GAP 4 Package
FininG

Finite Incidence Geometry

1.01

2012

John Bamberg, Anton Betten, Philippe Cara, Jan De Beule, Michel
Lavrauw, Max Neunhoeffer.

GAP 4 Package FinInG 2

Copyright

© 2012 by the authors
This package may be distributed under the terms and conditions of the GNU Public License Version 2 or
higher.

Acknowledgements

The development phase of FinInG started roughly in 2005. The idea to write a package for projective geometry
in GAP was known before, and resulted in pg, a relic that still can be found in the undeposited packages
section of the GAP website. One of the main objectives was to develop the new package was to create a tighter
connection between finite geometry and the group theoretical functions present in GAP.

The authors thank Michael Pauley, Maska Law and Sven Reichard, for their contributions during the early

days of the project.

Contents

1 Introduction
1.1 Philosophy e
1.2 Overview over thismanual
1.3 The Development Team

2 Installation of the FinInG-Package
2.1 Installing FinInG under UNIX like systems
2.2 Installing other required packages,

3 Examples
3.1 Asimpleexampletogetyoustarted L.
32 PolarSpaces. e e e
3.3 Elation generalised quadrangles L L.
34 Diagram gEOMetries e e e e e e e e e e e e e e

4 Incidence Geometry
4.1 Incidence StrucCtures it e e e e e e e
4.2 Elements of incidence structureso
4.3 Flagsof incidence structurest i .
4.4 Shadowofelements e
4.5 Enumerating elements of an incidence structure
4.6 Liegeometrieso e e e e e
47 Elements of Lie geometries
4.8 Hard wired embeddings and converting elements

5 Projective Spaces
5.1 Projective Spaces and basic operations
5.2 Subspaces of projective spaces e e e e
5.3 Shadows of Projective Subspaces L oo
5.4 Enumerating subspaces of a projective spaces

6 Projective Groups
6.1 Projectivities, collineations and correlations of projective spaces.
6.2 Construction of projectivities, collineations and correlations.
6.3 Basic operations for projectivities, collineations and correlations of projective spaces
6.4 The groups PI'L, PGL, and PSLinFininG
6.5 Basic operations for projective groups Lo oo e

NN

RN

GAP 4 Package FinInG

6.6 Natural embedding of a collineation group in a correlation group
6.7 Basic action of projective groupelemento Lo
6.8 Projective group actions e e e
6.9 Special subgroups of the projectivity groupo
6.10 Nice Monomorphisms

7 Polarities of Projective Spaces
7.1 Creating polarities of projective spaces v v v it
7.2 Operations, attributes and properties for polarties of projective spaces
7.3 Polarities, absolute points, totally isotropic elements and finite classical polar spaces
7.4 Commuting polarities e

8 Finite Classical Polar Spaces
8.1 Finite Classical Polar Spaces
8.2 Canonical and standard Polar Spaces
8.3 Basic operations for finite classical polar spaces
8.4 Subspaces of finite classical polarspaces
8.5 Projective Orthogonal/Unitary/Symplectic groups in FininG
8.6 Enumerating subspaces of polarspaces

9 Actions, stabilisers and orbits
9.1 Stabilisers e e e

10 Affine Spaces
10.1 Affine spaces and basic operations
10.2 Subspaces of affine spaces o o
10.3 Shadows of Affine Subspaces
10.4 TIterators and enUMETrators oL i e e e e e e
105 Affine groups e e e

11 Geometry Morphisms
11.1 Geometry morphismsin FinInG
11.2 Isomorphisms between polar spaces
11.3 When will you use geometry morphisms?
11.4 Natural geometry morphisms Lo
11.5 Some special kinds of geometry morphisms

12 Algebraic Varieties
12.1 Algebraic Varieties e e e e e
12.2 Projective Varieties o . i e e e
12.3 Quadrics and Hermitian varieties
12.4 Affine Varieties e e e e e e
12.5 Geometry maps o . i e e e e e e e e e e e e
12.6 Segre Varieties o .o e e e e
12.7 Veronese Varieties v v i i e e e e e e e
12.8 Grassmann Varieties v i e e e e e e e

66
67
67
69
72

104
104

109
109
111
116
117
119

122
122
123
125
125
132

GAP 4 Package FinInG

13 Generalised Polygons

13.1 Projectiveplanes
13.2 Generalised quadrangles
13.3 Generalised hexagons oL
13.4 General attributes and operations for generalised polygons

14 Coset Geometries and Diagrams

14.1 Coset Geometries v i v i e
14.2 Diagramso e e e

A The structure of FinInG

A.1 Thedifferentcomponents
A.2 Thecompleteinventory
A3 Thefiltergraph(s)

B The finite classical groups in FinInG

B.1 Standard forms used to produce the finite classical groups.

B.2 Direct commands to construct the projective classical groups in FinInG
References

Index

144
144
145
152
154

159
159
162

165
165
165
192

193
193
195

199

200

Chapter 1

Introduction

1.1 Philosophy

FinInG is a package for computation in Finite Incidence Geometry. It provides users with the basic
tools to work in various areas of finite geometry from the realms of projective spaces to the flat lands
of generalised polygons. The algebraic power of GAP is employed, particularly in its facility with
matrix and permutation groups.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 contains some extended examples
to introduce the user to the basic functionality and philosophy to get started. Chapter 4 contains a
rigourous discription of the basic structures. This chapter can be omitted at first reading, since the set
of consequent chapters is also self contained. Chapters 5, 6 and 7 deal with projective spaces, projec-
tive semilinear groups, and polarities of projective spaces, respectively. In Chapter 8 the functionality
for classical polar spaces is treated and in Chapter 10 affine spaces and their groups are considered.
Geometry morphisms between various geometries that are available in the package, are introduced
and discussed in Chapter 11. The final three chapters, 12, 13, and 14 explain the basic functional-
ity which is provided for algebraic varieties (in projective or affine spaces), generalised polygons, of
which several models can be constructed, and finally coset geometries and diagrams.

1.3 The Development Team

This is the development team (without Anton) meeting in St. Andrews in september 2008, from left
to right: Philippe Cara, Michel Lavrauw, Max Neunhoffer, Jan De Beule and John Bamberg,.
[scale=0.5]devteamstasep08.jpg
The development team meeting again (without Anton and Max), now in Vicenza in april 2011.
from left to right: Michel Lavrauw, John Bamberg, Philippe Cara, Jan De Beule.
[scale=0.5]devteamvicaprll.jpg
Survivors of the first version of FinlnG, enjoying a trip to Chioggia, december 2011.
[scale=0.5]devteamchidec11.jpg
The same survivors, staring at the destiny.
[scale=0.5]devteamdestiny.jpg

Chapter 2

Installation of the FinlnG-Package

This package requires the GAP packages GAPDoc, version 0.99 or higher, Forms, version 1.2 or
higher, Orb, version 2.0 or higher, GenSS, version 0.9 or higher, and GRAPE, version 4.3 or higher.
Currently, one function will use the Design package, but this package is not required to load FinInG.
The package GenSS requires the package 10. Currently, the packages GAPDoc, GRAPE, Forms
and Design are accepted GAP packages, the packages orb, GenSS and 10 are deposited. All can be
found through the GAP website. The recent development stage of FinInG is based on GAP4r4p12.
We have done testing using the beta release of GAP4rS, and no installation differences occured. In
this section, we describe in detail the installation procedure for FinInG, assuming the use of GAP4r4.
We have also (succesfully) tested this procedure with GAP4r5 beta.

2.1 Installing FinInG under UNIX like systems

The installation of FinInG itself is generic for each UNIX like system, including the different flavours
of MacOSX. You only need a terminal application, and you need acces to the standard unix tools
gunzip and tar. The installation procedure for FinInG, a standard GAP package, does not require
compilation. Each GAP installation has a pkg directory, containing supplemental GAP packages. If
you have acces to this filesystem, you can locate it, e.g.

Jusr/local | gap4rd/pkg/

Download the FinInG archive "fining-...-tar.gz" to this location, and unpack the archive. This can be
done by issuing
gunzip fining — ... —tar.gz

which yields a file "fining-...-tar", in the pkg directory, after which issuing the command
tar —xf finin — ... —tar

unpacks the archive in a subdirectory fining. After successfully unpacking the archive, you can locate
the directoy

Jusr/local | gap4rd/pkg/ fining/.

This directory contains a subdirectory "./doc", containing an html and pdf version of the manual. The
html version is accessible by opening the file "chap0.html" in your favorite browser. The pdf version
of the manual can be found in the file "manual.pdf". Please notice that you can unpack your archive

GAP 4 Package FinInG 8

in your favorite local "./pkg" directory, e.g. "/home/yourself/pkg/", in case you are using GAP on a
server on which you have only a restricted access. If you installed FinInG in the central GAP pkg
directory, you can startup gap using the usual command. We suppose this is gap4r4. If you installed
FinInG in your local pkg directory, e.g. "/home/yourself/pkg/", then move to "/home/yourself", and
issue the command

gap4rd —1” /usr/local | gapdrd;./”

This will cause gap to startup and use as pkg directory both its own central pkg directory, i.e.
"fusr/loca/gapdrd/pkg", as well as your local pkg directory, i.e. "/home/yourself/pkg/". You should see
something like the following output. Notice that the packages GAPDoc and |O are loaded by default.
This is not necessarily the case, but loading fining will force to load required packages anyway.

Example
i i H #it
A i R #it##
HAHH R HHHHHA HHHH AR i
HHHHH HHHHHHH HHHHE HHEHE HHHH
HHHHH # HEHHH A HH### HHH##H HHH#HS
HERHHH HHEHE HH### HHH##H HHHH
#itH# HiHH HEHE HHEEHE R
#HHH# HHHHH HHHHS HHHHH i
HH### S #HH# #H##H# HHHHH HHHH #HHHH
HHH### HIHHHHH HHH##H HHH## HHH#HS HHHH HHHS
HHH### HIHHHHH HH##H HHH#H HH### HHHHHE
HitHH HitHH# S #itH# i
#HiHHH# HiHHH# HEH R #HitH## HEHH A
I HHFHHE A i
HEHH R H#HHH# HIHHE HHHH #H##H#
HHHH H#HHH# Lz I 22 i
Y #HitHH HH #it#H#

Information at: http://www.gap-system.org
Try ’7help’ for help. See also ’7copyright’ and ’7authors’

Loading the library. Please be patient, this may take a while.
GAP4, Version: 4.4.12 of 17-Dec-2008, i686-apple-darwinl0.8.0-gcc
Components: small 2.1, small2 2.0, small3d 2.0, small4 1.0, smallb 1.0,
small6é 1.0, small7 1.0, small8 1.0, small9 1.0, smalllO 0.2,
id2 3.0, id3 2.1, id4 1.0, id5 1.0, id6é 1.0, id9 1.0, idi10 0.1,
trans 1.0, prim 2.1 loaded.
Packages: GAPDoc 1.3, I0 3.3, TomLib 1.1.4 1loaded.

gap>

To load FinInG, issue
LoadPackage(” fining”);

If this fails, in most cases, the reason is that either GAP does not find the directory in which FinInG
is installed, or one of the required packages for FinInG is not installed. The easiest way to find
out is to load each required package before issuing the LoadPackage command to load FinInG. The
example below shows this situation, the packages Forms and FinInG itself are installed in a local
pkg directory, the other packages are installed centrally. Starting up gap not pointing to the local pkg
directory, causes the locally installed packages to be unloadable.

GAP 4 Package FinInG 9

Example
gap> LoadPackage("fining");
fail
gap> LoadPackage("forms") ;
fail

gap> LoadPackage("grape");

Loading GRAPE 4.3 (GRaph Algorithms using PErmutation groups),
by L.H.Soicher@gmul.ac.uk.

true

gap> LoadPackage("orb");

Loading orb 3.8 (orb - Methods to enumerate orbits)

by Juergen Mueller (http://www.math.rwth-aachen.de/”Juergen.Mueller),
Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/ “neunhoef), and
Felix Noeske (http://www.math.rwth-aachen.de/"Felix.Noeske).

true

gap> LoadPackage("genss") ;

Loading genss 1.3 (genss - generic Schreier-Sims)

by Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/ “neunhoef) and
Felix Noeske (http://www.math.rwth-aachen.de/"Felix.Noeske).

If the installation was successfull, then, the following output should be visible.
Example
Packages: GAPDoc 1.3, I0 3.3, TomLib 1.1.4 1loaded.
gap> LoadPackage("fining");

Loading ’Forms’ 1.2.3 (29/08/2011)

by John Bamberg (http://school.maths.uwa.edu.au/ bamberg/)
Jan De Beule (http://cage.ugent.be/”jdebeule)

For help, type: 7Forms

Loading orb 3.8 (orb - Methods to enumerate orbits)

by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),
Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/"neunhoef), and
Felix Noeske (http://www.math.rwth-aachen.de/ Felix.Noeske).

Loading genss 1.3 (genss - generic Schreier-Sims)
by Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/ “neunhoef) and
Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).

Loading GRAPE 4.3 (GRaph Algorithms using PErmutation groups),
by L.H.Soicher@gmul.ac.uk.

GAP 4 Package FinInG 10
S S 2 2
/o S) - -] __ /)
YA S A A S Y S A AV A SV Y | A AV A/
/_/ VAV S Y Sy S B A B e | [/ (D]

Loading FinInG 1.0 (Finite Incidence Geometry)
by John Bamberg (http://cage.ugent.be/ bamberg)

Anton Betten (http://www.math.colostate.edu/ betten)

Jan De Beule (http://cage.ugent.be/”jdebeule)

Philippe Cara (http://homepages.vub.ac.be/ pcara)

Michel Lavrauw (http://cage.ugent.be/"ml)

Max Neunhoeffer (http://www.math.rwth-aachen.de/"Max.Neunhoeffer)
For help, type: 7FinInG

loading: geometry, liegeometry, group, projectivespace, correlations, polarspace/morphis

ms, enumerators, diagram, varieties, affinespace/affinegroup, gpolygons
true

gap>

For the sake of completeness, we show the output under GAP4r5

Example
fkkkkkkkkx GAP, Version 4.5.2(beta) of 27-Nov-2011 (free software, GPL)
* GAP * http://www.gap-system.org
*kxkxkkkk Architecture: x86_64-apple-darwinl0.8.0-gcc-default64

Libs used: gmp

Loading the
Components:
Packages:

library and packages ...
trans 1.0, prim 2.1, small*x 1.0, id* 1.0
GAPDoc 1.4, IO 3.3, TomLib 1.2.2

Try ’7help’ for help. See also ’?authors’

gap> LoadPackage("fining");

’7copyright’ and

Loading ’Forms’ 1.2.3 (29/08/2011)

by John Bamberg (http://school.maths.uwa.edu.au/ bamberg/)
Jan De Beule (http://cage.ugent.be/”jdebeule)

For help, type: 7Forms

Loading orb 3.8 (orb - Methods to enumerate orbits)

by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),
Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/"neunhoef), and
Felix Noeske (http://www.math.rwth-aachen.de/ Felix.Noeske).

Homepage: http://www-groups.mcs.st-and.ac.uk/ neunhoef/Computer/Software/Gap/orb.Rtml

Loading genss 1.3 (genss - generic Schreier-Sims)
by Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/ neunhoef) and
Felix Noeske (http://www.math.rwth-aachen.de/ Felix.Noeske).

Homepage: http://www-groups.mcs.st-and.ac.uk/ neunhoef/Computer/Software/Gap/genss.

Loading GRAPE 4.3 (GRaph Algorithms using PErmutation groups),
by L.H.Soicher@gmul.ac.uk.

GAP 4 Package FinInG 11

loading: geometry, liegeometry, group, projectivespace, correlations, polarspace/morphis
ms, enumerators, diagram, varieties, affinespace/affinegroup, gpolygons

S 2 G B S /< /.
— /o = S - o = o —
A S Y Y S A R A A AV S A4 - S
/- VAV S A S A S S S S [/ ()____/

Loading FinInG 1.0 (Finite Incidence Geometry)
by John Bamberg (http://cage.ugent.be/ bamberg)

Anton Betten (http://www.math.colostate.edu/ betten)

Jan De Beule (http://cage.ugent.be/” jdebeule)

Philippe Cara (http://homepages.vub.ac.be/ pcara)

Michel Lavrauw (http://cage.ugent.be/"ml)

Max Neunhoeffer (http://www.math.rwth-aachen.de/“Max.Neunhoeffer)
For help, type: 7FinInG

true
gap>

2.2 Installing other required packages

The packages orb and IO require compilation and the linking of some binaries to the gap kernel. On
some UNIX like system, dynamical linking seems to be impossible. In such a case, the binaries must
be statically linked to the GAP kernel. We describe the procedure here, assuming that we have to link
the binaries of both packages to the gap-kernel. We assume that gap is installed in the directory

Jusr/local |gap4rd/

and that we use the central ./pkg/ directory for the packages 1O and orb

1. Move to your gap directory, which is in this example /usr/loca/gap4r4/. Move further to the /bin directory, and loc
2. We are in the directory ’/usr/loca/gap4r4/bin/i686-apple-darwin10.8.0-gcc/’. Locate the file *gac’. This is a shell s
3. Recall that the pkg directoy is now ’/usr/local/gap4rd/pkg/’. So the source files of orb and io are to be found in */u
4. Issue the command ’./gac gap-static -p "-DIOSTATIC -1/ust/local/gap4r4/pkg/io/bin/i686-apple-darwin10.8.0-gcc
5. Adapt the shell script to start GAP. In this example, we assumed GAP is started up using *gap’. Locate this shell s

Chapter 3

Examples

In this chapter we provide some simple examples of the use of FinInG.

3.1 A simple example to get you started

In this example, we consider a hyperoval of the projective plane PG(2,4), that is, six points no three
collinear. We will construct such a hyperoval by exploring a bit the particular properties of the pro-
jective plane PG(2,4). The projective plane is initalised, its points are computed and listed; then a
standard frame is constructed, of which we may assume that it is a subset of the hyperoval. Finally,
the stabiliser group of the hyperoval is computed, and it is checked that this group is isomorphic with
the symmetric group on six elements.

gap>

gap>
[<a
<a
<a
<a
<a
<a
<a
<a
<a
<a
<a

gap>

pg := ProjectiveSpace(2,4);

pointslist

point
point
point
point
point
point
point
point
point
point
point

in
in
in
in
in
in
in
in
in
in
in

ProjectiveSpace(2, 4)
gap> points :
<points of ProjectiveSpace(2, 4)>
:= AsList(points);

Points(pg) ;

ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,

Display(pointslist[1]);

1

Example
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>, <a point
4)>]

in
in
in
in
in
in
in
in
in
in

ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,
ProjectiveSpace(2,

4)>,
4)>,
4)>,
4)>,
4)>,
4)>,
4)>,
4)>,
4)>,
4)>,

Now we may assume that our hyperoval contains the fundamental frame.

gap>

[[z(2)70, 0%xZ(2), 0%Z(2) 1,
[0%Z(2), 0%Z(2), Z(2)~0],

gap>

frame

frame

Example

:= [[1,0,0],[0,1,0],[0,0,11,[1,1,111*Z(2)"0;

[0%xZ(2), Z(2)~0, 0*Z(2)],
[z(2)~0, Z(2)~0, Z(2)~0] 1]

:= List(frame,x -> VectorSpaceToElement (pg,x));

12

GAP 4 Package FinInG

[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>]

13

Alternatively, we could use:
Example

gap> frame := StandardFrame(pg);
[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>]

There are six secant lines to this frame (“four choose two). So we put together these secant lines

from the pairs of points of this frame.

Example
gap> pairs := Combinations(frame,2);
[[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>
[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>],
[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>] 1]
gap> secants := List(pairs,p -> Span(p[1],p[2]1));
[<a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,
<a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,
<a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>]

Lo e B |
[Ry Y Y |

By a counting argument, it is known that the frame of PG(2,4) completes uniquely to a hyperoval.

Example
gap> leftover := Filtered(pointslist,t->not ForAny(secants,s->t in s));
[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>]
gap> hyperoval := Union(frame,leftover);

[<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>]

This hyperoval has the symmetric group on six symbols as its stabiliser, which can easily be calcu-

lated:
Example

gap> g := CollineationGroup(pg);

The FinInG collineation group PGammaL(3,4)

gap> stab := Stabilizer(g,Set(hyperoval),OnSets);
<projective collineation group of size 720>

gap> StructureDescription(stab);

n S6 n

3.2 Polar Spaces

3.2.1 Lines meeting a hermitian curve

Here we see how the lines of a projective plane PG(2,4?) meet a hermitian curve. It is well known

that every line meets in either 1 or ¢+ 1 points.

GAP 4 Package FinInG 14

Example
gap> h:=HermitianPolarSpace(2, 7°2);

H(2, 72)

gap> pg := AmbientSpace(h);
ProjectiveSpace(2, 49)

gap> lines := Lines(pg);

<lines of ProjectiveSpace(2, 49)>

gap> curve := AsList(Points(h));;

gap> Size(curve);

344

gap> Collected(List(lines, t -> Number(curve, c-> c in t)));
L L1, 3441, [8, 2107 1]

3.2.2 W(3,3) inside W(5,3)
In this example, we embed W (3,3) in W(5,3).

Example
gap> w3 := SymplecticSpace(3, 3);
W3, 3)
gap> wh := SymplecticSpace(5, 3);
w5, 3)

gap> pg := AmbientSpace(w5);

ProjectiveSpace(5, 3)

gap> solids := ElementsOfIncidenceStructure(pg, 4);
<solids of ProjectiveSpace(5, 3)>

gap> iter := Iterator(solids);

<iterator>

gap> perp := PolarityOfProjectiveSpace(w5);

<polarity of PG(5, GF(3)) >

gap> solid := NextIterator(iter);

<a solid in ProjectiveSpace(5, 3)>

gap> solid"perp;

<a line in ProjectiveSpace(S, 3)>

gap> em := NaturalEmbeddingBySubspace(w3, w5, solid);
<geometry morphism from <Elements of W(3, 3)> to <Elements of W(5, 3)>>
gap> points := Points(w3);

<points of W(3, 3)>

gap> points2 := ImagesSet(em, AsSet(points));;

gap> ForAll(points2, x -> x in solid);

true

3.2.3 Spreads of W(5,3)

A spread of W(5,q) is a set of ¢> + 1 planes which partition the points of W (5,¢). Here we enumerate
all spreads of W (5,3) which have a set-wise stabiliser of order a multiple of 13.
Example

gap> w := SymplecticSpace(5, 3);
W, 3)
gap> g := IsometryGroup(w);

GAP 4 Package FinInG

PSp(6,3)

gap> syl := SylowSubgroup(g, 13);

<projective collineation group of size 13>

gap> planes := Planes(w);

<planes of W(5, 3)>

gap> points := Points(w);

<points of W(5, 3)>

gap> orbs := Orbits(syl, planes , OnProjSubspaces);;

gap> IsPartialSpread := x -> Number(points, p ->

> ForAny(x, i-> p in 1)) = Size(x)*13;;

gap> partialspreads := Filtered(orbs, IsPartialSpread);

gap> Length(partialspreads) ;

8

gap> 13s := Filtered(partialspreads, i -> Size(i) = 13)

gap> Length(13s);

6

gap> 13s[1];

[<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane
<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane
<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane
<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane
<a plane in W(5, 3)>]

gap> 26s := List(Combinations(13s,2), Union);;

gap> two := Union(Filtered(partialspreads, i -> Size(i)

B

E]

in
in
in
in

w(5, 3)>,
W(s, 3)>,
W(s, 3)>,
W(s, 3)>,

1)

gap> good26s := Filtered(26s, x->IsPartialSpread(Union(x, two)));;

gap> spreads := List(good26s, x->Union(x, two));;
gap> Length(spreads) ;

15

3.2.4 The Patterson ovoid

In this example, we construct the unique ovoid of the parabolic quadric Q(6,3), first discovered by
Patterson, but for which was given a nice construction by E. E. Shult. We begin with the “sums of

squares” quadratic form over GF (3) and the associated polar space.

Example

gap> id := IdentityMat(7, GF(3));;

gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

6,GF(3)): x_172+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2+x_7"2=0 >

The construction of the ovoid (a la Shult):

Example

gap> psl32 := PSL(3,2);

Group([(4,6)(5,7), (1,2,4)(3,6,5) 1)

gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0],
> [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]11*Z(3)"0;

[[2(3)-0, Z(3)°0, Z(3)~0, 0%Z(3), 0%Z(3), 0%Z(3), 0%Z(3) 1,
[Z(3), Z2(3)°0, Z(3)70, 0%Z(3), 0%Z(3), 0%Z(3), 0*Z(3) 1],
[2(3)70, Z(3), Z(3)~0, 0%Z(3), 0%Z(3), 0*Z(3), 0%Z(3) 1,

GAP 4 Package FinInG 16

[2(3)°0, Z(3)0, Z(3), 0%Z(3), 0%Z(3), 0%Z(3), 0%Z(3)]]
gap> ovoid := Union(List(reps, x-> Orbit(psl32, x, Permuted)));;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;

We check that this is indeed an ovoid...

Example
gap> planes := AsList(Planes(ps));;

#I Computing collineation group of canonical polar space...
gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);
true

The stabiliser is interesting since it yields the embedding of Sp(6,2) in PO(7,3). To efficiently com-
pute the set-wise stabiliser, we refer to the induced permutation representation.
Example

gap> g := IsometryGroup(ps);
<projective collineation group of size 9170703360 with 2 generators>
gap> stabovoid := SetwiseStabilizer(g, OnProjSubspaces, ovoid)!.setstab;
#I Computing adjusted stabilizer chain...
<projective collineation group with 12 generators>
gap> DisplayCompositionSeries(stabovoid) ;
G (size 1451520)
| B(3,2) = 0(7,2) ~ €(3,2) = 5(6,2)

1 (size 1)

gap> OrbitLengths(stabovoid, ovoid);
[28]

gap> IsTransitive(stabovoid, ovoid);
true

3.3 Elation generalised quadrangles

3.3.1 The classical q-clan

In this example, we construct a classical elation generalised quadrangle from a g-clan, and we see that
the associated BLT-set is a conic.

Example
gap> f := GF(3);

GF(3)

gap> id := IdentityMat(2, £);;

gap> clan := List(f, t -> t*id);;

gap> IsqClan(clan, f);

true

gap> clan := gClan(clan, f);

<g-clan over GF(3)>

gap> egq := EGQByqClan(clan);

#I Computed Kantor family. Now computing EGQ...
#I Computing points from Kantor family...

#I Computing lines from Kantor family...

<EGQ of order [9, 3] and basepoint 0>

gap> elations := ElationGroup(egq);

<matrix group of size 243 with 8 generators>

GAP 4 Package FinInG 17

gap> points := Points(egq);
<points of <EGQ of order [9, 3] and basepoint 0>>
gap> p := Random(points);
<a point of a Kantor family>
gap> x := Random(elations);
[[20370, 2(3), 2(3)70, Z(3) 1, [0%Z(3), Z(3)70, 0%Z(3), 0*Z(3) 1],
[0%Z(3), 0%Z(3), Z(3)~0, Z(3)~0 1, [0%Z(3), 0%Z(3), 0%Z(3), Z(3)°0]]
gap> OnKantorFamily(p,x);
<a point of a Kantor family>
gap> orbs := Orbits(elations, points, OnKantorFamily);;
gap> Collected(List(orbs, Size));
(01,11, 009,471, [243, 111
gap> blt := BLTSetByqClan(clan);
[<a point in Q(4, 3): -x_1xx_b-x_2*x_4+x_372=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1%x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1%x_b5-x_2*x_4+x_3"2=0>]
gap> g4q := AmbientGeometry(blt[1]);
Q4, 3): -x_1*x_b-x_2%x_4+x_3"2=0
gap> span := Span(blt);
<a plane in ProjectiveSpace(4, 3)>
gap> ProjectiveDimension(span);
2

3.3.2 Two ways to construct a flock generalised quadrangle from a Kantor-Knuth
semifield q-clan

We will construct an elation generalised quadrangle directly from the Kantor-Knuth semifield q-clan
and also via its corresponding BLT-set. The g-clan in question here are the set of matrices C; of the

form (! 0) where t runs over the elements of GF(gq), ¢ is odd and not prime, n is a fixed

0 —mt?
nonsquare and \phi is a nontrivial automorphism of GF(q).
Example
gap> q := 9;
9

gap> £ := GF(q);

GF(3"2)

gap> squares := AsList(Group(Z(q)~2));
[2(3)0, z(3), Z(3~2)"2, Z(372)"6]

gap> n := First(GF(q), x -> not IsZero(x) and not x in squares);
z(3~2)

gap> sigma := FrobeniusAutomorphism(f);

FrobeniusAutomorphism(GF(3~2))

gap> zero := Zero(f);

0%Z(3)

gap> qclan := List(GF(q), t -> [[t, zero], [zero,-n * t~sigmall);

[[[0*xZ(3), 0xz(3) 1, [0%Z(3), 0%Z(3) 1 1,
[[2(3~2), 0%Z(3) 1, [0%Z(3), Z(3)~0 1 1,
[[2(3~2)"5, 0%Z(3) 1, [0%Z(3), 2(3) 11,
[[Z(3)~0, 0%Z(3) 1, [0xZ(3), Z(3°2)"5

11,
[[2(3~2)~2, 0%Z(3) 1, [0%xz(3), 2(372)"3 1]

1,

#I
#I
#I

L

#I
#I
#I
#1
#I
#I
#I

GAP 4 Package FinInG

[[2(32)3, 0x2(3) 1, [0%2(3), z(3~2)~6 1 1,
[[23, 0%2(3) 1, [0%Z(3), z(3~2) 11,

[[2(32)"7, 0¢2(3) 1, [0%z(3), z(3~2)~2 1 1,
[[232)6, 0x2(3) 1, [0%2(3), Z(3"2)"7 1]

gap> IsqClan(gclan, f);

true

gap> qclan := gClan(qclan , f);
<g-clan over GF(3°2)>

gap> egql := EGQByqClan(gclan);

Computed Kantor family. Now computing EGQ...
Computing points from Kantor family...
Computing lines from Kantor family...

<EGQ of order [81, 9] and basepoint 0>
gap> blt := BLTSetByqClan(gclan);

]

<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*%x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b-x_2*x_4+Z(3°2) "5xx_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*%x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b5-x_2*x_4+Z(3°2) 5xx_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) 5*x_3"2=0>]

gap> egq2 := EGQByBLTSet(blt);

18

No intertwiner computed. One of the polar spaces must have a collineation groy

Now embedding dual BLT-set into W(5,q)...

Computing points(1) of Knarr construction...
Computing lines(1) of Knarr construction...
Computing points(2) of Knarr construction...

Computing lines(2) of Knarr construction...please wait

Computing elation group...

0%Z(3), 0%Z(3) 1>

<EGQ of order [81, 9] and basepoint [Z(3)~0, 0%Z(3), 0*Z(3), 0*Z(3),

34

34.1

Diagram geometries

A rank 4 geometry for PSL(2,11)

Here we look at a particular flag-transitive geometry constructed from four subgroups of PSL(2,11),
and we construct the diagram for this geometry. To view this diagram, you need to either use a
postscript viewer or a dotty viewer (such as GraphViz).

gap> gl
gap> g2

gap> g3

Example

gap> g := PSL(2,11);
Group([(3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) 1)
:= Group([(1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10) (§
Group([(1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) 1)

:= Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(§
Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) 1)

:= Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10) (6,9) (7

Ip computed

,9 1)
,9 1)

,8) 1)

GAP 4 Package FinInG

Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8) 1)

Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12) 1)
gap> cg := CosetGeometry(g, [gl,g2,g3,g41);
CosetGeometry(Group([(3,11, 9, 7, 5)(4,12,10, 8, 6),
(1,2,803,7, 99(4,10, 5)(6,12,11) 1))
gap> SetName(cg, "Gamma');
gap> ParabolicSubgroups(cg);
[Group([(1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)
D,
Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)
D,
Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)
D,
Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12)
DI
gap> BorelSubgroup(cg);
Group((Q))
gap> AmbientGroup(cg);
Group([(3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) 1)
gap> type2 := ElementsOfIncidenceStructure(cg, 2);
<elements of type 2 of Gamma>
gap> IsFlagTransitiveGeometry(cg);
true
gap> DrawDiagram(DiagramOfGeometry(cg), "PSL211");

19

gap> g4 := Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7) (11,

The output of this example uses dotty which is a sophisticated graph drawing program. In a later
version of our package, we might use neato to make a diagram with straight lines. Here is what the

output looks like: PSL211.jpg

12) 1)

Chapter 4

Incidence Geometry

The term geometry, or incidence geometry, is interpreted in a broad sense in this package. The basis
for the construction of the objects in this package is an abstract incidence geometry consisting of
elements, types, and an incidence relation. To be more specific, an incidence geometry consists of a
set of elements, a symmetric relation on the elements and a type function from the set of elements to
an index set (i.e., every element has a “type”). There are two axioms: (i) no two elements of the same
type are incident; (ii) every maximal flag contains an element of each type. Thus, a projective 5-space
is an incidence geometry with five types of elements; points, lines, planes, solids, and hyperplanes.

FinInG concerns itself primarily with the most commonly studied incidence geometries of rank
more than 2: projective spaces, polar spaces, and affine spaces. However, some facility with gener-
alised polygons has been included. Throughout, no matter the geometry, we have made the convention
that an element of type 1 is a “point”, an element of type 2 is a “line”, and so forth. The examples
we use in this section use projective spaces, which have not yet been introduced to the reader in this
manual. For further information on projective spaces, see Chapter 5.

In this chapter we describe functionality that is DECLARED for incidence structures, which does
not imply that operations described here will work for arbitrarily user constructed incidence struc-
tures. Its aim is furthermore to allow the user to become a bit familiar with the general philosophy
of the package, using examples that are self-explanatory. Not all details of the commands used in the
examples will be explained in this chapter, therefore we refer to the relevant chapter of the commands.
These can easily be found using the index.

4.1 Incidence structures

Incidence structures can be more general than incidence geometries, e.g. if they do not satisfy axiom
(i1) mentioned above. We allow the construction of such objects. This explains one of the top level
categories in FinInG.

4.1.1 IsIncidenceStructure
> IsIncidenceStructure (Category)
Top level category for all objects representing an incidence structure.

In the following example we define an incidence structure that is not an incidence geometry. The
example used is the incidence structure with elements the subspaces contained in the line Grassman-

20

GAP 4 Package FinInG 21

nian of PG(4,2). This example is not meant to create this incidence structure in an efficient way, but
just to demonstrate the general philiosophy.

4.1.2 IncidenceStructure

> IncidenceStructure(eles, inc_rel, type, typeset) (operation)
Returns: an incidence structure
eles is a set containing the elements of the incidence structure. inc_rel must be a function that
determines if two objects in the set eles are incident. type is a function mapping any element to its
type, which is a unique element in the set typeset.
Example

gap> pg := PG(4,2);

ProjectiveSpace(4, 2)

gap> pg2 := PG(9,2);

ProjectiveSpace(9, 2)

gap> points := List(Lines(pg) ,x->VectorSpaceToElement (pg2,GrassmannCoordinates (x)
gap> flags := Concatenation(List(Points(pg),x->List(Planes(x),y->FlagOfIncidenceSt
gap> prelines := List(flags,flag->ShadowOfFlag(pg,flag,2));;

gap> flags2 := Concatenation(List(Points(pg),x->List(Solids(x),y->FlagOfIncidenced
gap> preplanes := List(flags2,flag->ShadowOfFlag(pg,flag,2));;

Incidence structure of rank 4

4.1.3 IsIncidenceGeometry

> IsIncidenceGeometry (Category)

Category for all objects representing an incidence geometry.
Lie Geometries, i.e. geometries with a projective space as ambient space, affine spaces and gen-
eralised polygons have their category, as a subcategory of IsIncidenceGeometry.

4.1.4 Main categories in IsIncidenceGeometry

> IsLieGeometry (Category)
> IsAffineSpace (Category)
> IsGeneralisedPolygon (Category)

)5

ructure (pg, [x,

gap> lines := List(prelines,x->VectorSpaceToElement (pg2,List(x,y->GrassmannCoordinates(y))));;

tructure (pg, [

gap> planes := List(preplanes,x->VectorSpaceToElement (pg2,List (x,y->GrassmannCoordinates(y))));;
gap> maximalsl := List(Planes(pg),x->VectorSpaceToElement (pg2,List(Lines(x),y->GrassmannCoordine
gap> maximals2 := List(Points(pg) ,x->VectorSpaceToElement (pg2,List(Lines(x),y->GrassmannCoordine
gap> elements := Union(points,lines,planes,maximalsl,maximals?);;

gap> Length(elements) ;

1891

gap> type := x -> ProjectiveDimension(x)+1;

function(x) ... end

gap> inc_rel := \x;

<Operation "*">

gap> inc := IncidenceStructure(elements,inc_rel,type,[1,2,3,4]);

GAP 4 Package FinInG 22

4.1.5 Main categories in IsLieGeometry

> IsProjectiveSpace (Category)
> IsClassicalPolarSpace (Category)

Lie geometries bundle projective spaces and classical polar spaces. In the future, more subcate-
gories could be added since the term “Lie geometry” refers to a geometry whose automorphism group
lies in some group of Lie type. Both classes of geometries have their category, as a subcategory of
IsLieGeometry.

The following categories for geometries are not considered as main categories.

4.1.6 Categories in IsGeneralisedPolygon

> IsGeneralisedQuadrangle (Category)
> IsGeneralisedHexagon (Category)
> IsGeneralisedOctogon (Category)

Within IsGeneralisedPolygon, categories are declared for generalised quadrangles, generalised
hexagons, and generalised octogons.

4.1.7 IsElationGQ

> IsElationGQ (Category)

Within IsGeneralisedQuadrangle, this category is declared to construct elation generalised
quadrangles.

4.1.8 IsClassicalGQ

> IsClassicalGQ (Category)

This category lies in IsElationGQ and IsClassicalPolarSpace.

4.1.9 Examples of categories of incidence geometries

Example
gap> CategoriesOfObject(ProjectiveSpace(5,7));
["IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsProjectiveSpace"]

gap> CategoriesOfObject (HermitianPolarSpace(5,9));

["IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsClassicalPolarSpace", "IsAlgebraicVariety", "IsProjectiveVariety",
"IsHermitianVariety"]

gap> CategoriesOfObject (AffineSpace(3,3));

["IsIncidenceStructure", "IsIncidenceGeometry", "IsAffineSpace"]

gap> CategoriesOfObject (SymplecticSpace(3,11));

["IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",

"IsClassicalGQ"]
gap> CategoriesOfObject(SplitCayleyHexagon(9));
["IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

GAP 4 Package FinInG 23

"IsGeneralisedPolygon", "IsGeneralisedHexagon"]
gap> CategoriesOfObject(ParabolicQuadric(4,16));
["IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
"IsClassicalGQ", "IsAlgebraicVariety", "IsProjectiveVariety"]

4.1.10 TypesOfElementsOfIncidenceStructure

> TypesOfElementsOfIncidenceStructure(inc) (attribute)
> TypesOfElementsOfIncidenceStructurePlural (inc) (attribute)

Returns: a list of strings

Both attributes are declared for objects in the category IsIncidenceStructure, but only meth-
ods are installed for the geometries that are built in FinInG. Any incidence structure contains a set
of types. This set is usually just the list [1 .. n]. If specific names are given to each type, this
attribute returns the names for the particular incidence structure inc. The second variant returns the
list of plurals of these names.

Example

gap> TypesOfElementsOfIncidenceStructure(ProjectiveSpace(5,4));

["point", "line", "plane", "solid", "proj. 4-space"]

gap> TypesOfElementsOfIncidenceStructurePlural (AffineSpace(7,4));

["points", "lines", "planes", "solids", "affine. subspaces of dim. 4",
"affine. subspaces of dim. 5", "affine. subspaces of dim. 6"]

4.1.11 Rank

> Rank(inc) (operation)
> RankAttr(inc) (attribute)
Returns: rank of inc, an object which must belong to the categorie IsIncidenceStructure
The operation Rank returns the rank of the incidence structure inc. The highest level method for
Rank, applicable to objects in IsIncidenceStructure simply refers to the attribute RankAttr. In
FinInG, the rank of an incidence structure is determined upon creation, when also RankAttr is set.
Example

gap> Rank(ProjectiveSpace(5,5));
5

gap> Rank(AffineSpace(3,5));

3

gap> Rank(SymplecticSpace(5,5));
3

4.2 Elements of incidence structures

4.2.1 Main categories for individual elements of incidence structures

> IsElementOfIncidenceStructure (Category)
> IsElementOfIncidenceGeometry (Category)

GAP 4 Package FinInG 24

> IsElementOfLieGeometry (Category)
> IsElementOfAffineSpace (Category)
> IsSubspaceOfProjectiveSpace (Category)
> IsSubspaceOfClassicalPolarSpace (Category)

A category IsElementOfIncidenceStructure for the individual elements of an inci-
dence structure in the category IsIncStr, except for projective spaces and classical po-
lar spaces. The inclusion for different categories of geometries is followed for their ele-
ments, with an exception for IsSubspaceOfClassicalPolarSpace, which is a subcategory
of IsSubspaceOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of
IsProjectiveSpace.

Example

gap> Random(Lines(SplitCayleyHexagon(3)));

#I for Split Cayley Hexagon

#I Computing nice monomorphism...

#I Found permutation domain...

<a line of Split Cayley Hexagon of order 3>

gap> CategoriesOfObject(last);

["IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
"IsElementOfLieGeometry", "IsSubspaceOfProjectiveSpace",
"IsSubspaceOfClassicalPolarSpace", "IsElementOfGeneralisedPolygon"]

gap> Random(Solids(AffineSpace(7,17)));

<a solid in AG(7, 17)>

gap> CategoriesOfObject(last);

["IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
"IsSubspaceOfAffineSpace"]

4.2.2 Main categories for collections of elements of incidence structures

> IsElementsOfIncidenceStructure (Category)
> IsElementsOfIncidenceGeometry (Category)
> IsElementsOfLieGeometry (Category)
> IsElemenstOfAffineSpace (Category)
> IsSubspacesOfProjectiveSpace (Category)
> IsSubspacesOfClassicalPolarSpace (Category)

A category IsElementsOfIncidenceStructure for objects representing a set of elements
of an incidence structure in the category IsIncStr, is declared, with an exception for projec-
tive spaces and polar spaces. The inclusion for different categories of geometries is followed for
their collection of elements, except for IsSubspace0fClassicalPolarSpace, which is a subcate-
gory of IsSubspaceOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of
IsProjectiveSpace.

The object representing the set of elements of a given type can be computed using the general
operation ElementsOfIncidenceStructure, of course assuming that a method is installed for the
particular incidence structure.

GAP 4 Package FinInG 25

4.2.3 ElementsOfIncidenceStructure

> ElementsOfIncidenceStructure(inc) (operation)
> ElementsOfIncidenceStructure(inc, j) (operation)
> ElementsOfIncidenceStructure(inc, str) (operation)

Returns: a list of elements

inc must be an incidence structure, j must be a type of element of inc. This function returns all
elements of inc of type j, and an error is displayed if inc has no elements of type j. Calling the ele-
ments (of a given type) of inc yields an object in the category IsElements0fIncidenceStructure
(or the appropriate category for projective spaces and classical polar spaces), which does not imply
that all elements are computed and stored. In an alternative form of this function str can be one of
“points”, “lines", “planes” or “solids" and the function returns the elements of type 1, 2, 3 or 4 respec-
tively, of course if inc has elements of the deduced type. When no type is specified all elements of

inc are returned.
Example

gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

gap> 1 := ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(3, 3)>

gap> ps := EllipticQuadric(5,9);

Q-(5, 9

gap> lines := ElementsOfIncidenceStructure(ps,2);
<lines of Q-(5, 9)>

gap> planes := ElementsOfIncidenceStructure(ps,3);

Error, <geo> has no elements of type <j> called from
<function "unknown">(<arguments>)

called from read-eval loop at line 12 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

gap> as := AffineSpace(3,9);

AG(3, 9)

gap> lines := ElementsOfIncidenceStructure(as,"lines");

<lines of AG(3, 9)>

4.2.4 Short names for ElementsOfIncidenceStructure

> Points(inc) (operation)
> Lines (inc) (operation)
> Planes(inc) (operation)
> Solids(inc) (operation)

Returns: The elements of inc of type 1, 2, 3, and 4.

It is possible that inc is an incidence structure where the elements of type 1, 2, 3, and 4 are not
called "points", "lines", "planes", and "solids", respectively. The methods don’t check if names are
given, and are just shortcuts to the operation Elements0fIncidenceStructure.

Example

gap> Points(HermitianVariety(2,64));
<points of Hermitian Variety in ProjectiveSpace(2, 64)>
gap> Lines(EllipticQuadric(5,2));

GAP 4 Package FinInG 26

<lines of Q-(5, 2)>
gap> Planes(SymplecticSpace(7,3));
<planes of W(7, 3)>

4.2.5 IsIncident

> IsIncident(u, v) (operation)
> *(u 5 V) (operation)
> \ in (u, V) (operation)

Returns: true or false

u and v must be elements of an incidence structure. This function returns true if and only if u
is incidence with v. Recall that IsIncident is a symmetric relation, while in is not. A method for
the operation * is installed, applicable to objects in IsElementOf IncidenceStructure, and is just
calling IsIncident.

Example
gap> ps := ProjectiveSpace(4,7);
ProjectiveSpace(4, 7)
gap> p := VectorSpaceToElement (ps, [1,0,1,0,1]1*Z(7)"0);
<a point in ProjectiveSpace(4, 7)>
gap> 1 := VectorSpaceToElement (ps, [[0,0,1,0,0],[1,0,0,0,1]11%Z(7)~0);
<a line in ProjectiveSpace(4, 7)>
gap> pl := VectorSpaceToElement (ps,[[1,1,1,0,0],[0,1,0,0,0],
> [0,-1,0,0,111%Z(7)~0);
<a plane in ProjectiveSpace(4, 7)>
gap> p in 1;
true
gap> 1 in pl;
false
gap> p in pl;
true
gap> IsIncident(p,1l);
true
gap> IsIncident(1,p);
true
gap> IsIncident(pl,p);
true
gap> pl in p;
false

4.2.6 Random

> Random(C) (operation)
Returns: an element in the collection C
C is a collection of elements of an incidence structure, i.e. an object in the category
IsElementsOfIncidenceStructure. Random(C) will return a random element in C provided there
is a method installed. Our methods may refer to methods for random selection of e.g. subspaces of
the underlying vector space, as in the example here, or refer to the use of a psuedo random element of
an appropriate group, as is the case for subspaces of classical polar spaces.

GAP 4 Package FinInG 27

Example
gap> Random(Hyperplanes (PG(5,7)));
<a proj. 4-space in ProjectiveSpace(5, 7)>

4.27 AmbientGeometry

> AmbientGeometry(v) (operation)
Returns: the ambient geometry of the element v
If v is an element of an incidence geometry currently implemented in FinInG, then this operation
returns the ambient geometry of v, i.e. in general the geometry in which v was created. If incidence
structures was created with elements that are a subset of elements of another incidence structure, the
ambient geometry might stay unchanged.
Example
gap> plane := Random(Planes (HyperbolicQuadric(5,2)));
<a plane in Q+(5, 2)>
gap> AmbientGeometry(plane) ;
Q+(5, 2)
gap> 1 := Random(Lines(SplitCayleyHexagon(3)));
#I for Split Cayley Hexagon
#I Computing nice monomorphism. ..
#I Found permutation domain...
<a line of Split Cayley Hexagon of order 3>
gap> AmbientGeometry (1) ;
Split Cayley Hexagon of order 3
gap> p := Random(Points(EGQByBLTSet (BLTSetByqClan(LinearqClan(3)))));
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
#I Now embedding dual BLT-set into W(5,q)...
#I Computing points(1l) of Knarr comnstruction...
#I Computing lines(l) of Knarr construction...
#I Computing points(2) of Knarr comnstruction...
#I Computing lines(2) of Knarr construction...please wait
#I Computing elation group...
<a point of <EGQ of order [9, 3] and basepoint
[Z(3)~0, 0%Z(3), 0%Z(3), 0%Z(3), 0%Z(3), 0*Z(3) 1>>
gap> AmbientGeometry(p);
<EGQ of order [9, 3] and basepoint [Z(3)~0, 0xZ(3), 0*Z(3), 0xZ(3), 0*Z(3),
0%Z(3) 1>

4.3 Flags of incidence structures

A flag of an incidence structure S is a set F' of elements of S that are two by two incident. This implies
that all elements in F have a different type. A flag is maximal if it cannot be extended with more
elements. FinInG provides a basic category IsFlagOfIncidenceStructure. For different types of
incidence structures, methods to create a flag can be installed. A chamber is a flag of size n, where n
is the number of types. Recall that an incidence structure is an incidence geometry if every maximal
flag is a chamber.

GAP 4 Package FinInG 28

4.3.1 FlagOflcidenceStructure

> FlagOfIcidenceStructure(inc, 1) (operation)
Returns: the flag of the elements of inc in the list 1
It is checked if all elements in 1 are incident and belong to the same incidence structure. An

empty list is allowed.
Example

gap> ps := PG(3,7);

ProjectiveSpace(3, 7)

gap> point := VectorSpaceToElement (ps, [1,2,0,0]1*Z(7)~0);

<a point in ProjectiveSpace(3, 7)>

gap> line := VectorSpaceToElement (ps,[[1,0,0,0],[0,1,0,011%Z(7)"~0);

<a line in ProjectiveSpace(3, 7)>

gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,111*Z(7)"~0);
<a plane in ProjectiveSpace(3, 7)>

gap> flag := FlagOfIncidenceStructure(ps, [point,line,plane]);

<a flag of ProjectiveSpace(3, 7)>

4.3.2 IsChamberOfIncidenceStructure

> IsChamberOfIncidenceStructure(flag) (operation)
Returns: true if and only if flag is a chamber

The incidence structure is determined by the elements.
Example

gap> ps := PG(3,7);

ProjectiveSpace(3, 7)

gap> point := VectorSpaceToElement (ps,[1,2,0,0]1*Z(7)~0);

<a point in ProjectiveSpace(3, 7)>

gap> line := VectorSpaceToElement (ps,[[1,0,0,0],[0,1,0,011*Z(7)"0);
<a line in ProjectiveSpace(3, 7)>

gap> plane := VectorSpaceToElement (ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]11*%Z(7)~0);
<a plane in ProjectiveSpace(3, 7)>

gap> flagl := FlagOfIncidenceStructure(ps, [point,plane]);

<a flag of ProjectiveSpace(3, 7)>

gap> IsChamberOfIncidenceStructure(flagl);

false

gap> flag2 := FlagOfIncidenceStructure(ps, [point,line,plane]);

<a flag of ProjectiveSpace(3, 7)>

gap> IsChamberOfIncidenceStructure(flag?);

true

4.4 Shadow of elements

4.4.1 ShadowOfElement

> ShadowOfElement (inc, v, str) (operation)
> ShadowOfElement (inc, v, j) (operation)
Returns: The collection of elements of type str or type j incident with v

GAP 4 Package FinInG 29

inc is an incidence structure, v must be an element of inc, str must be a string which is
the plural of the name of one of the types of the elements of inc. For the second variant, j
is an integer representing one of the types of the elements of inc. This first variant relies on
TypesO0fElementsOfIncidenceStructurePlural and on a particular method installed for the sec-
ond variant for particular incidence structures. The use of the argument inc makes it flexible, i.e. if
the element v can belong to different incidence structure, its shadow can be different, as the second
example shows.

Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

gap> pi := Random(Planes(ps));

<a plane in ProjectiveSpace(3, 3)>

gap> lines := ShadowOfElement(ps,pi,"lines");
<shadow lines in ProjectiveSpace(3, 3)>

gap> Size(lines);

13

gap> p := Random(Points(PG(3,3)));

<a point in ProjectiveSpace(3, 3)>

gap> linesl := ShadowOfElement (SymplecticSpace(3,3),p,2);
<shadow lines in W(3, 3)>

gap> Size(linesl);

4

gap> lines2 := ShadowOfElement (PG(3,3),p,2);

<shadow lines in ProjectiveSpace(3, 3)>

gap> Size(lines2);

13

4.4.2 ShadowOfFlag

> ShadowOfFlag(inc, flag, str) (operation)
> Shadow0fFlag(inc, list, str) (operation)
> ShadowOfFlag(inc, flag, j) (operation)
> Shadow0fFlag(inc, list, j) (operation)

Returns: The collection of elements of type str or type j incident with the elements of flag,
or with the elements of 1ist

Variant 2 and 4 convert 1ist to a flag of inc, using FlagOfIcidenceStructure, which per-
forms the necessary checks. Variant 1 and 2 rely on variant 3 and 4 respectively, for which a method
must be installed for the particular incidence structure inc.
Example

gap> ps := PG(3,7);

ProjectiveSpace(3, 7)

gap> point := VectorSpaceToElement (ps, [1,2,0,0]1*Z(7)~0);

<a point in ProjectiveSpace(3, 7)>

gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]1]1*Z(7)"~0);
<a plane in ProjectiveSpace(3, 7)>

gap> flag := FlagOfIncidenceStructure(ps, [point,plane]);

<a flag of ProjectiveSpace(3, 7)>

gap> lines := ShadowOfFlag(ps,flag,"lines");

GAP 4 Package FinInG 30

<shadow lines in ProjectiveSpace(3, 7)>

4.4.3 ElementsIncidentWithElementOfIncidenceStructure

> ElementsIncidentWithElementOfIncidenceStructure(v, j) (operation)
Returns: The collection of elements of type j incident with v
This operation is declared for objects v belonging to IsElementOfIncidenceStructure,
but relies to particular methods installed for particular incidence structures, and refers always to
ShadowOfElement, where the ambient geometry is derived from the element v, and using the in-
teger j

4.4.4 Short names for ElementsIncidentWithElementOfIncidenceStructure

> Points(inc R V) (operation)
> Lines(inc, v) (operation)
> Planes(inc, v) (operation)
> Solids(inc, v) (operation)
> Points(v) (operation)
> Lines (V) (operation)
> Planes(v) (operation)
> Solids (V) (operation)

Returns: The collections of elements of inc of respective type 1, 2, 3, and 4, that are incident
with v

It is possible that inc is an incidence structure where the elements of type 1, 2, 3, and 4 respec-
tively are not called "points", "lines", "planes"”, and "solids" respectively. The methods don’t check
if names are given, and are just shortcuts to the operation ShadowOfElement. The second variant
derives the incidence structure to be used as the ambient geometry of v. Please keep in mind that
these methods are shortcuts to ShadowOfElement, which implies that asking e.g. Lines (v) with v a

point, will indeed return the lines incident with a point.
Example

gap> line := Random(Lines(AG(5,4)));
<a line in AG(5, 4)>

gap> Points(line);

<shadow points in AG(5, 4)>

gap> Planes(line);

<shadow planes in AG(5, 4)>

4.5 Enumerating elements of an incidence structure

In several situations, it can be usful to compute a complete list of objects statisfying one or more
conditions. To list all elements of a given type of an incidence structure, is a typical example. FinInG
provides functionality that is common in GAP for this purpose. We can either use AsList to get all
of the elements of a projective/polar space efficiently, or we can ask for an iterator or enumerator of a

GAP 4 Package FinInG 31

collection of elements. The word collection is important here. Subspaces of a vector space are not cal-
culated on calling Subspaces, rather primitive information is stored in an IsComponentObjectRep.
So for example

Example
gap> v:=GF(31)"5;

(GF(31)"5)

gap> subs:=Subspaces(v,1);

Subspaces((GF(31)°5), 1)

takes almost no time at all. But if you want a random element from this set, you could be waiting
a while. Instead, the user is better off using an iterator or an enumerator to access elements of this
collection. We have such a facility for the elements of a projective or polar space. At the moment,
we have made available iterators for projective spaces, and enumerators for polar spaces. We give
basic examples of enumerators and iterators here. For AsList, we refer to the appropriate sections
in the chapters on the particular geometries, since methods for AsList refer always to the group, and
make use of the package orb. An iterator is a GAP object that gives a user friendly way to loop over
all elements without repetition. Only three operations are applicable on an iterator: NextIterator,
IsDonelterator, and ShallowCopy.

