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Chapter 1

Introduction

1.1 Philosophy

FinInG is a package for computation in finite geometry. It provides users with the basic tools to
work in various areas of finite geometry from the realms of projective spaces to the flat lands of
generalised polygons. The algebraic power of GAP is employed, particularly in its facility with matrix
and permutation groups.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. More text on other chapters to be written.
Finally, Chapter 3 shows instructive examples for the usage of this package.

1.3 The Development Team

This is the development team, from left to right: Philippe Cara, Michel Lavrauw, Max Neunhöffer,
Jan De Beule and John Bamberg, meeting in St. Andrews in september 2008.
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The development team meetingg again (without Max), now in Vicenza in april 2011. from left to
right: Michel Lavrauw, John Bamberg, Philippe Cara, Jan De Beule.
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Chapter 2

Installation of the FinInG-Package

This package is dependent on three other packages: Forms, GenSS and Orb. If you do not already
have these packages installed on your system, you will need to do so in order to use FinInG. To install
this package just extract the package’s archive file to the GAP pkg directory.

By default the FinInG package is not automatically loaded by GAP when it is installed. You must
load the package with LoadPackage("fining"); before its functions become available. Please, send
us an e-mail if you have any questions, remarks, suggestions, etc. concerning this package. Also, we
would like to hear about applications of this package.

The Authors
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Chapter 3

Examples

In this chapter we provide some simple examples of the use of FinInG.

3.1 A simple example to get you started

In this example, we consider a hyperoval of the projective plane PG(2,4), that is, six points no three
collinear.

Example
gap> pg := ProjectiveSpace(2, 4);
PG(2, 4)
gap> points := Points( pg );
<points of PG(2, 4)>
gap> pointslist := AsList( points );
[ <a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)> ]

gap> Display( pointslist[1] );
[ 0*Z(2), 0*Z(2), Z(2)ˆ0 ]

Now we may assume that our hyperoval contains the fundamental frame.
Example

gap> pg := ProjectiveSpace(2,4);
PG(2, 4)
gap> points := Points(pg);
<points of PG(2, 4)>
gap> pointslist := AsList(points);
[ <a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)> ]

13
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gap> Display(pointslist[1]);
[ 0*Z(2), 0*Z(2), Z(2)ˆ0 ]
gap> frame := [[1,0,0],[0,1,0],[0,0,1],[1,1,1]]*Z(2)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ] ]

gap> frame := List(frame,x -> VectorSpaceToElement(pg,x));
[ <a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)> ]

gap> pairs := Combinations(frame,2);
[ [ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ] ]

gap> secants := List(pairs,p -> Span(p[1],p[2]));
[ <a line in PG(2, 4)>, <a line in PG(2, 4)>, <a line in PG(2, 4)>,
<a line in PG(2, 4)>, <a line in PG(2, 4)>, <a line in PG(2, 4)> ]

gap> leftover := Filtered(pointslist,t->not ForAny(secants,s->t in s));
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ]
gap> hyperoval := Union(frame,leftover);
[ <a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)> ]

gap> g := CollineationGroup(pg);
PGammaL(3,4)
gap> stab := Stabilizer(g,Set(hyperoval),OnSets);
<projective semilinear group of size 720>
gap> StructureDescription(stab);
"S6"

There are six secant lines to this frame (”four choose two”). So we put together these secant lines
from the pairs of points of this frame.

Example
gap> pairs := Combinations( frame, 2 );
[ [ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ],
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ] ]

gap> secants := List( pairs, p -> Join(p[1], p[2]) );
[ <a line in PG(2, 4)>, <a line in PG(2, 4)>, <a line in PG(2, 4)>,
<a line in PG(2, 4)>, <a line in PG(2, 4)>, <a line in PG(2, 4)> ]

By a counting argument, it is known that the frame of PG(2,4) completes uniquely to a hyperoval.
Example

gap> leftover := Filtered( pointslist, t -> not ForAny( secants, s -> t in s ) );
[ <a point in PG(2, 4)>, <a point in PG(2, 4)> ]
gap> hyperoval := Union( frame, leftover );
[ <a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)>,
<a point in PG(2, 4)>, <a point in PG(2, 4)>, <a point in PG(2, 4)> ]
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This hyperoval has S6 as its stabiliser, which can easily be calculated:
Example

gap> g := CollineationGroup(pg);
PGammaL(3,4)
gap> stab := Stabilizer(g, Set(hyperoval), OnSetsProjSubspaces);
<projective group with Frobenius of size 720>
gap> StructureDescription( stab );
"S6"

3.2 Polar Spaces

3.2.1 Lines meeting a hermitian curve

Here we see how the lines of a projective plane PG(2,q2) meet a hermitian curve. It is well known
that every line meets in either 1 or q+1 points.

Example
gap> h:=HermitianVariety(2, 7ˆ2);
H(2, 7ˆ2)
gap> pg := AmbientSpace( h );
PG(2, 49)
gap> lines := Lines( pg );
<lines of PG(2, 49)>
gap> curve := AsList( Points( h ) );;
#I Computing nice monomorphism...
gap> Size(curve);
344
gap> Collected( List(lines, t -> Number(curve, c-> c in t)));
[ [ 1, 344 ], [ 8, 2107 ] ]

