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Polar Spaces

Finite classical polar spaces are incidence geometries (points, lines,
.., generators):

e Q (2d+1,q9)/2 (2d + 2, q): Elliptic quadric.

e Q(2d,q)/Q(2d + 1, q): Parabolic quadric.

e Q™ (2d — 1,q)/Q"(2d, q): Hyperbolic quadric.

e W(2d —1,q)/Sp(2d, q): Symplectic polar space.

e H(2d — 1,¢°)/U(2d, g°): Hermitian polar space.

e H(2d,q?)/U(2d + 1, ¢°): Hermitian polar space.
In this talk:

@ All polar spaces are classical and finite.

e Focus on H(2d — 1, ¢?).
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Definition

Let Gy = (X, ~m) be a graph, where
e the vertices X are the generators (d-spaces) of H(2d — 1, ¢°),
e MC{1,...,d},

o the adjacency relation ~, is defined by x ~); y if and only if
codim(xNy) € M.
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(Distance-)Regular Graphs

Definition

Let Gy = (X, ~m) be a graph, where
e the vertices X are the generators (d-spaces) of H(2d — 1, ¢°),
o MC{1,...,d},

o the adjacency relation ~, is defined by x ~); y if and only if
codim(xNy) € M.

@ This defines a regular graph: The number of generators meeting a
fixed generator x in an i-space for some i € M is independent of x.

e Very regular: the ~y;; are the relations of an association scheme.

4/38
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M-Cliques

Problem

Let M C {1,...,d}. Let Y be a set of generators such that x,y € Y,
x # y, implies codim(x Ny) € M. Classical questions:

o What is the maximum size of Y7

@ How does an example of maximum size look like?

The set Y would be a clique of Gy,. In this talk: an M-clique.

5/38
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M-Cliques

Problem

Let M C {1,...,d}. Let Y be a set of generators such that x,y € Y,
x # y, implies codim(x Ny) € M. Classical questions:

o What is the maximum size of Y7

@ How does an example of maximum size look like?

The set Y would be a clique of Gy,. In this talk: an M-clique.

Examples
e If M = {d}, then Y is a (partial) spread (of generators).
o If M={1,...,t}, then Y is an Erd6s-Ko-Rado set (often only
t=d-1).
o If M = {t}, then Y is a constant-distance subspace code.
o If M={t+1,...,d}, then Y is a subspace code with minimum
distance t.
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Definition

The adjacency matrix A of Gy, is defined as follows:

1 ifcodim(xnNy)e M
(A)Xy = c -
0 ifcodim(xNy)é¢ M
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The Adjacency Matrix

Definition
The adjacency matrix A of Gy, is defined as follows:

1 ifcodim(xnNy)e M
(A)Xy = c .
0 ifcodim(xNy)é¢ M

The matrix Ahasuptod+1
o eigenvalues 6,01, ...,04, (in the same order)
e eigenspaces Vj, ..., Vy CR" where n:=|X],
o multiplicities fy = dim(Vg), ..., fy = dim(Vjy).

6/38
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The Adjacency Matrix

Definition
The adjacency matrix A of Gy, is defined as follows:

1 ifcodim(xnNy)e M
(A)Xy = c .
0 ifcodim(xNy)é¢ M

The matrix Ahasuptod+1
o eigenvalues 6,01, ...,04, (in the same order)
e eigenspaces Vj, ..., Vy CR" where n:=|X],
o multiplicities fy = dim(Vg), ..., fy = dim(Vjy).
The graph Gy is k-regular for some k, so w.l.o.g.
e 0y =k,

e Vo = (j), j is the all-one vector.

6/38
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Erdos-Ko-Rado Sets

Definition

Let n > 2k. Consider X = {1,...,n}. An Erd6s-Ko-Rado set (EKR
set) of X is a set Y of k-subsets of X such that the elements of Y meet
pairwise in at least t elements.

7/38
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Erdos-Ko-Rado Sets

Definition
Let n > 2k. Consider X = {1,...,n}. An Erd6s-Ko-Rado set (EKR

set) of X is a set Y of k-subsets of X such that the elements of Y meet
pairwise in at least t elements.

Examples (t = 1)
Q All k-sets that contain 1. For n =4, k = 2:

{1,2},{1,3},{1,4}.