4.5.1 Iterator

> Iterator(C) (operation)
Returns: an iterator for the collection C

C is a collection of elements of an incidence structure. An iterator is returned.
Example

gap> ps := PG(3,7);
ProjectiveSpace(3, 7)

gap> planes := Planes(ps);

<planes of ProjectiveSpace(3, 7)>
gap> iter := Iterator(planes);
<iterator>

gap> NextIterator(iter);

<a plane in ProjectiveSpace(3, 7)>
gap> IsDonelterator(iter);

false

For a collection of elements of a given type of certain incidence structures, FinInG also provides
methods to compute an enumerator. In its simpliest form, an enumerator is just a list containing all
the elements of the collection. Given any object in the list, it is possible to retrieve its number in the
list (which is then just its position). Also, given any number between 1 and the length of the list, it is
possible to get the corresponding element. For some collections of elements of particular incidence
structures, a more advanced version of enumerators is implemented. Such an advanced version is an
object containing the two functions ElementNumber and NumberElement. Such functions are able
to compute directly, without listing all elements, the element with a given number, or, conversely,
compute directly the number of a given element. Clearly, using an enumerator, it is possible to obtain
a list containing all elements of a collection.

GAP 4 Package FinInG 32

4.5.2 Enumerator

> Enumerator(C) (operation)
Returns: an enumerator for the collection C
C is a collection of elements of an incidence structure. An enumerator is returned.

Example
gap> enum := Enumerator(Lines(ParabolicQuadric(6,2)));
EnumeratorOfSubspaces0fClassicalPolarSpace(<lines of Q(6, 2)>)
gap> s := Size(enum);
315
gap> n := Random([1..s]);
284
gap> 1 := enum!.ElementNumber(s,n);

<a line in Q(6, 2)>
gap> enum!.NumberElement (s,1);
278

4.6 Lie geometries

The category IsLieGeometry contains the categories IsProjectiveSpace and
IsClassicalPolarSpace, and is bundling projective spaces and classical polar spaces. One
common fact of these geometries is that their elements are represented by subspaces of a vector
space. In these geometries, incidence is symmetrized set-theoretic containment. In this section we
describe methods that are declared in a generic way for (elements of) Lie geometries. Again, having
a declaration does not imply that methods are installed for all particular Lie geometries.

4.6.1 UnderlyingVectorSpace

> UnderlyingVectorSpace(ig) (operation)
Returns: the underlying vectorspace of the Lie geometry ig

Example

gap> UnderlyingVectorSpace(PG(5,4));

(GF(2°2)76)

gap> UnderlyingVectorSpace (HermitianPolarSpace(4,4));
(GF(2"2)"5)

4.6.2 ProjectiveDimension

> ProjectiveDimension(ig) (operation)
Returns: the projective dimension of the ambient projective space of ig

Example
gap> ProjectiveDimension(PG(7,7));

7

gap> ProjectiveDimension(EllipticQuadric(5,2));
5

GAP 4 Package FinInG 33

4.6.3 AmbientSpace

> AmbientSpace(ig) (attribute)
Returns: the ambient projective space of a Lie geometry ig

Example

gap> AmbientSpace(PG(3,4));
ProjectiveSpace(3, 4)

gap> AmbientSpace(ParabolicQuadric(4,4));
ProjectiveSpace (4, 4)

gap> AmbientSpace(SplitCayleyHexagon(3));
ProjectiveSpace(6, 3)

Mathematically, it makes sense to implement an object representing the empty subspace, since this
is typically obtained as a result of a Meet operation, which computes the intersection of two or more
elements. On the other hand, we do not consider the empty subspace as an element of the incidence
geometry. Hence, using the empty subspace as an argument of IsIncident (and consequently of \x,
will result in a no method found error.

4.6.4 IsEmptySubspace

> IsEmptySubspace (Category)

Category for objects representing the empty subspace of a particular Lie geometry. Empty sub-
spaces of different geometries will be different objects, and have a different ambient geometry.

4.7 Elements of Lie geometries

Elements of a Lie geometry are constructed using a list of vectors. The methods installed for the
particular Lie geometries check whether the subspace of the vector space represents an element of the
Lie geometry.

4.7.1 VectorSpaceToElement

> VectorSpaceToElement (ig, v) (operation)
> VectorSpaceToElement (ig, 1) (operation)

Returns: the element of ig, represented by the subspace spanned by v or 1, or returns the empty
subspace.

The first variant of this operation takes as second argument a vector of the underlying vector space
of ig. Such a vector represents possible a point of ig. The second variant takes as second argument
a list of vectors in the underlying vector space of ig. Such a list represents a subspace of the vector
space. If the dimension of the subspace of the underlying vector space is larger than zero and strictly
less than the dimension of the vector space, it is checked if the subspace represents an element of ig,
except when ig is a projective space. If 1 is a list of vectors generating the whole vector space, then
ig is returned if and only if ig is a projective space, otherwise an error is produced. An empty list is
not allowed as second argument.

GAP 4 Package FinInG 34

Example
gap> v := [1,1,1,0,0,0]1*Z(7)~0;
[z(7)~0, Z(7)"0, Z(7)"0, 0*Z(7), 0%Z(7), 0*Z(7)]
gap> w := [0,0,0,1,1,11*Z(7)"~0;
[0xZ(7), 0xZ(7), 0*Z(7), Z(7)~0, Z(7)~0, Z(7)~0]
gap> VectorSpaceToElement (PG(5,7),v);
<a point in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement (PG(5,7), [v,w]);
<a line in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement (SymplecticSpace(5,7),v);
<a point in W(5, 7)>
gap> VectorSpaceToElement (SymplecticSpace(5,7), [v,w]);
Error, <x> does not generate an element of <geom> called from
<function "unknown">(<arguments>)
called from read-eval loop at line 13 of *stdin*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> VectorSpaceToElement (HyperbolicQuadric(5,7),v);
Error, <v> does not generate an element of <geom> called from
<function "unknown">(<arguments>)
called from read-eval loop at line 13 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> VectorSpaceToElement (HyperbolicQuadric(5,7),0%v) ;
< empty subspace >

4.7.2 ElementToVectorSpace

> ElementToVectorSpace(v) (operation)
Returns: the vector or list of vectors representing the element v
The argument v must be an element, so it is not allowed that v is the empty subspace, or just a
projective space.
Example

gap> 1 := Random(Lines(PG(4,3)));
<a line in ProjectiveSpace(4, 3)>
gap> ElementToVectorSpace(l);
[[Z2(3)~0, Z(3), 0%Z(3), 0%Z(3), Z(3) 1,
[0xZ(3), 0%Z(3), Z(3)"0, Z(3)~0, 0%Z(3)]]

4.7.3 \in

> \in(u, V) (operation)
Returns: true if and only if the element u is set-theoretically contained in the element w
Both arguments must be elements of the same Lie geometry. The empty subspace and a Lie geom-
etry are also allowed as arguments. This relation is not symmetric, and the methods for IsIncident
use this method to test incidence between elements.

GAP 4 Package FinInG 35

Example
gap> p := VectorSpaceToElement (PG(3,3),[1,0,0,0]1*Z(3)"0);

<a point in ProjectiveSpace(3, 3)>

gap> 1 := VectorSpaceToElement(PG(3,3),[[1,0,0,0],[0,1,0,011*Z(3)"~0);
<a line in ProjectiveSpace(3, 3)>

gap> p in 1;

true

gap> p in p;

true

gap> 1 in p;

false

gap> 1 in PG(3,3);

true

4.7.4 More short names for ElementsIncidentWithElementOfIncidenceStructure

> Hyperplanes(inc, v) (operation)
> Hyperplanes(v) (operation)
Returns: the elements of type j — 1 incident with v, which is an element of type j
This operation is a shortcut to the operation ShadowOfElement, where the geometry is taken from
v, and where the elements of type one less that the type of v are asked.
Example

gap> pg := PG(3,7);
ProjectiveSpace(3, 7)

gap> hyp := Random(Hyperplanes(pg));
<a plane in ProjectiveSpace(3, 7)>
gap> hl := Random(Hyperplanes (hyp));
<a line in ProjectiveSpace(B, 7)>
gap> h2 := Random(Hyperplanes(hl));
<a point in ProjectiveSpace(3, 7)>
gap> ps := SymplecticSpace(7,3);
w(7, 3)

gap> solid := Random(Solids(ps));

<a solid in W(7, 3)>

gap> plane := Random(Hyperplanes(solid));
<a plane in W(7, 3)>

4.8 Hard wired embeddings and converting elements

A Lie geometry, i.e. an object in the category IsLieGeometry, is naturally embedded in a projec-
tive space. This is of course in a mathematical sense. In FinInG, certain embeddings are imple-
mented by providing a mapping between geometries. The Lie geometries are hard wired embedded,
just simply because a category containing elements of a Lie geometry, is always a subcategory of
IsSubspaceOfProjectiveSpace. As a consequence, operations applicable to objects in the cate-
gory IsSubspaceOfProjectiveSpace are by default applicable to objects in any subcategory, so on
elements of any Lie geometry. When dealing with elements of e.g. different polar spaces in the same
projective space, this yields a natural way of working with them, and investigating relations between

GAP 4 Package FinInG 36

them, without bothering about all necessary mappings. On the other hand, in some situations, it is
impossible to decide in which geometry an element has to be considered. An easy example is the
following. Consider two different quadrics in the same projective space. The intersection of two el-
ements, one of each quadric, is clearly an element of the ambient projective space. But also of both
quadrics. Without extra input of the user, the system cannot decide in which geometry to construct
the intersection. To avoid complicated methods with many arguents, in such situations, the resulting
element will be constructed in the common ambient projective space. Only in clear situations, where
the ambient geometry of all elements is the same, and equal to the geometry of the resulting element,
the resulting element will be constructed in this common geometry. We provide however conversion
operations for elements of Lie gometries.

4.8.1 ElementToElement

> ElementToElement(ps, el) (operation)
> Embed (ps , el) (operation)
Returns: el as an element of ps
Let ps be any Lie geometry. This method returns

VectorSpaceToElement (ps,ElementToVectorSpace(el)), if the conversion is possible.
Embed is declared as a synonym of ElementToElement.
Example
gap> p := VectorSpaceToElement (PG(3,7),[0,1,0,01*Z(7)"0);
<a point in ProjectiveSpace(3, 7)>
gap> q := ElementToElement (HyperbolicQuadric(3,7),p);
<a point in Q+(3, 7)>
gap> r := VectorSpaceToElement (PG(3,7),[1,1,0,01*Z(7)~0);
<a point in ProjectiveSpace(3, 7)>
gap> ElementToElement (HyperbolicQuadric(3,7),r);
Error, <v> does not generate an element of <geom> called from
VectorSpaceToElement (ps, ElementToVectorSpace(el)) called from
<function "unknown">(<arguments>)
called from read-eval loop at line 11 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

Chapter 5

Projective Spaces

In this chapter we describe how to use FinInG to work with finite projective spaces.

5.1 Projective Spaces and basic operations

A projective space is a point-line incidence geometry, satisfying few well known axioms. An ax-
iomatic treatment can e.g. be found in [VY65a] and [VY65b]. Projective spaces are axiomatically,
point-line geometries, but may contain higher dimensional projective subspaces too.

In FinInG, we deal with finite Desarguesian projective spaces. It is well known that these geome-
tries can be described completely using vector spaces over finite fields. The elements of the projective
space are all subspaces of the vector space. So the projective points correspond with the vectorlines,
the projective lines correspond with the vectorplanes, etc. From the axiomatic point of view, a projec-
tive space is a point-line geometry, and has rank at least 2. But a projective line is obtained if we start
with a two dimensional vector space. Starting with a one dimensional vector space yields a single
projective point. Both examples are not a projective space in the axiomatic point of view, but are in
FinInG considered as projective spaces. This abuses the terminology a bit, if one asks that projective
spaces have rank at least 2.

5.1.1 IsProjectiveSpace

> IsProjectiveSpace (Category)
This category is a subcategory of IsLieGeometry, and contains all finite Desarguesian projective
spaces.

We refer the reader to [HT91] for the necessary background theory in case it is not provided in the
manual.

5.1.2 ProjectiveSpace

> ProjectiveSpace(d, F) (operation)
> ProjectiveSpace(d, q) (operation)
> PG(d, q) (operation)

Returns: a projective space

37

GAP 4 Package FinInG

38

d must be a positive integer. In the first form, F is a field and the function returns the projective
space of dimension d over F. In the second form, q is a prime power specifying the size of the field.

The user may also use an alias, namely, the common abbreviation PG(d, q).

Example

gap> ProjectiveSpace(3,GF(3));
ProjectiveSpace(3, 3)

gap> ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

5.1.3 ProjectiveDimension

> ProjectiveDimension(ps)
> Dimension(ps)
> Rank(ps)

Returns: the projective dimension of the projective space ps

Example

(attribute)
(attribute)

(attribute)

gap> ps := PG(5,8);
ProjectiveSpace(5, 8)

gap> ProjectiveDimension(ps);
5

gap> Dimension(ps);

5

gap> Rank(ps);

5

5.1.4 BaseField

> BaseField(ps)
Returns: returns the base field for the projective space ps

Example

(operation)

gap> BaseField(ProjectiveSpace(3,81));
GF(3~4)

5.1.5 UnderlyingVectorSpace

> UnderlyingVectorSpace(ps)
Returns: a vector space

(operation)

If ps is a projective space of dimension n over the field of order g, then this operation simply
returns the underlying vector space, i.e. the n+ 1 dimensional vector space over the field of order q.

Example
gap> ps := ProjectiveSpace(4,7);
ProjectiveSpace(4, 7)

gap> vs := UnderlyingVectorSpace(ps);

(GF(7)"5)

GAP 4 Package FinInG 39

5.1.6 AmbientSpace

> AmbientSpace(ps) (attribute)
Returns: a projective space
The ambient space of a projective space ps is the projective space itself. Hence, simply ps will
be returned.

5.2 Subspaces of projective spaces

The elements of a projective space PG(n,q) are the subspaces of a suitable dimension. The empty
subspace, also called the trivial subspace, has dimenion -1, corresponds with the zero dimensional
vector space of the underlying vector space of PG(n,q), and is hence represented by the zero vector of
lenght n+ 1 over the underlying field GF (q). The trivial subspace and the whole projective space are
mathematically considerd as a subsace of the projective geometry, but not as elements of the incidence
geometry, and hence do in FinInG not belong to the category IsSubspace0fProjectiveSpace.

5.2.1 VectorSpaceToElement

> VectorSpaceToElement (geo, v) (operation)
Returns: an element
geo is a projective space, and v is either a row vector (for points) or an mxn matrix (for an (m—1)-
subspace of projective space of dimension n — 1). In the case that v is a matrix, the rows represent
generators for the subspace. An exceptional case is when v is a zero-vector, in which case the trivial
subspace is returned.
Example

gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,31*Z(7)"0;
[z(7), Z(7)~5, Z(7)~3, 0*xZ(7), Z(7), Z(7)~2, Z(7)]
gap> p := VectorSpaceToElement (ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
142 .131
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]1%Z(4)"0;
[z(2)~0, Z(2)~0, 0%Z(2), Z(2)~0]
gap> p := VectorSpaceToElement (ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]1]1*Z(4)"0;
[[Z(2)~0, 0%xZ(2), 0%Z(2), Z(2)~0 1, [0*%Z(2), Z(2)~0, Z(2)~0, 0xz(2)]]
gap> line := VectorSpaceToElement (ps,mat) ;
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement (ps, []);
Error, <v> does not represent any element called from
<function "unknown">(<arguments>)
called from read-eval loop at line 17 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

GAP 4 Package FinInG 40

brk> quit;

5.2.2 EmptySubspace

> EmptySubspace (pS) (operation)
Returns: the trivial subspace in the projective ps
The object returned by this operation is contained in every projective subspace of the projective

space ps, but is not an element of ps. Hence, testinglincidence results in an error message.
Example

gap> e := EmptySubspace(PG(5,9));
< empty subspace >
gap> p := VectorSpaceToElement(PG(5,9),[1,0,0,0,0,0]1*Z(9)"0);
<a point in ProjectiveSpace(5, 9)>
gap> e*p;
Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at line 10 of *stdinx
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> e in p;
true

5.2.3 ProjectiveDimension

> ProjectiveDimension (sub) (operation)
Returns: the projective dimension of a subspace of a projective space. The operation

ProjectiveDimension is also applicable on the EmptySubspace.
Example

gap> ps := PG(2,5);

ProjectiveSpace(2, 5)

gap> v := [[1,1,0],[0,3,2]11*Z(5)"0;

[[2(6)°0, Z(5)~0, 0%Z(5) 1, [0*Z(5), Z(5)~3, Z(56)] 1]
gap> line := VectorSpaceToElement (ps,v);

<a line in ProjectiveSpace(2, 5)>

gap> ProjectiveDimension(line);

1

gap> Dimension(line);

1

gap> p := VectorSpaceToElement (ps, [1,2,3]1*Z(5)"0);
<a point in ProjectiveSpace(2, 5)>

gap> ProjectiveDimension(p);

0

gap> Dimension(p);

0

gap> ProjectiveDimension (EmptySubspace(ps));

-1

GAP 4 Package FinInG 41

5.2.4 ElmentsOfIncidenceStructure

> ElmentsOfIncidenceStructure(ps, j) (operation)
Returns: the collection of elements of the projective space ps of type j
For the projective space ps of dimension d and the type j, 1<j<d this operation returns the
collection of j — 1 dimensional subspaces. An error message is produced when the projective space
as has no elements of the required type.

Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> ElementsOfIncidenceStructure(ps,1);
<points of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,3);
<planes of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,4);
<solids of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,5);
<proj. 4-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,6);
<proj. 5-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,7);
Error, <ps> has no elements of type <j> called from
<function "unknown">(<arguments>)

called from read-eval loop at line 15 of *stdin*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

5.2.5 Short names for ElementsOfIncidenceStructure

> Points(as) (operation)
> Lines(as) (operation)
> Planes(as) (operation)
> Solids(as) (operation)
> Hyperplanes(as) (operation)

Returns: The elements of as of respective type 1, 2, 3, 4, and the hyperplanes
An error message is produced when the projective space ps has no elements of a required type.
Example

gap> ps := PG(6,13);
ProjectiveSpace(6, 13)

gap> Points(ps);

<points of ProjectiveSpace(6, 13)>
gap> Lines(ps);

<lines of ProjectiveSpace(6, 13)>
gap> Planes(ps);

<planes of ProjectiveSpace(6, 13)>
gap> Solids(ps);

<solids of ProjectiveSpace(6, 13)>

GAP 4 Package FinInG

gap> Hyperplanes(ps) ;

<proj. 5-subspaces of ProjectiveSpace(6, 13)>
gap> ps := PG(2,2);

ProjectiveSpace(2, 2)

gap> Hyperplanes(ps);

<lines of ProjectiveSpace(2, 2)>

42

5.2.6 Incidence and containment

> IsIncident(ell , el2) (operation)
> *(ell, el2) (operation)
> \ in (ell 5 612) (operation)

Returns: true or false

Recall that for projective spaces, incidence is symmetrized containment, where the empty sub-
space and the whole projective space are excluded as arguments for this operation, since they are not
considered as elements of the geometry, but both the empty subspace and the whole projective space

are allowed as arguments for \in.
Example

gap> ps := ProjectiveSpace(5,9);

ProjectiveSpace(5, 9)

gap> p := VectorSpaceToElement (ps,[1,1,1,1,0,0]1*Z(9)~0);

<a point in ProjectiveSpace(5, 9)>

gap> 1 := VectorSpaceToElement (ps,[[1,1,1,1,0,0],[0,0,0,0,1,0]11*Z(9)"~0);
<a line in ProjectiveSpace(5, 9)>

gap> plane := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]1]+

<a plane in ProjectiveSpace(5, 9)>

gap> p * 1;

true

gap> 1 * p;

true

gap> IsIncident(p,1);

true

gap> p in 1;

true

gap> 1 in p;

false

gap> p * plane;

false

gap> 1 * plane;

false

gap> 1 in plane;

false

gap> e := EmptySubspace(ps);

< empty subspace >

gap> e * 1;

Error, no method found! For debugging hints type 7Recovery from NoMethodFound

Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at line 21 of *stdinx*

you can ’quit;’ to quit to outer loop, or

Z(9)°0);

GAP 4 Package FinInG 43

you can ’return;’ to continue
brk> quit;

gap> e in 1;

true

gap> 1 in ps;

true

5.2.7 StandardFrame

> StandardFrame (ps) (operation)
Returns: the standard frame of the projetive space ps
Example
gap> StandardFrame(PG(5,4));
[<a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,
<a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,
<a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,
<a point in ProjectiveSpace(5, 4)>]
gap> Display(last);
[[2(2)70, 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1,
[0%xZ(2), Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2) 1,
[0x2(2), 0%Z(2), Z(2)~0, 0%Z(2), 0%Z(2), 0%Z(2) 1,
[0%Z(2), 0%Z(2), 0%Z(2), Z(2)~0, 0%Z(2), 0*Z(2) 1,
[0xZ(2), 0%Z(2), 0%*Z(2), 0%Z(2), Z(2)~0, 0*Z(2) 1,
[0%2(2), 0xZ(2), 0%Z(2), 0%Z(2), 0xZ(2), Z(2)"0 1],
[z(2)~0, Z(2)~0, Z(2)"0, Z(2)~0, Z2(2)"0, Z(2)~0 1 1]
5.2.8 Coordinates
> Coordinates(p) (operation)

Returns: the homogeneous coordinates of the projective point p

Example
gap> p := Random(Points(PG(5,16)));

<a point in ProjectiveSpace(5, 16)>

gap> Coordinates(p);

[z(2)~0, Z(274)~13, Z(2)"0, Z(2°4)"8, Z(274)"3, Z(274)"7]

5.2.9 DualCoordinatesOfHyperplane

> DualCoordinatesOfHyperplane (hyp) (operation)
Returns: a list
The argument hyp is a hyperplane of a projective space. This operation returns the dual coordi-
nates of the hyperplane hyp, i.e. the list with the coefficients of the equation defining the hyperplane
hyp as an algebraic variety.

GAP 4 Package FininG 44

5.2.10 HyperplaneByDualCoordinates

> HyperplaneByDualCoordinates(pg, list) (operation)
Returns: a hyperplane of a projective space
The argument pg is a projective space, and 1ist is the coordinate vector of a point of pg. This
operation returns the hyperplane that has 1ist as the list of coefficients of the equation defining the
hyperplane as an algebraic variety.

5.2.11 EquationOfHyperplane

> EquationOfHyperplane (h) (operation)
Returns: the equation of the hyperplane h of a projective space

Example

gap> hyperplane := VectorSpaceToElement(PG(3,2),[[1,1,0,0],[0,0,1,0],[0,0,0,11]1%Z

<a plane in ProjectiveSpace(3, 2)>

gap> EquationOfHyperplane (hyperplane) ;

x_1+x_2

5.2.12 AmbientSpace

> AmbientSpace(el) (operation)
Returns: returns the ambient space of an element el of a projective space
This operation is also applicable on the empty subspace and the whole space.

Example

gap> ps := PG(3,27);

ProjectiveSpace(3, 27)

gap> p := VectorSpaceToElement (ps,[1,2,1,0]*Z(3)"3);
<a point in ProjectiveSpace(3, 27)>

gap> AmbientSpace(p);

ProjectiveSpace(3, 27)

5.2.13 BaseField

> BaseField (el) (operation)
Returns: returns the base field of an element el of a projective space
This operation is also applicable on the trivial subspace and the whole space.

Example

gap> ps := PG(5,8);

ProjectiveSpace(5, 8)

gap> p := VectorSpaceToElement (ps,[1,1,1,0,0,11*Z(2));
<a point in ProjectiveSpace(5, 8)>

gap> BaseField(p);

GF(273)

2)°0);

GAP 4 Package FinInG 45

5.2.14 Random

> Random(elements) (operation)
Returns: arandom element from the collection elements
The collection elements is an object in the category IsElementsOf IncidenceStructure, i.e.
an object representing the set of elements of a certain incidence structure of a given type. The latter

information can be derived e.g. using AmbientSpace and Type.
Example

gap> ps := PG(9,49);

ProjectiveSpace(9, 49)

gap> Random(Points(ps));

<a point in ProjectiveSpace(9, 49)>

gap> Random(Lines(ps));

<a line in ProjectiveSpace(9, 49)>

gap> Random(Solids(ps));

<a solid in ProjectiveSpace(9, 49)>

gap> Random(Hyperplanes(ps));

<a proj. 8-space in ProjectiveSpace(9, 49)>
gap> elts := ElementsOfIncidenceStructure(ps,6);
<proj. 5-subspaces of ProjectiveSpace(9, 49)>
gap> Random(elts);

<a proj. 5-space in ProjectiveSpace(9, 49)>
gap> Display(last);

z = Z(49)
1 z714 z~44 z~14 5
1 z729 z713 z°19 z727
1 . . . z720 z710 z~18 z~27
1 . . 3 z730 z°18 z~14
1 . z710 z728 z~47 z~29

. 1 279 z742 z~34 z~25
gap> RandomSubspace(ps,3);
<a solid in ProjectiveSpace(9, 49)>
gap> Display(last);
z = Z(49)
1 . . . z717 z°33 z74 . z71 z733
1 . . 2730 2 6 1 z720 z~42
1 . z720 z730 z~11 z~39 6 3
. . 1 z"21 1 z711 z745 z~1 z79
gap> RandomSubspace (ps,7);
<a proj. 7-space in ProjectiveSpace(9, 49)>
gap> Display(last);
z = Z(49)
1 z742 z~35
1 z743 z~1
1 z744 4
1 z741 z~10
1 . . . z737 z712
1 . . z711 z739
1 . z722 z710
. 1 z743 z=22
gap> RandomSubspace (ps) ;
<a plane in ProjectiveSpace(9, 49)>
gap> RandomSubspace (ps) ;

GAP 4 Package FinInG 46

<a proj. 6-space in ProjectiveSpace(9, 49)>

5.2.15 RandomSubspace

> RandomSubspace(ps, i) (operation)
> RandomSubspace (ps) (operation)

Returns: the first variant returns a random element of type i of the projective space ps. The
second variant returns a random element of a random type of the projective space ps

Example
gap> ps := PG(8,16);

ProjectiveSpace(8, 16)

gap> RandomSubspace (ps) ;

<a point in ProjectiveSpace(8, 16)>

gap> RandomSubspace (ps) ;

<a proj. 5-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace (ps) ;

<a proj. 7-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace (ps) ;

<a proj. 4-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace (ps) ;

<a plane in ProjectiveSpace(8, 16)>

gap> RandomSubspace (ps) ;

<a plane in ProjectiveSpace(8, 16)>

gap> RandomSubspace(ps) ;

<a plane in ProjectiveSpace(8, 16)>

5.2.16 Span

> Span(u, V) (operation)
> Span(list) (operation)

Returns: an element or the empty subspace or the whole space

When u and v are elements of a projective. This function returns the span of the two elements.
When 1list is a list of elements of the same projective space, then this function returns the span of
all elements in 1ist. It is checked whether the elements u and v are elements of the same projective
space. Although the trivial subspace and the whole projective space are not objects in the category
IsSubspace0fProjectiveSpace, they are allowed as argument for this operation, also as member

of the argument of the second variant of this operation.
Example

gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

gap> p := Random(Planes(ps));

<a plane in ProjectiveSpace(3, 3)>
gap> q := Random(Planes(ps));

<a plane in ProjectiveSpace(3, 3)>
gap> s := Span(p,q);
ProjectiveSpace(3, 3)

gap> s = Span([p,ql);

true

GAP 4 Package FinInG 47

gap> t := Span(EmptySubspace(ps),p);
<a plane in ProjectiveSpace(3, 3)>
gap> t = p;

true

gap> Span(ps,p);

ProjectiveSpace(3, 3)

5.2.17 Meet

> Meet (u 5 V) (operation)
Returns: an element or the empty subspace or the whole space
When u and v are elements of a projective space. This function returns the intersection of the two
elements. When 1ist is a list of elements of the same projective space, then this function returns the
intersection of all elements in 1ist. It is checked whether the elements u and v are elements of the
same projective space. Although the trivial subspace and the whole projective space are not objects in
the category IsSubspaceO0fProjectiveSpace, they are allowed as argument for this operation, also
as member of the argument of the second variant of this operation.
Example

ProjectiveSpace(7, 8)

gap> p := Random(Solids(ps));

<a solid in ProjectiveSpace(7, 8)>
gap> q := Random(Solids(ps));

<a solid in ProjectiveSpace(7, 8)>
gap> s := Meet(p,q);

< empty subspace >

gap> Display(s);

< empty subspace >

gap> r := Random(Hyperplanes(ps));
<a proj. 6-space in ProjectiveSpace(7, 8)>
gap> Meet(p,r);

<a plane in ProjectiveSpace(7, 8)>
gap> Meet(q,r);

<a plane in ProjectiveSpace(7, 8)>
gap> Meet([p,q,rl);

< empty subspace >

5.2.18 FlagOfIncidenceStructure

> FlagOfIncidenceStructure(ps, els) (operation)
Returns: the flag of the projetive space ps, determined by the subspaces of ps in the list els.
When els is empty, the empty flag is returned.

Example
gap> ps := ProjectiveSpace(12,11);
ProjectiveSpace(12, 11)

gap> sl := RandomSubspace(ps,8);
<a proj. 8-space in ProjectiveSpace(12, 11)>
gap> s2 := RandomSubspace(sl,6);
<a proj. 6-space in ProjectiveSpace(12, 11)>

GAP 4 Package FinInG

gap> s3 := RandomSubspace(s2,4);
<a proj. 4-space in ProjectiveSpace(12, 11)>
gap> s4 := Random(Solids(s3));
<a solid in ProjectiveSpace(12, 11)>
gap> sb := Random(Points(s4));
<a point in ProjectiveSpace(12, 11)>
gap> flag := FlagOfIncidenceStructure(ps, [s1,s3,s2,85,s4]);
<a flag of ProjectiveSpace(12, 11)>
gap> ps := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(4, 5)>
gap> 1 := Random(Lines(ps));
<a line in ProjectiveSpace(4, 5)>
gap> v := Random(Solids(ps));
<a solid in ProjectiveSpace(4, 5)>
gap> flag := FlagOfIncidenceStructure(ps, [v,1,p]);
Error, <els> does not determine a flag> called from
<function "unknown">(<arguments>)
called from read-eval loop at line 19 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> flag := FlagOfIncidenceStructure(ps, []);
<a flag of ProjectiveSpace(4, 5)>

48

5.2.19 IsEmptyFlag
> IsEmptyFlag(flag)

Returns: return true if flag is the empty flag
5.2.20 IsChamberOfIncidenceStructure

> IsChamberOfIncidenceStructure(flag)
Returns: true if flag is a chamber flag

Example

(operation)

(operation)

gap> ps := PG(3,13);

ProjectiveSpace(3, 13)

gap> plane := Random(Planes(ps));

<a plane in ProjectiveSpace(3, 13)>

gap> line := Random(Lines(plane));

<a line in ProjectiveSpace(3, 13)>

gap> point := Random(Points(line));

<a point in ProjectiveSpace(3, 13)>

gap> flag := FlagOfIncidenceStructure(ps, [point,line,plane]);
<a flag of ProjectiveSpace(3, 13)>

gap> IsChamberOfIncidenceStructure(flag);
true

GAP 4 Package FinInG 49

5.3 Shadows of Projective Subspaces

5.3.1 ShadowOfElement

> ShadowOfElement (ps, el, i) (operation)

> ShadowOfElement(ps, el, str) (operation)
Returns: the shadow elements of type i in el. The second variant determines the type i from

the position of str in the list returned by TypesOfElements0fIncidenceStructurePlural
Given the element el in the projective space ps, this operation returns the elements of ps of type

i incident with el.
Example

gap> ps := PG(4,3);

ProjectiveSpace(4, 3)

gap> plane := Random(Planes(ps));

<a plane in ProjectiveSpace(4, 3)>

gap> shadowpoints := ShadowOfElement (ps,plane,1);

<shadow points in ProjectiveSpace(4, 3)>

gap> List(shadowpoints);

[<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>]

gap> shadowlines := ShadowOfElement (ps,plane,2);

<shadow lines in ProjectiveSpace(4, 3)>

gap> List(shadowlines);

[<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>]

5.3.2 ShadowOfFlag

> ShadowOfFlag(ps, flag, i) (operation)
> ShadowOfFlag(ps, flag, str) (operation)

Returns: the shadow elements of type i in the flag flag, i.e. the elements of type i incident
with all elements of f1ag. The second variant determines the type i from the position of str in the
list returned by TypesO0fElementsOfIncidenceStructurePlural

Example

gap> ps := PG(5,7);

ProjectiveSpace(5, 7)

gap> p := VectorSpaceToElement (ps,[1,0,0,0,0,0]1*Z(7)"0);

<a point in ProjectiveSpace(5, 7)>

gap> 1 := VectorSpaceToElement (ps,[[1,0,0,0,0,0],[0,1,0,0,0,0]11*Z(7)"~0);
<a line in ProjectiveSpace(5, 7)>

GAP 4 Package FinInG 50

gap> v := VectorSpaceToElement (ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]11%Z(7
<a plane in ProjectiveSpace(5, 7)>

gap> flag := FlagOfIncidenceStructure(ps, [v,1,p]);

<a flag of ProjectiveSpace(5, 7)>

gap> s := ShadowOfFlag(ps,flag,4);

<shadow solids in ProjectiveSpace(5, 7)>

gap> s := ShadowOfFlag(ps,flag,"solids");

<shadow solids in ProjectiveSpace(5, 7)>

5.3.3 ElementsIncidentWithElementOfIncidenceStructure

> ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)

Returns: the elements of type i incident with el, in other words, the shadow of the elements of

type i of the element el

Internally, the function FlagOfIncidenceStructure is used to create a flag from 1ist. This

function also performs the checking.

Example
gap> ps := PG(6,9);
ProjectiveSpace(6, 9)
gap> p := VectorSpaceToElement (ps,[1,0,1,0,0,0,01*Z(9)"0);
<a point in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(p,3);
<shadow planes in ProjectiveSpace(6, 9)>
gap> line := VectorSpaceToElement(ps,[[1,1,1,1,0,0,0]1,[0,0,0,0,1,1,111*Z(9)"~0);
<a line in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(line,1);
<shadow points in ProjectiveSpace(6, 9)>
gap> List(els);
[<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>]

5.3.4 Short names for ElementsIncidentWithElementOfIncidenceStructure

vV VvV VvV vV VvV VvV Vv Vv VvV

Points(ps, v) (operation)
Lines (pS , V) (operation)
Planes (pS 5 V) (operation)
Solids (pS , V) (operation)
Hyperplanes(inc, v) (operation)
Points(v) (operation)
Lines (V) (operation)
Planes(v) (operation)
Solids (V) (operation)
Hyperplanes (v) (operation)

Returns: The elements of the incidence geometry of the according type. If ps is not given as an

argument, it is deduced from v as its ambient geometry.

~0);

GAP 4 Package FinInG 51

Example
gap> ps := PG(6,13);

ProjectiveSpace(6, 13)

gap> plane := Random(Planes(ps));

<a plane in ProjectiveSpace(6, 13)>

gap> Points(plane);

<shadow points in ProjectiveSpace(6, 13)>
gap> Lines(plane);

<shadow lines in ProjectiveSpace(6, 13)>
gap> Solids(plane);

<shadow solids in ProjectiveSpace(6, 13)>
gap> Hyperplanes(plane);

<shadow lines in ProjectiveSpace(6, 13)>
gap> ElementsIncidentWithElementOfIncidenceStructure(plane,6);
<shadow proj. 5-subspaces in ProjectiveSpace(6, 13)>

5.4 Enumerating subspaces of a projective spaces

5.4.1 Iterator

> Iterator(subspaces) (operation)
Returns: an iterator for the collection subspaces

We refer to Iterator for the definition of an iterator.
Example

gap> pg := PG(5,7);
ProjectiveSpace(5, 7)

gap> planes := Planes(pg);

<planes of ProjectiveSpace(5, 7)>
gap> iter := Iterator(planes);
<iterator>

gap> NextIterator(iter);

<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);

<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);

<a plane in ProjectiveSpace(5, 7)>

5.4.2 Enumerator

> Enumerator (subspaces) (operation)
Returns: an enumerator for the collection subspaces
For complete collections of subspaces of a given type of a projective space, currently, no non-
trivial enumerator is installed, i.e. this operation just returns a list containing all elements of the
collection subspaces. Such a list can, of course, be used as an enumerator, but this might be time
consuming.

Example

gap> pg := PG(3,4);
ProjectiveSpace(3, 4)

GAP 4 Package FinInG 52

gap> lines := Lines(pg);
<lines of ProjectiveSpace(3, 4)>

gap> enum := Enumerator(lines);;
gap> Length(enum);
357

5.4.3 List

> List(subspaces) (operation)
> AsList (subspaces) (operation)

Returns: the complete list of elements in the collection subspaces

The operation List will return a complete list, the operation AsList will return an orb object,
representing a complete orbit, i.e. representing in this case a complete list. To obtain the elements
explicitely, one has to issue the List operation with as argument the orb object again. Applying List
directly to a collection of subspaces, refers to the enumerator for the collection, while using AsList
uses the orb to compute all subspaces as an orbit.
Example

gap> pg := PG(3,4);
ProjectiveSpace(3, 4)

gap> lines := Lines(pg);
<lines of ProjectiveSpace(3, 4)>
gap> list := List(lines);;
gap> Length(list);

357

gap> aslist := AsList(lines);
<closed orbit, 357 points>
gap> list2 := List(aslist);;
gap> Length(list2);

357

Chapter 6

Projective Groups

A collineation of a projective space is a type preserving bijection of the elements of the projective
space, that preserves incidence. The Fundamental Theorem of Projective Geometry states that every
collineation of a Desarguesian projective space of dimension at least two is induced by a semilinear
map of the underlying vector space. The group of all linear maps of a given n + 1-dimensional vector
space over a given field GF(q) is denoted by GL(n+ 1,q). This is a matrix group consisting of all
non-singular square n + 1-dimensional matrices over GF(q). The group of all semilinear maps of
the vector space V(n,q) is obtained as the semidirect product of GL(n,q) and Aut(GF(q)), and is
denoted by I'L(n + 1,q). Each semilinear map induces a collineation of PG(n,q). The Fundamental
theorem of Projective Geometry also guarantees that the converse holds. Note also that I'L(n+ 1,q)
does not act faithfully on the projective points, and the kernel of its action is the group of scalar
matrices, Sc(n+1,q). So the group PT'L(n+ 1,q) is defined as the group I'L(n+1,q)/Sc(n+1,q),
and PGL(n+1,q) = GL(n+1,q)/Sc(n+1,q). An element of the group PGL(n+ 1,q) is also called
a projectivity or homography of PG(n,q), and the group PGL(n+ 1,q) is called the projectivity group
or homography group of PG(n,q). An element of PI'L(n+ 1,q) is called a collineation of PG(n,q)
and the group PT'L(n+ 1,q) is the collineation group of PG(n,q).

As usual, we also consider the special linear group SL(n+ 1,g), which is the subgroup of
GL(n+ 1,q) of all matrices having determinant one. Its projective variant, i.e. PSL(n+ 1,q) =
SL(n+1,q)/Sc(n+1,q) is called the special homography group or special projectivity group of
PG(n,q).

Consider the projective space PG(n,q). As described in Chapter 5, a point of PG(n,q) is rep-
resented by a row vector. A k-dimensional subspace of PG(n,q) is represented by a generating set
of k+ 1 points, and as such, by a (k+ 1) x (n+ 1) matrix. The convention in FinInG is that a
collineation ¢ with underlying matrix A and field automorphism 6 maps that projective point repre-
sented by row vector (xo,X1,...,X,) to the projective point represented by row vector (yo,y1,...,Vn) =
((x0,X1,...,%,)A)?. This convention determines completely the action of collineations on all elements
of a projective space, and it follows that the product of two collineations ¢;, ¢ with respective un-
derlying matrices A1,A» ar}d respective underlying field automorphisms 6, 6, is the collineation with

underlying matrix A ~Agl and underlying field automorphism 6,6, .

A correlation of the projective space PG(n,q) is a collineation from PG(n,q) to its dual. A pro-
jectivity from PG(n,q) to its dual is sometimes called a reciprocity. The standard duality of the
projective space PG(n,q) maps any point v with coordinates (xo,x1,...,%,) on the hyperplane with
equation xoXo +x;X; + - -- + x,X,,. The standard duality acts as an automorphism on PI'L(n+ 1,q)
by mapping the underlying matrix of a collineation to its inverse transpose matrix. (Recall that

53

GAP 4 Package FinInG 54

the frobenius automorphism and the standard duality commute.) The convention in FinInG is that
a correlation ¢ with underlying matrix A and field automorphism 6 maps that projective point
represented by row vector (xo,xi,...,%,) to the projective hyperplane represented by row vector
(Yo, Y15 -+ n) = ((x0,x1,...,%,)A)%, ie. (Yo,¥1,---,9n) = ((x0,x1,...,%,)A)? are the dual coordi-
nates of the hyperplane.

The product of two correlations of PG(n,q) is a collineation, and the product of a collineation and
a correlaton is a correlation. So the set of all collineations and correlations of PG(n,q) forms a group,
called the correlation-collineation group of PG(n,q). The correlation-collineation group of PG(n,q)
is isomorphic to the semidirect product of PT'L(n+ 1,q) with the cyclic group of order 2 generated by
the standard duality of the projective space PG(n,q). The convention determines completely the ac-
tion of correlations and collineations on all elements of a projective space, and it follows that the prod-
uct of two elements of the correlation-collineation group ¢;, ¢ with respective underlying matrices
Aj,A», respective underlying field automorphisms 0y, 6,, and respective underlying projective space
isomorphisms (standard duality or identity map) &y, &, is the element of the correlation-collineation

group with underlying matrix A, (A;91 l)‘31, underlying field automorphism 6,6, , and underlying pro-
jective space automorphism 6; &,. , where the action of §; on the matrix A; is defined as the transpose
inverse if 9, is the standard duality, and as the identity if 0; is the identity.

Action functions for collineations and correlations on the subspaces of a projective space are
described in detail in Section 6.8

We mention that the commands PGL (and ProjectiveGenerallLinearGroup) and PSL (and
ProjectiveSpecialLinearGroup) are available in GAP and return a (permutation) group isomor-
phic to the required group. Therefore we do not provide new methods for these commands, but assume
that the user will obtain these groups as homography or special homography group of the appropriate
projective space. We will follow this philosophy for the other classical groups.

6.1 Projectivities, collineations and correlations of projective spaces.

These are the different type of actions on projective spaces in FinInG, and they naturally give rise to
the following distinct categories and representations. Note that these categories and representations
are to be considered on a non-user level. Below we describe all user constuction methods that hide
nicely these technical details.

6.1.1 Categories for group elements

> IsProjGrpEl (Category)
> IsProjGrpElWithFrob (Category)
> IsProjGrpElWithFrobWithPSIsom (Category)

IsProjGrpEl, IsProjGrpElWithFrob, and IsProjGrpElWithFrobWithPSIsom are the cate-
gories naturally induced by the notions of projectivities, collineations, and correlations of a projective
space.

6.1.2 Representations for group elements

> I SPI‘Oj GrpElRep (Representation)
> IsProjGrpElWithFrobRep (Representation)

GAP 4 Package FinInG 55

> IsProjGrpElWithFrobWithPSIsomRep (Representation)

IsProjGrpElRep is the representation naturally induced by a projectivity;
IsProjGrpElWithFrobRep is the representation naturally induced by the notion of a collineation
of projective space; and IsProjGrpElWithFrobWithPSIsomRep is the representation natu-
rally induced by a correlation of a projective space. This means that an object in the rep-
resentation IsProjGrpElRep has as underlying object a matrix; an object in the category
IsProjGrpElWithFrobRep has as underlying object a pair consisting of a matrix and a field auto-
morphism; and IsProjGrpElWithFrobWithPSIsomRep has as underlying object a triple consisting
of a matrix, a field automorphism and an isomorphism from the projective space to its dual space.
Also the basefield is stored as a component in the representation.

The above mentioned categories allow us to make a distinction between projectivities,
collineations and correlations apart from their representation. However, in FinInG, a group ele-
ment constructed in the categories IsProjGrpElMore is always constructed in the representation
IsProjGrpElMoreRep. Furthermore, projectivities of projective spaces (and also collineations of
projective spaces) will by default be constructed in the category IsProjGrpElWithFrobRep. This
technical choice was made by the developpers to have the projectivity groups naturally embedded
in the collineation groups. Correlations of projective spaces will be constructed in the category
IsProjGrpElWithFrobWithPSIsom.

6.1.3 Projectivities

> IsProjectivity (Property)

IsProjectivity is a property. Projectivities are the elements of PGL(n+ 1,q). Every el-
ement belonging to IsProjGrpEl is by construction a projectivity. If IsProjectivity is ap-
plied to a an element belonging to IsProjGrpElWithFrob, then it verifies whether the underlying
field automorphism is the identity. If IsProjectivity is applied to a an element belonging to
IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is
the identity, and whether the projective space isomorphism is the identity. This operation provides a
user-friendly method to distinguish the projectivities from the projective strictly semilinear maps, and
the correlations of a projective space.

Example
gap> g := Random(HomographyGroup(PG(3,4)));
< a collineation: [[Z(2°2)"2, 0%Z(2), Z(2°2)"2, 0%xZ(2) 1,
[2(272), 2(272), z(272)"2, Z2(272) 1, [Z2(272)"2, 0xZ(2), Z(272), 0*Z(2) 1,
[Zz(2~2)~2, z(2"2), Z(2~2)~2, Z(2)~0 1 1, F~O>
gap> IsProjectivity(g);
true
gap> g := Random(CollineationGroup(PG(3,4)));
< a collineation: [[Z(2)~0, 0%xZ(2), Z(2~2), Z(2"2)~2 1,
[Z(2)-0, Z(2°2), Z(2°2), 0%Z(2) 1, [0%Z(2), Z(2~2), 0xZ(2), 0*Z(2)],
[Zz(2)-0, Z(2°2), 0%Z(2), Z(2)~0 1 1, F~O>
gap> IsProjectivity(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(3,4)));
<projective element with Frobenius with projectivespace isomorphism
[[0%xZ2(2), Z2(2°2), Z(2°2)"2, Z(2°2) 1, [Z2(2)-0, Z(2°2)"2, Z(2"2), 0*Z(2) 1,
[Z(2°2)~2, Z(272), 0%Z(2), Z(2)"0 1,

GAP 4 Package FinInG 56

[z(2~2)~2, Z(2~2), Z(2"2)~2, Z(2)"0 1 1, F~
2, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
3,GF(2°2)))) >
gap> IsProjectivity(g);
false

6.1.4 Collineations of projective spaces

> IsCollineation (Property)

IsCollineation is property. All element of PT'L(n+ 1,q) are collineations, and therefor all ele-
ments belonging to IsProjGrpElWithFrob are collineations. But also a projectivity is a collineation,
as well as an element belonging to IsProjGrpElWithFrobWithPSIsom with projective space isomor-

phism equal to the identity, is a collineation.
Example
gap> g := Random(HomographyGroup(PG(2,27)));
< a collineation: [[Z(3°3)"8, Z(3"3)"20, Z(3°3)-22 1,
[Z(3°3), Z(3~3)"7, Z(3°3)~11 1, [Z(3"3)~19, Z(3"3), z(3°3) 1 1, F~0O>
gap> IsCollineation(g);
true
gap> g := Random(CollineationGroup(PG(2,27)));
< a collineation: [[Z(3°3)-24, Z(3~3)"~16, Z(3°3)"23 1,
[2(3°3)~10, Z(3), z(3) 1, [Z2(3)~0, Z(3)~0, z(3°3)"156 1 1, F~0>
gap> IsCollineation(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(2,27)));
<projective element with Frobenius with projectivespace isomorphism
[[2(33), 2(373)"19, Z(3°3)~14 1, [Z(3°3)"14, Z(3°3)"20, Z(3°3)"2 1],
[2(3~3)~17, 0%Z(3), Z(3)"0]
1, F~0, IdentityMapping(<All elements of ProjectiveSpace(2, 27)>) >
gap> IsCollineation(g);
true

6.1.5 Projective strictly semilinear maps

> IsStrictlySemilinear (Property)

IsStrictlySemilinear is a property that checks whether a given collineation has a non-
trivial underlying field automorphisms, i.e. whether the element belongs to PI'L(n + 1,q), but
not to PGL(n+ 1,q). 1If IsStrictlySemilinear is applied to a an element belonging to
IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is
different from the identity, and whether the projective space isomorphism equals the identity. This
operation provides a user-friendly method to distinguish the projective strictly semilinear maps from

projectivities inside the category of collineations of a projective space.

Example

gap> g := Random(HomographyGroup(PG(3,25)));

< a collineation: [[Z(572)"9, Z(5)"0, Z(5°2)"3, Z(572)"3 1,
[Z(6~2)~9, Z(5°2)~19, Z(5)"0, Z(5°2)"13 1,

GAP 4 Package FinInG 57

[z(56~2)~14, Z(5)~3, Z(5°2)"9, Z(5°2)"2 1],
[z(52)"~9, Z(5)~0, Z(5°2)~20, Z(5)°0 1 1, F~0>
gap> IsStrictlySemilinear(g);
false
gap> g := Random(CollineationGroup(PG(3,25)));
< a collineation: [[0%Z(5), Z(5°2)~2, 0%Z(5), Z(5°2)-21 1,
[2(572)"4, Z(5)~0, Z(5°2)"9, Z(5)"3 1,
[z(5~2)~15, Z(5~2)~2, Z(5)"3, Z(5°2)~10],
[Z(5), Z(5°2)"16, Z(5°2)"21, Z(5°2)"13 1 1, F~5>
gap> IsStrictlySemilinear(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(3,25)));
<projective element with Frobenius with projectivespace isomorphism
[[2(56~2)~14, Z(5°2)~2, Z(5°2)"20, Z(5~2)"4 1],
[Zz(5)~0, Z(5~2)~2, Z(5~2)~14, z(5~2)"23],
[Z(5~2)~22, Z(57°2)"20, 0*Z(5), Z(5~2)°7 1,
[z(572)~2, Z(5°2)~11, Z(5~2)~23, Z(5)] 1, F~
5, IdentityMapping(<All elements of ProjectiveSpace(3, 25)>) >
gap> IsStrictlySemilinear(g);
true

6.1.6 Correlations and collineations

> IsProjGrpElWithFrobWithPSIsom (Category)
> IsCorrelationCollineation (Category)
> IsCorrelation (Property)

The underlying objects of a correlation-collineation in FinInG are a nonsingular matrix, a field
automorphism and a projective space isomorphism. IsProjGrpElWithFrobWithPSIsom is the cat-
egory of these objects. If the projective space isomorphism is not the identity, then the element is a
correlation, and IsCorrelation will return true. IsCorrelationCollineation is a synonym of
IsProjGrpElWithFrobWithPSIsom.

Example
gap> g := Random(CollineationGroup(PG(4,7)));
< a collineation: [[Z(7)°5, Z(7)~2, Z(7)~3, Z(7)"5, Z(7)~2 1],
[Z(7)~6, Z(7)~4, 0xZ(7), Z(7)~4, Z(7) 1,
[Z(7), 2(7)~0, Z(7)~4, OxZ(7), Z(7)~4 1,
[z(7)~2, Z(7)~5, Z(7)~4, Z(7)~0, z(7)~0 1,
[2(7)~3, Z(7), Z(7)"5, Z(7)~3, Z(7)~0 1 1, F~0>
gap> IsCorrelationCollineation(g);
false
gap> IsCorrelation(g);
false
gap> g := Random(CorrelationCollineationGroup(PG(4,7)));
<projective element with Frobenius with projectivespace isomorphism
L [z2(7)~0, 2(7)~3, z(7)~0, Z(7)"3, 0*Z(7)],
[Z(7)~2, 2(7)~2, Z(7)~2, Z(7)~0, Z(7)°5 1,
[2(7)~4, 0xZ(7), Z(7), 2(7)°5, Z(7)"3 1,
[0%2(7), 2(7)~0, Z(7)~3, Z(7), Z(7) 1,
[z(7)~0, 2(7)~3, Z(7)~0, Z(7)~3, Z(7)"~0]

GAP 4 Package FinInG 58

1, F~0, IdentityMapping(<All elements of ProjectiveSpace(4, 7)>) >
gap> IsCorrelationCollineation(g);

true

gap> IsCorrelation(g);

false

6.2 Construction of projectivities, collineations and correlations.

In FinInG, projectivities and collineations are both constructed in the cat-
egory IsProjGrpElWithFrob; correlations are constructed in the category
IsProjGrpElWithFrobWithPSIsom.

