2 it follows that the action of the group L3(4):D12, and hence
of the group L3(4):22, on the elations via conjugation is faithful. Just as in Lemma
5.5.1, we see that this action of L3(4):22 gives us Inn(L3(4):22) ∼= L3(4):22 ≤ Aut(O2).
We will now show that the size of the automorphism group is at most 4|L3(4)|, thus
proving equality. Of course, this can be checked in a computer using SageMath, which
can easily compute the automorphism group of the collinearity graph of this near octagon
(see Lemma 1.3.2), but we prefer to give a computer free proof.

Lemma 5.5.6. Every automorphism θ of O2 permutes the elements of the line spread S2

and thus determines an automorphism of (S2,Q2) ∼= H(4, 1).
Proof. The proof is similar to that of Lemma 5.5.2.

Lemma 5.5.7. Let Q be a quad of O2 and L1, . . . , L5 the five lines of the line spread S2

which are contained in Q. If θ is an automorphism of O2 which fixes each of these lines,
then θ fixes each point of Q.
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Proof. Let x be an arbitrary point of Q, and L = {x, y, z} a line of Q through x which
is not contained in S2. Then since Q is isomorphic to W (2), L is the unique line of Q
which intersects the lines Lx, Ly, Lz ∈ S2 of Q. As Lθx = Lx, Lθy = Ly and Lθz = Lz, we
must have Lθ = L and in particular xθ = x.

Corollary 5.5.8. If θ is an automorphism of O2 which fixes every line in S2, then θ fixes
every point of O2. Consequently, the action of Aut(O2) on (S2,Q2) ∼= H(4, 1) is faithful.

As a result of Corollary 5.5.8, we can look at Aut(O2) as a subgroup of Aut(H(4, 1)) ∼=
L3(4):D12. Denote the geometry (S2,Q2) ∼= H(4, 1) by S. Note that if (x, L) is a flag of
PG(2, 4), and hence a point of S, then the non-trivial elations which have center x and
axis L form an element of the line spread S2 in the near octagon O2 constructed using
these elations. For a point x of PG(2, 4) let Cx denote the set of all (non-trivial) elations
with center x, and for a line L let CL denote the set of all (non-trivial) elations with axis
L. Then these sets correspond bijectively to the quads of O2, i.e., the lines of S. What we
have shown is that every automorphism of S which corresponds to either a collineation
or a correlation of PG(2, 4), gives rise to at most one automorphism of O2, and we have
a subgroup H ∼= Aut(O2) of this group G of all collineations and correlations of PG(2, 4),
and the latter has type L3(4):D12. We will show that there exists a subgroup H ′ of G
such that |H ′| = 3 and H ∩H ′ = {e}, thus proving |H| ≤ |G|/|H ′| ≤ 4|L3(4)| (recall that
for any two subgroups H1, H2 of a finite group we have |H1H2| = |H1||H2|/|H1 ∩H2|).

Lemma 5.5.9. Let Q be a quad of O2 and let L1, . . . , L5 be lines of the spread S2 which
are contained in Q. Let θ is an automorphism of O2 such that Lθ1 = L1, Lθ2 = L2, Lθ3 = L4,
Lθ4 = L5 and Lθ5 = L3, then θ permutes the points of L1 according to a cycle of length 3.
Proof. Since Q is isomorphic to W (2), we know that if x ∈ L1 and y ∈ L2 are collinear,
then there is a unique i ∈ {3, 4, 5} for which Li intersects the lines xy. Now for each
i ∈ {3, 4, 5}, choose the collinear points xi ∈ L1 and yi ∈ L2 for which the line Mi = xiyi
intersects the line Li. Then we must have M θ

3 = M4, M θ
4 = M5 and M θ

5 = M3. Thus, the
points x3, x4 and x5 of L are permuted according to a cycle of length 3.

Let σ be a nonidentity homology of PG(2, 4), i.e., a collineation which fixes all points on
a line L (the axis of σ) and all lines through a point x 6∈ L (the center of σ). Then σ
generates a cyclic group of order 3, which is a subgroup H ′ of G.

Lemma 5.5.10. Let σ be a homology of PG(2, 4) that has center x and axis L, and let
H ′ be the subgroup of G ∼= L3(4):D12 generated by σ. Then, we have H ∩H ′ = {e}.
Proof. Suppose θ̄ ∈ H ∩H ′ \ {e} is induced by an automorphism θ of the near octagon
O2. Let Q1 be the quad of O2 corresponding to the line L and let Q2 be the quad of O2

corresponding to a point y on L. Then Q1 ∩ Q2 is the line of S2 corresponding to the
flag (y, L) of PG(2, 4). Since θ̄ is a homology with axis L it fixes every point on L, and
therefore θ fixes every line of S2 contained in the quad Q1. So, by Lemma 5.5.7, θ fixes
every point in Q1∩Q2. Since θ̄ fixes the point x and y, it fixes the lineM = xy, and since
it’s a homology, it permutes the three lines through y other than M and L in a cycle of
length 3. This implies that θ fixes two lines of S2 contained in Q2 (the line corresponding
to (y,M) and the line corresponding to (y, L)), and permutes the remaining three lines in
a cycle of length 3. This contradicts Lemma 5.5.9 as θ fixes the line Q1∩Q2 pointwise.

We have thus proved the following.

Proposition 5.5.11. The full automorphism group of O2 is isomorphic to L3(4):22.
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5.6. Distance Regular Graphs of Soicher

In [131], Soicher constructed distance regular graphs Σ, Υ and ∆ with intersection arrays
{416, 315, 64, 1; 1, 32, 315, 416}, {56, 45, 16, 1; 1, 8, 45, 56} and {32, 27, 8, 1; 1, 4, 27, 32}, re-
spectively. It is clear from the intersection arrays, that all of these graphs have diameter
4. The graph Σ is a triple cover of the Suzuki graph (in the sense of [131]) and has
Aut(Σ) ∼= 3 ·Suz:2. Under the action of the stabilizer (which is isomorphic to G2(4):2) of
its automorphism group with respect to a vertex x, the orbits are equal to Σ0(x), Σ1(x),
Σ2(x), Σ3(x) and Σ4(x), with sizes 1, 416, 4095, 832 and 2, respectively (so in particular,
the graph Σ is distance transitive). We will show in Section 5.6.1 we can construct the
near octagon O1 using the graph Σ, and that the subgraph of Σ induced on Σ2(x) is
isomorphic to the graph defined on the points of O1 where two points are adjacent when
they are at distance 2 and have a unique common neighbor.

The graph Υ is a triple cover of the unique strongly regular graph of parameters (162,
56, 10, 24) and its automorphism group also acts distance transitively on its vertices with
the stabilizer with respect to a vertex isomorphic to L3(4):22, and suborbits of sizes 1, 56,
315, 112 and 2. In Section 5.6.2, we will construct the near octagon O1 from this graph.
The third graph ∆ is simply the second subconstituent of Υ, i.e., the graph induced on
Υ2(x) for any vertex x, and we will show that it is isomorphic to the graph obtained from
the points of O2 by making two points adjacent when they are at distance 2 from each
other and have a unique common neighbor. Soicher has recently proved that the graph
∆ is the unique distance regular graph with the given intersection array [133].

5.6.1. The First Graph

Let x be a fixed point of Σ. The local graph Σx, i.e., the subgraph induced on the vertices
set Σ1(x) of vertices adjacent to x, is isomorphic to the well-known G2(4)-graph, which is
a strongly regular graph with parameters (v, k, λ, µ) = (416, 100, 36, 20). Let G = Aut(Σ).
Then the stabilizer Gx is isomorphic to the group G2(4):2, and it is the full automorphism
group of the local graph of Σ. Recall that O1 was constructed using the central involutions
of the group G. We have computationally verified that every such involution σ (which
is a point of O1) fixes 32 points of the G2(4)-graph, which we denote by Xσ. Moreover,
the elements of Xσ determine the involution σ uniquely, as the group generated by σ is
the unique subgroup of G2(4):2 which fixes Xσ pointwise. Therefore, the 4095 points of
O1 are in bijective correspondence with 4095 such special 32-sets in the G2(4)-graph. We
also record some information about these special sets in Table 5.3 with respect to the
suborbit diagram of O1 (Figure 5.1).

σ2 ∈ O0(σ1) Xσ1 = Xσ2 σ2 ∈ O2b(σ1) |Xσ1 ∩Xσ2| = 8
σ2 ∈ O1a(σ1) Xσ1 ∩Xσ2 = ∅ σ2 ∈ O3a(σ1) Xσ1 ∩Xσ2 = ∅
σ2 ∈ O1b(σ1) |Xσ1 ∩Xσ2| = 16 σ2 ∈ O3b(σ1) |Xσ1 ∩Xσ2| = 5
σ2 ∈ O2a(σ1) Xσ1 ∩Xσ2 = ∅ σ2 ∈ O4(σ1) |Xσ1 ∩Xσ2| = 1

Table 5.3.: Fixed set intersections in the G2(4) near octagon
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In Soicher’s graph Σ we can computationally check that for every vertex y ∈ Σ2(x), the set
Σ1(x) ∩ Σ1(y) is a special 32-set of the G2(4)-graph induced on Σ1(x), i.e., there exists a
unique central involution σy of G2(4):2 which fixes this set Xy pointwise. In this manner,
we get a map y 7→ σy between the 4095 elements of Σ2(x) and the 4095 central involutions
of G2(4):2 which is bijective. Moreover, computations in the graph Σ give us the following
information for two points y1, y2 ∈ Σ2(x) with S = Σ1(y1)∩Σ1(y2), recorded in Table 5.4.

dΣ(y1, y2) |Σ1(x) ∩ S| |Σ2(x) ∩ S| |Σ3(x) ∩ S|
y2 ∈ O0(y1) 0 32 320 64
y2 ∈ O1a(y1) 4 0 0 0
y2 ∈ O1b(y1) 2 16 16 0
y2 ∈ O2a(y1) 2 0 16 16
y2 ∈ O2b(y1) 1 8 76 16
y2 ∈ O3a(y1) 3 0 0 0
y2 ∈ O3b(y1) 2 5 25 2
y2 ∈ O4(y1) 2 1 25 6

Table 5.4.: Intersection patterns in Soicher’s first graph

From Tables 5.3 and 5.4, it follows that for two vertices y1, y2 in Σ2(x), the involutions σy1
and σy2 are collinear in the near octagon O1 (which is equivalent to σ2 ∈ O1a(σ1)∪O1b(σ1))
if and only if dΣ(y1, y2) = 4 or |Σ1(x) ∩ Σ1(y1) ∩ Σ1(y2)| = 16 (and thus dΣ(y1, y2) = 2).
From the discussion so far, we have the following.

Theorem 5.6.1. Let x be a fixed vertex of Σ.

(1) Let Γ denote the graph defined on the set Σ2(x) of vertices at distance 2 from x in
Σ, by making two vertices y1, y2 adjacent if and only if dΣ(y1, y2) = 4 or |Σ1(x) ∩
Σ1(y1) ∩ Σ1(y2)| = 16. Then Γ is isomorphic to the collinearity graph of the G2(4)
near octagon O1.

(2) The subgraph of Σ induced on the vertex set Σ2(x) is isomorphic to the graph defined
on the points of the G2(4) near octagon by making two points adjacent when they are
at distance 2 and have a unique common neighbor.

5.6.2. The Second Graph

A similar analysis can be done for the second graph Υ. Its local graph is isomorphic to the
Gewirtz graph, which is the unique strongly regular graph with parameters (56, 10, 0, 2)
[31]. Again, the stabilizer at a vertex of Υ is isomorphic to L3(4):22, which is also the
automorphism group of the Gewirtz graph. For every central involution σ of L3(4):22,
there is special 8-set Xσ consisting of the points of Gewirtz graph that are left fixed by
this involution. The map σ 7→ Xσ is a bijection between the 315 vertices of the L3(4)
near octagon O2 and the 315 special 8-sets in the Gewirtz graph. Fix a vertex x In the
graph Υ. Then it can be checked computationally that for every vertex y ∈ Υ2(x), the
set Υ1(x) ∩ Υ1(y) is a special 8-set of the local graph at x. The information regarding
the special sets and intersection patterns in this case is given in Tables 5.5 and 5.6, from
which the following result follows.
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σ2 ∈ O0(σ1) Xσ1 = Xσ2 σ2 ∈ O2b(σ1) |Xσ1 ∩Xσ2 | = 2
σ2 ∈ O1a(σ1) Xσ1 ∩Xσ2 = ∅ σ2 ∈ O3a(σ1) Xσ1 ∩Xσ2 = ∅
σ2 ∈ O1b(σ1) |Xσ1 ∩Xσ2| = 4 σ2 ∈ O3b(σ1) |Xσ1 ∩Xσ2 | = 2
σ2 ∈ O2a(σ1) Xσ1 ∩Xσ2 = ∅ σ2 ∈ O4(σ1) |Xσ1 ∩Xσ2 | = 1

Table 5.5.: Fixed set intersections in L3(4) near octagon

dΥ(y1, y2) |Υ1(x) ∩ S| |Υ2(x) ∩ S| |Υ3(x) ∩ S|
y2 ∈ O0(y1) 0 8 32 16
y2 ∈ O1a(y1) 4 0 0 0
y2 ∈ O1b(y1) 2 4 4 0
y2 ∈ O2a(y1) 2 0 4 4
y2 ∈ O2b(y1) 1 2 4 4
y2 ∈ O3a(y1) 3 0 0 0
y2 ∈ O3b(y1) 2 2 4 2
y2 ∈ O4(y1) 2 1 4 3

Table 5.6.: Intersection patterns in Soicher’s second graph

Theorem 5.6.2. Let x a fixed vertex of Υ.

(1) Let Γ denote the graph defined on the set Υ2(x) of vertices at distance 2 from x in
Υ, by making two vertices y1, y2 adjacent if and only if dΥ(y1, y2) = 4 or |Υ1(x) ∩
Υ1(y1)∩Υ1(y2)| = 4. Then Γ is isomorphic to the collinearity graph of the L3(4) near
octagon O2.

(2) The subgraph of Υ induced on the vertex set Υ2(x) (which is the third distance regular
graph of Soicher, ∆) is isomorphic to the graph defined on the points of the L3(4)
near octagon by making two points adjacent when they are at distance 2 and have a
unique common neighbor.
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6. Suzuki Tower of Near Polygons

6.1. Introduction

The Suzuki tower1 is the sequence of five finite simple groups L3(2) < U3(3) < J2 <
G2(4) < Suz where each group, except the last one, is a maximal subgroup of the next
group in the sequence. The five groups in the Suzuki tower correspond to five vertex-
transitive graphs Γ0, Γ1, Γ2, Γ3, Γ4 where the automorphism groups of the Γi’s are L3(2):2,
U3(3):2, J2:2, G2(4):2 and Suz:2, respectively [134], [142, Section 5.6]. The graph Γ0 is
the complement of the incidence graph of Fano plane, i.e., the quartic vertex transitive
co-Heawood graph, and the rest of them are strongly regular graphs having the following
parameters (v, k, λ, µ):

• Γ1: (36, 14, 4, 6), the U3(3)-graph;

• Γ2: (100, 36, 14, 12), the Hall-Janko graph;

• Γ3: (416, 100, 36, 20), the G2(4)-graph;

• Γ4: (1782, 416, 100, 96), the Suzuki graph.

With the near octagon O1 that we constructed in Chapter 5, we now also have a “tower”
of near polygons

H(2, 1) ⊂ H(2)D ⊂ HJ ⊂ O1,

with automorphism groups L3(2):2,U3(3):2, J2:2 and G2(4):2, respectively. Thus we can
call this the “Suzuki tower of near polygons”. Moreover, we will see in this chapter that
the five graphs Γ0, . . . , Γ4 can be constructed in a uniform fashion using these four near
octagons, as follows: Let S0, S1, S2, S3 be the Suzuki tower near polygons and Γ0, Γ1, Γ2,
Γ3, Γ4 the graphs of the Suzuki tower. We define S−1 to be the partial linear space on
nine points and four lines obtained from the (3 × 3)-grid by removing two disjoint lines
(and keeping the points incident with these two lines)

Theorem 6.1.1. The complement of Γi with i ∈ {0, 1, 2, 3} is isomorphic to the graph
whose vertices are the subgeometries of Si isomorphic to Si−1, where two distinct subge-
ometries are adjacent whenever they intersect in the perp of a point.

For i ∈ {0, 1, 2} the statement of Theorem 6.1.1 was already known in the literature
(thought without any mention of the Suzuki tower of near polygons), but for i = 3 our
result is new. While we do not give a construction of Γ4 in a similar fashion, we can
translate the original construction by Suzuki [134] in near polygon language as follows.

Theorem 6.1.2. Define a graph as follows:
1a name coined by Tits, as it has been mentioned in [103]
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• take the elements of {∞}, A and B as vertices, where ∞ is just a symbol, A is the
set of all Hall-Janko suboctagons of the near octagon O1 and B is the line spread S1

of O1;

• join ∞ to all vertices in A, join two distinct vertices of A if the corresponding
suboctagons intersect in a subhexagon isomorphic to H(2)D, join a vertex of A to
all the vertices in B that correspond to a line intersecting the suboctagon, join two
vertices in B if the corresponding lines are at distance 2 from each other in the near
octagon.

Then this graph is isomorphic to the Suzuki graph.

We will prove Theorems 6.1.1 and 6.1.2 in Section 6.2.
Remark. (1) We note that there are various other geometries associated with the Suzuki

tower that have been studied before, see for example [114], [130] and [103].

(2) We do not know if there is a near polygon which corresponds to Suz, but certainly the
involution geometry of Suz studied in the literature [16, 143] is not a near polygon;
we can directly see from the suborbit diagram [16, Fig. 1] that there are point-line
pairs (p, L) in this geometry where every point of the line L is at the same distance
4 from p. However, this involution geometry is a near 9-gon in the sense of [34, Sec.
6.4]. Indeed, it is clear from the suborbit diagram [16, Fig. 1] that the geometry has
diameter 4 and that for every point-line pair (p, L) with d(p, L) < 4, there is a unique
point on L nearest to p. Similarly, one can verify that the involution geometry of the
Conway group Co1 [17, Fig. 1] which contains Suz is a near 11-gon. The techniques
involving valuations of near polygons used in this thesis do not work for near (2d+1)-
gons, and thus we are unable to give similar characterizations of these involution
geometries. We do not know if there are more near polygons hiding in larger groups
that can extend the Suzuki tower of near polygons (see [130] for a possible extension
of the Suzuki tower of groups).

For all i ∈ {1, 2, 3, 4} the graph Γi contains Γi−1 as a local graph, i.e., the graph induced
on the neighborhood of any vertex of Γi is isomorphic to Γi−1. In fact, it has been proved
in [117] that for i ∈ {2, 3} the graph Γi is the unique connected graph which is locally Γi−1,
while there exist two connected graphs which are locally Γ3, the graph Γ4 and the graph
3Γ4 constructed by Soicher [131] which is a 3-fold antipodal cover of the Suzuki graph
Γ4. In [36], it was proved that there are up to isomorphism three connected graphs that
are locally Γ0, one of which is the U3(3)-graph Γ1. Motivated by these characterization of
the graphs in the Suzuki tower, we give some characterizations of the geometries in the
Suzuki tower of near polygons by proving the following three theorems.

Theorem 6.1.3. The dual split Cayley hexagon of order 2 is the unique near hexagon
of order (2, 2) that contains the generalized hexagon H(2, 1) as an isometrically embedded
subgeometry.