Q n = 2k: All k-sets that do not contain n. For n =4, k = 2:

{1,2},4{1,3},{2,3}.

v

Maximum size and complete classification by Erdés, Ko, Rado (1961),
Frankl, Wilson (1986), and Ahlswede, Khachatrian (1997).

/38
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Erd6s-Ko-Rado Sets of Generators on Polar Spaces

Definition

An EKR set Y of generators on a polar space is a {1,...,t}-clique.
(Hence, the elements of Y meet pairwise in a subspace of at most
codimension t.)
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Erd6s-Ko-Rado Sets of Generators on Polar Spaces

Definition

An EKR set Y of generators on a polar space is a {1,...,t}-clique.
(Hence, the elements of Y meet pairwise in a subspace of at most
codimension t.)

Examples (t =d — 1)
© All generators on a fixed point.

@ All generators which meet a fixed generator in at most codimension
t/2.

Example

All generators on a fixed (d — t)-space.
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Some Results for t =d —1resp. M ={1,...,d — 1}

Theorem (Stanton (1980))
Tight bounds for all polar spaces except H(2d — 1, ¢?), d odd. J
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Some Results for t =d —1resp. M ={1,...,d — 1}

Theorem (Stanton (1980))
Tight bounds for all polar spaces except H(2d — 1, ¢?), d odd.

Theorem (I., Metsch (2013))

An EKR set of H(2d — 1, ¢?), d odd, has at most size ~ q(@=1°+1. (The
largest known example for d > 3 has size ~ q(4=1)"))

y

9/38
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Some Results for t =d —1resp. M ={1,...,d — 1}

Theorem (Stanton (1980))
Tight bounds for all polar spaces except H(2d — 1, ¢?), d odd.

Theorem (I., Metsch (2013))

An EKR set of H(2d — 1, ¢?), d odd, has at most size ~ q(@=1°+1. (The

largest known example for d > 3 has size ~ q@=1’.) )

Theorem (Pepe, Storme, Vanhove (2011))

The classification of all EKR sets of maximum size for all polar spaces
except H(2d — 1, ¢?), d > 3 odd.

9/38
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The Hoffman Bound

Nearly all mentioned results for EKR sets ({1, ..., t}-cliques) use the
(weighted) Hoffman bound.
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The Hoffman Bound

Nearly all mentioned results for EKR sets ({1, ..., t}-cliques) use the
(weighted) Hoffman bound.

Theorem (Hoffman Bound)
Let Y be an M-clique. Let CM :={1,...,d} \ M. Let 0., be the

smallest eigenvalue of the adjacency matrix A of Gep. Then

nemm

Y
| ‘._ k Gmm

with equality if and only if x € (j) + Vinin, where x is the characteristic
vector of Y.

10/38
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The Proof

The Hoffman Bound (Part 1)
Let CM :={1,...,d} \ M. Let A be the adjacency matrix of Geum.

11/38



Polar Spaces EKR Sets Crossintersecting EKR Sets Spreads & Constant Distance Sets

0000 0000800000 000000000 0000000000000

The Proof

The Hoffman Bound (Part 1)

Let CM :={1,...,d} \ M. Let A be the adjacency matrix of Gcp. The
matrix A has d + 1 eigenvalues 0;, eigenspaces V;, and A can be
decomposed into pairwise orthogonal, idempotent matrices E;:

k
A:;J+01E1+...+9dEd.

11/38
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The Proof

The Hoffman Bound (Part 1)

Let CM :={1,...,d} \ M. Let A be the adjacency matrix of Gcp. The
matrix A has d + 1 eigenvalues 0;, eigenspaces V;, and A can be
decomposed into pairwise orthogonal, idempotent matrices E;:

k
A:;J+01E1+...+9dEd.

If Y is an M-clique, then the characteristic vector x € R” of Y satisfies

xTAx = 0.

11/38
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The Proof

The Hoffman Bound (Part 1)

Let CM :={1,...,d} \ M. Let A be the adjacency matrix of Gcp. The
matrix A has d + 1 eigenvalues 0;, eigenspaces V;, and A can be
decomposed into pairwise orthogonal, idempotent matrices E;:

k
A:;J+91E1+...+9dEd.

If Y is an M-clique, then the characteristic vector x € R” of Y satisfies
xTAx = 0.

