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Polar Spaces

Finite classical polar spaces are incidence geometries (points, lines,
. . . , generators):

Q−(2d + 1, q)/Ω−(2d + 2, q): Elliptic quadric.

Q(2d , q)/Ω(2d + 1, q): Parabolic quadric.

Q+(2d − 1, q)/Ω+(2d , q): Hyperbolic quadric.

W(2d − 1, q)/Sp(2d , q): Symplectic polar space.

H(2d − 1, q2)/U(2d , q2): Hermitian polar space.

H(2d , q2)/U(2d + 1, q2): Hermitian polar space.

In this talk:

All polar spaces are classical and finite.

Focus on H(2d − 1, q2).
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(Distance-)Regular Graphs

Definition

Let GM = (X ,∼M) be a graph, where

the vertices X are the generators (d-spaces) of H(2d − 1, q2),

M ⊆ {1, . . . , d},
the adjacency relation ∼M is defined by x ∼M y if and only if
codim(x ∩ y) ∈ M.

This defines a regular graph: The number of generators meeting a
fixed generator x in an i-space for some i ∈ M is independent of x .

Very regular: the ∼{i} are the relations of an association scheme.
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M-Cliques

Problem

Let M ⊆ {1, . . . , d}. Let Y be a set of generators such that x , y ∈ Y ,
x 6= y, implies codim(x ∩ y) ∈ M. Classical questions:

What is the maximum size of Y ?

How does an example of maximum size look like?

The set Y would be a clique of GM . In this talk: an M-clique.

Examples

If M = {d}, then Y is a (partial) spread (of generators).

If M = {1, . . . , t}, then Y is an Erdős-Ko-Rado set (often only
t = d − 1).

If M = {t}, then Y is a constant-distance subspace code.

If M = {t + 1, . . . , d}, then Y is a subspace code with minimum
distance t.

5 / 38



Polar Spaces EKR Sets Crossintersecting EKR Sets Spreads & Constant Distance Sets

M-Cliques

Problem

Let M ⊆ {1, . . . , d}. Let Y be a set of generators such that x , y ∈ Y ,
x 6= y, implies codim(x ∩ y) ∈ M. Classical questions:

What is the maximum size of Y ?

How does an example of maximum size look like?

The set Y would be a clique of GM . In this talk: an M-clique.

Examples

If M = {d}, then Y is a (partial) spread (of generators).

If M = {1, . . . , t}, then Y is an Erdős-Ko-Rado set (often only
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The Adjacency Matrix

Definition

The adjacency matrix A of GM is defined as follows:

(A)xy =

{
1 if codim(x ∩ y) ∈ M

0 if codim(x ∩ y) /∈ M

The matrix A has up to d + 1

eigenvalues θ0, θ1, . . . , θd , (in the same order)

eigenspaces V0, . . . ,Vd ⊆ Rn where n := |X |,
multiplicities f0 = dim(V0), . . . , fd = dim(Vd).

The graph GM is k-regular for some k, so w.l.o.g.

θ0 = k,

V0 = 〈j〉, j is the all-one vector.
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Erdős-Ko-Rado Sets

Definition

Let n ≥ 2k . Consider X = {1, . . . , n}. An Erdős-Ko-Rado set (EKR
set) of X is a set Y of k-subsets of X such that the elements of Y meet
pairwise in at least t elements.

Examples (t = 1)

1 All k-sets that contain 1. For n = 4, k = 2:

{1, 2}, {1, 3}, {1, 4}.

2 n = 2k: All k-sets that do not contain n. For n = 4, k = 2:

{1, 2}, {1, 3}, {2, 3}.

Maximum size and complete classification by Erdős, Ko, Rado (1961),
Frankl, Wilson (1986), and Ahlswede, Khachatrian (1997).
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Frankl, Wilson (1986), and Ahlswede, Khachatrian (1997).

7 / 38



Polar Spaces EKR Sets Crossintersecting EKR Sets Spreads & Constant Distance Sets

Erdős-Ko-Rado Sets of Generators on Polar Spaces

Definition

An EKR set Y of generators on a polar space is a {1, . . . , t}-clique.
(Hence, the elements of Y meet pairwise in a subspace of at most
codimension t.)

Examples (t = d − 1)

1 All generators on a fixed point.

2 All generators which meet a fixed generator in at most codimension
t/2.

Example

All generators on a fixed (d − t)-space.
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Some Results for t = d − 1 resp. M = {1, . . . , d − 1}

Theorem (Stanton (1980))

Tight bounds for all polar spaces except H(2d − 1, q2), d odd.