Theorem 6.1.4. The Hall-Janko near octagon is the unique near octagon of order (2, 4)
that contains the dual split Cayley hexagon of order (2, 2) as an isometrically embedded
subgeometry.

Theorem 6.1.5. The G2(4) near octagon is the unique near octagon of order (2, 10) that
contains the Hall-Janko near octagon as an isometrically embedded subgeometry.
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The proof of Theorem 6.1.3 already follows from the results of Section 1.3.2. It is folklore
that H(2) does not containing any subhexagons isomorphic to H(2, 1).2 Therefore, it
suffices to show that L3 × L3 × L3 does not contain any subgeometry isomorphic to
H(2, 1). So, let H1

∼= H(2, 1) be a subgeometry of H2
∼= L3 × L3 × L3. We know that

H1 has 21 points and H2 has 27 points. Each point of H1 is collinear with exactly two
points of H2 \H1. Since |H2 \H1| = 6, there must be a point in H2 \H1 collinear with at
least (21 · 2)/6 = 7 points of H1. This contradicts the fact that H2 has order (2, 2), and
thus we have proved Theorem 6.1.3. We will prove Theorems 6.1.4 and 6.1.5 in Section
6.3 using the theory of valuations described in Chapter 2.

6.2. Constructing the Graphs

We first review the original construction of the Suzuki Tower graphs [134] (see also [117]).
The graph Γ0 is simply the complement of the incidence graph of the Fano plane PG(2, 2),
which clearly has automorphism group L3(2):2. Let ∆ = Γi−1, Γ = Γi and H = Aut(∆)
for some i ∈ {1, 2, 3, 4}. The graph Γ is then constructed from the graph ∆ as follows.

Let S be the conjugacy class of 2-subgroups (involutions) of H of type 2A (in ATLAS
notation) if i ∈ {1, 2, 3}. In the remaining case, i = 4, let S be the conjugacy class
of 22-subgroups of H generated by 2A-involutions x and y which satisfy the condition
[H : NH(〈x, y〉)] = 1365. Let ∞ be an extra symbol, which is not contained in S or the
set of vertices V (∆) of the graph ∆. Then the vertex set of Γ is V (Γ) = {∞}∪V (∆)∪S,
and adjacencies are defined as:

(a) the vertex ∞ is made adjacent to all the elements of V (∆);

(b) two vertices in V (∆) are adjacent if they are adjacent as vertices of ∆;

(c) a vertex x ∈ S is adjacent to a vertex v ∈ V (∆) if a non trivial element of the
subgroup corresponding to x fixes v;

(d) two vertices x, y in S are adjacent if x, y considered as subgroups of H do not
commute but there exists a z ∈ S that commutes with both of them.

While the construction seems “asymmetric”, the group Aut(Γ) acts transitively on the
vertices. Also, for each i ∈ {1, 2, 3, 4}, the group Gi−1 = Aut(Γi−1) is the stabilizer of the
group Gi = Aut(Γi) at a vertex. Moreover, Gi−1 is a maximal subgroup of Gi of index
|Γi|. We have G0

∼= L3(2):2, G1
∼= G2(2), G2

∼= J2:2, G3
∼= G2(4):2 and G4

∼= Suz:2.

In the construction of the near octagon O1 in Chapter 5 we saw that the 22-subgroups of
G = G2(4):2 which are generated by 2A involutions x, y satisfying [G : NG(〈x, y〉)] = 1365,
correspond (bijectively) to the lines of O1 which are contained in the line spread S1.
Moreover, in the G2(4) graph we can check that two vertices are adjacent if and only if
the corresponding J2:2 subgroups (stabilizers of the vertices) intersect in aG2(2) subgroup.
Also recall the correspondence between J2 subgroups of G2(4) and the J2:2 subgroups of
G2(4):2 described in Section 5.4. Therefore, the G2(4)-graph is the graph whose vertices
are the maximal subgroup of G2(4) isomorphic to J2 where two Hall-Janko subgroups are
adjacent whenever they intersect in a subgroup isomorphic to G2(2)′ ∼= U3(3).

2A proof of this can be given by checking that if H(1, 2) is contained in H(2)D then one can get an
intersecting set in the sense of [122] of size 1, which contradicts [122, Corollary 1.2].
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Lemma 6.2.1. The G2(4)-graph Γ3 is isomorphic to the graph Γ′ whose vertices are the
Hall-Janko suboctagons of O1, where two Hall-Janko suboctagons are adjacent whenever
they intersect in a subgeometry isomorphic to H(2)D.

Proof. It is well-known that the Hall-Janko near octagon HJ has 100 subhexagons iso-
morphic to H(2)D (see for example [30]), and that these are in bijective correspondence
with the 100 maximal subgroups of J2 isomorphic to G2(2)′ (just like the J2 subgroups
of G2(4) correspond to the Hall-Janko near octagons of the G2(4) near octagon). The
points of a subhexagon are the central involutions contained in the corresponding maximal
subgroup. Moreover, these central involutions generate the maximal subgroup.

For every subgroup H of G2(4), denote by ΣH the set of central involutions which are
contained in H. If H ∼= J2, then the geometry SH induced on the subspace ΣH of O1 is
isomorphic to HJ. By Lemma 5.4.12, the map H 7→ SH defines a bijection between the
416 maximal subgroups of G2(4) isomorphic to J2 and the 416 Hall-Janko suboctagons
of O1. We show that this map defines an isomorphism between the G2(4)-graph and the
graph Γ′.

Take two mutually distinct subgroups H1 and H2 of G2(4) isomorphic to J2. If H1 and
H2 are two adjacent vertices of the G2(4)-graph, then the subgeometries SH1 and SH2

intersect in a subgeometry whose point set is ΣH1 ∩ΣH2 = ΣH1∩H2 , i.e. in a subgeometry
isomorphic to H(2)D as H1∩H2

∼= G2(2)′. Conversely, suppose that SH1 and SH2 intersect
in a subgeometry isomorphic to H(2)D. Then ΣH1 ∩ ΣH2 contains all central involutions
that are contained in a certain G2(2)′-subgroup Ki of Hi

∼= J2, i = 1, 2. Since all these
central involutions generate Ki, the groups K1 and K2 are equal, say to K. As K is a
maximal subgroup of both H1 and H2, we have K = H1∩H2, i.e. H1 and H2 are adjacent
in the G2(4)-graph.

Therefore, we see that the G2(4) graph has a symmetric construction using the Hall-Janko
suboctagons of the new near octagon O1. It can be easily checked in the computer model
that when two such suboctagons do not intersect in a subgeometry isomorphic to H(2)D,
they intersect in a point pencil (set of point at distance at most 1 from a fixed point) of
suboctagons. And thus we obtain Theorem 6.1.1 for the case of i = 3. The remaining
cases of i ∈ {0, 1, 2} also follow from similar reasoning, but those results are “well-known”
and we skip the details here. Turning our focus to the Suzuki graph, we see that as a
consequence of Lemma 6.2.1 the construction given in Theorem 6.1.2 is the geometrical
translation of the original construction given by Suzuki. Note that two lines of the lines
spread S1 are at distance 1 from each other if and only if the corresponding 22-subgroups
of G2(4):2 commute. The only thing left to check is the adjacency between elements of
V (∆) and S, where ∆ is the G2(4)-graph and S is the line spread S1 of O1. From Lemma
5.5.5 we know that every automorphism of O1 which stabilizes a Hall-Janko suboctagon
H must be a conjugation by an element of the J2:2-subgroup corresponding to H. From
this it follows that if x ∈ S and v ∈ V (∆), then a non-trivial element of the subgroup
corresponding to x fixes v if and only if the spread line corresponding to x intersects the
Hall-Janko suboctagon corresponding to v.
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6.3. Characterization of the Suzuki Tower

6.3.1. Hall-Janko Near Octagon

For this section let S ′ be a near octagon of order (2, 4) with a generalized hexagon S
isomorphic to H(2)D isometrically embedded in it. The valuation geometry V of S is
described in Tables 2.3 and 2.4. From Table 2.4, it can be seen that the set of valuations
of type A and B form a subspace of V , and hence we can define a full subgeometry VA,B
of V induced by these valuations. In this section we will show that S ′ is isomorphic to
VA,B. Since HJ is a near octagon of order (2, 4) with H(2)D isometrically embedded in it,
this will prove Theorem 6.1.4.

Lemma 6.3.1. (1) Each point of S ′ is at distance at most 2 from S.

(2) Points at distance 1 from S must be of type A, B or C.

(3) Points at distance 2 from S must be of type C or D.
Proof. Since the maximum value of a valuation of S is at least 2 (see Table 2.3) and the
diameter of S ′ is 4, by Lemma 2.2.4, the distance of any point of S ′ to S is at most 2.
This proves (1). Again by Lemma 2.2.4, if a point x of S ′ lies at distance 2 from S, then
fx has maximum value at most 2, implying that x can only be of type C or D.

Now, let x be a point of type D at distance 1 from S. The five points with fx-value 0
in S must be collinear with x and necessarily be of type A (all points in S are of type
A). By Theorem 2.3.2 and Table 2.4 this gives rise to five distinct V-lines of type ADD
through a valuation of type D in the valuation geometry V of S, which contradicts the
corresponding entry in Table 2.4.

Lemma 6.3.2. Each point of S ′ at distance 1 from S must be of type A or B.
Proof. Let x be a point of type C at distance 1 from S. We see from Table 2.3 that there
is a unique point x′ in S collinear with x. Again from Table 2.3 we see that there are 22
points with fx-value 1 in S, which must necessarily be at distance 2 from x. Six of these
points are neighbors of x′ in S and these are the only ones that have a common neighbor
with x that lies inside S (namely x′). The remaining 16 points give rise to neighbors of x
that lie outside S. Since the order of S ′ is (2, 4) and x′ lies in S there are only 9 neighbors
of x that lie outside S. Therefore, at least one such neighbor y must be collinear with
more than one point in S. By Lemma 6.3.1 the point y must be of type A, B or C and
for each of these possibilities we have |Ofy | = 1. This is a contradiction.

Lemma 6.3.3. If x, y are two points of S ′, not contained in S, of type A and B respec-
tively, then x and y cannot be collinear.
Proof. Let x, y be such points and suppose they are collinear. By Lemma 6.3.1 they
must be at distance 1 from S. The three valuations induced by the three points on the
line xy must be distinct (see Theorem 2.3.2) and therefore, the line xy gives rise to a
V-line of S ∼= H(2)D. From Table 2.4 it follows that the line xy is of type ABB. Let
y′ be the unique neighbor of y in S. Then by a similar reasoning the line yy′ is also of
type ABB. But, in the valuation geometry there is a unique line of type ABB through
a valuation of type B. Therefore, the points x and y′ induce the same type A valuation,
which shows that Ofx = {y′} and hence, x and y′ are collinear. This contradicts the fact
that S ′ is a near polygon.
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Lemma 6.3.4. If x is a point of type B in S ′, then it has a unique neighbor in S and all
the other neighbors of x must induce distinct type B valuations of S.
Proof. Let x be such a point, necessarily at distance 1 from S by Lemma 6.3.1. By
Lemma 2.2.4 and Table 2.3, it has a unique neighbor, say x′, in S. There are 14 points
with fx-value 1 in S and 6 of them are the neighbors of x′. The remaining 8 must give
rise to neighbors of x lying outside S. Let y be such a neighbor. By Lemmas 6.3.2 and
6.3.3, y must be of type B and then by Lemma 2.2.4 it cannot lie on the line xx′ (as then
y, which is a type B valuation, will have 2 neighbors in S). Therefore, we get 8 type B
neighbors of x each corresponding to a distinct valuation of S (since the set Of is distinct
for each such valuation). The third point on the line xx′ must also be of type B and
induce a valuation distinct from all other type B neighbors of x. Since the order of S ′ is
(2, 4), we have accounted for all neighbors of x.

The following is an immediate consequence of Lemma 6.3.4.

Corollary 6.3.5. There are no lines in S ′ of type BCC or BDD.

Lemma 6.3.6. There is no point in S ′ of type C or D.
Proof. Let x be such a point, necessarily at distance 2 from S (see Lemmas 6.3.1 and
6.3.2). We treat the two cases separately.
Case 1 : Let x be of type D. By Table 2.3, |S ∩ Γ2(x)| = 5. Every line through x that
contains a point in Γ1(S) must be of type ADD by Table 2.6, Lemma 6.3.2 and Corollary
6.3.5. Since each of these lines has exactly one point which lies in Γ1(S), and since that
point (of type A) has a unique neighbor in S, it must be the case that all five lines through
x are of type ADD. In fact, this also shows that these five lines correspond to five distinct
lines in the valuation geometry. But we know from Table 2.4 that there are only three
lines of type ADD through a point of type D in the valuation geometry, a contradiction.
Case 2 : Let x be of type C. Since |Ofx| = 1, we have Ofx = Γ2(x) ∩ S = {x′} for some
x′ ∈ S. Since there are no points of type D (by Case 1 ) and no lines of type BCC (by
Corollary 6.3.5), all lines through x must be of type ACC or CCC by Table 2.4. Each
of the type A neighbors of x induces the valuation fx′ of S. Therefore, besides the 6
neighbors of x′ in S, every point of S that has fx-value 1 must be at distance 2 from a
type C neighbor of x. There are 16 = 22 − 6 points with fx-value 1 in S that are not
neighbor of x′. Since there are at most 9 type C neighbors of x, there must be a type C
neighbor y of x which is at distance 2 from two distinct points of S. This contradicts the
fact that |Ofy | = 1 (y is a type C point).

By Lemmas 6.3.1 and 6.3.6, we have:

Corollary 6.3.7. Every point x of S ′ not contained in S has type A or B, and lies at
distance 1 from a unique point of S (which we will refer to as the projection of x in S).

Lemma 6.3.8. Let Q be a quad of S ′ that intersects S nontrivially. Then Q∩S is either
a singleton or a line.
Proof. Say Q ∩ S is not a singleton. Since Q ∩ S is a subspace of S ′, it suffices to show
that there are no two non-collinear points in Q ∩ S. Let x, y be two non-collinear points
in Q ∩ S. Since Q is a non-degenerate generalized quadrangle, there are at least two
common neighbors of x and y in Q. Since points at distance 2 in S ∼= H(2)D have a
unique common neighbor and Q ∩ S is a convex subspace, at least one of these common
neighbors must lie outside S. This gives rise to a point at distance 1 from S with two
neighbors (x and y) in S, which contradicts Corollary 6.3.7.
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Lemma 6.3.9. If x is a point of type A in S ′ which is not contained in S, then there
exists a unique W (2)-quad Q containing x and its projection x′ in S. For this quad Q we
have:

(a) Q intersects S in a line M .

(b) Let M1 and M2 be the two lines through x′ in S other than M . Then the two lines
through x that are not contained in Q can be labelled L1 and L2 such that L1,M1 are
parallel and at distance 1 from each other, and L2,M2 are parallel and at distance 1
from each other.

Proof. Let x be a point of type A outside S and let x′ be the unique point in S collinear
with x. We have fx = fx′ . Each of the four lines through x which lie outside S are of type
AAA by Lemmas 6.3.3 and 6.3.6. From Table 2.4 we see that there are only three distinct
lines of type AAA through a valuation of type A in the valuation geometry. Therefore,
there exists two lines K1, K2 through x which lie in Γ1(S) and induce the same set of
valuations on S. Let {f1, f2, f3} be this set with f1 = fx = fx′ . Since all three lines
through x′ which lie inside S correspond to distinct lines of type AAA in the valuation
geometry, at least one of them, say M , must induce the set {f1, f2, f3} of valuations.

Let y 6= x′ be a point on M . Then y is collinear with a point on K1 and a point on
K2 both of which induce the valuation equal to fy. Therefore, x, y are two points at
distance 2 in a near polygon with at least three common neighbors. From Theorem 1.3.8,
it follows that x and y lie in a unique quad Q. By the classification of quads of order (2, t)
and Lemma 1.3.13, Q must be isomorphic to W (2), the unique generalized quadrangle of
order (2, 2). From Lemma 6.3.8 it follows that Q ∩ S = M and hence, for each point on
M , the two lines through it going out of S are contained in Q. Hence none of the points
on M can be contained in a W (2)-quad other than Q.

Now let L be a line through x not contained in Q. L necessarily induces a set of valuations
other then {f1, f2, f3}. There are only two other possibilities and both of them are induced
by lines through x′ contained in S, but not in Q. Therefore there must be a line L′ through
x′ inducing the same set of valuations as L. The correspondence L 7→ L′ between the set
of lines through x not contained in Q and the set of lines through x′ in S distinct from
M is a bijection as otherwise there would exist another W (2)-quad through the line xx′
but we have already proved that there is a unique such quad.

Lemma 6.3.10. There is no point in S ′ of type A outside S.
Proof. Let x be a point of type A outside S. By Lemma 6.3.9 it lies in a unique W (2)-
quad Q which intersects S in a line L. By Lemma 6.3.3 and Corollary 6.3.7, all points of
Q \ L have type A. Let x′ be the projection of x in S and y′ a neighbor of x′ in S lying
on a line through x′ other than L. By Lemma 6.3.9, there exists a unique neighbor y of
y′ outside S and collinear with x. Again by Lemma 6.3.3 and Corollary 6.3.7, the point
y has type A. So, by Lemma 6.3.9, there exists a unique W (2)-quad S containing y and
y′. The W (2)-quads Q and S are disjoint.

Suppose p is a neighbor of x′ contained in Q \ L. As p has type A, there exists by
Lemma 6.3.9 a unique line through p disjoint from S that is parallel and at distance 1
from the line x′y′, implying that there is a common neighbor of p and y′ in S \ S. This
implies that we can label the two lines of Q through x′ distinct from L = Q∩S by T1 and
T2 and the two lines of S through y′ distinct from S ∩ S by U1 and U2 such that T1, U1
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are parallel and at distance 1 from each other, and T2, U2 are parallel and at distance 1
from each other.

Now, consider a point z in S which is not collinear with y′. If z is at distance 1 from Q
(necessarily from a point of type A of Q\L), then by Lemma 6.3.9 its projection z′ ∈ S∩S
is collinear with a point on the line L in S, contradicting the fact that S is a generalized
hexagon. So z (as well as every point of S non-collinear with y′) must be at distance at
least 2 from Q. The two lines of S through y′ distinct from S ∩ S are parallel and at
distance 1 from a line of Q. So, taking the projection of z on these two lines, we see that
there are two points in Q at distance 2 from z. By Theorem 2.2.2, the point z induces a
classical or an ovoidal valuation of Q. Since there are two points in Q at distance 2 from
z, the point z must induce an ovoidal valuation of Q. Since there are five points in an
ovoid in Q (∼= W (2)), each of the five lines through z must contain a (necessarily unique)
point at distance 1 from Q. Thus the projection of z on S, z′, must be collinear with
a point in Q. Now, all the lines through z′ are either in S or in S. Since S and Q are
disjoint and S is a generalized hexagon, we have a contradiction.

Therefore, S ′ has the following description:

• each point of S ′ is at distance at most 1 from S;

• each point of S ′ that lies in S induces a valuation of type A, and

• each point of S ′ that does not lie in S induces a valuation of type B.

Obviously, distinct points of S ′ induce distinct type A valuations since their zero sets are
distinct. To prove that S ′ is isomorphic to VA,B, we first show that no two points in S ′
can induce the same type B valuation of S, which will give us a bijection between the
point sets of these geometries.