6.2.1 Projectivity

> Projectivity(mat, f) (operation)
> Projectivity(pg, mat) (operation)
Returns: a projectivity of a projective space
The argument mat must be a nonsingular matrix over the finite field £. In the second vari-
ant, the size of the nonsingular matrix mat must be one more than the dimension of the projec-
tive space pg. This creates an element of a projectivity group. But the returned object belongs to
IsProjGrpElWithFrob!
Example
gap> mat := [[1,0,0],[0,1,0],[0,0,111%Z(9)"0;
[[2(3)°0, 0%Z(3), 0%Z(3) 1, [0%Z(3), Z(3)~0, 0%Z(3) 1,
[0%Z(3), 0%Z(3), z(3)~0] 1]
gap> Projectivity(mat,GF(9));
< a collineation: [[Z(3)~0, 0%Z(3), 0%Z(3) 1, [0%Z(3), Z(3)"0, 0xZ(3) 1,
[0%Z(3), 0%Z(3), Z(3)~0 1 1, F~0>

6.2.2 CollineationOfProjectiveSpace

> CollineationOfProjectiveSpace(mat, frob, f) (operation)
> CollineationOfProjectiveSpace(mat, f) (operation)
> CollineationOfProjectiveSpace(mat, frob, f) (operation)
> CollineationOfProjectiveSpace(mat, f) (operation)
> CollineationOfProjectiveSpace(pg, mat) (operation)
> CollineationOfProjectiveSpace(pg, mat, frob) (operation)
> Collineation(pg, mat) (operation)
> Collineation(pg, mat, frob) (operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and pg is a projec-
tive space. This function (and its shorter version) returns the collineation with matrix mat and au-
tomorphism frob of the field £. If frob is not specified then the companion automorphism of
the resulting group element will be the identity map. The returned object belongs to the category
IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of

GAP 4 Package FinInG 59

frob equals £. When the arguments pg and mat are used, then it is checked that these two arguments

are compatible.
Example

gap> mat:=
> [[2(2°3)°6,2(2°3),2(2°3)~3,2(2~3)"3]1,[2(2°3)"6,Z2(2)~0,2(2°3)~2,Z(2~3)"3],
> [0%2(2),2(273)"4,2(2°3),2(2°3)], [2(273)"6,2(2°3)"5,Z(273)~3,2(273)"5 1];
[[Z2(2°3)"6, Z(2°3), Z(2°3)"3, Z(2°3)"3 1],
[Z(2°3)"6, Z(2)"0, Z(2°3)"2, Z(2°3)"3 1],
[0x2(2), Z(2°3)~4, 2(2~3), Z(2"3) 1],
[2(2~3)-6, Z(2°3)"5, Z(2°3)"3, Z(2°3)°5]]
gap> frob := FrobeniusAutomorphism(GF(8));
FrobeniusAutomorphism(GF(2°3))
gap> phi := ProjectiveSemilinearMap(mat,frob~2,GF(8));
< a collineation: [[Z(2°3)"6, Z(2"3), Z(2°3)"3, Z(2°3)"3 1],
[Z(2°3)"6, 2(2)"0, Z(2°3)"2, Z(2°3)"3 1,
[0%xZ(2), Z2(2°3)~4, Z(2°3), Z(2"3) 1,
[z(2-3)-6, Z(2°3)"5, Z(2"3)"3, Z(2~3)°5]], F*4>
gap> mat2 := [[Z(2°8)~31,Z2(2"8)"182,Z(2"8)~49],[Z2(2~8)~224,Z(2"8)~25,Z(2°8)"45],
> [Z2(2°8)"~128,Z(2°8)~165,Z(2°8) 21711 ;
[[Z(2°8)~31, Z(278)"182, Z(2°8)"49 1, [Z(2°8)"224, 7(2°8)"25, Z(2°8)"45 1,
[z(2-8)~128, Z(278)"165, Z(2°8)"217]]
gap> psi := CollineationOfProjectiveSpace(mat2,GF(512));
< a collineation: [[Z(2°8)"31, Z(2~8)~182, Z(2°8)"49 1],
[Z(2°8)~224, Z(2°8)"25, Z(2°8)"45],
[z(2-8)~128, Z(2°8)~165, Z(2°8)~217 1 1, F~0>

6.2.3 ProjectiveSemilinearMap

> ProjectiveSemilinearMap(mat, frob, f) (operation)
Returns: a projectivity of a projective space
mat is a nonsingular matrix, frob is a field automorphism, and £ is a field. This function returns
the collineation with matrix mat and automorphism frob. The returned object belongs to the category
IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of frob
equals £.

6.2.4 IdentityMappingOfElementsOfProjectiveSpace

> IdentityMappingOfElementsOfProjectiveSpace (ps) (operation)

This operation returns the identity mapping on the collection of subspaces of a projective space
ps.

6.2.5 StandardDualityOfProjectiveSpace

> StandardDualityOfProjectiveSpace (ps) (operation)

This operation returns the standard duality of the projective space ps
Example

gap> ps := ProjectiveSpace(4,5);
ProjectiveSpace(4, 5)

GAP 4 Package FinInG

gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(4,GF(5))))
gap> delta”2;
IdentityMapping(<All elements of ProjectiveSpace(4, 5)>)
gap> p := VectorSpaceToElement(ps,[1,2,3,0,1]1*Z(5)"0);
<a point in ProjectiveSpace(4, 5)>
gap> h := p~delta;
<a solid in ProjectiveSpace(4, 5)>
gap> ElementToVectorSpace(h);
[[Z(6)~0, 0%Z(5), 0*Z(5), 0%Z(5), Z(56)~2 1,
[0xZ(5), Z(5)~0, 0%Z(5), 0%Z(5), Z(5)"3 1,
[0xz(5), 0%Z(5), Z(5)~0, 0%Z(5), Z(5) 1,
[0%Z(5), 0%Z(5), 0%Z(5), Z(5)~0, 0*Z(5) 1]

60

6.2.6 CorrelationOfProjectiveSpace

> CorrelationOfProjectiveSpace(mat, f) (operation)
> CorrelationOfProjectiveSpace(mat, frob, f) (operation)
> CorrelationOfProjectiveSpace(mat, f, delta) (operation)
> CorrelationOfProjectiveSpace(mat, frob, f, delta) (operation)
> CorrelationOfProjectiveSpace(pg, mat, frob, delta) (operation)
> Correlation(pg, mat, frob, delta) (operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and delta is the standard
duality of the projective space PG(n,q). This function returns the correlation with matrix mat, auto-
morphism frob, and standard duality delta. If frob is not specified then the companion automor-
phism of the resulting group element will be the identity map. If the user specifies delta, then it must
be the standard duality of a projective space, created using StandardDualityOfProjectiveSpace
(6.2.5), or the identity mapping on the collection of subspaces of a projective space, created using
IdentityMappingOfElementsOfProjectiveSpace (6.2.4). If not specified, then the companion
vector space isomorphism is the identity mapping. The returned object belongs to the category

IsProjGrpElWithFrobWithPSIsom

Example
gap> mat := [[1,0,0],[3,0,2],[0,5,411*Z(7"3);
[[Z(773), 0%Z(7), 0xZ(7) 1, [Z(7~3)"58, 0%Z(7), Z(7°3)"115 1],
[0xZ(7), Z2(7~3)"286, Z(7~3)"229]]
gap> phil := CorrelationOfProjectiveSpace(mat,GF(7°3));
<projective element with Frobenius with projectivespace isomorphism
[[Z(773), 0%Z(7), 0xZ(7) 1, [Z(7~3)"58, 0%Z(7), Z(7~3)"115],
[0%xZ(7), Z(7~3)~286, Z(7°3)"229]
1, F~0, IdentityMapping(<All elements of ProjectiveSpace(2, 343)>) >
gap> frob := FrobeniusAutomorphism(GF(7°3));
FrobeniusAutomorphism(GF(7°3))
gap> phi2 := CorrelationOfProjectiveSpace(mat,frob,GF(7°3));
<projective element with Frobenius with projectivespace isomorphism
[[2(73), 0%xZ(7), 0%Z(7) 1, [Z(7~3)"568, 0%Z(7), Z(7~3)"115],
[0xz(7), z(7~3)~286, Z(7~3)~229 1 1, F~
7, IdentityMapping(<All elements of ProjectiveSpace(2, 343)>) >
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7°3)));

GAP 4 Package FinInG 61

StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
2,GF(7°3))))
gap> phi3 := CorrelationOfProjectiveSpace(mat,GF(7~3),delta);
<projective element with Frobenius with projectivespace isomorphism
[[2(7°3), 0%Z(7), 0%Z(7) 1, [Z(7°3)"568, 0*Z(7), Z(7°3)"115],

[0%Z(7), 2(7~3)~286, Z(7~3)"229]
1, F~0, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
2,GF(7°3)))) >
gap> phi4 := CorrelationOfProjectiveSpace(mat,frob,GF(7~3),delta);
<projective element with Frobenius with projectivespace isomorphism
[[2(773), 0%xZ(7), 0xZ(7) 1, [Z(7°3)"58, 0%Z(7), Z(7°3)"115],

[0xZ(7), Z(7~3)~286, Z(7°3)"229]], F~
7, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
2,GF(7°3)))) >

6.3 Basic operations for projectivities, collineations and correlations of
projective spaces
6.3.1 Representative
> Representative(g) (operation)
g is a projectivity, collineation or correlation of a projective space. This function returns the

reresentative components that determine g, i.e. a matrix, a matrix and a field automorphism, and a
matrix, a field automorphism, and a vector spage isorlnorphism, respectively.
xample

gap> g:=CollineationGroup(ProjectiveSpace(2,49));
The FinInG collineation group PGammaL(3,49)
gap> x:=Random(g);;
gap> Representative(x);
L LCz(m-4, Z(r~2)~17, 2z(7~2)~9 1, [Z2(7~2)~12, Z(7~2)~47, Z(7~2)"31],
[Z¢(7~2)~11, Z(7~2)~29, Z(7~2)~31]], FrobeniusAutomorphism(GF(7°2))
]

6.3.2 UnderlyingMatrix

> UnderlyingMatrix (g) (operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the
matrix that was used to construct g.

Example

gap> g:=CollineationGroup(ProjectiveSpace(3,3));

The FinInG collineation group PGL(4,3)

gap> x:=Random(g);;

gap> UnderlyingMatrix(x);

[[z(3)~0, Z(3)~0, 0%Z(3), Z(3)~0 1, [Z(3)~0, Z(3), 0%Z(3), Z(3)~0],
[Z(3), 0%Z(3), Z(3)°0, z(3) 1, [Z(3), 0*Z(3), Z(3), Z(3)~0 1]]

GAP 4 Package FinInG 62

6.3.3 BaseField

> BaseField(g) (operation)
Returns: a field
g is a projectivity, collineation or correlation of a projective space. This function returns the base
field that was used to construct g.
Example
gap> mat := [[0,1,0],[1,0,0],[0,0,2]1]1*Z(3)"0;
[[0%xZ(3), 2(3)~0, 0%Z(3) 1, [Z(3)"0, 0%Z(3), 0%Z(3) 1,
[0xZ(3), 0%Z(3), 2(3) 1 1]
gap> g := Projectivity(mat,GF(376));
< a collineation: [[0%Z(3), Z(3)~0, 0%Z(3) 1, [Z(3)~0, 0%Z(3), 0*Z(3) 1,
[0%Z(3), 0%z(3), Z(3) 1 1, F~0>
gap> BaseField(g);
GF(376)

6.3.4 FieldAutomorphism

> FieldAutomorphism (g) (operation)

g is a collineation of a projective space or a correlation of a projective space. This function
returns the companion field automorphism which defines g. Note that in the following example, you
may want to execute it several times to see the different possible results generated by the random
choice of projective semilinear map here.

Example
gap> g:=CollineationGroup(ProjectiveSpace(3,9));
The FinInG collineation group PGammaL(4,9)

gap> x:=Random(g);;

gap> FieldAutomorphism(x) ;

IdentityMapping(GF(3°2))

6.3.5 ProjectiveSpacelsomorphism

> ProjectiveSpaceIsomorphism(g) (operation)

g is a correlation of a projective space. This function returns the companion isomorphism of the
projective space which defines g.
Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]11*Z(7"3);
[[z2(73), 0xz(7), 0xZ(7) 1, [Z(7~3)"58, 0%Z(7), Z(7°3)"115],

[0xZ(7), Z(7~3)"286, Z(7~3)"229]]
gap> frob := FrobeniusAutomorphism(GF(7°3)) ;
FrobeniusAutomorphism(GF(7~3))
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(773)));
StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
2,GF(7°3))))
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(7°3),delta);
<projective element with Frobenius with projectivespace isomorphism

GAP 4 Package FinInG 63

[[2(7°3), 0%z(7), 0xz(7) 1, [Z(7°3)"568, 0%Z(7), Z(7°3)"115 1,

[0xZ(7), Z(7~3)~286, Z(7°3)"229]], F~
7, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace (
2,GF(7°3)))) >
gap> ProjectiveSpaceIlsomorphism(phi) ;
StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace (
2,GF(7°3))))

6.3.6 Order

> Order (g) (operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the order
of g.
Example
gap> x := Random(CollineationGroup(PG(4,9)));
< a collineation: [[Z(3)"0, Z(3)-0, Z(3~2)"3, 0*Z(3), Z(3) 1,
[2(3), Z(3)~0, Z(3"2)~2, Z(3), z(3"2)"6 1],
[Z(3~2)~2, Z(3)~0, Z(3)"0, Z(3~2)"7, 0*Z(3) 1,
[2(3~2), Z(32)"5, Z(3~2)"7, Z(3~2)"2, Z(3"2) 1,
[Z(3), Z(3), 0%Z(3), Z(3), Z2(3~2)"2 1 1, F"3>
gap> t := Order(x);
32
gap> IsOne(x"t);
true

6.4 The groups PI'L, PGL, and PSL in FinInG

As mentioned before the commands PGL (and ProjectiveGeneralLinearGroup) and PSL (and
ProjectiveSpecialLinearGroup) are already available in GAP and return a (permutation) group
isomorphic to the required group. In FinInG, different categories are created for these groups.

6.4.1 ProjectivityGroup

> ProjectivityGroup(geom) (operation)
> HomographyGroup (geom) (operation)
Returns: the group of projectivities of geom
Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group
of projectivities PGL(n+ 1,q) of the projective space PG(n,q). Note that although a projectivity is
a collineation with the identity as associated field isomorphism, this group belongs to the category
IsProjectiveGroupWithFrob, and its elements belong to IsProjGrpElWithFrob.
Example

gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)

gap> ProjectivityGroup(ps);

The FinInG projectivity group PGL(4,16)
gap> HomographyGroup (ps) ;

GAP 4 Package FinInG 64

The FinInG projectivity group PGL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)

gap> ProjectivityGroup(ps);

The FinInG projectivity group PGL(5,81)
gap> HomographyGroup (ps) ;

The FinInG projectivity group PGL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)

gap> ProjectivityGroup(ps);

The FinInG projectivity group PGL(6,3)
gap> HomographyGroup (ps) ;

The FinInG projectivity group PGL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)

gap> ProjectivityGroup(ps);

The FinInG projectivity group PGL(3,2)
gap> HomographyGroup (ps) ;

The FinInG projectivity group PGL(3,2)

6.4.2 CollineationGroup

> CollineationGroup (geom) (operation)
Returns: the group of collineations of geom
Let geom be the projective space PG(n,q). This operation returns the group of collineations
I'L(n+1,q) of the projective space PG(n,q). If GF(q) has no non-trivial field automorphisms, i.e.

when g is prime, the group PGL(n+ 1,q) is the full collineation group and will be returned.
Example

gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)

gap> CollineationGroup(ps);

The FinInG collineation group PGammaL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)

gap> CollineationGroup(ps);

The FinInG collineation group PGammaL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)

gap> CollineationGroup(ps);

The FinInG collineation group PGL(6,3)

gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)

gap> CollineationGroup(ps);

The FinInG collineation group PGL(3,2)

6.4.3 SpecialProjectivityGroup

> SpecialProjectivityGroup (geom) (operation)
> SpecialHomographyGroup (geom) (operation)

GAP 4 Package FinInG 65

Returns: the group of special projectivities of geom

Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group of
special projectivities PSL(n+ 1,q) of the projective space PG(n,q).
Example

gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)

gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(4,16)
gap> SpecialHomographyGroup(ps) ;
The FinInG PSL group PSL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)

gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(5,81)
gap> SpecialHomographyGroup (ps);
The FinInG PSL group PSL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)

gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(6,3)

gap> SpecialHomographyGroup (ps);
The FinInG PSL group PSL(6,3)

gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)

gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(3,2)

gap> SpecialHomographyGroup (ps);
The FinInG PSL group PSL(3,2)

6.4.4 IsProjectivityGroup

> IsProjectivityGroup (Property)
IsProjectivityGroup is a property, which subgroups of a the CollineationGroup or a

CorrelationCollineationGroup of a projective space might have. It checks whether the gen-

erators are projectivities. Of course ProjectivityGroup has this property.

6.4.5 IsCollineationGroup

> IsCollineationGroup (Property)

IsCollineationGroup is a property, which subgroups of a the
CorrelationCollineationGroup of a projective space might have. It checks whether the
generators are collineations. Of course ProjectivityGroup and CollineationGroup have this

property.

GAP 4 Package FinInG 66

6.5 Basic operations for projective groups

6.5.1 BaseField

> BaseField (g) (operation)
Returns: a field
g must be a projective group. This function finds the base field of the vector space on which the
group acts.

6.5.2 Dimension

> Dimension(g) (attribute)
Returns: a number
g must be a projective group. This function finds the dimension of the vector space on which the
group acts.

6.6 Natural embedding of a collineation group in a correlation group

In FinInG a collineation group is not constructed as a subgroup of a correlation group. However,
collineations can be multiplied with correlations (if they both belong mathematically to the same
correlation group.
Example
gap> x := Random(CollineationGroup(PG(3,4)));
< a collineation: [[Z(2)°0, Z(2"2), Z(2)"0, Z(2"2)"2 1],
[0xZ(2), 0xZ(2), Z(2)°0, Z(2°2)"2 1, [Z(272), Z(2°2)"2, 0*Z(2), Z(2°2)"2]
, [2(2)-0, 0%z(2), 2(2)~0, 2(272)~2 1 1, F~2>
gap> y := Random(CorrelationCollineationGroup(PG(3,4)));
<projective element with Frobenius with projectivespace isomorphism
[[0%z(2), Z(2°2), 0%Z(2), z(2°2)~2 1, [Z(2)°0, Z(2°2)"2, Z(2)°0, 0%Z(2) 1,
[2(2)-0, Z(272), Z(272)"2, 0*xZ(2) 1, [Z(272), Z(2)°0, 0%Z(2), Z(2)"0]
1, F~0, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
3,GF(272)))) >
gap> x*y;
<projective element with Frobenius with projectivespace isomorphism
[[2(2)°0, 0%Z(2), 0%Z(2), 2(2)°0 1, [Z(272)"2, 0*Z(2), Z(2°2), Z(2"2)"2 1],
[2(2)-0, Z(2°2)~2, Z2(2~2)"2, 0*Z(2) 1,
[z(2~2)~2, Z(2~2)"2, 2(272), Z(2)~0 1 1, F~
2, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(
3,GF(2°2)))) >

6.6.1 Embedding

> Embedding(coll, corr) (function)

Let col1 be a the full collineation group of a projective space, and corr its full correlation group.
FinInG provides a method for this operation Embedding, returning the natural embedding from coll
into corr. Remark that only an embedding of a collineation group into a correlation group with
exactly the same underlying projective space is possible.

GAP 4 Package FinInG 67

Example
gap> coll := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> corr := CorrelationCollineationGroup(PG(4,8));

The FinInG correlation-collineation group PGammaL(5,8) : 2

gap> phi := Embedding(coll,corr);

MappingByFunction(The FinInG collineation group PGammaL(5,8), The FinInG corr
elation-collineation group PGammal(5,8) : 2, function(y) ... end)

6.7 Basic action of projective group element

6.7.1 \~

> \"(x, g) (operation)
Returns: a subspace of a projective space
This is an operation which returns the image of x, a subspace of a projective space, under g, an
element of the projective group, the collineation group, or the correlation group.

6.8 Projective group actions

In this section we give more detailed about the actions that are used in FinInG for projective groups.
Consider the projective space PG(n,q). As described in Chapter 5, a point of PG(n,q) is represented
by arow vector and a k-dimensional subspace of PG(n,q) is represented by a (k+ 1) x (n+ 1) matrix.

Consider a point p with row vector (xp,x,...,X,), and a collineation or correlation ¢ with under-
lying matrix A and field automorphism 6. Define the row vector (yo,y1,...,yn) = ((X0,X1,...,%,)A)?.
When ¢ is a collineation, then p? is the point with underlying row vector (yo,y1,...,Y,), Wwhen ¢
is a correlation then is a hyperplane of PG(n,q) with equation yoXo + y1Xj + ...+ y,X,. The action
of collineations or correlations on points determines the action on subspaces of arbitrary dimension
completely.

6.8.1 OnProjSubspaces

> OnProjSubspaces(subspace, el) (function)

Returns: a subspace of a projective space

This is a global function that returns the action of an element el of the collineation group on a
subspace subspace of a projective space.

IMPORTANT: This function should only be used for objects el in the -category
IsProjGrpElWithFrob! This is because this function does not check whether el is a correlation
or a collineation. So when el is a object in the category IsProjGrpElWithFrobWithPSIsom, and
el is a correlation (i.e. the associated PSIsom is NOT the identity) then this action will not give
the image of the subspace under the correlation el. For the action of an object el in the cat-
egory IsProjGrpElWithFrobWithPSIsom, the action OnProjSubspacesExtended (6.8.3) should

be used.
Example

gap> ps := ProjectiveSpace(4,27);
ProjectiveSpace(4, 27)
gap> p := VectorSpaceToElement (ps, [Z(3°3)~22,Z(373)"10,Z(373),Z(3°3)"3,Z(3°3)"3]);

GAP 4 Package FinInG 68

<a point in ProjectiveSpace(4, 27)>
gap> Display(p);
z = Z(27)
1 z714 z°5 z°7 z°7
gap> mat := [[Z(38°3)°25,2(3°3)76,2(3°3)"7,Z2(3°3)"15],
> [2(373)"9,Z(3)"0,Z(3°3)"10,Z(3"3)"18],
> [Z2(3°3)"19,0%Z(3),Z(3),Z(3°3)"12],
> [2(373)"4,2(3°3),Z(3°3),2(33)"22]];
[[2z(3°3)~25, Z(3"3)"6, 2(3~3)"7, Z(3°3)"15 1,
[Z(3°3)~9, Z(3)~0, Z(3~3)~10, z(3"3)"18 1],
[2(3°3)"19, 0%Z(3), Z(3), z(3°3)"12],
[2(3°3)~4, Z(3°3), Z(373), Z(3°3)"22]]
gap> theta := FrobeniusAutomorphism(GF(27)) ;
FrobeniusAutomorphism(GF(373))
gap> phi := CollineationOfProjectiveSpace(mat,theta,GF(27));
< a collineation: [[Z(3°3)"25, Z(3°3)"6, Z(3°3)"7, Z(3~3)"15 1,
[2(3°3)~9, Z(3)"0, Z(3°3)"~10, Z(3"3)"18],
[2(3°3)"19, 0%Z(3), Z(3), Z(3°3)"12],
[2z(3~3)"4, Z(3°3), Z2(3~3), Z(3"3)"22 1 1, F 3>
gap> r := OnProjSubspaces(p,phi);
<a point in ProjectiveSpace(4, 27)>
gap> Display(r);
z = Z(27)
1 . . z717
gap> vect := [[Z(3"3)"9,Z(3°3)"5,Z(3°3)"19,Z(3"3)~21,Z(3~3)"17],
> [2(3°3)"22,2(373)"22,Z(3°3)"4,Z(3°3)"16,Z(3"3)"17],
> [Z2(373)"8,0%Z(3),2(3°3)"24,Z(3),Z2(3°3)~21]]1;
[[2(383)~9, Z(3°3)"5, Z(3"3)~19, Z(3"3)~21, Z(3"3)"17],
[2(3°3)~22, Z(3"3)"22, Z(3"3)"4, Z(3°3)"16, Z(3°3)"17 1,
[Z(3°3)"8, 0%Z(3), Z(3°3)"24, Z(3), Z(3~3)"21 1]
gap> s := VectorSpaceToElement (ps,vect);
<a plane in ProjectiveSpace(4, 27)>
gap> r := OnProjSubspaces(s,phi);
<a plane in ProjectiveSpace(4, 27)>
gap> Display(r);
z = Z(27)
1 . . z73
1 . z722
1 z73

6.8.2 ActionOnAllProjPoints
> ActionOnAll1ProjPoints(g) (function)
g must be a projective group. This function returns the action homomorphism of g acting on its

projective points. This function is used by NiceMonomorphism when the number of points is small
enough for the action to be easy to calculate.

GAP 4 Package FinInG 69

6.8.3 OnProjSubspacesExtended

> OnProjSubspacesExtended(subspace, el) (function)

Returns: a subspace of a projective space

This should be used for the action of elements in the category
IsProjGrpElWithFrobWithPSIsom where subspace is a subspace of a projective or polar
space and el is an element of the correlation group of the ambient geometry of subspace. This
function returns the image of subspace under el, which is a subspace of the same dimension as
subspace if el is a collineation and an element of codimension equal to the dimension of subspace
if el is a correlation.

Example

gap> ps := ProjectiveSpace(3,27);

ProjectiveSpace(3, 27)

gap> mat := IdentityMat(4,GF(27));

[[2(3)°0, 0%Z(3), 0%Z(3), 0%Z(3) 1, [0*Z(3), Z(3)~0, 0%Z(3), 0%Z(3) 1,
[0xZ(3), 0*Z(3), Z(3)°0, 0%*Z(3) 1, [0%Z(3), 0%Z(3), 0*Z(3), Z(3)°0]]

gap> delta := StandardDualityOfProjectiveSpace(ps);

StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace(

3,GF(3°3))))

gap> frob := FrobeniusAutomorphism(GF(27));

FrobeniusAutomorphism(GF(3~3))

gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(27),delta);

<projective element with Frobenius with projectivespace isomorphism

[[2(3)~0, 0%Z(3), 0%Z(3), 0%Z(3) 1, [0%Z(3), Z(3)~0, 0%Z(3), 0%Z(3) 1,
[0%xZ(3), 0%Z(3), Z(3)~0, 0%Z(3) 1, [0%*Z(3), 0%Z(3), 0%Z(3), Z(3)~01 1, F°

3, StandardDuality(AllElementsOfIncidenceStructure(ProjectiveSpace (

3,GF(3°3)))) >

gap> p := Random(Points(ps));

<a point in ProjectiveSpace(3, 27)>

gap> OnProjSubspacesExtended(p,phi);

<a plane in ProjectiveSpace(3, 27)>

gap> 1 := Random(Lines(ps));

<a line in ProjectiveSpace(3, 27)>

gap> OnProjSubspacesExtended(p,phi);

<a plane in ProjectiveSpace(3, 27)>

gap> psi := CorrelationOfProjectiveSpace(mat,frob~2,GF(27));

<projective element with Frobenius with projectivespace isomorphism

[[2(3)°0, 0%Z(3), 0%Z(3), 0%Z(3) 1, [0*Z(3), Z(3)"0, 0%Z(3), 0%Z(3) 1,
[0xZ(3), 0xZ(3), Z(3)~0, 0%Z(3) 1, [0%Z(3), 0%Z(3), 0xZ(3), Z(3)~0 1 1, F~

9, IdentityMapping(<All elements of ProjectiveSpace(3, 27)>) >

gap> OnProjSubspacesExtended(p,psi);

<a point in ProjectiveSpace(3, 27)>

gap> OnProjSubspacesExtended(1l,psi);

<a line in ProjectiveSpace(3, 27)>

6.9 Special subgroups of the projectivity group

A transvection of the vector space V =V (n+ 1,F) is a linear map 7 from V to V with matrix M such
that rk(M —I) = 1 and (M —I)? = 0. Different equivalent definitions are found in the literature, here

GAP 4 Package FinInG 70

we followed [CamO0Oa]. Choosing a basis ey,...,e,,e,+1 such that ey, ..., e, generates the kernel of
M — 1, it follows that M equals

1 0 ... 0 O

0 1 0O O

o 0 ... 1 0

X1 X2 ... Xp—1 1

It is also a well known fact that all transvections generate the group SL(n+ 1,F). A transvection gives
rise to a projectivity of PG(n, F), we call such an element an elation, and it is a projectivity ¢ fixing a
hyperplane H pointwise, and such that there exists exactly one point p € H such that all hyperplanes
through p are stabilized. The hyperplane H is called the axis of ¢, and the point p is called the centre
of ¢. As a transvection is an element of SL(n, F), an elation is an element of PSL(n,F). An elation is
completely determind by its axis and the image of one point (not contained in the axis). The group of
elations with a given axis and centre, is isomorphic with the additive group of F. Finally, the group of
all elations with a given axis H, acts regularly on the points of PG(n,F)\ H, and is isomorphic with
the additive group of the vectorspace V (n, F).

6.9.1 ElationOfProjectiveSpace

> ElationOfProjectiveSpace(sub, pointl, point2) (operation)
Returns: the unique elation with axis sub mapping point1 on point2
It is checked whether the two points do not belong to sub. If point1 equals point2, the identity
mapping is returned.

Example
gap> ps := PG(3,9);
ProjectiveSpace(3, 9)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,01]1*Z(3)"0);
<a plane in ProjectiveSpace(3, 9)>
gap> pl := VectorSpaceToElement (ps,[1,0,1,2]*Z(3)"0);
<a point in ProjectiveSpace(3, 9)>
gap> p2 := VectorSpaceToElement (ps, [1,2,0,2]%Z(3)~0);
<a point in ProjectiveSpace(3, 9)>
gap> phi := ElationOfProjectiveSpace(sub,pl,p2);
< a collineation: [[Z(3)~0, Zz(3), Z(3), 0%Z(3) 1,
[0%Z(3), 0%Z(3), Z(3), 0%Z(3) 1, [0%Z(3), Z(3)~0, Z(3), 0%Z(3) 1,
[0%z(3), 2(3)~0, Z2(3)"0, 2(3)°0 1 1, F~0>

6.9.2 ProjectiveElationGroup

> ProjectiveElationGroup(axis, centre) (operation)
> ProjectiveElationGroup(axis) (operation)
Returns: A group of elations
The first version returns the group of elations with with given axis axis and centre centre. It
is checked whether centre belongs to axis. The second version returns the group of elations with
given axis axis.

GAP 4 Package FinInG 71

Example

gap> ps := PG(2,27);

ProjectiveSpace(2, 27)

gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,011%Z(3)~0);
<a line in ProjectiveSpace(2, 27)>

gap> p := VectorSpaceToElement (ps, [1,1,1]1*Z(3)"0);

<a point in ProjectiveSpace(2, 27)>

gap> g := ProjectiveElationGroup(sub,p);

<projective collineation group with 3 generators>

gap> Order(g);

27
gap> StructureDescription(g);
"C3 x C3 x C3"

gap> ps := PG(3,4);

ProjectiveSpace(3, 4)

gap> sub := Random(Hyperplanes(ps));

<a plane in ProjectiveSpace(3, 4)>

gap> g := ProjectiveElationGroup(sub) ;
<projective collineation group with 6 generators>
gap> Order(g);

64

gap> Transitivity(g,Difference(Points(ps),Points(sub)),0nProjSubspaces);
1

gap> StructureDescription(g);

"C2 x C2 x C2 x C2 x C2 x C2"

A homology of the projective space PG(n,q) is a collineation fixing a hyperplane H pointwise and
fixing one more point p & H. It is easily seen that after a suitable choice of a basis for the space, the
matrix of a homology is a diagonal matrix with all its diagonal entries except one equal to 1. We call
the hyperplane the axis and the point the centre of the homology. Homologies with a common axis
and centre are a group isomorphic to the multiplicative group of the field GF(q).

6.9.3 HomologyOfProjectiveSpace

> HomologyOfProjectiveSpace(sub, centre, pointl, point2) (operation)
Returns: the unique homology with axis sub and centre centre that maps pointl on point2
It is checked whether the three points do not belong to sub and whether they are collinear. If

pointl equals point2, the identity mapping is returned.

Example

gap> ps := PG(3,81);

ProjectiveSpace(3, 81)

gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,01]1*Z(3)"0);
<a plane in ProjectiveSpace(3, 81)>

gap> centre := VectorSpaceToElement (ps, [0*Z(3),Z(3)"0,Z(3°4)~36,0%Z(3)]);
<a point in ProjectiveSpace(3, 81)>

gap> pl := VectorSpaceToElement (ps, [0%Z(3),Z(3)"~0,Z(374)"51,0%Z(3)]);

<a point in ProjectiveSpace(3, 81)>

gap> p2 := VectorSpaceToElement (ps, [0%Z(3),Z(3)"~0,Z(374)~44,0%Z(3)]);

<a point in ProjectiveSpace(3, 81)>

gap> phi := HomologyOfProjectiveSpace(sub,centre,pl,p2);

GAP 4 Package FinInG 72

< a collineation: [[Z(3)~0, Z(3~4)~59, Z(3-4)~15, 0xZ(3) 1,
[0xZ(3), Z2(3~4)"5, Z(3"4)~15, 0*Z(3) 1],
[0xZ(3), Z(3°4)~19, Z(3~4)~57, 0*Z(3) 1,
[0xZ(3), Z(3"4)~19, Z(3"4)"55, Z(3)~0] 1, F~0>

6.9.4 ProjectiveHomologyGroup

> ProjectiveHomologyGroup(axis, centre) (operation)
Returns: the group of homologies with with given axis axis and centre centre.

It is checked whether centre does not belong to axis.
Example

gap> ps := PG(2,27);

ProjectiveSpace(2, 27)

gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,011*Z(3)"0);
<a line in ProjectiveSpace(2, 27)>

gap> p := VectorSpaceToElement (ps, [1,0,2]1*Z(3)"0);
<a point in ProjectiveSpace(2, 27)>

gap> g := ProjectiveHomologyGroup (sub,p);
<projective collineation group with 1 generators>
gap> Order(g);

26

gap> StructureDescription(g);

"cz2e6"

6.10 Nice Monomorphisms

A nice monomorphism of a group G is roughly just a permutation representation of G on a suitable
action domain. An easy example is the permutation action of the full collineation group of a projective
space on its points. FinInG provides (automotic) functionality to compute nice monomorphisms.
Typically, for a geometry S with G a (subgroup of the) collineation group of S, a nice monomorphism
for G is a homomorphism from G to the permutation action of S on a collection of elements of
S. Thus, to obtain such a homomorphism, one has to enumerate the collection of elements. As
nice monomorphisms for projective semilinear groups are often computed as a byproduct of some
operations, suddenly, these operations get time consuming (when executed for the first time). FinInG
contains a switch to influence this behaviour.

6.10.1 NiceMonomorphism

> NiceMonomorphism(g) (operation)
Returns: an action, i.e. a group homomorphism
g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the

action of g on the points of the geometry is returned.
Example

gap> g := HomographyGroup(PG(4,8));
The FinInG projectivity group PGL(5,8)
gap> NiceMonomorphism(g) ;

<action isomorphism>

GAP 4 Package FinInG 73

gap> Image(last);

<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));

The FinInG collineation group PGammaL(5,8)

gap> NiceMonomorphism(g) ;

<action isomorphism>

gap> Image(last);

<permutation group of size 13914678022473032663040 with 3 generators>

6.10.2 NiceObject

> NiceObject (g) (operation)
Returns: a permutation group
g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the
permutation representation of g acting on the points of the geometry is returned. This is actually
equivalent with Image (NiceMonomorphism(g)).
Example

gap> g := HomographyGroup(PG(4,8));

The FinInG projectivity group PGL(5,8)

gap> NiceObject(g);

<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));

The FinInG collineation group PGammaL(5,8)

gap> NiceObject(g);

<permutation group of size 13914678022473032663040 with 3 generators>

6.10.3 CanComputeA_ctionOnPoints

> CanComputeActionOnPoints(g) (operation)

Returns: true or false

g must be a projective group. This function returns true if GAP can feasibly compute the action
of g on the points of the projective space on which it acts. This function can be used (and is, by
other parts of FinlnG) to determine whether it is worth trying to compute the action. This function
actually checks if the number of points of the corresponding projective space is less than the constant
DESARGUES.LimitForCanComputeActionOnPoints, which is by default set to 1000000. The next
example requires about S00M of memory.

Example
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(7,8)));
Error, action on projective points not feasible to calculate called from
<function "unknown">(<arguments>)
called from read-eval loop at line 8 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> FINING.LimitForCanComputeActionOnPoints := 3%1076;
3000000
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(7,8)));

<action isomorphism>

GAP 4 Package FinInG

74

Chapter 7

Polarities of Projective Spaces

A polarity of a incidence structure is an incidence reversing, bijective, and involutory map on the
elements of the incidence structure. It is well known that every polarity of a projective space is
just an involutory correlation of the projective space. Construction of correlations of a projective
space is described in Chapter 6. In this chapter we describe methods and operations dealing with the
construction and use of polarities of projective spaces in FinInG.

7.1 Creating polarities of projective spaces

Since polarities of a projective space necessarily have an involutory field automorphism as compan-
ion automorphism and the standardduality of the projective space as the companion projective space
isomorphism, a polarity of a projective space is determined completely by a suitable matrix A. Every
polaritiy of a projective space PG(n, q) is listed in the following table, including the conditions on the
matrix A.

q odd q even

hermitian | A = AT | A9 = AT
symplectic | AT = —A | AT =A,alla; =0
orthogonal | AT = A
pseudo AT =A,notalla; =0

Table: polarities of a projective space

A hermitian polarity of the projective space PG(n,q) exists if and only if the field GF (¢) admits
an involutory field automorphism 6.

It is well known that there is a correspondence between polarities of projective spaces and non-
degenerate sesquilinear forms on the underlying vector space. Consider a sesquilinear form f on
the vector space V(n+1,g). Then f induces a map on the elements of PG(n,q) as follows: every
element with underlying subspace by o is mapped to the element with underlying subspace o, i.e.
the subspace of V(n+ 1,q) orhtogonal to o with relation to the form f. It is clear that this induced
map is a polarity of PG(n,q). Also the converse is true, with any polarity of PG(n,q) corresponds a
sesquilinear form on V(n+ 1,g). The above classification of polarities of PG(n,q)follows from the
classification of sesquilinear forms on V(n+ 1,q). For more information, we refer to [HT91] and
[KL90]. We mention that the implementation of the action of correlations on projective points (see
6.8) garantuees that a sesquilinear form with matrix M and field automorphism 6 corresponds to a
polarity with matrix M and field automorphism 6 and vice versa.

75

GAP 4 Package FinInG 76

In FinInG, polarities of projective spaces are always objects in the cate-
gory IsPolarityOfProjectiveSpace, which is a subcategory of the category
IsProjGrpElWithFrobWithPSIsom.

7.1.1 PolarityOfProjectiveSpace

> PolarityOfProjectiveSpace(mat, f) (operation)
Returns: a polarity of a projective space
the underlying correlation of the projective space is constructed using mat, f, the identity mapping
as field automorphism and the standardduality of the projective space. It is checked whether the mat

satisfies the necessary conditions to induce a polaritiy.
Example

gap> mat := [[0,1,0],[1,0,0],[0,0,11]1*Z(169)"0;

[[0%Z(13), Z(13)-0, 0%Z(13) 1, [z(13)°0, 0%Z(13), 0%Z(13) 1,
[0%Z(13), 0%Z(13), Z(13)"0]]

gap> phi := PolarityOfProjectiveSpace(mat,GF(169));

<polarity of PG(2, GF(13°2)) >

7.1.2 PolarityOfProjectiveSpace

> PolarityOfProjectiveSpace(mat, frob, f) (operation)
> HermitianPolarityOfProjectiveSpace(mat, f) (operation)

Returns: a polarity of a projective space

the underlying correlation of the projective space is constructed using mat, frob, £ as matrix,
field automorphism, field, and the standardduality of the projective space. It is checked whether
the mat satisfies the necessary conditions to induce a polaritiy, and whether frob is a non-trivial
involutory field automorphism. The second operation only needs the arguments mat and f to construct
a hermitian polarity of a projective space, provided the field £ allows an involutory field automorphism
and mat satisfies the necessary conditions. The latter is checked by the method constructing the

underlying hermitian form.
Example

gap> mat := [[Z(11)~0,0%Z(11),0%Z(11)], [0*Z(11),0%Z(11),Z(11)],

> [0%Z(11),Z(11),0%Z(11)]1];

[[zZ(11)-0, 0%z(11), 0%Z(11) 1, [0*z(11), 0%Z(11), Z(11) 1,
[0xZ(11), Z(11), 0*Z(11) 1 1]

gap> frob := FrobeniusAutomorphism(GF(121));

FrobeniusAutomorphism(GF(11°2))

gap> phi := PolarityOfProjectiveSpace(mat,frob,GF(121));

<polarity of PG(2, GF(11~2)) >

gap> psi := HermitianPolarityOfProjectiveSpace(mat,GF(121));

<polarity of PG(2, GF(11°2)) >

gap> phi = psi;

true

7.1.3 PolarityOfProjectiveSpace

> Polarity0fProjectiveSpace (form) (operation)
Returns: a polarity of a projective space

GAP 4 Package FinInG 77

the polarity of the projective space is constructed using a non-degenerate sesquilinear form form.
It is checked whether the given form is non-degenerate.
Example
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1]1,[0,0,1,011*Z(16)"0;
[[0xZ2(2), 2(2)°0, 0*z(2), 0%Z(2) 1, [Z(2)°0, 0%Z(2), 0xZ(2), 0*Z(2) 1,
[0%xZ(2), 0%Z(2), 0%Z(2), Z(2)~0 1, [0%Z(2), 0%Z(2), Z(2)~0, 0*Z(2)]]
gap> form := BilinearFormByMatrix(mat,GF(16));
< bilinear form >
gap> phi := PolarityOfProjectiveSpace(form) ;
<polarity of PG(3, GF(2~4)) >

7.1.4 PolarityOfProjectiveSpace

> PolarityOfProjectiveSpace(ps) (operation)
Returns: a polarity of a projective space
the polarity of the projective space is constructed using the non-degenerate sesquilinear form that
defines the polar space ps. When ps is a parabolic quadric in even characteristic, no polarity of the
ambient projective space can be associated to ps, and an error message is returned.
Example
gap> ps := HermitianPolarSpace(4,64);
H(4, 872)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(4, GF(2°6)) >
gap> ps := ParabolicQuadric(6,8);
Qce, 8)
gap> PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> called from
<function "unknown">(<arguments>)
called from read-eval loop at line 11 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

7.2 Operations, attributes and properties for polarties of projective
spaces

7.2.1 SesquilinearForm

> SesquilinearForm(f) (attribute)
Returns: a sesquilinear form
The sesquilinear form corresponding to the given polarity is returned.
Example
gap> mat := [[0,-2,0,1],[2,0,3,0],[0,-3,0,1],[-1,0,-1,011%Z(19)"0;
[[0xZ(19), Z2(19)~10, 0%Z(19), Z(19)"0 1],
[Z(19), 0%Z(19), Z(19)"13, 0%Z(19) 1],
[0%Z(19), Z(19)~4, 0%Z(19), Z(19)"0 1,
[2(19)79, 0%Z(19), Z(19)~9, 0%Z(19) 1]
gap> phi := PolarityOfProjectiveSpace (mat,GF(19));

GAP 4 Package FinInG

<polarity of PG(3, GF(19)) >
gap> form := SesquilinearForm(phi) ;
< non-degenerate bilinear form >

78

7.2.2 BaseField

> BaseField(f)
Returns: a field

the basefield over which the polarity was constructed.
Example

(attribute)

gap> mat := [[1,0,0],[0,0,2],[0,2,0]]1%Z(5)"0;
[0%Z2(5), Z(5), 0%Z(5)] 1]
<polarity of PG(2, GF(5°2)) >

gap> BaseField(phi);
GF(5°2)

[[2(5)°0, 0%Z(5), 0*xZ(5) 1, [0%Z(5), 0*Z(5), Z(5) 1,

gap> phi := Polarity0fProjectiveSpace(mat,GF(25));

7.2.3 GramMatrix

> GramMatrix (f)
Returns: a matrix

the Gram matrix of the polarity.
Example

(attribute)

gap> mat := [[1,0,0],[0,0,3],[0,3,0]1]1%Z(11)"0;
[0xZ(11), Z(11)~8, 0*Z(11) 1 1]

<polarity of PG(2, GF(11)) >
gap> GramMatrix(phi) ;

[0xz(11), Z(11)~8, 0%Z(11)]]

[[Z2(11)~0, 0%z(11), 0*Z(11) 1, [0*Z(11), 0*Z(11), Z(11)°8 1,

gap> phi := PolarityOfProjectiveSpace(mat,GF(11));

[[Z(11)~0, 0%Z(11), 0%Z(11) 1, [0*Z(11), 0*Z(11), Z(11)°8],

7.2.4 CompanionAutomorphism

> CompanionAutomorphism(f)
Returns: a field automorphism

the involutory fieldautomorphism accompanying the polarity

Example

(attribute)

<polarity of PG(3, GF(7°2)) >
gap> CompanionAutomorphism(phi);
FrobeniusAutomorphism(GF(7°2))

gap> mat := [[0,2,0,0],[2,0,0,0],[0,0,0,5],[0,0,5,0]1*%Z(7)"~0;

[[oxz(7), Z(7)~2, 0%xZ(7), 0%Zz(7) 1, [Z(7)~2, 0xZ(7), 0%Z(7), 0*Z(7)
[0xZ(7), 0*Z(7), 0*Z(7), Z(7)"5 1, [0*xZ(7), 0*Z(7), Z(7)~5, 0*Z(7)]

gap> phi := HermitianPolarityOfProjectiveSpace (mat,GF(49));

]

GAP 4 Package FinInG 79

7.2.5 IsHermitianPolarityOfProjectiveSpace

> IsHermitianPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity £ is a hermitian polarity of a projective space if and only if the underlying matrix is
hermitian.
Example
gap> mat := [[0,2,7,1],[2,0,3,0],(7,3,0,1],[1,0,1,01]1%Z(19)"0;
[[0xz(19), 2(19), Z2(19)"6, 2(19)~0 1, [Z2(19), 0*xZ(19), Z(19)~13, 0*Z(19) 1,
[2(19)6, Z(19)"13, 0%Z(19), Z(19)-0 1,
[Z(19)70, 0%Z(19), Z(19)"0, 0%Z(19)]]
gap> frob := FrobeniusAutomorphism(GF(1974));
FrobeniusAutomorphism(GF(1974))
gap> phi := Polarity0fProjectiveSpace(mat,frob~2,GF(19°4));
<polarity of PG(3, GF(19°4)) >
gap> IsHermitianPolarityOfProjectiveSpace(phi);
true

7.2.6 IsSymplecticPolarityOfProjectiveSpace

> IsSymplecticPolarity0OfProjectiveSpace(f) (property)

Returns: true or false
The polarity £ is a symplectic polarity of a projective space if and only if the underlying matrix is
hermitian.
Example
gap> mat := [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]1%Z(8)"0;
[[0x2(2), 0%Z2(2), z(2)70, 0%Z(2) 1, [0%Z(2), 0%Z(2), 0*Z(2), Z(2)70 1,
[z(2)~0, 0*%Z(2), 0xZ(2), 0*%Z(2) 1, [0%xZ(2), Z(2)~0, 0%Z(2), 0*Z(2) 1]
gap> phi := PolarityOfProjectiveSpace(mat,GF(8));
<polarity of PG(3, GF(2°3)) >
gap> IsSymplecticPolarityOfProjectiveSpace(phi);
true

7.2.7 IsOrthogonalPolarityOfProjectiveSpace

> IsOrthogonalPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity £ is an orthogonal polarity of a projective space if and only if the underlying matrix

is symmetric and the characteristic of the field is odd.
Example
gap> mat := [[1,0,2,0],[0,2,0,1],[2,0,0,0],[0,1,0,01]1%Z(9)"0;
[[Z2(3)°0, 0%Z2(3), Z(3), 0%Z(3) 1, [0%Z(3), Z(3), 0%Z(3), Z(3)"0 1],

[Z(3), 0%Z(3), 0%Z(3), 0xZ(3) 1, [0%Z(3), Z(3)~0, 0*Z(3), 0%Z(3)] 1]
gap> phi := PolarityOfProjectiveSpace (mat,GF(9));
<polarity of PG(3, GF(3"2)) >
gap> IsOrthogonalPolarityOfProjectiveSpace(phi);
true

GAP 4 Package FinInG 80

7.2.8 IsPseudoPolarityOfProjectiveSpace

> IsPseudoPolarity0fProjectiveSpace(f) (property)
Returns: true or false
The polarity £ is a pseudo polarity of a projective space if and only if the underlying matrix is
symmetric, not all elements on the main diagonal are zero and the characteristic of the field is even.
Example
gap> mat := [[1,0,1,0],[0,1,0,1],([1,0,0,0],[0,1,0,01]1%Z(16)"0;
[[2(2)70, 0%Z(2), Z(2)~0, 0%Z(2) 1, [0%Z(2), Z(2)"0, 0%Z(2), Z(2)°0 1,
[Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2) 1, [0%Z(2), Z(2)"0, 0%Z(2), 0*Z(2) 1]
gap> phi := PolarityOfProjectiveSpace(mat,GF(8));
<polarity of PG(3, GF(2°3)) >
gap> IsPseudoPolarityOfProjectiveSpace(phi) ;
true

7.3 Polarities, absolute points, totally isotropic elements and finite clas-
sical polar spaces

We already mentioned the equivalence between polarities of PG(n,q) and sesquilinear forms on V (n+
1,g), hence there is a relation between polarities of PG(n,q) and polar spaces induced by sesquilinear
forms. The following concepts express these relations geometrically.

Suppose that ¢ is a polarity of PG(n,q) and that « is an element of PG(n,q). We call o a totally
isotropic element or an absolute element if and only if o is incident with o?. An absolute element
that is a point, is also called an absolute point or an isotropic point. It is clear that an element of
PG(n,q) is absolute if and only if the underlying vectorspace is totally isotropic with relation to the
sesquilinear form equivalent to ¢. Hence the absolute elements induce a finite classical polar space,
the same that is induced by the equivalent sesquilinear form. When ¢ is a speudo polarity, the set of
absolute elements are the elements of a hyperplane of PG(n,q).

We restrict our introduction to finite classical polar spaces in this section to the following exam-
ples. Many aspects of these geometries are extensively described in Chapter 8.

7.3.1 GeometryOfAbsolutePoints

> GeometryOfAbsolutePoints(f) (operation)
Returns: a polar space or a hyperplane
When £ is not a pseudo polarity, this operation returns the polar space induced by £. When £ is a

pseudo polartiy, this operation returns the hyperplane containing all absolute elements.
Example

gap> mat := IdentityMat(4,GF(16));

[[2(2)70, 0%Z(2), 0%Z(2), 0%Z(2) 1, [0*Z(2), Z(2)°0, 0*Z(2), 0%Z(2) 1,
[0xZ(2), 0xZ(2), Z(2)°0, 0%Z(2) 1, [0%Z(2), 0%Z(2), 0*Z(2), Z(2)°0]]

gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(16));

<polarity of PG(3, GF(2~4)) >

gap> geom := GeometryOfAbsolutePoints(phi);

<polar space in ProjectiveSpace(3,GF(274)): x_1"5+x_2~5+x_3"5+x_4"5=0 >

gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]1%Z(32)"0;

[[z(2)~0, 0xZ(2), 0%Z(2), 0%Z(2) 1, [0%z(2), 0%z(2), Z(2)~0, Z(2)~0 1,
[0xZ(2), Z(2)~0, Z(2)~0, 0%Z(2) 1, [0%Z(2), Z(2)~0, 0%Z(2), 0*Z(2)]]

GAP 4 Package FinInG

gap> phi := PolarityOfProjectiveSpace (mat,GF(32));
<polarity of PG(3, GF(2°5)) >

gap> geom := GeometryOfAbsolutePoints(phi);

<a plane in ProjectiveSpace(3, 32)>

81

7.3.2 AbsolutePoints

> AbsolutePoints(f)
Returns: a set of points
This operation returns all points that are absolute with relation to f.

Example

(operation)

gap> mat := IdentityMat(4,GF(3));

[[Z(3)~0, 0%Z(3), 0%Z(3), 0%Z(3) 1, [0%Z(3), Z(3)~0, 0%Z(3), 0*Z(3)],
[0xZ(3), 0%Z(3), Z(3)~0, 0%Z(3) 1, [0%Z(3), 0%*Z(3), 0%Z(3), Z(3)"0 1]

gap> phi := PolarityOfProjectiveSpace(mat,GF(3));

<polarity of PG(3, GF(3)) >

gap> points := AbsolutePoints(phi);

<points of Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>

gap> List(points);

[<a point in Q+(3, 3): x_172+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_27"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>,
<a point in Q+(3, 3): x_1"2+x_2"2+x_3"2+x_4"2=0>]

7.3.3 PolarSpace

> PolarSpace(f)
Returns: a polar space
When £ is not a pseudo polarity, this operation returns the polar space induced by f.

