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Extremal Combinatorics

It studies discrete structures whose characteristic parameters meet
extreme values.
Typically, the parameter is the size.
It started in the 1930’s with the work of Erdős and Turán.

Extremal combinatorics problems can originate in different areas,
such as geometry, graph theory, analysis, number theory, and they
have remarkable applications on computer science and information
theory.
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A classical problem in extremal Set Theory

S := set with n elements

F = family of subsets of S of size k , 2k ≤ n, pairwise intersecting
What is the maximum M for |F|? Is it possible to characterize the
families F such that |F| =M?
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The first Erdős-Ko-Rado Theorem

E.K.R. [1961]

If S is a set with n elements and F is a family of subsets of size k
of S , with n ≥ 2k , such that the elements of F are pairwise
intersecting, then |F| ≤

(n−1
k−1

)
.

Characterization of the families of maximum size

If |F| =
(n−1
k−1

)
, then:

2k < n and F is the family of subsets of size k containing a
fixed element of S .

2k = n and F is either the family of subsets of size k
containing a fixed element of S or it consists of the
representatives of all the complementary pairs.
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Theorems of EKR type

Several different variants of this theorem have been proved.

B.M.I. Rands [1982], for blocks of t − (v , k , λ) designs

P.Frankl and R.M.Wilson [1986]/ M.W.Newman [2004] for
subspaces of vector spaces

D.Stanton [1980] for Chevalley groups

....

An upper bound for the size of the intersecting family is found and
the family reaching it is, most of the times, a ”point pencil” or
”star”.
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Classical finite polar spaces

Classical finite polar spaces are incidence structures consisting of
the lattices of subspaces of a finite projective space totally isotropic
with respect to a certain non-degenerate sesquilinear form.

the parabolic quadric Q(2n, q): n-dimensional generators,

the hyperbolic quadric Q+(2n + 1, q): n-dimensional
generators,

the elliptic quadric Q−(2n + 1, q): (n − 1)-dimensional
generators,

the symplectic space W (2n + 1, q): n-dimensional generators,

the hermitian variety H(2n, q2): (n − 1)-dimensional
generators,

the hermitian variety H(2n + 1, q2): n-dimensional generators.

In case we have a quadric or a hermitian variety, they are just the
subspaces contained in them.
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The analogue problem in this setting is finding the largest size for
a set of pairwise intersecting subspaces of a polar space and
characterizing the sets meeting the bound.

We deal with the case of generators of polar spaces, when their
dimension is at least two.
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The bounds

Stanton [1980]:
Polar space Upper bound Example of set meeting the bound

Q(2n, q)

n−1∏
i=1

(qi + 1) generators through a point

Q+(2n + 1, q), n odd

n−1∏
i=0

(qi + 1) generators through a point

Q+(2n + 1, q), n even
n∏

i=1

(qi + 1) generators of one system

Q−(2n + 1, q)
n∏

i=2

(qi + 1) generators through a point

W (2n + 1, q)
n∏

i=1

(qi + 1) generators through a point

H(2n, q2)

n−1∏
i=1

(q2i+1 + 1) generators through a point

H(2n + 1, q2), n odd
∏n−1

i=0 (q2i+1 + 1) generators through a point
H(2n + 1, q2), n even

∏n
i=0,i 6= n

2
(q2i+1 + 1) No examples known
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Graph theoretic approach

We consider the regular graph Γ s.t.

Ω := set of vertices = the generators of a polar space
π ∼ π′ iff π ∩ π′ = ∅.
Γ is regular with valency val = number of generators skew with a
given one.
An intersecting family S corresponds to a coclique of the graph.
If τ is the least eigenvalue, then

|S | ≤ |Ω|
1− val

τ

and if |S | meets the bound, then its characteristic vector χS is such

that χS = |S|
|Ω|1 + u, where u is an eigenvector with eigenvalue τ .
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Association schemes

A d-class association scheme on a finite set Ω is a pair (Ω,R) with
R a set of symmetric relations {R0,R1, . . . ,Rd} on Ω such that
the following axioms hold:

(i) R0 is the identity relation,

(ii) R is a partition of Ω2,

(iii) there are intersection numbers pkij such that for (x , y) ∈ Rk ,
the number of elements z in Ω for which (x , z) ∈ Ri and
(z , y) ∈ Rj equals pkij .

All the relations Ri are symmetric regular relations with valency p0
ii ,

and hence define regular graphs on Ω.
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Association scheme on generators

π := generator of the polar space and dimπ = n.

On Ω we can define a set of n relations Ri , i = 0, · · · , n + 1 such
that π ∼ π′ with respect to Ri iff dimπ ∩ π′ = n − i .
R0 = identity relation
Rn+1 = disjointness relation
These relations give rise to an association scheme.
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Most of the cases

For the following polar spaces:

Q(2n, q), n even

Q−(2n + 1, q)

W (2n + 1, q), n odd

H(2n, q2) and H(2n + 1, q2), n odd

if u is an eigenvector for the disjointness relation Rn+1, then it is a
an eigenvector for Ri , i = 0, · · · , n.

If S is a intersecting set of maximum size, then χS = h1 + u and u
is an eigenvector w.r.t Ri ,∀i .
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Most of the cases

What is the geometric consequence?