Lemma 6.3.11. If g1 and g2 are two distinct valuations of type B collinear to each other in
the valuation geometry of S, then we have |{x ∈ S ′\S | fx = g1}| = |{x ∈ S ′\S | fx = g2}|
Proof. Let g1, g2 be two such valuations of type B. Say a point y in S ′ induces the
valuation g1 of S. If g1 and g2 lie on V-line of type ABB, then the third point on the line
joining y and the unique neighbor of y that lies in S induces the valuation g2, giving us a
bijection between {x ∈ S ′\S | fx = g1} and {x ∈ S ′\S | fx = g2}. So, say g1 and g2 lie on
V-line of type BBB. Then by Lemma 6.3.4 we know that each of the four lines through
y which do not intersect S must induce distinct V-lines of type BBB. But we know from
Table 2.4 that there are exactly four such V-lines containing g1, and hence g2 is contained
in exactly one of them. Therefore, there must be precisely one neighbor of y in S ′ \ S
which induces the valuation g2. This gives a bijection between {x ∈ S ′ \ S | fx = g1} and
{x ∈ S ′ \ S | fx = g2}.

Lemma 6.3.12. The subgeometry of V defined on the type B valuations by the lines of
type ABB and BBB is connected.

Proof. This is easily checked via computations in the computer model of the valuation
geometry of H(2)D obtained using the code given in Chapter 3.

Corollary 6.3.13. For each type B valuation f of S, there exists exactly one point x ∈ S ′
with fx = f .
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Proof. Since each point of S is collinear with precisely four points of S ′ \ S, and each
point of S ′ \ S has a unique neighbor in S, we have |S ′ \ S| = 4|S| = 252. By Lemmas
6.3.11 and 6.3.12 we know that for every pair of type B valuations there exist equally
many points in S ′ which induce those valuations. But from Table 2.3 we can see that
there are exactly 252 valuations of type B. Therefore each type B valuation is induced
exactly once.

Now we can prove that S ′ is isomorphic to VA,B as follows. Map every point x of S ′ to the
valuation of type T ∈ {A,B} that it induces. Since no two points of S ′ induce the same
valuation (see Corollary 6.3.13), for every line L = {x, y, z} of S ′ the triple {fx, fy, fz} is
a V-line. Map every line of S ′ to this corresponding line of VA,B. Since S ′ and VA,B have
the same number of points and the same order (2, 4), the above maps between the point
and line sets of S ′ and VA,B are bijections and it defines an isomorphism between the two
geometries by Theorem 2.3.2. Thus, every near polygon of order (2, 4) that contains an
isometrically embedded generalized hexagon S isomorphic to H(2)D must be isomorphic
to VA,B, which proves Theorem 6.1.4.

6.3.2. G2(4) Near Octagon

For this section let S ′ be a near octagon with three points on each line containing a
suboctagon S isomorphic to HJ isometrically embedded in it. The valuation geometry V
of S ∼= HJ is given in Tables 2.7 and 2.8. The main purpose of this section is to show that if
S ′ has order (2, 10), then S is isomorphic to the G2(4) near octagon constructed in Chapter
5. We use the same approach as in Section 6.3.1 of showing that if S ′ has order (2, 10),
then it consists of points of type A, B or C and lines of type AAA,ABB,ACC,BBC or
CCC, with each type occurring exactly once, which proves that up-to isomorphism there
is at most one near octagon of order (2, 10) containing HJ as an isometrically embedded
subgeometry. Since in Chapter 5, we showed that HJ is indeed an isometrically embedded
subgeometry of the G2(4) near octagon (see Lemma 5.4.9), this will prove the result. First
we derive some general results that are true for any near octagon S ′ with three points on
each line that contains S as a full isometrically embedded subgeometry and later restrict
ourselves to the case when S ′ has order (2, 10). The following four lemmas are proved
using the computer model of the valuation geometry of HJ constructed using the methods
of Chapter 3.

Lemma 6.3.14. Let f be a valuation of type C and let g 6= f and h 6= f be valuations of
type B or C lying on distinct V-lines through f . Then g and h are non-collinear.

Lemma 6.3.15. Let f be a valuation of type B and let x ∈ S be the unique point in Of .
Then the map {f, g, h} 7→ Of ∪ Og ∪ Oh is a bijection between the set of five V-lines of
type BBB through f and the set of five lines of H through x.

Lemma 6.3.16. Let f be a valuation of type C. Then there is a unique V-line {f, g, h}
of type CCC through f such that Of ∪ Og ∪ Oh is a line of HJ. For every other V-
line {f, g′, h′} of type CCC through f , the set Of ∪ Og′ ∪ Oh′ is a set of three pairwise
non-collinear points.

A V-line {f, g, h} of type CCC will be called special if Of ∪Og∪Oh is a line of HJ. If that
is not the case, then {f, g, h} will be called an ordinary V-line. This concept of special
and ordinary is then extended to the lines of S ′ that induce V-lines of type CCC.
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Lemma 6.3.17. The subgeometry of V defined on the type C valuations by the lines of
type ACC and the ordinary lines of type CCC is connected.

Remark. Lemmas 6.3.14 and 6.3.16 could alternatively be verified by a geometric reasoning
inside the G2(4) near octagon, keeping in mind the construction of this near octagon using
the valuation geometry of HJ (see Proposition 5.4.15).

Lemma 6.3.18. Every point of S ′ is at distance at most 2 from S. Points of S are of
type A, points at distance 1 from S are of type B or C and those at distance 2 are of type
D or E.
Proof. Since S is isometrically embedded in S ′, all points of S induce type A valuations.
From Lemma 2.2.4 and the columnMf of Table 2.7 we see that the points in Γ1(S) cannot
be of type A, but the points in Γ2(S) must be of type D or E. If x ∈ Γ1(S), then there
exists a line through x that intersects S, which must necessarily be of type ABB or ACC
by Table 2.8, implying that x has type B or C.

Corollary 6.3.19. Every point of S ′ at distance 1 from S is collinear with a unique point
of S.
Proof. Such points are of type B or C and valuations of type B and C have exactly one
point of value 0.

Lemma 6.3.20. There are no points of type E in S ′.
Proof. Let x be a type E point of S ′. By Lemma 6.3.18, x must be at distance 2 from
S. Let y be a neighbor of x which lies at distance 1 from S. Then x has type B or C by
Lemma 6.3.18. Since the valuations fx and fy are not equal, the line xy gives rise to a
V-line in the valuation geometry of HJ (see Theorem 2.3.2). But, by Table 2.8 there are
no V-lines with both type E and type T points on it, for T ∈ {B,C}.

Let x be a point of S ′ at distance 1 from S which by Lemma 6.3.18 is of type B or C.
We will call the unique point of S collinear with x (see Corollary 6.3.19) the projection
of x, and denote it by π(x). From now onward we implicitly use the fact that points at
distance 1 from S are of type B or C. For a line L = {x, y, z} contained in Γ1(S) we
define the projection π(L) of L to be the set {π(x), π(y), π(x)} of points of S. Since S ′
is a near polygon, π(L) and L have the same size for every line L in Γ1(S). But, this
projection may or may not be a line of S.

Lemma 6.3.21. Let x be a type B point of S ′ and let y be a point on a line through x
which does not intersect S. Then y is at distance 1 from S and the projections π(x) and
π(y) are collinear.
Proof. The point y must be of type B or C since there are no V-lines containing both
type B and type T points for T ∈ {D,E} (see Table 2.8) and hence at distance 1 from
S by Lemma 6.3.18. The projections π(x) and π(y) have fx-values 0 and 1, respectively.
Since fx is of type B, there are exactly ten points of S that have fx-value 1 (see Table
2.7). Clearly, every point in S at distance 1 from π(x) has fx-value 1. Since S has order
(2, 4), there are precisely ten such points and hence π(y) must be one of them.

Corollary 6.3.22. If x is a point of type B in S ′, then every line through x that does not
intersect S is parallel to and at distance 1 from a unique line of S.

Lemma 6.3.23. Every type B point x of S ′ is incident with a line of type BBC.
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Proof. Let x be a point of type B. Then every point of S at distance 1 from π(x) has
fx-value 1. Since Ofx = {π(x)} every point of S at distance 2 from π(x) should have
fx-value 2, and since S is a regular near octagon with parameters (2, 4; 0, 3), there are
80 such points. By Table 2.7 there are 112 points of S with fx-value 2. Let y be one of
the other 112 − 80 = 32 points with fx-value 2 at distance at least 3 from π(x). Since
fx(y) = 2, we have d(x, y) = 3. Let x, u, v, y be a path of length 3 connecting x and y.
By Lemmas 6.3.18 and 6.3.21, the point u has type A, B or C. We will show that u is of
type C, hence proving that the line xu is of type BBC.

If u is of type A, then u = π(x), which would be in contradiction with d(π(x), y) > 2.
Suppose u is of type B, and hence at distance 1 from S. From Corollary 6.3.22 we see
that π(u) and π(x) are collinear (or equal). We cannot have v = π(u) as that would imply
that d(π(x), y) ≤ 2. Therefore, v lies outside S and y must be equal to π(v). Again by
Corollary 6.3.22 y = π(v) and π(u) must be collinear (or equal), which contradicts the
fact that d(π(x), y) > 2. So, u is of type C.

Corollary 6.3.24. There exist type C points in S ′.

Proof. As there exist points at distance 1 from S, there exist points of type B or C. The
existence of type B points implies the existence of type C points by Lemma 6.3.23.

Lemma 6.3.25. Let x be a point of S ′ of type C and let L1, L2 be two distinct lines of
type CCC through x. Then the V-lines corresponding to L1 and L2 must be distinct.

Proof. Let L1 = {x, y, z} and L2 = {x, y′, z′}. Assume that they correspond to the same
V-line so that fy = fy′ and fz = fz′ . Let u := π(z) = π(z′). Since xzuz′ is a quadrangle,
the point y must be collinear with the third point on the line uz′, call it v. Therefore,
the valuations fv and fy = fy′ are collinear in V . The collinearity of fv and fy′ in V
contradicts Lemma 6.3.14 by taking f = fz′ , g = fy′ and h = fv.

On the valuations of type C we can define a subgeometry of V induced by the lines of
type ACC and the ordinary lines of type CCC. Let this subgeometry be denoted by
VC and its collinearity graph by Γ1. Similarly, we can define a subgeometry S ′C of S ′ by
taking the points of type C and the lines that correspond to lines of VC . Let Γ2 be the
collinearity graph of S ′C . Since type C points exist in S ′, the graph Γ2 is nonempty.

Lemma 6.3.26. The graph Γ2 is a cover of the graph Γ1 by the map x 7→ fx.

Proof. Let x be a point of type C in S ′. There are 16 points of fx-value 1 that are not
collinear with π(x) (see Table 2.7). Denote this set of 16 points by U . If u ∈ U , then
d(x, u) = 2. Denote by v a common neighbor of x and u. Since v 6= π(x), v 6∈ S and
u = π(v). Since u 6= π(x), the point v cannot be contained on the line xπ(x), and so xv
is a line disjoint from S. Since π(x) and π(v) = u are not collinear, Lemma 6.3.21 implies
that v has type C and hence that xv is a (necessarily ordinary) line of type CCC.

By Lemmas 6.3.16, 6.3.25 and Table 2.8 there are at most 8 ordinary lines of type CCC
through x, each of which determines two points of the set U . Since |U | = 16, it follows
that there are precisely 8 ordinary lines of type CCC through x and they correspond
bijectively to the 8 ordinary V-lines of type CCC through fx. This proves that the map
x 7→ fx is a local isomorphism between Γ2 and Γ1. The fact that this map is surjective
now follows from the connectedness of Γ1, see Lemma 6.3.17.
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Corollary 6.3.27. If Γ2 is an i-cover of Γ1 for some i ≥ 1, then each valuation of type
C is induced by precisely i type C points of S ′. As a consequence, through each point of
S, there are precisely 5i lines of type ACC.
Proof. By Table 2.8 there are precisely 5 V-lines of type ACC through a given valuation
of type A. Since each type C valuation occurs exactly i times, we have 5i type ACC lines
in S ′ through a given point of S.

Remark. All results in this section so far are valid for a general near octagon of order
(2, t) that contains an isometrically embedded sub near octagon isomorphic to HJ. In the
following lemma, we need the fact that S ′ has order (2, 10).

Lemma 6.3.28. If S ′ is of order (2, 10), then each valuation of type T ∈ {B,C} is
induced exactly once by a point of S ′.
Proof. Let S ′ be of order (2, 10) and let x be an arbitrary point of S. Then there are
exactly 11 − 5 = 6 lines through x that are not contained in S, each of which has type
ACC or ABB. Since type C points exist by Corollary 6.3.24, it follows from Corollary
6.3.27 that there are precisely 5 lines of type ACC through x in S ′, and hence the graph
Γ2 is a 1-cover of Γ1. Now the 6-th line through x which is not contained in S must be
of type ABB. Therefore, through every point of S there are 5 lines of type ACC and
a unique line of type ABB. This shows that for every valuation f of type B, we can
find the unique point of S ′ that induces f by first getting the point y of S that induces
the type A valuation on the unique V-line of type ABB through f (see Table 2.8), and
then picking the point on the unique line of type ABB through x in S ′ that induces the
valuation f .

For the rest of this section assume that S ′ has order (2, 10). From Lemma 6.3.28 we know
that both type B and type C points exist in S ′ and each type B or type C valuation of
S is induced by a unique point of S ′. Let x be a point of type B in S ′ and let Lx be
the unique line joining x and π(x). From Corollary 6.3.22 it follows that every other line
through x gives rise to a quad in S ′ that intersects S and contains Lx.

Lemma 6.3.29. Let Q be a quad of S ′ that intersects S nontrivially. Then Q ∩ S is
either a singleton or a line.
Proof. The proof is similar to that of Lemma 6.3.8.

Lemma 6.3.30. Let Q be a quad of S ′ that is not a grid and that intersects S in a line
L. Then there must exist points of type B and points of type C in Q \ L.
Proof. For the sake of contradiction assume that all points of Q \ L are of a fixed type
T ∈ {B,C}. Let x be a point of L. SinceQ is not a grid, there exist two lines L1 = {x, y, z}
and L2 = {x, y′, z′} through x with y, y′, z, z′ ∈ Q \ L. Let w be a common neighbor of
z and z′ in Q which is different from x. Then w ∈ Q \ L. From Lemma 6.3.28 it follows
that the lines wz and wz′ correspond to distinct V-lines, which are of type TTT by our
assumption. Also note that π(wz) = π(wz′) = L. This contradicts Lemma 6.3.15 for
T = B and Lemma 6.3.16 for T = C.

Lemma 6.3.31. There are no Q(5, 2)-quads in S ′ that meet S in a line.
Proof. Let Q be a Q(5, 2)-quad that meets S in a line L. By Lemma 6.3.30 there is a
point x of type C in Q. There is a unique line through x that intersects S in L, and hence
lies in Q. Every other line through x which is contained in Q projects to L. By Lemmas
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6.3.16 and 6.3.25 there is at most one line of type CCC through x in Q. From Table 2.8
and Lemma 6.3.28 it follows that there is at most one line of type BBC through x in Q.
Therefore, in total we have at most three lines through x in Q which contradicts the fact
that the order of a Q(5, 2)-quad is (2, 4).

Lemma 6.3.32. Let x be a point of type B in S ′. Then x cannot be contained in two
lines L1, L2 such that L1 has type BBB, L2 has type BBC and π(L1) = π(L2).
Proof. Let L1 = {x, y, z} and L2 = {x, y′, z′} be two such lines, such that π(y) = π(y′)
and π(z) = π(z′). Say L1 is of type BBC and L2 of type BBB. Without loss of generality
assume that z is of type C. Then the lines yπ(y) and y′π(y′) are of type ABB. By Table
2.8 there is only one V-line of type ABB through a valuation of type A, and hence fy
is equal to fy′ or fy′′ where y′′ is the third point (of type B) on the line y′π(y′). This
contradicts Lemma 6.3.28.

Lemma 6.3.33. Let x be a point of type B in S ′. Then

(1) x is incident with a unique line of type ABB and ten lines of type BBC;

(2) these ten type BBC lines through x correspond bijectively to the ten BBC lines of the
valuation geometry V through fx, and they are partitioned into pairs by five W (2)-
quads passing through the line of type ABB through x.

Proof. There is a unique line through x that intersects S, namely the line joining x and
π(x). Every other line through x is of type BBB or BBC which is entirely contained in
Γ1(S) and is parallel to a line through π(x) in S (see Corollary 6.3.22). Let S denote the
set of these other lines through x. By Lemma 6.3.28, distinct lines in S correspond to
distinct V-lines. Let there be i lines of type BBB in S, with i ≤ 5 by Table 2.8. Since we
cannot have two lines of type BBC and BBB in S projecting to the same line of S by
Lemma 6.3.32 and since there are no Q(5, 2)-quads by Lemma 6.3.31, there are at most
2(5 − i) lines of type BBC in S, and hence in total at most 2(5 − i) + i + 1 = 11 − i
lines through x. Therefore, we have i = 0 and each of the 5 lines of S through π(x) is
parallel to exactly 2 lines of S. This gives rise to 5 W (2)-quads through the line xπ(x),
that partition S into pairs.

We are now ready to prove Theorem 6.1.5. From Lemma 6.3.33 it follows that there are
no lines of type BBB in S ′. Since each of the type A, B and C valuations is induced by a
unique point of S ′ and each V-line of type AAA, ABB and ACC is induced by a unique
line of S ′, it suffices to show that also every V-line of type BBC and CCC is induced by
a unique line of S ′, and that type D points do not exist in S ′ (we have already proved in
Lemma 6.3.20 that type E points do not exist).

Let {f, g, h} be a V-line of type BBC where f is of type B. Let x be the unique point in
S ′ with fx = f . By Lemma 6.3.33, there exists a line L = {x, y, z} such that fy = g and
fz = h. This shows that each V-line of type BBC is induced by a necessarily unique line
of S ′.

Now, let x be a point of type C. Since Γ2 is a 1-cover of Γ1, there exist eight ordinary
lines of type CCC through x that bijectively correspond to the eight ordinary V-lines of
type CCC through fx. By Table 2.8, there exists a unique V-line of type BBC through
fx, implying that in S ′ there is a unique line L of type BBC through x. By Lemma 6.3.33
L lies in a W (2)-quad Q, which must also contain the unique line of type ACC through
x. The third line in Q through x must be a special line of type CCC as there is a unique
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type BBC line through x and none of the ordinary type CCC lines through x projects
to a line of S. Therefore, the unique special V-line of type CCC through fx is induced
by a line of S ′. Since we have accounted for all 11 lines through a point of type C, there
cannot be any lines of type CDD, and hence there cannot be any points of type D in
S ′. This completes the proof as we have shown that S ′ is isomorphic to the G2(4) near
octagon.
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7. Introduction

The polynomial method is an umbrella term for different techniques involving polynomials
which have been used to solve several problems in finite geometry, discrete geometry,
extremal combinatorics and additive number theory. One of the general philosophies
behind this method is to associate a set of polynomials (possibly a single polynomial),
to a combinatorial object that we want to study, and then use some properties of these
polynomials to describe the combinatorial object. For a concrete example, let us go
through Koornwinder’s proof of the absolute bound on equiangular lines.