(operation)

Example

gap> mat := [[1,0,0,0],([0,0,1,1]1,[0,1,1,0],[0,1,0,0]11%Z(32)~0;

[[2(2)70, 0%Z(2), 0%Z(2), 0%Z(2) 1, [0*Z(2), 0*z(2), Z(2)"0, Z(2)"0 1,
[0%Z(2), Z2(2)°0, Z(2)70, 0*Z(2) 1, [0%Z(2), Z(2)°0, 0*Z(2), 0%Z(2) 1]

gap> phi := PolarityOfProjectiveSpace(mat,GF(32));

<polarity of PG(3, GF(2°5)) >

gap> ps := PolarSpace(phi);

Error, <polarity> is pseudo and does not induce a polar space called from

GAP 4 Package FinInG 82

<function "unknown">(<arguments>)
called from read-eval loop at line 10 of *stdin*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> mat := IdentityMat(5,GF(7));
[[2(7)~0, 0%Z(7), 0xZ(7), 0*Z(7), 0*Z(7) 1,

[0%Z(7), Z(7)~0, 0%Z(7), 0%Z(7), OxZ(7) 1,

[0%Z(7), OxZ(7), Z(7)~0, 0%Z(7), OxZ(7) 1,

[0xZ(7), 0%Z(7), 0xZ(7), Z(7)~0, 0*Z(7) 1,

[0xZ(7), 0xZ(7), 0%Z(7), 0xZ(7), Z(7)~0]]
gap> phi := PolarityOfProjectiveSpace(mat,GF (7)) ;
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_172+x_2"2+x_3"2+x_4"2+x_5"2=0 >

7.4 Commuting polarities

FinInG constructs polarites of projective spaces as correlations. This allows polarities to be multiplied
easily, resulting in a collineation. The resulting collineation is constructed in the correlation group but
can be mapped onto its unique representative in the collineation group. We provide an example with

two commuting polarities.

Example

gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]1]1%Z(5)"0;

[[0xZ(5), z(5)~0, 0*Z(5), 0%Z(5) 1, [Z(5)~0, 0%Z(5), 0%Z(5), 0%Z(5) 1,
[0xZ(5), 0x*Z(5), 0%Z(5), Z(5)~0 1, [0%Z(5), 0%Z(5), Z(5)~0, 0*Z(5)]]

gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(25));

<polarity of PG(3, GF(5°2)) >

gap> mat2 := IdentityMat(4,GF(5));

[[2(6)~0, 0%Z(5), 0%Z(5), 0%Z(5) 1, [0%Z(5), Z(5)~0, 0%Z(5), 0%Z(5) 1,
[0xZ(5), 0*Z(5), Z(5)~0, 0%Z(5) 1, [0%Z(5), 0*Z(5), 0*Z(5), Z(5)~0]]

gap> psi := Polarity0fProjectiveSpace(mat2,GF(25));

<polarity of PG(3, GF(5°2)) >

gap> phi*psi = psi*phi;

true

gap> g := CorrelationCollineationGroup(PG(3,25));

The FinInG correlation-collineation group PGammal (4,25) : 2

gap> h := CollineationGroup(PG(3,25));

The FinInG collineation group PGammalL (4,25)

gap> hom := Embedding(h,g);

MappingByFunction(The FinInG collineation group PGammal(4,25), The FinInG cor

relation-collineation group PGammal(4,25) : 2, function(y) ... end)

gap> coll := PreImagesRepresentative(hom,phi*psi);

< a collineation: [[0%Z(5), Z(5)~0, 0%Z(5), 0*xZ(5) 1,
[2(5)~0, 0*Z(5), 0%Z(5), 0%Z(5) 1, [0*Z(5), 0%Z(5), 0*Z(5), Z(5)°0],
[0%Z(5), 0%Z(5), Z(5)~0, 0%Z(5) 1 1, F~5>

Chapter 8

Finite Classical Polar Spaces

In this chapter we describe how to use FinInG to work with finite classical polar spaces.

8.1 Finite Classical Polar Spaces

A polar space is a point-line incidence geometry, satisfying the famous one-or-all axiom, i.e. for any
point P, not incident with a line /, P is collinear with exactly one point of / or with all points of /.
The axiomatic treatment of polar spaces has its foundations in [Vel59], [Tit74], and [BS74], the latter
in which the one-or-all axiom is described. Polar spaces are axiomatically, point-line geometries,
but may contain higher dimensional projective subspaces too. All maximal subspaces have the same
projective dimension, and this determines the rank of the polar space.

Well known examples of finite polar spaces are the geometries attached to sesquilinear and
quadratic forms of vector spaces over a finite field, these geometries are called the finite classical
polar spaces. For a given sesquilinear, respectively quadratic, form f, the elements of the associated
geometry are the totally isotropic, respectively totally singular, subspaces of the vectors space with
relation to the form f. The treatment of the forms is done through the package Forms.

From the axiomatic point of view, a polar space is a point-line geometry, and has rank at least
2. Considering a sesquilinear or quadratic form f, of Witt index 1, the associated geometry consists
only of projective points, and is then in the axiomatic treatment, not a polar space. However, as
is the case for projective spaces, we will consider the rank one geometries associated to forms of
Witt index 1 as examples of classical polar spaces. Even the elliptic quadric on the projective line,
a geometry associated to an elliptic quadratic form on a two dimensional vector space over a finite
field, is considered as a classical polar space. The reason for this treatment is that most, if not all,
methods for operations applicable on these geometries, rely on the same algebraic methodology. So,
in FinInG, a classical polar space (sometimes abbreviated to polar space), is the geometry associated
with a sesquilinear or quadratic form on a fininte dimensional vector space over a finite field.

8.1.1 IsClassicalPolarSpace

> IsClassicalPolarSpace (Category)

This category is a subcategory of IsLieGeometry, and contains all the geometries associated to
a non-degenerate sesquilinear or quadratic form.

83

GAP 4 Package FinInG 84

The underlying vector space and matrix group are to our advantage in the treament of classical
polar spaces. We refer the reader to [HT91] and [CamOOb] for the necessary background theory (if it is
not otherwise provided), and we follow the approach of [Cam00b] to introduce all different flavours.

Consider the projective space PG(n,q) with underlying vector space V(n+ 1,g). Consider a non-
degenerate sesquilinear form f. Then f is either Hermitian, alternating or symmetric. When the
characteristic of the field is odd, respectively even, a symmetric bilinear form is called orthogonal,
respectively, pseudo. We do not consider the pseudo case, so we suppose that f is Hermitian, sym-
plectic or orthogonal. The classical polar space associated with f is the incidence geometry whose
elements are of the subspaces of PG(n,q) whose underlying vector subspace is totally isotropic with
relation to f. We call a polar space Hermitian, respectively, symplectic, orthogonal, if the underlying
sesquilinear form is Hermitian, respectively, symplectic, orthogonal.

Symmetric bilinear forms have completely different geometric properties in even characteristic
than in odd characteristic. On the other hand, polar spaces geometrically comparable to orthogonal
polar spaces in odd characteristic, do exist in even characteristic. The algebraic background is now
established by quadratic forms on a vector space instead of bilinear forms. Consider a non-singular
quadratic form ¢ on a vector space V(n+ 1,q). The classical polar space associated with f is the in-
cidence geometry whose elements are the subspaces of PG(n,q) whose underlying vector subspace is
totally singular with relation to g. The connection with orthogonal polar spaces in odd characteristic is
clear, since in odd characteristic, quadratic forms and symmetric bilinear forms are equivalent. There-
fore, we call polar spaces with an underlying quadratic form in even characteristic also orthogonal
polar spaces.

8.1.2 PolarSpace

> PolarSpace(form) (operation)
> PolarSpace (pol) (operation)

Returns: a classical polar space

form must be a sesquilinear or quadratic form created by use of the GAP package Forms. In
the second variant, the argument pol must be a polarity of a projective space. An error message will
be displayed if pol is a pseudo polarity. We refer to Chapter 7 for more information on polarities
of projective spaces, and more particularly to Section 7.3 for the connection between polarities and
forms.

Example

gap> mat := [[0,0,0,1],[0,0,-2,01,[0,2,0,0],[-1,0,0,011*Z(5)"0;

[[0%z(5), 0%Z(5), 0%Z(8), Z(5)~0 1, [0*Z(5), 0*Z(5), Z(5)"3, 0*Z(5)],
[0%2(5), Z(5), 0xZ(5), 0%Z(5) 1, [Z(5)~2, 0%Z(5), 0%Z(5), 0*Z(5) 1]

gap> form := BilinearFormByMatrix(mat,GF(25));

< bilinear form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

3,GF(572)): x1xy4+Z(5) ~3*x2xy3+Z(5) *x3*y2-x4*yl1=0 >

gap> r := PolynomialRing(GF(32),4);

GF(2°5) [x_1,x_2,x_3,x_4]

gap> poly := r.3*r.2+r.1*r.4;

x_1*x_4+x_2%x_3

gap> form := QuadraticFormByPolynomial (poly,r);

< quadratic form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(3,GF(275)): x_1*x_4+x_2*x_3=0 >

GAP 4 Package FinInG

gap> mat := IdentityMat(5,GF(7));
[[Z(7)~0, 0xz(7), 0xZ(7), 0xZ(7), 0xZ(7) 1,
[0%xZ(7), Z(7)~0, 0*Z(7), 0%Z(7), 0*Z(7) 1,
[0%xZ(7), 0%Z(7), Z(7)~0, 0%Z(7), 0xZ(7) 1,
[0%Z(7), 0%Z(7), 0%Z(7), Z(7)~0, 0xZ(7) 1,
[0xZ(7), 0xZ(7), 0xZ(7), 0xZ(7), Z(7)~0]]
gap> phi := PolarityOfProjectiveSpace (mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_172+x_2"2+x_3"2+x_4"2+x_5"2=0 >

85

FinInG relies on the package Forms for its facility with sesquilinear and quadratic forms. One
can specify a polar space with a user-defined form, and we refer to the documention for forms for

information on how one can create and use forms. Here we just display a worked example.
Example

gap> id := IdentityMat(7, GF(3));;

gap> form := QuadraticFormByMatrix(id, GF(3));

< quadratic form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

6,GF(3)): x_172+x_272+x_3"2+x_4"2+x_5"2+x_6"2+x_7"2=0 >
gap> psl32 := PSL(3,2);

Group([(4,6)(5,7), (1,2,4)(3,6,5) 1)

gap> ovoid := Union(List(reps, x-> Orbit(psl32, x, Permuted)));;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;

gap> planes := AsList(Planes(ps));;

#I Computing collineation group of canonical polar space...

gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);

true

gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0], [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]

8.2 Canonical and standard Polar Spaces

To introduce the classification of polar spaces, we use the classification of the underlying forms in
similarity classes. We follow mostly the approach and terminology of [KL90], as we did in the

manual of the package Forms.

Consider a vector space V = V(n+ 1,q) and a sequilinear form f on V. The couple (V,f) is
called a formed space. Consider now two formed spaces (V, f) and (V, '), where f and f’ are two
sesquilinear forms on V. A non-singular linear map ¢ from V to itself induces a similarity of the
formed space (V, f) to the formed space (V,f’) if and only if f(v,w) = Af"(¢(v),¢(w)) , for all
vectors v,w some non-zero . Up to similarity, there is only one class of non-degenerate Hermitian
forms, and one class of non-degenerate symplectic forms on a given vector space V. For symmetric
bilinear forms in odd characteristic, the number of similarity classes depends on the dimension of V.
In odd dimension, there is only one similarity class, and non-degenerate forms in this class are called
parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate

forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

*Z(3)"0;;

GAP 4 Package FinInG 86

Consider now a vector space V and a quadratic form g on V. The couple (V,q) is called a formed
space. Consider now two formed spaces (V,q) and (V,q’), where g and ¢’ are two quadratic forms
on V. A non-degenerate linear map ¢ from V to itself induces a similarity of the formed space (V,q)
to the formed space (V,q') if and only if g(v) = A f'(¢(v))) , for all vectors v some non-zero . For
quadratic forms in even characteristic, the number of similarity classes depends on the dimension of V.
In odd dimension, there is only one similarity class, and non-degenerate forms in this class are called
parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate
forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

If ¢ induces a similarity of a formed vector space such that A = 1, then the similarity is called
an isometry of the formed vector space. In almost all cases, each similarity class contains exactly
one isometry class. Only the orthogonal sesquilinear forms (hence in odd characteristic) come into
two isometry classes. Consequently, if an isometry exists between formed vector spaces, they are
called isometric. Projectively, a formed vector space becomes a classical polar space embedded in a
projective space. Obviously, forms in the same similarity class determine exactly the same classical
polar space. Conversely, it is well known that a classical polar space determines a form up to a
constant factor, i.e. it determines a similarity class of forms. In FinInG, the word canonical is used
in the mathematical sense, i.e. a classical polar space is canonical if its determining form belongs
to a fixed similarity class. A classical polar space is called standard if its determining form is the
fixed representant of the canonical similarity class. Hence a standard classical polar space is always
a canonical classical polar space, a cononical polar space is determined by a standard form upto a
constant factor. In the following table, we summerize the above information on polar spaces, together
with the standard forms that are chosen in FinInG. Note that Tr refers to the absolute Trace.

polar space standard form characteristic p
hermitian polar space XgH —|—qu+1 o xaT odd and even

symplectic space Xo¥1 —YoXi+...+ XY, — Y1 X, odd and even

hyperbolic quadric XoX1+ ...+ X1 Xy p =3mod4 and p even
hyperbolic quadric 2(XoX1 + ..+ Xu—1Xn) p = 1mod4

parabolic quadric on + XX+ ...+ X, 11X, p=1,3mod8 and p even
parabolic quadric t(X¢+X1 X2+ ...+ X,-1Xy), t a primitive element of GF (p) p=15,7mod8

elliptic quadric X+ XE+X0X3+ ...+ X1 Xy p =3mod4

elliptic quadric XZ +1tX? +XoX3 + ...+ Xy—1X,, t a primitive element of GF(p) | odd

elliptic quadric on + XoX1 + Xmz +X0X5+4...+X-1X,, Tr(d) =1 even

Table: finite classical polar spaces

We refer to Appendix B for information on the operations that construct gram matrices that are
used to obtain the above standard forms. The following five operations always return polar spaces
induced by one of the above standard forms.

8.2.1 SymplecticSpace

> SymplecticSpace(d, F) (operation)
> SymplecticSpace(d, q) (operation)
Returns: a symplectic polar space
This function returns the symplectic polar space of dimension d over F for a field F or over GF(q)
for a prime power q.

GAP 4 Package FinInG 87

Example

gap> ps := SymplecticSpace(3,4);
W3, 4)
gap> Display(ps);
W(3, 4)
Symplectic form
Gram Matrix:
1.
o1
R
Witt Index: 2

8.2.2 HermitianPolarSpace

> HermitianPolarSpace(d, F) (operation)
> HermitianPolarSpace(d, q) (operation)
Returns: a Hermitian polar space
This function returns the Hermitian polar space of dimension d over F for a field F or over GF(q)
for a prime power q.

Example
gap> ps := HermitianPolarSpace(2,25);
H(2, 572)
gap> Display(ps);
H(2, 25)

Hermitian form
Gram Matrix:
1

o1
Polynomial: [[=x_1"6+x_2"6+x_3"6]]
Witt Index: 1

8.2.3 ParabolicQuadric

> ParabolicQuadric(d, F) (operation)
> ParabolicQuadric(d, q) (operation)
Returns: a parabolic quadric
d must be an even positive integer. This function returns the parabolic quadric of dimension d
over F for a field F or over GF(q) for a prime power q.

Example
gap> ps := ParabolicQuadric(2,9);
Q(2, 9
gap> Display(ps);
Q(2, 9)

Parabolic bilinear form
Gram Matrix:
1.

GAP 4 Package FinInG

.2 .
Polynomial: [[=x_1"2+x_2%x_3]]
Witt Index: 1
gap> ps := ParabolicQuadric(4,16);

Q4, 16)
gap> Display (ps);
Q4, 16

Parabolic quadratic form
Gram Matrix:
1.

1
Polynomial: [[=x_1"2+x_2%x_3+x_4*x_5]]
Witt Index: 2

Bilinear form
Gram Matrix:

88

8.2.4 HyperbolicQuadric

> HyperbolicQuadric(d, F)
> HyperbolicQuadric(d, q)
Returns: a hyperbolic quadric

(operation)

(operation)

d must be an odd positive integer. This function returns the hyperbolic quadric of dimension d

over F for a field F or over GF(q) for a prime power q.

Example
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> Display(ps);
Q+(5, 3)

Hyperbolic bilinear form
Gram Matrix:

oo 20.
Polynomial: [[=x_1%x_2+x_3*x_4+x_5%x_6]]
Witt Index: 3
gap> ps := HyperbolicQuadric(3,4);
Q+(@3, 4)
gap> Display(ps);
Q+(3, 4)

GAP 4 Package FinInG 89

Hyperbolic quadratic form
Gram Matrix:
1.

1
Polynomial: [[=x_1#x_2+x_3*x_4]]
Witt Index: 2
Bilinear form

Gram Matrix:
1.

8.2.5 EllipticQuadric

> EllipticQuadric d, P (operation)
> EllipticQuadric(d, q) (operation)
Returns: an elliptic quadric
d must be an odd positive integer. This function returns the elliptic quadric of dimension d over
F for a field F or over GF(q) for a prime power q.

Example
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> Display(ps);
Q-(3, 27)

Elliptic bilinear form
Gram Matrix:
1

L2
Polynomial: [[=x_1"2+x_2"2+x_3*x_4]]
Witt Index: 1
gap> ps := EllipticQuadric(5,8);

Q-(5, 8
gap> Display (ps);
Q-(5, 8)

Elliptic quadratic form
Gram Matrix:
11.
1

1
Polynomial: [[=x_1"2+x_1%x_2+x_272+x_3*x_4+x_5*x_6]]
Witt Index: 2

Bilinear form
Gram Matrix:

GAP 4 Package FinInG 90

8.2.6 CanonicalPolarSpace

> CanonicalPolarSpace(form) (operation)
> CanonicalPolarSpace(P) (operation)
Returns: a classical polar space
the canonical polar space isometric to the given polar space P or the classical polar space with
underlying form form.

8.2.7 StandardPolarSpace

> StandardPolarSpace (form) (operation)
> StandardPolarSpace (P) (operation)
Returns: a classical polar space
the polar space induced by a standard form and similar to the given polar space P or the classical
polar space with underlying form form.

8.3 Basic operations for finite classical polar spaces

8.3.1 UnderlyingVectorSpace

> UnderlyingVectorSpace (ps) (operation)
Returns: a vector space
The polar space ps is the geometry associated with a sesquilinear or quadratic form f. The vector
space on which f is acting is returned.

Example
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> vs := UnderlyingVectorSpace(ps) ;
(GF(2~2)"6)
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> vs := UnderlyingVectorSpace(ps);
(GF(3~4)-4)
8.3.2 AmbientSpace
> AmbientSpace(ps) (operation)

Returns: the ambient projective space
When ps is a polar space, this operation returns the ambient projective space, i.e. the underlying
projective space of the sequilinear or quadratic form that defines ps.

GAP 4 Package FinInG

Example

91

gap> ps := EllipticQuadric(5,4);
Q-(5, 4

gap> AmbientSpace(ps);
ProjectiveSpace(5, 4)

gap> ps := SymplecticSpace(3,81);
W(3, 81)

gap> AmbientSpace(ps);
ProjectiveSpace(3, 81)

8.3.3 ProjectiveDimension

> ProjectiveDimension(ps) (operation)

> Dimension(ps) (operation)

Returns: the dimension of the ambient projective space of ps

When ps is a polar space, an ambient projective space P is uniquely defined and can be asked

using AmbientSpace. This operation and its synomym Dimension returns the dimension of P.

Example
gap> ps := EllipticQuadric(5,4);

Q-(5, 4)

gap> ProjectiveDimension(ps);

5

gap> ps := SymplecticSpace(3,81);

w(3, 81)

gap> ProjectiveDimension(ps);

3

8.3.4 Rank

> Rank(ps) (operation)

Returns: the rank of ps

When ps is a polar space, its rank, i.e. the number of different types, equals the Witt index of the

defining sesquilinear or quadratic form.

Example
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> Rank(ps);

2

gap> ps := HyperbolicQuadric(5,4);
Q+(5, 4)

gap> Rank(ps);

3

gap> ps := SymplecticSpace(7,81);
w(7, 81)

gap> Rank(ps);

4

GAP 4 Package FinInG

8.3.5 BaseField

> BaseField(ps)
Returns: the base field of the polar space ps

92

(operation)

Example
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> BaseField(ps);
GF(7)

gap> ps := HermitianPolarSpace(2,256);
H(2, 16°2)

gap> BaseField(ps);

GF(278)

8.3.6 IsHyperbolicQuadric

> IsHyperbolicQuadric(ps)
Returns: true or false
returns true if and only if ps is a hyperbolic quadric.

(property)

Example
gap> mat := IdentityMat(6,GF(5));

< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));

< bilinear form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

5,GF(5)): x_1"2+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2=0 >
gap> IsHyperbolicQuadric(ps);

true

gap> mat := IdentityMat(6,GF(7));

< mutable compressed matrix 6x6 over GF(7) >

gap> form := BilinearFormByMatrix(mat,GF(7));

< bilinear form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

5,GF(7)): x_17"2+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2=0 >
gap> IsHyperbolicQuadric(ps);

false

8.3.7 IsEllipticQuadric

> IsEllipticQuadric(ps)

Returns: true or false

returns true if and only if ps is an elliptic quadric.
Example

(property)

gap> mat := IdentityMat(6,GF(5));

< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >

GAP 4 Package FinInG 93

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

5,GF(5)): x_1"2+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2=0 >
gap> IsEllipticQuadric(ps);

false

gap> mat := IdentityMat(6,GF(7));

< mutable compressed matrix 6x6 over GF(7) >

gap> form := BilinearFormByMatrix(mat,GF(7));

< bilinear form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(

5,GF(7)): x_17"2+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2=0 >
gap> IsEllipticQuadric(ps);

true

8.3.8 IsParabolicQuadric

> IsParabolicQuadric(ps) (property)
Returns: true or false

returns true if and only if ps is a parabolic quadric.

Example
gap> mat := IdentityMat(5,GF(9));
[[2(3)~0, 0%Z(3), 0%Z(3), 0%Z(3), 0xZ(3) 1,
[0%2(3), Z2(3)~0, 0*Z(3), 0%Z(3), 0%Z(3) 1,
[0%Z(3), 0%Z(3), Z(3)~0, 0%Z(3), 0%Z(3) 1,
[0%xZ(3), 0%Z(3), 0*Z(3), Z(3)~0, 0*Z(3) 1,
[0%Z(3), 0%Z(3), 0%Z(3), 0*Z(3), Z(3)~0] 1

gap> form := BilinearFormByMatrix(mat,GF(9));

< bilinear form >

gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(4,GF(372)): x_1"2+x_2"2+x_3"2+x_4"2+x_5"2=0 >
gap> IsParabolicQuadric(ps);

true
gap> mat := [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0]1]1*Z(2)~0;
[[Z(2)~0, 0%xZ(2), 0%Z(2), 0*Z(2), 0*Z(2) 1],
[0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2), 0%Z(2) 1,
[0xZ(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1,
[0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), Z(2)°0 1,
[0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2)]]
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> ps := PolarSpace(form);

<polar space in ProjectiveSpace(4,GF(2~3)): x_1"2+x_2*x_3+x_4*x_5=0 >
gap> IsParabolicQuadric(ps);
true

GAP 4 Package FinInG 94

8.4 Subspaces of finite classical polar spaces

The elements of a finite classical polar space P are the subspaces of the ambient projective space that
are totally isotropic with relation to the sequilinear or quadratic form that defines P. Constructing
subspaces of finite classical polar spaces is done as in the projective space case, except that addi-
tional checks are implemented in the methods to check that the subspace of the vector space is totally
isotropic. The empty subspace, also called the trivial subspace, which has dimenion -1, corresponds
with the zero dimensional vector space of the underlying vector space of the ambient projective space
of P, and is of course totally isotropic. As such, is is considered as a subspace of a finite classical
polar space in the mathematical sense, but not as an element of the incidence geometry, and hence do
in FinInG not belong to the category IsSubspace0fClassicalPolarSpace.

8.4.1 VectorSpaceToElement

> VectorSpaceToElement (ps, v) (operation)

Returns: an element of the polar space geo

Let ps be a polar space, and v is either a row vector (for points) or an mxn matrix (for an (m—1)-
subspace of a polar space with an (n — 1)-dimensional ambient projective space. In the case that v
is a matrix, the rows represent basis vectors for the subspace. An exceptional case is when v is a
zero-vector, whereby the trivial subspace is returned. It is checked that the subspace defined by v is
totally isotropic with relation to the form defining ps.
Example

gap> ps := SymplecticSpace(3,4);
w3, 4)
gap> v := [1,0,1,0]1%Z(4)"0;
[Z(2)~0, 0%Z(2), Z(2)°0, 0*Z(2)]
gap> p := VectorSpaceToElement (ps,v);
<a point in W(3, 4)>
gap> mat := [[1,1,0,1],[0,0,1,0]11%Z(4)"0;
[[2(2)0, 2(2)~0, 0%Z(2), Z(2)~0 1, [0%Z(2), 0%Z(2), Z(2)~0, 0%Z(2)]]
gap> line := VectorSpaceToElement (ps,mat);
Error, <x> does not generate an element of <geom> called from
<function "unknown">(<arguments>)
called from read-eval loop at line 12 of *stdin*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> mat := [[1,1,0,0],[0,0,1,0]1]1*%Z(4)"0;
[[Z(2)-0, Z(2)~0, 0%xZ(2), 0*Z(2) 1, [0*Z(2), 0xZ(2), Z(2)~0, 0xZ(2)]]
gap> line := VectorSpaceToElement (ps,mat) ;
<a line in W(3, 4)>
gap> p := VectorSpaceToElement (ps, [0,0,0,0]*Z(4)~0);
< empty subspace >

8.4.2 EmptySubspace

> EmptySubspace(ps) (operation)
Returns: the trivial subspace in the projective ps

GAP 4 Package FinInG 95

The object returned by this operation is contained in every projective subspace of the projective

space ps, but is not an element of ps. Hence, testing incidence results in an error message.
Example
gap> ps := HermitianPolarSpace(10,49);
H(10, 7°2)
gap> e := EmptySubspace(ps);
< empty subspace >
gap> p := VectorSpaceToElement(ps,[1,1,1,0,1,1,1,0,1,0,01*Z(7)~0);
<a point in H(10, 7°2)>
gap> e*p;
Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at line 11 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> e in p;
true

8.4.3 ProjectiveDimension

> ProjectiveDimension(sub) (operation)
> Dimension(sub) (operation)
Returns: the projective dimension of a subspace of a polar space. The operation
ProjectiveDimension is also applicable on the EmptySubspace
Example

gap> ps := EllipticQuadric(7,8);

Q-(7, 8

gap> mat := [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]11%Z(8)"0;

[[0%Z(2), 0%Z(2), Z(2)~0, 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2)],
[0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2), 0*Z(2), 0%Z(2)]]

gap> line := VectorSpaceToElement (ps,mat) ;

<a line in Q-(7, 8)>

gap> ProjectiveDimension(line);

1

gap> Dimension(line);

1

gap> e := EmptySubspace(ps);

< empty subspace >

gap> ProjectiveDimension(e) ;

-1

8.4.4 ElmentsOfIncidenceStructure

> ElmentsOfIncidenceStructure(ps, j) (operation)
Returns: the collection of elements of the projective space ps of type j
For the projective space ps of dimension d and the type j, 1 < j < d this operation returns the
collection of j — 1 dimensional subspaces.

GAP 4 Package FinInG 96

Example
gap> ps := HermitianPolarSpace(4,4);
H(4, 272)
gap> ElementsOfIncidenceStructure(ps,1);
<points of H(4, 2°2)>
gap> ElementsOfIncidenceStructure(ps,2);
<lines of H(4, 2°2)>
gap> ElementsOfIncidenceStructure(ps,3);
Error, <geo> has no elements of type <j> called from
<function "unknown">(<arguments>)

called from read-eval loop at line 11 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

8.4.5 AmbientSpace

> AmbientSpace(el) (operation)
Returns: returns the ambient space of an element el of a polar space
This operation is also applicable on the trivial subspace. For a Lie geometry, the ambient space of
an element is defined as the ambient space of the Lie geometry, i.e. a projective space.
Example
gap> ps := HermitianPolarSpace(3,7°2);
H(3, 772)
gap> line := VectorSpaceToElement (ps, [[Z(7)~0,0%Z(7),Z(7~2)"~34,Z(7~2)"44],
> [0%Z2(7),Z(7)°0,Z(7~2)~2,Z2(7~2)"4]]);
<a line in H(3, 7°2)>
gap> AmbientSpace(line);
ProjectiveSpace(3, 49)

8.4.6 Coordinates

> Coordinates(p) (operation)
Returns: the homogeneous coordinates of the point p

Example
gap> ps := ParabolicQuadric(6,5);

Q(6, 5)

gap> p := VectorSpaceToElement (ps, [0,1,0,0,0,0,0]1*Z(5)~0);
<a point in Q(6, 5)>

gap> Coordinates(p);

[0xZ(5), Z(5)~0, 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5)]

8.4.7 Incidence and containment

> IsIncident(ell, el2) (operation)
> *x(ell, el2) (operation)

GAP 4 Package FinInG 97

> \in(ell, el2) (operation)
Returns: true or false
Recall that for projective spaces, incidence is symmetrized containment, where the empty sub-
space and the whole projective space are excluded as arguments for this operation, since they are not
considered as elements of the geometry, but both the empty subspace and the whole projective space
are allowed as arguments for \in.

Example
gap> ps := HyperbolicQuadric(7,7);
Q+(7, T
gap> p := VectorSpaceToElement(ps,[1,0,1,0,0,0,0,01*Z(7)"0);
<a point in Q+(7, 7)>
gap> 1 := VectorSpaceToElement (ps,[[1,0,1,0,0,0,0,0],[0,-1,0,1,0,0,0,0]1*Z(7)"~0);
<a line in Q+(7, 7)>
gap> p * 1;
true
gap> 1 * p;
true
gap> IsIncident(p,1l);
true
gap> p in 1;
true
gap> 1 in p;
false
gap> e := EmptySubspace(ps);
< empty subspace >
gap> e * 1;
Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at line 17 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> e in 1;
true
gap> 1 in ps;
true

8.4.8 Span

> Span(u, V) (operation)
Returns: an element
u and v are elements of a projective or polar space. This function returns the join of the two
elements, that is, the span of the two subspaces.
Example

gap> ps := HyperbolicQuadric(5,2);
Q+(5, 2)

gap> p := Random(Planes(ps));

<a plane in Q+(5, 2)>

gap> q := Random(Planes(ps));

GAP 4 Package FinInG 98

<a plane in Q+(5, 2)>

gap> s := Span(p,q);

<a proj. 4-space in ProjectiveSpace(5, 2)>
gap> s = Span([p,ql);

true

gap> t := Span(EmptySubspace(ps),p);

<a plane in Q+(5, 2)>

gap> t = p;

true

8.4.9 Meet

> Meet(u, v) (operation)
Returns: an element
u and v are elements of a projective or polar space. This function returns the meet of the two
elements. If two elements do not meet, then Meet returns EmptySubspace, which in FinInG, is an
element with projective dimension -1. (Note that the poset of subspaces of a polar space is a meet-
semilattice, but not closed under taking spans).
Example

gap> ps := HyperbolicQuadric(5,3);;
gap> pi := Random(Planes(ps));;
gap> tau := Random(Planes(ps));;
gap> Meet (pi,tau);

<a point in Q+(5, 3)>

Note: the above example will return different answers depending on the two planes chosen at random.

8.4.10 IsCollinear

> IsCollinear(ps, u, v) (operation)
Returns: Boolean
u and v are points of the polar space ps. This function returns True if u and v are incident with
a common line and False otherwise.

8.4.11 Polarity

> Polarity (ps) (operation)
Returns: a function for the polarity
ps must be a polar space. This operation returns the polarity of the polar space ps in the form of
a function.

8.4.12 TypeOfSubspace

> TypeOfSubspace(ps, v) (operation)
Returns: a string
This operation is a convenient way to find out the intersection type of a projective subspace with
a polar space. The argument ps is a nondegenerate polar space, and the argument v is a subspace of

GAP 4 Package FinInG 99

the ambient projective space. The operation returns a string in accordance with the type of subspace:

PN LR N3

“degenerate”, “symplectic”, “hermitian”, “elliptic”, “hyperbolic” or “parabolic”.

Example
gap> hl := HermitianPolarSpace(2, 372);
H(2, 372)
gap> h2 := HermitianPolarSpace(3, 3°2);
H(3, 372)

gap> pg := AmbientSpace(h2);

ProjectiveSpace(3, 9)

gap> pi := VectorSpaceToElement(pg, [[1,0,0,0],[0,1,0,0]1,[0,0,1,01] * Z(9)~0);
<a plane in ProjectiveSpace(3, 9)>

gap> TypeOfSubspace(h2, pi);

"hermitian"

gap> pi := VectorSpaceToElement(pg, [[1,0,0,0],[0,1,0,0]1,[0,0,1,Z2(9)1]1 * Z(9)~0
<a plane in ProjectiveSpace(3, 9)>

gap> TypeOfSubspace(h2, pi);

"degenerate"

8.5 Projective Orthogonal/Unitary/Symplectic groups in FinlnG

The classical groups (apart from the general lines group), are the matrix groups that respect, in a
certain way, a sesquilinear or quadratic form. We formally recall the definitions used in FinInG.
These definitions are exactly the same as in Forms.

Let (V, f) and (W,g) be two formed vector spaces over the same field F, where both f and g are
sesquilinear forms. Suppose that ¢ is a linear map from V to W. The map ¢ is an isometry from the
formed space (V, f) to the formed space (W, g) if for all v,w in V we have

fF,w) =F1(0(v),0(w)).

The map ¢ is a similarity from the formed space (V, f) to the formed space (W, g) if for all v,w in V
we have

W) =Af'(9(),0(w)).

for some non-zero A € F. Finally, the map ¢. is a semi-similarity from the formed space (V, f) to the
formed space (W, g) if for all v,w in V we have

fFow) =Af'(0(),0(w))"

for some non-zero A € F and a field automorphism ¢ of F.

Let (V,f) and (W, g) be two formed vector spaces over the same field ', where both f and g are
quadratic forms. Suppose that ¢ is a linear map from V to W. The map ¢ is an isometry from the
formed space (V, f) to the formed space (W, g) if for all v,w in V we have

f0)=F(oW)).

The map ¢ is a similarity from the formed space (V, f) to a formed space (W, g) if for all v,w in V we
have

V) =2f(9(v)).

GAP 4 Package FinInG 100

for some non-zero A € F. Finally, the map ¢. is a semi-similarity from the formed space (V, f) to the
formed space (W, g) if for all v,w in V we have

fO)=2f(9(v)*

for some non-zero A € F and a field automorphism o of F.

Collineations of classical polar spaces are induced by semi-similarities of the underlying formed
vector space, and vice versa, analoguously by factoring out scalar matrices. The only exceptions are
the two-dimensional unitary groups where the the full semi-similarity group can contain elements of
its centre that are not scalars. In FinInG, the subgroups corresponding with similarities and isometries
are also implemented, including a special variant, corresponding with the matrices having determinant
one. We use a consistent terminology, where isometries, similarities, respectively, of the polar space,
correspond with isometries, similarities, respectively, of the underlying formed vector space. Special
isometries of a polar space are induced by isometries of the formed vector space that have a matrix with
determinant one. If P is a polar space with special isometry group, isometry group, similarity group,
collineation group, respectively, SI, I, G, I, respectively, then clearly ST <1 < G <T'". Equalities can
occur in certain cases, and will, as we will see in the following overview.

(sub)group symplectic | hyperbolic elliptic parabolic hermitian

special isometry | PSp(d,q) | PSO(1,d,q) | PSO(—1,d,q) | PSO(0,d,q) | PSU(d,q*)
isometry PSp(d,q) | PGO(1,d,q) | PGO(—1,d,q) | PGO(0,d,q) | PGU(d,q*)
similarity PGSp(d,q) | PAO"(d,q) | PAO~(d,q) PGO(0,d,q) | PGU(d,q?)
collineation PI'Sp(d,q) | PTOY(d,q) | PTO~(d,q) Pro(d,q) | PTU(d,q%)

Table: projective finite classical groups

8.5.1 SpeciallsometryGroup

> SpeciallsometryGroup(ps) (operation)

Returns: the special isometry group of the polar space ps
Example

gap> ps := SymplecticSpace(3,4);
W3, 4)

gap> SpeciallsometryGroup(ps);
PSp(4,4)

gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)

gap> SpecialIlsometryGroup(ps);
PsS0(1,6,8)

gap> ps := EllipticQuadric(3,27);
Q-@3, 27)

gap> SpeciallsometryGroup(ps);
PS0(-1,4,27)

gap> ps := ParabolicQuadric(4,8);
Q4, 8)

gap> SpeciallsometryGroup (ps) ;
Ps0(0,5,8)

gap> ps := HermitianPolarSpace(4,9);
H(4, 3°2)

gap> SpecialIlsometryGroup(ps);
PSU(5,3"2)

GAP 4 Package FinIinG 101

8.5.2 IsometryGroup

> IsometryGroup(ps) (operation)
Returns: the isometry group of the polar space ps

Example

gap> ps := SymplecticSpace(3,4);
W3, 4)

gap> IsometryGroup(ps);

PSp(4,4)

gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)

gap> IsometryGroup(ps) ;

PG0O(1,6,8)

gap> ps := EllipticQuadric(3,27);
Q-(3, 27)

gap> IsometryGroup(ps);
PGO(-1,4,27)

gap> ps := ParabolicQuadric(4,8);
Q4, 8)

gap> IsometryGroup(ps);

PG0(0,5,8)

gap> ps := HermitianPolarSpace(4,9);
H(4, 372)

gap> IsometryGroup(ps);

PGU(5,3"2)

8.5.3 SimilarityGroup

> SimilarityGroup(ps) (operation)
Returns: the similarity group of the polar space ps

Example
gap> ps := SymplecticSpace(3,4);
W(3, 4)

gap> SimilarityGroup(ps);

PGSp (4,4)

gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)

gap> SimilarityGroup(ps);
PDelta0+(6,8)

gap> ps := EllipticQuadric(3,27);
Q-(3, 27

gap> SimilarityGroup(ps);
PDeltal-(4,27)

gap> ps := ParabolicQuadric(4,8);
Q4, 8

gap> SimilarityGroup(ps);

PG0(0,5,8)

gap> ps := HermitianPolarSpace(4,9);
H(4, 372)

gap> SimilarityGroup(ps);

GAP 4 Package FinInG 102

PGU(5,3"2)

8.5.4 CollineationGroup

> CollineationGroup(ps) (operation)
Returns: the collineation group of the polar space ps
In most cases, the full projective semisimilarity group is returned. For two-dimensional unitary
groups, the centre may contain elements that are not scalars. In this case, we return a central extension
of the projective semisimilarity group. If the field of definition GF(¢*) has ¢ prime, we return the
similarity group.

Example
gap> ps := SymplecticSpace(3,4);
w3, 4)

gap> CollineationGroup(ps);
PGammaSp (4,4)

gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)

gap> CollineationGroup(ps);
PGammaO+(6,8)

gap> ps := EllipticQuadric(3,27);
Q-(3, 27)

gap> CollineationGroup(ps);
PGammaO- (4,27)

gap> ps := ParabolicQuadric(4,8);

Q4, 8)

gap> CollineationGroup(ps);
PGamma0(5,8)

gap> ps := HermitianPolarSpace(4,9);
H(4, 3°2)

gap> CollineationGroup(ps);
PGU(5,372)

8.6 Enumerating subspaces of polar spaces

8.6.1 Enumerators for polar spaces

An enumerator for a collection of subspaces of a given type of a polar space is provided in FinInG. If
C is such a collection, then List (C) will use the enumerator to compute a list with all the elements
of C.

8.6.2 Enumerator

> Enumerator (C) (operation)
> List(C) (operation)
Returns: an enumerator for the collection C and a list with all elements of C
The argument C is a collection of subspaces of a polar space.

GAP 4 Package FinIinG 103

Example
gap> Enumerator (Points(ParabolicQuadric(6,3)));
Enumerator0fSubspaces0OfClassicalPolarSpace(<points of Q(6, 3)>)
gap> Enumerator (Lines(HermitianPolarSpace(4,4)));
Enumerator0fSubspaces0fClassicalPolarSpace(<lines of H(4, 2°2)>)
gap> planes := List(Planes(HermitianPolarSpace(5,4)));;

gap> time;

13605

gap> Length(planes);

891

8.6.3 Iterators for polar spaces

For all polar spaces an iterator is constructed using IteratorList (enum), where enum is an appro-
priate enumerator.

8.6.4 Iterator

> Iterator(elements) (operation)
Returns: an iterator
C is a collection of subspaces of a polar space.
Example
gap> iter := Iterator(Lines(ParabolicQuadric(4,2)));
<iterator>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>

8.6.5 AsList

> AsList(subspaces) (operation)
Returns: an Orb object or list

Example

gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)

gap> lines := AsList(Lines(ps));
<closed orbit, 520 points>

Chapter 9

Actions, stabilisers and orbits

9.1 Stabilisers

The GAP function Stabilizer is a generic function to compute stabilisers of one object (or sets
or tuples etc. of objects) under a group, using a specified action function. This generic function
can be used together with the in FinInG implemented groups and elements of geometries. However,
computing time can be very long, already in small geometries.

Example

gap> ps := PG(3,8);

ProjectiveSpace(3, 8)

gap> g := CollineationGroup(ps);

The FinInG collineation group PGammaL(4,8)

gap> p := Random(Points(ps));

<a point in ProjectiveSpace(3, 8)>

gap> Stabilizer(g,p,0nProjSubspaces);

<projective collineation group of size 177223237632>
gap> time;

13527

gap> line := Random(Lines(ps));

<a line in ProjectiveSpace(3, 8)>

gap> Stabilizer(g,line,OnProjSubspaces);
<projective collineation group of size 21849440256>
gap> time;

108345

The packages GenSS and orb required by FinInG provide efficient operations to compute stabilisers,
and FinInG provides functionality to used these operations for the particular groups and (elements) of
geometries.

9.1.1 FiningStabiliser

> FiningStabiliser(g, el) (operation)
Returns: The subgroup of g stabilising the element el
The argument g is a group of collineations acting on the element el, being a subspace of a
projective space (and hence, all elements of a Lie geometry are allowed as second argument). This
operation relies on the GenSS operation Stab.

104

GAP 4 Package FinInG

gap> ps := PG(5,4);

ProjectiveSpace(5, 4)

gap> g := SpecialHomographyGroup (ps) ;
The FinInG PSL group PSL(6,4)

gap> p := Random(Points(ps));

<a point in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,p);
<projective collineation group of size
gap> line := Random(Lines(ps));

<a line in ProjectiveSpace(5, 4)>

gap> FiningStabiliser(g,line);
<projective collineation group of size
gap> plane := Random(Planes(ps));

<a plane in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,plane);

#I Have 106048 points.

#I Have 158748 points.

<projective collineation group of size

gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)

gap> g := IsometryGroup(ps);
PG0(1,6,5)

gap> p := Random(Points(ps));

<a point in Q+(5, 5)>

gap> FiningStabiliser(g,p);
<projective collineation group of
gap> line := Random(Lines(ps));

<a line in Q+(5, 5)>

gap> FiningStabiliser(g,line);
<projective collineation group of
gap> plane := Random(Planes(ps));
<a plane in Q+(5, 5)>

gap> FiningStabiliser(g,plane);
<projective collineation group of
gap> h := SplitCayleyHexagon(3);
Split Cayley Hexagon of order 3
gap> g := CollineationGroup(h);

#I for Split Cayley Hexagon

#I Computing nice monomorphism...
#I Found permutation domain...
G_2(3)
gap> p

size

size

size

:= Random(Points(h));

Example

105

264696069567283200 with 2 generators>

3881174040576000 with 3 generators>

958878292377600 with 2 generators>

36000000 with 3 generators>

6000000 with 3 generators>

93000000 with 2 generators>

<a point of Split Cayley Hexagon of order 3>

gap> FiningStabiliser(g,p);
<projective collineation group of size
gap> line := Random(Lines(h));

11664 with 3 generators>

<a line of Split Cayley Hexagon of order 3>

gap> FiningStabiliser(g,line);
<projective collineation group of size

11664 with 3 generators>

GAP 4 Package FinInG

9.1.2 FiningStabiliserOrb

> FiningStabiliserOrb(g, el)
Returns: The subgroup of g stabilising the element el

The argument g is a group of collineations acting on the element el, being a subspace of a
projective space (and hence, all elements of a Lie geometry are allowed as second argument). This

operation relies on some particular orb functionality.

Example
gap> ps := PG(5,4);

ProjectiveSpace(5, 4)

gap> g := SpecialHomographyGroup (ps) ;

The FinInG PSL group PSL(6,4)

gap> p := Random(Points(ps));

<a point in ProjectiveSpace(5, 4)>

gap> FiningStabiliserOrb(g,p);

<projective collineation group with 15 generators>
gap> line := Random(Lines(ps));

<a line in ProjectiveSpace(5, 4)>

gap> FiningStabiliserOrb(g,line);

<projective collineation group with 15 generators>
gap> plane := Random(Planes(ps));

<a plane in ProjectiveSpace(5, 4)>

gap> FiningStabiliserOrb(g,plane);

<projective collineation group with 15 generators>
gap> ps := HyperbolicQuadric(5,5);

Q+(5, 5)
gap> g := IsometryGroup(ps);
PG0(1,6,5)

gap> p := Random(Points(ps));

<a point in Q+(5, 5)>

gap> FiningStabiliserOrb(g,p);

<projective collineation group with 15 generators>
gap> line := Random(Lines(ps));

<a line in Q+(5, 5)>

gap> FiningStabiliserOrb(g,line);

<projective collineation group with 15 generators>
gap> plane := Random(Planes(ps));

<a plane in Q+(5, 5)>

gap> FiningStabiliserOrb(g,plane);

<projective collineation group with 15 generators>
gap> h := SplitCayleyHexagon(3);

Split Cayley Hexagon of order 3

gap> g := CollineationGroup(h);

#I for Split Cayley Hexagon

#I Computing nice monomorphism...

#I Found permutation domain...

G_2(3)

gap> p := Random(Points(h));

<a point of Split Cayley Hexagon of order 3>

gap> FiningStabiliserOrb(g,p);

<projective collineation group with 15 generators>
gap> line := Random(Lines(h));

<a line of Split Cayley Hexagon of order 3>

GAP 4 Package FinInG

gap> FiningStabiliserOrb(g,line);
<projective collineation group with 15 generators>

A small example shows the difference in computing time. Clearly the FiningStabiliserQOrb is

the fastest way to compute stabilizers of one element.

Example
gap> ps := PG(3,8);

ProjectiveSpace(3, 8)

gap> g := CollineationGroup(ps);

The FinInG collineation group PGammaL(4,8)
gap> p := Random(Points(ps));

<a point in ProjectiveSpace(3, 8)>

gap> gl := Stabilizer(g,p);

<projective collineation group of size 177223237632>

gap> time;

13759

gap> g2 := FiningStabiliser(g,p);

<projective collineation group of size 177223237632 with 2 generators>
gap> time;

312

gap> g3 := FiningStabiliserOrb(g,p);

<projective collineation group with 15 generators>

gap> time;

46

gap> gl=g2;

true

gap> g2=g3;

true

Computing the setwise stabiliser under a group is possible using Stabilizer. Not suprisingly, the

computing time can also be very long.
Example

gap> ps := PG(3,4);

ProjectiveSpace(3, 4)

gap> p := Random(Points(ps));

<a point in ProjectiveSpace(3, 4)>

gap> q := Random(Points(ps));

<a point in ProjectiveSpace(3, 4)>

gap> g := CollineationGroup(ps);

The FinInG collineation group PGammaL(4,4)
gap> Stabilizer(g,Set([p,ql),0OnSets);
<projective collineation group of size 552960>
gap> time;

16079

The package GenSS provides an efficient operation to compute setwise stabilisers, and FinlnG pro-
vides functionality to used these GenSS operation for the particular groups and (elements) of geome-

tries.

GAP 4 Package FinInG

9.1.3 FiningSetwiseStabiliser

> FiningSetwiseStabiliser(g, els)
Returns: The subgroup of g stabilising the set els

The argument g is a group of collineations acting on the element el, being a subspace of a
projective space (and hence, all elements of a Lie geometry are allowed as second argument). The
argument els is a set of elements of the same type of the same Lie geometry, the elements are all
in the category IsSubspace0fProjectiveSpace. The underlying action function is assumed to be

OnProjSubspaces
Example

gap> ps := HyperbolicQuadric(5,5);

Q+(5, 5)

gap> g := IsometryGroup(ps);

PGO(1,6,5)

gap> planel := Random(Planes(ps));

<a plane in Q+(5, 5)>

gap> plane2 := Random(Planes(ps));

<a plane in Q+(5, 5)>

gap> FiningSetwiseStabiliser(g,Set([planel,plane2]));
#I Computing adjusted stabilizer chain...
<projective collineation group with 5 generators>

A small example shows the difference in computing time.

Example
gap> ps := ParabolicQuadric(4,4);
Qd4, 4
gap> g := CollineationGroup(ps);
PGamma0(5,4)

gap> 11 := Random(Lines(ps));

<a line in Q(4, 4)>

gap> 12 := Random(Lines(ps));

<a line in Q(4, 4)>

gap> gl := Stabilizer(g,Set([11,12]),0nSets);
<projective collineation group of size 720>

gap> time;

31095

gap> g2 := FiningSetwiseStabiliser(g,Set([11,12]));
#I Computing adjusted stabilizer chain...
<projective collineation group with 4 generators>
gap> time;

56

gap> gl=g2;

true

Chapter 10

Affine Spaces

In this chapter we show how one can work with finite affine spaces in FinInG.

10.1 Affine spaces and basic operations

An affine space is a point-line incidence geometry, satisfying few well known axioms. An axiomatic
treatment can e.g. be found in [VY65a] and [VYG65b]. As is the case with projective spaces, affine
spaces are axiomatically point-line geometries, but may contain higher dimensional affine subspaces
too. An affine space can also described as the “geometry you get” when you remove a hyperplane from
a projective space. Conversely, adding to an affine spaces its hyperplane at infinity, yields a projective
space. In FinInG, we deal with finite Desarguesian affine spaces, i.e. an affine space, such that its
projective completion is Desarguesian. Other concepts can be easily defined using this projective
completion. E.g. lines of the projective space which are concurrent in a point of the hyperplane at
infinity, become now parallel in the affine space. In order to implement (Desarguesian) affine spaces
in FinInG, we have to represent the elements of the affine space (the affine subspaces), in a standard
fashion. By definition, the points (i.e. the elements of type 1) of the n-dimensional affine space
AG(n,q) are the vectors of the underlying n-dimensional vector space over the finite field GF (g). The
i-dimensional subspaces of AG(n,q) (i.e. the elements of type i — 1) are defined as the cosets of the
i-dimensional subspaces of the underlying vector space. Hence, the common representation of such a
subspace is
v+ S.

Hence one can think of a subspace of an affine space as consisting of: (i) an affine point, representing
the coset, and and (ii) a “direction”, which is an element of an n — 1-dimensional projective space,
representing the hyperplane at infinity. Thus in FinInG, we represent an i-dimensional subspace,
1<i<n—1 as

[v, mat|

where v is a row vector and mat is a matrix (representing a basis of the projective element representing
the direction at infinity). For affine points, we simply use vectors.

10.1.1 IsAffineSpace

> IsAffineSpace (Category)

109

GAP 4 Package FinInG 110

This category is a subcategory of IsIncidenceGeometry, and contains all finite Desarguesian
affine spaces.

10.1.2 AffineSpace

> AffineSpace(d, F) (operation)
> AffineSpace (d, q) (operation)
> AG(d B F) (operation)
> AG(d, q) (operation)

Returns: an affine space
d must be a positive integer. In the first form, F is a field and the function returns the affine space
of dimension d over F. In the second form, q is a prime power specifying the size of the field. The

user may also use an alias, namely, the common abbreviation AG(d, q).
Example

gap> AffineSpace(3,GF(4));
AG(3, 4)

gap> AffineSpace(3,4);
AG(3, 4

gap> AG(3,GF(4));

AG(3, 4

gap> AG(3,4);

AG(3, 4

10.1.3 Dimension

> Dimension(as) (attribute)

> Rank(as) (attribute)
Returns: the dimension of the affine space as (which is equal to its rank)

Example

gap> Dimension(AG(5,7));
5

gap> Rank(AG(5,7));

5

10.1.4 BaseField

> BaseField(as) (operation)
Returns: returns the base field for the affine space as
Example

gap> BaseField(AG(6,49));
GF(7°2)

10.1.5 UnderlyingVectorSpace

> UnderlyingVectorSpace(as) (operation)
Returns: a vector space

GAP 4 Package FinInG 111

The underlying vectorspace of AG(n,q) is simply V (n,q).
Example

gap> UnderlyingVectorSpace(AG(4,5));
(GF(5)~4)

10.1.6 AmbientSpace

> AmbientSpace(as) (attribute)
Returns: an affine space
The ambient space of an affine space as is the affine space itself. Hence, simply as will be

returned.
Example

gap> AmbientSpace(AG(4,7));
AG(4, 7)

10.2 Subspaces of affine spaces
10.2.1 AffineSubspace

> AffineSubspace(geo, v) (operation)
> AffineSubspace (geo, v, M) (operation)
Returns: a subspace of an affine space
geo is an affine space, v is arow vector, and M is a matrix. There are two representations necessary
for affine subspaces in FinInG: (i) points represented as vectors and (ii) subspaces of dimension at
least 2 represented as a coset of a vector subspace:

v+S.

For the former, the underlying object is just a vector, whereas the second is a pair [v, M] where v is a
vector and M is a matrix representing the basis of S. Now there is a canonical representative for the
coset v+ S, and the matrix M is in semi-echelon form, therefore we can easily compare two affine
subspaces. If no matrix is given in the arguments, then it is assumed that the user is constructing an
affine point.

Example
gap> ag := AffineSpace(3, 3);

AG(3, 3)

gap> x := [[1,1,011*Z(3)"0;

[[230, Z(3)-0, 0%Z(3) 11

gap> v := [0,-1,1] * Z(3)"0;

[0xZ(3), z2(3), Z(3)70]

gap> line := AffineSubspace(ag, v, x);

<a line in AG(3, 3)>

GAP 4 Package FinInG

10.2.2 ElementsOfIncidenceStructure

>

ElementsOfIncidenceStructure(as, j)

Returns: the collection of elements of the affine space as of type j

112

(operation)

For the affine space as of dimension d and the type j, 1 < j < d this operation returns the
collection of j — 1 dimenaional subspaces. An error message is produced when the projective space
ps has no elements of a required type.

