
COLLOQUIUM

ON GALOIS GEOMETRY

Friday, May 27, 2011

Abstracts

Daniele Bartoli – On arcs and caps in projective spaces 1

Linda Beukemann – Small tight sets of hyperbolic quadrics 2
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On arcs and caps in projective spaces

Daniele Bartoli

Università degli Studi di Perugia

(Joint work with A. A. Davydov, F. Pambianco and S. Marcugini )

Let PG(2, q) be the projective plane over the Galois field Fq. An k-arc is
a set of k points no three of which are collinear. An k-arc is called complete
if it is not contained in an (k + 1)-arc of PG(2, q).
In particular, a complete arc in a plane PG(2, q), points of which are treated
as 3-dimensional q-ary columns, defines a parity check matrix of a q-ary
linear code with codimension 3, Hamming distance 4, and covering radius
2. Arcs can be interpreted as linear maximum distance separable (MDS)
codes.
One of the main problems in the study of projective planes, which is also
of interest in coding theory, is to find the spectrum of possible sizes of
complete arcs.
In this work we give estimations for t2(2, q), the smallest size of a complete
arc in PG(2, q). Moreover we propose new constructions of complete arcs
in PG(2, q) and consider the spectrum of their possible sizes.
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Small tight sets of hyperbolic quadrics

Linda Beukemann

Justus Liebig Universität Gießen

(Joint work with Klaus Metsch)

A tight set of a hyperbolic quadric Q+(2n + 1, q) is defined as a set M
of points with the property that the average number of points of M in the
tangent hyperplanes of points of M is as big as possible. It was shown
in [4] that this number is bounded above by

qn + |M | qn − 1

qn+1 − 1
.

Also if equality occurs, then all tangent hyperplanes of points in M have
this many points in M , and the tangent hyperplanes of points not in M
have qn points less in M . Such a set has necessarily x(qn+1 − 1)/(q − 1)
points for an integer x ≥ 0 and then it is common to call it an x-tight set.

A union of x mutually skew generators of Q+(2n + 1, q) provides an
example for an x-tight set. For even n, this only gives examples when
x ≤ 2, since Q+(2n + 1, q), n even, does not possess three mutually skew
generators. Historically, the tight sets of Q+(5, q) play a particular role,
since they can be translated to Cameron-Liebler line classes of PG(3, q)
using Klein-correspondence.

We show that an x-tight set of Q+(2n + 1, q) is necessarily the union of
x mutually disjoint generators, if 1 ≤ n ≤ 3 and x ≤ q, or if n > 3, x < q
and q ≥ 71. This unifies and generalizes many results on x-tight sets that
are presently known, see [1–3, 5, 6].
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Regular graphs arising from projective planes – a
closer look at Brown’s construction method

Tamás Héger

Eötvös Loránd University

(joint work with András Gács and Zsuzsa Weiner)

The study of k regular graphs of girth (the length of the shortest cycle)
g, called (k, g)-graphs, began with the papers of Tutte (1947) and Kárteszi
(1960), and became intensive after Erdős and Sachs proved the existence
of (k, g)-graphs for all k and g in 1963. The focus has been on finding the
smallest possible (k, g)-graphs, called (k, g)-cages.

The incidence graph (or Levi graph) of a projective plane of order q is
a (q + 1, 6)-cage. In 1967, W. G. Brown deleted some points and lines from
such a plane to make the incidence graph of the rest a (q + 1− t, 6)-graph.
Thus Brown’s method in general is to look for (small) (k − t, g)-graphs as
induced subgraphs of a (k, g) cage. It is easy to see that in a projective plane
a point set P0 and line set L0 that are proper to delete have the following
property:

• ∀P /∈ P0 there are exactly t lines in L0 through P ,

• ∀l /∈ L0 there are exactly t points in P0 on l.