A set of lines in the Euclidean space Rn through the origin (or any other fixed point) is
called equiangular if the angle between every pair of distinct lines in the set is the same.
For example, joining the opposite vertices of a regular hexagon in the plane R2, we get
three equiangular lines.

At most how many equiangular lines can there be in Rn?

This question was addressed by Gerzon (as reported by Lemmens and Seidel in [104]), who
proved that there are at most

(
n+1

2

)
equiangular lines in Rn. Thus in particular, the regular

hexagon example gives us the maximum possible equiangular lines in R2. But in general
this bound is not sharp. In 1976, Koornwinder gave an “almost trivial proof” [101] of
Gerzon’s bound by giving a bijective correspondence between the set of equiangular lines
in Rn and a linearly independent set of polynomials lying in an

(
n+1

2

)
dimensional vector

space.1 This correspondence is as follows. Let L1, . . . , Lk be k equiangular lines in Rn and
let u1, . . . , uk be unit vectors on these lines, chosen arbitrarily. Then we have 〈ui, uj〉2 = α
for i 6= j where α is a fixed real number in the interval [0, 1). For i ∈ {1, . . . , k},
define fi ∈ R[t1, . . . , tn] by fi(t1, . . . , tn) = (〈ui, (t1, . . . , tn)〉)2 − α2(t21 + · · · + t2n). Now
since fi(uj) = 0 for i 6= j and fi(ui) = 1 − α2 6= 0 for all i, it is easy to see that
f1, . . . , fk are linearly independent polynomials in the vector space R[t1, . . . , tn]. As these
polynomials lie in the

(
n+1

2

)
dimensional subspace of R[t1, . . . , tn] spanned by the monomial

set {titj}1≤i≤j≤n, we get k ≤
(
n+1

2

)
.

The argument above can also be seen as an example of the linear algebra method in
combinatorics, which has been discussed in much detail in the influential (unfinished)
manuscript of Babai and Frankl [8], and more recently in the beautiful book by Matoušek
[110].

Another important way of using polynomials is to capture the combinatorial object via
zeros of polynomials (or in general, algebraic varieties). One of the earliest examples here
is the determination of the minimum size of an affine blocking set by Jamison in 1977 [94].
The problem is to find the minimum number of points required to “block” every hyperplane
of the affine space Fnq . Clearly n(q−1)+1 points suffice (by taking all points that lie on one

1In fact, this is one of the earliest papers that played an important role in the development of polynomial
method.
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of the n axes), but can we do better? Jamison proved that we cannot, and his polynomial
method proof can be sketched as follows: (a) first consider the dual problem, which is
equivalent to finding the minimum number of hyperplanes required to cover all points of
Fnq except the origin, (b) then identify Fnq with the finite field Fqn , (c) finally associate
each hyperplane with the minimal polynomial over Fqn that vanishes on the hyperplane
to show (using the theory of linearized polynomials [105, Chapter 3]) that if the number
of hyperplanes is less than n(q − 1) + 1, then the polynomial tqn−1 − 1 =

∏
α∈F×qn

(t− α),
does not divide the product of these polynomials corresponding to the hyperplanes. This
technique of using polynomials over finite fields to solve finite geometrical problems came
to be known as the “Jamison method” and it saw several applications (see for example,
the surveys [25] and [39]).

Brouwer and Schrijver gave another proof of Jamison’s theorem in [37] where they also
started by considering the dual problem of hyperplane coverings but then proceeded by
a much simpler argument involving multivariate polynomials over finite fields. Their
approach was in fact quite similar to Chevalley’s proof of the famous Chevalley-Warning
theorem [47] using reduced polynomials. We will see in Chapters 8 and 9 how both of
these results are linked together by the notion of grid reduction, and in particular by the
Lemma that a polynomial Fq[t1, . . . , tn] which vanishes on all points of Fnq except one must
have degree at least n(q − 1).2 The Chevalley-Warning theorem, which is a statement
on the zero set of a collection of polynomials over a finite field, has also found several
applications in combinatorics. Alon, Friedland and Kalai used it to prove that every 4-
regular graph plus an edge contains a 3-regular subgraph [2]. Later, Bailey and Richter [9]
used the Chevalley-Warning theorem to give a new proof of the famous Erdős-Ginzburg-
Ziv theorem in additive number theory [80]. Recently, Clark, Forrow and Schmitt [51]
have shown that the Chevalley-Warning theorem and its combinatorial applications can be
derived, and further generalized, using a result of Alon and Füredi from 1993 [3, Theorem
5]. We will devote Chapter 9 to this Alon-Füredi Theorem, where we generalize the result
and give a new simple proof. We also show how this result is linked to several other topics
like coding theory, finite geometry and polynomial identity testing.

An important tool in the polynomial method involving zeros of polynomials is a result
called Combinatorial Nullstellensatz [1], which was developed by Alon and his collabo-
rators [4, 5]. This powerful tool and its generalizations have been used extensively to
solve several problems in additive number theory (see [136, Chapter 9] for a survey) and
more recently in some other areas as well [96, 97]. In [49], Clark revisited Alon’s Com-
binatorial Nullstellensatz and showed how its proof can be seen as a “restricted variable
analogue” of Chevalley’s proof of the Chevalley-Warning Theorem. He further general-
ized this result to commutative rings (adding certain extra conditions) and made it clear
how many of the ideas involved are related to the notion of grid reduction. In [13], Ball
and Serra introduced a related result which they called Punctured Combinatorial Null-
stellensatz. This result was proved using Alon’s Combinatorial Nullstellensatz, and it has
several combinatorial applications of its own. We will give another proof of this result
in Chapter 8 by directly using the notion of grid reduction, and then use this result to
prove a new generalization of the Chevalley-Warning theorem which we call the Punctured
Chevalley-Warning Theorem. In fact, this result generalizes Brink’s Restricted Variable
Chevalley-Warning theorem [29].

2Note that we can find a polynomial of degree q which vanishes on all points, and therefore this is a big
jump!
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In recent years, there has been a lot of interest in the polynomial method as a result
of Dvir’s two-page proof of the finite field Kakeya problem [76]3 which involved an easy
polynomial argument, and the developments that followed. Many experts worked on the
finite field Kakeya problem using different techniques involving algebraic geometry and
Fourier analysis, but made only partial progress towards a solution to this problem. And
thus it was a great surprise to the mathematical community that such an easy polynomial
argument could resolve this famous open problem. Even more recently, the notorious
cap set problem has been solved using the polynomial method by Ellenberg and Gijswijt
[79]. Ideas originating from Dvir’s work have lead to several important advancements
in mathematics, including the big breakthrough in the famous Erdős distinct distances
problem by Guth and Katz [88]. It is interesting to note that Dvir’s polynomial technique
is a bit different from the techniques we have mentioned so far in this introduction as
it involved polynomial interpolation instead of constructing explicit polynomials. For
more details on this, we recommend the surveys by Dvir [77] and Tao [135], and the
recent book by Guth [87]. Another example where a combinatorial problem is solved
using polynomial interpolation, combined with a geometric argument, is Segre’s classical
theorem on ovals in finite projective planes [125]. Interestingly, the so-called “lemma of
tangents” from [125] was used in combination with the Jamison/Brouwer-Schrijver bound
on affine blocking sets by Blokhuis and Korchmáros [28] to solve the Kakeya problem in
2 dimensions. Segre’s result (and his lemma of tangents) has been generalized further to
higher dimensional finite projective spaces by Ball [10]. For more on polynomial method
in finite geometry, see the survey by Ball [11].

Notation

We will be using the following notation in Chapters 8 and 9. For us rings will always be
commutative with a multiplicative identity denoted by 1. R denotes an arbitrary ring, and
F an arbitrary field. For an n-variable polynomial f ∈ R[t1, . . . , tn] we let deg f denote
the total degree of f and degti f the degree of f when it is treated as an element of R′[ti]
where R′ = R[t1, . . . , ti−1, ti+1, . . . , tn]. If f is the zero polynomial of R[t1, . . . , tn], then
we will assume that deg f = −∞, i.e., the zero polynomial is assumed to have a degree
smaller than every non-zero polynomial. We will sometimes use the shorthand R[t] for
R[t1, . . . , tn] when n is clear from the context.

A finite grid in Rn (or F n) is a subset A of the form A = A1× · · · ×An where A1, . . . , An
are finite nonempty subsets of R (or F ). For f ∈ R[t1, . . . , tn] and A ⊆ Rn, we put

ZA(f) = {x ∈ A | f(x) = 0} and UA(f) = {x ∈ A | f(x) 6= 0}.

For N, a1, . . . , an, b1, . . . , bn ∈ Z+, with N ≤
∑n

i=1 ai and 1 ≤ bi ≤ ai for all i, we denote by
m(a1, . . . , an; b1, . . . , bn;N) a certain combinatorial quantity related to (restricted) distri-
bution of N balls in n bins, which will be defined in Section 9.2. When b1 = · · · = bn = 1
we denote this quantity by m(a1, . . . , an;N).

3The problem asks if there exists a constant cn such that the minimum number of points in Fn
q that

contain a line in every direction is at least cnqn.
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8. Grid Reduction

8.1. Basics

One of the most basic results on polynomials is the fact that a single variable polynomial
of degree d over an integral domain has at most d zeros. This result is clearly not true over
arbitrary rings as one can see from the example f = t2 − 1 ∈ (Z/8Z)[t] which has 4 zeros
in Z/8Z. To rectify this situation, we restrict to certain subsets of R that we now define.
Following [49] and [123], we say that a subset S of R satisfies Condition (D) if for every
pair of distinct elements α, β in S, the element α−β of R is not a zero divisor. We say that
a finite grid A = A1×· · ·×An ⊆ Rn satisfies Condition (D) if every Ai satisfies Condition
(D). Note that when R is an integral domain, this condition is automatically satisfied and
in fact this is the case which most commonly occurs in combinatorial applications (with A
being the binary grid {0, 1}n). We will see that any single variable polynomial of degree
d over a ring R has at most d zeros in any subset of R that satisfies Condition (D). But
first, we mention some elementary results on polynomials over rings whose proofs are left
to the reader.

Lemma 8.1.1. Let f, g, h ∈ R[t1, . . . , tn] with f = g + h.

(1) If deg f ≥ deg g, then deg f ≥ deg h.

(2) For all i ∈ {1, . . . , n}, if degti f ≥ degti g, then degti f ≥ degti h.

Lemma 8.1.2. Let f, g, h ∈ R[t1, . . . , tn] with g monic1 and f = gh. Then deg f =
deg g + deg h.

Lemma 8.1.3 (Euclidean Division Algorithm). Let f, g ∈ R[t] be single variable poly-
nomials with g monic and nonzero. Then there exist polynomials h, r ∈ R[t] such that
f = gh+ r and deg r < deg g.

Corollary 8.1.4. Let f ∈ R[t] be a single variable nonzero polynomial. If S ⊆ R is such
that S satisfies Condition (D), then f has at most deg f zeros in S.

Proof. Let α ∈ S be a zero of f . We can write f = (t − α)h + r with deg r < 1 (so
r ∈ R). Substituting α in the equation we see that r = 0. Since f 6= 0, we have h 6= 0.
Let β ∈ S \ {α}. Then f(β) = (β − α)h(β). Since β − α is not a zero divisor, f(β) = 0
if and only if h(β) = 0. Moreover, deg h = deg f − 1 by Lemma 8.1.2. Thus, the result
follows by induction on deg f .

1We call a multivariate polynomial monic if the coefficient of its leading term, with respect to some
monomial ordering, is 1. We could have also assumed that g ∈ R[ti] for some i ∈ {1, . . . , n} as that’s
the only case which will be used later in the thesis.
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In other words, if f has more than deg f zeros in a set S ⊆ R satisfying Condition
(D), then f = 0. The following lemma is a generalization of this fact to multivariate
polynomials.

Lemma 8.1.5. Let R be a ring and let A1, . . . , An be nonempty finite subsets of R that
satisfy Condition (D). Put A := A1 × · · · × An. Let f ∈ R[t1, . . . , tn] such that for all
i ∈ {1, . . . , n} we have degti f ≤ |Ai| − 1. If f(x) = 0 for all x ∈ A, then f = 0.
Proof. We prove this by induction on n. The base case is clear from Corollary 8.1.4. For
the inductive step write

f =
dn∑
i=0

fi(t1, . . . , tn−1)tin.

where dn = degtn f . Let x
′ ∈ A′ = A1 × · · · × An−1. Since f(x) = 0 for all A we see that

the single variable polynomial f(x′, tn) vanishes everywhere on An. Since deg f(x′, tn) =
dn < |An|, and An satisfied Condition (D), Corollary 8.1.4 implies that f(x′, tn) is the
zero polynomial. This implies that for all i, fi(x′) = 0 for all x′ ∈ A′. By the induction
hypothesis, fi = 0 for all i and hence f = 0.

Definition. Let A = A1 × · · · × An be a finite grid in Rn. Then a polynomial f ∈
R[t1, . . . , tn] is called A-reduced if for all i ∈ {1, . . . , n} we have degti f ≤ |Ai| − 1. We
denote the set of all A-reduced polynomials by RA.

Therefore, Lemma 8.1.5 says that if a grid A in Rn satisfies Condition (D), then every A-
reduced polynomial which vanishes at all points of Amust be equal to the zero polynomial.
The following Lemma is a multivariate generalization of Lemma 8.1.3 and it will help us
define the notion of grid reduction.

Lemma 8.1.6. Let f ∈ R[t1, . . . , tn] and let g be a monic nonzero polynomial in R[ti] for
some i ∈ {1, . . . , n}. Then, there exist h, r ∈ R[t1, . . . , tn] such that

f = gh+ r

and degti r < deg g. Moreover, deg h ≤ deg f − deg g, and deg r ≤ deg f .
Proof. Without loss of generality, take i = n. Let R′ = R[t1, . . . , tn−1]. Then f and
g can be seen as polynomials in R′[tn]. If degtn r < deg g, then we can take h = 0 and
r = f . So, assume that degtn r ≥ deg g. By Lemma 8.1.3 f = gh+r for some polynomials
h, r ∈ R′[tn] such that deg r < deg g and h 6= 0. If we now see h and r as polynomials in
R[t1, . . . , tn] we get that degtn r < deg g. Since degtn r < d = deg g, for every monomial
te11 · · · tenn in h with e1 + · · · + en = deg h there exists a monomial te11 t

e2
2 · · · ten+d

n in f .
This shows that deg f ≥ deg h+ deg g. Now from Lemmas 8.1.1 and 8.1.2 it follows that
deg f ≥ deg r.

Let A = A1×· · ·×An be a finite grid in Rn. For each i ∈ {1, . . . , n}, let ϕi ∈ R[ti] be the
polynomial

∏
λ∈Ai

(ti−λ) of degree |Ai|. We let Φ denote the ideal ofR[t1, . . . , tn] generated
by the polynomials ϕ1, . . . , ϕn. Then clearly Φ ⊆ I(A), where I(A) is the ideal of all
polynomials in R[t1, . . . , tn] that vanish on A. By repeated applications of Lemma 8.1.6,
for every polynomial f ∈ R[t1, . . . , tn] we can find polynomials g1, . . . , gn ∈ R[t1, . . . , tn]
and r ∈ RA such that

(1) f = g1ϕ1 + · · ·+ gnϕn + r;
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(2) deg f ≥ deg r;

(3) deg gi ≤ deg f − degϕi for all i ∈ {1, . . . , n}.

This process is what we call the grid reduction of the polynomial f with respect to the
finite grid A. One can also define a more general notion of “Cartesian Reduction” by
taking ϕi’s to be arbitrary monic polynomials in single variables, as was done by Clark
in [49, Section 3]. It is also easy to show that the “remainder” r that one gets by this
process of grid reduction is unique by proving that the ideal Φ does not contain any
A-reduced polynomials (see [49, Proposition 10]). We will denote this unique A-reduced
polynomial that one gets after grid-reduction of f by rA(f). From Lemma 8.1.5 we
have the following result, which Clark calls the CATS Lemma [49, Theorem 12] (after
Chevalley [47], Alon-Tarsi [5] and Schauz [123]).

Lemma 8.1.7. Let R be a ring and let A = A1 × · · · × An be a finite grid in Rn. Then
the following are equivalent:

(1) A satisfies Condition (D);

(2) If r ∈ RA and r(x) = 0 for all x ∈ A, then r = 0;

(3) Φ = I(A).

In particular, if A satisfies Condition (D), then for every polynomial f , there exists a
unique A-reduced polynomial rA(f) such that f(x) = rA(f)(x) for all x ∈ A. Moreover,
deg f ≥ deg rA(f).

Proof. (1) =⇒ (2) by Lemma 8.1.5. Let f ∈ I(A). From grid reduction, we get
f = (

∑
giϕi) + r, where r is A-reduced. Since f(x) = 0 for all x ∈ A, we see that

r(x) = 0 for all x ∈ A, and hence r = 0 if (2) is assumed to be true. Therefore, (2) =⇒
(3). Now say (1) is false, and let α, β ∈ Ai for some i with α 6= β, such that there exists
a γ ∈ R \ {0} with γ(α − β) = 0. Then the polynomial f = γ

∏
λ∈Ai\{α}(ti − λ) is an

A-reduced polynomial which is contained in I(A). But no A-reduced polynomial can be
contained in Φ, and hence I(A) 6= Φ. Therefore, (3) =⇒ (1).

8.2. Applications of Grid Reduction

We first prove a lemma on zeros of polynomials in a finite grid, from which the Chevalley-
Warning theorem, Jamison/Brouwer-Schrijver theorem on affine blocking sets, and the
Alon-Füredi theorem on hyperplanes covering [3, Theorem 2] follow easily. We include
the proof of the Chevalley-Warning theorem and discuss the other two results in Chapter
9, where they will follow from a more general result. Later on, we will see some other
proofs of this Lemma as well.

Lemma 8.2.1 (All Except One). Let f ∈ R[t1, . . . , tn] and let A = A1 × · · · × An be a
finite grid in Rn that satisfies Condition (D). If f vanishes on all points of A except one,
then deg f ≥

∑
(|Ai| − 1).
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Proof. Let a = (a1, . . . , an) be the point where f doesn’t vanish. The polynomial

g(t) =
n∏
i=1

∏
λ∈Ai\{ai}

(ti − λ)

of degree
∑

(|Ai| − 1) is an A-reduced polynomial that vanishes everywhere on A except
at a. Therefore, the polynomial g(a)rA(f) − f(a)g is an A-reduced polynomial that
vanishes everywhere on A, which implies that g(a)rA(f) = f(a)g by Lemma 8.1.7. Since
deg rA(f) = deg g and deg f ≥ deg rA(f), we get deg f ≥ deg g =

∑n
i=1(|Ai| − 1).

Remark. When R is a field, Lemma 8.2.1 appears implicitly in [27] where several appli-
cations of this lemma in finite geometry are explored.

Theorem 8.2.2 (Chevalley-Warning Theorem [47,141]). Let f1, . . . , fr ∈ Fq[t1, . . . , tn] be
such that

∑r
i=1 deg fi < n and let Z be the set of common zeros of f1, . . . , fr in Fnq . Then

|Z| 6= 1.
Proof. Define a polynomial f ∈ Fq[t1, . . . , tn] by f =

∏r
i=1(1−f q−1

i ). Then since λq−1 = 1
for every λ ∈ Fq \ {0}, we have f(x) = 1 if x ∈ Z and f(x) = 0 if x 6∈ Z. Say |Z| = 1.
Then f vanishes on all points of the grid Fnq except one point. Therefore, by Lemma
8.2.1, we have deg f = (q − 1)

∑n
i=1 deg fi ≥ n(q − 1). This contradicts the fact that∑r

i=1 deg fi < n.