The vector x can be decomposed into eigenvectors:

k.
X:;J+Elx+---+EdX-

11/38



The Hoffman Bound (Part 2)

k
A=;J—|—01E1—|—...+0dEd,

k.
X=;.I+E1X+---+EdX, and x"Ax = 0.
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The Hoffman Bound (Part 2)

k

A:;J+01E1+...+0dEd,
k

X = ;j—!—Elx—F...—i—de, and XTszO.

Hence,

T Tk

0=X AXZX (;J+01E1+...+9dEd)X
k

= ;|Y|2 + 01|Erx |2+ ... + 04| Eax|?

k

> Z| Y2 4 Omin| EminX |2
n

Here Oin < 0 is the smallest eigenvalue of A.
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The Hoffman Bound (Part 3)

0 Z k|Y|2 a4 nemin|EminX|2-
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The Hoffman Bound (Part 3)

0> k|Y|2 + namin|EminX|2-
Furthermore,

Y|?,.
Y1 =xP = DRy + 1 4 (B >

|YP?

== |EminX|2-
n
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The Hoffman Bound (Part 3)

0> k|Y|? + nBmin| EminX|?.

Furthermore,

Y|?,.
Y1 =xP = DRy + 1 4 (B >

This yields the Hoffman bound

namm
Y
| | o k Ormin

YP?

Spreads & Constant Distance Sets

0000000000000

== |EhﬁnX12-
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The Hoffman Bound (Part 3)

0> k|Y|2 + namin|EminX|2'

Furthermore,

Y|?,.
Y1 =xP = DRy + 1 4 (B >

This yields the Hoffman bound

ngmm
Y
| ‘ o k Ormin

with equality if and only if

k
X = _J 2 EmlnX S <J> mln

Spreads & Constant Distance Sets

0000000000000

YP?

== |EminX|2-
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The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let O, be the smallest eigenvalue of the
adjacency matrix A of Gepy. Then

*namin
Y < —
| ‘ T k- emin

with equality if and only if x € (j) + Vinin, where x is the characteristic
vector of Y.

14/38
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The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let O, be the smallest eigenvalue of the
adjacency matrix A of Gepy. Then

*namin
Y < —
| ‘ T k- emin

with equality if and only if x € (j) + Vinin, where x is the characteristic
vector of Y.

V.

This bound is sufficient for the results on EKR sets by Stanton (1980),
Pepe, Storme, Vanhove (2011).

14/38
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The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let O, be the smallest eigenvalue of the
adjacency matrix A of Gepy. Then

*namin
Y < —
| ‘ T k- emin

with equality if and only if x € (j) + Vinin, where x is the characteristic
vector of Y.

This bound is sufficient for the results on EKR sets by Stanton (1980),
Pepe, Storme, Vanhove (2011).
The proof never uses that A is the adjacency matrix! Only

x T Ax <0 if y is the characteristic vector of an M-clique

is necessary.

14/38
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Linear Programming and the Hoffman Bound

Problem

How does one find matrices A’ satisfying the following?

x"A'x <0 if x is the characteristic vector of an M-clique (1)

SOlUtiOn (Delsarte's LP b0und): Consider linear combinations A/ of
J,E,...,Eq with A} <0 if Aj =0.

15/38
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Linear Programming and the Hoffman Bound

Problem
How does one find matrices A’ satisfying the following?

x"A'x <0 if x is the characteristic vector of an M-clique (1)

So|uti0n (Delsarte's LP b0und): Consider linear combinations A/ of
J,E,...,Eq with A} <0 if Aj =0.

Example (H(5, ¢°), {1,2}-cliques)

@ The adjacency matrix A for the disjointness graph has the
eigenvalues ¢°, ¢, —g*, —q°.

@ The Hoffman bound yields approximately | Y| < ¢°.

15/38
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Linear Programming and the Hoffman Bound

Problem

How does one find matrices A’ satisfying the following?

x"A'x <0 if x is the characteristic vector of an M-clique (1)

So|uti0n (Delsarte's LP b0und): Consider linear combinations A/ of
J,E,...,Eq with A} <0 if Aj =0.