3.2.2 W(3,3) inside W(5,3)

In this example, we embed W(3,3) in W(5,3).
Example

gap> w3 := SymplecticSpace(3, 3);
W(3, 3)
gap> w5 := SymplecticSpace(5, 3);
W(5, 3)
gap> pg := AmbientSpace( w5 );
PG(5, 3)
gap> solids := ElementsOfIncidenceStructure(pg, 4);
<solids of PG(5, 3)>
gap> iter := Iterator( solids );
<iterator>
gap> perp := PolarityOfProjectiveSpace( w5 );
<polarity of PG(5, GF(3)), < immutable compressed matrix 6x6 over GF(
3) >, Fˆ0 >
gap> solid := NextIterator( iter );
<a solid in PG(5, 3)>
gap> solidˆperp;
<a line in PG(5, 3)>
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gap> em := NaturalEmbeddingBySubspace( w3, w5, solid );
<geometry morphism from <Elements of W(3, 3)> to <Elements of W(5, 3)>>
gap> points := Points( w3 );
<points of W(3, 3)>
gap> points2 := ImagesSet(em, AsSet(points));;
#I Computing nice monomorphism...
gap> ForAll(points2, x -> x in solid);
true

3.2.3 Spreads of W(5,3)

A spread of W(5,q) is a set of q3 +1 planes which partition the points of W(5,q). Here we enumerate
all spreads of W(5,3) which have a set-wise stabiliser of order a multiple of 13.

Example
gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> g := IsometryGroup(w);
#I Computing nice monomorphism...
PSp(6,3)
gap> syl := SylowSubgroup(g, 13);
<projective semilinear group of size 13>
gap> planes := Planes( w );
<planes of W(5, 3)>
gap> points := Points( w );
<points of W(5, 3)>
gap> orbs := Orbits(syl, planes , OnProjSubspaces);;
gap> IsPartialSpread := x -> Number(points, p ->
> ForAny(x, i-> p in i)) = Size(x)*13;; \

gap> partialspreads := Filtered(orbs, IsPartialSpread);;
gap> 13s := Filtered(partialspreads, i -> Size(i) = 13);;
gap> 26s := List(Combinations(13s,2), Union);;
gap> two := Union(Filtered(partialspreads, i -> Size(i) = 1));;
gap> good26s := Filtered(26s, x->IsPartialSpread(Union(x, two)));;
gap> spreads := List(good26s, x->Union(x, two));;

3.2.4 The Patterson ovoid

In this example, we construct the unique ovoid of the parabolic quadric Q(6,3), first discovered by
Patterson, but for which was given a nice construction by E. E. Shult. We begin with the ”sums of
squares” quadratic form over GF(3).

Example
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space of dimension 6 over GF(3)>

The construction of the ovoid (a la Shult):
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Example
gap> psl32 := PSL(3,2);
Group([ (4,6)(5,7), (1,2,4)(3,6,5) ])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0],

[1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)ˆ0;
[ [ Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3), Z(3)ˆ0, Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3)ˆ0, Z(3)ˆ0, Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]

gap> ovoid := Union( List(reps, x-> Orbit(psl32, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;

We check that this is indeed an ovoid...
Example

gap> planes := AsList( Planes( ps ) );;
gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);
true

The stabiliser is interesting since it yields the embedding of Sp(6,2) in PO(7,3). To efficiently compute
the set-wise stabiliser, we refer to the induced permutation representation.

Example
gap> g := IsometryGroup( ps );
<projective semilinear group of size 9170703360 with 2 generators>
gap> stabovoid := SetwiseStabilizer(g, OnProjSubspaces, ovoid)!.setstab;
<projective semilinear group with 14 generators>
gap> DisplayCompositionSeries(stabovoid);
G (size 1451520)
| B(3,2) = O(7,2) ˜ C(3,2) = S(6,2)

1 (size 1)
gap> OrbitLengths(stabovoid, ovoid);
[ 28 ]
gap> IsTransitive(stabovoid, ovoid);
true

3.3 Elation generalised quadrangles

3.3.1 The classical q-clan

In this example, we construct a classical elation generalised quadrangle from a q-clan, and we see that
the associated BLT-set is a conic.

Example
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> IsqClan( clan, f );
true
gap> egq := EGQByqClan( clan, f );
#I Computed Kantor family. Now computing EGQ...
#I Computing points from Kantor family...
#I Computing lines from Kantor family...
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<EGQ of order [ 9, 3 ] and basepoint 0>
gap> elations := ElationGroup( egq );
<matrix group of size 243 with 8 generators>
gap> points := Points( egq );
<points of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> p := Random(points);
<a point of a Kantor family>
gap> x := Random(elations);
[ [ Z(3)ˆ0, Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> OnKantorFamily(p,x);
<a point of a Kantor family>
gap> orbs := Orbits( elations, points, OnKantorFamily);;
gap> Collected(List( orbs, Size ));
[ [ 1, 1 ], [ 9, 4 ], [ 243, 1 ] ]
gap> blt := BLTSetByqClan( clan, f );
[ <a point in Q(4, 3)>, <a point in Q(4, 3)>, <a point in Q(4, 3)>,
<a point in Q(4, 3)> ]

gap> q4q := AmbientGeometry( blt[1] );
Q(4, 3)
gap> span := Join( blt );
<a plane in PG(4, 3)>
gap> Print("Now we see if this BLT-set is a conic\n");
Now we see if this BLT-set is a conic
gap> ProjectiveDimension( span );
2