In fact, one can as easily prove Brink’s generalization of Chevalley-Warning theorem [29]
using Lemma 8.2.1 (also see [49, Theorem 19]).

Theorem 8.2.3 (Restricted Variable Chevalley-Warning Theorem). Let f1, . . . , fr ∈
Fq[t1, . . . , tn] and let A1, . . . , An be nonempty subsets of Fq. Let ZA = {x ∈

∏
Ai |

∀j fj(x) = 0}. If (q − 1)
∑

deg fj <
∑

(|Ai| − 1), then |ZA| 6= 1.
Proof. Again let f =

∏
(1− f q−1

j ) be the polynomial of degree (q− 1)
∑

deg fj which is
equal to 1 on all common zeros of fj’s and 0 otherwise. Then ZA corresponds to the set
of non-zeros of f in A = A1 × · · · × An. Say |ZA| = 1. Then by Lemma 8.2.1 we have
deg f = (q − 1)

∑
deg fj ≥

∑
(|Ai| − 1), which is a contradiction.

Next we see a proof of Alon’s Combinatorial Nullstellensatz [1] that uses the ideas of grid
reduction developed so far. We note that this proof is essentially the same as the proof
given by Alon in [1]. Its generalization over rings is due to Schauz [123] and the idea of
looking at this proof in the following way is due to Clark [49].

Theorem 8.2.4 (Combinatorial Nullstellensatz for Rings). Let f ∈ R[t1, . . . , tn] and let
A = A1×· · ·×An be a finite grid in Rn that satisfies Condition (D). For all i ∈ {1, . . . , n},
define ϕi =

∏
λ∈Ai

(ti − λ).

(1) If f vanishes on all points of A, then there exist g1, . . . , gn such that f =
∑
giϕi and

deg gi ≤ deg f − degϕi for all i.

(2) If there is a monomial term
∏
tdii in f with the property that d1 + · · · + dn = deg f

and di < degϕi = |Ai| for all i, then f doesn’t vanish everywhere on A.
Proof. Reduce f modulo the grid A. Then rA(f) vanishes everywhere on A, and hence
by Lemma 8.1.5 it must be zero. For (2) observe that such a monomial term is not
affected by grid reduction, and hence the reduced form rA(f) is non-zero. If f vanishes
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everywhere on A, then rA(f) also vanishes everywhere on A, which is not possible as it
would contradict Lemma 8.1.5. 2

We now give a simple proof of a variation of Ball and Serra’s Punctured Combinatorial
Nullstellensatz [13,14] over rings.3 This generalization is due to Clark [50], but our proof
is different from his.

Lemma 8.2.5. Let A = A1×· · ·×An be a finite grid in Rn that satisfies Condition (D). Let
f ∈ R[t1, . . . , tn] be A-reduced and let λ ∈ Ai for some i. If fλ = f(t1, . . . , ti−1, λ, ti, . . . , tn)
vanishes everywhere on A1 × · · · × Ai−1 × Ai+1 × · · · × An−1, then ti − λ divides f .

Proof. Using Lemma 8.1.6 write f = (ti − λ)h + r with degti r < 1, i.e., r can be
considered as an element of R[t1, . . . , ti−1, ti+1, . . . , tn]. From Lemma 8.1.1 it follows that
r is also A-reduced. Say fλ = r vanishes everywhere. Then by Lemma 8.1.5 we get r = 0,
i.e., ti − λ divides f .

Theorem 8.2.6 (Punctured Combinatorial Nullstellensatz for Rings). Let f ∈ R[t1, . . . , tn]
and let A = A1 × · · · × An be a finite grid in Rn that satisfies Condition (D). Let
B1, . . . , Bn be nonempty subsets of A1, . . . , An, respectively, and put B = B1 × · · · × Bn.
For i ∈ {1, . . . , n}, define ϕi =

∏
λ∈Ai

(ti−λ). If f vanishes on all points of A\B and does
not vanish on at least one point of B, then there exist polynomials g1, . . . , gn such that
f =

∑
giϕi+r where r ∈ RA is a non-zero multiple of the polynomial

∏n
i=1

∏
λ∈Ai\Bi

(ti−λ)

and deg gi ≤ deg f − degϕi for all i. Moreover, deg f ≥ deg r ≥
∑

(|Ai| − |Bi|).

Proof. Apply grid reduction on f with respect to A to get f =
∑
giϕi + r, such that

deg gi ≤ deg f − degϕi for all i, and deg f ≥ deg r. Then, we just have to show that∏n
i=1

∏
λ∈Ai\Bi

(ti − λ) divides r.

Let λ ∈ A1 \ B1. By the given condition on f , the polynomial r(λ, t2, . . . , tn) vanishes
everywhere on A2 × · · · × An. Now from Lemma 8.2.5 it follows that t1 − λ divides r.
Write r = (t1 − λ)r′. Say λ′ ∈ A1 \ B1 with λ′ 6= λ, then we see that r(λ′, t2, . . . , tn) =
(λ′ − λ)r′(λ′, t2, . . . , tn) vanishes everywhere on A2 × · · · ×An, and hence is equal to 0 by
Lemma 8.2.5. Since λ′ − λ is not a zero divisor, the polynomial r′(λ′, t2, . . . , tn) must be
equal to 0, which implies that (t1−λ′) divides r′. Continuing in this manner, we get that
ψ(t1) =

∏
λ∈A1\B1

(t1 − λ) divides r.

Now we show that ψ(t2) =
∏

λ∈A2\B2
(t2 − λ), which also divides r by a similar rea-

soning, must in fact divide r/ψ(t1). Write r = ψ(t1)r1. Take a λ ∈ A2 \ B2. Then
r(t1, λ, t3, . . . , tn) = ψ(t1)r1(t1, λ, t3, . . . , tn) is equal to the zero polynomial by Lemmas
8.2.5 and 8.1.6. Since ψ(t1) is a monic non-zero polynomial, the polynomial r1(t1, λ, t3, . . . , tn)
must be equal to 0 by Lemma 8.1.2, and hence t2 − λ divides r1. Therefore, ψ(t1)ψ(t2)
divides r. Continuing in this manner, we get the result.

Note that Lemma 8.2.1, and hence all of its consequences, also follow from Theorem 8.2.6
by taking all Bi’s to be singleton.

2In fact, the same proof gives us Lasoń’s generalization of Combinatorial Nullstellensatz [102]
3It’s a variation in the sense that we do not take multiplicities into account and we work over grids
satisfying Condition (D) over a ring.
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8.3. Punctured Chevalley-Warning

From Theorem 8.2.6 over fields, we obtain a new generalization of the Chevalley-Warning
theorem which we call Punctured Chevalley-Warning Theorem.

Theorem 8.3.1. Let A1, . . . , An, B1, . . . , Bn be nonempty finite subsets of Fq such that
for all i we have Bi ⊆ Ai. Put A = A1 × · · · × An and B = B1 × · · · × Bn. Let
f1, . . . , fr ∈ Fq[t1, . . . , tn] be such that (q − 1)

∑r
j=1 deg fj <

∑
(|Ai| − |Bi|) and let ZA =

{x ∈
∏
Ai | ∀j fj(x) = 0}. If ZA ∩B 6= ∅, then ZA ∩ (A \B) 6= ∅.

Proof. Let f =
∏r

j=1(1 − f q−1
j ). Then we are given that deg f = (q − 1)

∑
deg fj <∑

(|Ai| − |Bi|). Say ZA ∩ B 6= ∅ and ZA ∩ (A \ B) = ∅. Then f vanishes everywhere on
A, except at some point of B. Therefore, we get the contradiction from Theorem 8.2.6,
which says that deg f = (q − 1)

∑
deg fj must be at least

∑
(|Ai| − |Bi|).

Again by taking Bi’s to be singletons we get Theorem 8.2.3 from Theorem 8.3.1. The
following two direct corollaries of Theorem 8.3.1 might be of independent interest.

Corollary 8.3.2. Let q be a prime power and let f1, . . . , fr be polynomials in Fq[t1, . . . , tn],
with

∑
degfi < n(q − 2)/(q − 1) = n − n/(q − 1). If f1, . . . , fr have a common zero in

{0, 1}n, then they have a common zero in Fnq \ {0, 1}n.

Corollary 8.3.3. Let q be a prime power and s a positive integer and let Fq ⊂ Fqs be
a field extension. Let f1, . . . , fr be polynomials in Fq[t1, . . . , tn], with

∑
degfi < n(qs −

q)/(qs − 1) = n − n/(1 + q + · · · + qs−1). If f1, . . . , fr have a common zero in Fnq , then
they have a common zero in Fnqs \ Fnq .

Remark. In the setting of Corollary 8.3.3, let Ns denote the number of common zeros of
the polynomials in Fnqs . Then the result gives a condition on the sum of degrees which
ensures that Ns > N1.
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9. Alon-Füredi Theorem

9.1. Introduction

In [3], Alon and Füredi solved a problem posed by Bárány (based on a paper of Komjáth
[100]) of finding the minimum number of hyperplanes required to cover all points of the
hypercube {0, 1}n ⊆ F n except one. One such covering is given by n hyperplanes defined
by the zeros of the polynomials t1 − 1, t2 − 1, . . ., tn − 1. Alon and Füredi proved that
n is in fact the minimum number. They then generalized this result to all finite grids
A =

∏n
i=1 Ai ⊆ F n, showing that the minimum number of hyperplanes required to cover

all points of A except one is
∑n

i=1(|Ai| − 1).1

There is also a quantitative refinement: as we vary over families of d hyperplanes which
do not cover all points of A, what is the minimum number of points that are missed? To
answer this, Alon and Füredi proved the following result.

Theorem 9.1.1 (Alon-Füredi Theorem [3, Theorem 5]). Let F be a field, let A =∏n
i=1 Ai ⊆ F n be a finite grid, and let f ∈ F [t] be a polynomial which does not van-

ish on all points of A. Then f(x) 6= 0 for at least min{
∏
yi} elements x ∈ A, where the

minimum is taken over all positive integers yi ≤ |Ai| with
∑n

i=1 yi =
∑n

i=1 |Ai| − deg f .
More concisely (see Section 9.2 for the notation)

|UA(f)| ≥ m(|A1|, . . . , |An|;
n∑
i=1

|Ai| − deg f).

Several proofs of Theorem 9.1.1 have been given. The original argument in [3] involves
constructing auxiliary polynomial functions of low degree via linear algebra. A second
proof was given by Ball and Serra as an application of Theorem 8.2.6 over fields. Recently,
López, Renterá-Márquez and Villarreal gave a proof of Alon-Füredi in its coding theo-
retic formulation [109] (this will be discussed in Section 9.6). In [84], Geil showed that
the minimum distance of generalized Reed-Muller codes can be determined easily using
Gröbner basis theory [84, Theorem 2]. This technique was then used by Carvalho to give
another proof of Theorem 9.1.1 when F is a finite field, [45, Proposition 2.3], which is in
fact a special case of an earlier result by Geil and Thomsen [85, Proposition 5] (take all
weights equal to 1).

In [50], Clark generalized the Alon-Füredi Theorem by replacing the field F by an arbitrary
ring R, under the assumption that the finite grid A satisfies Condition (D), which as we
have seen in Chapter 8 is exactly what is needed for polynomial functions on A to behave
as they do in the case of a field. His proof adapts that of Ball and Serra.

1This result follows directly from Lemma 8.2.1 by associating the hyperplanes to linear polynomials
that define them and then taking the product of these polynomials.
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Clark, Forrow and Schmitt [51] used Alon-Füredi to obtain a restricted variable general-
ization of a theorem of Warning [141] which gives a lower bound on the number of zeros of
a system of polynomials over a finite field. Alon-Füredi gives a lower bound on non-zeros,
but over a finite field Fq, we have Chevalley’s trick: f(x) = 0 ⇐⇒ 1− f(x)q−1 6= 0 (see
the proof of Theorem 8.2.2). This work also gave several combinatorial applications of
this lower bound on restricted variable zero sets.

In this chapter, we will revisit the Alon-Füredi Theorem and give direct combinatorial
applications (i.e., not of Chevalley-Warning type). We will also prove the following gen-
eralization of this result which, along with the total degree, takes the degrees of the
polynomial in individual variables in account as well.

Theorem 9.1.2 (Generalized Alon-Füredi Theorem). Let R be a ring and let A1, . . . , An
be nonempty finite subsets of R that satisfy Condition (D). For i ∈ {1, . . . , n}, let ai = |Ai|
and let bi be an integer such that 1 ≤ bi ≤ ai. Let f ∈ R[t] be a non-zero polynomial
such that degti f ≤ ai − bi for all i ∈ {1, . . . , n}. Let UA = {x ∈ A | f(x) 6= 0} where
A = A1 × · · · × An ⊆ Rn. Then we have (see Section 9.2 for the notation)

|UA| ≥ m(a1, . . . , an; b1, . . . bn;
n∑
i=1

ai − deg f).

Moreover, for any such R, A1 . . . , An and integers b1, . . . , bn, we can construct a polyno-
mial f which meets this bound.

Remark. Some justification is required for calling Theorem 9.1.2 a “Generalized” Alon-
Füredi Theorem. If f ∈ F [t1, . . . , tn] is a polynomial that does not vanish on all points of
a finite grid A, then by Lemma 8.1.7, there exists a unique non-zero A-reduced polynomial
rA(f) which takes the same values on A as f . We can use the polynomial rA(f), whose
degree is at most deg f , to show that Theorem 9.1.1 follows from Theorem 9.1.2 (we need
Lemma 9.2.3 as well).

In Section 9.4 we relate the Generalized Alon-Füredi Theorem to work of DeMillo-Lipton,
Schwartz and Zippel. We find in particular that Alon-Füredi implies the result which has
become known as the “Schwartz-Zippel Lemma”. In fact, the original result of Zippel (and
earlier, DeMillo-Lipton) is a bit different and not implied by Alon-Füredi (cf. Example
9.4). However, it is implied by Generalized Alon-Füredi, and this was one of our moti-
vations for strengthening Alon-Füredi as we have. In Section 9.5 we discuss multiplicity
enhancements in the sense of [78].

The Alon-Füredi Theorem has a natural coding theoretic interpretation (see Section 9.6)
as it computes the minimum Hamming distance of the affine grid code AGCd(A), an F -
linear code of length |A|. In this way Alon-Füredi turns out to be the restricted variable
generalization of a much older result in the case Ai = F = Fq, the Kasami-Lin-Peterson
Theorem, which computes the minimum Hamming distance of generalized Reed-Muller
codes. We will show that the Generalized Alon-Füredi Theorem is equivalent to the
computation of the minimum Hamming distance of a more general class of R-linear codes.
These generalized affine grid codes have larger distance (though also smaller dimension)
than the standard ones, so they may turn out to be useful.

In Section 9.7, we pursue applications to finite geometry. We begin by revisiting and
slightly sharpening the original result of Alon-Füredi on hyperplane coverings. This nat-
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urally leads us to partial covers and blocking sets in affine and projective geometries over
Fq. Applying Alon-Füredi and projective duality we get a new upper bound, Theorem
9.7.6, on the number of hyperplanes which do not meet a k-element subset of AG(n, q).
From this result the classical theorems of Jamison-Brouwer-Schrijver on affine blocking
sets and Blokhuis-Brouwer on essential points of projective blocking sets follow as corol-
laries. We are also able to strengthen a recent result of Dodunekov, Storme and Van de
Voorde.

When combined with the work done by Clark, Forrow and Schmitt in [50, 51], our work
demonstrates that the Alon-Füredi theorem, much like the Combinatorial Nullstellensatz,
is a fundamental result on polynomials with connections to various important topics in
mathematics. Thus we hope to convince the reader that this is an important tool to
possess for those working in areas where polynomial methods might be successful.

9.2. Balls in Bins

Let a1, . . . , an ∈ Z+. Consider n bins A1, . . . , An such that Ai can hold up to ai balls
for every i ∈ {1, . . . , n}. For N ∈ Z+ with n ≤ N ≤

∑n
i=1 ai, we define a distribution

of N balls in these n bins to be an n-tuple y = (y1, . . . , yn) ∈ (Z+)n with yi ≤ ai for
all i ∈ {1, . . . , n} and

∑n
i=1 yi = N . For a distribution y of N balls in n bins, we put

P (y) =
∏n

i=1 yi. For n ≤ N ≤
∑n

i=1 ai we define m(a1, . . . , an;N) to be the minimum
value of P (y) as y ranges over all such distributions of N balls in n bins. For N < n we
define m(a1, . . . , an;N) = 1.

Without loss of generality we may assume a1 ≥ · · · ≥ an. We define the greedy distribution
yG = (y1, . . . , yn) as follows: first place one ball in each bin; then place the remaining balls
into bins from left to right, filling each bin completely before moving on to the next bin,
until we run out of balls. Then an easy argument shows the following.

Lemma 9.2.1. Let n ∈ Z+, and let a1 ≥ · · · ≥ an be positive integers. Let N ∈ Z with
n ≤ N ≤ a1 + · · ·+ an.

(1) We have
m(a1, . . . , an;N) = P (yG) = y1 · · · yn.

(2) Suppose a1 = · · · = an = a ≥ 2. Then

m(a, . . . , a;N) = (r + 1)ab
N−n
a−1
c,

where r ≡ N − n (mod a− 1) and 0 ≤ r < a− 1.

(3) For all non-negative integers k, we have

m(2, . . . , 2; 2n− k) = 2n−k.

(4) Let n, a1, . . . , an ∈ Z+ with a1 ≥ · · · ≥ an. Let N ∈ Z be such that N − n =∑j
i=1(ai − 1) + r for some j ∈ {0, . . . , n} and some r satisfying 0 ≤ r < aj+1. Then

m(a1, . . . , an;N) = (r + 1)
∏j

i=1 ai.
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Proof. Parts (1) through (3) are [51, Lemma 2.2]. (4) After placing one ball in each bin
we are left with N −n balls. The greedy distribution is achieved by filling the first j bins
entirely and then putting r balls in bin j + 1. Note that (2) is a special case of (4).

In every distribution y = (y1, . . . , yn) we need yi ≥ 1 for all i ∈ {1, . . . , n}; i.e., we must
place at least one ball in each bin. So it is reasonable to think of the bins coming prefilled
with one ball each, and then our task is to distribute the N − n remaining balls so as
to minimize P (y). The concept of prefilled bins makes sense more generally: given any
b1, . . . , bn ∈ Z with 1 ≤ bi ≤ ai, we may consider the scenario in which the i-th bin
comes prefilled with bi balls. If

∑n
i=1 bi ≤ N ≤

∑n
i=1 ai, we may restrict to distributions

y = (y1, . . . , yn) of N balls into bins of sizes a1, . . . , an such that bi ≤ yi ≤ ai for all
i ∈ {1, . . . , n} and then we put

m(a1, . . . , an; b1, . . . , bn;N) = minP (y),

where the minimum ranges over this restricted set of distributions. For N <
∑n

i=1 bi we
define m(a1, . . . , an; b1, . . . , bn;N) :=

∏n
i=1 bi.