Example (H(5, ¢°), {1,2}-cliques)

@ The adjacency matrix A for the disjointness graph has the
eigenvalues ¢°, ¢, —g*, —q°.
@ The Hoffman bound yields approximately | Y| < ¢°.

o There exists an A’ as in (1) that has —g° as its smallest eigenvalue.

@ The weighted Hoffman bound yields approximately | Y| < ¢°.

A variant of this technique was used to prove better upper bounds for
H(2d — 1,4°), d odd, by I., Metsch (2013).
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What if t <d — 17

Some geometrical results on EKR sets with pairwise intersections in at
least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1,2}-cliques in non-Hermitian polar spaces.
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What if t <d — 17

Some geometrical results on EKR sets with pairwise intersections in at
least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1,2}-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

@ A classification of examples of maximum size for t < cv/d for some
constant c.

o Estimates of the (non-weighted) Hoffman bound for all t.

16/38
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What if t <d — 17

Some geometrical results on EKR sets with pairwise intersections in at
least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1,2}-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

@ A classification of examples of maximum size for t < cv/d for some
constant c.

o Estimates of the (non-weighted) Hoffman bound for all t.

Theorem (De Boeck)

o Classification of all EKR sets of planes (not necessarily generators)
in nearly all polar spaces.

o Classification of EKR sets on QT(4n+1,q) fort =d — 1.

16/38
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Further Improvements?

How to determine the maximum size of an EKR set in H(2d — 1, ¢°)?
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Further Improvements?

How to determine the maximum size of an EKR set in H(2d — 1, ¢°)?

Idea

Let Y be a EKR set ({1,..., t}-clique) of H(2d — 1, ¢?). Let P be a
point of H(2d — 1, ¢?). Let Y; be subset of Y on P, and let
Y2 = Y\ Yl.

17/38
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Further Improvements?

How to determine the maximum size of an EKR set in H(2d — 1, ¢°)?

Idea

Let Y be a EKR set ({1,..., t}-clique) of H(2d — 1, ¢?). Let P be a
point of H(2d — 1, ¢?). Let Y; be subset of Y on P, and let

Y, := Y\ Yi. Then the projection of the elements of Y from P onto a
H(2d — 3, g°) creates cross-intersecting EKR sets Y; and Ya:

@ The projected elements of Y; meet all elements of Y5 in at least
codimension t.

@ The projected elements of Y, meet all elements of Y; in at least
codimension t.

17/38
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Further Improvements?

How to determine the maximum size of an EKR set in H(2d — 1, ¢°)?

Idea

Let Y be a EKR set ({1,..., t}-clique) of H(2d — 1, ¢?). Let P be a
point of H(2d — 1, ¢?). Let Y; be subset of Y on P, and let

Y, := Y\ Yi. Then the projection of the elements of Y from P onto a
H(2d — 3, g°) creates cross-intersecting EKR sets Y; and Ya:

@ The projected elements of Y; meet all elements of Y5 in at least
codimension t.

@ The projected elements of Y, meet all elements of Y; in at least
codimension t.

Can this be used to improve results on EKR sets?

17/38
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Maximum Size?

Definition
A cross-intersecting EKR set is a pair of sets of generators Y7, Y such
that
@ the elements of Y; meet all elements of Y5 in at least codimension t,
@ the elements of Y, meet all elements of Y7 in at least codimension t.

18/38
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Maximum Size?

Definition
A cross-intersecting EKR set is a pair of sets of generators Y7, Y such
that
@ the elements of Y; meet all elements of Y5 in at least codimension t,
@ the elements of Y, meet all elements of Y7 in at least codimension t.

How do we measure the size of a cross-intersecting EKR set? There are
many possibilities:

@ The product: |Yi|-|Ya|.
@ The sum: |Yi| +|Ya|.

18/38
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Maximum Size?

Definition
A cross-intersecting EKR set is a pair of sets of generators Y7, Y such
that
@ the elements of Y; meet all elements of Y5 in at least codimension t,
@ the elements of Y, meet all elements of Y7 in at least codimension t.

How do we measure the size of a cross-intersecting EKR set? There are
many possibilities:

The product: |Y1| - |Yal.

The sum: |Yi| +|Y2|.

Some linear combination: |Y1| + q|Ya|.
Something silly: el .| 5| + log(| Y1)
In this talk: |- |Ya.
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The (weighted) Hoffman Bound
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The Hoffman bound for cross-intersecting sets was used by ...