3.3.2 Two ways to construct a flock generalised quadrangle from a Kantor-Knuth
semifield q-clan

We will construct an elation generalised quadrangle directly from the Kantor-Knuth semifield q-clan
and also via its corresponding BLT-set. The q-clan in question here are the set of matrices Ct of the

form
(

t 0
0 −ntφ

)
where t runs over the elements of GF(q), q is odd and not prime, n is a fixed

nonsquare and \phi is a nontrivial automorphism of GF(q).
Example

gap> SetInfoLevel( InfoDesargues, 0 );
gap> q := 9;
9
gap> f := GF(q);
GF(3ˆ2)
gap> squares := AsList(Group(Z(q)ˆ2));
[ Z(3)ˆ0, Z(3), Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ6 ]
gap> n := First(GF(q), x -> not IsZero(x) and not x in squares);
Z(3ˆ2)
gap> sigma := FrobeniusAutomorphism( f );
FrobeniusAutomorphism( GF(3ˆ2) )
gap> zero := Zero(f);
0*Z(3)
gap> qclan := List(GF(q), t -> [[t, zero], [zero,-n * tˆsigma]] );
[ [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ],
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[ [ Z(3ˆ2), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0 ] ],
[ [ Z(3ˆ2)ˆ5, 0*Z(3) ], [ 0*Z(3), Z(3) ] ],
[ [ Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), Z(3ˆ2)ˆ5 ] ],
[ [ Z(3ˆ2)ˆ2, 0*Z(3) ], [ 0*Z(3), Z(3ˆ2)ˆ3 ] ],
[ [ Z(3ˆ2)ˆ3, 0*Z(3) ], [ 0*Z(3), Z(3ˆ2)ˆ6 ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3ˆ2) ] ],
[ [ Z(3ˆ2)ˆ7, 0*Z(3) ], [ 0*Z(3), Z(3ˆ2)ˆ2 ] ],
[ [ Z(3ˆ2)ˆ6, 0*Z(3) ], [ 0*Z(3), Z(3ˆ2)ˆ7 ] ] ]

gap> IsqClan( qclan, f );
true
gap> egq1 := EGQByqClan( qclan, f );
<EGQ of order [ 81, 9 ] and basepoint 0>
gap> blt := BLTSetByqClan( qclan, f );
[ <a point in Q(4, 9)>, <a point in Q(4, 9)>, <a point in Q(4, 9)>,
<a point in Q(4, 9)>, <a point in Q(4, 9)>, <a point in Q(4, 9)>,
<a point in Q(4, 9)>, <a point in Q(4, 9)>, <a point in Q(4, 9)>,
<a point in Q(4, 9)> ]

gap> egq2 := EGQByBLTSet( blt );
<EGQ of order [ 81, 9 ] and basepoint [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3),

0*Z(3), 0*Z(3) ]>

3.4 Diagram geometries

3.4.1 A rank 4 geometry for PSL(2,11)

Here we look at a particular flag-transitive geometry constructed from four subgroups of PSL(2,11),
and we construct the diagram for this geometry. To view this diagram, you need to either use a
postscript viewer or a dotty viewer (such as GraphViz).

Example
gap> g := PSL(2,11);
Group([ (3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) ])
gap> g1 := Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,\
9) ]);
Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ])
gap> g2 := Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,\
9) ]);
Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ])
gap> g3 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,\
8) ]);
Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8) ])
gap> g4 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,1\
2) ]);
Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12) ])
gap> cg := CosetGeometry(g, [g1,g2,g3,g4]);
CosetGeometry( Group( [ ( 3,11, 9, 7, 5)( 4,12,10, 8, 6),
( 1, 2, 8)( 3, 7, 9)( 4,10, 5)( 6,12,11) ] ) )

gap> SetName(cg, "Gamma");
gap> ParabolicSubgroups(cg);
[ Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)

]),
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Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)
]),

Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)
]),

Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12)
]) ]

gap> BorelSubgroup(cg);
Group(())
gap> AmbientGroup(cg);
Group([ (3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) ])
gap> type2 := ElementsOfIncidenceStructure( cg, 2 );
<varieties of type 2 of Gamma>
gap> IsFlagTransitiveGeometry( cg );
true
gap> DrawDiagram( DiagramOfGeometry(cg), "PSL211");

The output of this example uses dotty which is a sophisticated graph drawing pro-
gram. We could have also used neato to make a diagram with straight lines, which
we may offer in a later version of our package. Here is what the output looks like:



Chapter 4

Incidence Geometry

The term geometry, or incidence geometry, is interpreted broadly in this package. The basis for the
construction of the objects in this package is an abstract incidence geometry consisting of elements,
types, and an incidence relation. To be more specific, an incidence geometry consists of a set of
elements a symmetric relation on the elements and a type function from the set of elements to an
index set (i.e., every element has a “type”). There are two axioms: (i) no two elements of the same
type are incident; (ii) every maximal flag contains an element of each type. Thus, a projective 5-space
is an incidence geometry with five types of elements; points, lines, planes, solids, and hyperplanes.

FinInG concerns itself primarily with the most commonly studied incidence geometries of rank
more than 2: projective spaces, polar spaces, and affine spaces. However, some facility with gener-
alised polygons has been included. Throughout, no matter the geometry, we have made the convention
that an element of type 1 is a “point”, an element of type 2 is a “line”, and so forth. The examples we
use in this section use projective spaces, which have not introduced the reader to yet in this manual.
For further information on projective spaces, see Chapter 8.

probably more detailed information is needed here. E.g. we start to explain Incidence Geometry,
but suddenly, we talk about Incidence Structures in the next sections. Not clear at all if we mean
the same thing or not, and, we have Incidence Geometries *and* Incidence Structures in this package.
Essentially, in this chapter we describe functionality that is DECLARED for incidence structures, which
does not imply that operations described here will work for arbitrarily user constructed incidence
geometries.

4.1 Incidence structures

particular and general examples of incidence structures. Show categorie graph?

4.1.1 IsIncidenceStructure

♦ IsIncidenceStructure (Category)

General Top level category for all objects representing an incidence structure.
IsIncidenceStructure.