Lemma 9.2.2. We have m(a1, . . . , an; b1, . . . , bn;N) =
∏n

i=1 bi ⇐⇒ N ≤
∑n

i=1 bi.
Proof. If N ≤

∑n
i=1 bi then m(a1, . . . , an; b1, . . . , bn;N) =

∏n
i=1 bi by definition unless

N =
∑n

i=1 bi, and this case is immediate: we have exactly enough balls to perform the
prefilling. If N >

∑n
i=1 bi, then m(a1, . . . , an; b1, . . . , bn;N) is the minimum over a set of

integers each of which is strictly greater than
∏n

i=1 bi.

In this prefilled context, the greedy distribution yG is defined by starting with the bins
prefilled with b1, . . . , bn balls and then distribute the remaining balls from left to right,
filling each bin completely before moving on to the next bin. One sees, for example by
adapting the argument of [51, Lemma 2.2], that

m(a1, . . . , an; b1, . . . , bn;N) = P (yG)

when we also have b1 ≥ · · · ≥ bn. But this may not hold in general, as the following
example shows.

Example. Let n = 2, a1 = 4, a2 = 3, b1 = 1, b2 = 2, N = 4. Then P (yG) = 4 but
m(4, 3; 1, 2; 4) = 3 achieved by the distribution (1, 3).

In general, we do not know a simple description of m(a1, . . . , an; b1, . . . , bn;N). In prac-
tice, it can be computed using dynamic programming. The following properties of this
combinatorial function will play an important role in our proof.

Lemma 9.2.3. Let a1, . . . , an, b1, . . . , bn ∈ Z+ with 1 ≤ bi ≤ ai for all i ∈ {1, . . . , n}. Let
N1, N2 ∈ Z such that N1 ≤ N2 ≤

∑n
i=1 ai. Then

m(a1, . . . , an; b1, . . . , bn;N1) ≤ m(a1, . . . , an; b1, . . . , bn;N2).

Proof. If N2 ≤
∑
bi, then both these quantities are equal by Lemma 9.2.2. For N1 ≤∑

bi < N2, we have strict inequality. So assume that
∑
bi < N1 < N2 ≤

∑
ai. Let

y be a distribution of N2 balls for which P (y) = m(a1, . . . , an; b1, . . . , bn;N2). From this
distribution we can remove N2 − N1 ≥ 1 balls without violating any conditions, which
gives us a new distribution y′ of N1 balls. We must have P (y′) < P (y) and hence
m(a1, . . . , an; b1, . . . , bn;N1) ≤ P (y′) < P (y) = m(a1, . . . , an; b1, . . . , bn;N2).
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Lemma 9.2.4. Let a1, . . . , an, b1, . . . , bn ∈ Z+ with 1 ≤ bi ≤ ai for all i ∈ {1, . . . , n}. Let
k ∈ Z such that bn ≤ k ≤ an. If

b1 + · · ·+ bn−1 ≤ N − k ≤ a1 + · · ·+ an−1

for some N ∈ Z, then

k ·m(a1, . . . , an−1; b1, . . . , bn−1;N − k) ≥ m(a1, . . . , an; b1, . . . , bn;N).

Proof. Let y′ = (y1, . . . , yn−1) be a distribution of N − k balls in the first n − 1 bins.
Then y = (y1, . . . , yn−1, k) is a distribution of N balls in n bins with the last bin getting
k balls. Therefore,

m(a1, . . . , an; b1, . . . , bn;N) ≤ P (y) = k · P (y′).

Since this holds for all such distributions y′, we get

m(a1, . . . , an; b1, . . . , bn;N) ≤ k ·m(a1, . . . , an−1; b1, . . . , bn−1;N − k).

9.3. Proof of Generalized Alon-Füredi Theorem

We go by induction on n.

Base Case: Let f ∈ R[t1] be a nonzero polynomial. Suppose f vanishes precisely at the
distinct elements x1, . . . , xk of A1. By Corollary 8.1.4 we have

|UA(f)| = a1 − k ≥ a1 − deg f,

which is the conclusion of the Generalized Alon-Füredi Theorem in this case.

Induction Step: Suppose n ≥ 2 and the result holds for n− 1. Write

f(t1, . . . , tn) =
dn∑
i=0

fi(t1, . . . , tn−1)tin,

so that dn = degtn f is the largest index i such that fi 6= 0. Moreover we have deg fdn ≤
deg f − dn and for all i ∈ {1, . . . , n− 1}, degti fdn ≤ degti f ≤ ai − bi. Put A′ =

∏n−1
i=1 Ai.

By the induction hypothesis, we have

|UA′(fdn)| ≥ m(a1, . . . , an−1; b1, . . . , bn−1;
n−1∑
i=1

ai − deg fdn)

≥ m(a1, . . . , an−1; b1, . . . , bn−1;
n−1∑
i=1

ai − deg f + dn), by Lemma 9.2.3.

Let x′ = (x1, . . . , xn−1) ∈ UA′(fdn). Then f(x′, tn) =
∑dn

i=0 fi(x
′)tin ∈ R[tn] has degree

dn ≥ 0 since its leading term fdn(x′)tdn is non-zero. Since An satisfies Condition (D),
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f(x′, tn) vanishes at no more than dn points of An by Corollary 8.1.4, so there are at least
an − dn elements xn ∈ An such that (x′, xn) ∈ UA(f). Thus

|UA(f)| ≥ (an − dn) ·m(a1, . . . , an−1; b1, . . . , bn−1;
n−1∑
i=1

ai − deg f + dn).

Since

deg f ≤
n∑
i=1

degti f =
n−1∑
i=1

degti f + dn

and thus
n−1∑
i=1

bi ≤
n−1∑
i=1

(ai − degti f) ≤
n−1∑
i=1

ai − deg f + dn ≤
n−1∑
i=1

ai,

we may apply Lemma 9.2.4 with N =
∑n

i=1 ai − deg f and k = an − dn, getting

(an − dn) ·m(a1, . . . , an−1; b1, . . . , bn−1;
n−1∑
i=1

ai − deg f + dn) ≥

m(a1, . . . , an; b1, . . . , bn;
n∑
i=1

ai − deg f).

We deduce that

|UA(f)| ≥ m(a1, . . . , an; b1, . . . , bn;
n∑
i=1

ai − deg f).

9.3.1. Sharpness of the Generalized Alon-Füredi Bound

Let d be an integer such that 0 ≤ d ≤
∑n

i=1(ai − bi) For any distribution y = (y1, . . . , yn)
of
∑n

i=1 ai − d balls in n bins with bi ≤ yi ≤ ai, for all i choose a subset Si ⊆ Ai of
cardinality ai − yi, and put2

f(t) =
n∏
i=1

∏
xi∈Si

(ti − xi).

Then

deg f =
n∑
i=1

(ai − yi) = d,

∀i ∈ {1, . . . , n}, degti f = ai − yi ≤ ai − bi
and

UA(f) = P (y) =
n∏
i=1

yi.

Thus, for all finite grids A =
∏n

i=1 Ai satisfying Condition (D) and all permissible values
of degt1 f, . . . , degtn f and deg f , there are instances of equality in the Generalized Alon-

2An empty product is understood to take the value 1.
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Füredi Bound. The case b1 = · · · = bn = 1 yields the (known) sharpness of the Alon-
Füredi Bound.

9.4. Connections with the Schwartz-Zippel Lemma

The following result originated in computer science literature related to the Polynomial
Identity Testing (PIT) problem where the aim is to design an “efficient” way of determining
whether a given multivariate polynomial over a field F is identically equal to the zero
polynomial (see [126, Chapter 4] for a survey and the precise problem statement). It is
now known as the Schwartz-Zippel Lemma after the independent works of Schwartz [124]
and Zippel [145].

Theorem 9.4.1 (Schwartz-Zippel Lemma). Let R be an integral domain and let S ⊆ R
be finite and nonempty. Let f ∈ R[t1, . . . , tn] be a nonzero polynomial. Then

|ZSn(f)| ≤ (deg f)|S|n−1.

This Lemma has a curious history, as recorded in the blog post of Lipton [108]. An earlier
paper due to De Millo and Lipton [73] proves a similar result which is in fact sufficient
for the applications to the PIT problem. This result of DeMillo and Lipton is also what
Zippel proved in [145].

Theorem 9.4.2 (DeMillo-Lipton-Zippel Theorem). Let R be an integral domain, let f ∈
R[t1, . . . , tn], and let d be a positive integer such that degti f ≤ d for all i ∈ {1, . . . , n}.
Let S be a finite subset of R with more than d elements. Then

|ZSn(f)| ≤ |S|n − (|S| − d)n.

Schwartz proved Theorem 9.4.1 as a corollary of the following more general upper bound.

Theorem 9.4.3 (Schwartz Theorem [124, Lemma 1]). Let R be an integral domain, f =
fn ∈ R[t1, . . . , tn] be a nonzero polynomial and let dn = degtn fn. Let fn−1 ∈ R[t1, . . . , tn−1]
be the coefficient of tdnn in fn. Let dn−1 = degtn−1

fn−1, and let fn−2 ∈ R[t1, . . . , tn−2] be
the coefficient of tdn−1

n−1 in fn−1. Continuing in this manner we define for all i ∈ {1, . . . , n}
a polynomial fi ∈ R[t1, . . . , ti] with degti fi = di. Let A = A1 × · · · × An be a finite grid
in Rn. Then

|ZA(f)| ≤ |A|
n∑
i=1

di
|Ai|

.

Interestingly, the DeMillo-Lipton-Zippel theorem does not imply the Schwartz-Zippel
lemma, and neither is it implied by any of Schwartz’s results! We can see this via the
following example.

Example. Let S be a finite subset of R containing 0, of size s ≥ 3. Let f = t1t2 ∈ R[t1, t2].
Then we have

|ZS2(f)| = 2s− 1.
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DeMillo-Lipton-Zippel gives

|ZS2(f)| ≤ s2 − (s− 1)2 = 2s− 1.

Schwartz’s Theorem and the Schwartz-Zippel lemma gives

|ZS2(f)| ≤ s2

(
1

s
+

1

s

)
= 2s = (deg f)|S|.

Thus neither Theorem 9.4.3, nor Theorem 9.4.1 imply Theorem 9.4.2. For the other
direction, take f = t1 + t2. DeMillo-Lipton-Zippel gives |ZS2(f)| ≤ s2− (s− 1)2 = 2s− 1,
while the other results give |ZS2(f)| ≤ s.

But, we can still relate these results using our main result, the Generalized Alon-Füredi
Theorem, by showing that both Theorem 9.4.1 and Theorem 9.4.2 follow from Theorem
9.1.2. In fact, we will prove general versions of these results over arbitrary rings.

Theorem 9.4.4 (Generalized Schwartz-Zippel Lemma). Let A =
∏n

i=1Ai ⊆ Rn be a
finite grid satisfying Condition (D), and suppose |A1| ≥ · · · ≥ |An|. Let f ∈ R[t1, . . . , tn]
be a nonzero polynomial. Then

|ZA(f)| ≤ (deg f)
n−1∏
i=1

|Ai|.

Proof. If deg f ≥ |An|, then this holds trivially. So assume that deg f < |An|. Then by
Theorem 9.1.2, there are at least m(|A1|, . . . , |An|;

∑n−1
i=1 |Ai| + |An| − deg f) points of A

where f is non-zero. This expression is equal to |A1| · · · |An−1|(|An| − deg f) by Lemma
9.2.1, and hence f has at most (deg f)

∏n−1
i=1 |Ai| zeros in A.

Theorem 9.4.5 (Generalized DeMillo-Lipton-Zippel Theorem). Let A =
∏n

i=1Ai ⊆ Rn

be a finite grid satisfying Condition (D), let f ∈ R[t1, . . . , tn] be a nonzero polynomial and
for i ∈ {1, . . . n} let di = degti f . Assume that 0 ≤ di < |Ai| for all i ∈ {1, . . . , n}. Then

|ZA(f)| ≤ |A| −
n∏
i=1

(|Ai| − di).

Proof. For i ∈ {1, . . . , n}, put ai = |Ai| and bi = ai−di, so 1 ≤ bi ≤ ai for all i. Moreover
deg f ≤

∑n
i=1 di, so Theorem 9.1.2 gives

|UA| ≥ m(a1, . . . , an; b1, . . . , bn;
n∑
i=1

ai − deg f) ≥ m(a1 . . . , an; b1, . . . , bn;
n∑
i=1

(ai − di))

= m(a1, . . . , an; b1, . . . , bn;
n∑
i=1

bi) =
n∏
i=1

bi =
n∏
i=1

(ai − di).

This proves the result as |A| = |ZA(f)|+ |UA(f)|.

Remark. (1) Using Corollary 8.1.4, one can easily adapt the original arguments of Theo-
rems 9.4.1, 9.4.2 and 9.4.3 to prove their generalization over rings.

(2) A generalization of the Schwartz-Zippel Lemma over rings already appears in [6,
Section 5] where the authors assume a stronger condition by taking subsets S of R
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such that S is an integral domain in itself, and then considering the zeros of the
polynomial in the grid Sn.

(3) The case of the Schwartz-Zippel Lemma in which R = S = Fq is due to Ore [116].
Thus the Schwartz-Zippel Lemma may be viewed as a “Restricted Variable Ore The-
orem”.

9.5. Multiplicity Enhancements

That one can assign to a zero of a polynomial a positive integer called multiplicity is a
familiar concept in the univariate case. The definition of the multiplicity m(f, x) of a
multivariate polynomial f ∈ R[t] at a point x ∈ Rn may be less familiar, but the concept
is no less useful. All of the main results considered thus far are upper bounds on |ZA(f)|,
the number of zeros of a polynomial f in a finite grid. By a multiplicity enhancement
we mean the replacement of |ZA(f)| by

∑
x∈Am(f, x) in such an upper bound. Here is

the prototypical example: for a nonzero univariate polynomial f over a field F we have∑
x∈F m(f, x) ≤ deg f .

Recently, multiplicity enhancements have become part of the polynomial method toolkit.
In [78] Dvir, Kopparty, Saraf and Sudan gave a multiplicity enhancement of the Schwartz-
Zippel Lemma. This was a true breakthrough with important applications in both combi-
natorics and theoretical computer science. In Section 9.4 we saw that the original work of
Schwartz, DeMillo-Lipton and Zippel consists of more than the Schwartz-Zippel Lemma
and gave some extensions of this work, in particular working over an arbitrary ring. So it
is natural to consider multiplicity enhancements of these results. We do so here, giving a
multiplicity enhancement of Theorem 9.4.3 over arbitrary rings R and thus also of Theo-
rem 9.4.4. On the other hand the Alon-Füredi Theorem does not allow for a multiplicity
enhancement (at least not in the precise sense described above), as we will see in Example
9.5.4.

In places our treatment closely follows that of [78]. We need to set things up over a ring,
whereas they work over a field which makes things a bit more involved. Nevertheless,
their work carries over verbatim much of the time, and when this is the case we state the
result in the form we need it, cite the analogous result in [78] and omit the proof.

9.5.1. Hasse Derivatives

Let R[t] = R[t1, . . . , tn]. For I = (i1, . . . , in) ∈ Nn, put

tI = ti11 · · · tinn

and |I| =
∑n

j=1 ij = deg tI . Thus, {tI}I∈Nn is an R-basis for R[t]. For I = (i1, . . . , in) and
J = (j1, . . . , jn) in Nn, we put (

I

J

)
=

n∏
k=1

(
ik
jk

)
,
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taking
(
i
j

)
= 0 if j > i. We say that I ≤ J if ik ≤ jk for all k. For J ∈ Nn, let

DJ : R[t]→ R[t] be the unique R-linear map such that

DJ(tI) =

(
I

J

)
tI−J .

We have DJ(tI) = 0, unless J ≤ I. Repeated application of the identity

tn = (t− x+ x)n =
n∑
j=0

(
n

j

)
xn−j(t− x)j

leads to the Taylor expansion: for f ∈ R[t] and x ∈ Rn,

f(t) =
∑
J∈Nn

DJ(f)(x)(t− x)J . (9.1)

Applying the automorphism t 7→ t+ x gives the alternate form

f(t+ x) =
∑
J∈Nn

DJ(f)(x)tJ .

These DJ(f) were defined in [90] and are now called Hasse derivatives.

Proposition 9.5.1 ( [78, Proposition 2.3]). Let f ∈ R[t], and let I, J ∈ Nn.

(1) If f is homogeneous of degree d, then DI(f) is homogeneous of degree d− |I|.

(2) We have

DJ(DI(f)) =

(
I + J

I

)
DI+J(f).

Lemma 9.5.2 (Leibniz’s Rule). Let f, g, h ∈ R[t] such that f = gh. Then for i ∈ N, we
have

Di(f) =
i∑

j=0

Dj(g)Di−j(h).

Proof. It suffices to show that Di(tmtn) =
∑i

j=0 D
j(tm)Di−j(tn). On the left hand side

we have
(
m+n
i

)
tm+n−i, while on the right hand side we have (

∑i
j=0

(
m
j

)(
n
i−j

)
)tm+n−i, which

are equal by the Vandermonde’s identity for binomial coefficients. Alternately, look at
the corresponding coefficients in f(t+ x), and g(t+ x)h(t+ x).

9.5.2. Multiplicities

Let f ∈ R[t] be nonzero and x ∈ Rn. The multiplicity of f at x, denoted m(f, x), is the
natural number m such that DJ(f)(x) = 0 for all J with |J | < m and DJ(f)(x) 6= 0 for
some J with |J | = m. We put m(0, x) =∞ for all x ∈ Rn.

Lemma 9.5.3 ( [78, Lemma 2.4]). For f ∈ R[t], x ∈ Rn and I ∈ Nn, we have

m(DI(f), x) ≥ m(f, x)− |I|.
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Given a vector f = (f1, . . . , fk) ∈ R[t]k, we put m(f, x) = min1≤j≤km(fj, x).

Proposition 9.5.4 ( [78, Proposition 2.5]). Let X1, . . . , Xn, Y1, . . . , Y` be independent
indeterminates. Let f = (f1, . . . , fk) ∈ R[X1, . . . , Xn]k and let g = (g1, . . . , gn) ∈
R[Y1, . . . , Y`]

n. We define f ◦ g ∈ R[Y1, . . . , Y`]
k to be f(g1, . . . , gn).

(1) For any a ∈ R` we have

m(f ◦ g, a) ≥ m(f, g(a))m(g − g(a), a).

(2) In particular, since m(g − g(a), a) ≥ 1, we have

m(f ◦ g, a) ≥ m(f, g(a)).

Corollary 9.5.5 ( [78, Corollary 2.6]). Let f ∈ R[t] and let a, b ∈ Rn. Then for all c ∈ R
we have

m(f(a+ tb), c) ≥ m(f, a+ cb).

The following Lemma will help us generalize the fact that
∑

x∈F m(f, x) ≤ deg f for
f ∈ F [t] to polynomials with coefficients in an arbitrary commutative rings with identity.

Lemma 9.5.6. Let f, g, h ∈ R[t] be nonzero polynomials such that f = gh and let x ∈ R.
If g(x) is not a zero divisor, then m(f, x) = m(h, x).
Proof. For any nonnegative integer i, from Lemma 9.5.2 we have

Di(f) = D0(g)Di(h) + · · ·+Di(g)D0(h).