Example
gap> ag := AffineSpace(9, 64);
AG(9, 64)
gap> ElementsOfIncidenceStructure(ag,1);
<points of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,2);
<lines of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,3);
<planes of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,4) ;
<solids of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,6);
<affine. subspaces of dim. 5 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,9);
<affine. subspaces of dim. 8 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,10);
Error, <as> has no elements of type <j> called from
<function "unknown">(<arguments>)

called from read-eval loop at line 15 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

10.2.3 Short names for ElementsOfIncidenceStructure

v VvV vV VvV V

Points(ps)
Lines(ps)
Planes (ps)
Solids(ps)
Hyperplanes(ps)

Returns: The elements of ps of respective type 1,2,3,4, and the hyperplanes

(operation)
(operation)
(operation)
(operation)

(operation)

An error message is produced when the projective space ps has no elements of a required type.

Example
gap> as := AG(5,4);
AG(5, 4)

gap> Points(as);
<points of AG(5, 4)>
gap> Lines(as);
<lines of AG(5, 4)>
gap> Planes(as);
<planes of AG(5, 4)>
gap> Solids(as);
<solids of AG(5, 4)>

GAP 4 Package FinIinG 113

gap> Hyperplanes(as) ;

<affine. subspaces of dim. 4 of AG(5, 4)>
gap> as := AG(2,8);

AG(2, 8)

gap> Hyperplanes(as);

<lines of AG(2, 8)>

10.2.4 Incidence and containment

> IsIncident(ell , el2) (operation)
> *(ell, el2) (operation)
> \ in (ell 5 612) (operation)

Returns: true or false

Recall that for affine spaces, incidence is symmetrized containment, where the whole affine space
is excluded as one of the arguments for the operation IsIncident, since they it is not considered as
an element of the geometry, but the whole affine space is allowed as one of the arguments for \in.

The method for * is using IsIncident.
Example

gap> as := AG(3,16);
AG(3, 16)

gap> p := AffineSubspace(as, [1,0,0]1*Z(16)"0);
<a point in AG(3, 16)>
gap> 1 := AffineSubspace(as,[1,0,01*Z(16),[[0,1,1]11*Z(16)"0);
<a line in AG(3, 16)>
gap> plane := AffineSubspace(as,[1,0,0]*Z(16)"~0,[[1,0,0],[0,1,111%Z(16)"0);
<a plane in AG(3, 16)>
gap> p in p;

true

gap> p in 1;

false

gap> 1 in p;

false

gap> 1 in plane;

true

gap> plane in 1;

false

gap> p in plane;

true

gap> p in as;

true

gap> 1 in as;

true

gap> plane in as;

true

gap> as in p;

false

gap> IsIncident(p,1);
false

gap> IsIncident(1l,p);
false

GAP 4 Package FinInG

gap> IsIncident(l,plane);
true
gap> IsIncident(plane,l);
true
gap> IsIncident(p,plane);
true
gap> IsIncident(plane,p);
true

114

10.2.5 AmbientSpace

> AmbientSpace(el) (operation)

Returns: returns the ambient space of an element el of an affine space
Example

gap> as := AG(5,7);
AG(5, 7)

<a plane in AG(5, 7)>
gap> AmbientSpace(solid);
AG(5, 7

gap> solid := AffineSubspace(as,[1,0,0,1,0]1*Z(7)"~3,[[1,0,0,0,0],[0,1,1,1,0]11*Z(7)1

10.2.6 BaseField

> BaseField(el) (operation)

Returns: returns the base field of an element el of an affine space
Example

gap> as := AG(5,11);

AG(5, 11)

gap> sub := AffineSubspace(as,[1,4,3,1,0]*Z(11)"~5,[[1,0,0,0,0],[0,1,1,1,0],
> [0,0,0,0,111*Z(11)~0);

<a solid in AG(5, 11)>

gap> BaseField(sub);

GF(11)

10.2.7 Span

> Span (u 5 V) (operation)

Returns: a subspace
u and v are subspaces of an affine space. This function returns the span of the two subspaces.

Example
gap> ag := AffineSpace(4,5);

AG(4, 5)

gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)));
<a point in AG(4, 5)>

gap> r := AffineSubspace(ag, [0,1,0,0] * One(GF(5)));
<a point in AG(4, 5)>

gap> 1 := Span(p, r);

GAP 4 Package FinIinG 115

<a line in AG(4, 5)>

gap> 1°_;

[[0xz(5), Z(5)~0, 0%xZ(5), 0%xZ(5) 1, [[Z(5)~0, Z(5)~2, 0%Z(5), 0*Z(5) 1 1 1]
gap> Display(1);

Affine line:

Coset representative: [0%Z(5), Z(5)~0, 0%Z(5), 0*Z(5)]

Coset (direction): [[Z(5)-0, Z(5)~2, 0%xZ(5), 0%xZ(5) 1 1]

10.2.8 Meet

> Meet(u, v) (operation)
Returns: a affine subspace or the empty list
u and v are subspaces of an affine space. This function returns the meet of the two subspaces. If
the two subspaces are disjoint, then Meet returns the empty list.

Example
gap> ag := AffineSpace(4,5);
AG(4, B)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)),
> (f1,0,0,-11, [0,1,0,0],[0,0,1,3]] * One(GF(5)));

<a solid in AG(4, 5)>

gap> 1 := AffineSubspace(ag, [0,0,0,0] * One(GF(5)), [[1,1,0,0]] * One(GF(5)));
<a line in AG(4, 5)>

gap> x := Meet(p, 1);

<a point in AG(4, 5)>

gap> x"_;

[Z(5)~0, Z(5)~0, 0%Z(5), 0%Z(5)]

gap> Display(x);

Affine point: 1 1 .

10.2.9 IsParallel

> IsParallel(u, v) (operation)
Returns: true or false
The arguments u and v must be affine subspaces of a common affine space, of the same dimension.
These two subspaces are parallel if and only if they are cosets of the same vector subspace, i.e. if the
have the same subspace at infinity.

Example
gap> as := AffineSpace(3, 3);

AG(3, 3)

gap> 1 := AffineSubspace(as, [0,0,0]1*Z(3)~0,[[1,0,0]11*Z(3)"0);
<a line in AG(3, 3)>

gap> m := AffineSubspace(as, [1,0,0]1*Z(3)~0,[[1,0,01]1%Z(3)"0);
<a line in AG(3, 3)>

gap> n := AffineSubspace(as,[1,0,0]1*Z(3)~0,[[0,1,0]11*Z(3)~0);
<a line in AG(3, 3)>

gap> IsParallel(l,m);

true

gap> IsParallel(m,n);

GAP 4 Package FinInG 116

false
gap> IsParallel(l,n);
false

10.2.10 ParallelClass

> ParallelClass(as, v) (operation)
> ParallelClass(v) (operation)
Returns: a collection of affine subspaces
The argument v is an affine subspace of as. This operation returns a collection for which an
iterator is installed for it. The collection represents the set of elements of as of the same type as v
which are parallel to v; they have the same direction. If v is a point, then this operation returns the
collection of all points of as. If one argument is given, then it is assumed that the affine space which

we are working with is that which v contains as a component.
Example

gap> as := AffineSpace(3, 3);

AG(3, 3)

gap> 1 := Random(Lines(as));

<a line in AG(3, 3)>

gap> pclass := ParallelClass(1);

<parallel class of lines in AG(3, 3)>

gap> AsList(pclass);

[<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,
<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,
<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>]

10.3 Shadows of Affine Subspaces

10.3.1 ShadowOfElement

> ShadowOfElement(as, v, type) (operation)
Returns: the subspaces of the affine space as of dimension type which are incident with v
as is an affine space and v is an element of as. This operation computes and returns the subspaces
of dimension type which are incident with v. In fact, this operation returns a collection which is only
computed when iterated (such as when applying AsList to the collection). Some shorthand notation

for ShadowOfElement is available for affine spaces: Points(as,v), Points(v), Lines(v), etc.
Example

gap> as := AffineSpace(3, 3);

AG(3, 3)

gap> 1 := Random(Lines(as));

<a line in AG(3, 3)>

gap> planesonl := Planes(1l);

<shadow planes in AG(3, 3)>

gap> AsList(planesonl);

[<a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,
<a plane in AG(3, 3)>]

GAP 4 Package FinInG 117

10.3.2 ShadowOfFlag

> Shadow0OfFlag(as, list, type) (operation)
Returns: the subspaces of the affine space as of dimension type which are incident with each
element of 1ist
as is an affine space and l1ist is a list of pairwise incident elements of as. This operation
computes and returns the subspaces of dimension type which are incident with every element of
list. In fact, this operation returns a collection which is only computed when iterated (such as when
applying AsList to the collection).
Example

gap> as := AffineSpace(3, 3);

AG(3, 3)

gap> 1 := Random(Lines(as));

<a line in AG(3, 3)>

gap> x := Random(Points(1));

<a point in AG(3, 3)>

gap> flag := FlagOfIncidenceStructure(as, [x,1]);

<a flag of AffineSpace(3, 3)>

gap> shadow := ShadowOfFlag(as, flag, 3);

<shadow planes in AG(3, 3)>

gap> AsList(shadow);

Iterators of shadows of flags in affine spaces are not complete in this versio

n

[<a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,
<a plane in AG(3, 3)>]

10.4 Iterators and enumerators

Recall from Section 5.4(“Enumerating subspaces of a projective space”, Chapter 5), that an iterator
allows us to obtain elements from a collection one at a time in sequence, whereas an enumerator for a
collection give us a way of picking out the i-th element. In FinInG we have enumerators and iterators
for subspace collections of affine spaces.

10.4.1 Iterator

> Iterator(subs) (operation)
Returns: an iterator for the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points(AffineSpace(3, 3)).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines(ag);
<lines of AG(3, 3)>
gap> iter := Iterator(lines);
<iterator>

gap> 1 := NextIterator(iter);
<a line in AG(3, 3)>

GAP 4 Package FinInG 118

10.4.2 Enumerator

> Enumerator (subs) (operation)
Returns: an enumerator for the the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points(AffineSpace(3, 3)).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines(ag);
<lines of AG(3, 3)>
gap> enum := Enumerator(lines);

<enumerator of <lines of AG(3, 3)>>

gap> 1 := enum[20];

<a line in AG(3, 3)>

gap> Display(l);

Affine line:

Coset representative: [0%Z(3), 0*Z(3), Z(3)°0]
Coset (direction): [[Z(3)"0, 0%Z(3), Z(3) 1]

One technical aspect of the design behind affine spaces in FinInG are having canonical transver-
sals for subspaces of vector spaces. So we provide some documentation below for the interested
user.

10.4.3 IsVectorSpaceTransversal

> IsVectorSpaceTransversal (filter)

The category IsVectorSpaceTransversal represents a special object in FinInG which car-
ries a record with two components: space and subspace. This category is a subcategory of
IsSubspaces0fVectorSpace, however, we do not recommend that the user apply methods nor-
mally used for this category to our objects (they won’t work!). Our objects are only used in order to
facilitate computing enumerators of subspace collections.

10.4.4 VectorSpaceTransversal

> VectorSpaceTransversal (space, mat) (operation)
Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V. A
transversal for U in V is a set of coset representatives for the quotient V /U. This collection comes
equipped with an enumerator operation.

10.4.5 VectorSpaceTransversalElement

> VectorSpaceTransversalElement (space, mat, vector) (operation)
Returns: a canonical coset representative
space is a vector space V, mat is a matrix whose rows are a basis for a subspace U of V, and
vector is a vector v of V. A canonical representative V' is returned for the coset U +v.

GAP 4 Package FinInG 119

10.4.6 ComplementSpace

> ComplementSpace(space, mat) (operation)
Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V. The
operation is almost a complete copy of the function BaseSteinitzVector except that just a basis for
the complement of U is returned instead of a full record.

10.5 Affine groups

A collineation of an affine space is a permutation of the points which preserves the relation of
collinearity within the affine space. The fundamental theorem of affine geometry states that the
collineations of an affine space AG(d, F) form the group AT'L(d,F), which is generated by the trans-
lations T, matrices of GL(d, F) and the automorphisms of the field F. Since the translations 7' form a
normal subgroup of AT'L(d,F), we see that ATL(d, F) is the semidirect product of 7 and I'L(d, F).
Suppose we have an affine transformation of the form x + A where x is a vector representing a
translation, and A is a matrix in GL(d,q). Then by using the natural embedding of AGL(d,q) in
0
. . S . A 0
PGL(d + 1,q), we can write this collineation as a matrix: 0 We can also extend
X ‘ 1
this idea to the full affine collineation group by adjoining the field automorphisms as we would for
projective collineations. Here is an example:

Example
gap> ag := AffineSpace(3,3);
AG(3, 3)
gap> g := AffineGroup(ag);
AGL(3,3)

gap> x:=Random(g);;

gap> Display(x);

<a collineation , underlying matrix:
11.

= NN -
N =N

, F70>

Here we see that this affine transformation is

(1,2,2)+

O = = =N

GAP 4 Package FinInG 120

As we have seen, in FinInG, we represent an element of an affine collineation group as a projective
semilinear element, i.e. as an object in the category ProjElsWithFrob, so that we can use all the
functionality that exists for such objects. However, an affine collineation group is not by default
constructed as a subgroup of PT'L(d, F), but the compatibility between the elements of both groups
enables testing for such relations.

Example
gap> G := CollineationGroup(AG(3,27));
AGammal (3,27)
gap> H := CollineationGroup(PG(3,27));
The FinInG collineation group PGammalL (4,27)
gap> g := Random(G);
< a collineation: [[Z(3°3)"25, 7Z(3°3)"11, Z(3~3)"23, 0%Z(3) 1,
[Z(3°3)"20, 0%Z(3), Z(373), 0%*Z(3) 1,
[Z(3~3)~16, Z(3~3)~15, Z(3"3)~21, 0%Z(3) 1,
[2(3°3)720, Z(373)"4, 0%Z(3), Z(3)"0 1 1, F~3>
gap> g in H;
true
gap> IsSubgroup(H,G);
true

10.5.1 AffineGroup

> AffineGroup(as) (operation)
Returns: a group
This operation returnes the affine linear group AGL(V') acting on the affine space with underlying
vector space V. The elements of this group are collineations of the associated projective space. In
order to get the full group of collineations of the affine space, one may need to use the operation
CollineationGroup.

Example
gap> as := AffineSpace(4,7);
AG(4, T
gap> g := AffineGroup(as);
AGL(4,7)
gap> as := AffineSpace(4,8);
AG(4, 8)
gap> g := AffineGroup(as);
AGL(4,8)
10.5.2 CollineationGroup
> CollineationGroup(as) (operation)

Returns: a group
If as is the affine space AG(d, q), then this operation returns the affine semilinear group AI'L(d, q)
The elements of this group are collineations of the associated projective space. Note that if the defining

field has prime order, then AT'L(d,q) = AGL(d,q).
Example

gap> as := AffineSpace(4,8);
AG(4, 8)

GAP 4 Package FinIinG 121

gap> g := CollineationGroup(as);
AGammal.(4,8)

gap> h := AffineGroup(as);
AGL(4,8)

gap> IsSubgroup(g,h);

true

gap> as := AffineSpace(4,7);
AG(4, 7)

gap> g := CollineationGroup(as);
AGL(4,7)

10.5.3 OnAffineSpaces

> OnAffineSpaces(subspace, el) (operation)
> \~(subspace, el) (operation)
Returns: an element of an affine space
subspace must be an element of an affine space and el is a collineation of an affine space (which
is in fact also a collineation of an associated projective space). This is the action one should use for
collineations of affine spaces, and it acts on subspaces of all types of affine spaces: points, lines,
planes, etc.
Example

gap> as := AG(3,27);
AG(3, 27)
gap> p := Random(Points(as));
<a point in AG(3, 27)>
gap> g := Random(CollineationGroup(as));
< a collineation: [[Z(3°3)-25, Z(3°3)"11, Z(3"3)"23, 0%xZ(3)],
[Z(3°3)"20, 0%Z(3), Z(3°3), 0%Z(3) 1,
[Zz(3~3)~16, Z(3"3)~15, Z(373)~21, 0%*Z(3) 1,
[2(3~3)~20, 2(3~3)"4, 0%Z(3), Z2(3)~01]1 1, F~3>
gap> OnAffineSubspaces(p,g);
<a point in AG(3, 27)>
gap> p7g;
<a point in AG(3, 27)>
gap> 1 := Random(Lines(as));
<a line in AG(3, 27)>
gap> OnAffineSubspaces(l,g);
<a line in AG(3, 27)>
gap> 17°g;
<a line in AG(3, 27)>

Chapter 11

Geometry Morphisms

Here we describe what is meant by a geometry morphism in FinInG and the various operations and
tools available to the user.

11.1 Geometry morphisms in FinInG

Suppose that S and S’ are two incidence geometries. A geometry morphism from S to S’ is defined
to be a map from the elements of S to the elements of S’ which preserves incidence and induces a
function from the type set of S to the type set of S’. For instance, a correlation and a collineation are
examples of geometry morphisms, but they have been dealt with in more specific ways in FinInG. We
will mainly be concerned with geometry morphisms where the source and range are different. Hence,
the natural embedding of a projective space in a larger projective space, the mapping induced by field
reduction, and the Klein correspondence are examples of such geometry morphisms.

11.1.1 IsGeometryMorphism

> IsGeometryMorphism (family)

The category IsGeometryMorphism represents a special object in FinInG which carries attributes
and the given element map. The element map is given as a IsGeneralMapping, and so has a source
and range.

Example
gap> ShowImpliedFilters(IsGeometryMorphism) ;
Implies:

IsGeneralMapping

IsTotal

Tester(IsTotal)

IsSingleValued

Tester(IsSingleValued)

The usual operations of ImagesElm, ImagesSet, PreImagesElm, PreImagesSet work for geometry
morphisms, as well as the overload operator \~. Since Image is a GAP function, we advise the user
to not use this for geometry morphisms.

For some geometry morphisms, there is also an accompanying intertwiner for the automorphism
groups of the source range. Given a geometry morphism f from S to S, an intertwiner ¢ is a map

122

GAP 4 Package FinInG 123

from the automorphism group of S to the automorphism group of ', such that for every element p of
S and every automorphism g of S, we have

11.1.2 Intertwiner

> Intertwiner(f) (attribute)

Returns: a group homomorphism

The argument £ is a geometry morphism. If £ comes equipped with a natural intertwiner from an
automorphism group of the source of f to the automorphism group to the image of f, then the user
may be able to obtain the intertwiner by calling this operation (see the individual geometry morphism
constructions). There is no method to compute an intertwiner for a given geometry morphism, the
attribute is or is not set during the construction of the geometry morphism, depending whether the
Source and Range of the morphism have the appropriate automorphism group known as an attribute.
When this condition is not satisfied, the user is expected to call the appropriate automorphism groups,
so that they are computed, and to recompute the geometry morphism (which will not cost a lot of
computation time then), such that the attribute Intertwiner becomes available. Here is a simple
example of the intertwiner for the isomorphism of two polar spaces (see IsomorphismPolarSpaces
(11.2.1)). The source of the homomorphism is dependent on the geometry.
Example
gap> form := BilinearFormByMatrix(IdentityMat(3,GF(3)), GF(3));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(2,GF(3)): x_172+x_2"2+x_3"2=0 >
gap> pq := ParabolicQuadric(2,3);
standard Q(2, 3)
gap> iso := IsomorphismPolarSpaces(ps, pq);
#I Computing nice monomorphism...
<geometry morphism from <Elements of <polar space in ProjectiveSpace(2,GF(
3)): x_1"2+x_2"2+x_3"2=0 >> to <Elements of standard Q(2, 3)>>
gap> KnownAttributesOfObject(iso);

["Range", "Source", "Intertwiner"]

gap> hom := Intertwiner(iso);

MappingByFunction(<projective semilinear group with

3 generators>, PGammaO(3,3), function(y) ... end, function(x) ... end)

11.2 Isomorphisms between polar spaces

An important class of geometry morphisms in FinInG are the isomorphisms between polar spaces of
the same kind that are induced by coordinate transformations.

11.2.1 IsomorphismPolarSpaces

> IsomorphismPolarSpaces(psl, ps2) (operation)
> IsomorphismPolarSpaces(psl, ps2, boolean) (operation)
Returns: a geometry morphism

GAP 4 Package FinInG 124

The arguments ps1 and ps2 are equivalent polar spaces, and this function returns a geometry
isomorphism between them. The optional third argument boolean can take either true or false
as input, and then our operation will or will not compute the intertwiner accordingly. The user may
wish that the intertwiner is not computed when working with large polar spaces. The default (when
calling the operation with two arguments) is set to true, and in this case, if at least one of ps1 or ps2
has a collineation group installed as an attribute, then an intertwining homomorphism is installed as
an attribute. That is, we also obtain a natural group isomorphism from the collineation group of ps1

onto the collineation group of ps2 (see also Intertwiner (11.4.3)).
Example

gap> matl := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> forml := BilinearFormByMatrix(matl,GF(5));
< bilinear form >
gap> psl := PolarSpace(forml);
<polar space in ProjectiveSpace(
5,GF(5)): x_1"2+x_2"2+x_3"2+x_4"2+x_5"2+x_6"2=0 >
gap> mat2 := [[0,0,0,0,0,1],(0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,0,0,0,0],(0,0,0,0,0,0],[0,0,0,0,0,0]1*Z(5)"0;
[[0%xZ(5), 0*Z(5), 0%Z(5), 0%Z(5), 0*Z(5), Z(5)~0 1,
0%Z(5), 0%Z(5), 0*Z(5), 0%Z(5), Z(5)~0, 0*Z(5) 1,
0%Z(5), 0%Z(5), 0*Z(5), Z(5)~0, 0%*Z(5), 0*Z(5) 1],
0%Z(5), 0%Z(5), 0xZ(5), 0%Z(5), 0%Z(5), 0xZ(5) 1,
0%Z(5), 0%Z(5), 0%Z(5), 0%Z(5), 0%Z(5), 0%Z(5) 1],
[0%xZ(5), 0%Z(5), 0%*Z(5), 0%Z(5), 0%Z(5), 0*Z(5) 1]
gap> form2 := QuadraticFormByMatrix(mat2,GF(5));
< quadratic form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(5,GF(5)): x_1*x_6+x_2*x_b+x_3*x_4=0 >
gap> iso := IsomorphismPolarSpaces(psl,ps2,true);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <Elements of <polar space in ProjectiveSpace(
5
,GF(5)): x_172+x_272+x_3"2+x_4"2+x_5"2+x_6"2=0 >> to <Elements of <polar space
in ProjectiveSpace(5,GF(5)): x_1xx_6+x_2*x_b+x_3*x_4=0 >>>
gap> CollineationGroup(psl);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 58032000000 with 4 generators>
gap> CollineationGroup(ps2);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 58032000000 with 4 generators>
gap> iso := IsomorphismPolarSpaces(psl,ps2,true);
<geometry morphism from <Elements of Q+(5,
B): x_172+x_272+x_3"2+x_4"2+x_5"2+x_6"2=0> to <Elements of Q+(5,
B): x_1#x_6+x_2*x_b+x_3*x_4=0>>
gap> hom := Intertwiner(iso);
MappingByFunction(<projective collineation group of size 58032000000 with
4 generators>, <projective collineation group of size 58032000000 with
4 generators>, function(y) ... end, function(x) ... end)

[B e B s B e |

Both functions also have a "no check" version, which does not check whether ps1 and ps2 are
polar spaces of the same type. > IsomorphismPolarSpacesNC(ps1, ps2) (operation)

GAP 4 Package FinInG 125

> IsomorphismPolarSpacesNC(psl, ps2, boolean) (operation)

11.3 When will you use geometry morphisms?

When using groups in GAP, we often use homomorphisms to pass from one situation to another, even
though mathematically it may appear to be unneccessary, there can be ambiguities if the functionality
is too flexible. This also applies to finite geometry. Take for example the usual exercise of thinking of
ahyperplane in a projective space as another projective space. To conform with similar things in GAP,
the right thing to do is to embed one projective space into another, rather than having one projective
space automatically a substructure of another. The reason for this is that there are many ways one can
do this embedding, even though we may dispense with this choice when we are working mathemat-
ically. So to avoid ambiguity, we stipulate that one should construct the embedding explicitly. How
this is done will be the subject of the following section.

11.4 Natural geometry morphisms

The most natural of geometry morphisms include, for example, the embedding of a projective space
into another via a subspace, or the projection of a polar space to a smaller polar space of the same
type via a totally isotropic subspace.

11.4.1 NaturalEmbeddingBySubspace

> NaturalEmbeddingBySubspace(geoml, geom2, v) (operation)
> NaturalEmbeddingBySubspaceNC(geoml, geom2, v) (operation)

Returns: a geometry morphism

The arguments geoml and geom?2 are both projective spaces, or both polar spaces, and v is an
element of a projective or polar space. This function returns a geometry morphism representing the
natural embedding of geom! into geom2 as the subspace v. Hence geom! and v must be equiva-
lent as geometries. The operation NaturalEmbeddingBySubspaceNC is the “no check” version of
NaturalEmbeddingBySubspace.

Example
gap> geoml := ProjectiveSpace(2, 3);
ProjectiveSpace(2, 3)

gap> geom2 := ProjectiveSpace(3, 3);
ProjectiveSpace(3, 3)

gap> planes := Planes(geom2);

<planes of ProjectiveSpace(3, 3)>

gap> hyp := Random(planes);

<a plane in ProjectiveSpace(3, 3)>

gap> em := NaturalEmbeddingBySubspace(geoml, geom2, hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
3)> to <All elements of ProjectiveSpace(3, 3)>>

gap> points := Points(geoml);

<points of ProjectiveSpace(2, 3)>

gap> x := Random(points);

<a point in ProjectiveSpace(2, 3)>

gap> x"em;

GAP 4 Package FinInG 126

<a point in ProjectiveSpace(3, 3)>

Another example, this time with polar spaces:

Example
gap> hl := HermitianPolarSpace(2, 3°2);
H(2, 3°2)
gap> h2 := HermitianPolarSpace(3, 3°2);
H(3, 372)

gap> pg := AmbientSpace(h2);

ProjectiveSpace(3, 9)

gap> pi := VectorSpaceToElement(pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]1] * Z(9)"0);
<a plane in ProjectiveSpace(3, 9)>

gap> em := NaturalEmbeddingBySubspace(hl, h2, pi);

<geometry morphism from <Elements of H(2, 3°2)> to <Elements of H(3, 372)>>

11.4.2 NaturalEmbeddingByFieldReduction

> NaturalEmbeddingByFieldReduction(geoml, f2, B) (operation)
> NaturalEmbeddingByFieldReduction(geoml, £2) (operation)
> NaturalEmbeddingByFieldReduction(geoml, geom2) (operation)
> NaturalEmbeddingByFieldReduction(geoml, geom2, B) (operation)

Returns: a geometry morphism

This operation comes in four flavours. For the first flavour, the argument geom1 is a projective
space over a field L = GF(¢"). The argument £2 is a subfield K = GF(g) of L. The argument B is a
basis for L as a K-vectorspace. When this argument is not given, a basis for L over K is computed using
Basis(AsVectorSpace(X,L)). Itis checked whether £2 is a subfield of the basefield of geom1. The
third and fourth flavour are comparable, where now K is found as the basefield of geom2. In fact the
arguments geom! and geom2 are the projective spaces PG(r — 1,4") and PG(rt — 1,q) respectively.
As in the previous flavours, the argument B is optional.
Example

gap> pgl := ProjectiveSpace(2,81);

ProjectiveSpace(2, 81)

gap> £2 := GF(9);

GF(3~2)

gap> em := NaturalEmbeddingByFieldReduction(pgl,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,
81)> to <All elements of ProjectiveSpace(S, 9)>>

gap> f2 := GF(3);

GF(3)

gap> em := NaturalEmbeddingByFieldReduction(pgl,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,
81)> to <All elements of ProjectiveSpace(11l, 3)>>

gap> pg2 := ProjectiveSpace(11,3);

ProjectiveSpace(11, 3)

gap> em := NaturalEmbeddingByFieldReduction(pgl,pg2);
<geometry morphism from <All elements of ProjectiveSpace(2,
81)> to <All elements of ProjectiveSpace(11l, 3)>>

GAP 4 Package FinInG 127

11.4.3 Intertwiner

> Intertwiner (em) (operation)
Returns: an intertwiner for a geometry morphism
The argument em is a geometry morphism constructed from PG(r —1,4") into PG(rt — 1,q) . The
intertwiner of em will return a homomorphisms from the homography group of PG(r — 1,4") into the
collineation group of PG(rt — 1,q). Notice in the example below the difference of a factor 2 in the
orders of the group, which comes of course from restricing the homomorphism to the homography
group, which differes a factor 2 from the collineation group of the projective line, that has an extra
automorphism of order two, corresponding with the Frobenius automorphism.
Example

gap> pgl := PG(1,9);

ProjectiveSpace(1, 9)

gap> em := NaturalEmbeddingByFieldReduction(pgl,GF(3));

<geometry morphism from <All elements of ProjectiveSpace(1,

9)> to <All elements of ProjectiveSpace(3, 3)>>

gap> i := Intertwiner(em);

MappingByFunction(The FinInG projectivity group PGL(2,9), <projective colline

ation group of size 720 with

2 generators>, function(m) ... end, function(m) ... end)

gap> spread := List(Points(pgl),x->x"em);

[<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>]

gap> stab := Stabilizer(CollineationGroup(PG(3,3)),Set(spread),OnSets);

<projective collineation group of size 5760>

gap> hom := HomographyGroup (pgl);

The FinInG projectivity group PGL(2,9)

gap> gens := GeneratorsOfGroup (hom);;

gap> group := Group(List(gens,x->x71));

<projective collineation group with 2 generators>

gap> Order(group) ;

2880

gap> IsSubgroup(stab,group);

true

11.4.4 NaturalEmbeddingByFieldReduction

> NaturalEmbeddingByFieldReduction(geoml, f£2) (operation)
> NaturalEmbeddingByFieldReduction(geoml, f2, B) (operation)
> NaturalEmbeddingByFieldReduction(geoml, f2, boolean) (operation)

Returns: a geometry morphism

The argument geom! is a classical polar space over a field L and f2 is a subfield K of L,
L = GF(q') and K = GF(q). This function returns a geometry morphism representing the natural
embedding of geom1 into a classical polar space S via field reduction, based on the following prin-
ciple. Consider the trace map T :L = GF(q') — GF(q) : x — x? +x4 ' +...x . The polar space
geoml1 is the geometry associated to a quadratic or sequilinear form f, acting on an r-dimensional

GAP 4 Package FinInG 128

vector space V1 over the finite field GF(q"). We first consider the rz-dimensional vector space V2
over the finite field GF(q). There is a bijective map ® from V1 to V2. Now it is easy to see that
T \circ f \circ \Phi~{-1} will be a quadratic or sesquilinear form (depending on f being quadratic
or sesquilinear) acting on V2, and hence, if not singular or degenerate, induce a polar space over the
finite field GF(g). An element of geom1 is mapped to an element of the induced polar space over
GF (q) using the same principle as for the natural embedding by field reduction for projective spaces,
of course now restricted to the elements of geom1. The only such possible embeddings are listed in
the table below (see [Gil08]):

Polar Space 1 ‘ Polar Space 2 Conditions
W(2n—1,q") | W(2nt—1,q) -

Q+(2n - th) Q+(21’lt - laq) -
Q‘(2n—1,q’) Q_(2I’Lt—1,q) -

0(2n, q2a+1) 0((2a+1)(2n+1)—1,9) | qodd
Q(2n,q**) 0~ (2a(2n+1)—1,q) q=1 mod 4
0(2n, q4a+2) 0" ((4a+2)(2n+1)—1,q) | g=3 mod 4
Q(2n,q*) Q0 (4a(2n+1)—1,q) g=3 mod 4
H(n, 2““) H((n+1)(2a+1)—1,q) q square
H(n,q) W(a(n+1)—1,q) q even
H(2n 7*%) 0 (2a(2n+1)—1,q) q odd
H(2n+1,4*%) | 0T (2a(2n+2) —1,q) q odd

Table: Field reduction of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (11.4.3)).
This intertwiner has as its domain the isometry group of geom1. The optional third argument boolean
can take either true or false as input, and then this operation will or will not compute the intertwiner
accordingly. The user may wish that the intertwiner is not computed when embedding into large polar
spaces. The default (when calling the operation with two arguments) is set to true. In the first
example, we construct a spread of maximal subspaces (solids) in a 7 dimensional symplectic space.
We compute a subgroup of its stabilizer group using the intertwiner. In the second example, we
construct a linear blocking set of the symplectic generalised quadrangle over GF(9).

Example
gap> psl := SymplecticSpace(1,373);
w(l, 27)
gap> em := NaturalEmbeddingByFieldReduction(psl,GF(3),true);

<geometry morphism from <Elements of W(1,

27)> to <Elements of <polar space in ProjectiveSpace(

5,GF(3)): -xlxy6-x2*%y5-x3*y4-x3*y6+x4*y3+x5*y2+x6*yl+x6xy3=0 >>>
gap> ps2 := AmbientGeometry(Range (em)) ;

<polar space in ProjectiveSpace(

5,GF(3)): -x1*y6-x2%y5-x3*y4-x3*y6+xd*y3+x5*y2+x6*yl+x6%y3=0 >
gap> spread := List(Points(psl),x->x"em);;
gap> i1 := Intertwiner(em);

MappingByFunction(PGSp(2,27), <projective collineation group of size
19656 with 3 generators>, function(m) ... end, function(m) ... end)
gap> coll := CollineationGroup(ps2);

#I Computing collineation group of canonical polar space...

<projective collineation group of size 9170703360 with 4 generators>
gap> stab := Group(ImagesSet(i,Generators0fGroup(IsometryGroup(ps1))));

GAP 4 Package FinIinG 129

<projective collineation group with 2 generators>

gap> IsSubgroup(coll,stab);

true

gap> List(Orbit(stab,spread[1]),x->x in spread);

[true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true]

gap> psl := SymplecticSpace(3,9);
W3, 9)
gap> em := NaturalEmbeddingByFieldReduction(psl,GF(3),true);
<geometry morphism from <Elements of W(3,
9)> to <Elements of <polar space in ProjectiveSpace(
7
,GF(3)) 1 -x1xy3+x1xy4+x2%y3+x3*y1-x3*y2-x4*y1-x5*y7+x5*y8+x6*yT+x7*y5-xT*y6-%x8
*y5=0 >>>
gap> ps2 := AmbientGeometry(Range (em)) ;
<polar space in ProjectiveSpace(
7
,GF(3)) 1 -x1xy3+x1xy4+x2%y3+x3*y1-x3*y2-x4*yl-x5*y7+x5*y8+x6*yT+x7*y5-xT*y6-x8
*y5=0 >
gap> pg := AmbientSpace(ps2);
ProjectiveSpace(7, 3)
gap> spread := List(Points(psl),x->x"em);;
gap> el := Random(ElementsOfIncidenceStructure(pg,5));
<a proj. 4-space in ProjectiveSpace(7, 3)>
gap> prebs := Filtered(spread,x->Meet(x,el) <> EmptySubspace(pg));;
gap> bs := List(prebs,x->PreImageElm(em,x));;
gap> Length(bs);
118
gap> lines := List(Lines(psl));;
gap> Collected(List(lines,x->Length(Filtered(bs,y->y * x))));
[[1, 7021, [4, 1171, [10, 11 1]

11.4.5 BlownUpProjectiveSpace

> BlownUpProjectiveSpace(basis, pgl) (operation)
Returns: a projective space
Blows up the projective space pgl with respect to the basis using field reduction. If the argument
pgl is has projective dimension r — 1 over the finite field GF(¢'), and basis is a basis of GF(q")
over GF(q), then this functions returns a projective space of dimension rz — 1 over GF(q).

11.4.6 BlownUpProjectiveSpaceBySubfield

> BlownUpProjectiveSpaceBySubfield(subfield, pg) (operation)
Returns: a projective space
Blows up a projective space pg with respect to the standard basis of the basefield of pg over the
subfield.

GAP 4 Package FinInG 130

11.4.7 BlownUpSubspaceOfProjectiveSpace

> BlownUpSubspaceOfProjectiveSpace(basis, subspace) (operation)
Returns: a subspace of a projective space
Blows up a subspace of a projective space with respect to the basis using field reduction and
returns it a subspace of the projective space obtained from blowing up the ambient projective space of
subspace with respect to basis using field reduction.

11.4.8 BlownUpSubspaceOfProjectiveSpaceBySubfield

> BlownUpSubspaceOfProjectiveSpaceBySubfield(subfield, subspace) (operation)
Returns: a subspace of a projective space
Blows up a subspace of a projective space with respect to the standard basis of the basefield of
subspace over the subfield, using field reduction and returns it a subspace of the projective space
obtained from blowing up the ambient projective space of subspace over the subfield.

11.4.9 IsDesarguesianSpreadElement

> IsDesarguesianSpreadElement (basis, subspace) (operation)
Returns: true or false
Checks wether the subspace is a subspace which is obtained from a blowing up a projective point
using field reduction with respect to basis.

11.4.10 NaturalEmbeddingBySubField

> NaturalEmbeddingBySubField(geoml, geom2) (operation)
> NaturalEmbeddingBySubField(geoml, geom2, boolean) (operation)
Returns: a geometry morphism
The arguments geoml and geom2 are projective or polar spaces of the same dimension. This
function returns a geometry morphism representing the natural embedding of geom1 into geom?2 as a
subfield geometry. If geom! and geom2 are polar spaces, then the only such possible embeddings are
listed in the table below (see [KL.90]):

Polar Space 1 ‘ Polar Space 2 ‘ Conditions
W(zn—LQ) W(zn—lvqa) -
W(Zn—],q) H(zn_17q2)

H(d,q%) H(d,q") rodd
0%(d,q) H(d,q%) qodd
O°(d,q) 0°(d,q") e=(e)

Table: Subfield embeddings of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (11.4.3)).
The optional third argument boolean can take either true or false as input, and then our operation
will or will not compute the intertwiner accordingly. The user may wish that the intertwiner is not
computed when embedding into large polar spaces. The default (when calling the operation with two
arguments) is set to true. Here is a simple example where the geometry morphism takes the points
of PG(2,3) and embeds them into PG(2,9).

GAP 4 Package FinInG 131
Example

gap> pgl := ProjectiveSpace(2, 3);

ProjectiveSpace(2, 3)

gap> pg2 := ProjectiveSpace(2, 9);

ProjectiveSpace(2, 9)

gap> em := NaturalEmbeddingBySubfield(pgl,pg2);

<geometry morphism from <All elements of ProjectiveSpace(2,

3)> to <All elements of ProjectiveSpace(2, 9)>>

gap> points := AsList(Points(pgl));

[<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>]

gap> image := ImagesSet(em, points);

[<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>]

In this example, we embed W (5,3) in H(5,3?) .
Example

gap> w := SymplecticSpace(5, 3);

w5, 3)

gap> h := HermitianPolarSpace(5, 372);

H(5, 372)

gap> em := NaturalEmbeddingBySubfield(w, h);

<geometry morphism from <Elements of W(5, 3)> to <Elements of H(5, 3°2)>>
gap> points := AsList(Points(w));;

gap> image := ImagesSet(em, points);;

gap> ForAll(image, x -> x in h);

true

11.4.11 NaturalProjectionBySubspace

> NaturalProjectionBySubspace(ps, v) (operation)
> NaturalProjectionBySubspaceNC(ps, v) (operation)
Returns: a geometry morphism
The argument ps is a projective or polar space, and v is a subspace of ps. In the case

that ps is a projective space, this operation returns a geometry morphism from the subspaces
containing v to the subspaces of a smaller projective space over the same field. Similarly,
if ps is a polar space, this operation returns a geometry morphism from the totally singular
subspaces containing v to a polar space of smaller dimension, but of the same polar space
type. The operation NaturalProjectionBySubspaceNC performs in exactly the same way as

GAP 4 Package FinInG 132

NaturalProjectionBySubspace except that there are fewer checks such as whether v is a sub-
space of ps, and whether the input of the function and preimage of the returned geometry morphism
is valid or not. We should also mention here a shorthand for this operation which is basically and
overload of the quotient operation. So, for example, SymplecticSpace(3, 3) / v achieves the
same thing as NaturalProjectionBySubspace (SymplecticSpace(3,3), v).

Example

gap> ps := HyperbolicQuadric(5,3);

Q+(5, 3)

gap> x := Random(Points(ps));;

gap> planes_on_x := AsList(Planes(x));

[<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,
<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,
<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>]

gap> proj := NaturalProjectionBySubspace(ps, x);

<geometry morphism from <Elements of Q+(5,

3)> to <Elements of <polar space in ProjectiveSpace(

3,GF(3)): x_1*x_2+4x_3%*x_4=0 >>>

gap> image := ImagesSet(proj, planes_on_x);

[<a line in Q+(3, 3): x_1xx_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1xx_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1#*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1xx_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>]

11.5 Some special kinds of geometry morphisms

In this section we provide some more specialised geometry morphisms, that are commonly used in
finite geometry.

11.5.1 KleinCorrespondence

> KleinCorrespondence (quadric) (operation)
Returns: a geometry morphism
The argument quadric is a 5-dimensional hyperbolic quadric Q™ (5, ¢), and this function returns
the Klein correspondence from the lines of PG(3,¢) to the points of quadric.

Example
gap> quadric := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> k := KleinCorrespondence(quadric);

<geometry morphism from <lines of ProjectiveSpace(3, 3)> to <points of Q+(5,
3)>>

gap> pg := ProjectiveSpace(3, 3);

ProjectiveSpace(3, 3)

gap> 1 := Random(Lines(pg));

<a line in ProjectiveSpace(3, 3)>

gap> 17k;

GAP 4 Package FinInG 133

<a point in Q+(5, 3)>

11.5.2 NaturalDuality

> NaturalDuality(gq) (operation)
Returns: a geometry morphism
The argument gq is either the symplectic generalised quadrangle W(3,q) or the hermitian gen-
eralised quadrangle H(3,q~2). By the Klein correspondence, the lines of W(3,¢) are mapped to the
points of Q(4,q), which results in a point-line duality from W (3,g) onto Q(4,q). Likewise, the Klein
correspondence induces a duality between H(3,4%) and Q™ (5,4). At the moment, the geometry mor-
phism returned is a map from lines to points. This operation does not require that the input is the

canonical version of the generalised quadrangle; it suffices that the input has the correct polarity type.
Example

gap> w := SymplecticSpace(3,5);
W(3, 5)

gap> lines:=AsList(Lines(w));;
gap> duality := NaturalDuality(w);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <lines of W(3, 5)> to <points of Q(4, 5)>>
gap> l:=lines[1];

<a line in W(3, 5)>

gap> 1~duality;

<a point in Q(4, 5)>

gap> PreImageElm(duality,last);

<a line in W(3, 5)>

11.5.3 ProjectiveCompletion

> ProjectiveCompletion(as) (operation)
Returns: a geometry morphism
The argument as is an affine space. This operation returns an embedding of as into the pro-
jective space ps of the same dimension, and over the same field. For example, the point (x,y,z)
goes to the projective point with homogeneous coordinates (1,x,y,z). An intertwiner is unnecessary,
CollineationGroup(as) is a subgroup of CollineationGroup (ps).

Example
gap> as := AffineSpace(3,5);
AG(3, 5)
gap> map := ProjectiveCompletion(as);

<geometry morphism from <Elements of AG(3,

5)> to <All elements of ProjectiveSpace(3, 5)>>
gap> p := Random(Points(as));

<a point in AG(3, 5)>

gap> p map;

<a point in ProjectiveSpace(3, 5)>

Chapter 12

Algebraic Varieties

In FinInG we provide some basic functionality for algebraic varieties defined over finite fields. The
algebraic varieties in FinInG are defined by a list of multivariate polynomials over a finite field, and an
ambient geometry. This ambient geometry is either a projective space, and then the algebraic variety
is called a projective variety, or an affine geometry, and then the algebraic variety is called an affine
variety. In this chapter we give a brief overview of the features of FinInG concerning these two types
of algebraic varieties. The package FinInG also contains the Veronese varieties VeroneseVariety
(12.7.1), the Segre varieties SegreVariety (12.6.1) and the Grassmann varieties GrassmannVariety
(12.8.1); three classical projective varieties. These varieties have an associated geometry map (the
VeroneseMap (12.7.3), SegreMap (12.6.3) and GrassmannMap (12.8.3)) and FinInG also provides
some general functionality for these.

12.1 Algebraic Varieties

An algebraic variety in FinInG is an algebraic variety in a projective space or affine space, defined by
a list of polynomials over a finite field.

12.1.1 AlgebraicVariety

> AlgebraicVariety(space, pring, pollist) (operation)
> AlgebraicVariety(space, pollist) (operation)

Returns: an algebraic variety

The argument space is an affine or projective space over a finite field F, the argument pring is
a multivariate polynomial ring defined over (a subfield of) F, and pollist is a list of polynomials
in pring. If the space is a projective space, then pollist needs to be a list of homogeneous
polynomials. In FinInG there are two types of projective varieties: projective varieties and affine
varieties. The following operations apply to both types.

12.1.2 DefiningListOfPolynomials

> Defininglist0fPolynomials(var) (attribute)
Returns: a list of polynomials
The argument var is an algebraic variety. This attribute returns the list of polynomials that was
used to define the variety var.

134

GAP 4 Package FinInG 135

12.1.3 AmbientSpace

> AmbientSpace(var) (attribute)
Returns: an affine or projective space
The argument var is an algebraic variety. This attribute returns the affine or projective space in
which the variety var was defined.

12.1.4 PointsOfAlgebraicVariety

> PointsOfAlgebraicVariety(var) (operation)
> Points(var) (operation)
Returns: a list of points
The argument var is an algebraic variety. This operation returns the list of points
of the AmbientSpace (13.4.2) of the algebraic variety var whose coordinates satify the
DefininglistOfPolynomials (12.1.2) of the algebraic variety var.

12.1.5 Iterator

> Iterator (pts) (operation)
Returns: an iterator
The argument pts is the set of PointsOfAlgebraicVariety (12.1.4) of an algebraic variety
var. This operation returns an iterator for the points of an algebraic variety.

12.1.6 \in

> \in(x, var) (operation)
> \in(x, pts) (operation)
Returns: true or false
The argument x is a point of the AmbientSpace (13.4.2) of an algebraic variety
AlgebraicVariety (12.4.1). This operation also works for a point x and the collection pts returned
by Points0fAlgebraicVariety (12.1.4).

12.2 Projective Varieties

A projective variety in FinInG is an algebraic variety in a projective space defined by a list of homo-
geneous polynomials over a finite field.

12.2.1 ProjectiveVariety

> ProjectiveVariety(pg, pring, pollist) (operation)
> ProjectiveVariety(pg, pollist) (operation)
> AlgebraicVariety(pg, pring, pollist) (operation)
> AlgebraicVariety(pg, pollist) (operation)

Returns: a projective algebraic variety

Example
gap> F:=GF(9);

GF(3~2)

gap> r:=PolynomialRing(F,4);

GAP 4 Package FinInG 136

GF(3~2)[x_1,x_2,x_3,x_4]

gap> pg:=PG(3,9);

ProjectiveSpace(3, 9)

gap> fl:=r.1*r.3-r.272;

x_1*x_3-x_272

gap> f2:=r.4xr.172-r.4"3;
x_172*x_4-x_4"3

gap> var:=AlgebraicVariety(pg, [f1,£2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> DefininglistO0fPolynomials(var);

[x_1%x_3-x_2"2, x_1"2%x_4-x_4"3]

gap> AmbientSpace(var) ;
ProjectiveSpace(3, 9)

12.3 Quadrics and Hermitian varieties

Quadrics (QuadraticVariety (12.3.3)) and Hermitian varieties (HermitianVariety (12.3.2)) are
projective varieties that have the associated quadratic or hermitian form as an extra attribute installed.
Furthermore, we provide a method for PolarSpace taking as an argument a projective algebraic
variety.

12.3.1 HermitianVariety

> HermitianVariety(pg, pring, pol) (operation)
> HermitianVariety(pg, pol) (operation)
Returns: a hermitian variety in a projective space
The argument pg is a projective space, pring is a polynomial ring, and pol is polynomial.

12.3.2 HermitianVariety

> HermitianVariety (n, F) (operation)
> HermitianVariety(n, q) (operation)
Returns: a hermitian variety in a projective space
The argument n is an integer, the argument F is a finite field, and the argument q is a prime power.
This function returns the hermitian variety associated to the standard hermitian form in the projective
space of dimension n over the field F of order q.

12.3.3 QuadraticVariety

> QuadraticVariety(pg, pring, pol) (operation)
> QuadraticVariety(pg, pol) (operation)
Returns: a quadratic variety in a projective space
The argument pg is a projective space, pring is a polynomial ring, and pol is a polynomial.

GAP 4 Package FinInG 137

12.3.4 QuadraticForm

> QuadraticForm(var) (attribute)
Returns: a quadratic form
When the argument var is a QuadraticVariety (12.3.3), this returns the associated quadratic
form.

12.3.5 SesquilinearForm

> SesquilinearForm(var) (attribute)
Returns: a hermitian form
If the argument var is a HermitianVariety (12.3.2), this returns the associated hermitian form.

12.3.6 PolarSpace

> PolarSpace(var) (operation)

the argument var is a projective algebraic variety. When its list of definining polynomial contains
exactly one polynomial, depending on its degree, the operation QuadraticFormByPolynomial or
HermitianFormByPolynomial is used to compute a quadratic form or a hermitian form. These
operations check whether this is possible, and produce an error message if not. If the conversion is
possible, then the appropriate polar space is returned.
Example

gap> £ := GF(25);
GF(572)
gap> r := PolynomialRing(f,4);
GF(5~2) [x_1,x_2,x_3,x_4]
gap> ind := IndeterminatesOfPolynomialRing(r);
[x_1, x_2, x.3, x_4]
gap> eql := Sum(List(ind,t->t~2));
x_172+x_272+x_372+x_4"2
gap> var := ProjectiveVariety(PG(3,f), [eql]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var) ;
<polar space in ProjectiveSpace(3,GF(572)): x_1"2+x_2"2+x_3"2+x_4"2=0 >
gap> eq2 := Sum(List(ind,t->t~4));
x_174+x_274+x_3"4+x_474
gap> var := ProjectiveVariety(PG(3,f), [eq2]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var) ;
Error, <poly> does not generate a Hermitian matrix called from
GramMatrixByPolynomialForHermitianForm(pol, gf, n, vars) called from
HermitianFormByPolynomial(pol, pring, n) called from
HermitianFormByPolynomial(eq, r) called from
<function "unknown">(<arguments>)
called from read-eval loop at line 16 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> eq3 := Sum(List(ind,t->t"6));
x_176+x_2"6+x_3"6+x_4"6

GAP 4 Package FinInG 138

gap> var := ProjectiveVariety(PG(3,f),[eq3]);

Projective Variety in ProjectiveSpace(3, 25)

gap> PolarSpace(var);

<polar space in ProjectiveSpace(3,GF(572)): x_1"6+x_2"6+x_3"6+x_4"6=0 >

12.4 Affine Varieties

An affine variety in FinInG is an algebraic variety in an affine space defined by a list of polynomials
over a finite field.

12.4.1 AffineVariety

> AffineVariety(ag, pring, pollist) (operation)
> AffineVariety(ag, pollist) (operation)
> AlgebraicVariety(ag, pring, pollist) (operation)
> AlgebraicVariety(ag, pollist) (operation)

Returns: an affine algebraic variety
The argument ag is an affine space over a finite field F, the argument pring is a multivariate
polynomial ring defined over (a subfield of) F, and pollist is a list of polynomials in pring.

12.5 Geometry maps

A geometry map is a map from a set of elements of a geometry to a set of elements of another
geometry, which is not necessarily a geometry morphism. Examples are the SegreMap (12.6.3), the
VeroneseMap (12.7.3), and the GrassmannMap (12.8.3).

12.5.1 Source

> Source (gm) (operation)
Returns: the source of a geometry map
The argument gm is a geometry map.

12.5.2 Range

> Range (gm) (operation)
Returns: the range of a geometry map
The argument gm is a geometry map.

12.5.3 ImageElm

> ImageElm(gm, x) (operation)
Returns: the image of an element under a geometry map
The argument gm is a geometry map, the element x is an element of the Source (12.8.4) of the
geometry map gm.

GAP 4 Package FinInG 139

12.5.4 ImagesSet

> ImagesSet(gm, elms) (operation)
Returns: the image of a subset of the source under a geometry map
The argument gm is a geometry map, the elements elms is a subset of the Source (12.8.4) of the
geometry map gm.

12.5.5 \~

> \"(x, gm) (operation)
Returns: the image of an element of the source under a geometry map
The argument gm is a geometry map, the element x is an element of the Source (12.8.4) of the
geometry map gm.

12.6 Segre Varieties

A Segre variety in FinInG is a projective algebraic variety in a projective space over a finite field. The
set of points that lie on this variety is the image of the Segre map.

12.6.1 SegreVariety

> SegreVariety(listofpgs) (operation)
> SegreVariety(listofdims, field) (operation)
> SegreVariety(pgl, pg2) (operation)
> SegreVariety(d1l, d2, field) (operation)
> SegreVariety(dl, d2, q) (operation)

Returns: a Segre variety

The argument 1istofpgs is a list of projective spaces defined over the same finite field, say
[PG(ny — 1,q) , PG(ny — 1,q9) , ..., PG(nx — 1,q)] . The operation also takes as input the list of
dimensions (listofdims) and a finite field field (e.g. [nj,na,...,n,GF(q)]). A Segre variety
with only two factors (k = 2), can also be constructed using the operation with two projective spaces
pgl and pg2 as arguments, or with two dimensions d1, d2, and a finite field field(or a prime
power q). The operation returns a projective algebraic variety in the projective space of dimension
I’l]l’lz...nk—l .

12.6.2 PointsOfSegreVariety

> Points0fSegreVariety(sv) (operation)
> Points(sv) (operation)
Returns: the points of a Segre variety
The argument sv is a Segre variety. This operation returns a set of points of the AmbientSpace
(13.4.2) of the Segre variety. This set of points corresponds to the image of the SegreMap (12.6.3).