Theorem (I., Metsch (2013))

An EKR set of H(2d − 1, q2), d odd, has at most size ≈ q(d−1)2+1. (The

largest known example for d > 3 has size ≈ q(d−1)2

.)

Theorem (Pepe, Storme, Vanhove (2011))

The classification of all EKR sets of maximum size for all polar spaces
except H(2d − 1, q2), d > 3 odd.
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The Hoffman Bound

Nearly all mentioned results for EKR sets ({1, . . . , t}-cliques) use the
(weighted) Hoffman bound.

Theorem (Hoffman Bound)

Let Y be an M-clique. Let CM := {1, . . . , d} \M. Let θmin be the
smallest eigenvalue of the adjacency matrix A of GCM . Then

|Y | ≤ −nθmin

k − θmin

with equality if and only if χ ∈ 〈j〉+ Vmin, where χ is the characteristic
vector of Y .
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The Proof

The Hoffman Bound (Part 1)

Let CM := {1, . . . , d} \M. Let A be the adjacency matrix of GCM .

The
matrix A has d + 1 eigenvalues θi , eigenspaces Vi , and A can be
decomposed into pairwise orthogonal, idempotent matrices Ei :

A =
k

n
J + θ1E1 + . . .+ θdEd .

If Y is an M-clique, then the characteristic vector χ ∈ Rn of Y satisfies

χTAχ = 0.

The vector χ can be decomposed into eigenvectors:

χ =
k

n
j + E1χ+ . . .+ Edχ.
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The Hoffman Bound (Part 2)

A =
k

n
J + θ1E1 + . . .+ θdEd ,

χ =
k

n
j + E1χ+ . . .+ Edχ, and χTAχ = 0.

Hence,

0 = χTAχ = χT (
k

n
J + θ1E1 + . . .+ θdEd)χ

=
k

n
|Y |2 + θ1|E1χ|2 + . . .+ θd |Edχ|2

≥ k

n
|Y |2 + θmin|Eminχ|2.

Here θmin < 0 is the smallest eigenvalue of A.
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The Hoffman Bound (Part 3)

0 ≥ k |Y |2 + nθmin|Eminχ|2.

Furthermore,

|Y | = |χ|2 =
|Y |2

n2
|j |2 + |E1χ|2 + . . .+ |Edχ|2 ≥

|Y |2

n
+ |Eminχ|2.

This yields the Hoffman bound

|Y | ≤ −nθmin

k − θmin

with equality if and only if

χ =
k

n
j + Eminχ ∈ 〈j〉+ Vmin.
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The Weighted Hoffman Bound

Theorem (Hoffman Bound)

Let Y be an M-clique. Let θmin be the smallest eigenvalue of the
adjacency matrix A of GCM . Then

|Y | ≤ −nθmin

k − θmin

with equality if and only if χ ∈ 〈j〉+ Vmin, where χ is the characteristic
vector of Y .

This bound is sufficient for the results on EKR sets by Stanton (1980),
Pepe, Storme, Vanhove (2011).
The proof never uses that A is the adjacency matrix! Only

χTAχ ≤ 0 if χ is the characteristic vector of an M-clique

is necessary.
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Linear Programming and the Hoffman Bound

Problem

How does one find matrices A′ satisfying the following?

χTA′χ ≤ 0 if χ is the characteristic vector of an M-clique (1)

Solution (Delsarte’s LP bound): Consider linear combinations A′ of
J,E1, . . . ,Ed with A′ij ≤ 0 if Aij = 0.

Example (H(5, q2), {1, 2}-cliques)

The adjacency matrix A for the disjointness graph has the
eigenvalues q9, q3,−q4,−q6.

The Hoffman bound yields approximately |Y | ≤ q6.

There exists an A′ as in (1) that has −q5 as its smallest eigenvalue.

The weighted Hoffman bound yields approximately |Y | ≤ q5.

A variant of this technique was used to prove better upper bounds for
H(2d − 1, q2), d odd, by I., Metsch (2013).
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What if t < d − 1?

Some geometrical results on EKR sets with pairwise intersections in at
least codimension t:

Theorem (Brouwer, Hemmeter (1992))

A classification of all {1, 2}-cliques in non-Hermitian polar spaces.