21
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4.1.2 IsIncidenceGeometry

♦ IsIncidenceGeometry (Category)

General category for all objects representing an incidence geometry.
Lie Geometries, i.e. geometries with a projective space as ambient geometry, affine spaces and

generalised polygons have their category, as a subcategory of IsIncidenceGeometry.

4.1.3 Main categories in IsIncidenceGeometry

♦ IsLieGeometry (Category)

♦ IsAffineSpace (Category)

♦ IsGeneralisedPolygon (Category)

4.1.4 Main categories in IsLieGeometry

♦ IsProjectiveSpace (Category)

♦ IsClassicalPolarSpace (Category)

Lie geometries bundle projective spaces and classical polar spaces. Both classes of geometries
have their category, as a subcategory of IsLieGeometry.

The following categories for geometries are not considered as main categories.

4.1.5 Categories in IsGeneralisedPolygon

♦ IsGeneralisedQuadrangle (Category)

♦ IsGeneralisedHexagon (Category)

♦ IsGeneralisedOctogon (Category)

Within IsGeneralisedPolygon, categories are declared for generalised quadrangles, generalised
hexagons, and generalised octogons.

4.1.6 IsElationGQ

♦ IsElationGQ (Category)

Within IsGeneralisedQuadrangle, this category is declared to construct elation generalised
quadrangles.

4.1.7 IsClassicalGQ

♦ IsClassicalGQ (Category)

This category lies in IsElationGQ and IsClassicalPolarSpace.
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4.1.8 Examples of categories of incidence geometries
Example

gap> CategoriesOfObject(ProjectiveSpace(5,7));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsProjectiveSpace" ]

gap> CategoriesOfObject(HermitianVariety(5,9));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsClassicalPolarSpace" ]

gap> CategoriesOfObject(AffineSpace(3,3));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsAffineSpace" ]
gap> CategoriesOfObject(SymplecticSpace(3,11));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
"IsElationGQ", "IsClassicalGQ" ]

gap> CategoriesOfObject(SplitCayleyHexagon(9));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsGeneralisedPolygon",
"IsGeneralisedHexagon" ]

gap> CategoriesOfObject(ParabolicQuadric(4,16));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
"IsElationGQ", "IsClassicalGQ" ]

4.1.9 TypesOfElementsOfIncidenceStructure

♦ TypesOfElementsOfIncidenceStructure(ig) (operation)

♦ TypesOfElementsOfIncidenceStructurePlural(ig) (operation)

Returns: a list of strings
Any incidence structure contains elements of a set of types. Names can be given to an element of

each type, and this operation returns the names for the particular ig. The second variant returs the
list of plurals of these names.

Example
gap> TypesOfElementsOfIncidenceStructure(ProjectiveSpace(5,4));
[ "point", "line", "plane", "solid", "proj. 4-space" ]
gap> TypesOfElementsOfIncidenceStructurePlural(AffineSpace(7,4));
[ "points", "lines", "planes", "solids", "affine. subspaces of dim. 5",
"affine. subspaces of dim. 6", "affine. subspaces of dim. 7" ]

4.1.10 Rank

♦ Rank(ig) (operation)

Returns: rank of ig
Example

4.1.11 AmbientGeometry

♦ AmbientGeometry(ig) (operation)

Returns:



GAP 4 Package FinInG 24

Example

4.1.12 AmbientSpace

♦ AmbientSpace(ig) (operation)

Returns:
Example

4.1.13 IsIncident

♦ IsIncident(ig) (operation)

Returns:
Example

4.2 Elements of incidence structures

4.2.1 Main categories for individual elements of incidence structures

♦ IsElementOfIncidenceStructure (Category)

♦ IsElementOfIncidenceGeometry (Category)

♦ IsElementOfLieGeometry (Category)

♦ IsElementOfAffineSpace (Category)

♦ IsSubspaceOfProjectiveSpace (Category)

♦ IsSubspaceOfClassicalPolarSpace (Category)

In FinInG a category for the indidual elements of an incidence structure in a category IsIncStr
is declared and named IsElementOfIncStr. The inclusion for different categories of geometries is
followed for their elements, except for IsSubspaceOfClassicalPolarSpace, which is a subcate-
gory of IsSubspaceOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of
IsProjectiveSpace. The reasons for this construction are obvious.

Example
gap> Random(Lines(SplitCayleyHexagon(3)));
<a line in Q(6, 3)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
"IsElementOfLieGeometry", "IsSubspaceOfProjectiveSpace",
"IsSubspaceOfClassicalPolarSpace" ]

gap> Random(Solids(AffineSpace(7,17)));
<a solid in AG(7, 17)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
"IsSubspaceOfAffineSpace" ]
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4.2.2 Main categories for collections of elements of incidence structures

♦ IsElementsOfIncidenceStructure (Category)

♦ IsElementsOfIncidenceGeometry (Category)

♦ IsElementsOfLieGeometry (Category)

♦ IsElemenstOfAffineSpace (Category)

♦ IsSubspacesOfProjectiveSpace (Category)

♦ IsSubspacesOfClassicalPolarSpace (Category)

In FinInG for an incidence structure ig in the category IsIncStr, a category
IsElementsOfIncStr is declared for objects representing a set of elements of ig, all of
the same type. E.g. the set of all elements of a given type of ig will be constructed in
IsElementsOfIncStr. The chain of inclusions for IsElementsOfIncStr follows the chain of
inclusions of IsElementOfIncStr.

Example

The object representing the set of elements of a given type can be computed using the general
operation ElementsOfIncidenceStructure, of course assuming that a method is installed for the
particular incidence structure.