Therefore m(f, x) ≥ m(h, x), as we have Di(f)(x) = 0 for all i < m(h, x). Let m :=
m(f, x) ≥ 1 (for m = 0 the result is easily proved). We now show that Di(h)(x) = 0 for
all i < m, thus proving m(h, x) ≥ m(f, x). For i = 0, we have 0 = f(x) = g(x)h(x), and
since g(x) is not a zero divisor, we must have h(x) = D0(h)(x) = 0. Now D1(f)(x) =
D0(g)(x)D1(h)(x) + D1(g)(x)D0(h)(x) = g(x)D1(h)(x). Again, since g(x) is not a zero
divisor, D1(f)(x) = 0 if and only if D1(h)(x) = 0. Continuing in this way, at the i’th step
we have Dj(h)(x) = 0 for all j < i and thus Di(f)(x) = g(x)Di(h)(x). Since g(x) is not
a zero divisor and i < m, we see that Di(h)(x) = 0.

Lemma 9.5.7. Let R be a ring, and let f ∈ R[t] be a polynomial of degree d ≥ 1. Let
A = {x1, . . . , xn} ⊆ R be a finite set satisfying Condition (D). Then∑

x∈A

m(f, x) ≤ d.

Proof. We have (t− xi)m(f,xi) | f for all i ∈ {1, . . . , n}. In particular we may write

f(t) = (t− x1)m(f,x1)g1(t),

so deg f ≥ m(f, x1) and we are done if n = 1. So suppose n ≥ 2. Since A satisfies
Condition (D), the element (xn−x1)m(f,x1) · · · (xn−xn−1)m(f,xn−1) of R is not a zero divisor.
Therefore, if we have f(t) = (

∏n−1
i=1 (t − xi)m(f,xi))gn−1(t), then m(f, xn) = m(gn−1, x) by

Lemma 9.5.6 and hence (t − xn)m(f,xn) | gn−1(t). Thus by induction we get
∏n

i=1(t −
xi)

m(f,xi) | f(t), which implies that
∑

x∈Am(f, x) ≤ deg f .
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From the proof of the multiplicity enhanced Schwartz-Zippel Lemma in [78], we extract
the following lemma.

Lemma 9.5.8 (DKSS Lemma). Let A =
∏n

i=1Ai ⊆ Rn be a finite subset satisfying
Condition (D). Let f ∈ R[t], and write

f =
dn∑
j=0

fj(t1, . . . , tn−1)tjn

with fdn 6= 0. Put A′ =
∏n−1

i=1 Ai. For all x′ = (x1, . . . , xn−1) ∈ A′, we have∑
x∈An

m(f, (x′, x)) ≤ |An|m(fdn , x
′) + dn.

Proof. Fix an x′ ∈ A′. Choose I ′ ∈ Nn−1 such that |I ′| = m(fdn , x
′) andDI′(fdn)(x′) 6= 0.

Put I = I ′ × {0} ∈ Nn. Then

DI(f) =
dn∑
j=0

DI′(fj)t
j
n,

so DI(f) 6= 0. By Lemma 9.5.3, we have

m(f, (x′, x)) ≤ |I|+m(DI(f), (x′, x)) = m(fdn , x
′) +m(DI(f), (x′, x)).

Apply Corollary 9.5.5 to DI(f) with a = (x′, 0), b = (0, 1) and c = x: we get

m(DI(f), (x′, x)) ≤ m(DI(f)(x′, tn), x).

Summing over x ∈ An gives∑
x∈An

m(f, (x′, x)) ≤ |An|m(fdn , x
′) +

∑
x∈An

m(DI(f)(x′, tn), x).

Since I = I ′ × {0}, DI(f)(x′, tn) has degree dn and thus Lemma 9.5.7 gives∑
x∈An

m(DI(f)(x′, tn), x) ≤ dn.

The result follows.

9.5.3. Multiplicity Enhanced Theorems

Theorem 9.5.9 (Multiplicity Enhanced Schwartz Theorem). Let R be a ring, let A =∏n
i=1 Ai ⊆ Rn be finite, nonempty and satisfy Condition (D), and let f = fn ∈ F [t1, . . . , tn]

be a nonzero polynomial. Let dn = degtn f , and let fn−1 ∈ R[t1, . . . , tn−1] be the coefficient
of tdnn in fn. Let dn−1 = degtn−1

fn−1, and let fn−2 ∈ R[t1, . . . , tn−2] be the coefficient
of tdn−2

n−2 in fn−2. Continuing in this manner we define for all 1 ≤ i ≤ n a polynomial
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fi ∈ R[ti, . . . , tn] with degti fi = di. Then

∑
x∈A

m(f, x) ≤ |A|
n∑
i=1

di
|Ai|

.

Proof. We prove this by induction on n. The case n = 1 is Lemma 9.5.7. Suppose the
result holds for polynomials in n− 1 variables. Let A′ =

∏n−1
i=1 Ai. Applying Lemma 9.5.8

and then the induction hypothesis, we get∑
x∈A

m(f, x) =
∑
x′∈A′

∑
x∈An

m(f, (x′, x)) ≤ |An|
∑
x′∈A′

m(fn−1, x
′) + |A′|dn

≤ |An||A′|
n−1∑
i=1

di
|Ai|

+ |A| dn
|An|

= |A|
n∑
i=1

di
|Ai|

.

Theorem 9.5.10 (Multiplicity Enhanced Schwartz-Zippel Lemma). Let A =
∏n

i=1 Ai ⊆
Rn be a finite grid satisfying Condition (D), and suppose |A1| ≥ · · · ≥ |An|. Let f ∈
R[t1, . . . , tn] be a nonzero polynomial. Then

∑
x∈A

m(f, x) ≤ (deg f)
n−1∏
i=1

|Ai|.

Proof. Define di’s and fi’s as in Theorem 9.5.9. Then the coefficient of td11 · · · tdnn is
non-zero in f , and hence

∑n
i=1 di ≤ deg f . Thus we have

∑
x∈A

m(f, x) ≤ |A|
n∑
i=1

di
|Ai|
≤ |A1| · · · |An−1|

n∑
i=1

di ≤ (deg f)
n−1∏
i=1

|Ai|.

Remark. (1) When R is a field, Theorem 9.5.9 was proved by Geil and Thomsen [85,
Theorem 5]. They also build closely on [78].

(2) Unlike most of the other results presented here, Theorem 9.5.9 is not claimed to
be sharp in all cases. In fact, it is not always sharp, and Geil and Thomsen give
significant discussion of this point including an algorithm which sometimes leads to
an improved bound [85, Theorem 6] and further numerical exploration.

(3) When R is a field and A1 = · · · = An, then Theorem 9.5.10 appears as Lemma 2.7
in [78].

9.5.4. A Counterexample

It is natural to ask whether Alon-Füredi holds in multiplicity enhanced form, i.e., whether
the bound

|ZA(f)| ≤ |A| −m(|A1|, . . . , |An|;
n∑
i=1

|Ai| − deg f)
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could be improved to

∑
x∈A

m(f, x) ≤ |A| −m(|A1|, . . . , |An|;
n∑
i=1

|Ai| − deg f),

in Theorem 9.1.1. The following example shows that such an improvement does not
always hold.

Example. Let n = 2 and let S = A1 = A2 be a finite subset of s elements in R which
contains 0, and put A = S × S. Let d1, d2 ∈ Z+ be such that d1, d2 < s ≤ d1 + d2. Then
f = td11 t

d2
2 is A-reduced, and we have m(s, s; 2s−d1−d2) = 2s−d1−d2−1 (by the greedy

distribution). But∑
x∈A

m(f, x) = s(d1 + d2) > s2 − 2s+ d1 + d2 + 1 = s2 −m(s, s; 2s− d1 − d2),

since (s−1)(d1 +d2) > (s−1)2 (we have assumed d1 +d2 > s−1) and thus the multiplicity
enhanced version of Alon-Füredi would not hold in this case.

Remark. Since s(d1 + d2) > s(d1 + d2) − d1d2 = s2 − (s − d1)(s − d2), we can use the
polynomial td11 t

d2
2 , for any d1, d2 < s to show that the multiplicity enhanced version of

DeMillo-Lipton-Zippel Theorem (see Theorem 9.4.5) does not hold in all cases either.

9.6. Connections with Coding Theory

A q-ary linear code of length n is simply a subspace C of Fnq . The most important
parameter of a code is the Hamming distance d(C) = min{d(x, y) | x, y ∈ C, x 6= y} where
d(x, y) for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq is equal to |{i ∈ {1, . . . , n} | xi 6= yi}|.
For linear codes d(C) is simply equal to min{w(x) | x ∈ C} where w(x) = d(x, 0) is the
Hamming weight of x. These notions can be defined over arbitrary fields F and rings R
as well. We refer to [106] for more background on Coding Theory. In this section we will
see how the Alon-Füredi Theorem and its generalization are essentially statements that
give the Hamming distance of certain linear codes.

Over the finite field Fq, we can consider the whole space Fnq as a finite grid. Then the set
of reduced polynomials with respect to this grid (see Chapter 8) are simply called reduced
polynomials. We denote the set of reduced polynomials by P(n, q); it is an Fq-vector space
of dimension qn. The evaluation map gives an Fq-linear isomorphism

E : P(n, q)→ FFn
q
q , f 7→ (x ∈ Fnq 7→ f(x)).

Fixing an ordering α1, . . . , αqn of Fnq , this isomorphism allows us to identify each f ∈
P(n, q) with its value table (f(α1), . . . , f(αqn)). For d ∈ N we denote by Pd(n, q) the set
of all reduced polynomials of degree at most d. The dimension of Pd(n, q) is equal to
the number of integer solutions to e1 + · · · + en ≤ d, e1, . . . , en ≥ 0. The evaluation map
restricted to Pd(n, q) also gives an injective Fq-linear map.

Definition. The set of all value tables of all polynomials in Pd(n, q) is called the d-th
order generalized Reed-Muller code of length qn, denoted by GRMd(n, q).
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For q = 2, these codes were introduced and studied by Muller [113] and Reed [120].
These were generalized to arbitrary q by Kasami, Lin and Peterson [98] who also gave
an explicit formula for the minimum distance of the generalized Reed-Muller codes. A
systematic study of these codes in terms of the polynomial formulation was conducted by
Delsarte, Goethals and MacWilliams in [71], where they also classified all the minimum
weight codewords. We will prove the result of Kasami, Lin and Peterson [98, Theorem
5] using the Alon-Füredi Theorem, thus giving shorter and more elementary proof than
the original. While (binary) Reed-Muller codes are mentioned by Alon and Füredi in [3]
under Corollary 1, the connection between [3, Theorem 5] and generalized Reed-Muller
codes is not explored.

Theorem 9.6.1 (Kasami-Lin-Peterson). The minimum weight of the d-th order Gener-
alized Reed-Muller code GRMd(n, q) is equal to (q− b)qn−a−1 where d = a(q− 1) + b with
0 < b ≤ q − 1.
Proof. The minimum weight of GRMd(n, q) is equal to the least number of nonzero
values taken by a nonzero reduced polynomial of degree at most d, which by Alon-Füredi
and its sharpness is equal to m(q, . . . , q;nq − d). Moreover we have

(nq − d)− n = n(q − 1)− a(q − 1)− b = (n− a− 1)(q − 1) + q − 1− b,

and
0 ≤ q − 1− b < q − 1,

so by Lemma 9.2.1 we have

m(q, . . . , q;nq − d) = (q − b)qn−a−1.

The Generalized Alon-Füredi Theorem can also be stated in terms of coding theory.
Let A =

∏n
i=1 Ai be a finite grid in Rn satisfying Condition (D), with ai = |Ai| for

i ∈ {1, . . . , n}. Given positive integers bi ≤ ai for all i ∈ {1, . . . , n}, and a natural number
d ≤

∑n
i=1(ai − bi), we define the generalized affine grid code GAGCd(A; b1, . . . , bn) as the

set of value tables of all polynomials f ∈ R[t] with degti f ≤ ai− bi for all i and deg f ≤ d
evaluated on A. We put

AGCd(A) = GAGCd(A; 1, . . . , 1)

and speak of affine grid codes. Then from Theorem 9.1.2 (similar to Theorem 9.6.1) it
follows that:

Theorem 9.6.2. The minimum weight of GAGCd(A; b1, . . . , bn) is
m(a1, . . . , an; b1, . . . , bn;

∑n
i=1 ai − d).

Affine grid codes were studied in [109] under the name of Affine Cartesian Codes, where
they proved the following:

Theorem 9.6.3 ( [109, Thm. 3.8]). Let F be a field and A =
∏n

i=1Ai ⊆ F n a finite grid
with |A1| ≥ · · · ≥ |An| ≥ 1. Then the minimum weight of AGCd(A) is{

|A1| · · · |Ak−1|(|Ak| − `) if d ≤
∑n

i=1(|Ai| − 1)− 1,

1 if d ≥
∑n

i=1(|Ai| − 1),
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where k, ` ∈ Z are such that d =
∑n

i=k+1(|Ai|−1)+`, k ∈ {1, . . . , n} and ` ∈ {1, . . . , |Ak|−
1}.
Proof. The minimum weight of AGCd(A) is m(|A1|, . . . , |An|;

∑n
i=1 |Ai|−d). So the result

follows from Lemma 9.2.1, as the greedy distribution of

n∑
i=1

|Ai| − d =
k−1∑
i=1

(|Ai| − 1) + (|Ak| − 1− `) + n

balls is (|A1|, . . . , |Ak−1|, |Ak| − `, 1, . . . , 1).

Remark. (1) The paper [109] makes no mention of Alon-Füredi. Their proof of Theorem
9.6.3 is self-contained and thus gives a proof of Alon-Füredi with the balls in bins
constant replaced by its explicit value P (yG). On the other hand it is longer than the
other proofs of Alon-Füredi appearing in the literature.

(2) When b1 ≥ · · · ≥ bn, the greedy algorithm computes m(a1, . . . , an; b1, . . . , bn;N) and
we could give a similarly explicit description of GAGCd(A1; b1, . . . , bn).

9.7. Blocking Sets and Hyperplane Coverings

9.7.1. Partial Coverings of Grids by Hyperplanes

By a hyperplane in Rn we mean a polynomial H = c1t1 + · · ·+ cntn + r ∈ R[t] for which
at least one ci is not a zero-divisor. (Referring to the polynomial itself rather than its
zero locus in Rn will make the discussion cleaner.) A family H = {Hi}di=1 covers x ∈ Rn

if Hi(x) = 0 for some i ∈ {1, . . . , n}; H covers a subset S ⊆ Rn if it covers every point
of S, and H partially covers S otherwise. For a family H = {Hi}di=1 of hyperplane in Rn,
put

fH =
d∏
i=1

Hi.

Thus fH ∈ R[t1, . . . , tn] is a polynomial of degree d. Clearly, if H covers a point x,
then fH(x) = 0. When R is an integral domain, the converse also holds, and then we
can identify the points of Rn covered by H with the zeros of the polynomial fH that
has degree |H|. We now revisit the original combinatorial problem studied by Alon and
Füredi, which is part (3) of the following theorem. However, our proof is via Theorem
9.1.1 instead of the approach used in [3].

Theorem 9.7.1. Let R be an integral domain, let A =
∏n

i=1Ai ⊆ Rn be a finite grid,
and let H = {Hi}di=1 be family of hyperplanes in Rn.

(1) If H partially covers A, then H fails to cover at least m(|A1|, . . . , |An|;
∑n

i=1 |Ai| − d)
points of A.

(2) For all d ∈ Z+, there is a family of hyperplane {H1, . . . , Hd} where each Hi is of the
form tji −xi for some ji ∈ {1, . . . , n} and xi ∈ Aji such that this family covers all but
exactly m(|A1|, . . . , |An|;

∑n
i=1 |Ai| − d) points of A.

(3) If H covers all but exactly one point of A, then d ≥
∑n

i=1(|Ai| − 1).
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Proof. (1) As above, H covers x ∈ Rn iff fH(x) = 0. Now apply the Alon-Füredi
Theorem to fH.

(2) The sharpness construction of Section 9.3.1 is precisely of this form.

(3) Say H covers all points of A except one. Then

1 = UA(fH) ≥ m(|A1|, . . . , |An|;
n∑
i=1

|Ai| − d).

Now if d <
∑n

i=1(|Ai|−1), then
∑n

i=1 |Ai|−d ≥ n+1, and since m(|A1|, . . . , |An|;n+
1) = 2, we get a contradiction by using Lemma 9.2.3.

Remark. (1) The proof of Theorem 9.7.1(3) can clearly be adapted to any polynomial of
degree d which vanishes on all points of the grid except one. In this manner we get
an alternate proof of Lemma 8.2.1 using the Alon-Füredi theorem.

(2) Let R = Z/4Z. Then we have a family of 5 lines in R2 which cover all points of R2

except the origin, given by H = {t1 − 1, t1 − 2, t1 − 3, t2 − 2, t1 + 2t2 − 2}. Therefore,
Theorem 9.7.1 need not be true when R is not an integral domain. In fact, this
example can be generalized to show that Theorem 9.7.1 does not hold for any finite
grid A in Rn which does not satisfy Condition (D). When A does satisfy Condition
(D), and R is not an integral domain, we do not know if the result is true.

We complement Theorem 9.7.1 by computing the minimum cardinality of a hyperplane
covering of a finite grid (not necessarily satisfying Condition (D)) over a ring R.

Theorem 9.7.2. Let A =
∏n

i=1 Ai ⊆ Rn be a finite grid, and let H = {Hi}di=1 be a
hyperplane covering of A. Then d ≥ min{|Ai| | i ∈ {1, . . . , n}}.

Proof. First we observe that if A satisfies Condition (D) then the result is almost im-
mediate: going by contraposition, if d ≤ |Ai| − 1 for all i ∈ {1, . . . , n} then fH is nonzero
and A-reduced, so it cannot vanish identically on A by Lemma 8.1.5. Now we give a
non-polynomial method proof in the general case. Without loss of generality assume
|A1| ≥ · · · ≥ · · · ≥ |An|. We claim that any hyperplane H =

∑n
i=1 citi + g covers at most∏n−1

i=1 |Ai| points of A: this suffices, for then d ≥ |An|.

Proof of claim: Fix i ∈ {1, . . . , n} such that ci is not a zero-divisor in R. Let π : Rn →
Rn−1 be the projection (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn). Then

A =
∐

x′=(x1,...,xi−1,xi+1,...,xn)∈π(A)

{x1} × · · · × {xi−1} × Ai × {xi+1} × . . . {xn}

is a partition of A into |π(A)| =
∏

j 6=i |Aj| nonempty subsets, each one of which meets H
in at most one point since ci is not a zero divisor. So

| (Z(H) ∩ A) | ≤
∏
j 6=i

|Aj| ≤
n−1∏
i=1

|Ai|.
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Conjecture 9.7.3. Let R be a ring, and let A1, . . . , An ⊆ R be nonempty (but possibly
infinite). Let H = {Hj}j∈J be a covering of the grid A =

∏n
i=1Ai by hyperplanes. Then

|J | ≥ min{|Ai| | i ∈ J}.

Remark. (1) For i ∈ {1, . . . , n}, let Bi ⊆ Ai ⊆ R. Then we need at least as many
hyperplanes to cover

∏n
i=1 Ai as we do to cover

∏n
i=1Bi. Together with Theorem

9.7.2 it follows that in the setting of Conjecture 9.7.3 we need at least min(|Ai|,ℵ0)
hyperplanes, since if A is infinite then for every finite subgrid B = B1 × · · · × Bn of
A we need at least min{|Bi|} hyperplanes to cover it. Thus Conjecture 9.7.3 holds
when R is countable.

(2) When R is a field and A = Rn, Conjecture 9.7.3 is a case of [48, Theorem 3].