Theorem (I., Metsch (to appear))

A classification of examples of maximum size for t ≤ c
√

d for some
constant c.

Estimates of the (non-weighted) Hoffman bound for all t.

Theorem (De Boeck)

Classification of all EKR sets of planes (not necessarily generators)
in nearly all polar spaces.

Classification of EKR sets on Q+(4n + 1, q) for t = d − 1.
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Further Improvements?

How to determine the maximum size of an EKR set in H(2d − 1, q2)?

Idea

Let Y be a EKR set ({1, . . . , t}-clique) of H(2d − 1, q2). Let P be a
point of H(2d − 1, q2). Let Y1 be subset of Y on P, and let
Y2 := Y \ Y1. Then the projection of the elements of Y from P onto a
H(2d − 3, q2) creates cross-intersecting EKR sets Y1 and Y2:

The projected elements of Y1 meet all elements of Y2 in at least
codimension t.

The projected elements of Y2 meet all elements of Y1 in at least
codimension t.

Can this be used to improve results on EKR sets?
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Maximum Size?

Definition

A cross-intersecting EKR set is a pair of sets of generators Y1, Y2 such
that

the elements of Y1 meet all elements of Y2 in at least codimension t,

the elements of Y2 meet all elements of Y1 in at least codimension t.

How do we measure the size of a cross-intersecting EKR set? There are
many possibilities:

The product: |Y1| · |Y2|.
The sum: |Y1|+ |Y2|.
Some linear combination: |Y1|+ q|Y2|.
Something silly: e|Y1| · |Y2|+ log(|Y1|).

In this talk: |Y1| · |Y2|.
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The (weighted) Hoffman Bound

The Hoffman bound for cross-intersecting sets was used by . . .

Vector spaces: “The eigenvalue method for cross t-intersecting
families.”, Tokushige (2013).

Permutations: “Intersecting families of permutations.”, Ellis,
Friedgut, Pilpel (2011).

Coding Theory: “Scalable secure storage when half the system is
faulty.”, Alon, Kaplan, Krivelevich, Malkhi, Stern (2000).
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The (weighted) Hoffman Bound

Theorem (Hoffman bound for cross-intersecting EKR sets)

Let Y1, Y2 be an cross-intersecting EKR set. Let θ2 max be a second
largest absolute eigenvalue of the adjacency matrix A of G{t+1,...,d}.√

|Y1| · |Y2| ≤
n · |θ2 max|

k + |θ2 max|

with equality if and only if χi ∈ 〈j〉+ V− + V+, where

χi is the characteristic vector of Yi ,

V+ is the eigenspace corresponding to |θ2 max| (if it exists),

V− is the eigenspace corresponding to −|θ2 max| (if it exists).
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χi is the characteristic vector of Yi ,

V+ is the eigenspace corresponding to |θ2 max| (if it exists),

V− is the eigenspace corresponding to −|θ2 max| (if it exists).

The proof is the same. Only with 0 = χT
1 Aχ2 instead of 0 = χTAχ.

Again, A can be replaced with other matrices A′ with 0 ≥ χT
1 A′χ2.

Hence, everything works the same as in the “normal” case.
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χi is the characteristic vector of Yi ,

V+ is the eigenspace corresponding to |θ2 max| (if it exists),

V− is the eigenspace corresponding to −|θ2 max| (if it exists).

The proof reveals some more details:

If χ1 ∈ 〈j〉+ V−, then Y1 = Y2 is an EKR set.

If χ1 = αj + v− + v+ (with v− ∈ V−, v+ ∈ V+),
then χ2 = αj + v− − v+.
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Some Results for M = {1, . . . , d − 1}

Example

The matrix A that belongs to Q−(5, q) has the eigenvalues

q9 −q5 q3 −q3.

The absolute second largest eigenvalue is the smallest eigenvalue.

Hence,
Y1 = Y2: the classification of all EKR sets by Pepe, Storme, and
Vanhove is sufficient.

Theorem

For all polar spaces except H(2d − 1, q2), Q+(2d − 1, q) (if d even),
Q(2d , q) (if d even), and W(2d − 1, q) (d , q both even) the
cross-intersecting EKR sets of maximum size are EKR sets.
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Q+(2d − 1, q) and Q(2d , q), d even

Example (Q+(7, q))

q6 −q3 q2 −q3 q6.

The absolute second largest eigenvalue is the second largest
eigenvalue.