4.2.3 ElementsOfIncidenceStructure

♦ ElementsOfIncidenceStructure(ig) (operation)

♦ ElementsOfIncidenceStructure(ig, j) (operation)

♦ ElementsOfIncidenceStructure(ig, str) (operation)

Returns: a list of elements
ig must be an incidence geometry. j must be a type of element of ig. This function returns a

list of all elements of ig of type j, and an error is displayed if ig has no elements of type j. In
an alternative form of this function str can be one of “points”, “lines”, “planes” or “solids” and the
function returns the elements of type 1, 2, 3 or 4 respectively, of course if ig has elements of the
deduced type.

Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> l := ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(3, 3)>
gap> ps := EllipticQuadric(5,9);
Q-(5, 9)
gap> lines := ElementsOfIncidenceStructure(ps,2);
<lines of Q-(5, 9)>
gap> planes := ElementsOfIncidenceStructure(ps,3);
Error, <geo> has no elements of type <j> called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> as := AffineSpace(3,9);
AG(3, 9)
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gap> lines := ElementsOfIncidenceStructure(as,"lines");
<lines of AG(3, 9)>

4.2.4 Short names for ElementsOfIncidenceStructure

♦ Points(ps) (operation)

♦ Lines(ps) (operation)

♦ Planes(ps) (operation)

Returns: The elements of ps of respective type 1,2, and 3.
Example

gap> Points(HermitianVariety(2,64));
<points of H(2, 8ˆ2)>
gap> Lines(EllipticQuadric(5,2));
<lines of Q-(5, 2)>
gap> Planes(SymplecticSpace(7,3));
<planes of W(7, 3)>

4.2.5 Hyperplanes

♦ Hyperplanes(ps) (operation)

Returns: a list of hyerplanes
This function returns a list of all elements of ps of the maximum type. ps must be an incidence

geometry, but only methods for projective and affine spaces are installed, since a “hyperplane” has
either no, either a completely different meaning in other geometires than projective and affine spaces.
This operation is perhaps more synonomous and better suited when using projective and affine spaces,
however one can also use it for an arbitrary incidence geometry.

Example
gap ps := ProjectiveSpace(5,5);
PG(5, 5)
gap> Hyperplanes(ps);
<proj. 4-subspaces of PG(5, 5)>

4.2.6 IsIncident

♦ IsIncident(u, v) (operation)

Returns: Boolean
u and v must be elements of an incidence structure. This function returns

Example
gap> ps := ProjectiveSpace(4,7);
PG(4, 7)
gap> p := VectorSpaceToElement(ps,[1,0,1,0,1]*Z(7)ˆ0);
<a point in PG(4, 7)>
gap> l := VectorSpaceToElement(ps,[[0,0,1,0,0],[1,0,0,0,1]]*Z(7)ˆ0);
<a line in PG(4, 7)>
gap> pl := VectorSpaceToElement(ps,[[1,1,1,0,0],[0,1,0,0,0],

[0,-1,0,0,1]]*Z(7)ˆ0);
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<a plane in PG(4, 7)>
gap> p in l;
true
gap> l in pl;
false
gap> p in pl;
true
gap> IsIncident(p,l);
true
gap> IsIncident(l,p);
true
gap> IsIncident(pl,p);
true
gap> pl in p;
true

4.2.7 Random

♦ Random(u, v) (operation)

Returns: Boolean
u and v must be elements of an incidence structure. This function returns

Example

4.2.8 Size

♦ Size(u, v) (operation)

Returns: Boolean
u and v must be elements of an incidence structure. This function returns

Example

4.3 Shadows of elements

4.3.1 ShadowOfElement

♦ ShadowOfElement(geom, v, j) (operation)

Returns: a collection of elements
geom is an incidence geometry. v must be an element of geom. This function returns a list of

all elements of geom of type j which are incident with v . This operation may not be installed for all
incidence geometries. In some case, such as when we are working with objects of projective or polar
spaces, we can just type Points(v) for the set of points of the ambient geometry incident with v . We
can perform a similar operation with Lines, Planes and Solids.

Example
gap> ps := ProjectiveSpace(3,3);
PG(3, 3)
gap> pi := Random(Planes(ps));
<a plane in PG(3, 3)>
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gap> lines := ShadowOfElement(ps,pi,2);
<shadow lines in PG(3, 3)>
gap> Size(lines);
13

4.3.2 ShadowOfFlag

♦ ShadowOfFlag(geom, v, j) (operation)

Returns: a collection of elements
geom must be aan incidence geometry. v must be a list of elements of geom. This function

returns a list of all elements of geom of type j which are incident with every element of the list.
The function assumes that the list v is a flag; that is, every element of v is incident with every other
element of v . If v is not a flag then the return value is unspecified. This operation may not be installed
for all incidence geometries.

Example
gap> ps := ProjectiveSpace(3,3);
PG(3, 3)
gap> pi := Random(Planes(ps));
<a plane in PG(3, 3)>
gap> x := Random( ShadowOfElement(ps, pi, 1) );
<a point in PG(3, 3)>
gap> IsIncident(x,pi);
true
gap> lines := ShadowOfElement(ps,pi,2);
<shadow lines in PG(3, 3)>
gap> Size(lines);
13



Chapter 5

Projective Spaces

In this chapter we describe how to use FinInG to work with finite projective spaces.

5.1 Creating Projective Spaces and basic operations

A projective space is a point-line incidence geometry, satisfying few well known axioms. In FinInG,
we deal with finite Desarguesion projective spaces. It is well known that these geometries can be
described completely using vector spaces over finite fields. Hence, the underlying vector space and
matrix group are to our advantage. We refer the reader to [HT91] for the necessary background theory
(if it is not otherwise provided).