@ Vector spaces: “The eigenvalue method for cross t-intersecting
families.”, Tokushige (2013).

o Permutations: “Intersecting families of permutations.”, Ellis,
Friedgut, Pilpel (2011).

@ Coding Theory: “Scalable secure storage when half the system is
faulty.”, Alon, Kaplan, Krivelevich, Malkhi, Stern (2000).

19/38
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The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Yy, Y, be an cross-intersecting EKR set. Let 05 max be a second
largest absolute eigenvalue of the adjacency matrix A of Gyy1,.. dy-

-1 max
VIV Y] < Lolfmerd

k + |92 maxl
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The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Yy, Y, be an cross-intersecting EKR set. Let 05 max be a second
largest absolute eigenvalue of the adjacency matrix A of Gyy1,.. dy-

- |0 max
VIV Y] < Lolfmerd

k + |92 maxl

with equality if and only if x; € (j) + V_ + V,, where
@ x; Is the characteristic vector of Y,
e V. is the eigenspace corresponding to |02 max| (if it exists),
e V_ is the eigenspace corresponding to — |0 max| (if it exists).

20/38
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The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y1, Y> be an cross-intersecting EKR set. Let 0, max be a second
largest absolute eigenvalue of the adjacency matrix A of Gyi1,.. dy-

n- |92ma><‘

Yi| - | Yo € ————
| 1| | 2‘_k+|92max|

with equality if and only if x; € (j) + V_ + V., where
@ X, is the characteristic vector of Y;,
e V. is the eigenspace corresponding to |02 max| (if it exists),

o V_ is the eigenspace corresponding to —|0; max| (if it exists).

@ The proof is the same. Only with 0 = x/ Ay, instead of 0 = x T Ax.
@ Again, A can be replaced with other matrices A’ with 0 > y{ A’x.
@ Hence, everything works the same as in the “normal” case.

20/38
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The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y1, Y, be an cross-intersecting EKR set. Let 05 max be a second
largest absolute eigenvalue of the adjacency matrix A of Gyiy1,.. 4}

n- |92max‘

Yi| - | Yo € ————
| 1| | 2|_k+|02max|

with equality if and only if x; € (j) + V_ + V., where
@ X is the characteristic vector of Y;,

o V, is the eigenspace corresponding to |02 max| (if it exists),

o V_ is the eigenspace corresponding to —|0; max| (if it exists).

The proof reveals some more details:
o If x1 € (j) + V_, then Y; = Ys is an EKR set.
o If xy=aj+v_ 4+ vy (withve € V_, vy € V3),
then x2 = aj + v_ — vy

20/38
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Some Results for M = {1,...,d — 1}

Example
The matrix A that belongs to Q™ (5, g) has the eigenvalues

q° —q° ¢ ¢k

The absolute second largest eigenvalue is the smallest eigenvalue.

21/38
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Some Results for M = {1,...,d — 1}

Example
The matrix A that belongs to Q (5, g) has the eigenvalues

q° —q° ¢ ¢k

The absolute second largest eigenvalue is the smallest eigenvalue. Hence,
Y7 = Y, the classification of all EKR sets by Pepe, Storme, and
Vanhove is sufficient.

Theorem

For all polar spaces except H(2d — 1,q°), Q" (2d — 1,q) (if d even),
Q(2d, q) (if d even), and W(2d — 1, q) (d, g both even) the
cross-intersecting EKR sets of maximum size are EKR sets.
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Q*(2d —1,q) and Q(2d, q), d even

Example (Q*(7,q))

q° —q° g —q q°.
@ The absolute second largest eigenvalue is the second largest
eigenvalue.

@ Y; are the latins of Q7 (7, q), Y, are the greeks of Q7 (7, q).
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Q*(2d —1,q) and Q(2d, q), d even

Example (Q*(7,q))

q° —q° g —q q°.
@ The absolute second largest eigenvalue is the second largest
eigenvalue.

@ Y; are the latins of Q7 (7, q), Y, are the greeks of Q7 (7, q).

Example (Q(8, q))

q'° —qf q* g q°.