Y1 are the latins of Q+(7, q), Y2 are the greeks of Q+(7, q).

Example (Q(8, q))

q10 −q6 q4 −q4 q6.

The absolute second largest eigenvalue is the second largest
eigenvalue as well as the smallest eigenvalue.

Either Y1 = Y2 or the Q+(7, q) example.
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H(2d − 1, q2)

Example

H(5, q2) : q9 −q4 q3 −q6 resp.
H(7, q2) : q16 −q9 q6 −q7 q12.

The blue eigenvalues belong to nice EKR sets.

The bold eigenvalues are the smallest.

The red eigenvalues are the absolute second largest.

The bounds for
√
|Y1| · |Y2|.

The cross-intersecting Hoffman bound yields ≈ qd(d−1).

The cross-intersecting Hoffman bound with LP yields ≈ q(d−1)2+1.

The largest known examples have size ≈ q5 for d = 3, q19/2 for
d = 4, and q(d−1)2

for d > 4.
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Largest Known Examples on H(2d − 1, q2)

Example (H(5, q2))

Y1 = Y2 is the set of all generators meeting a fixed plane in at least a
line:

√
|Y1| · |Y2| ≈ q5.

Example (H(7, q2))

Y1 is the set of all generators meeting a fixed generator G in at least a
line, Y2 the set of all generators meeting G in at least a plane:√
|Y1| · |Y2| ≈ q19/2.

Example (H(9, q2))

Y1 = Y2 is the set of all generators on a fixed point:
√
|Y1| · |Y2| ≈ q16.

Example (H(11, q2))

Y1 = Y2 is the set of all generators on a fixed point:
√
|Y1| · |Y2| ≈ q25.
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Summary for H(2d − 1, q2)

Theorem (I., Metsch (2013))

Let Y be an EKR set, d odd. Then

|Y | / q(d−1)2+1.

Theorem

Let Y1,Y2 be a cross-intersecting EKR set. Then√
|Y1| · |Y2| / q(d−1)2+1.

Examples

The largest known examples:

H(5, q2):
√
|Y1| · |Y2| ≈ q(d−1)2+1.

H(7, q2):
√
|Y1| · |Y2| ≈ q(d−1)2+1/2.

H(2d − 1, q2):
√
|Y1| · |Y2| ≈ q(d−1)2

.
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Spreads

An EKR set has pairwise intersections in {1, . . . , t}.
The dual problem: a set Y with pairwise intersections in
{t + 1, . . . , d}.

If t = d − 1, then such a set is called a partial spread.

If Y partitions the points, then it is a spread.

History:

In 1981 J. A. Thas publishes “Ovoids and spreads of finite classical
polar spaces.”, a first complete survey of spreads on polar spaces.

Upper bounds for the size of partial spreads and sets reaching
these bounds were investigated since the 70’s.
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Theorem (J. A. Thas (1981/1990))

The Hermitian polar space H(2d − 1, q2) has no spread.

Theorem (De Beule, Klein, Metsch, Storme (2008))

A partial spread of H(2d − 1, q2), d even, has at most
1
2 (q3 + q + 2) elements if d = 2 (sharp for q = 2, 3),

(Dye (q = 2, 1992), Ebert, Hirschfeld (q = 3, 1999))

q2d−1 − q3d/2(
√

q − 1) elements if d > 2.

Theorem (De Beule, Metsch (d = 3, 2007)/Vanhove (2009))

A partial spread of H(2d − 1, q2), d odd, has at most

qd + 1

elements. This bound is sharp.
(Agulglia, Cossidente, Ebert (d = 3, 2003)/Luyckx (2008))
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More Results

Theorem (Vanhove (2011))

A {t}-clique of H(2d − 1, q2), t odd, has at most

qt + 1

elements.

Theorem (I. (2014))

A {t}-clique of H(2d − 1, q2) has at most

q2d−1 − q
q2d−2 − 1

q + 1

elements.
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θmin be the smallest eigenvalue of the
adjacency matrix A of G{t}. Then

|Y | ≤ 1− k

θmin

with equality if and only if the characteristic vector χ of Y satisfies
χ ∈ V⊥min.

Theorem (Godsil (1978))

Let fi be the multiplicity of an eigenvalue of the adjacency matrix A of
G{t} not equal to k. Then

|Y | ≤ 1 + fi

with equality only if the Hoffman bound is sharp.