5.1.1 ProjectiveSpace

♦ ProjectiveSpace(d, F) (operation)

♦ ProjectiveSpace(d, q) (operation)

♦ PG(d, q) (operation)

Returns: a projective space
d must be a positive integer. In the first form, F is a field and the function returns the projective

space of dimension d over F. In the second form, q is a prime power specifying the size of the field.
The user may also use an alias, namely, the common abbreviation PG(d, q).

Example
gap> ProjectiveSpace(3,GF(3));
ProjectiveSpace(3, 3)
gap> ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

5.1.2 ProjectiveDimension

♦ ProjectiveDimension(ps) (operation)

♦ Dimension(ps) (operation)

♦ Rank(ps) (operation)

Returns: the projective dimension of the projective space ps
Example

gap> ps := PG(5,8);
ProjectiveSpace(5, 8)

29
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gap> ProjectiveDimension(ps);
5
gap> Dimension(ps);
5
gap> Rank(ps);
5

5.1.3 BaseField

♦ BaseField(ps) (operation)

Returns: returns the base field for the projective spaceps
Example

gap> BaseField(ProjectiveSpace(3,81));
GF(3ˆ4)

5.1.4 UnderlyingVectorSpace

♦ UnderlyingVectorSpace(ps) (operation)

Returns: a vector space
If ps is a projective space of dimension n over the field of order q, then this operation simply

returns the underlying vector space, i.e. the n+1 dimensional vector space over the field of order q.
Example

gap> ps := ProjectiveSpace(4,7);
ProjectiveSpace(4, 7)
gap> vs := UnderlyingVectorSpace(ps);
( GF(7)ˆ5 )

5.2 Subspaces of projective spaces

The elements of a projective space PG(n,q) are the subspaces of a suitable dimension. The empty
subspace, also called the trivial subspace, has dimenion -1, corresponds with the zero dimensional
vector space of the underlying vector space of PG(n,q), and is hence represented by the zero vector of
lenght n+1 over the underlying field GF(q). The trivial subspace and the whole projective space are
mathematically considerd as a subsace of the projective geometry, but not as elements of the incidence
geometry, and hence do in FinInG not belong to the category IsSubspaceOfProjectiveSpace.

5.2.1 VectorSpaceToElement

♦ VectorSpaceToElement(geo, v) (operation)

Returns: an element
geo is a projective space, and v is either a row vector (for points) or an mxn matrix (for an

(m− 1)-subspace of projective space of dimension n− 1). In the case that v is a matrix, the rows
represent basis vectors for the subspace. An exceptional case is when v is a zero-vector, whereby the
trivial subspace is returned.
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Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,3]*Z(7)ˆ0;
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]*Z(4)ˆ0;
[ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]]*Z(4)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement(ps,[]);
Error, <v> does not represent any vectorspace called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

5.2.2 EmptySubspace

♦ EmptySubspace(ps) (operation)

Returns: the trivial subspace in the projective ps>
The object returned by this operation is contained in every projective subspace of the projective

space ps
Example

gap> EmptySubspace;
< trivial subspace >
gap> line := Random(Lines(PG(5,9)));
<a line in ProjectiveSpace(5, 9)>
gap> EmptySubspace * line;
true
gap> EmptySubspace * PG(3,11);
true

5.2.3 ProjectiveDimension

♦ ProjectiveDimension(sub) (operation)

♦ Dimension(sub) (operation)

Returns: the projective dimension of a subspace of a projective space. This operation is also
applicable on the EmptySubspace
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Example
gap> ps := PG(2,5);
ProjectiveSpace(2, 5)
gap> v := [[1,1,0],[0,3,2]]*Z(5)ˆ0;
[ [ Z(5)ˆ0, Z(5)ˆ0, 0*Z(5) ], [ 0*Z(5), Z(5)ˆ3, Z(5) ] ]
gap> line := VectorSpaceToElement(ps,v);
<a line in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(line);
1
gap> Dimension(line);
1
gap> p := VectorSpaceToElement(ps,[1,2,3]*Z(5)ˆ0);
<a point in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(p);
0
gap> Dimension(p);
0
gap> ProjectiveDimension(EmptySubspace(ps));
-1

5.2.4 ElmentsOfIncidenceStructure

♦ ElmentsOfIncidenceStructure(ps, j) (operation)

Returns: the collection of elements of the projective space ps of type j
For the projective space ps of dimension d and the type j, 1lt jltd this operation returns the

collection of j−1 dimenaional subspaces.
Example

gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,3]*Z(7)ˆ0;
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]*Z(4)ˆ0;
[ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]]*Z(4)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement(ps,[]);
Error, <v> does not represent any vectorspace called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
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brk> quit;

5.2.5 StandardFrame

♦ StandardFrame(ps) (operation)

Returns: returns the standard frame in the projective space ps
Example

gap> sf := StandardFrame(PG(5,16));
[ <a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)> ]

gap> Display(sf);
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ] ]

5.2.6 Coordinates

♦ Coordinates(p) (operation)

Returns: the coordinates of the projective point p
Example

gap> sf := StandardFrame(PG(5,16));
[ <a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)>, <a point in ProjectiveSpace(5, 16)>,
<a point in ProjectiveSpace(5, 16)> ]

gap> Display(sf);
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ] ]

5.2.7 EquationOfHyperplane

♦ EquationOfHyperplane(h) (operation)

Returns: the equation of the hyperplane h of a projective space
Example

gap> hyperplane := VectorSpaceToElement(PG(3,2),[[1,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(2)ˆ0);
<a plane in ProjectiveSpace(3, 2)>
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gap> EquationOfHyperplane(hyperplane);
x_1+x_2

5.2.8 AmbientSpace

♦ AmbientSpace(el) (operation)

Returns: returns the ambient space an element el of a projective space
This operation is also applicable on the trivial subspace.