12.6.3 SegreMap

> SegreMap (listofpgs) (operation)
> SegreMap(listofdims, field) (operation)
> SegreMap (pgl , pg2) (operation)

GAP 4 Package FinIinG 140

> SegreMap (d1, d2, field) (operation)
> SegreMap(dl, d2, q) (operation)
> SegreMap(sv) (operation)

Returns: a geometry map

The argument listofpgs is a list of projective spaces defined over the same finite field, say
[PG(ny — 1,q) , PG(ny — 1,q) , ..., PG(ny — 1,q)] . The operation also takes as input the list of
dimensions (1istofdims) and a finite field field (e.g. [n1,na,...,n;,GF(q)]). A Segre map with
only two factors (k = 2), can also be constructed using the operation with two projective spaces pg1
and pg2 as arguments, or with two dimensions d1, d2, and a finite field field(or a prime power q).
The operation returns a function with domain the product of the point sets of projective spaces in the
list [PG(n; —1,q) , PG(ny —1,q) , ..., PG(nx — 1,q)] and image the set of points of the Segre variety
(Points0fSegreVariety (12.6.2)) in the projective space of dimension njny...ny —1 . When a
Segre variety sv is given as input, the operation returns the associated Segre map.
Example

gap> sv:=SegreVariety(2,2,9);

Segre Variety in ProjectiveSpace(8, 9)

gap> sm:=SegreMap(sv) ;

Segre Map of [<points of ProjectiveSpace(2, 9)>,
<points of ProjectiveSpace(2, 9)>]

gap> cartl:=Cartesian(Points(PG(2,9)),Points(PG(2,9)));;

gap> iml:=ImagesSet(sm,cartl);;

gap> Span(iml);

ProjectiveSpace(8, 9)

gap> 1:=Random(Lines(PG(2,9)));

<a line in ProjectiveSpace(2, 9)>

gap> cart2:=Cartesian(Points(1l),Points(PG(2,9)));;

gap> im2:=ImagesSet(sm,cart2);;

gap> Span(im2);

<a proj. 5-space in ProjectiveSpace(8, 9)>

gap> x:=Random(Points(PG(2,9)));

<a point in ProjectiveSpace(2, 9)>

gap> cart3:=Cartesian(Points(PG(2,9)) ,Points(x));;

gap> im3:=ImagesSet(sm,cart3);;

gap> pi:=Span(im3);

<a plane in ProjectiveSpace(8, 9)>

gap> AsSet(List(Points(pi),y->y in sv));

[true]

12.6.4 Source

> Source (sm) (operation)
Returns: the source of a Segre map
The argument sm is a SegreMap (12.6.3). This operation returns the cartesian product of the list
consisting of the pointsets of the projective spaces that were used to construct the SegreMap (12.6.3).

GAP 4 Package FinInG 141

12.7 Veronese Varieties

A Veronese variety in FinInG is a projective algebraic variety in a projective space over a finite field.
The set of points that lie on this variety is the image of the Veronese map.

12.7.1 VeroneseVariety

> VeroneseVariety(pg) (operation)
> VeroneseVariety(n-1, field) (operation)
> VeroneseVariety(n-1, q) (operation)

Returns: a Veronese variety

The argument pg is a projective space defined over a finite field, say PG(n — 1,¢q). The operation
also takes as input the dimension and a finite field field (e.g. [n—1,q]). The operation returns a
projective algebraic variety in the projective space of dimension (n?+n)/2 — 1, known as the Veronese
variety.

12.7.2 PointsOfVeroneseVariety

> PointsOfVeroneseVariety(vv) (operation)
> Points(vv) (operation)
Returns: the points of a Veronese variety
The argument vv is a Veronese variety. This operation returns a set of points of the AmbientSpace
(13.4.2) of the Veronese variety. This set of points corresponds to the image of the VeroneseMap
(12.7.3).

12.7.3 VeroneseMap

> VeroneseMap (pg) (operation)
> VeroneseMap(n-1, field) (operation)
> VeroneseMap(n-1, q) (operation)
> VeroneseMap (vv) (operation)

Returns: a geometry map

The argument pg is a projective space defined over a finite field, say PG(n — 1,¢q). The operation
also takes as input the dimension and a finite field field (e.g. [n—1,q]). The operation returns a
function with domain the product of the point set of the projective space PG(n — 1,q) and image the
set of points of the Veronese variety (Points0fVeroneseVariety (12.7.2)) in the projective space
of dimension (n”> 4n)/2 — 1. When a Veronese variety vv is given as input, the operation returns the
associated Veronese map.
Example

gap> pg:=PG(2,5);

ProjectiveSpace(2, 5)

gap> vv:=VeroneseVariety(pg);

Veronese Variety in ProjectiveSpace(5, 5)

gap> Size(Points(vv))=Size(Points(pg));

true

gap> vm:=VeroneseMap (vv) ;

Veronese Map of <points of ProjectiveSpace(2, 5)>
gap> r:=PolynomialRing(GF(5),3);

GF(5) [x_1,x_2,x_3]

GAP 4 Package FinInG 142

gap> f:=r.17°2-r.2*r.3;

x_172-x_2%x_3

gap> c:=AlgebraicVariety(pg,r, [f]);

Projective Variety in ProjectiveSpace(2, 5)

gap> pts:=List(Points(c));

[<a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,
<a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,
<a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>]

gap> Dimension(Span(ImagesSet(vm,pts)));

4

12.7.4 Source

> Source (VIH) (operation)
Returns: the source of a Veronese map
The argument vm is a VeroneseMap (12.7.3). This operation returns the pointset of the projective
space that was used to construct the VeroneseMap (12.7.3).

12.8 Grassmann Varieties

A Grassmann variety in FinInG is a projective algebraic variety in a projective space over a finite
field. The set of points that lie on this variety is the image of the Grassmann map.

12.8.1 GrassmannVariety

> GrassmannVariety(k, pg) (operation)
> GrassmannVariety(subspaces) (operation)
> GrassmannVariety(k, n, q) (operation)

Returns: a Grassmann variety

The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k
is an integer (k at least 1 and at most n — 2) and denotes the projective dimension determining the
Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projective
space, or the dimension k, the dimension n and the size g of the finite field (k at least 1 and at most
n—2). The operation returns a projective algebraic variety known as the Grassmann variety.

12.8.2 PointsOfGrassmannVariety

> PointsOfGrassmannVariety(gv) (operation)
> Points(gv) (operation)
Returns: the points of a Grassmann variety
The argument gv is a Grassmann variety. This operation returns a set of points of the
AmbientSpace (13.4.2) of the Grassmann variety. This set of points corresponds to the image of
the GrassmannMap (12.8.3).

GAP 4 Package FinInG 143

12.8.3 GrassmannMap

> GrassmannMap (k, pg) (operation)
> GrassmannMap (subspaces) (operation)
> GrassmannMap(k, n, q) (operation)
> GrassmannMap (gv) (operation)

Returns: a geometry map

The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k
is an integer (k at least 1 and at most n — 2), and denotes the projective dimension determining the
Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projec-
tive space, or the dimension k, the dimension n and the size g of the finite field (k at least 1 and at
most n —2). The operation returns a function with domain the set of subspaces of dimension & in
the n-dimensional projective space over GF(g), and image the set of points of the Grassmann vari-
ety (PointsOfGrassmannVariety (12.8.2)). When a Grassmann variety gv is given as input, the
operation returns the associated Grassmann map.

12.8.4 Source

> Source (gm) (operation)
Returns: the source of a Grassmann map
The argument gm is a GrassmannMap (12.8.3). This operation returns the set of subspaces of the
projective space that was used to construct the GrassmannMap (12.8.3).

Chapter 13

Generalised Polygons

A generalised n-gon is a point/line geometry whose incidence graph is bipartite of diameter n and
girth 2n. Although these rank 2 structures are very much a subdomain of Grape and Design, their
significance in finite geometry warrants their inclusion in FinInG. By the famous theorem of Feit and
Higman, a generalised n-gon which has at least three points on every line, must have nin {2,3,4,6,8}.
The case n = 2 concerns the complete multipartite graphs, which we disregard. The more interesting
cases are accordingly projective planes (n = 3), generalised quadrangles (n = 4), generalised hexagons
(n = 6) and generalised octagons (n = 8).

13.1 Projective planes

13.1.1 ProjectivePlaneByBlocks

> ProjectivePlaneByBlocks (1) (operation)
Returns: a projective plane
The argument 1 is a finite homogeneous list consisting of ordered sets of a common size n+ 1
from the number 1 up to n> +n+ 1. This operation returns the projective plane of order n.

Example
gap> blocks := [
> [1,2,8,4,5]1,[01,6,7,8,91, [1, 10, 11, 12, 13],
> [1, 14, 15, 16, 171, [1, 18, 19, 20, 211, [2, 6, 10, 14, 18 1],
> (2,7, 11, 15, 191, [2, 8, 12, 16, 201, [2, 9, 13, 17, 21 17,
> (3,6, 11, 16,211, [3, 7, 10, 17, 201, [3, 8, 13, 14, 19 1],
> [3,9, 12,15, 181, [4, 6, 12, 17, 191, [4, 7, 13, 16, 18 1],
> [4, 8, 10, 15, 21 1, [4, 9, 11, 14, 201, [5, 6, 13, 15, 20],
> (5,7, 12, 14, 201, [5, 8, 11, 17, 18 1, [5, 9, 10, 16, 191 1;;
gap> pp := ProjectivePlaneByBlocks(blocks);
<projective plane of order 4>
13.1.2 ProjectivePlaneByIncidenceMatrix
> ProjectivePlaneByIncidenceMatrix(mat) (operation)

Returns: a projective plane
The argument mat is a square matrix with entries from {0, 1}; the incidence matrix of a projective
plane. The rows represent the lines of the projective plane and the columns represent the points. That

144

GAP 4 Package FinIinG 145

is, the (i, j)-entry of mat is equal to O or 1 according to whether the i-th line is incident or not incident
with the j-th points.
Example

gap> incmat

1:

e v L e e e e

-

e e e v e

YV V VVVVVVVVVVV VYV VVYVYVYV
Lo T s O e T e T e T s T e O e O s TR s T s TR s T s T s T e T e T e B e B s B e B |

\
O OO OO OO OO OODODOOOO P~

-

1:

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

OOOOOOOOI—‘I—‘D—‘HOOOOOOOOI—"II

-

W v L e e

-

e v L e e e e e e

OO OO, P PP OOOODOODOOOOOO M

-

[l el elNelNeolNelNeolNolNeolNeolNololNolNolNolNo RN s

1,

Lo

-

B e e e e .

OO P OO0, OO0 OO0OO0OFr OO OO

-

0,

v v e e e e

-

e v L e e e e

OFRPr OO0 O FrR OO0OO0OFr OO0OO0OFr OO0 O Or O

-

0,

L

-

E T

P O OO, OO0OO0OFr OO0OO0OFr OO OO OoO o

-

0,

Be v e e e e

-

W e e e w .

O OO FHrHr OO0OO0OFr OO0OOFr OO0OO0OO0OO0OOoORrOo

-

1,

O O OO, OO0OO0OO0OFHrH OOOOFHr OO OoOOo

1,

T

-

)

P OO R, OO0 0000, OOKFr OO O oo

-

0,

L

-

B v L e e e e

O, OO0 OO, P OOOOFr OO OO+ OoOOo

-

0,

OO, OO, OO, OOFr,r OOOOOr OoOOo

0,

Lo

-

T

OO P OFRF OO0OO0OO0OFrF OO0OO0OO0OOFr O OOoOOo

-

Lo

-

PR

OO O P OFRrR OO OOOOOr OO OOoOo

-

P OO OO0, OO0 O0OFrOFr OOOKr OOoOOo

Lo)

-

e v e e e e

O, OO0 OO0, OO, OFrOOODOFrOOOo

-

e v L e e e e

-

e v L e e e e

OFRPr OO0 OO PR O, OO0OJO0OO0ODOOFrEFP, OOOO

-

T T V)

-

E T

P OO OO0 O0OFrRrROFRrFOOOOFr OFr OOoOOoOOo

-

e v L v e e e

-

O

O OO RFRPr P OO0OO0OO0OO0OFr OO0OFr OO0OFr OO OO0

-

OO P OO, OO0OO0OO0OO0OFr P, OOOFrOOOoOOo

I © OO OO OO0 O0OO0OOOrKFP,r P, EFL,OOOO

gap> pp := ProjectivePlaneByIncidenceMatrix(incmat);

<projective plane of order 4>

13.2 Generalised quadrangles

The classical generalised quadrangles were treated in the chapter on polar spaces (Chapter 8), and
here we provide operations which create elation generalised quadrangles arising from Kantor families.
Suppose we have a generalised quadrangle of order (s,) for which there exists a point P and a group
of collineations G fixing P and each line through P, with the extra property that G acts regularly on the
points not collinear with P. Then we have an elation generalised quadrangle with base point P and
elation group G. Such an elation generalised quadrangle is equivalent to a Kantor family of subgroups
of G: aset of 1+ 1 subgroups F of order s and a set of # 4 1 subgroups F* of order st such that (i) each
element of F' is a subgroup of one element of F* and intersects the other elements of F* trivially, and
(ii) any three elements A, B, C of F satisfy ABNC = 1 . For more information, we refer to the standard
work in this field of Payne and Thas [PT84].

13.2.1 IsKantorFamily

> IsKantorFamily(grp, f1, £f2)
Returns: true or false
This operation tests to see if (f1, £2) forms a Kantor family of subgroups for the group grp. The
elements of £1 are smaller than the elements of £2.

(operation)

GAP 4 Package FinIinG 146

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flistl := [Group(g.1), Group(g.2), Group(g.3), Group(g.l*g.2*xg.3) 1;
[<pc group with 1 generators>, <pc group with 1 generators>,
<pc group with 1 generators>, <pc group with 1 generators>]
gap> flist2 := [Group([g.1l, g.2"2*g.3]), Group([g.2, g.1"2*g.3 1),
> Group([g.3, g.172*xg.2]), Group([g.1"2%g.2, g.1"2%g.3 1) 1;
[<pc group with 2 generators>, <pc group with 2 generators>,
<pc group with 2 generators>, <pc group with 2 generators>]
gap> IsKantorFamily(g, flistl, flist2);
#I Checking tangency condition...
#I Checking triple condition...
true

explain how to construct an EGQ from a Kantor family?

13.2.2 EGQByKantorFamily

> EGQByKantorFamily(grp, f1, £f2) (operation)

Returns: an elation generalised quadrangle

The argument grp is a finite group and f1 and f2 are each lists of subgroups of grp which
form a Kantor family. The i-th member of £1 must be a subgroup of the i-th member of £2. We
should mention that this operation does not check that the input is a valid Kantor family, as this would
slow this operation down. Thus if the user is unsure of their input, they would best use the operation
IsKantorFamily (13.2.1) beforehand. In the following example we construct the unique generalised
quadrangle of order 3.

Example
gap> g := ElementaryAbelianGroup(27);

<pc group of size 27 with 3 generators>
gap> flistl := [Group(g.1), Group(g.2), Group(g.3), Group(g.lxg.2*g.3) 1;;
gap> flist2 := [Group([g.1l, g.2"2xg.3]), Group([g.2, g.172xg.3 1),

> Group([g.3, g.172*xg.2]), Group([g.172xg.2, g.1"2%g.3 1) 1;;
gap> IsKantorFamily(g, flistl, flist2);

#I Checking tangency condition...

#I Checking triple condition...

true

gap> egq := EGQByKantorFamily(g, flistl, flist2);

#I Computing points from Kantor family...

#I Computing lines from Kantor family...

<EGQ of order [3, 3] and basepoint 0>

Let C be a set of 2 x 2 upper triangular matrices over GF (g), which are indexed by GF (g). If the
pairwise difference of any two elements of C is anisotropic, that is, represents a nondegenerate binary
quadratic form, then we say that C is a g-clan. This concept was introduced by Stanley Payne [Pay85]
to construct Kantor families for flock generalised quadrangles.

GAP 4 Package FinInG 147

13.2.3 IsqClan

> IsqClan(list, f) (operation)
Returns: true or false
This operation tests to see if 1ist defines a q-Clan over the field f.

Example

gap> f := GF(3);

GF(3)

gap> id := IdentityMat(2, £);;

gap> clan := List(£, t -> t * id);;
gap> IsqClan(clan, f);

true

13.24 (Clan

> quan(list , f) (operation)
Returns: the q clan of matrices in 1ist

This operation tests to see if 1ist defines a q-Clan over the field £, and returs the g-Clan.
Example

gap> £ := GF(7);

GF (7)

gap> id := IdentityMat(2, f);;

gap> clan := List(£, t -> t * id);;
gap> clan := gClan(clan, f);
<g-clan over GF(7)>

13.2.5 EGQByqClan

> EGQBqulan (qclan) (operation)

Returns: an elation generalised quadrangle

The argument gclan is a g-Clan. In the following example, we construct an elation generalised
quadrangle from a q-Clan that is actually isomorphic with the classical generalised quadrangle of order
(9, 3) (i.e., H(3,9)). We do not explicitely compute the isomorphism, but compute, using a detour via
the incidence graph, a group isomorphic with the complete collineation group of the elation GQ,
which turns out the have the same size as PT'U(4,9)
Example

gap> f := GF(3);

GF(3)

gap> id := IdentityMat(2, £);;

gap> list := List(f, t -> t * id);;

gap> clan := qClan(list,f);

<g-clan over GF(3)>

gap> egq := EGQBygClan(clan);

#I Computed Kantor family. Now computing EGQ...
#I Computing points from Kantor family...

#I Computing lines from Kantor family...

<EGQ of order [9, 3] and basepoint 0>

gap> incgraph := IncidenceGraphOfGeneralisedPolygon(egq);;

GAP 4 Package FinInG

#I Computing incidence graph of generalised polygon...
gap> group := AutomorphismGroup(incgraph) ;

<permutation group with 6 generators>

gap> Order(group) ;

26127360

gap> Order(CollineationGroup(HermitianPolarSpace(3,9)));
#I Computing nice monomorphism...

26127360

148

13.2.6 KantorFamilyByqClan

> KantorFamilyByqClan(qclan, f)
Returns: a kantor family

(operation)

The argument gclan is a q-Clan, and the corresponding Kantor family is returned. Internally, the
operation EGQByqClan EGQByqClan (13.2.5) will use this method to construct the elation generalised

quadrangle with the operation EGQByKantorFamily.
Example

gap> £ := GF(7);

GF(7)

gap> id := IdentityMat(2, £);;

gap> list := List(f, t -> t * id);;
gap> clan := qClan(list,f);

<g-clan over GF(7)>

gap> fam := KantorFamilyByqClan(clan);
[<matrix group with 8 generators>,

[<matrix group with 2 generators>, <matrix group with 2 generators>,
<matrix group with 2 generators>, <matrix group with 2 generators>,
<matrix group with 2 generators>, <matrix group with 2 generators>,
<matrix group with 2 generators>, <matrix group with 4 generators>],

[<matrix group with 4 generators>, <matrix group with 4 generators>,
<matrix group with 4 generators>, <matrix group with 4 generators>,
<matrix group with 4 generators>, <matrix group with 4 generators>,

<matrix group with 4 generators>, <matrix group with 6 generators>]]

gap> egq := EGQByKantorFamily(fam[1],fam[2],fam[3]);

#I Computing points from Kantor family...

#I Computing lines from Kantor family...

<EGQ of order [49, 7] and basepoint 0>
13.2.7 Particular q-Clans
> Lineaqulan (q) (operation)
> FisherThasWalkerKantorBettenqClan(q) (operation)
> KantorMonomialqClan(q) (operation)
> KantorKnuthqClan(q) (operation)
> FisherqClan (q) (operation)

Returns: a g-Clan

The argument q is a prime power. These operations return a particular q-Clan. Should we add

references here since describing all these q-Clans is definitely beyond the scope here?

GAP 4 Package FinInG 149

Example

gap> LinearqClan(4);

Error, Couldn’t find nonsquare called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

gap> LinearqClan(5);

<g-clan over GF(5)>

gap> FisherThasWalkerKantorBettenqClan(9);

Error, q must be congruent to 2 mod (3) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

gap> FisherThasWalkerKantorBettenqClan(11);

<g-clan over GF(11)>

gap> KantorMonomialqClan(17);

<g-clan over GF(17)>

gap> KantorKnuthqClan(25);

<g-clan over GF(572)>

gap> FisherqClan(23);

<g-clan over GF(23)>

A BLT-set is a set S of points of the parabolic quadric Q(4,¢), which is a classial generalised
quadrangle, such that for any three points of S, there is no point of Q(4,q) collinear with all three
of the points. BLT-sets, which were introduced by Bader, Lunardon and Thas [BLT90], give rise to
g-clans, and hence to flock generalised quadrangles.

13.2.8 BLTSetByqClan

> BLTSetByqClan(gclan, f) (operation)
Returns: a list of points of Q(4,q)
The argument gclan is a list of matrices (i.e., ISFFECollCollColl) which form a g-Clan, and £ is
the defining field. This field must have odd order. This operation returns a BLT-set for the parabolic
00 0 0 1

quadric defined by the bilinear form with Gram matrix where w is a

— o O O

0 1
0 wlth/2 o
1 0 0
0 0

o O O O

primitive root of GF(q).
Example

gap> clan := KantorKnuthqClan(9);

<g-clan over GF(3°2)>

gap> blt := BLTSetByqClan(clan);

[<a point in Q(4, 9): -x_1*x_b-x_2%x_4+Z(372)"5%x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b5-x_2*x_4+Z(372) 5xx_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3~2) ~5*x_3"2=0>,

GAP 4 Package FinInG 150

<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*%x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b-x_2*x_4+Z(3°2) 5xx_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3°2) 5*x_3"2=0>]
gap> Span(blt);

<a solid in ProjectiveSpace(4, 9)>

gap> clan := LinearqClan(9);

<g-clan over GF(3°2)>

gap> blt := BLTSetByqgClan(clan);

[<a point in Q(4, 9): -x_1*x_b-x_2%x_4+Z(372) 5%x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*%x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b-x_2*x_4+Z(3°2) "5xx_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*x_4+Z(372) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_5-x_2*%x_4+Z(3~2) ~5*x_3"2=0>,
<a point in Q(4, 9): -x_1%x_b5-x_2*x_4+Z(372) 5xx_3"2=0>]

gap> Span(blt);

<a plane in ProjectiveSpace(4, 9)>

13.2.9 EGQByBLTSet

> EGQByBLTSet(list, point, solid) (operation)
> EGQByBLTSet(liSt) (operation)
Returns: an elation generalised quadrangle
The argument list is a list of points of a BLT-set of Q(4,q), where q is odd. The user may
enter the point and solid as extra arguments which are used in the Knarr construction of the elation
generalised quadrangle from the BLT-set. Otherwise, we take the W (5, ¢) in the Knarr construction to
be defined by the canonical form used in FinInG, and we take point and solid to be the elements
[1,0,0,0,0,0] and [[1,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0, 1,0,0],[0,0,0,0,1,0]] respectively. We show
how we can construct the classical generalised quadrangle of order (9, 3) (i.e., H(3,9)) from a conic
of 0(4,3).
Example

gap> clan := LinearqClan(3);

<g-clan over GF(3)>

gap> bltset := BLTSetByqClan(clan);

[<a point in Q(4, 3): -x_1xx_b-x_2*x_4+x_372=0>,
<a point in Q(4, 3): -x_1%x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1%x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1%x_5-x_2*x_4+x_372=0>]

gap> geo := AmbientGeometry(bltset[1]);

Q4, 3): -x_1*x_b-x_2%x_4+x_3"2=0

gap> Display(geo);

Q4, 3)

Non-degenerate parabolic bilinear form

GAP 4 Package FinInG 151

Gram Matrix:

Polynomial: -x_1*x_5-x_2%x_4+x_372

Witt Index: 2

gap> egq := EGQByBLTSet(bltset);

#I No intertwiner computed. One of the polar spaces must have a collineation

group computed

#I Computing nice monomorphism. ..

#I Now embedding dual BLT-set into W(5,q)...

#I Computing points(1l) of Knarr comnstruction...

#I Computing lines(1l) of Knarr construction...

#I Computing points(2) of Knarr construction...

#I Computing lines(2) of Knarr construction...please wait

#I Computing elation group...

<EGQ of order [9, 3] and basepoint [Z(3)~0, 0*Z(3), 0%Z(3), 0*Z(3), 0%Z(3),
0xZ(3) 1>

13.2.10 ElationGroup

> ElationGroup(egq) (attribute)
Returns: a group
This method returns the elation group of order s’ of the elation generalised quadrangle egq,
which has order (s,7). This is the stored as an attribute of egq. Note that the type of the group is of
course dependent on the model from which egq was constructed.
Example
gap> clan := FisherThasWalkerKantorBettenqClan(11);
<g-clan over GF(11)>
gap> egq := EGQByqgClan(clan);
#I Computed Kantor family. Now computing EGQ...
#I Computing points from Kantor family...
#I Computing lines from Kantor family...
<EGQ of order [121, 11] and basepoint 0>
gap> group := ElationGroup(egq);
<matrix group of size 161051 with 8 generators>

13.2.11 BasePointOfEGQ

> BasePointOfEGQ(egq) (attribute)
Returns: a point of egq
This method returns the base point for the elation generalised quadrangle egq, that is, a point for
which the elation group of egq fixes every line through it. This is the stored as an attribute of egq.
Example

gap> clan := LinearqClan(3);
<g-clan over GF(3)>

GAP 4 Package FinInG 152

gap> egq := EGQByqgClan(clan);
#I Computed Kantor family. Now computing EGQ...
#I Computing points from Kantor family...
#I Computing lines from Kantor family...
<EGQ of order [9, 3] and basepoint 0>
gap> blt := BLTSetByqClan(clan);
[<a point in Q(4, 3): -x_1xx_b-x_2*x_4+x_372=0>,
<a point in Q(4, 3): -x_1%x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3"2=0>,
<a point in Q(4, 3): -x_1%x_5-x_2%x_4+x_3"2=0>]
gap> egq2 := EGQByBLTSet(blt);
#I No intertwiner computed. One of the polar spaces must have a collineation
group computed
#I Computing nice monomorphism...
#I Now embedding dual BLT-set into W(5,q)...
#I Computing points(1) of Knarr construction...
#I Computing lines(1) of Knarr construction...
#I Computing points(2) of Knarr construction...
#I Computing lines(2) of Knarr construction...please wait
#I Computing elation group...
<EGQ of order [9, 3] and basepoint [Z(3)~0, 0%Z(3), 0*Z(3), 0%Z(3), 0*Z(3),
0%Z(3) 1>
gap> BasePointOfEGQ(egq) ;
<a point of a Kantor family>
gap> Display(last);
0
gap> BasePoint0fEGQ(egq2) ;
<a point of <EGQ of order [9, 3] and basepoint
[2(3)70, 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) 1>>
gap> Display(last);
[Z(3)~0, 0%Z(3), 0*Z(3), 0%Z(3), 0%Z(3), 0%*Z(3) 1]

13.3 Generalised hexagons

Due to the sheer sizes of generalised octagons, they have not yet been included into FinlnG. The only
other known families of generalised hexagons (up to duality) are the Split Cayley hexagons and the
Twisted Triality hexagons.

13.3.1 SplitCayleyHexagon

> SplitCayleyHexagon(f) (operation)
> SplitCayleyHexagon(q) (operation)

Returns: a generalised hexagon of order (q,q)

The Split Cayley hexagons were first constructed by Jacques Tits via the absolute
points and lines of a triality of the 7-dimensional hyperbolic quadric. ~ The input is ei-
ther a finite field f or a prime power g, and a generalised hexagon is returned con-
sisting of points and lines of Q(6, q) if g is odd, or of W(5,q) if q is even. The
forms for these polar spaces are, respectively, Q(x):= x_1x_5+x_2x_6+x_3x_7-x_4"2 and
B(x,y):=x_1y_4+x_2y_b+x_3y_6+x_4y_1+x_5y_2+x_6y_3.

GAP 4 Package FinInG 153

Example
gap> hexagon := SplitCayleyHexagon(3);
Split Cayley Hexagon of order 3
gap> points := Points(hexagon);
<points of Split Cayley Hexagon of order 3>
gap> lines := AsList(Lines(hexagon));;
gap> lines[1];
<a line of Split Cayley Hexagon of order 3>
gap> AmbientSpace(hexagon);
ProjectiveSpace(6, 3)
gap> coll := CollineationGroup(hexagon);
G_2(3)
gap> DisplayCompositionSeries(coll);
G (size 4245696)

| G(2,3)
1 (size 1)

13.3.2 TwistedTrialityHexagon

> TwistedTrialityHexagon(f) (operation)
> TwistedTrialityHexagon(q) (operation)

Returns: a generalised hexagon of order (g, /q)

Just like the Split Cayley hexagons (see SplitCayleyHexagon (13.3.1)), the Twisted Triality
hexagons arise as absolute points and lines of a triality. The input is either a finite field £ or a prime
power g, where the order of the field is a cube, and a generalised hexagon is returned consisting of
points and lines of ~+(7, q), defined by the form Q(x) := x_1x_5+x_2x_6+x_3x_7+x_4x_8. The
smallest Twisted Triality hexagon has 2457 points and 819 lines.

13.3.3 AmbientSpace and AmbientPolarSpace

> AmbientSpace(geo) (attribute)
> AmbientPolarSpace(geo) (attribute)
Returns: a projective space, a classical polar space respectively
All generalised hexagons in FinInG are Lie geometries, constructed inside a classical polar space.
As for all Lie geometries, the first attribute will return the ambient projective space. The second
attribute returns the polar space in which geo is constructed.
Example
gap> hexagon := SplitCayleyHexagon(3);
Split Cayley Hexagon of order 3
gap> AmbientSpace (hexagon) ;
ProjectiveSpace(6, 3)
gap> AmbientPolarSpace (hexagon) ;
standard Q(6, 3)
gap> hexagon := SplitCayleyHexagon(4);
Split Cayley Hexagon of order 4
gap> AmbientSpace (hexagon) ;
ProjectiveSpace(5, 4)
gap> AmbientPolarSpace(hexagon) ;
standard W(5, 4)

GAP 4 Package FinInG 154

gap> hexagon := TwistedTrialityHexagon(573);
Twisted Triality Hexagon of order [125, 5]
gap> AmbientSpace (hexagon) ;

ProjectiveSpace(7, 125)

gap> AmbientPolarSpace (hexagon) ;

standard Q+(7, 125)

13.4 General attributes and operations for generalised polygons

13.4.1 Order

> Order (gp) (attribute)
Returns: a pair of positive integers
This method returns the parameters (s,#) of the generalised polygon gp. That is, s+ 1 is the
number of points on any line of gp, and 7 4 1 is the number of lines incident with any point of gp.

13.4.2 AmbientSpace

> AmbientSpace(gp) (attribute)
Returns: an incidence geometry
Some of our generalised polygons have a natural ambient space, for example, the Split Cay-
ley hexagons in odd characteristic are naturally embedded in the 6-dimensional parabolic quadrics.
Therefore, for some generalised polygons the user can use this method to return the natural ambient
geometry for the generalised polygon, provided such a geometry exists.

13.4.3 CollineationGroup

> CollineationGroup(gp) (attribute)
Returns: a group
Some of our generalised polygons come equipped automatically with a collineation group. For
example, the generalised hexagons have their collineation groups already installed, and so do the
classical generalised quadrangles. However, the collineation group of a projective plane is calculated
via using the package Grape. We refer to CollineationAction (13.4.4) for an example.

13.4.4 CollineationAction

> CollineationAction(gp) (attribute)

Returns: a function

Unlike some of the other geometries in FinInG, the collineations of generalised polygons to not
have a uniform representation. Thus depending on the generalised polygon we are working with, a
group element and its action could be very different. For example, we use ordinary permutations when
acting on the elements of a projective plane (modulo some wrapping), whereas elation generalised
quadrangles arising from Kantor families must employ a completely different group action. So our
collineation groups come equipped with the attribute CollineationAction, which is a function with
input a pair (x,g) where x is an element of gp, and g is a collineation.

GAP 4 Package FinInG

155

Example
gap> LoadPackage("grape");

true

gap> Print("Collineations of projective planes...\n");
Collineations of projective planes...

gap> blocks := [

> [1,2,3,4,5]1,[1,6,7,8,91]1, [1, 10, 11, 12, 1317,

> [1, 14, 15, 16, 171, [1, 18, 19, 20, 211, [2, 6, 10, 14, 18 1],
> (2,7, 11, 15, 191, [2, 8, 12, 16, 20 1, [2, 9, 13, 17, 21 1],

> [3, 6, 11, 16, 201, [3, 7, 10, 17, 20 1, [3, 8, 13, 14, 191,

> [3,9, 12, 15, 181, [4, 6, 12, 17, 191, [4, 7, 13, 16, 18 1,

> [4,8, 10, 15, 21 1, [4, 9, 11, 14, 201, [5, 6, 13, 15, 20 1],

> [5,7, 12, 14, 220], [5, 8, 11, 17, 18 1, [5, 9, 10, 16, 191 1;;

gap> pp := ProjectivePlaneByBlocks(blocks);
<projective plane of order 4>
gap> coll := CollineationGroup(pp);
#I Computing incidence graph of projective plane...
<permutation group with 8 generators>
gap> DisplayCompositionSeries(coll);
G (8 gens, size 120960)
| Z(2)
S (4 gens, size 60480)
| Z(3)
S (3 gens, size 20160)
| A(2,4) = L(3,4)
1 (0 gens, size 1)
gap> Display(CollineationAction(coll));
function (x, g)
if x!.type = 1 then
return Wrap(plane, 1, OnPoints(x!.obj, g));
elif x!.type = 2 then
return Wrap(plane, 2, OnSets(x!.obj, g));
fi;
return;
end
gap>
gap> Print("Collineations of generalised hexagons...\n");
Collineations of generalised hexagons...
gap> hex := SplitCayleyHexagon(5);
Split Cayley Hexagon of order 5
gap> coll := CollineationGroup(hex);
G_2(5)
gap> CollineationAction(coll) = OnProjSubspaces;
true
gap> Print("Collineations of elation generalised quadrangles...\n");
Collineations of elation generalised quadrangles...
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flistl := [Group(g.1), Group(g.2), Group(g.3), Group(g.lxg.2*g.3) 1;;
gap> flist2 := [Group([g.1, g.2"2*g.3]), Group([g.2, g.1"2*g.3 1),
> Group([g.3, g.172*xg.2]), Group([g.172xg.2, g.1"2%g.3 1) 1;;
gap> egq := EGQByKantorFamily(g, flistl, flist2);
#I Computing points from Kantor family...

GAP 4 Package FinInG 156

#I Computing lines from Kantor family...

<EGQ of order [3, 3] and basepoint 0>

gap> elations := ElationGroup(egq);

<pc group of size 27 with 3 generators>

gap> CollineationAction(elations) = OnKantorFamily;
true

gap> HasCollineationGroup(egq);

false

13.4.5 BlockDesignOfGeneralisedPolygon

> BlockDesignOfGeneralisedPolygon(gp) (attribute)

Returns: a block design

This method allows one to use the GAP package DESIGN to analyse a generalised polygon, so the
user must first load this package. The argument gp is a generalised polygon, and if it has a collineation
group, then the block design is computed with this extra information and thus the resulting design is
easier to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group,
then we use the elation group’s action to efficiently compute the block design. We should also point
out that this method returns a mutable attribute of gp, so that accquired information about the block
design can be added. For example, the automorphism group of the block design may be computed
after the design is stored as an attribute of gp. Normally, attributes of GAP objects are immutable.
Example

gap> LoadPackage("design");

Loading DESIGN 1.4 (The Design Package for GAP)

by Leonard H. Soicher (http://www.maths.gmul.ac.uk/leonard/).
#W BIND_GLOBAL: variable ‘BlockDesign’ already has a value
true

gap> £ := GF(3);

GF(3)

gap> id := IdentityMat(2, £);;

gap> clan := List(f, t -> tx*id);;

gap> clan := gClan(clan,f);

<g-clan over GF(3)>

gap> egq := EGQByqClan(clan);

#I Computed Kantor family. Now computing EGQ...

#I Computing points from Kantor family...

#I Computing lines from Kantor family...

<EGQ of order [9, 3] and basepoint 0>

gap> HasElationGroup(egq);

true

gap> design := BlockDesignOfGeneralisedPolygon(egq);;
#I Computing orbits on lines of gen. polygon...

#I Computing block design of generalised polygon...
gap> aut := AutGroupBlockDesign(design);

<permutation group with 5 generators>

gap> NrBlockDesignPoints(design);

280

gap> NrBlockDesignBlocks(design) ;

GAP 4 Package FinIinG 157

112
gap> DisplayCompositionSeries(aut) ;
G (5 gens, size 26127360)
| Z(2)
S (4 gens, size 13063680)
I 2(2)
S (4 gens, size 6531840)
| Z(2)
S (3 gens, size 3265920)
| 2A(3,3) = U(4,3) ~ 2D(3,3) = 0-(6,3)
1 (0 gens, size 1)

13.4.6 IncidenceGraphOfGeneralisedPolygon

> IncidenceGraphOfGeneralisedPolygon(gp) (attribute)

Returns: a graph

This method allows one to use the GAP package GRAPE to analyse a generalised polygon, so the
user must first load this package. The argument gp is a generalised polygon, and if it has a collineation
group, then the incidence graph is computed with this extra information and thus the resulting graph is
easier to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group,
then we use the elation group’s action to efficiently compute the incidence graph. We should also
point out that this method returns a mutable attribute of gp, so that accquired information about the
incidence graph can be added. For example, the automorphism group of the incidence graph may be
computed and stored as a record component after the incidence graph is stored as an attribute of gp.
Normally, attributes of GAP objects are immutable.

Example
gap> blocks := [
> (1, 2,3, 4,51, (1,6,7,8,91, [1, 10, 11, 12, 131,
> [1, 14, 15, 16, 17 1, [1, 18, 19, 20, 21 1, [2, 6, 10, 14, 18 1,
> (2,7, 11, 15, 191, [2, 8, 12, 16, 201, [2, 9, 13, 17, 21],
> (3, 6, 11, 16, 2101, [3, 7, 10, 17, 201, [3, 8, 13, 14, 19],
> (3,9, 12, 15, 181, [4, 6, 12, 17, 191, [4, 7, 13, 16, 18],
> [4, 8, 10, 15, 211, [4, 9, 11, 14, 201, [5, 6, 13, 15, 20],
> [5,7, 12, 14, 211, [5, 8, 11, 17, 181, [5, 9, 10, 16, 191 1;;

gap> pp := ProjectivePlaneByBlocks(blocks);

<projective plane of order 4>

gap> incgraph := IncidenceGraphOfGeneralisedPolygon(pp);;
gap> Diameter(incgraph);

3

gap> Girth(incgraph);

6

gap> VertexDegrees(incgraph);
[51

gap> aut := AutGroupGraph(incgraph);
<permutation group with 9 generators>
gap> DisplayCompositionSeries(aut) ;
G (9 gens, size 241920)

| Z(2)
S (3 gens, size 120960)

I 2(2)

S (3 gens, size 60480)
| Z(3)

S (2 gens, size 20160)
| A(2,4) = L(3,4)

1 (0 gens, size 1)

GAP 4 Package FinInG

158

13.4.7 IncidenceMatrixOfGeneralisedPolygon

> IncidenceMatrixOfGeneralisedPolygon(gp)
Returns: a matrix
This method returns the incidence matrix of the generalised polygon via the operation
CollapsedAdjacencyMat in the GRAPE package (so you need to load this package first). The

rows of the matrix correspond to the points of gp, and the columns correspond to the lines.
Example

:= SymplecticSpace(3,2);

gap> gp

W3, 2)

gap> mat :=

#I

#I

[C1, 0,1, 0,0,0,
(o, 1,0,0,1, 0,
[1, 0, 0, 0, O, 1,
(o, 1, 0,1, 0, 0,
(o, 1, 0, 0,0, 0,
(o, 0,1, 0, 0,0,
[0, o0,1,1, 0,0,
(o, 0, 0,1, 0, 0,
Lo, 0,0,0,1, 1,
Lo, 0, 0,0, 0,1,
[0, 0,0,0, 1,0,
[0, 0, 0,0,0,0,
(o, 0, 0, 0, 0, O,
(1, 0, 0, 0, O, O,
(Lo, 0, 0, 0, 0, O,

0,

v e v e .

-

L

O OO, P, OOO0OOFr OO OoOOo

-

0,

v e v e .

-

v e e v e

OO L OO0, OFr OOOOoOOo

-

0,

o

OFRr P, OOO0OO0OOOO+r OO

1,

v e v e .

-

v e v v v

H O O OO O0OO0OO0OO0OO0O OO O =

-

0,

v e v e v

-

C v e e

OO OO0 Fr OO0, E~,OOOo

.

0,

v e v w .

-

v e e e e

O, OO P, OO, OO OO OO

-

(attribute)

0, 0, 0

v e v e v

-

T

O OO P OO OO0 OmrEFr O

-

0,

“ e v w .

-

C v v e

P OO O0OO0OkFr OFr OOOOOo

-

P OFR,r P OOOOO0OOOOOoOOo
L L b b L b b e L L L

IncidenceMatrix0fGeneralisedPolygon(gp) ;
Computing nice monomorphism...
Computing incidence graph of generalised polygon...

1,

v e v e .

-

v v w .

-

—

Chapter 14

Coset Geometries and Diagrams

This part of FinInG depends on GRAPE.

14.1 Coset Geometries

Suppose we have an incidence geometry I' (as defined in chapter 4), together with a group G of
automorphisms of I" is also given such that G is transitive on the set of chambers of I" (also defined in
chapter 4). This implies that G is also transitive on the set of all elements of any chosen type i. If we
consider a chamber cy, ¢, ..., ¢, such that ¢; is of type i, we can look at the stabilizer G; of ¢; in G. The
subgroups G; are called parabolic subgroups of I'. For a type i, transitivity of G on the elements of
type i gives a correspondence between the cosets of the stabilizer G; and the elements of type i in I'.
Two elements of I are incident if and only if the corresponding cosets have a nonempty intersection.

We now use the above observation to define an incidence structure from a group G together with
a set of subgroups Gi,Gy,...,G, . The type set is {1,2,...,n}. By definition the elements of type
i are the (right) cosets of the subgroup G;. Two cosets are incident if and only if their intersection
is not empty. This is an incidence structure which is not necessarily a geometry (see Chapter 4 for
definitions).

14.1.1 CosetGeometry

> CosetGeometry(G, 1) (operation)
Returns: the coset incidence structure defined by the list 1 of subgroups of the group G
G must be a group and 1 is a list of subgroups of G. The subgroups in 1 will be the parabolic

subgroups of the coset incidence structure whose rank equals the length of 1.
Example

gap> g:=SymmetricGroup(5);

Sym([1 ..51)

gap> gl:=Stabilizer(g, [1,2],0nSets);

Group([(4,5), (3,5), (1,2)(4,5) 1)

gap> g2:=Stabilizer(g,[1,2,3],0nSets);

Group([(4,5), (2,3), (1,2,3) 1)

gap> cg:=CosetGeometry(g, [gl,g2]);

CosetGeometry(SymmetricGroup([1 .. 51))

gap> p:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry(SymmetricGroup([1 .. 51))>
gap> q:=Random(ElementsOfIncidenceStructure(cg,2));

159

GAP 4 Package FinInG 160

<element of type 2 of CosetGeometry(SymmetricGroup([1 .. 5]))>
gap> IsIncident(p,q);

false

gap> IsIncident(p,p);

true

gap> ParabolicSubgroups(cg) ;

[Group([(4,5), (3,5), (1,2)(4,5) 1), Group([(4,5), (2,3), (1,2,3) 1)]
gap> Rank(cg) = Size(last);

true

gap> BorelSubgroup(cg) ;

Group([(1,2), (4,5 1)

14.1.2 IsIncident

> IsIncident(elel, ele2) (operation)
Returns: true if ans only if elel and ele2 are incident
elel and ele2 must be two elements in the same coset geometry.

14.1.3 ParabolicSubgroups

> ParabolicSubgroups(cg) (operation)
Returns: the list of parabolic subgroups defining the coset geometry cg

14.1.4 AmbientGroup

> AmbientGroup(cg) (operation)
Returns: the group used to define the coset geometry cg
cg must be a coset geometry.

14.1.5 Borelsubgroup

> Borelsubgroup (Cg) (operation)
Returns: the Borel subgroup of de geometry cg
The Borel subgroup is equal to the stabilizer of a chamber. It corresponds to the intersection of all
parabolic subgrops.

14.1.6 IsFlagTransitiveGeometry

> IsFlagTransitiveGeometry(cg) (operation)

Returns: true if and only if the group G defining cg acts flag-transitively.

cg must be a coset geometry.

The group G used to define cg acts naturally on the elements of cg by right translation: a coset
G;g is mapped to G;(gx) by an element x € G. This test is quite time consuming. You can bind the
attribute IsFlagTransitiveGeometry if you are sure the coset geometry is indeed flag-transitive.

GAP 4 Package FinInG 161

14.1.7 IsFirmGeometry

> IsFirmGeometry(cg) (operation)
Returns: true if and only if cg is firm.
An incidence geometry is said to be firm if every nonmaximal flag is contained in at least two
chambers. cg must be a coset geometry.

14.1.8 IsConnected

> IsConnected(cg) (operation)
Returns: true if and only if cg is connected.
A geometry is connected if and only if its incidence graph is connected. cg must be a coset
geometry.

14.1.9 IsResiduallyConnected

> IsResiduallyConnected(cg) (operation)

Returns: true if and only if cg is residually connected.

A geometry is residually connected if the incidence graphs of all its residues of rank at least 2 are
connected. cg must be a coset geometry.

This test is quite time consuming. You can bind the attribute IsResiduallyConnected if you
are sure the coset geometry is indeed residually connected.

14.1.10 StandardFlagOfCosetGeometry

> StandardFlagOfCosetGeometry (cg) (operation)
Returns: standard chamber of cg
The standard chamber just consists of all parabolic subgroups (i.e. the trivial cosets of these
subgroups). cg must be a coset geometry.

14.1.11 FlagToStandardFlag

> FlagToStandardFlag (cg, f1) (operation)
Returns: element of the defining group of cg which maps £1 to the standard chamber of cg.
f1 must be a chamber given as a list of cosets of the parabolic subgroups of cg.

14.1.12 CanonicalResidueOfFlag

> CanonicalResidueOfFlag(cg, f1) (operation)
Returns: coset geometry isomorphic to residue of 1 in cg
cg must be a coset incidence structure and £f1 must be a flag in that incidence structure. The
returned coset incidence structure for a flag {G;, gi,,Gi,8i,,---,Gi &, } is the coset incidence struc-
ture defined by the group H := ﬂ’]‘.zlGij and parabolic subgroups G; N H for j not in the type set
{i],ig,...,ik} of f1.

GAP 4 Package FinInG 162

14.1.13 ResidueOfFlag

> ResidueOfFlag(cg, f1) (operation)
Returns: the residue of £1 in cg.
cg must be a coset geometry. CHECK the back-mapping. Still not quite right. I’ll have another
look.

14.1.14 IncidenceGraph

> IncidenceGraph (cg) (operation)
Returns: incidence graph of cg.
cg must be a coset geometry. The graph returned is a GRAPE object. Be sure the GRAPE is
loaded! All GRAPE functionality can now be used to analyse cg via its incidence graph.

14.1.15 RKk2GeoGonality

> Rk2GeoGonality (cg) (operation)
Returns: the gonality (i.e. half the girth) of the incidence graph of cg.
cg must be a coset geometry of rank 2.

14.1.16 Rank2Parameters

> Rank2Parameters(cg) (operation)
Returns: a list of length 3.
cg must be a coset geometry of rank 2. This function computes the gonality, point and line
diameter of cg. These appear as a list in the first entry of the returned list. The second entry contains
a list of length 2 with the point order and the total number of points (i.e. elements of type 1) in the
geometry. The last entry contains the line order and the number of lines (i.e. elements of type 2).

14.1.17 RKk2GeoDiameter

> Rk2GeoDiameter(cg, type) (operation)
Returns: the point (or line) diameter.
cg must be a coset geometry of rank 2. type must be either 1 or 2. This function computes the
point diameter of cg when type is 1 and the line diameter when type is 2.

14.2 Diagrams

The diagram of a flag-transitive incidence geometry is a schematic description of the structure of the
geometry. It is based on the collection of rank 2 residues of the geometry. Since the geometry is
flag-transitive, all chambers are equivalent. Let’s fix a chamber C = {cy,c¢3,...,c,} , with ¢; of type
i. For each subset i, j of size two in [= 1,2,...,n we take the residue of the flag C'\ {c;,c;} . Flag
transitivity ensures that all residues of type I\ {i,j} are isomorphic to each other. For each such
residue, the structure is described by some parameters: the gonality and the point and line diameters.
For each type i, we also define the i-order to be the elements of type i in the residue of a(ny) flag of
type I\ {i}. All this information is depicted in a diagram which is bascically a graph with vertex set
I and edges whenever the point diamater, the line diameter and the gonality are all greater than 2.

GAP 4 Package FinInG 163

14.2.1 DiagramOfGeometry

> DiagramOfGeometry (Gamma) (operation)
Returns: the diagram of the geometry Gamma
Gamma must be a flag-transitive coset geometry.
The flag-transitivity is not tested by this operation because such test is time consuming. The
command IsFlagTransitiveGeometry can be used to check flag-transitivity if needed.

14.2.2 DrawDiagram

> DrawDiagram(Diag, filename) (operation)

Returns: does not return anything but writes a file filename.ps

Diag must be a diagram. Writes a file filename.ps in the current directory with a picto-
rial version of the diagram. This command uses the graphviz package which is available from
http://www.graphviz.org.

In case graphviz is not available on your system, you will get an friendly error message and a file
filename.dot will be written. You can then compile this file later or ask a friend to help you.

We illustrate the diagram feature with Neumaier’s Ag-geometry. The affine space of dimension 3
over the field with two elements is denoted by AG(3,2). If we fix a plane IT in PG(3,2), the structure
induced on the 8 points not in IT by the lines and planes of PG(3,2) is isomorphic to AG(3,2). Since
every two points of AG(3,2) define a line, the collinearity graph of AG(3,2) (that is the graph whose
vertices are the points of AG(3,2) and in which two vertices are adjacent whenever they are collinear)
is the complete graph K3 on 8 vertices. Given two copies of the complete graph on 8 vertices, one can
label the vertices of each of them with the numbers from 1 to 8. These labelings are always equivalent
when the two copies are seen as graphs, but not if they are understood as models of the affine space.
The reason is that an affine space has parallel lines and to be affinely equivalent, the labelings must be
such that edges which were parallel in the first labeling remain parallel in the second labeling. In fact
there are 15 affinely nonequivalent ways to label the vertices of Kg. The affine space has 14 planes
of 4 points and there are 70 subsets of 4 elements in the vertex set of Kg. Each time we label Kg,
there are 14 of the 70 sets of 4 elements which become planes of AG(3,2). The remaining 4-subsets
will be called nonplanes for that labeling. A well-known rank 4 geometry discovered by Neumaier
in 1984 can be described using these concepts. This geometry is quite important since its residue of
cotype 0 is the famous A;-geometry which is known to be the only flag-transitive locally classical Cs-
geometry which is not a polar space (see Aschbacher1984 for details). The Neumaier geometry can
be constructed as follows. The elements of types 1 and 2 are the vertices and edges of the complete
graph K3, the elements of type 2 are the 4-subsets of the vertex set of Kg and the elements of type 3 are
the 15 nonequivalent labelings of Kg. Incidences are mostly the natural ones. A 4-subset is incident
with a labeling of Ky if it is the set of points of a nonplane in the model of AG(3,2) defined by the
labeling.

Example

Alt([1 ..81)
gap> pabs:= [
Group([(2,4,6), (1,3,2)(4,8)(6,7) 1),
> Group([(1,6,7,8,4), (2,5)(3,4) 1),
> Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7),
> (1,2)(4,5), (3,7(6,8) 1),
> Group([(1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
>
[

\2

(1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) 1) 1;
Group([(2,4,6), (1,3,2)(4,8)(6,7) 1), Group([(1,6,7,8,4), (2,5)(3,4) 1),

GAP 4 Package FinIinG 164

Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2)(4,5),
(3,7(6,8) 1),
Group([(1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
(1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) 1) 1
gap> cg:=CosetGeometry(g,pabs);
CosetGeometry(AlternatingGroup([1 .. 81))
gap> diag:=DiagramOfGeometry(cg) ;
< Diagram of CosetGeometry(AlternatingGroup([1 .. 8]) ,
[Group([(2,4,6), (1,3,2)(4,8)(6,7) 1),
Group([(1,6,7,8,4), (2,5)(3,4) 1),
Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2)(4,5),
(3,7)(6,8) 1),
Group([(1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
(1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) 1) 1) >
gap> DrawDiagram(diag, '"neuma8");
gap> #Exec("gv neuma8.ps");
gap> point:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry(AlternatingGroup([1 .. 81))>
gap> residue:=Residue0fFlag(cg, [point]);
CosetGeometry(Group([(1,3,5), (1,7,2)(3,8)(5,6) 1))
gap> diagc3:=DiagramOfGeometry(residue);
< Diagram of CosetGeometry(Group([(1,3,5), (1,7,2)(3,8)(5,6) 1) ,
[Group([(2,3,8), (2,3,6), (5,8,6), (2,7,5,6,8) 1),
Group([(2,5)(6,8), (1,7,3), (1,7)(5,6), (5,8,6), (2,6)(5,8) 1),
Group([(1,6,3,2)(5,8), (2,7)(3,8) 1) 1) >
gap> DrawDiagram(diagc3, "a7geo");
gap> #Exec("gv a7geo.ps");

The produced diagrams are included here: Neumaier’s Ag
neumag.pdf
The A7 geometry:
[scale=0.5]a7geo.pdf

Appendix A

The structure of FinInG

A.1 The different components

Loading FinInG shows the following message:

Example

loading: geometry, liegeometry, group, projectivespace, correlations,
polarspace/morphisms, enumerators, diagram, varieties, affinespace/affinegroup,

gpolygons

The different components are liested an refer to the corresponding filenames. So component refers to
component.gd and component.gi. When When componentl/component2 is displayed, Both compo-
nentl.gi and component2.gi depend on the declarations in both componenti.gd and component2.gd.
In other cases, component_n is only dependent on its own declarations and the ones before.