@ The absolute second largest eigenvalue is the second largest
eigenvalue as well as the smallest eigenvalue.
o Either Y; = Y, or the Q™ (7, q) example.
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H(2d - 17 q2)

Example
H(5,¢°): ¢°
H(7,¢°): q'

Crossintersecting EKR Sets

00000000
—q* g —qf
—q° b —q

Spreads & Constant Distance Sets

0000000000000

resp.

@ The blue eigenvalues belong to nice EKR sets.

@ The bold eigenvalues are the smallest.

@ The red eigenvalues are the absolute second largest.
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H(2d - 17 q2)

Example
H(5,¢°): ¢° —q* g —q° resp.
H(7.¢*): ¢ —q° q° —q’ q'?

@ The blue eigenvalues belong to nice EKR sets.
@ The bold eigenvalues are the smallest.
@ The red eigenvalues are the absolute second largest.
The bounds for \/[Y1] - [ Yal.
@ The cross-intersecting Hoffman bound yields ~ q?(¢=1).
@ The cross-intersecting Hoffman bound with LP yields ~ q(d*1)2+1.

® The largest known examples have size ~ q° for d =3, q*%/2 for
d =4, and q(d’l) for d > 4.
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Largest Known Examples on H(2d — 1, ¢°)

Example (H(5, ¢°))

Y1 = Y5 is the set of all generators meeting a fixed plane in at least a

line: \/|Y1] - |Ya| = ¢°.

Example (H(7, ¢?))

Y; is the set of all generators meeting a fixed generator G in at least a
line, Y5 the set of all generators meeting G in at least a plane:

VIVl Y] = q*/2.
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Largest Known Examples on H(2d — 1, ¢°)

Example (H(5, ¢°))

Y1 = Y5 is the set of all generators meeting a fixed plane in at least a
line: \/|Y1] - |Ya| = ¢°.

Example (H(7, ¢?))

Y; is the set of all generators meeting a fixed generator G in at least a
line, Y5 the set of all generators meeting G in at least a plane:

VIVl Y] = q*/2.

Example (H(9, ¢°))
Y1 = Y is the set of all generators on a fixed point: /| Y1|-|Y2| ~ ¢°.
v

Example (H(11, ¢%))
Y1 = Y is the set of all generators on a fixed point: \/|Y1| - |Ya| ~ ¢%.
V.
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Summary for H(2d — 1, ¢?)

Theorem (l., Metsch (2013))
Let Y be an EKR set, d odd. Then

Y| < q(d—1)2+1.

Spreads & Constant Distance Sets
0000000000000

Theorem

Let Y1, Y, be a cross-intersecting EKR set. Then

VIV Vel 5 g+,
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Summary for H(2d — 1, ¢?)

Theorem (I., Metsch (2013))
Let Y be an EKR set, d odd. Then

|Y| < q(d—1)2+1.

Spreads & Constant Distance Sets
0000000000000

Theorem

Let Y1, Y, be a cross-intersecting EKR set. Then

VIV Vel 5 g+,

4
Examples
The largest known examples:

o H(5.4%): /[ [Val m g4+,

o H(7,¢?): m% q(d—1)2+1/2_

o H(2d —1,¢%): /[Vi]- [Ya] = g4~V )
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Spreads

@ An EKR set has pairwise intersections in {1,...,t}.

@ The dual problem: a set Y with pairwise intersections in
{t+1,...,d}.
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Spreads

An EKR set has pairwise intersections in {1,...,t}.

(]

The dual problem: a set Y with pairwise intersections in
{t+1,...,d}.
If t = d — 1, then such a set is called a partial spread.

If Y partitions the points, then it is a spread.
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Spreads

@ An EKR set has pairwise intersections in {1,...,t}.

@ The dual problem: a set Y with pairwise intersections in
{t+1,...,d}.

o If t =d — 1, then such a set is called a partial spread.
o If Y partitions the points, then it is a spread.
History:
@ In 1981 J. A. Thas publishes “Ovoids and spreads of finite classical
polar spaces.”, a first complete survey of spreads on polar spaces.