Example
gap> ps := PG(3,27);
ProjectiveSpace(3, 27)
gap> p := VectorSpaceToElement(ps,[1,2,1,0]*Z(3)ˆ3);
<a point in ProjectiveSpace(3, 27)>
gap> AmbientSpace(p);
ProjectiveSpace(3, 27)

5.2.9 BaseField

♦ BaseField(el) (operation)

Returns: returns the base field of an element el of a projective space
This operation is also applicable on the trivial subspace.

Example
gap> ps := PG(5,8);
ProjectiveSpace(5, 8)
gap> p := VectorSpaceToElement(ps,[1,1,1,0,0,1]*Z(2));
<a point in ProjectiveSpace(5, 8)>
gap> BaseField(p);
GF(2ˆ3)

5.2.10 AsList

♦ AsList(subspaces) (operation)

Returns: an Orb object or list
Example

John’s example works, but it is not clear whether it fits in this part of the manual. I’ll ask John to explain
the difference between using orb and not using orb to list e.g. all lines of PG(3,4), is in the example projpol_Aslist.g

5.2.11 Random

♦ Random(elements) (operation)

Returns: a random element from the collection elements
The collection elements is an object in the category IsElementsOfIncidenceStructure, i.e.

an object representing the set of elements of a certain incidence structure of a given type. The latter
information can be derived e.g. using AmbientSpace and Type.
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Example
gap> ps := PG(8,16);
ProjectiveSpace(8, 16)
gap> RandomSubspace(ps);
<a line in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 7-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a line in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a line in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a solid in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a point in ProjectiveSpace(8, 16)>

5.2.12 RandomSubspace

♦ RandomSubspace(ps, i) (operation)

♦ RandomSubspace(ps) (operation)

Returns: the first variant returns a random element of type i of the projective space ps. The
second variant returns a random element of a random type of the projective space ps

Example
gap> ps := PG(9,49);
ProjectiveSpace(9, 49)
gap> Random(Points(ps));
<a point in ProjectiveSpace(9, 49)>
gap> Random(Lines(ps));
<a line in ProjectiveSpace(9, 49)>
gap> Random(Solids(ps));
<a solid in ProjectiveSpace(9, 49)>
gap> Random(Hyperplanes(ps));
<a proj. 8-space in ProjectiveSpace(9, 49)>
gap> elts := ElementsOfIncidenceStructure(ps,6);
<proj. 5-subspaces of ProjectiveSpace(9, 49)>
gap> Random(elts);
<a proj. 5-space in ProjectiveSpace(9, 49)>
gap> Display(last);
z = Z(49)

1 . . . . . zˆ6 zˆ5 zˆ13 .
. 1 . . . . zˆ43 zˆ33 zˆ29 3
. . 1 . . . zˆ14 6 zˆ12 zˆ9
. . . 1 . . zˆ47 zˆ27 zˆ12 zˆ22
. . . . 1 . zˆ3 1 zˆ31 zˆ44
. . . . . 1 zˆ27 zˆ42 zˆ34 zˆ34

gap> RandomSubspace(ps,3);
<a solid in ProjectiveSpace(9, 49)>
gap> Display(last);
z = Z(49)
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1 . . . zˆ25 zˆ3 zˆ31 zˆ44 zˆ38 zˆ5
. 1 . . zˆ41 zˆ9 1 zˆ31 zˆ23 zˆ45
. . 1 . zˆ4 zˆ21 zˆ20 zˆ37 4 zˆ25
. . . 1 zˆ28 zˆ25 2 4 zˆ23 zˆ29

gap> RandomSubspace(ps,7);
<a proj. 7-space in ProjectiveSpace(9, 49)>
gap> Display(last);
z = Z(49)

1 . . . . . . . zˆ6 zˆ6
. 1 . . . . . . 6 zˆ43
. . 1 . . . . . 2 zˆ29
. . . 1 . . . . zˆ4 2
. . . . 1 . . . zˆ1 zˆ2
. . . . . 1 . . 4 zˆ30
. . . . . . 1 . zˆ6 zˆ37
. . . . . . . 1 zˆ27 zˆ31

gap> RandomSubspace(ps);
<a proj. 6-space in ProjectiveSpace(9, 49)>
gap> RandomSubspace(ps);
<a solid in ProjectiveSpace(9, 49)>

5.2.13 Span

♦ Span(u, v) (operation)

♦ Span(list) (operation)

Returns: an element
When u and v are elements of a projective or polar space. This function returns the span of the

two elements. When list is a list of elements of the same projective space, then this function returns
the span of all elements in list. It is checked whether the elements u and v are elements of the same
projective space. Although the trivial subspace and the whole projective space are not objects in the
category IsSubspaceOfProjectiveSpace, they are allowed as argument for this operation, also as
member of the argument of the second variant of this operation.

Example
ProjectiveSpace(3, 3)
gap> p := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> q := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> s := Span(p,q);
ProjectiveSpace(3, 3)
gap> s = Span([p,q]);
true
gap> t := Span(EmptySubspace(ps),p);
<a plane in ProjectiveSpace(3, 3)>
gap> t = p;
true
gap> Span(ps,p);
ProjectiveSpace(3, 3)
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5.2.14 Meet

♦ Meet(u, v) (operation)

Returns: an element
When u and v are elements of a projective or polar space. This function returns the intersection

of the two elements. When list is a list of elements of the same projective space, then this function
returns the intersection of all elements in list. It is checked whether the elements u and v are
elements of the same projective space. Although the trivial subspace and the whole projective space
are not objects in the category IsSubspaceOfProjectiveSpace, they are allowed as argument for
this operation, also as member of the argument of the second variant of this operation.