A.2 The complete inventory

A.2.1 Declarations

Example

OO0OO0OO0Oo0oo0OoO0OoO0Oo0o0ooo oo

Operations

geometry.gd: operations

IncidenceStructure: [IsList, IsFunction, IsFunction, IsList]
ElementsOfIncidenceStructure: [IsIncidenceStructurel
ElementsOfIncidenceStructure: [IsIncidenceStructure, IsPosInt]
ElementsOfIncidenceStructure: [IsIncidenceStructure, IsString]

Points: [IsIncidenceStructure]

Lines: [IsIncidenceStructure]

Planes: [IsIncidenceStructure]

Solids: [IsIncidenceStructurel

FlagOfIncidenceStructure: [IsIncidenceStructure, IsElementOfIncidenceStructure(
FlagOfIncidenceStructure: [IsIncidenceStructure, IsListandIsEmpty]
ChamberOfIncidenceStructure: [IsElementOfIncidenceStructureCollection]
IsIncident: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
IsCollinear: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsElementOf]
Span: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]

165

ollection]

ncidenceStruct

GAP 4 Package FinInG

Meet: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
RandomFlag: [IsIncidenceStructure]

RandomChamber: [IsIncidenceStructure]

Type: [IsElementOfIncidenceStructureandIsElementOfIncidenceStructureRep]
Type: [IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructureRep]
Wrap: [IsIncidenceGeometry, IsPosInt, IsObject]

Unwrap: [IsElementOfIncidenceStructure]

Points: [IsElementOfIncidenceStructure]

Lines: [IsElementOfIncidenceStructure]

Planes: [IsElementOfIncidenceStructure]

Solids: [IsElementOfIncidenceStructure]

Hyperplanes: [IsElementOfIncidenceStructure]

Points: [IsIncidenceStructure, IsElementOfIncidenceStructure]
Lines: [IsIncidenceStructure, IsElementOfIncidenceStructure]
Planes: [IsIncidenceStructure, IsElementOfIncidenceStructure]
Solids: [IsIncidenceStructure, IsElementOfIncidenceStructure]
Hyperplanes: [IsIncidenceStructure, IsElementOfIncidenceStructure]

OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0ODO0ODO0ODO0ODO0OO0OO0ODO0ODO0ODO0ODoOoOo oo

liegeometry.gd: operations

UnderlyingVectorSpace: [IsLieGeometry]
UnderlyingVectorSpace: [IsElementOfLieGeometry]
VectorSpaceToElement: [IsLieGeometry, IsRowVector]
VectorSpaceToElement: [IsLieGeometry, Is8BitVectorRep]
VectorSpaceToElement: [IsLieGeometry, IsPlistRep]
VectorSpaceToElement: [IsLieGeometry, Is8BitMatrixRep]
VectorSpaceToElement: [IsLieGeometry, IsGF2MatrixRep]
ElementToVectorSpace: [IsElementOfLieGeometry]
EmptySubspace: [IsLieGeometry]

\": [IsEmptySubspace, IsUnwrapper]

RandomSubspace: [IsVectorSpace, IsInt]

IsIncident: [IsEmptySubspace, IsElementOfLieGeometry]
IsIncident: [IsElementOfLieGeometry, IsEmptySubspace]
IsIncident: [IsEmptySubspace, IsLieGeometry]
IsIncident: [IsLieGeometry, IsEmptySubspace]
IsIncident: [IsEmptySubspace, IsEmptySubspace]

Span: [IsEmptySubspace, IsElementOfLieGeometry]

Span: [IsElementOfLieGeometry, IsEmptySubspace]

Span: [IsEmptySubspace, IsLieGeometry]

Span: [IsLieGeometry, IsEmptySubspace]

Span: [IsEmptySubspace, IsEmptySubspace]

Meet: [IsEmptySubspace, IsElementOfLieGeometry]

Meet: [IsElementOfLieGeometry, IsEmptySubspace]

Meet: [IsEmptySubspace, IsLieGeometry]

Meet: [IsLieGeometry, IsEmptySubspacel

OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0DO0ODO0ODO0ODO0OO0OO0OO0ODO0ODO0ODoO0Oo0 o oo

166

\~: [IsElementOfIncidenceStructure, IsUnwrapper]

ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsPg
ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsSt
ShadowOfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsPosInt]
Shadow0OfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString]
ShadowOfFlag: [IsIncidenceStructure, IsList, IsPosInt]

ShadowOfFlag: [IsIncidenceStructure, IsList, IsString]

ElementsIncidentWithElementOfIncidenceStructure: [IsElementOfIncidenceStructure

sInt]
ring]

B

IsPosInt]

O ooo

GAP 4 Package FinInG 167

Meet: [IsEmptySubspace, IsEmptySubspace]
ElementToElement: [IsLieGeometry, IsElementOfLieGeometry]
ConvertElement: [IsLieGeometry, IsElementOfLieGeometry]
ConvertElementNC: [IsLieGeometry, IsElementOfLieGeometry]

group.gd: operations

OO0OO0OO0OO0OO0O0O0O0O0OO0ODO0ODO0OO0O0OO0O0D0DO0OO0OO0ODO0DO0OO0ODO0OO0OO0OO0ODO0ODO0ODO0OO0O O OoOOo

FindBasePointCandidates: [IsGroup, IsRecord, IsInt]
FindBasePointCandidates: [IsGroup, IsRecord, IsInt, IsObject]
ProjEl: [IsMatrixandIsFFECo01l1Coll]

ProjEls: [IsList]

Projectivity: [IsList, IsField]

ProjElWithFrob: [IsMatrixandIsFFECollColl, IsMapping]
ProjElWithFrob: [IsMatrixandIsFFEC0llColl, IsMapping, IsField]
ProjElsWithFrob: [IsList]

ProjElsWithFrob: [IsList, IsField]

ProjectiveSemilinearMap: [IsList, IsField]
ProjectiveSemilinearMap: [IsList, IsMapping, IsField]
ProjectivityByImageOfStandardFrameNC: [IsProjectiveSpace, IsList]
UnderlyingMatrix: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRep]
UnderlyingMatrix: [IsProjGrpElandIsProjGrpElRep]
FieldAutomorphism: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRepl]
ActionOnAllProjPoints: [IsProjectiveGroup]

SetAsNiceMono: [IsProjectiveGroup, IsGroupHomomorphism]
ActionOnAllProjPoints: [IsProjectiveGroupWithFrob]
SetAsNiceMono: [IsProjectiveGroupWithFrob, IsGroupHomomorphism]
CanonicalGramMatrix: [IsString, IsPosInt, IsField]
CanonicalQuadraticForm: [IsString, IsPosInt, IsField]
SOdesargues: [IsInt, IsPosInt, IsFieldandIsFinitel

GOdesargues: [IsInt, IsPosInt, IsFieldandIsFinite]

SUdesargues: [IsPosInt, IsFieldandIsFinitel

GUdesargues: [IsPosInt, IsFieldandIsFinite]

Spdesargues: [IsPosInt, IsFieldandIsFinite]
GeneralSymplecticGroup: [IsPosInt, IsFieldandIsFinite]
GSpdesargues: [IsPosInt, IsFieldandIsFinite]

DeltaOminus: [IsPosInt, IsFieldandIsFinite]

DeltaOplus: [IsPosInt, IsFieldandIsFinite]

GammaOminus: [IsPosInt, IsFieldandIsFinite]

GammaO: [IsPosInt, IsFieldandIsFinite]

GammaOplus: [IsPosInt, IsFieldandIsFinite]

GammaU: [IsPosInt, IsFieldandIsFinite]

GammaSp: [IsPosInt, IsFieldandIsFinite]

projectivespace.gd: operations

OO0 oooooo

ProjectiveSpace: [IsInt, IsField]

ProjectiveSpace: [IsInt, IsPosInt]

IsIncident: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]

IsIncident: [IsProjectiveSpace, IsSubspace0fProjectiveSpace]

IsIncident: [IsProjectiveSpace, IsProjectiveSpace]

Hyperplanes: [IsProjectiveSpace]

BaerSublineOnThreePoints: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProject
BaerSubplaneOnQuadrangle: [IsSubspace0fProjectiveSpace, IsSubspaceOfProject

iveSpace,
iveSpace,

Is

C

[

correlations.gd: operations

polarspace.gd: operations

OO0 o0oOo0oo0oo0oo0oooo

OO0 o0oo0oo0oo0oo0ooooo

OO0OO0OO0CO0ODO0OO0OO0O0OO0OO0OO0OO0DO0ODO0ODO0OO0OO0OO0OO0OO0ODO0OO0OO OO

GAP 4 Package FinInG 168

RandomSubspace: [IsProjectiveSpace, IsInt]
RandomSubspace: [IsSubspaceOfProjectiveSpace, IsInt]
RandomSubspace: [IsProjectiveSpace]

Span: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
Span: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
Span: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBooll]
Span: [IsList]

Span: [IsList, IsBooll]

Meet: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
Meet: [IsProjectiveSpace, IsSubspace0OfProjectiveSpace]
Meet: [IsList]

StandardDualityOfProjectiveSpace: [IsProjectiveSpacel
IdentityMapping0fElementsOfProjectiveSpace: [IsProjectiveSpace]
ActionOnAllPointsHyperplanes: [IsProjGroupWithFrobWithPSIsom]

ProjElWithFrobWithPSIsom: [IsMatrix and ISFFECollColl, IsMapping, IsField]
ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping, IsField,
ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping, IsField,
ProjElsWithFrobWithPSIsom: [IsList, IsField]

SetAsNiceMono: [IsProjGroupWithFrobWithPSIsom, IsGroupHomomd

CorrelationOfProjectiveSpace: [IsList, IsField]

CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField]
CorrelationOfProjectiveSpace: [IsList, IsField, IsStandardDualityOfProjectiveSg
CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField, IsStandardDualityOfH
UnderlyingMatrix: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsg
FieldAutomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIg
ProjectiveSpaceIsomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrg
PolarityOfProjectiveSpaceOp: [IsForm]
PolarityOfProjectiveSpace: [IsForm]
PolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
PolarityOfProjectiveSpace: [IsMatrix, IsFrobeniusAutomorphism, IsFieldandIsFini
HermitianPolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
PolarityOfProjectiveSpace: [IsClassicalPolarSpace]

BaseField: [IsPolarityOfProjectiveSpace]

IsAbsoluteElement: [IsElementOfIncidenceStructure, IsPolarityOfProjectiveSpace]
GeometryOfAbsolutePoints: [IsPolarityOfProjectiveSpace]

AbsolutePoints: [IsPolarity0fProjectiveSpace]

PolarSpace: [IsPolarityOfProjectiveSpace]

PolarSpaceStandard: [IsForm]

PolarSpace: [IsForm, IsField, IsGroup, IsFunction]

PolarSpace: [IsForm]

Polarity: [IsClassicalPolarSpace]

IsTotallySingular: [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep,
IsTotallyIsotropic: [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep,
TypeOfSubspace: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
CanonicalOrbitRepresentativeForSubspaces: [IsString, IsPosInt, IsField]
RandomSubspace: [IsClassicalPolarSpace, IsPosInt]
NumberOfTotallySingularSubspaces: [IsClassicalPolarSpace, IsPosInt]

IsStandarc
IsGenerall

rphism]

ace]
rojectiveSpace
mRep]

omRep]
bWithPSIsomRer

tel

OO0 o0oo0oo0oo0oo0ooooo

GAP 4 Package FinInG 169
EllipticQuadric: [IsPosInt, IsField]
EllipticQuadric: [IsPosInt, IsPosInt]
SymplecticSpace: [IsPosInt, IsField]
SymplecticSpace: [IsPosInt, IsPosInt]
ParabolicQuadric: [IsPosInt, IsField]
ParabolicQuadric: [IsPosInt, IsPosIntl]
HyperbolicQuadric: [IsPosInt, IsField]
HyperbolicQuadric: [IsPosInt, IsPosInt]
HermitianVariety: [IsPosInt, IsField]
HermitianVariety: [IsPosInt, IsPosInt]

Span: [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace, IsBool

morphisms.gd: operations

GeometryMorphismByFunction:
GeometryMorphismByFunction:
GeometryMorphismByFunction:
IsomorphismPolarSpaces:
IsomorphismPolarSpaces:
IsomorphismPolarSpacesNC:
IsomorphismPolarSpacesNC:

[IsAnyElementsOfIncidenceStructure,
[IsAnyElementsOfIncidenceStructure,
[IsAnyElementsOfIncidenceStructure,

[IsClassicalPolarSpace,

[IsClassicalPolarSpace,
[IsClassicalPolarSpace,
IsClassicalPolarSpace,
[IsClassicalPolarSpace,

IsAnyElementsOfIncidenceS
IsAnyElementsOfIncidences
IsAnyElementsOfIncidences
IsClassjcalPolarSpace,
IsClassijcalPolarSpace

IsBool 1]

IsClagsicalPolarSpac

NaturalEmbeddingBySubspace: [IsLieGeometry, IsLieGeometry, IsSubspace
NaturalEmbeddingBySubspaceNC: [IsLieGeometry, IsLieGeometry, IsSubspz
NaturalProjectionBySubspace: [IsClassicalPolarSpace, Is3ubspaceOfClass

NaturalProjectionBySubspace:
NaturalProjectionBySubspaceNC:
NaturalProjectionBySubspaceNC:

ShrinkMat:

[IsBasis, IsMatrix]
BlownUpProjectiveSpace:
BlownUpProjectiveSpaceBySubfield:
BlownUpSubspaceOfProjectiveSpace:
BlownUpSubspaceOfProjectiveSpaceBySubfield:
IsDesarguesianSpreadElement:

[IsProjectiveSpace,
[IsClassicalPolarSpace,
[IsProjectiveSpace,

[IsBasis, IsProjectiveSpace]
[IsField, IsProjectiveSpace]
[IsBasis, IsSubspaceOfProjectiveSpacel

IsSubspaceOfProjectiv

IsSubspace0£fCle

IsSubspace0fProject

[IsField, IsSubspaceOfProjectiveSpacel

[IsBasis, IsSubspaceOfProjectiveSpace]

IsBlownUpSubspace0OfProjectiveSpace: [IsBasis, IsSubspace0fProjectiveSpace]

NaturalEmbeddingByFieldReduction: [IsProjectiveSpace, IsProjectiveSpac
NaturalEmbeddingByFieldReduction: [IsProjectiveSpace, IsProjectiveSpac
NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace,| IsClassicalF

NaturalEmbeddingByFieldReduction:

NaturalEmbeddingBySubfield:
NaturalEmbeddingBySubfield:
NaturalEmbeddingBySubfield:

PluckerCoordinates:

[IsClassicalPolarSpace,

[IsClassicalPolarSpace,

[IsProjectiveSpace, IsProj
IsClassicalPolarSpace,
[IsClassicalPolarSpace,

[IsSubspaceOfProjectiveSpacel

InversePluckerCoordinates: [IsSubspaceOfProjectiveSpace]

IsClassicalPolarSpace]

eg¢tiveSpace]
IsBool]

IsClassicalPolarSy

OO0OO0OO0OO0OO0O0O0OO0OO0OO0DO0ODO0ODO0OO0OO0O0O0ODO0OO0ODO0ODO0ODO0ODO0OO0OO0OO0OO0ODO0OOO OO

KleinCorrespondence: [IsClassicalPolarSpace]
NaturalDuality: [IsSymplecticSpaceandIsGeneralisedPolygon]
NaturalDuality: [IsHermitianVarietyandIsGeneralisedPolygon]
ProjectiveCompletion: [IsAffineSpace]

enumerators.gd: operations

0:
0:

AntonEnumerator: [IsSubspaces0fClassicalPolarSpace]

EnumeratorByOrbit: [IsSubspacesOfClassicalPolarSpace]

GAP 4 Package FinInG 170

diagram.gd: operations

OO0OO0OO0Oo0Oo0OoO0Oo0Oo0o oo

CosetGeometry: [IsGroup, IsHomogeneousList]
ParabolicSubgroups: [IsCosetGeometry]

AmbientGroup: [IsCosetGeometry]

FlagToStandardFlag: [IsCosetGeometry, IsHomogeneousList]
ResidueOfFlag: [IsCosetGeometry, IsHomogeneousList]
CanonicalResidueOfFlag: [IsCosetGeometry, IsHomogeneousList]
Rk2GeoDiameter: [IsCosetGeometry, IsPosInt]
GeometryOfRank2Residue: [IsRank2Residue]
GeometryFromLabelledGraph: [IsObjectandIS_REC]
IncidenceGraph: [IsCosetGeometry]

Rank2Residues: [IsIncidenceGeometry]

MakeRank2Residue: [IsRank2Residue]

varieties.gd: operations

OO0 0000000000000 O0O0ODO0DO0ODO0ODO0OO0ODO0ODO0OO0OO0OO0ODO0ODODO0OO0ODO0OO0OO0OO0OOo

AlgebraicVariety: [IsProjectiveSpace, IsList]
AlgebraicVariety: [IsAffineSpace, IsList]
PointsOfAlgebraicVariety: [IsAlgebraicVariety]

Points: [IsAlgebraicVarietyl]

ProjectiveVariety: [IsProjectiveSpace, IsPolynomialRing, IsList]
ProjectiveVariety: [IsProjectiveSpace, IsList]
DualCoordinatesOfHyperplane: [IsSubspaceOfProjectiveSpace]
HyperplaneByDualCoordinates: [IsProjectiveSpace, IsList]
AffineVariety: [IsAffineSpace, IsPolynomialRing, IsList]
AffineVariety: [IsAffineSpace, IsList]

SegreMap: [IsHomogeneousList]

SegreMap: [IsHomogeneousList, IsField]

SegreVariety: [IsHomogeneousList]

SegreVariety: [IsHomogeneousList, IsField]
PointsOfSegreVariety: [IsSegreVarietyl]

SegreMap: [IsSegreVariety]

SegreMap: [IsProjectiveSpace, IsProjectiveSpace]
SegreMap: [IsPosInt, IsPosInt, IsField]

SegreMap: [IsPosInt, IsPosInt, IsPosInt]

SegreVariety: [IsProjectiveSpace, IsProjectiveSpace]
SegreVariety: [IsPosInt, IsPosInt, IsField]
SegreVariety: [IsPosInt, IsPosInt, IsPosInt]
VeroneseMap: [IsProjectiveSpace]

VeroneseMap: [IsPosInt, IsField]

VeroneseMap: [IsPosInt, IsPosInt]

VeroneseVariety: [IsProjectiveSpace]

VeroneseVariety: [IsPosInt, IsField]

VeroneseVariety: [IsPosInt, IsPosInt]
PointsOfVeroneseVariety: [IsVeroneseVariety]
VeroneseMap: [IsVeroneseVariety]

GrassmannCoordinates: [IsSubspaceOfProjectiveSpace]
GrassmannMap: [IsPosInt, IsProjectiveSpace]
GrassmannMap: [IsPosInt, IsPosInt, IsPosInt]
GrassmannVariety: [IsPosInt, IsPosInt, IsField]
GrassmannVariety: [IsPosInt, IsPosInt, IsPosInt]
ConicOnFivePoints: [IsHomogeneousListand IsSubspagq

e0fProjectives

0:

GAP 4 Package FinInG 171

PolarSpace: [IsProjectiveVariety]

affinespace.gd: operations

OO0 O0OO0OO0OO0OO0OO0OO0OO0O0Oo0oOo

VectorSpaceTransversal: [IsVectorSpace, IsFFEC0l11Coll]
VectorSpaceTransversalElement: [IsVectorSpace, ISFFECollColl, IsVector]
ComplementSpace: [IsVectorSpace, ISFFECollColl]

AffineSpace: [IsPosInt, IsField]

AffineSpace: [IsPosInt, IsPosInt]

AffineSubspace: [IsAffineSpace, IsRowVector]

AffineSubspace: [IsAffineSpace, IsRowVector, IsPlistRep]
AffineSubspace: [IsAffineSpace, IsRowVector, Is8BitMatrixRep]
AffineSubspace: [IsAffineSpace, IsRowVector, IsGF2MatrixRep]
RandomSubspace: [IsAffineSpace, IsInt]

IsParallel: [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace]
ParallelClass: [IsAffineSpace, IsSubspaceOfAffineSpace]
ParallelClass: [IsSubspaceOfAffineSpace]

affinegroup.gd: operations

gpolygons.gd: operations

OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0DO0ODO0ODO0OO0OO0OO0OO0ODO0ODO0ODoO0Oo0 o oo

SplitCayleyHexagon: [IsFieldandIsFinite]
SplitCayleyHexagon: [IsPosInt]

TwistedTrialityHexagon: [IsFieldandIsFinite]
TwistedTrialityHexagon: [IsPosInt]

IsAnisotropic: [IsFFECollColl, IsFieldandIsFinite]
IsqClan: [ISFFEC0l11CollColl, IsFieldandIsFinite]

gClan: [ISFFEC0l1lCollColl, IsField]

LinearqClan: [IsPosInt]

FisherThasWalkerKantorBettenqClan: [IsPosInt]
KantorMonomialqClan: [IsPosInt]

KantorKnuthqClan: [IsPosInt]

FisherqClan: [IsPosInt]

EGQByKantorFamily: [IsGroup, IsList, IsList]

Wrap: [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject]
IsKantorFamily: [IsGroup, IsList, IsList]

EGQByBLTSet: [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
EGQByBLTSet: [IsList]

FlockGQByqClan: [IsqClanObj]

BLTSetByqClan: [IsqClanObjandIsqClanRep]
KantorFamilyByqClan: [IsqClanObjandIsqClanRep]

EGQByqClan: [IsqClanObjandIsqClanRep]
ProjectivePlaneByBlocks: [IsHomogeneousList]
ProjectivePlaneByIncidenceMatrix: [IsMatrix]
BlockDesignOfGeneralisedPolygon: [IsGeneralisedPolygon]
IncidenceGraphOfGeneralisedPolygon: [IsGeneralisedPolygon]

Example

Attributes

GAP 4 Package FinInG 172

geometry.gd: attributes

i A

IsChamberOfIncidenceStructure: IsFlagOfIncidenceStructure

IsEmptyFlag: IsFlagOfIncidenceStructure

RankAttr: IsIncidenceStructure

TypesOfElementsOfIncidenceStructure: IsIncidenceStructure
TypesOfElementsOfIncidenceStructurePlural: IsIncidenceStructure
CollineationGroup: IsIncidenceStructure

CorrelationGroup: IsIncidenceStructure

CollineationAction: IsIncidenceStructure

CorrelationAction: IsIncidenceStructure

RepresentativesOfElements: IsIncidenceStructure

AmbientGeometry: IsIncidenceStructure

AmbientGeometry: IsElementOfIncidenceStructureandIsElementOfIncidenceStructureh
AmbientGeometry: IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructuy
AmbientGeometry: IsAllElementsOfIncidenceStructureandIsAllElementsOfIncidenceSt

liegeometry.gd: attributes

== e =

AmbientSpace: IsLieGeometry

AmbientSpace: IsElementOfLieGeometry
ProjectiveDimension: IsLieGeometry
ProjectiveDimension: IsElementOfLieGeometry
ProjectiveDimension: IsEmptySubspace

group.gd: attributes

A:
A:

Dimension: IsProjectiveGroup
Dimension: IsProjectiveGroupWithFrob

projectivespace.gd: attributes

L -

HomographyGroup: IsProjectiveSpace
SpecialHomographyGroup: IsProjectiveSpace

Dimension: IsProjectiveSpace

Dimension: IsSubspaceOfProjectiveSpace

Dimension: IsEmpty

Coordinates: IsSubspaceOfProjectiveSpace
CoordinatesOfHyperplane: IsSubspaceOfProjectiveSpace
EquationOfHyperplane: IsSubspaceOfProjectiveSpace
StandardFrame: IsProjectiveSpace

StandardFrame: IsSubspaceOfProjectiveSpace

correlations.gd: attributes

e

Dimension: IsProjGroupWithFrobWithPSIsom
GramMatrix: IsPolarityOfProjectiveSpace
CompanionAutomorphism: IsPolarityOfProjectiveSpace
SesquilinearForm: IsPolarityOfProjectiveSpace

polarspace.gd: attributes

A:

SesquilinearForm: IsClassicalPolarSpace

1ep
eRep
ructureRep

L L

GAP 4 Package FinInG

QuadraticForm: IsClassicalPolarSpace

AmbientSpace: IsClassicalPolarSpace

SimilarityGroup: IsClassicalPolarSpace

IsometryGroup: IsClassicalPolarSpace
SpeciallsometryGroup: IsClassicalPolarSpace
IsomorphismCanonicalPolarSpace: IsClassicalPolarSpace
IsomorphismCanonicalPolarSpaceWithIntertwiner: IsClassicalPolarSpace
IsCanonicalPolarSpace: IsClassicalPolarSpace
PolarSpaceType: IsClassicalPolarSpace
CompanionAutomorphism: IsClassicalPolarSpace
ClassicalGroupInfo: IsClassicalPolarSpace
EquationForPolarSpace: IsClassicalPolarSpace

morphisms.gd: attributes

A:

Intertwiner: IsGeometryMorphism

enumerators.gd: attributes

diagram.gd: attributes

fg - -

Diagram0OfGeometry: IsIncidenceGeometry
IsFlagTransitiveGeometry: IsIncidenceGeometry
IsResiduallyConnected: IsIncidenceGeometry
IsConnected: IsIncidenceGeometry
IsFirmGeometry: IsIncidenceGeometry
IsThinGeometry: IsIncidenceGeometry
IsThickGeometry: IsIncidenceGeometry
BorelSubgroup: IsCosetGeometry
StandardFlagOfCosetGeometry: IsCosetGeometry
Rank2Parameters: IsCosetGeometry
OrderVertex: IsVertexOfDiagram
NrElementsVertex: IsVertexOfDiagram
StabiliserVertex: IsVertexOfDiagram
ResiduelabelForEdge: IsEdgeOfDiagram
GirthEdge: IsEdgeOfDiagram

PointDiamEdge: IsEdgeOfDiagram

LineDiamEdge: IsEdgeOfDiagram
ParametersEdge: IsEdgeOfDiagram
GeometryOfDiagram: IsDiagram

varieties.gd: attributes

A:
A:

DefininglListOfPolynomials: IsAlgebraicVariety
AmbientSpace: IsAlgebraicVariety

affinespace.gd: attributes

A:

AmbientSpace: IsAffineSpace

affinegroup.gd: attributes

173

GAP 4 Package FinInG

A: AffineGroup: IsAffineSpace
gpolygons.gd: attributes

Order: IsGeneralisedPolygon

AmbientSpace: IsGeneralisedPolygon

CollineationAction: IsGroup

ElationGroup: IsElationGQ

BasePoint0OfEGQ: IsElationGQ
IncidenceMatrixOfGeneralisedPolygon: IsGeneralisedPolygon
IsLinearqClan: IsqClan(Obj

g -

174

Example

Properties

geometry.gd: properties

liegeometry.gd: properties

group.gd: properties

P: CanComputeActionOnPoints: IsProjectiveGroup
P: CanComputeActionOnPoints: IsProjectiveGroupWithFrob

projectivespace.gd: properties

correlations.gd: properties

CanComputeActionOnPoints: IsProjGroupWithFrobWithPSIsom
IsHermitianPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
IsSymplecticPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
IsOrthogonalPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
IsPseudoPolarity0OfProjectiveSpace: IsPolarityOfProjectiveSpace

‘U 'u ‘u ‘U ‘9

polarspace.gd: properties

IsEllipticQuadric: IsClassicalPolarSpace
IsSymplecticSpace: IsClassicalPolarSpace
IsParabolicQuadric: IsClassicalPolarSpace
IsHyperbolicQuadric: IsClassicalPolarSpace
IsHermitianVariety: IsClassicalPolarSpace
IsStandardPolarSpace: IsClassicalPolarSpace

‘' ‘v ‘U ‘U ‘9

morphisms.gd: properties

enumerators.gd: properties

GAP 4 Package FinInG 175

diagram.gd: properties

varieties.gd: properties

affinespace.gd: properties

affinegroup.gd: properties

gpolygons.gd: properties

A.2.2 Functions/Methods
Example

Functions
geometry.gi: global functions
F: HashFuncForElements

liegeometry.gi: global functions

group.gi: global functions

MakeAllProjectivePoints
IsScalarMatrix
OnProjPoints
OnProjPointsWithFrob
OnProjSubspacesNoFrob
OnProjSubspacesWithFrob
NiceMonomorphismByOrbit

I I B T R

NiceMonomorphismByDomain
projectivespace.gi: global functions

F: OnProjSubspaces
F: OnSetsProjSubspaces

correlations.gi: global functions
F: OnProjPointsWithFrobWithPSIsom
F: OnProjSubspacesWithFrobWithPSIsom

F: OnProjSubspacesReversing

polarspace.gi: global functions

GAP 4 Package FinInG

morphisms.gi: global functions

F:

LeukBasis

enumerators.gi: global functions

I I I R T R T R T R I T T T R T R T I T T R T R T R T T T e I R T B R I T

PositionNonZeroFromRight
FG_pos

FG_div

FG_ffenumber
FG_alpha_power
FG_log_alpha
FG_beta_power
FG_log_beta
FG_norm_one_element
FG_index_of_norm_one_element
PG_element_normalize
FG_evaluate_hyperbolic_quadratic_form
FG_evaluate_hermitian_form
FG_nb_pts_Nbar
FG_nb_pts_S
FG_nb_pts_N
FG_nb_pts_N1
FG_nb_pts_Sbar
FG_herm_nb_pts_N
FG_herm_nb_pts_S
FG_herm_nb_pts_N1
FG_herm_nb_pts_Sbar
FG_N1_unrank
FG_S_unrank
FG_Sbar_unrank
FG_Nbar_unrank
FG_N_unrank
FG_herm_N_unrank
FG_herm_N_rank
FG_herm_S_unrank
FG_herm_S_rank
FG_herm_N1_unrank
FG_herm_N1_rank
FG_herm_Sbar_unrank
FG_herm_Sbar_rank
FG_S_rank

FG_N_rank
FG_N1_rank
FG_Sbar_rank
FG_Nbar_rank
QElementNumber
QplusElementNumber
QminusElementNumber
QNumberElement
QplusNumberElement
QminusNumberElement

176

GAP 4 Package FinInG 177

HermElementNumber
HermNumberElement
FG_specialresidual
FG_enum_orthogonal
FG_enum_hermitian
FG_enum_symplectic

Moo oo

diagram.gi: global functions
F: OnCosetGeometryElement
F: DrawDiagram

F: Drawing_Diagram

varieties.gi: global functions

affinespace.gi: global functions

affinegroup.gi: global functions
F: OnAffinePoints

F: OnAffineNotPoints

F: OnAffineSubspaces
gpolygons.gi: global functions

F: OnKantorFamily

Example
Methods

geometry.gi: methods

Wrap, [IsIncidenceGeometry, IsPosInt, IsObject],
Unwrap, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
\~, [IsElementOfIncidenceStructure, IsUnwrapper],

Type, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
Type, [IsElementsOfIncidenceStructure and IsElementsOfIncidenceStructureRep],
Rank, [IsIncidenceStructure],

\=, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],

\<, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],

*, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
ChooseHashFunction, [IsElementOfIncidenceStructure, IsPosInt],

ViewObj, [IsAllElementsOfIncidenceStructure],
PrintObj, [IsAllElementsOfIncidenceStructure],

EEERERERERERRERRERRRR R R R E R R

ViewObj, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep]
PrintObj, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep
Display, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep]

AmbientGeometry, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
AmbientGeometry, [IsElementsOfIncidenceStructure and IsElementsOfIncidenceStryctureRep],
AmbientGeometry, [IsAllElementsOfIncidenceStructure and IsAllElementsOfIncidenceStructureRer

-

EEERERERERRERRR R R

liegeometry.gi: methods

gt i i e e Jic Jic e e it Sl i i i i S c e e e e i it i it i it i S c Jic e i i Sl it i

GAP 4 Package FinInG 178

ElementsOfIncidenceStructure, [IsIncidenceStructure, IsString],
IsChamberOfIncidenceStructure, [IsFlagOfIncidenceStructure and IsFlagOfIncider
ShadowOfElement, [IsIncidenceStructure, IsElementOfIncidenceStructure, IsString
ShadowOfFlag, [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString],
ShadowOfFlag, [IsIncidenceStructure, IsList, IsPosInt],

ShadowOfFlag, [IsIncidenceStructure, IsList, IsString],

Enumerator, [IsElementsOfIncidenceStructure],

Intersection2, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
IncidenceStructure, [IsList, IsFunction, IsFunction, IsList],

ViewObj, [IsIncidenceStructure],

PrintObj, [IsIncidenceStructure],

Display, [IsIncidenceStructure],

Wrap, [IsLieGeometry, IsPosInt, IsObject],

ElementToVectorSpace, [IsElementOfLieGeometry],

AmbientSpace, [IsElementOfLieGeometryl],

ViewObj, [IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep 1],
PrintObj, [IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep],
ViewObj, [IsElementsOfLieGeometry and IsElementsOfLieGeometryRep],
PrintObj, [IsElementsOfLieGeometry and IsElementsOfLieGeometryRep 1],
Points, [IsLieGeometry],

Lines, [IsLieGeometry],

Planes, [IsLieGeometry],

Solids, [IsLieGeometryl],

EmptySubspace, [IsLieGeometry],

ViewObj, InstallMethod(ViewObj, [IsEmptySubspace],

PrintObj, InstallMethod(PrintObj, [IsEmptySubspace],

Display, InstallMethod(Display, [IsEmptySubspace],

\=, [IsEmptySubspace, IsEmptySubspace],

\~, [IsEmptySubspace, IsUnwrapper],

\in, [IsEmptySubspace, IsEmptySubspace],

\in, [IsEmptySubspace, IsElementOfLieGeometry 1],

\in, [IsElementOfLieGeometry, IsEmptySubspace],

\in, [IsEmptySubspace, IsLieGeometry 1],

Span, [IsEmptySubspace, IsElementOfLieGeometry],

Span, [IsElementOfLieGeometry, IsEmptySubspace],

Span, [IsEmptySubspace, IsEmptySubspace],

Meet, [IsEmptySubspace, IsElementOfLieGeometry],

Meet, [IsElementOfLieGeometry, IsEmptySubspace],

Meet, [IsEmptySubspace, IsEmptySubspace],
ElementsIncidentWithElementOfIncidenceStructure, [IsElementOfLieGeometry, IsPg
Points, [IsElementOfLieGeometry 1],

Points, [IsLieGeometry, IsElementOfLieGeometry 1],

Lines, [IsElementOfLieGeometry],

Lines, [IsLieGeometry, IsElementOfLieGeometry],

Planes, [IsElementOfLieGeometry],

Planes, [IsLieGeometry, IsElementOfLieGeometry],

Solids, InstallMethod(Solids, [IsElementOfLieGeometry],

Solids, [IsLieGeometry, IsElementOfLieGeometry],

ViewObj, [IsShadowElementsOfLieGeometry and IsShadowElementsOfLieGeometryRep]
\in, [IsElementOfLieGeometry, IsElementOfLieGeometry],

1ceStructureRer

],

sInt],

EEEER

GAP 4 Package FinInG 179

Random, [IsSubspacesVectorSpace],

RandomSubspace, [IsVectorSpace,IsInt],

ElementToElement, [IsLieGeometry, IsElementOfLieGeometry],
ConvertElement, [IsProjectiveSpace, IsElementOfLieGeometry],
ConvertElementNC, [IsLieGeometry, IsElementOfLieGeometry],

group.gi: methods

et e e e Jilc Jic Jic Jic i Jitc e i i i i Jic e S e e e i i gl i i i S e i e i e St i St Sl i i e SIS

ProjEl, [IsMatrix and IsFFECollColl],

ProjEls, [IsList],

Projectivity, InstallMethod(Projectivity, [IsMatrixandIsFFEC0l11Coll,IsField],
ProjElWithFrob, [IsMatrix and IsSFFECollColl, IsRingHomomorphism and IsMultiplig
ProjElWithFrob, [IsMatrix and ISFFECollColl, IsRingHomomorphism and IsMultiplig
ProjElWithFrob, [IsMatrix and IsFFECo0llColl, IsRingHomomorphism and IsMultiplidg
ProjElsWithFrob, [IsList, IsField],

ProjElsWithFrob, [IsList],

ProjectiveSemilinearMap, [IsMatrix and IsFFECollColl, IsField],
ProjectiveSemilinearMap, [IsMatrix and ISFFEC0llColl, IsRingHomomorphism and I
ProjectivityByImageOfStandardFrameNC, InstallMethod(ProjectivityByImageOfStanda
UnderlyingMatrix, InstallMethod(UnderlyingMatrix, [IsProjGrpElandIsProjGrpElRep]
UnderlyingMatrix, InstallMethod(UnderlyingMatrix, [IsProjGrpElWithFrobandIsProj(
FieldAutomorphism, InstallMethod(FieldAutomorphism, [IsProjGrpElWithFrobandIsPrg
Representative, [IsProjGrpEl and IsProjGrpElRep],

BaseField, [IsProjGrpEl and IsProjGrpElRep],

Representative, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

BaseField, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

ViewObj, [IsProjGrpEl and IsProjGrpElRep],

Display, [IsProjGrpEl and IsProjGrpElRepl],

PrintObj, [IsProjGrpEl and IsProjGrpElRep],

ViewObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
Display, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
PrintObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

\=, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
\<, [IsProjGrpEl, IsProjGrpEl],

\=, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and If
\<, [IsProjGrpElWithFrob, IsProjGrpElWithFrob],

Order, [IsProjGrpEl and IsProjGrpElRep],

Order, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

IsOne, [IsProjGrpEl and IsProjGrpElRep],

IsOne, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

DegreeFFE, [IsProjGrpEl and IsProjGrpElRep],

DegreeFFE, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
Characteristic, [IsProjGrpEl and IsProjGrpElRep],

Characteristic, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

*, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
InverseSameMutability, [IsProjGrpEl and IsProjGrpElRep],
InverseMutable, [IsProjGrpEl and IsProjGrpElRep],

OneImmutable, [IsProjGrpEl and IsProjGrpElRep],

OneSameMutability, [IsProjGrpEl and IsProjGrpElRepl],

\~, [IsVector and IsFFECollection, IsFrobeniusAutomorphism],

\~, [IsVector and IsFFECollection, IsMapping and IsOne],

\~, [IsVector and IsFFECollection and IsGF2VectorRep, IsFrobeniusAutomorphism
\~, [IsVector and IsFFECollection and IsGF2VectorRep, IsMapping and IsOne],

ativeElementWi
ativeElementWi
ativeElementWi

sMultiplicativ
rdFrameNC, [IsF
irpE1WithFrobRe
jGrpElWithFrot

ProjGrpElWithE

i e e e e Jilc Jitc Jic e e it i i i i e e Jic e i Jilc i it i i it i i i e Jic e Jic i i it Sl i i i i e Silc Jic Jic e e i i i

GAP 4 Package FinInG 180

\~, [IsVector and IsFFECollection and Is8BitVectorRep, IsFrobeniusAutomorphisn
\~, [IsVector and IsFFECollection and Is8BitVectorRep, IsMapping and IsOne],
\~, [IsMatrix and ISFFECo0llColl, IsFrobeniusAutomorphism],
\~, [IsMatrix and IsFFECo0llColl, IsMapping and IsOne],
\~, [IsMatrix and IsSFFECo0llColl and IsGF2MatrixRep, IsFrobeniusAutomorphism]|
\~, [IsMatrix and IsFFECo0llColl and IsGF2MatrixRep, IsMapping and IsOne],

L

\~, IsMatrix and ISFFECollColl and Is8BitMatrixRep, IsFrobeniusAutomorphism]
\~, [IsMatrix and ISFFECo0llColl and Is8BitMatrixRep, IsMapping and IsOne],
*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and Ig
InverseSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
InverseMutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

OneImmutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
OneSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],

ViewObj, [IsProjectiveGroup],

ViewObj, [IsProjectiveGroup and IsTrivial],

ViewObj, [IsProjectiveGroup and HasGenerators0fGroup],

ViewObj, [IsProjectiveGroup and HasSize],

ViewObj, [IsProjectiveGroup and HasGeneratorsOfGroup and HasSize],

ViewObj, [IsProjectiveGroupWithFrob],

ViewObj, [IsProjectiveGroupWithFrob and IsTrivial],

ViewObj, [IsProjectiveGroupWithFrob and HasGeneratorsOfGroup],

ViewObj, [IsProjectiveGroupWithFrob and HasSize],

ViewObj, [IsProjectiveGroupWithFrob and HasGenerators0fGroup and HasSize],
BaseField, [IsProjectiveGroup],

BaseField, [IsProjectiveGroupWithFrob],

Dimension, [IsProjectiveGroup],

Dimension, [IsProjectiveGroupWithFrob],

OneImmutable, # was: [IsGroup and IsProjectiveGroup], I think might be
OneImmutable, # was [IsGroup and IsProjectiveGroupWithFrob], I think might be
CanComputeActionOnPoints, [IsProjectiveGroup],

CanComputeActionOnPoints, [IsProjectiveGroupWithFrob],

ActionOnAllProjPoints, [IsProjectiveGroup],

ActionOnAllProjPoints, [IsProjectiveGroupWithFrob],

SetAsNiceMono, [IsProjectiveGroup, IsGroupHomomorphism and IsInjective],
SetAsNiceMono, [IsProjectiveGroupWithFrob, IsGroupHomomorphism and IsInjective]
NiceMonomorphism, [IsProjectiveGroup and CanComputeActionOnPoints and IsHandled
NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism],
NiceMonomorphism, [IsProjectiveGroupWithFrob and CanComputeActionOnPoints and I
NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism],
FindBasePointCandidates, [IsProjectiveGroup,IsRecord,IsInt],
FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt],
FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt,IsObject],
CanonicalGramMatrix, [IsString, IsPosInt, IsField],

CanonicalQuadraticForm, [IsString, IsPosInt, IsField],

SOdesargues, [IsInt, IsPosInt, IsField and IsFinite],

GOdesargues, InstallMethod(GOdesargues, [IsInt,IsPosInt,IsFieldandIsFinite],
SUdesargues, InstallMethod(SUdesargues, [IsPosInt,IsFieldandIsFinite],
GUdesargues, InstallMethod(GUdesargues, [IsPosInt,IsFieldandIsFinite],
Spdesargues, InstallMethod(Spdesargues,[IsPosInt,IsFieldandIsFinite],
GeneralSymplecticGroup, InstallMethod(GeneralSymplecticGroup, [IsPosInt,IsFieldq
GSpdesargues, InstallMethod(GSpdesargues, [IsPosInt,IsFieldandIsFinite],
GammaSp, InstallMethod(GammaSp, [IsPosInt,IsFieldandIsFinite],

DeltaOminus, InstallMethod(DeltaOminus, [IsPosInt,IsFieldandIsFinite],

],

ProjGrpElWithF

B

IByNiceMonomorry

sHandledByNice
50,

indIsFinite],

EEEER

projectivespace.gi: methods

et e e e Jilc Jic Jic Jic i Jitc e i i i i Jic e S e e e i i gl i i i S e i e i e St i St Sl i i e SIS

GAP 4 Package FinInG 181

GammaOminus, InstallMethod(GammaOminus, [IsPosInt,IsFieldandIsFinite],
GammaO, InstallMethod(GammaQ, [IsPosInt,IsFieldandIsFinite],
DeltaOplus, InstallMethod(DeltaOplus, [IsPosInt,IsFieldandIsFinite],
GammaOplus, InstallMethod(GammaOplus, [IsPosInt,IsFieldandIsFinite],
GammaU, InstallMethod(GammaU, [IsPosInt,IsFieldandIsFinite],

Wrap, [IsProjectiveSpace, IsPosInt, IsObject],

\~, [IsSubspaceOfProjectiveSpace, IsUnwrapper],

ProjectiveSpace, [IsInt, IsField],

ProjectiveSpace, [IsInt, IsPosInt],

ViewObj, InstallMethod(ViewObj, [IsProjectiveSpaceandIsProjectiveSpaceRep],
PrintObj, InstallMethod(Print0Obj, [IsProjectiveSpaceandIsProjectiveSpaceRep],
Display, InstallMethod(Display, [IsProjectiveSpaceandIsProjectiveSpaceRep],
UnderlyingVectorSpace, [IsProjectiveSpace and IsProjectiveSpaceRep],

\=, [IsProjectiveSpace, IsProjectiveSpace],

ProjectiveDimension, [IsProjectiveSpace and IsProjectiveSpaceRep],
Dimension, [IsProjectiveSpace and IsProjectiveSpaceRep],

Rank, [IsProjectiveSpace and IsProjectiveSpaceRep],

BaseField, InstallMethod(BaseField,"foraprojectivespace", [IsProjectiveSpace],
BaseField, InstallMethod(BaseField,"foranelementofaprojectivespace", [IsSubspace
StandardFrame, [IsProjectiveSpace],

RepresentativesOfElements, "for a projective space", [IsProjectiveSpace],
Hyperplanes, [IsProjectiveSpace],

TypesOfElementsOf IncidenceStructure, "for a projective space", [IsProjectiveSpa
TypesOfElementsOfIncidenceStructurePlural, [IsProjectiveSpace],
ElementsOfIncidenceStructure, [IsProjectiveSpace, IsPosInt],
ElementsOfIncidenceStructure, [IsProjectiveSpace],

\=, [IsAllSubspacesOfProjectiveSpace, IsAllSubspaces0OfProjectiveSpace],
Size, [IsSubspacesOfProjectiveSpace and IsSubspaces0fProjectiveSpaceRep],
\in, [IsElementOfIncidenceStructure, IsElementsOfIncidenceStructure], 1*SUM_FLA
\in, [IsElementOfIncidenceStructure, IsAllElementsOfIncidenceStructure], 1*SUM]
VectorSpaceToElement, [IsProjectiveSpace, IsPlistRep],

VectorSpaceToElement, [IsProjectiveSpace, IsGF2MatrixRep],
VectorSpaceToElement, [IsProjectiveSpace, Is8BitMatrixRep],
VectorSpaceToElement, [IsProjectiveSpace, IsRowVector],

VectorSpaceToElement, [IsProjectiveSpace, Is8BitVectorRep],
UnderlyingVectorSpace, [IsSubspaceOfProjectiveSpace],

ProjectiveDimension, [IsSubspaceOfProjectiveSpace],

Dimension, [IsSubspaceOfProjectiveSpace],

StandardFrame, [IsSubspaceOfProjectiveSpace],

Coordinates, [IsSubspaceOfProjectiveSpace],

CoordinatesOfHyperplane, [IsSubspaceOfProjectiveSpacel],

EquationOfHyperplane, [IsSubspaceOfProjectiveSpace],

Span, [IsEmptySubspace, IsProjectiveSpace],

Span, [IsProjectiveSpace, IsEmptySubspace],

Meet, [IsEmptySubspace, IsProjectiveSpace],

Meet, [IsProjectiveSpace, IsEmptySubspace],

ShadowOfElement, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace, IsPosInt],
Size, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspaces0fProjectiveSpad
Hyperplanes, [IsSubspaceOfProjectiveSpace],

Hyperplanes, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],

0fProjectiveSg

1ce],

1GS+3,
FLAGS+3,

eRep],

correlations.gi: methods

EEEREREREERR R R EE R

e Jic i e i S Jilc e e il e i i i i i i S Jic e i Jic e i e i e i i e Jic e Jic i

GAP 4 Package FinInG 182

CollineationGroup, [IsProjectiveSpace and IsProjectiveSpaceRep],
HomographyGroup, [IsProjectiveSpace],

SpecialHomographyGroup, [IsProjectiveSpace],

\"~, [IsElementOfIncidenceStructure, IsProjGrpElWithFrob],

AsList, [IsSubspacesOfProjectiveSpace],

Iterator, [IsSubspacesOfProjectiveSpace],

FlagOfIncidenceStructure, [IsProjectiveSpace, IsSubspaceOfProjectiveSpaceCollg
FlagOfIncidenceStructure, [IsProjectiveSpace, IsList and IsEmpty],

ViewObj, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
PrintObj, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
Display, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
ShadowOfFlag, [IsProjectiveSpace, IsFlagOfProjectiveSpace, IsPosInt],

Iterator, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspacesOfProjective
\in, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],

\in, [IsProjectiveSpace, IsEmptySubspace],

\in, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],

\in, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],

IsIncident, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],

Span, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],

Span, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],

Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],

Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],

Span, [IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollection],

Span, [IsList],

Span, [IsList, IsBooll],

Meet, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],

Meet, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],

Meet, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpacel],

Meet, [IsHomogeneousList and IsSubspace0fProjectiveSpaceCollection],

Meet, [IsList],

RandomSubspace, [IsProjectiveSpace,IsInt],

RandomSubspace, [IsSubspaceOfProjectiveSpace,IsInt],

RandomSubspace, [IsProjectiveSpace],

Random, [IsSubspacesOfProjectiveSpace],

Random, [IsAllSubspaces0fProjectiveSpace],

Random, [IsShadowSubspacesOfProjectiveSpace],

BaerSublineOnThreePoints, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveS
BaerSubplaneOnQuadrangle, InstallMethod(BaerSubplaneOnQuadrangle, [IsSubspaceOfE

IdentityMappingOfElementsOfProjectiveSpace, [IsProjectiveSpace],
StandardDualityOfProjectiveSpace, [IsProjectiveSpace],

ViewObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInvex
Display, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInvex
PrintObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInve
*, [IsStandardDualityOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityO0fProjectiy
*, [IsStandardDualityOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiy
*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElements(
\~, [IsProjectiveSpaceIsomorphism, IsZeroCyc],

\=, [IsStandardDuality0fProjectiveSpace, IsStandardDualityOfProjectiveSpace],
\=, [IsStandardDuality0fProjectiveSpace, IsIdentityMappingOfElementsOfProjectiy

ction],

SpaceRep 1,

pace, IsSubspe
rojectiveSpace

seRep],
seRep],
rseRep],

reSpace] ,

reSpace] ,
fProjectiveSpz

reSpace] ,

i e e e e Jilc Jitc Jic e e it i i i i e e Jic e i Jilc i it i i it i i i e Jic e Jic i i it Sl i i i i e Silc Jic Jic e e i i i

GAP 4 Package FinInG 183

eSpace],

fProjectiveSpz
sMultiplicativ
sMultiplicativ
sMultiplicativ

\=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityOfProjecti
\=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElements
ProjElWithFrobWithPSIsom, [IsMatrix and IsFFEC0llColl, IsRingHomomorphism and
ProjElWithFrobWithPSIsom, [IsMatrix and IsFFEC0llColl, IsRingHomomorphism and
ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECo0llColl, IsRingHomomorphism and
ViewObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
Display, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
PrintObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep]
Representative, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsqmRep],
BaseField, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep]
BaseField, [IsProjGroupWithFrobWithPSIsom],
\=, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrobh
IsOne, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
OneImmutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsom
OneImmutable, [IsGroup and IsProjGrpElWithFrobWithPSIsom],

OneSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithP

ep],

IsomRep],

\~, [IsVector and IsFFECollection, IsIdentityMappingOfElementsOfProjectiveSpage],

\~, [IsVector and IsFFECollection and IsGF2VectorRep, IsIdentityMappingOfElementsOfProjectiv
\~, [IsVector and IsFFECollection and Is8BitVectorRep, IsIdentityMappingOfElementsOfProjecti
\~, [IsMatrix and IsFFECo0llColl, IsStandardDualityOfProjectiveSpace],

\~, [IsMatrix and IsFFECo0llColl, IsIdentityMappingOfElementsOfProjectiveSpace],

\~, [IsSubspaceOfProjectiveSpace, IsIdentityMappingOfElements0OfProjectiveSpace],

\~, [IsSubspaceOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],

*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsPro
\<, [IsProjGrpElWithFrobWithPSIsom, IsProjGrpElWithFrobWithPSIsom],
InverseSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWi
InverseMutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIs
*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrobWithPS
*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsPro
ProjElsWithFrobWithPSIsom, [IsList, IsField],

CorrelationGroup, [IsProjectiveSpace and IsProjectiveSpaceRep],
CorrelationOfProjectiveSpace, [IsMatrix and IsFFECollColl, IsField],
CorrelationOfProjectiveSpace, [IsMatrix and IsFFECo0llColl, IsRingHomomorphism
CorrelationOfProjectiveSpace, [IsMatrix and IsFFECo0llColl, IsField, IsStandar
CorrelationOfProjectiveSpace, [IsMatrix and IsFFECo0l1lColl, IsRingHomomorphism
UnderlyingMatrix, InstallMethod(UnderlyingMatrix, [IsProjGrpElWithFrobWithPSIso
FieldAutomorphism, InstallMethod(FieldAutomorphism, [IsProjGrpElWithFrobWithPSI
ProjectiveSpaceIsomorphism, InstallMethod(ProjectiveSpaceIlsomorphism, [IsProjGr
Embedding, [IsProjectiveGroupWithFrob, IsProjGroupWithFrobWithPSIsom],
Dimension, [IsProjGroupWithFrobWithPSIsom],

ActionOnAllPointsHyperplanes, [IsProjGroupWithFrobWithPSIsom],
CanComputeActionOnPoints, [IsProjGroupWithFrobWithPSIsom],

SetAsNiceMono, [IsProjGroupWithFrobWithPSIsom, IsGroupHomomorphism and IsInjec
NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and CanComputeActionOnPoints
NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and IsHandledByNiceMonomorphi
ViewObj, [IsProjGroupWithFrobWithPSIsom],

ViewObj, [IsProjGroupWithFrobWithPSIsom and IsTriviall],

ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup],

ViewObj, [IsProjGroupWithFrobWithPSIsom and HasSize],

ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup and HasSize],
PolarityOfProjectiveSpaceOp, [IsSesquilinearForm and IsFormRep],

ViewObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
PrintObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],

som and IsProj
GrpElWithFrob

and IsMultiplj
DualityOfProje
and IsMultipli
and IsProjGrpE
omand IsProjGz
ElWithFrobWitt

ive],
d IsHandledBy
m], 50,

GAP 4 Package FinInG 184

Display, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
PolarityOfProjectiveSpace, [IsSesquilinearForm and IsFormRepl],
PolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],

HermitianPolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],
GramMatrix, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
BaseField, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],

EEERERERRERRERER R R R R R R

\~, [IsSubspaceOfProjectiveSpace, IsPolarityOfProjectiveSpace],
polarspace.gi: methods

Wrap, [IsClassicalPolarSpace, IsPosInt, IsObject],

PolarSpace, [IsSesquilinearForm, IsField, IsGroup, IsFunction],
PolarSpaceStandard, [IsSesquilinearForm],

PolarSpaceStandard, [IsQuadraticForm],

PolarSpace, [IsSesquilinearForm],

PolarSpace, [IsQuadraticForm],

PolarSpace, [IsHermitianForm],

CanonicalOrbitRepresentativeForSubspaces, [IsString, IsPosInt, IsField],
EllipticQuadric, [IsPosInt, IsField],

EllipticQuadric, [IsPosInt, IsPosInt],

SymplecticSpace, [IsPosInt, IsField],

SymplecticSpace, [IsPosInt, IsPosInt],

ParabolicQuadric, [IsPosInt, IsField],

ParabolicQuadric, [IsPosInt, IsPosInt],

HyperbolicQuadric, [IsPosInt, IsField],

HyperbolicQuadric, [IsPosInt, IsPosInt],

HermitianVariety, [IsPosInt, IsField],

HermitianVariety, [IsPosInt, IsPosInt],

BaseField, InstallMethod(BaseField,"forapolarspace",[IsClassicalPolarSpace],
UnderlyingVectorSpace, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
ProjectiveDimension, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep 1,
Dimension, [IsClassicalPolarSpace],

QuadraticForm, [IsClassicalPolarSpace],

PolarSpaceType, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
CompanionAutomorphism, [IsClassicalPolarSpace],

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],

ViewObj,

g e e e Jic Sl e Jilc i it i i i it i e Jic Jic e e Jilc i i it i it i Sl e S e S S

PolarityOfProjectiveSpace, [IsMatrix, IsFrobeniusAutomorphism, IsField and IsFinite],

CompanionAutomorphism, [IsPolarityOfProjectiveSpace and IsPolarityOfProjective$paceRep],
SesquilinearForm, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
IsHermitianPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjective
IsOrthogonalPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectit
IsSymplecticPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiv
IsPseudoPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityO0fProjectiveSpe

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric and IsSte

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace and IsSte

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],

ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric and IsSt
L

IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric and IsS
ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianVariety],
ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianVariety and IsSte

i e e e e Jilc Jitc Jic e e it i i i i e e Jic e i Jilc i it i i it i i i e Jic e Jic i i it Sl i i i i e Silc Jic Jic e e i i i

GAP 4 Package FinInG 185

PrintObj, InstallMethod(PrintObj, [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
Display, InstallMethod(Display, [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplectig¢Space],
Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticS3pace 1],
PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],

Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],
PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolig¢Quadric],
Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianVariety],
Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianVariety],
IsomorphismCanonicalPolarSpace, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
IsomorphismCanonicalPolarSpaceWithIntertwiner, [IsClassicalPolarSpace and IsClassicalPolarSg

RankAttr, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep 1],

TypesOfElementsOf IncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],

TypesOfElementsOfIncidenceStructurePlural, [IsClassicalPolarSpacel],
Order, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep 1],

RepresentativesOfElements, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
\QUO, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfClassicalPolarSpace],

Size, [IsSubspaces0fClassicalPolarSpace],

VectorSpaceToElement, [IsClassicalPolarSpace, IsPlistRepl],
VectorSpaceToElement, [IsClassicalPolarSpace, IsGF2MatrixRep],
VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitMatrixRep],
VectorSpaceToElement, [IsClassicalPolarSpace, IsRowVector],
VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitVectorRep],

\in, [IsElementOfIncidenceStructure, IsClassicalPolarSpace],

Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],
Meet, [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],

ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsPosInt],
ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],

NumberOfTotallySingularSubspaces, [IsClassicalPolarSpace, IsPosInt],
TypeOfSubspace, [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace],
RandomSubspace, [IsClassicalPolarSpace, IsPosInt],

Random, [IsSubspaces0fClassicalPolarSpace],

Iterator, [IsSubspacesOfClassicalPolarSpace],

ShadowOfElement, [IsClassicalPolarSpace, IsElementOfIncidenceStructure, IsPosInt],
Size, [IsShadowSubspacesOfClassicalPolarSpace andIsShadowSubspaces0fClassicalPglarSpaceRep],
IsCollinear, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsElementOfIncidenceStructt

PolarityOfProjectiveSpace, [IsClassicalPolarSpace],
PolarSpace, [IsPolarityOfProjectiveSpace],
GeometryOfAbsolutePoints, [IsPolarityOfProjectiveSpace],
AbsolutePoints, [IsPolarityOfProjectiveSpace],

IsTotallyIsotropic, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfProject

Polarity, [IsClassicalPolarSpace],

CollineationGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
SpeciallsometryGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
IsometryGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],

SimilarityGroup, InstallMethod(SimilarityGroup, [IsClassicalPolarSpaceandIsClasgicalPolarSpace

IsParabolicQuadric, [IsClassicalPolarSpace],
IsParabolicQuadric, [IsClassicalPolarSpace],
IsHyperbolicQuadric, [IsClassicalPolarSpace],
IsHyperbolicQuadric, [IsClassicalPolarSpace],

M:
M:
M:

GAP 4 Package FinInG 186

IsEllipticQuadric, [IsClassicalPolarSpace],
IsEllipticQuadric, [IsClassicalPolarSpace],
DefininglistOfPolynomials, [IsProjectiveVariety and IsClassicalPolarSpace and I

morphisms.gi: methods

gt e i Jic Sc Jiic Jic Jic e Jitc Jic i i i i i e e e e i Jic e it it it i i i i Jic e Jilc Jic e i it i i i i i e S

GeometryMorphismByFunction, [IsAnyElementsOfIncidenceStructure, IsAnyElements(
GeometryMorphismByFunction, [IsAnyElementsOfIncidenceStructure, IsAnyElements(
GeometryMorphismByFunction, [IsAnyElementsOfIncidenceStructure, IsAnyElements(
ViewObj, [IsGeometryMorphism],

PrintObj, [IsGeometryMorphism],

Display, [IsGeometryMorphism],

ViewObj, [IsGeometryMorphism and IsMappingByFunctionWithInverseRep],

ViewObj, [IsGeometryMorphism and IsMappingByFunctionRep],

PrintObj, [IsGeometryMorphism and IsMappingByFunctionRep],

Display, [IsGeometryMorphism and IsMappingByFunctionRep],

ImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],

\~, [IsElementOfIncidenceStructure, IsGeometryMorphism],

ImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],
PreImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],

PreImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],
NaturalEmbeddingBySubspace, [IsProjectiveSpace, IsProjectiveSpace, IsSubspace(
NaturalEmbeddingBySubspaceNC, [IsProjectiveSpace, IsProjectiveSpace, IsSubspad
NaturalEmbeddingBySubspace, [IsClassicalPolarSpace, IsClassicalPolarSpace, Is§
NaturalEmbeddingBySubspaceNC, [IsClassicalPolarSpace, IsClassicalPolarSpace,]
IsomorphismPolarSpaces, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool
IsomorphismPolarSpaces, [IsClassicalPolarSpace, IsClassicalPolarSpace],
IsomorphismPolarSpacesNC, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBog
IsomorphismPolarSpacesNC, [IsClassicalPolarSpace, IsClassicalPolarSpace],
ShrinkMat, [IsBasis, IsMatrix],

BlownUpProjectiveSpace, [IsBasis, IsProjectiveSpace 1],
BlownUpProjectiveSpaceBySubfield, [IsField, IsProjectiveSpace],
BlownUpSubspaceOfProjectiveSpace, [IsBasis, IsSubspaceOfProjectiveSpace],
BlownUpSubspaceOfProjectiveSpaceBySubfield, [IsField, IsSubspaceOfProjectiveSy
IsDesarguesianSpreadElement, [IsBasis, IsSubspaceOfProjectiveSpace],
IsBlownUpSubspaceOfProjectiveSpace, [IsBasis, IsSubspaceOfProjectiveSpace],
NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsProjectiveSpace, IsBas
NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsProjectiveSpace],
NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpad
NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpad
NaturalEmbeddingBySubfield, [IsProjectiveSpace, IsProjectiveSpace],
NaturalEmbeddingBySubfield, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsH
NaturalEmbeddingBySubfield, [IsClassicalPolarSpace, IsClassicalPolarSpace],
NaturalProjectionBySubspace, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
NaturalProjectionBySubspaceNC, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace
\QUO, [IsProjectiveSpace and IsProjectiveSpaceRep, IsSubspace0OfProjectiveSpace
NaturalProjectionBySubspace, [IsClassicalPolarSpace, IsSubspaceOfClassicalPols
NaturalProjectionBySubspaceNC, [IsClassicalPolarSpace, IsSubspaceOfClassicalPq
PluckerCoordinates, [IsSubspaceOfProjectiveSpace],

InversePluckerCoordinates, [IsSubspaceOfProjectiveSpace],
KleinCorrespondence, [IsClassicalPolarSpace],

NaturalDuality, [IsSymplecticSpace and IsGeneralisedPolygon],

NaturalDuality, [IsHermitianVariety and IsGeneralisedPolygon],

sClassicalPolzc

fIncidenceStru
fIncidenceStru
fIncidenceStru

fProjectiveSps
e0fProjectives
ubspace0fProje
sSubspaceOfPrc
1,

11,

ace],

is 1,

e, IsBool],
e],

ool],

B

1,

1,
irSpace],
larSpace],

enumerators.gi: methods

EEEEEREER

diagram.gi: methods

EEERERERERERER R R ER R R iR R

GAP 4 Package FinInG 187

AntonEnumerator, [IsSubspacesOfClassicalPolarSpace],

EnumeratorByOrbit, [IsSubspacesOfClassicalPolarSpace],

AsList, [IsSubspacesOfClassicalPolarSpace],

AsSortedList, [IsSubspacesOfClassicalPolarSpace],

AsSSortedList, [IsSubspacesOfClassicalPolarSpace],

Enumerator, [IsSubspacesOfClassicalPolarSpace],

Enumerator, [IsShadowSubspacesOfClassicalPolarSpace and IsShadowSubspaces0fClas

CosetGeometry, InstallMethod(CosetGeometry,"forgroupsandlistofsubgroups", [IsGrg
Rank2Residues, InstallMethod(Rank2Residues, [IsIncidenceGeometry],
MakeRank2Residue, InstallMethod(MakeRank2Residue, [IsRank2Residue],
ElementsOfIncidenceStructure, InstallMethod(ElementsOfIncidenceStructure, [IsCos
Size, InstallMethod(Size, [IsElements0fCosetGeometry],

Wrap, [IsCosetGeometry, IsPosInt, IsObject],

Iterator, [IsElementsOfCosetGeometry],

IsIncident, [IsElementOfCosetGeometry, IsElementOfCosetGeometry],
ParabolicSubgroups, [IsCosetGeometry], cg -> cg!.parabolics);

AmbientGroup, [IsCosetGeometry], cg -> cg!.group);

BorelSubgroup, [IsCosetGeometry], cg -> Intersection(cg!.parabolics));
IsFlagTransitiveGeometry, [IsCosetGeometry 1],

IsFirmGeometry, [IsCosetGeometry 1],

IsConnected, [IsCosetGeometry 1],

IsResiduallyConnected, [IsCosetGeometry],

StandardFlagOfCosetGeometry, [IsCosetGeometry 1],

FlagToStandardFlag, [IsCosetGeometry, IsHomogeneousList],
CanonicalResidueOfFlag, [IsCosetGeometry, IsHomogeneousList],

ResidueOfFlag, [IsCosetGeometry, IsHomogeneousList],

sicalPolarSpac

up, IsHomogenec

etGeometry, Isk

IncidenceGraph, InstallMethod(IncidenceGraph, [IsCosetGeometryandIsHandledByNiceMonomorphism],

IncidenceGraph, InstallMethod(IncidenceGraph, [IsCosetGeometry],

ViewObj, [IsDiagram and IsDiagramRep],
ViewObj, [IsDiagram and IsDiagramRep and HasGeometryOfDiagram],
ViewObj, [IsCosetGeometry and IsCosetGeometryRep 1],

PrintObj, [IsCosetGeometry and IsCosetGeometryRep],

ViewObj, [IsElementsOfCosetGeometry and IsElementsOfCosetGeometryRep],
PrintObj, InstallMethod(PrintObj,"forcosetgeometry", [IsElements0fCosetGeometrya
ViewObj, InstallMethod(ViewQObj,"forcosetgeometry", [IsElementOfCosetGeometry],
PrintObj, InstallMethod(Print0Obj,"forelementofcosetgeometry", [IsElement0fCosetd

ind IsElements(

teometry] ,

ViewObj, InstallMethod(ViewObj,"forvertexofdiagram", [IsVertexOfDiagramandIsVertex0fDiagramRey
PrintObj, InstallMethod(Print0Obj,"forvertexofdiagram", [IsVertexOfDiagramandIsVertexOfDiagramt
ViewObj, InstallMethod(ViewObj,"foredgeofdiagram", [IsEdgeOfDiagramandIsEdge0fDijagramRep],
PrintObj, InstallMethod(PrintObj,"foredgeofdiagram", [IsEdgeOfDiagramandIsEdge0fDiagramRep],

ViewObj, InstallMethod(ViewQObj,"forrank2residue", [IsRank2ResidueandIsRank2Resid
PrintObj, InstallMethod(PrintObj,"forrank2residue", [IsRank2ResidueandIsRank2Res

lueRep] ,
idueRep],

\=, InstallMethod(\=, [IsVertexOfDiagramandIsVertexOfDiagramRep, IsVertexOfDiagram and IsVerte

\=, InstallMethod(\=, [IsEdgeO0fDiagramandIsEdge0fDiagramRep, IsEdgeOfDiagram and
Diagram0fGeometry, InstallMethod(DiagramOfGeometry,"forcosetgeometry", [IsCoset(
Display, InstallMethod(Display, [IsDiagramandIsDiagramRep],

] IsEdge0fDiagr
tleometry],

Diagram0fGeometry, InstallMethod(DiagramOfGeometry,"foraprojectivespace", [IsPrgjectiveSpace],

EEEER

GAP 4 Package FinInG 188

Rk2GeoDiameter, InstallMethod(Rk2GeoDiameter,"foracosetgeometry", [IsCosetGeomet
GeometryOfRank2Residue, InstallMethod(GeometryOfRank2Residue,"forarank2residue'
Rank2Parameters, InstallMethod(Rank2Parameters,"foracosetgeometryofrank2", [IsCq
\<, [IsElement0fCosetGeometry and IsElementOfCosetGeometryRep, IsElement0OfCose
Diagram0fGeometry, InstallMethod(DiagramOfGeometry, [IsClassicalPolarSpace],

varieties.gi: methods

et e e e Jilc Jic Jic Jic i Jitc e i i i i Jic e S e e e i i gl i i i S e i e i e St i St Sl i i e SIS

ProjectiveVariety, [IsProjectiveSpace, IsPolynomialRing, IsList],
ProjectiveVariety, [IsProjectiveSpace, IsList],
AlgebraicVariety, [IsProjectiveSpace, IsList],

ViewObj, [IsProjectiveVariety and IsProjectiveVarietyRep],
PrintObj, [IsProjectiveVariety and IsProjectiveVarietyRep],
DualCoordinatesOfHyperplane, [IsSubspaceOfProjectiveSpace],
HyperplaneByDualCoordinates, [IsProjectiveSpace,IsList],
AffineVariety, [IsAffineSpace, IsPolynomialRing, IsList],
AffineVariety, [IsAffineSpace, IsList],

AlgebraicVariety, [IsAffineSpace, IsList],

ViewObj, [IsAffineVariety and IsAffineVarietyRep],
PrintObj, [IsAffineVariety and IsAffineVarietyRep],

\in, [IsElementOfIncidenceStructure, IsAlgebraicVariety],
PointsOfAlgebraicVariety, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
ViewObj, [IsPointsOfAlgebraicVariety and IsPointsOfAlgebraicVarietyRep],
Points, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
Iterator, [IsPointsOfAlgebraicVarietyl],

Enumerator, [IsPointsOfAlgebraicVariety],

AmbientSpace, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
SegreMap, [IsHomogeneousList],

SegreMap, [IsHomogeneousList, IsField],

SegreMap, [IsProjectiveSpace, IsProjectiveSpace],

SegreMap, [IsPosInt, IsPosInt, IsField],

SegreMap, [IsPosInt, IsPosInt, IsPosInt],

SegreVariety, [IsHomogeneousList],

SegreVariety, [IsHomogeneousList, IsField],

ViewObj, [IsSegreVariety and IsSegreVarietyRep],

PrintObj, [IsSegreVariety and IsSegreVarietyRep 1],
SegreVariety, [IsProjectiveSpace, IsProjectiveSpace],
SegreVariety, [IsPosInt, IsPosInt, IsField],

SegreVariety, [IsPosInt, IsPosInt, IsPosInt],

ViewObj, [IsSegreVariety and IsSegreVarietyRep],

PrintObj, [IsSegreVariety and IsSegreVarietyRep 1],

SegreMap, [IsSegreVariety],

PointsOfSegreVariety, [IsSegreVariety and IsSegreVarietyRep],
ViewObj, [IsPointsOfSegreVariety and IsPointsOfSegreVarietyRep],
Points, [IsSegreVariety and IsSegreVarietyRep],

Iterator, [IsPointsOfSegreVariety],

Enumerator, [IsPointsOfSegreVariety],

VeroneseMap, [IsProjectiveSpace],

VeroneseVariety, [IsProjectiveSpacel],

VeroneseVariety, [IsPosInt, IsField],

VeroneseVariety, [IsPosInt, IsPosInt],

ViewObj, [IsVeroneseVariety and IsVeroneseVarietyRep],
PrintObj, [IsVeroneseVariety and IsVeroneseVarietyRep 1],

ry, IsPosInt],
, [IsRank2Resic
setGeometry],
tGeometry and

EEEERERERERERERRR

GAP 4 Package FinInG 189

VeroneseMap, [IsVeroneseVarietyl],

PointsOfVeroneseVariety, [IsVeroneseVariety and IsVeroneseVarietyRep],
ViewObj, [IsPointsOfVeroneseVariety and IsPointsOfVeroneseVarietyRep],
Points, [IsVeroneseVariety and IsVeroneseVarietyRep],

Iterator, [IsPointsOfVeroneseVariety],

Enumerator, [IsPointsOfVeroneseVariety],

ConicOnFivePoints, [IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollectign],

GrassmannCoordinates, [IsSubspaceOfProjectiveSpace],
GrassmannMap, [IsPosInt, IsProjectiveSpace],

GrassmannMap, [IsPosInt, IsPosInt, IsPosInt],

PolarSpace, [IsProjectiveVariety and IsProjectiveVarietyRep],

affinespace.gi: methods

gt i i e e Jic Jic Jic i it it e i i i e e e e e Jic Jic it it it i i i i e Jic e Jic it i i

AffineSpace, InstallMethod(AffineSpace, [IsPosInt,IsField],
AffineSpace, [IsPosInt, IsPosInt],
RankAttr, [IsAffineSpace and IsAffineSpaceRep 1],

TypesOfElementsOf IncidenceStructure, InstallMethod(TypesOfElementsOfIncidenceStructure,"forar

TypesOfElementsOf IncidenceStructurePlural, [IsAffineSpace],
Wrap, [IsAffineSpace, IsPosInt, IsObject],

AffineSubspace, [IsAffineSpace, IsRowVector, IsPlistRep],
AffineSubspace, [IsAffineSpace, IsRowVector],

AffineSubspace, [IsAffineSpace, IsRowVector, Is8BitMatrixRep],
AffineSubspace, [IsAffineSpace, IsRowVector, IsGF2MatrixRep],
RandomSubspace, [IsAffineSpace, IsInt],

Random, [IsAllSubspacesOfAffineSpace],

\in, [IsSubspaceOfAffineSpace, IsAffineSpace],

ElementsOfIncidenceStructure, InstallMethod(ElementsOfIncidenceStructure, [IsAffineSpace],
ElementsOfIncidenceStructure, InstallMethod(ElementsOfIncidenceStructure, [IsAffineSpace,IsPos

Points, InstallMethod(Points, [IsAffineSpace],

Lines, InstallMethod(Lines, [IsAffineSpace],

Planes, InstallMethod(Planes, [IsAffineSpace],

Solids, InstallMethod(Solids, [IsAffineSpace],

Size, [IsAllSubspacesOfAffineSpace],

ComplementSpace, InstallMethod(ComplementSpace, [IsVectorSpace,IsFFEC0ol11Coll],
VectorSpaceTransversalElement, InstallMethod(VectorSpaceTransversalElement, [IsV

[ectorSpace, Isk

VectorSpaceTransversal, InstallMethod(VectorSpaceTransversal, [IsVectorSpace,IsHFECol1lColl],

Enumerator, InstallMethod(Enumerator,[IsVectorSpaceTransversal],
Iterator, [IsAllSubspacesOfAffineSpace],

Enumerator, [IsAllSubspacesOfAffineSpace],

ViewObj, InstallMethod(ViewObj, [IsAffineSpaceandIsAffineSpaceRep],
PrintObj, InstallMethod(Print0Obj,[IsAffineSpaceandIsAffineSpaceRep],

ViewObj, InstallMethod(ViewObj, [IsAllSubspacesOfAffineSpaceand IsAllSubspacesOfAffineSpaceRey
PrintObj, InstallMethod(PrintObj, [IsAllSubspacesOfAffineSpaceand IsAllSubspacesOfProjectiveSt

Display, InstallMethod(Display, [IsSubspaceOfAffineSpace],

ViewObj, InstallMethod(ViewObj, [IsVectorSpaceTransversalandIsVectorSpaceTransversalRep],

IsIncident, InstallMethod(IsIncident, [IsSubspaceOfAffineSpace,IsSubspace0fAffin
Span, InstallMethod(Span, [IsSubspaceOfAffineSpace,IsSubspace0fAffineSpace],
Meet, InstallMethod(Meet, [IsSubspaceOfAffineSpace,IsSubspace0fAffineSpace],
IsParallel, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
ProjectiveCompletion, InstallMethod(ProjectiveCompletion, [IsAffineSpace],
ShadowOfElement, InstallMethod(ShadowOfElement, [IsAffineSpace,IsSubspaceO0fAffin

1eSpace] ,

1eSpace, IsPosIr

ShadowOfFlag, InstallMethod(ShadowOfFlag, [IsAffineSpace,IsFlagOfIncidenceStructure,IsPosInt],

EEERERERRERERRR R R R R R

GAP 4 Package FinInG 190

ParallelClass, [IsAffineSpace, IsSubspaceOfAffineSpace],

ParallelClass, InstallMethod(ParallelClass,"foranaffinesubspace", [IsSubspace0OfA
Iterator, [IsParallelClassOfAffineSpace and IsParallelClassOfAffineSpaceRep],
Size, InstallMethod(Size, [IsShadowSubspacesOfAffineSpaceand IsShadowSubspacesOf
Iterator, [IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceReq
ViewObj, InstallMethod(ViewObj, [IsShadowSubspacesO0fAffineSpaceand IsShadowSubsp
ViewObj, InstallMethod(ViewObj, [IsParallelClassOfAffineSpaceand IsParallelClass
Points, InstallMethod(Points, [IsSubspaceOfAffineSpace],

Points, InstallMethod(Points, [IsAffineSpace,IsSubspace0fAffineSpace],

Lines, InstallMethod(Lines, [IsSubspace0fAffineSpace],

Lines, InstallMethod(Lines, [IsAffineSpace,IsSubspaceOfAffineSpace],

Planes, InstallMethod(Planes, [IsSubspaceOfAffineSpace],

Planes, InstallMethod(Planes, [IsAffineSpace,IsSubspace0fAffineSpace],

Solids, InstallMethod(Solids, [IsSubspaceOfAffineSpace],

Solids, InstallMethod(Solids, [IsAffineSpace,IsSubspace0fAffineSpace],

affinegroup.gi: methods

M:
M:
M:

AffineGroup, InstallMethod(AffineGroup, [IsAffineSpace],
CollineationGroup, InstallMethod(CollineationGroup, [IsAffineSpace],
\~, InstallOtherMethod(\~, [IsSubspace0fAffineSpace,IsProjGrpElWithFrob],

gpolygons.gi: methods

e i e e e Jic Jitc e e e i i il i i Jic Jic Jic e e e e i it i S

ElementsOfIncidenceStructure, [IsGeneralisedPolygon and IsGeneralisedPolygonRef
ElementsOfIncidenceStructure, [IsElationGQByKantorFamily, IsPosInt],
ElementsOfIncidenceStructure, [IsGeneralisedHexagon and IsGeneralisedPolygonRep
Points, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],

Lines, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],

Size, [IsAllElementsOfGeneralisedPolygon],

Iterator, [IsAllElementsOfGeneralisedPolygon],

IsIncident, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon],
Wrap, [IsGeneralisedPolygon, IsPosInt, IsObject],

SplitCayleyHexagon, [IsField and IsFinite],

SplitCayleyHexagon, [IsPosInt],

TwistedTrialityHexagon, [IsField and IsFinite],

TwistedTrialityHexagon, [IsPosInt],

Wrap, [IsGeneralisedHexagon and IsLieGeometry, IsPosInt, IsObject],
Iterator, [IsAllElementsOfGeneralisedHexagon],

\=, [IsElementOfKantorFamily, IsElementOfKantorFamily],

\<, [IsElementOfKantorFamily, IsElementOfKantorFamily],

IsKantorFamily, [IsGroup, IsList, IsList],

EGQByKantorFamily, [IsGroup, IsList, IsList],

Iterator, [IsAllElementsOfKantorFamily],

IsIncident, [IsElementOfKantorFamily, IsElementOfKantorFamily],

Wrap, [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject],
IsAnisotropic, [IsSFFECo0llColl, IsField and IsFinite],

IsqClan, [IsFFEC0l11lCollColl, IsField and IsFinite],

qClan, [ISFFEC0llCollColl, IsField],

ViewObj, [IsqClanObj and IsqClanRep],

PrintObj, [IsqClanObj and IsqClanRep],

AsList, [IsqClanObj and IsqClanRep],

AsSet, [IsqClanObj and IsqClanRep],

\ffineSpace],
AffineSpaceRer

1,
acesOfAffineSt

OfAffineSpaceF

, IsPosInt],

, IsPosInt],

i e e e e Jilc Jitc Jic e e it i i i i e e Jic e i Jilc i it i i it i i i e Jic e Jic i i it Sl i i i i e Silc Jic Jic e e i i i

GAP 4 Package FinInG 191

BaseField, [IsqClanObj and IsqClanRepl],

IsLinearqClan, [IsqClanObj 1],

LinearqClan, [IsPosInt],

FisherThasWalkerKantorBettenqClan, [IsPosInt],

KantorMonomialqClan, [IsPosInt],

KantorKnuthqClan, [IsPosInt],

FisherqClan, [IsPosInt],

KantorFamilyByqClan, [IsqClanObj and IsqClanRep],

EGQByqClan, [IsqClanObj and IsqClanRep],

BLTSetByqClan, [IsqClanObj and IsqClanRep],

EGQByBLTSet, [IsList],

FlockGQByqClan, InstallMethod(FlockGQByqClan, [IsqClanObj],

EGQByBLTSet, [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
Diagram0fGeometry, InstallMethod(DiagramOfGeometry, [IsGeneralisedQuadrangle],
ProjectivePlaneByBlocks, InstallMethod(ProjectivePlaneByBlocks, [IsHomogeneousLi
ProjectivePlaneByIncidenceMatrix, InstallMethod(ProjectivePlaneByIncidenceMatri
CollineationGroup, [IsProjectivePlane and IsGeneralisedPolygonRep 1],

Span, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon], ## do we
Meet, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon], ## do we
\~, InstallOtherMethod(\~, [IsElementOfGeneralisedPolygon,IsPerm],
BlockDesignOfGeneralisedPolygon, [IsProjectivePlane and IsGeneralisedPolygonRe
BlockDesignOfGeneralisedPolygon, [IsGeneralisedPolygon and IsGeneralisedPolygg
IncidenceGraphOfGeneralisedPolygon, [IsGeneralisedPolygon],
IncidenceGraphOfGeneralisedPolygon, [IsProjectivePlane and IsGeneralisedPolygd
IncidenceMatrix0fGeneralisedPolygon, [IsGeneralisedPolygon],

ViewObj, [IsGeneralisedPolygon and IsGeneralisedPolygonRep and HasOrder],
PrintObj, InstallMethod(PrintObj, [IsGeneralisedPolygonandIsGeneralisedPolygonRe
ViewObj, InstallMethod(ViewObj, [IsElationGQandHasOrder],

ViewObj, InstallMethod(ViewObj, [IsElationGQandHasOrderandHasBasePointOfEGQ],
PrintObj, InstallMethod(PrintObj, [IsElationGQandHasOrder],

ViewObj, [IsProjectivePlane and HasOrder],

PrintObj, InstallMethod(Print0Obj, [IsProjectivePlaneandHasOrder],

ViewObj, InstallMethod(ViewObj, [IsGeneralisedQuadrangleandHasOrder],
PrintObj, InstallMethod(PrintObj, [IsGeneralisedQuadrangleandHasOrder],
ViewObj, [IsClassicalGQ and HasOrder and IsEllipticQuadric],

PrintObj, [IsClassicalGQ and HasOrder and IsEllipticQuadric],

Display, [IsClassicalGQ and HasOrder and IsEllipticQuadric],

ViewObj, [IsClassicalGQ and HasOrder and IsSymplecticSpace],

PrintObj, [IsClassicalGQ and HasOrder and IsSymplecticSpace],

ViewObj, [IsClassicalGQ and HasOrder and IsParabolicQuadric],

PrintObj, [IsClassicalGQ and HasOrder and IsParabolicQuadric],

ViewObj, [IsClassicalGQ and HasOrder and IsHyperbolicQuadric],

PrintObj, [IsClassicalGQ and HasOrder and IsHyperbolicQuadric],

ViewObj, [IsClassicalGQ and HasOrder and IsHermitianVariety],

PrintObj, [IsClassicalGQ and HasOrder and IsHermitianVariety],

ViewObj, InstallMethod(ViewObj, [IsClassicalGQandHasOrder],

PrintObj, InstallMethod(PrintObj, [IsClassicalGQandHasOrder],

ViewObj, [IsGeneralisedHexagon and HasOrder],

PrintObj, [IsGeneralisedHexagon and HasOrder],

ViewObj, [IsGeneralisedOctogon and HasOrder],

PrintObj, [IsGeneralisedOctogon and HasOrder],

ViewObj, [IsAllElementsOfGeneralisedPolygon and IsAllElementsOfGeneralisedPoly
PrintObj, [IsAllElementsOfGeneralisedPolygon and IsAllElementsOfGeneralisedPo]

B

st],
x, [IsMatrix],

want special f
want special f

pl,
nRep],

nRep 1,

pandHasOrder],

rgonRep],
ygonRep 1],

GAP 4 Package FinInG 192

ViewObj, [IsElementOfKantorFamily],
PrintObj, [IsElementOfKantorFamily],
ViewObj, [IsElementOfGeneralisedPolygon],
PrintObj, [IsElementOfGeneralisedPolygon],

EEERXR

A.3 The filter graph(s)

Appendix B

The finite classical groups in FininG

B.1 Standard forms used to produce the finite classical groups.

An overview of operations is given that produce gram matrices to construct standard forms. The notion
standard form is explained in Section 8.2, in the context of canonical and standard polar spaces.

B.1.1 CanonicalGramMatrix

> CanonicalGramMatrix(type, d, f) (operation)
Returns: a gram matrix usable as input to construct a sesquilinear form
The arguments d and f are the vector dimension and the fininte field respectively. The argument
type is eiter "symplectic", "hermitian", "hyperbolic", "elliptic" or "parabolic".
If type equals "symplectic", the gram matrix is

0 1 0 O 0 O
-1 0 0 O 0 O
0 0 0 1 0 O
0 0 -1 0 0 O
0 0 ... 0 1
0o 0 0o 0 ... -10

If type equals "hermitian", the gram matrix is the identity matrix of dimension d over the field

f=GF(q)
If type equals "hyperbolic”, the gram matrix is

0 a 00 00
a 000 0 0
0 0 0 a 00
0 0 aoO 0 0

(]
Q

0 0 ... a

=)
o
(=)

witha = 251 if p+1=0mod 4,q = p" and a = 1 otherwise.

193

GAP 4 Package FinInG 194

If type equals "ellipic", the gram matrix is

SO O =
S O -~ O
QI O OO
o Q OO
S O OO
o O O O

(e)
(@)
IS}

00O0O0 ... a

)

with ¢ the primitive root of GF(g) if ¢ = 1 mod 4 or ¢ =2 mod 4, and ¢ = 1 otherwise; and a = ”T“ if
p+1=0mod4,q = p" and a = 1 otherwise.
If type equals "parabolic", the gram matrix is

t 00 ... 00
0 0a ... 00
0 a 0 ... 00
000 .. 0 a
000 ... a oo

with ¢ the primitive root of GF(p) and a = t”TH ifg=5mod8 or g=7mod8, and t =a =1
otherwise.

There is no error message when asking for a hyperbolic, elliptic or parabolic type if the char-
acteristic of the field f is even. In such a case, a matrix is returned, which is of course not suit-
able to create a bilinear form that corresponds with an orthogonal polar space. For this reason,
CanonicalGramMatrix is not a operation designed for the user.

B.1.2 CanonicalQuadraticForm

> CanonicalQuadraticForm(type, d, f) (operation)

Returns: a gram matrix usable as input to construct a quadratic form

The arguments d and f are the vector dimension and the fininte field respectively. The argument
type is eiter "hyperbolic", "elliptic" or "parabolic". The matrix returned can be used to construct a
quadratic form.

If type equals "hyperbolic", the gram matrix returned will result in the quadratic form xjx; +
x3x4+ ... +x5-1xq

If type equals "elliptic", the gram matrix returned will result in the quadratic form x7 + x;x, +
VX% +x3%4 + ... + xg_1xgwith v = o, with \alpha the primitive element of the multiplicative group
of GF(q), which is in GAP Z(q), and i the first number in [0,1,...,q — 2] for which x*> +x+ v is
irreducible over GF(q).

If type equals "parabolic", the gram matrix returned will result in the quadratic form x2 +xx3 +
e Xd—1Xd

This function is intended to be used only when the characteristic of f is two, but there is no
error message is this is not the case. For this reason, CanonicalQuadraticForm is not an operation
designed for the user.

GAP 4 Package FinInG 195

B.2 Direct commands to construct the projective classical groups in
FinInG

As explained in Chapter 8, Section 8.5, we have assumed that the user asks for the projective classical
groups in an indirect way, i.e. as a (subgroup) of the collineation group of a classical polar space.
However, shortcuts to these groups exist. More information on the notations can be found in Section
8.5.

B.2.1 SOdesargues

> SOdesargues(e, d, 1) (operation)
Returns: the special isometry group of a canonical orthogonal polar space
The argument e determines the type of the othogonal polar space, i.e. -1,0,1 for an elliptic, hyper-
bolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying
vector space, f is the finite field. The method relies on S0, a GAP command returning the appropriate
matrix group. Internally, the invariant form is asked, and the base chage to our canonical form is
obtained using the package form

Example
gap> SOdesargues(-1,6,GF(9));

PsS0(-1,6,9)

gap> SOdesargues(0,7,GF(11));

PsS0(0,7,11)

gap> SOdesargues(1,8,GF(16));

PS0(1,8,16)

B.2.2 GOdesargues

> GOdesargues(e, d, f) (operation)
Returns: the isometry group of a canonical orthogonal polar space
The argument e determines the type of the othogonal polar space, i.e. -1,0,1 for an elliptic, hyper-
bolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying
vector space, f is the finite field. The method relies on GO, a GAP command returning the appropriate
matrix group. Internally, the invariant form is asked, and the base chage to our canonical form is
obtained using the package form

Example
gap> GOdesargues(-1,6,GF(9));

PGO(-1,6,9)

gap> GOdesargues(0,7,GF(11));

PG0(0,7,11)

gap> GOdesargues(1,8,GF(16));

PGO(1,8,16)

B.2.3 SUdesargues

> SUdesargues(d, f) (operation)
Returns: the special isometry group of a canonical hermitian polar space

GAP 4 Package FinInG 196

The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on SU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form
Example

gap> SUdesargues(4,GF(9));
PSU(4,3°2)

B.2.4 GUdesargues

> GUdesargues(d, 1) (operation)
Returns: the isometry/similarity group of a canonical hermitian polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form
Example

gap> GUdesargues(4,GF(9));
PGU(4,3"2)

B.2.5 Spdesargues

> Spdesargues(d, f) (operation)
Returns: the (special) isometry group of a canonical symplectic polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form
Example

gap> Spdesargues(6,GF(11));
PSp(6,11)

B.2.6 GeneralSymplecticGroup

> GeneralSymplecticGroup(d, f) (operation)
Returns: the isometry group of a canonical symplectic form
The argument d is the dimension of the underlying vector space, f is the finite field. Internally,
the invariant form is asked, and the base chage to our canonical form is obtained using the package

form

Example
gap> GeneralSymplecticGroup(6,GF(7));
GSp(6,7)

B.2.7 GSpdesargues

> GSpdesargues(d, f) (operation)
Returns: the similarity group of a canonical symplectic polar space

GAP 4 Package FinInG 197

The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form
Example

gap> GSpdesargues(4,GF(9));
PGSp(4,9)

B.2.8 GammaSp

> GammaSp (a, ©) (operation)
Returns: the collineation group of a canonical symplectic polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GeneralSymplecticGroup, and adds the frobenius automorphism.
Example

gap> GammaSp(4,GF(9));
PGammaSp (4,9)

B.2.9 DeltaOminus

> DeltaOminus (d , f) (operation)
Returns: the similarity group of a canonical elliptic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GOdesargues, and computes the generators to be added.
Example

gap> DeltaOminus(6,GF(7));
PDelta0-(6,7)

B.2.10 DeltaOplus

> DeltaOplus(d, f) (operation)
Returns: the similarity group of a canonical hyperbolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GOdesargues, and computes the generators to be added.
Example

gap> DeltaOplus(8,GF(7));
PDelta0+(8,7)

B.2.11 GammaOminus

> GammaOminus(d, f) (operation)
Returns: the collineation group of a canonical elliptic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on DeltaOminus, and computes the generators to be added.

GAP 4 Package FinInG 198

Example

gap> GammaOminus(4,GF(25));
PGammaO- (4,25)

B.2.12 GammaO

> GammalO (d 5 f) (operation)
Returns: the collineation group of a canonical parabolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GO, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form. Furthermore,
the generators to be added are computed.
Example

gap> GammaO(5,GF(49));
PGamma0(5,49)

B.2.13 GammaOplus

> GammaOplus (d, f) (operation)
Returns: the collineation group of a canonical hyperbolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on DeltaOplus, and computes the generators to be added.
Example

gap> GammaOplus(6,GF(64));
PGamma0+(6,64)

B.2.14 GammaU

> GammaU(d ,) (operation)
Returns: the collineation group of a canonical hermitian variety
The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form. Furthermore,
the generators to be added are computed.
Example

gap> GammaU(4,GF(81));
PGammaU (4,972)

References

[BLT90]

[BS74]

[CamO0a]

[CamOOb]

[Gil08]

[HT91]

[KL90]

[Pay85]

[PT84]

[Tit74]

[Vel59]

[VY65a]

[VY65b]

Laura Bader, Guglielmo Lunardon, and Joseph A. Thas. Derivation of flocks of quadratic
cones. Forum Math., 2(2):163-174, 1990. 149

Francis Buekenhout and Ernest Shult. On the foundations of polar geometry. Geometriae
Dedicata, 3:155-170, 1974. 83

Peter J. Cameron. Classical Groups. Online notes, http://www.maths.qgmul.ac.uk/
“pjc/class_gps/, 2000. 70

Peter J. Cameron. Projective and Polar Spaces. Online notes, http://www.maths.qmul.
ac.uk/"pjc/pps/, 2000. 84

Nick Gill. Polar spaces and embeddings of classical groups. to appear in New Zealand J.
Math., 2008. 128

J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical
Monographs. The Clarendon Press Oxford University Press, New York, 1991. Oxford
Science Publications. 37, 75, 84

Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups,
volume 129 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 1990. 75, 85, 130

Stanley E. Payne. A new infinite family of generalized quadrangles. In Proceedings of
the sixteenth Southeastern international conference on combinatorics, graph theory and
computing (Boca Raton, Fla., 1985), volume 49, pages 115-128, 1985. 146

S. E. Payne and J. A. Thas. Finite generalized quadrangles, volume 110 of Research Notes
in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984. 145

Jacques Tits. Buildings of spherical type and finite BN-pairs. Springer-Verlag, Berlin,
1974. Lecture Notes in Mathematics, Vol. 386. 83

F. D. Veldkamp. Polar geometry. L, I, IIL, IV, V. Nederl. Akad. Wetensch. Proc. Ser. A 62;
63 = Indag. Math. 21 (1959), 512-551, 22:207-212, 1959. 83

Oswald Veblen and John Wesley Young. Projective geometry. Vol. 1. Blaisdell Publishing
Co. Ginn and Co. New York-Toronto-London, 1965. 37, 109

Oswald Veblen and John Wesley Young. Projective geometry. Vol. 2 (by Oswald Veblen).
Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1965. 37, 109

199

http://www.maths.qmul.ac.uk/~pjc/class_gps/
http://www.maths.qmul.ac.uk/~pjc/class_gps/
http://www.maths.qmul.ac.uk/~pjc/pps/
http://www.maths.qmul.ac.uk/~pjc/pps/

Index

*, 26, 42, 96, 113
FinIinG, 7
\", 67,121, 139

AbsolutePoints, 81
ActionOnAllProjPoints, 68
AffineGroup, 120
AffineSpace, 110
AffineSubspace, 111
AffineVariety, 138
AG, 110
AlgebraicVariety, 134, 135, 138
AmbientGeometry, 27
AmbientGroup, 160
AmbientPolarSpace, 153
AmbientSpace, 33, 39, 44, 90, 96, 111, 114, 135,
153, 154
AsList, 52, 103

BaseField, 38, 44, 62, 66, 78,92, 110, 114
BasePointOfEGQ, 151
BlockDesignOfGeneralisedPolygon, 156
BlownUpProjectiveSpace, 129
BlownUpProjectiveSpaceBySubfield, 129
BlownUpSubspaceOfProjectiveSpace, 130
BlownUpSubspaceOfProjectiveSpaceBy-
Subfield, 130
BLTSetByqClan, 149
Borelsubgroup, 160

CanComputeActionOnPoints, 73
CanonicalGramMatrix, 193
CanonicalPolarSpace, 90
CanonicalQuadraticForm, 194
CanonicalResidueOfFlag, 161
Collineation, 58
CollineationAction, 154
CollineationGroup, 64, 102, 120, 154
CollineationOfProjectiveSpace, 58
CompanionAutomorphism, 78

ComplementSpace, 119
Coordinates, 43, 96
Correlation, 60
CorrelationO0fProjectiveSpace, 60
CosetGeometry, 159

DefininglistOfPolynomials, 134
DeltaOminus, 197

DeltaOplus, 197
DiagramOfGeometry, 163
Dimension, 38, 66, 91, 95, 110
DrawDiagram, 163
DualCoordinatesOfHyperplane, 43

EGQByBLTSet, 150
EGQByKantorFamily, 146
EGQByqClan, 147
ElationGroup, 151
ElationOfProjectiveSpace, 70
ElementsIncidentWithElementOf-
IncidenceStructure, 30, 50
ElementsOfIncidenceStructure, 25, 112
ElementToElement, 36
ElementToVectorSpace, 34
EllipticQuadric, 89
ElmentsOfIncidenceStructure, 41, 95
Embed, 36
Embedding, 66
EmptySubspace, 40, 94
Enumerator, 32, 51, 102, 118
EquationOfHyperplane, 44

FieldAutomorphism, 62
FiningSetwiseStabiliser, 108
FiningStabiliser, 104
FiningStabiliserOrb, 106
FisherqClan, 148
FisherThasWalkerKantorBettenqClan, 148
FlagOfIcidenceStructure, 28
FlagOfIncidenceStructure, 47

200

GAP 4 Package FinInG

FlagToStandardFlag, 161

GammaO, 198

GammaOminus, 197
GammaOplus, 198

GammaSp, 197

GammaU, 198
GeneralSymplecticGroup, 196
GeometryO0fAbsolutePoints, 80
GOdesargues, 195
GramMatrix, 78
GrassmannMap, 143
GrassmannVariety, 142
GSpdesargues, 196
GUdesargues, 196

HermitianPolarityOfProjectiveSpace, 76
HermitianPolarSpace, 87
HermitianVariety, 136
HomographyGroup, 63
HomologyOfProjectiveSpace, 71
HyperbolicQuadric, 88
HyperplaneByDualCoordinates, 44
Hyperplanes, 35, 41, 50, 112

IdentityMappingOfElementsOfProjective-
Space, 59

ImageElm, 138

ImagesSet, 139

\in, 26, 34, 42,97, 113, 135

IncidenceGraph, 162

IncidenceGraphOfGeneralisedPolygon, 157

IncidenceMatrix0OfGeneralisedPolygon,
158

IncidenceStructure, 21

Intertwiner, 123, 127

IsAffineSpace, 21, 109

IsChamberOfIncidenceStructure, 28, 48

IsClassicalGQ, 22

IsClassicalPolarSpace, 22, 83

IsCollinear, 98

IsCollineation, 56

IsCollineationGroup, 65

IsConnected, 161

IsCorrelation, 57

IsCorrelationCollineation, 57

IsDesarguesianSpreadElement, 130

IsElationGQ, 22

201

IsElemenst0fAffineSpace, 24
IsElement0fAffineSpace, 24
IsElement0fIncidenceGeometry, 23
IsElementOfIncidenceStructure, 23
IsElement0fLieGeometry, 24
IsElements0fIncidenceGeometry, 24
IsElementsOfIncidenceStructure, 24
IsElements0fLieGeometry, 24
IsEllipticQuadric, 92
IsEmptyFlag, 48
IsEmptySubspace, 33
IsFirmGeometry, 161
IsFlagTransitiveGeometry, 160
IsGeneralisedHexagon, 22
IsGeneralisedOctogon, 22
IsGeneralisedPolygon, 21
IsGeneralisedQuadrangle, 22
IsGeometryMorphism, 122
IsHermitianPolarityOfProjectiveSpace,
79
IsHyperbolicQuadric, 92
IsIncidenceGeometry, 21
IsIncidenceStructure, 20
IsIncident, 26,42, 96, 113, 160
IsKantorFamily, 145
IsLieGeometry, 21
Isometry, 99
IsometryGroup, 101
IsomorphismPolarSpaces, 123
IsomorphismPolarSpacesNC, 124, 125
IsOrthogonalPolarity0fProjectiveSpace,
79
IsParabolicQuadric, 93
IsParallel, 115
IsProjectiveSpace, 22, 37
IsProjectivity, 55
IsProjectivityGroup, 65
IsProjGrpEl, 54
IsProjGrpElRep, 54
IsProjGrpElWithFrob, 54
IsProjGrpElWithFrobRep, 54
IsProjGrpElWithFrobWithPSIsom, 54, 57
IsProjGrpElWithFrobWithPSIsomRep, 55
IsPseudoPolarity0fProjectiveSpace, 80
IsqClan, 147
IsResiduallyConnected, 161
IsStrictlySemilinear, 56

GAP 4 Package FinInG 202

IsSubspace0fClassicalPolarSpace, 24 PolarSpace, 81, 84, 137
IsSubspaceO0fProjectiveSpace, 24 ProjectiveCompletion, 133
IsSubspaces0fClassicalPolarSpace, 24 ProjectiveDimension, 32, 38, 40, 91, 95
IsSubspaces0fProjectiveSpace, 24 ProjectiveElationGroup, 70
IsSymplecticPolarityOfProjectiveSpace, ProjectiveHomologyGroup, 72

79 ProjectivePlaneByBlocks, 144
IsVectorSpaceTransversal, 118 ProjectivePlaneByIncidenceMatrix, 144
Iterator, 31,51, 103, 117, 135 ProjectiveSemilinearMap, 59

ProjectiveSpace, 37
ProjectiveSpacelsomorphism, 62
ProjectiveVariety, 135
Projectivity, 58
ProjectivityGroup, 63

KantorFamilyByqClan, 148
KantorKnuthqClan, 148

KantorMonomialqClan, 148
KleinCorrespondence, 132

LinearqClan, 148 qClan, 147

Lines, 25, 30, 41, 50, 112 QuadraticForm, 137

List, 52,102 QuadraticVariety, 136

Meet, 47, 98, 115 Random, 26, 45
RandomSubspace, 46

NaturalDuality, 133
NaturalEmbeddingByFieldReduction, 126,
127
NaturalEmbeddingBySubField, 130
NaturalEmbeddingBySubspace, 125
NaturalEmbeddingBySubspaceNC, 125
NaturalProjectionBySubspace, 131
NaturalProjectionBySubspaceNC, 131
NiceMonomorphism, 72
NiceObject, 73 SegreMap, 139, 140
SegreVariety, 139
Semi-similarity, 99, 100
SesquilinearForm, 77, 137
OnProjSubspacesExtended, 69 ShadowOfElement, 28, 49, 116
Order, 63,154 ShadowOfFlag, 29, 49, 117
Similarity, 99
SimilarityGroup, 101
S0desargues, 195
Solids, 25, 30, 41, 50, 112
Source, 138, 140, 142, 143
Span, 46, 97, 114
Spdesargues, 196
SpecialHomographyGroup, 64
SpecialIsometryGroup, 100
SpecialProjectivityGroup, 64
SplitCayleyHexagon, 152
StandardDualityOfProjectiveSpace, 59
StandardFlag0fCosetGeometry, 161

Range, 138
Rank, 23, 38, 91, 110
Rank2Parameters, 162
RankAttr, 23
Representative, 61
ResidueOfFlag, 162
Rk2GeoDiameter, 162
Rk2GeoGonality, 162

OnAffineSpaces, 121
OnProjSubspaces, 67

ParabolicQuadric, 87
ParabolicSubgroups, 160
ParallelClass, 116

PG, 37

Planes, 25, 30, 41, 50, 112

Points, 25, 30, 41, 50, 112, 135, 139, 141, 142
PointsOfAlgebraicVariety, 135
PointsOfGrassmannVariety, 142
Points0fSegreVariety, 139
Points0fVeroneseVariety, 141
Polarity, 98
PolarityOfProjectiveSpace, 76, 77

GAP 4 Package FinInG

StandardFrame, 43
StandardPolarSpace, 90
SUdesargues, 195
SymplecticSpace, 86

TwistedTrialityHexagon, 153

TypeOfSubspace, 98

TypesOfElementsOfIncidenceStructure, 23

TypesOfElementsOfIncidenceStructure-
Plural, 23

UnderlyingMatrix, 61
UnderlyingVectorSpace, 32, 38, 90, 110

VectorSpaceToElement, 33, 39, 94
VectorSpaceTransversal, 118
VectorSpaceTransversalElement, 118
VeroneseMap, 141
VeroneseVariety, 141

203

	Introduction
	Philosophy
	Overview over this manual
	The Development Team

	Installation of the FinInG-Package
	Installing FinInG under UNIX like systems
	Installing other required packages

	Examples
	A simple example to get you started
	Polar Spaces
	Elation generalised quadrangles
	Diagram geometries

	Incidence Geometry
	Incidence structures
	Elements of incidence structures
	Flags of incidence structures
	Shadow of elements
	Enumerating elements of an incidence structure
	Lie geometries
	Elements of Lie geometries
	Hard wired embeddings and converting elements

	Projective Spaces
	Projective Spaces and basic operations
	Subspaces of projective spaces
	Shadows of Projective Subspaces
	Enumerating subspaces of a projective spaces

	Projective Groups
	 Projectivities, collineations and correlations of projective spaces.
	Construction of projectivities, collineations and correlations.
	Basic operations for projectivities, collineations and correlations of projective spaces
	The groups PL, PGL, and PSL in FinInG
	Basic operations for projective groups
	Natural embedding of a collineation group in a correlation group
	Basic action of projective group element
	Projective group actions
	Special subgroups of the projectivity group
	Nice Monomorphisms

	Polarities of Projective Spaces
	Creating polarities of projective spaces
	Operations, attributes and properties for polarties of projective spaces
	Polarities, absolute points, totally isotropic elements and finite classical polar spaces
	Commuting polarities

	Finite Classical Polar Spaces
	Finite Classical Polar Spaces
	Canonical and standard Polar Spaces
	Basic operations for finite classical polar spaces
	Subspaces of finite classical polar spaces
	Projective Orthogonal/Unitary/Symplectic groups in FinInG
	Enumerating subspaces of polar spaces

	Actions, stabilisers and orbits
	Stabilisers

	Affine Spaces
	Affine spaces and basic operations
	Subspaces of affine spaces
	Shadows of Affine Subspaces
	Iterators and enumerators
	Affine groups

	Geometry Morphisms
	Geometry morphisms in FinInG
	Isomorphisms between polar spaces
	When will you use geometry morphisms?
	Natural geometry morphisms
	Some special kinds of geometry morphisms

	Algebraic Varieties
	Algebraic Varieties
	Projective Varieties
	Quadrics and Hermitian varieties
	Affine Varieties
	Geometry maps
	Segre Varieties
	Veronese Varieties
	Grassmann Varieties

	Generalised Polygons
	Projective planes
	Generalised quadrangles
	Generalised hexagons
	General attributes and operations for generalised polygons

	Coset Geometries and Diagrams
	Coset Geometries
	Diagrams

	The structure of FinInG
	The different components
	The complete inventory
	The filter graph(s)

	The finite classical groups in FinInG
	Standard forms used to produce the finite classical groups.
	Direct commands to construct the projective classical groups in FinInG

	References
	Index