@ Upper bounds for the size of partial spreads and sets reaching
these bounds were investigated since the 70's.
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Theorem (J. A. Thas (1981/1990))
The Hermitian polar space H(2d — 1, g) has no spread. J
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Theorem (J. A. Thas (1981/1990))
The Hermitian polar space H(2d — 1, g?) has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))

A partial spread of H(2d — 1, q?), d even, has at most
° %(q3 + g + 2) elements if d = 2 (sharp for g = 2,3),
(Dye (q = 2, 1992), Ebert, Hirschfeld (q = 3, 1999))
o g%l — ¢39/2(,/q — 1) elements if d > 2.
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Theorem (J. A. Thas (1981/1990))
The Hermitian polar space H(2d — 1, g?) has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))

A partial spread of H(2d — 1, q?), d even, has at most
° %(q3 + g + 2) elements if d = 2 (sharp for g = 2,3),
(Dye (q = 2, 1992), Ebert, Hirschfeld (q = 3, 1999))
o g%l — ¢39/2(,/q — 1) elements if d > 2.

Theorem (De Beule, Metsch (d = 3, 2007)/Vanhove (2009))
A partial spread of H(2d — 1, %), d odd, has at most

q¢+1

elements. This bound is sharp.
(Agulglia, Cossidente, Ebert (d = 3, 2003)/Luyckx (2008))
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More Results

Theorem (Vanhove (2011))
A {t}-clique of H(2d — 1, ¢?), t odd, has at most

g +1

elements.
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More Results

Theorem (Vanhove (2011))

A {t}-clique of H(2d — 1, ¢?), t odd, has at most
g +1
elements. )
Theorem (l. (2014))
A {t}-clique of H(2d — 1, g®) has at most
. qq2d_2 =1
g+1
elements. )
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let 0o be the smallest eigenvalue of the
adjacency matrix A of Gyy. Then

k

min

Y| <1-

with equality if and only if the characteristic vector x of Y satisfies
x € V&

min*
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let 0o be the smallest eigenvalue of the
adjacency matrix A of Gyy. Then

k

min

Y| <1-

with equality if and only if the characteristic vector x of Y satisfies
x € V&

min*

Theorem (Godsil (1978))

Let f; be the multiplicity of an eigenvalue of the adjacency matrix A of
Gyty not equal to k. Then

Y| <1+f;

with equality only if the Hoffman bound is sharp.
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Proof.
Let Y be a {t}-clique. The decomposition of A:

k
A=;J+91E1+...+9dEd.

30/38



Polar Spaces EKR Sets Crossintersecting EKR Sets Spreads & Constant Distance Sets
0000 0000000000 000000000 0000800000000

Proof.
Let Y be a {t}-clique. The decomposition of A:

k
A= ;;./ +601E1 + ...+ 04E4.

The entry (E;), only depends on codim(x N y). Hence, the submatrix of
E; indexed by Y has the form af + 8J.

30/38
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Proof.
Let Y be a {t}-clique. The decomposition of A:

k
AES EJ+91E1+~-+9dEdo
The entry (E;), only depends on codim(x N y). Hence, the submatrix of
E; indexed by Y has the form a/ + 8J. Hence, the characteristic vector
x of Y satisfies

0<x"Ex=x"(al +B)x=alY|+8|Y|

30/38
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Proof.
Let Y be a {t}-clique. The decomposition of A:

k
A:EJ+91E1+o--+9dEdo

The entry (E;), only depends on codim(x N y). Hence, the submatrix of
E; indexed by Y has the form a/ + 8J. Hence, the characteristic vector
x of Y satisfies

0<x"Ex=x"(al +B)x=alY|+8|Y|

with equality if and only if £y =0 resp. x € Vi-. O
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Proof.
Rearranging yields

— k
|Y|s7“resp. YI<1-2

!

if 3 <0 resp. ; < 0. This proves the Hoffman bound.
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Proof.
Rearranging yields

— k
|Y|s§resp. YI<1-2

1

if 3 <0 resp. ; < 0. This proves the Hoffman bound.
The | Y| x |Y|-submatrix S := al + J of E; indexed by Y satisfies

rank(S) = rank(al + 8J) < rank(E;) = f;.
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Proof.
Rearranging yields

— k
|Y|s§resp. YI<1-2

1

if 3 <0 resp. ; < 0. This proves the Hoffman bound.
The | Y| x |Y|-submatrix S := al + J of E; indexed by Y satisfies

rank(S) = rank(al + 8J) < rank(E;) = f.