S = intersecting family of maximum size, π ∈ S
vπ,S = the vector of length n such that (vπ,S)i is the number of
elements of S meeting π in a space of codimension i .
vπ,S does not depend on the geometrical configuration of S .
Known example of maximum intersecting family in these polar
spaces: S0 = point pencil.
For every S intersecting family of maximum size and π ∈ S ,
vπ,S = vπ,S0 .

Theorem

For the polar spaces Q(2n, q), n even, Q−(2n + 1, q),
W (2n + 1, q), n odd, H(2n, q2) and H(2n + 1, q2), n odd, the
largest intersecting set of generators is the set of generators
through a fixed point.
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Remaining cases

For the remaining cases, the algebraic combinatorics techniques,
still very useful, are less powerful.
We need more (finite) geometry and to use the peculiar properties
of the different polar spaces.

We needed to introduce the definition of nucleus of a generator.
S = maximal intersecting family of generators, π ∈ S .

πs := nucleus of π defined as
∩π′ ∩π

π′ ∈ S |codimπ ∩ π′ = 1
In the remaining cases, we have that s ∈ {−1, 0, dimπ − 1}. For
s = 0, we have the point pencil.
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Hyperbolic quadric Q+(2n + 1, q)

In Q+(2n + 1, q) there are two system of generators, Ω1 and Ω2 of
the same size, such that two generators π1 and π2 are in the same
system iff dimπ1 ∩ π2 has the same parity as dimπ.

Even n

The generators of Ωi pairwise intersect in a non–empty space.
The size of Ωi meets the Stanton bound.
It is the only possible intersecing set meeting the bound.

Odd n

S is a maximum intersecting set iff S = S1 ∪ S2, Si is a maximum
intersecting set in the half dual polar graphs arising from
Ωi , i = 1, 2.
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Q+(2n + 1, q), n odd

We can focus on only one system of generators Ωi .

Theorem

If n > 3 is odd, then Si is the set of elements of Ωi through a
point. If n = 3, then Si is either the set of elements of Ωi through
a point or it is the set of elements of Ωi meeting a fixed element of
Ωj in a plane.

The union of any two Si ⊂ Ωi is an intersecting set of maximum
size.
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Parabolic quadric Q(2n, q), n odd

Embed Q(2n, q), n odd, as a hyperplane section in a Q+(2n + 1, q): every generator
of Q(2n, q) is contained in a unique generator of a fixed system Ωi of Q+(2n + 1, q).

An intersecting set S of maximum size of Q(2n, q) gives rise to intersecting set S ′ of
maximum size of Ωi .

Theorem

If S is a maximum intersecting sets of generators of Q(2n, q), then one the following
possibilities can occur:

S is a point pencil

S is the set of generators of one system of a Q+(2n − 1, q) embedded in
Q(2n, q).

n = 3 and S consists of a plane π and all the planes meeting π in a line
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W (2n + 1, q), n and q even

If q is even, then:
W (2n + 1, q) ∼= Q(2n + 2, q)
There is a Q+(2n + 1, q) inducing the symplectic polarity

Theorem

An intersecting set of maximum size S is

a point pencil or

the set of generators of one system of a Q+(2n + 1, q) or

n = 2 and it consists of the plane π and the planes meeting π
in a line
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W (2n + 1, q), n even and q odd

Let vπ,S be the vector of length n such that (vπ,S)i is the number
of elements of S meeting π in a space of codimension i , then:

v = hv1 + (1− h)v2

where

v1 arises from the point pencil construction and v2 from the
construction of the elements of one system of a hyperbolic quadric.
Further investigation on the related association scheme and with
more geometric arguments, we get:

Theorem

S is a point pencil or

n = 2 and S consists of the plane π and the planes meeting π
in a line.
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H(4n + 1, q2)

Theorem

Intersecting set |S | < |Ω|
1− k

τ

= |Ω|
q2n+1+1

(more than point-pencil).

The algebraic combinatorial techniques cannot be used.

Theorem for planes in H(5, q2)

maximum size: 1 + q + q3 + q5 < |Ω|
q3+1

= (q + 1)(q5 + 1),

only construction: a fixed plane and all the those meeting it in
line.

If S is a point pencil, then |S | = (q + 1)(q3 + 1) < 1 + q + q3 + q5.
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Polar space intersecting set of maximum size

Q(4n, q) point pencil
Q(4n + 2, q)n > 1 point pencil, generators of one system in a Q+(4n + 1, q)

Q(6, q) point pencil, generators of one system in a Q+(5, q)
a fixed plane and the planes meeting it in a line

Q+(4n + 3, q), point pencil
n > 1 a fixed system
Q+(7, q) a fixed system point pencil

solids meeting a fixed one of the other system in a plane
Q+(4n + 1, q) generators of one system
Q−(2n + 1, q) point pencil
W (4n + 3, q) point pencil

W (4n + 1, q)n > 1 point pencil, generators of one system in Q+(4n + 1, q) q even
W (5, q) point pencil, a fixed plane and the planes meeting it in a line

generators of one system in Q+(5, q) q even
H(2n, q2),H(4n + 3, q2) point pencil

H(5, q2) a fixed plane and the planes meeting it in a line
H(4n + 1, q2)n > 1 ?
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