Another application: distance-2 ovoids in the generalized hexagon
with parameter (s, s3) by Coolsaet, Van Maldeghem (2000).
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Proof.

Let Y be a {t}-clique. The decomposition of A:

A =
k

n
J + θ1E1 + . . .+ θdEd .

The entry (Ei )xy only depends on codim(x ∩ y). Hence, the submatrix of
Ei indexed by Y has the form αI + βJ. Hence, the characteristic vector
χ of Y satisfies

0 ≤ χTEiχ = χT (αI + βJ)χ = α|Y |+ β|Y |2

with equality if and only if Eiχ = 0 resp. χ ∈ V⊥i .
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Proof.

Rearranging yields

|Y | ≤ −α
β

resp. |Y | ≤ 1− k

θi

if β < 0 resp. θi < 0. This proves the Hoffman bound.

The |Y | × |Y |-submatrix S := αI + βJ of Ei indexed by Y satisfies

rank(S) = rank(αI + βJ) ≤ rank(Ei ) = fi .

Now

rank(S) = |Y | − 1 if α = −β|Y |,
rank(S) = |Y | if α 6= −β|Y |,

yields Godsil’s bound.
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Theorem (Another Hoffman Bound)

Let Y be a {t}-clique. Let θmin be the smallest eigenvalue of the
adjacency matrix A of G{t}. Then

|Y | ≤ 1− k

θmin

with equality if and only if the characteristic vector χ of Y satisfies
χ ∈ V⊥min.

Theorem (Godsil (1978))

Let fi be the multiplicity of an eigenvalue of the adjacency matrix A of
G{t} not equal to k. Then

|Y | ≤ 1 + fi

with equality only if the Hoffman bound is sharp.

Another application: distance-2 ovoids in the generalized hexagon
with parameter (s, s3) by Coolsaet, Van Maldeghem (2000).
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Let fi be the multiplicity of an eigenvalue of the adjacency matrix A of
G{t} not equal to k. Then

|Y | ≤ 1 + fi

with equality only if the Hoffman bound is sharp.

Another application: distance-2 ovoids in the generalized hexagon
with parameter (s, s3) by Coolsaet, Van Maldeghem (2000).
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More Results

Theorem (Vanhove (2011))

A {t}-clique of H(2d − 1, q2), t odd, has at most

qt + 1

elements.

Theorem (I. (2014))

A {t}-clique of H(2d − 1, q2) has at most

q2d−1 − q
q2d−2 − 1

q + 1

elements.
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Some Comparsions for Codimension 2

Example (H(3, q2), t = 2)

Multiplicity bound: q3 − q2 + q.

Best known bound for q 6= 4: 1
2 (q3 + q + 2).

Largest examples: probably ≈ αq2.

Example (H(5, q2), t = 2)

Multiplicity bound: q5 − q4 + q3 − q2 + q.

Sharp bound by Maarten De Boeck: q4 + q2 + 2.

Example (H(2d − 1, q2), t = 2)

Multiplicity bound: q2d−1
q+1 + 1.

Largest example: q2d−1
q2−1 .
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Some Comparsions for Partial Spreads

Example (H(3, q2), t = 2)

Multiplicity bound: q3 − q2 + q.

Best known bound for q 6= 4: 1
2 (q3 + q + 2).

Largest examples: probably ≈ αq2.

Example (H(7, q2), t = 4)

Multiplicity bound: q7 − q6 + q5 − q4 + q3 − q2 + q.

Best known bound for q > 3: q7 − q6(
√

q − 1).

Example (H(2d − 1, q2), t = d > 4 even)

Multiplicity bound: q2d−1 − q q2d−2−1
q+1 .

Previously best known bound: q2d−1 − q3d/2(
√

q − 1).
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Theorem (Vanhove (2011))

A {d}-clique of H(2d − 1, q2), d odd, has at most

qd + 1

elements.

Frédéric Vanhove also provided a second, geometrical proof.

Problem

Is there a better geometrical argument?
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What is Missing?

Problem

The dual problem to {1, . . . , t}-cliques resp. EKR sets:

{t + 1, . . . , d}-cliques of polar spaces.

analog problems for sets ( codes) and vector spaces ( network
codes) are hard.

Problem

The dual problem to {t}-cliques resp. constant distance codes:

{1, . . . , t − 1, t + 1, . . . , d}-cliques of polar spaces.

an alternative generalization of {1, . . . , d − 1}-cliques.
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Thank You!
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