Now
rank(S) = |Y| -1 if a = —g|Y],
rank(S) = | Y| if o #—p|Y],
yields Godsil's bound. O
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let 0o be the smallest eigenvalue of the
adjacency matrix A of Gyy. Then

k

min

Y| <1-

with equality if and only if the characteristic vector x of Y satisfies
x € V&

min*

Theorem (Godsil (1978))

Let f; be the multiplicity of an eigenvalue of the adjacency matrix A of
Gyty not equal to k. Then

Y| <1+f;

with equality only if the Hoffman bound is sharp.
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let 0o be the smallest eigenvalue of the
adjacency matrix A of Gyy. Then

k

min

Y| <1-

with equality if and only if the characteristic vector x of Y satisfies
x € V&

min*

Theorem (Godsil (1978))

Let f; be the multiplicity of an eigenvalue of the adjacency matrix A of
Gysy not equal to k. Then

Y| <1+f

with equality only if the Hoffman bound is sharp.

Another application: distance-2 ovoids in the generalized hexagon
with parameter (s, s*) by Coolsaet, Van Maldeghem (2000).

32/38



Polar Spaces EKR Sets Crossintersecting EKR Sets Spreads & Constant Distance Sets
0000 0000000000 000000000 0000000800000

More Results

Theorem (Vanhove (2011))

A {t}-clique of H(2d — 1, ¢?), t odd, has at most
g +1
elements. )
Theorem (l. (2014))
A {t}-clique of H(2d — 1, g®) has at most
. qq2d_2 =1
g+1
elements. )
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Some Comparsions for Codimension 2

Example (H(3,¢°), t = 2)
e Multiplicity bound: ¢* — ¢? + g.
@ Best known bound for g # 4: %(q3 +q+2).
o Largest examples: probably ~ ag?.
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Some Comparsions for Codimension 2

Example (H(3,¢°), t = 2)
e Multiplicity bound: ¢* — g% + q.
@ Best known bound for g # 4: %(q3 +qg-+2).
o Largest examples: probably ~ aq?.

Spreads & Constant Distance Sets

Q0000000e0000

Example (H(5, ¢%), t = 2)
e Multiplicity bound: ¢°> — ¢* + ¢ — ¢> + q.

@ Sharp bound by Maarten De Boeck: g* + g2 + 2.

Example (H(2d — 1,¢°), t = 2)

2d

e Multiplicity bound: qu:ll +1
g1
@ Largest example: e
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Some Comparsions for Partial Spreads

Example (H(3,¢?), t = 2)
e Multiplicity bound: ¢% — ¢ + q.
@ Best known bound for g # 4: 3(¢* + q +2).
o Largest examples: probably ~ ag?.
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Some Comparsions for Partial Spreads
Example (H(3,¢%), t = 2)
e Multiplicity bound: ¢® — ¢ + g.
@ Best known bound for g # 4: 3(¢* + q +2).
o Largest examples: probably ~ ag?. )
Example (H(7, %), t = 4)
e Multiplicity bound: ¢" —q® +¢°> —¢* + ¢ — ¢* + q.
@ Best known bound for g > 3: ¢’ — q6(\/67 1).
v
Example (H(2d — 1,4?), t = d > 4 even)
= fo_c i 2d—1 2d—271
o Multiplicity bound: g — g2 e
@ Previously best known bound: ¢?9~! — q3d/2(\/5 —1).
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Theorem (Vanhove (2011))
A {d}-clique of H(2d — 1, q?), d odd, has at most

qd+1

elements.

Frédéric Vanhove also provided a second, geometrical proof.

Problem

Is there a better geometrical argument? J
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What is Missing?

Problem
The dual problem to {1,. .., t}-cliques resp. EKR sets:
o {t+1,...,d}-cliques of polar spaces.

e analog problems for sets (codes) and vector spaces (network
codes) are hard.
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What is Missing?

Problem
The dual problem to {1,. .., t}-cliques resp. EKR sets:
o {t+1,...,d}-cliques of polar spaces.

e analog problems for sets (codes) and vector spaces (network
codes) are hard.

Problem
The dual problem to {t}-cliques resp. constant distance codes:

o {1,....t—1,t+1,...,d}-cliques of polar spaces.

@ an alternative generalization of {1,...,d — 1}-cliques.
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Thank You!
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