9.7.2. Partial Covers and Blocking Sets in Finite Geometries

The same ideas can be used to prove old and new results about projective and affine
spaces over finite fields.

Let PG(n, q) denote the n-dimensional projective space over Fq and let AG(n, q) denote
the n-dimensional affine space over Fq. The set AG(n, q) comes equipped with a sharply
transitive action of the additive group of Fnq and thus a choice of a point x ∈ AG(n, q)
induces an isomorphism AG(n, q) ∼= Fnq . We will make such identifications without further
comment.

A partial cover of PG(n, q) is a set of hyperplanes that do not cover all the points. The
points missed by a partial cover are called holes.

Theorem 9.7.4. Let H be a partial cover of PG(n, q) of size k ∈ Z+. Then H has at
least m(q, . . . , q;nq − k + 1) holes.

Proof. Let H ∈ H. Then PG(n, q) \H ∼= AG(n, q) so H \H is a partial cover of Fnq by
k− 1 hyperplanes. As in Theorem 9.7.1, there are at least m(q, . . . , q;nq− (k− 1)) points
not covered by H.

Corollary 9.7.5. If 0 ≤ a < q, a partial cover of PG(n, q) of size q + a has at least
qn−1 − aqn−2 holes.

Proof. By Theorem 9.7.4 there are at least m(q, . . . , q; (n − 1)q − a + 1) holes. Since
0 ≤ a < q, the greedy distribution is (q, . . . , q, q − a, 1), and the result follows.

Dodunekov, Storme and Van de Voorde have shown that a partial cover of PG(n, q) of
size q + a has at least qn−1 − aqn−2 holes if 0 ≤ a < q−2

3
[75, Theorem 17]. Corollary

9.7.5 gives an improvement in that the restriction on a is relaxed. They also show that if
a < q−2

3
and the number of holes are at most qn−1, then they are all contained in a single

hyperplane. We cannot make any such conclusions from our arguments.

Projective duality yields a dual form of Theorem 9.7.4: k points in PG(n, q) which do not
meet all hyperplanes must miss at least m(q, . . . , q;nq − k + 1) of them. Thus:

Theorem 9.7.6. Let S be a set of k points in AG(n, q). Then there are at least m(q, . . . , q;nq−
k + 1)− 1 hyperplanes of AG(n, q) which do not meet S.
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Proof. Add a hyperplane at infinity to get to the setting of PG(n, q) and then apply the
dual form of Theorem 9.7.4.

The general problem of the number of linear subspaces missed by a given set of points
in PG(n, q) is studied by Metsch in [111]. We wish to note that Theorem 9.7.6 gives
the same bounds as Part a) of [111, Theorem 1.2] for the specific case when the linear
subspaces are hyperplanes.

A blocking set in AG(n, q) or PG(n, q) is a set of points that meets every hyperplane. The
union of the coordinate axes in Fnq yields a blocking set in AG(n, q) of size n(q − 1) + 1.
Doyen conjectured in a 1976 Oberwolfach lecture that n(q − 1) + 1 is the least possible
size of a blocking set in AG(n, q). A year later Jamison [94] proved this conjecture, and
then an alternate (and simpler) proof by Brouwer and Schrijver [37] was found. We are
in a position to give another proof.

Corollary 9.7.7 (Jamison-Brouwer-Schrijver). The minimum size of a blocking set in
AG(n, q) is n(q − 1) + 1.

Proof. Let B ⊆ AG(n, q) be a blocking set of cardinality at most n(q− 1). By Theorem
9.7.6, Lemma 9.2.1 and Lemma 9.2.3, there are at least

m(q, . . . , q;nq − n(q − 1) + 1)− 1 = m(q, . . . , q;n+ 1)− 1 = 1

hyperplanes which do not meet B.

Turning now to PG(n, q), every line is a blocking set. But classifying blocking sets that
do not contain any line is one of the major open problems in finite geometry. For a survey
on blocking sets in finite projective spaces, see [55, Chapter 3].

If B ⊆ PG(n, q), x ∈ B and H is a hyperplane in PG(n, q), then H is a tangent to B
through x if H ∩ B = {x}. An essential point of a blocking set B in PG(n, q) is a point
x such that B \ {x} is not a blocking set. A point x of B is essential if and only if there
is a tangent hyperplane to B through x.

Theorem 9.7.8. Let B be a blocking set in PG(n, q) and x an essential point of B. There
are at least m(q, . . . , q;nq − |B|+ 2) tangent hyperplanes to B through x.

Proof. Let H be a tangent hyperplane to B through x. Then B′ = B \ {x} ⊆ PG(n, q) \
H ∼= AG(n, q). By Theorem 9.7.6 there are at least m(q, . . . , q;nq−|B|+2)−1 hyperplanes
in AG(n, q) that do not meet B′. Since B is a blocking set all of these hyperplanes, when
seen in PG(n, q), must meet x. Thus there are at least m(q, . . . , q;nq − |B| + 2) tangent
hyperplanes to B through x.

Corollary 9.7.9 (Blokhuis-Brouwer [26]). Let B be a blocking set in PG(2, q) of size
2q − s. There are at least s+ 1 tangent lines through each essential point of B.

Proof. By Theorem 9.7.8, each essential point of B has at least

m(q, q; 2q − (2q − s) + 2) = m(q, q; s+ 2)

tangent lines. Since |B| = 2q− s < q2 + q + 1 = |PG(2, q)|, there exists x ∈ PG(2, q) \B.
There are q + 1 lines through x, so 2q − s = |B| ≥ q + 1. Thus s + 1 ≤ q, so the greedy
distribution is (s+ 1, 1) and m(q, q; s+ 2) = s+ 1.
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Corollary 9.7.10 ( [75, Theorem 7]). If 0 ≤ a < q, there are at least qn−1−aqn−2 tangent
hyperplanes through each essential point of a blocking set of size q + a+ 1 in PG(n, q).
Proof. By Theorem 9.7.8 and the proof of Corollary 9.7.5, each essential point of B has
at least m(q, . . . , q;nq − (q + a+ 1) + 2) = qn−1 − aqn−2 tangent hyperplanes.
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A. Nederlandstalige samenvatting

Deze thesis bestaat uit twee delen. In het eerste deel van de thesis werd de theorie van
valuaties van schier veelhoeken, in combinatie met computerberekeningen (in GAP en
SageMath), gebruikt om enerzijds nieuwe schier achthoeken te construeren en te bestud-
eren en anderzijds om karakterisatieresultaten te bekomen van schier veelhoeken in termen
van bepaalde deelmeetkunden. In het tweede deel van de thesis wordt er dieper ingegaan
op de polynomiale methode die toelaat om via allerhande manipulaties van polynomen
bepaalde interessante resultaten uit de getallenleer, combinatoriek, eindige meetkunde, ...
te bewijzen.

A.1. Deel 1 (Hoofdstukken 1 t.e.m. 6)

Een schier veelhoek is een punt-rechte meetkunde S die aan de volgende eigenschappen
voldoet:

• Elke twee verschillende punten zijn bevat in tenhoogste één rechte.

• De collineariteitsgraad Γ van S heeft eindige diameter.

• Voor elk punt x en elke rechte L bestaat er een uniek punt op L dat het dichtst bij
x gelegen is met betrekking tot de afstand in Γ.

Ingeval d de diameter van Γ is, wordt de schier veelhoek ook een schier 2d-hoek genoemd.
Een schier veelhoek heeft orde (s, t) als elke rechte precies s + 1 punten bevat, en als
elk punt bevat is in precies t + 1 rechten. Een schier 2d-hoek met d ≥ 2 wordt een
veralgemeende 2d-hoek genoemd als de volgende additionele eigenschappen voldaan zijn:

• Elk punt is incident met tenminste twee rechten.

• Als x en y twee punten zijn op afstand i ∈ {1, 2, . . . , d− 1}, dan heeft y een unieke
buur die op afstand i− 1 van x gelegen is.

In het eerste deel van de thesis wordt veelvuldig gebruik gemaakt van volgende schier
veelhoeken.

• H(q, 1) stelt de veralgemeende zeshoek van orde (q, 1) voor die afkomstig is van het
Desarguesiaans projectief vlak PG(2, q),

• H(q) stelt de split Cayley veralgemeende zeshoek van orde (q, q) voor.

• H(q)D stelt de punt-rechte duaal van H(q) voor.

• T(q, q2) stelt de duale twisted triality hexagon van orde (q, q2) voor.

• HJ stelt de Hall-Janko schier achthoek voor die geconstrueerd werd door Cohen [52].
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Constructies van bovenvermelde veralgemeende zeshoeken kunnen gevonden worden in
het boek [140].

Eén van de hoofdresultaten uit de thesis is de constructie in Hoofdstuk 5 van twee nieuwe
schier achthoeken die een grote automorfismegroep hebben.

Theorem A.1.1. (a) Noem O1 de punt-rechte meetkunde waarvan de punten de 4095
centrale involuties van de groep G1 := G2(4):2 zijn en waarvan de rechten alle triples
{x, y, xy} zijn, waarbij x en y twee commuterende centrale involuties van G2(4):2
zijn waarvoor [G1 : NG1(〈x, y〉)] ∈ {1365, 13650}. Dan is O1 een schier achthoek
van orde (2, 10).

(b) Noem S1 de verzameling van alle rechten {x, y, z} waarbij x en y twee commuterende
involuties van G1 = G2(4):2 zijn waarvoor [G1 : NG1(〈x, y〉)] = 1365. Dan is S1 een
rechtenspread van O1. Als Q1 de verzameling van alle quads van O1 is, dan is de
punt-rechte meetkunde H1 met puntenverzameling S1 en rechtenverzameling Q1 een
veralgemeende zeshoek die isomorf is met de duale split Cayley hexagon H(4)D, als
we voor incidentie “het bevat zijn in” nemen.

(c) De automorfismegroep van O1 is isomorf met G2(4):2. The automorfismen van O1

zijn precies de toevoegingen met elementen van G2(4):2.

Theorem A.1.2. (a) Noem O2 de punt-rechte meetkunde waarvan de punten de 315
centrale involuties van de groep G2 := L3(4):22 zijn en waarvan de rechten alle triples
{x, y, xy} zijn, waarbij x en y twee commuterende centrale involuties van L3(4):22

zijn waarvoor [G2 : NG2(〈x, y〉)] ∈ {105, 420}. Dan is O2 een schier achthoek van
orde (2, 4).

(b) Noem S2 de verzameling van alle rechten {x, y, z} waarbij x en y twee commuterende
involuties van G2 = G2(4):2 zijn waarvoor [G2 : NG2(〈x, y〉)] = 105. Dan is S2 een
rechtenspread van O2. Als Q2 de verzameling van alle quads van O2 is, dan is
de punt-rechte meetkunde H2 met puntenverzameling S2 en rechtenverzameling Q2

een veralgemeende zeshoek van orde (4, 1), als we voor incidentie “het bevat zijn in”
nemen.

(c) De automorfismegroep van O2 is isomorf met L3(4):22. The automorfismen van O2

zijn precies the toevoegingen met elementen van L3(4):22.

De schier achthoeken O1 en O2 worden de G2(4) en L3(4) schier achthoeken genoemd.
In de thesis werd eveneens aangetoond dat O2 ingebed kan worden in O1 als een volle
deelmeetkunde. Naast O2 heeft de G2(4) schier achthoek O1 nog andere interessante
deelmeetkunden.

Theorem A.1.3. Onderstel dat H een maximale deelgroep is van G2(4):2 isomorf met
J2:2. Stel dat X gelijk is aan de verzameling van de centrale involuties van G2(4):2 die
bevat zijn in H. Dan is X een deelruimte van O1, en de deelmeetkunde geïnduceerd op X
door de rechten van O1 die al hun punten in X hebben, is isomorf met met Hall-Janko
schier achthoek HJ. Omgekeerd, wordt elke deelmeetkunde van O1 isomorf met HJ op deze
manier bekomen.
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Met de ontdekking van de G2(4) schier achthoek O1, kunnen we nu volgende keten van
schier veelhoeken neerschrijven:

H(2, 1) ⊂ H(2)D ⊂ HJ ⊂ O2.

Deze keten heeft sterke gelijkenissen met de Suzuki keten L3(2) ≤ U3(3) ≤ J2 ≤ G2(4) ≤
Suz van enkelvoudige groepen. De volgende karakterisaties van de “Suzuki keten schier
veelhoeken” werden bekomen in Hoofdstuk 6 van de thesis. De bewijzen steunen op de
theorie van de valuaties van schier veelhoeken die ontwikkeld werd in [59,64].

Theorem A.1.4. (a) Op isomorfie na is de duale split Cayley veralgemeende zeshoek
HD(2) de unieke schier zeshoek van orde (2, 2) die H(2, 1) bevat als een volle isometrisch
ingebedde meetkunde.

(b) Op isomorfie na is de Hall-Janko schier achthoek HJ de unieke schier achthoek van
orde (2, 4) die H(2)D bevat als een volle isometrisch ingebedde meetkunde.

(c) Op isomorfie na is de G2(4) schier achthoek O1 de unieke schier achthoek van orde
(2, 10) die HJ bevat als een volle isometrisch ingebedde meetkunde.

Eén van de belangrijkste open problemen in de theorie van de veralgemeende veelhoeken is
het al of niet bestaan van half-oneindige veralgemeende veelhoeken. Dit zijn veralgemeende
veelhoeken van orde (s, t) waarbij s ≥ 2 eindig en t oneindig is. Het volgende werd
aangetoond in Hoofdstuk 4.

Theorem A.1.5. Als q ∈ {2, 3, 4}, dan zijn er geen half-oneindige veralgemeende zeshoeken
van orde (q, t) die H(q) of H(q)D als volle deelmeetkunde bevatten.

Het bewijs in het geval van een deelmeetkunde isomorf met H(4)D steunde op volgend
resultaat uit Hoofdstuk 3, dat werd bekomen met behulp van computerberekeningen.

Theorem A.1.6. De duale split Cayley hexagon H(4)D heeft geen afstands-2-ovoïden,
d.w.z. geen puntenverzamelingen die elke rechte snijden in een singleton.

Hoofdstuk 3 is in het algemeen gewijd aan het computationeel aspect van de thesis, met
beschrijving van algoritmen en computationale technieken. De volgende resultaten over
veralgemeende zeshoeken werden eveneens in Hoofdstuk 4 aangetoond.

Theorem A.1.7. Als q ∈ {2, 4}, dan zijn er geen veralgemeende zeshoeken die H(q) als
een eigenlijke volle deelmeetkunde bevatten.

Theorem A.1.8. Elke schier zeshoek met drie punten per rechte die een isometrisch
ingebedde volle deelmeetkunde heeft isomorf met H(2)D, is isomorf met ofwel H(2)D ofwel
T(2, 8).
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A.2. Deel 2 (Hoofdstukken 7 t.e.m. 9)

Als R een ring is, dan wordt elke verzameling van de vorm A = A1× · · ·×An, waarbij Ai
een niet-ledige eindige deelverzameling van R is, een eindig rooster van Rn genoemd. We
zeggen dat zo’n rooster aan Conditie (D) voldoet als voor elke i ∈ {1, 2, . . . , n} en alle
α, β ∈ Ai met α 6= β, het element α−β geen nuldeler is van R. Er kan aangetoond worden
dat als A aan Conditie (D) voldoet, dan bestaat er voor elke veelterm f ∈ R[t1, . . . , tn] een
unieke veelterm rA(f) ∈ R[t1, . . . , tn] zodat degti rA(f) ≤ |Ai|−1 voor alle i ∈ {1, 2, . . . , n}
en f(x) = rA(f)(x) voor alle x ∈ A. Hiervan gebruik makend, werden in Hoofdstuk 8
van de thesis bewijzen gegeven van de “Combinatorial Nullstellensatz” en de “Punctured
Combinatorial Nullstellensatz”. In Hoofdstuk 8 van de thesis werd eveneens volgende
nieuwe veralgemening van het klassieke Chevalley-Warning theorema bewezen.

Theorem A.2.1. Onderstel dat A1, . . . , An, B1, . . . , Bn niet-ledige deelverzamelingen zijn
van Fq zodat Bi ⊆ Ai voor alle i ∈ {1, 2, . . . , n}. Stel A = A1 × · · · × An en B =
B1×· · ·×Bn. Onderstel eveneens dat f1, . . . , fr ∈ Fq[t1, . . . , tn] zodat (q−1)

∑r
j=1 deg fj <∑

(|Ai|−|Bi|) en definieer ZA = {x ∈
∏
Ai | ∀j fj(x) = 0}. Dan geldt dat ZA∩(A\B) 6= ∅

als ZA ∩B 6= ∅.

In Hoofdstuk 9 van de thesis, werd volgende veralgemening van het Alon-Füredi theo-
rema bewezen, en vervolgens toegepast in verschillende gebieden zoals de codeertheorie,
theoretische computerwetenschappen en eindige meetkunde.

Theorem A.2.2 (Veralgemeend Alon-Füredi Theorema). Onderstel dat A = A1 × · · · ×
An ⊆ Rn een eindig rooster is die aan Conditie (D) voldoet. Voor elke i ∈ {1, . . . , n}, stel
ai = |Ai| en noem bi een natuurlijk getal die voldoet aan 1 ≤ bi ≤ ai. Onderstel eveneens
dat f ∈ R[t1, . . . , tn] een niet-nul polynoom is die voldoet aan degti f ≤ ai − bi voor alle
i ∈ {1, . . . , n}. Definieer UA = {x ∈ A | f(x) 6= 0}. Als N ∈ N zodat

∑
bi ≤ N ≤

∑
ai,

dan stelt m(a1, . . . , an; b1, . . . , bn;N) de minimale waarde voor bereikt door alle producten
y1y2 · · · yn, waarbij

∑
yi = N en elke yi behoort tot het interval [bi, ai]. Dan geldt

|UA| ≥ m(a1, . . . , an; b1, . . . bn;
n∑
i=1

ai − deg f).

Bovendien kan voor zulke R, A1 . . . , An, b1, . . . , bn een polynoom f gevonden worden waar-
voor de ondergrens bereikt wordt.

De volgende gevolgen van het veralgemeend Alon-Füredi theorema betreffen nieuwe resul-
taten in de eindige meetkunde. Een partiële cover van PG(n, q) wordt gedefinieerd als een
collectie H van hypervlakken die niet alle punten bedekken. De punten die niet bedekt
worden, worden gaten genoemd.

Theorem A.2.3. Onderstel dat H een partiële cover van PG(n, q) is die k ≥ 1 hyper-
vlakken bevat. Dan heeft H tenminste m(q, . . . , q;nq − k + 1) gaten.

Theorem A.2.4. Als S een verzameling van k punten in AG(n, q) is, dan bestaan er
tenminste m(q, . . . , q;nq − k + 1)− 1 hypervlakken van AG(n, q) die disjunct zijn met S.

De volgende versie van het Schwartz-Zippel lemma (die rekening houdt met multipliciteiten)
werd eveneens aangetoond.
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Theorem A.2.5. Onderstel dat A =
∏n

i=1Ai ⊆ Rn een eindig rooster is met |A1| ≥ · · · ≥
|An| die aan Conditie (D) voldoet. Voor elk niet-nul polynoom f ∈ R[t1, . . . , tn] geldt dan
dat ∑

x∈A

m(f, x) ≤ (deg f)
n−1∏
i=1

|Ai|,

waarbij m(f, x) de multipliciteit van f in x voorstelt.
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