We call such a pair T = (P0,L0) a t-good structure and refer to the ele-
ments of P0 and L0 as deleted points and lines, respectively. To review the
known constructions of t-good structures, we need a definition first.
DEFINITION. A point P (or a line l) is completely deleted if P and all the lines
through P (l and all the points on l) are deleted.

Essentially two types of t-good structures are known when t <
√
q.

• Construction 1: completely deleted subplanes. Take a (possibly de-
generate) subplane which has t points and t lines, and delete all its
points and lines completely. This is obviously t-good.

• Construction 2: disjoint Baer-subplanes. Delete the points and the
lines of t disjoint Baer-subplanes.

The following theorem describes t-good structures in PG(2, q), when t
is not too large compared to q.
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THEOREM. Let p be a prime, let T be a t-good structure in PG(2, q), q = ph,
and let (roughly) t < min{p+1, q1/6/8}. Then T is one of the two constructions
above.

In the talk we sketch the proofs of the above theorems, which use com-
binatorial and algebraic tools like the standard equations, a recent lemma
of Szőnyi and Weiner, the Combinatorial Nullstellensatz with multiplici-
ties, and also rely on results on weighted multiple blocking sets.
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On ovoids and spreads of Q+(7, q)

Valentina Pepe

Universiteit Gent

Ovoids and spreads are among the most investigated objects in finite
classical polar spaces and it is still an open question whether they exist
or not for some polar spaces and fields. Ovoids and spreads of Q+(7, q)
are related by the triality map introduced in the fundamental paper of
Tits [7].They are interesting in their own right, but they also give rise to
translation planes, symplectic spreads and Kerdock sets ( [3–5]). It is still
an open question whether they exist for q ≡ 1 mod 6 and q not a prime
but non–existence results haven’t been proven so far. In order to get an
indication where to look for, there is an attempt to characterize the known
ones: first from a group theoretic point of view ( [1, 2]) and now from a
new one ( [6]).
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The complete (k, 3)-arcs of PG(2, q), q ≤ 13

Heide Sticker

Universiteit Gent

(joint work with Kris Coolsaet)

We obtained a full classification (up to equivalence) of all complete
(k, 3)-arcs in the Desarguesian projective planes of order q, q ≤ 13. This
was done by computer. The algorithm used is an application of isomorph-
free backtracking using canonical augmentation, an adaptation of our ear-
lier algorithms for the generation of (k, 2)-arcs. [1, 2]. We explain the gen-
eral techniques of the algorithm and those parts of the algorithm that are
specific to the particular problem of (k, 3)-arcs. For each of the complete
arcs we have computed the automorphism group, the results are listed in
tables. Several of the computer results can be generalized to other values
of q. We describe some of these constructions.
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LDPC codes from finite geometries

Geertrui Van de Voorde

Vrije Universiteit Brussel

Apart from their nice geometric properties, the motivation for the study
of codes from finite geometries is their possible application when viewed
as an LDPC code. If the 0-1 parity check matrix of a code C is sparse,
roughly speaking if there are ‘few’ 1s and ‘many’ 0s, then we say that
C is a Low Density Parity Check code (or LDPC) code. LDPC codes were
introduced by Gallager [2], who invented an easy decoding method for
these codes in the early 1960s. These codes were forgotten for more than
30 years due to the fact that the computer power in those days was un-
sufficient to decode codes with a useful length. They were rediscovered
in the 1990s by MacKay and Neal [3], who showed that their empirical
performance is excellent. The problem remains, however, to give explicit
constructions for good LDPC codes. One of the methods is to construct
LDPC codes using the incidence matrix of some finite incidence structure.
Determining the performance of an LDPC code under iterative decoding
is done by simulations. But over the binary erasure channel, the perfor-
mance is entirely defined by combinatorial structures, called stopping sets
(see [1]).

In this talk, I will give an introduction to LDPC codes of finite geome-
tries and stopping sets. I will focus on two particular codes: the well-
known dual code of points and lines in PG(2, q), and the dual code of
Q+(5, q).
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