Example
ProjectiveSpace(7, 8)
gap> p := Random(Solids(ps));
<a solid in ProjectiveSpace(7, 8)>
gap> q := Random(Solids(ps));
<a solid in ProjectiveSpace(7, 8)>
gap> s := Meet(p,q);
< trivial subspace >
gap> Display(s);
< trivial subspace >gap> r := Random(Hyperplanes(ps));
<a proj. 6-space in ProjectiveSpace(7, 8)>
gap> Meet(p,r);
<a plane in ProjectiveSpace(7, 8)>
gap> Meet(q,r);
<a plane in ProjectiveSpace(7, 8)>
gap> Meet([p,q,r]);
< trivial subspace >

5.2.15 IsIncident

♦ IsIncident(v, geo) (operation)

♦ \*(v, geo) (operation)

♦ \in(v, geo) (operation)

Returns: true or false
Implentation to be reconsidered. Incidence is only applicable on elements of an Incidence struc-

ture. in must be applicable on subspaces, hence also trivial one.
Example

gap> ps := ProjectiveSpace(5,9);
ProjectiveSpace(5, 9)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(5, 9)>
gap> r := Random(Solids(ps));
<a solid in ProjectiveSpace(5, 9)>
gap> IsIncident(p,r);
false
gap> IsIncident(r,p);
false
gap> p*r;
false
gap> r*p;
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false
gap> p in r;
false
gap> r in p;
false
gap> EmptySubspace(ps) in r;
true
gap> r in ps;
true

5.2.16 FlagOfIncidenceStructure

♦ FlagOfIncidenceStructure(ps, els) (operation)

Returns: the flag of the projetive space ps, determined by the subspaces of ps in the list els.
When els is empty, the empty flag is returned.

Example
gap> ps := ProjectiveSpace(12,11);
ProjectiveSpace(12, 11)
gap> s1 := RandomSubspace(ps,8);
<a proj. 8-space in ProjectiveSpace(12, 11)>
gap> s2 := RandomSubspace(s1,6);
<a proj. 6-space in ProjectiveSpace(12, 11)>
gap> s3 := RandomSubspace(s2,4);
<a proj. 4-space in ProjectiveSpace(12, 11)>
gap> s4 := Random(Solids(s3));
<a solid in ProjectiveSpace(12, 11)>
gap> s5 := Random(Points(s4));
<a point in ProjectiveSpace(12, 11)>
gap> flag := FlagOfIncidenceStructure(ps,[s1,s3,s2,s5,s4]);
<a flag of ProjectiveSpace(12, 11)>
gap> ps := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(4, 5)>
gap> l := Random(Lines(ps));
<a line in ProjectiveSpace(4, 5)>
gap> v := Random(Solids(ps));
<a solid in ProjectiveSpace(4, 5)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
Error, <els> does not determine a flag> called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> flag := FlagOfIncidenceStructure(ps,[]);
<a flag of ProjectiveSpace(4, 5)>
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5.2.17 IsEmptyFlag

♦ IsEmptyFlag(flag) (operation)

Returns: return true if flag is the empty flag

5.2.18 IsChamberOfIncidenceStructure

♦ IsChamberOfIncidenceStructure(flag) (operation)

Returns: true if flag is a chamber flag
Example

gap> ps := PG(3,13);
ProjectiveSpace(3, 13)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 13)>
gap> line := Random(Lines(plane));
<a line in ProjectiveSpace(3, 13)>
gap> point := Random(Points(line));
<a point in ProjectiveSpace(3, 13)>
gap> flag := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 13)>
gap> IsChamberOfIncidenceStructure(flag);
true

5.3 Shadows of Projective Subspaces

5.3.1 ShadowOfElement

♦ ShadowOfElement(ps, el, i) (operation)

♦ ShadowOfElement(ps, el, str) (operation)

Returns: the shadow elements of type i in el. The second variant determines the type i from
the position of str in the list returned by TypesOfElementsOfIncidenceStructurePlural

Given the element el in the projective space ps, this operation returns the elements of ps of type
i incident with el.

Example
gap> ps := PG(4,3);
ProjectiveSpace(4, 3)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(4, 3)>
gap> shadowpoints := ShadowOfElement(ps,plane,1);
<shadow points in ProjectiveSpace(4, 3)>
gap> List(shadowpoints);
[ <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)> ]

gap> shadowlines := ShadowOfElement(ps,plane,2);
<shadow lines in ProjectiveSpace(4, 3)>



GAP 4 Package FinInG 40

gap> List(shadowlines);
[ <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)> ]

5.3.2 ShadowOfFlag

♦ ShadowOfFlag(ps, flag, i) (operation)

♦ ShadowOfFlag(ps, flag, str) (operation)

Returns: the shadow elements of type i in the flag flag, i.e. the elements of type i incident
with all elements of flag. The second variant determines the type i from the position of str in the
list returned by TypesOfElementsOfIncidenceStructurePlural

Example
gap> ps := PG(5,7);
ProjectiveSpace(5, 7)
gap> p := VectorSpaceToElement(ps,[1,0,0,0,0,0]*Z(7)ˆ0);
<a point in ProjectiveSpace(5, 7)>
gap> l := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0]]*Z(7)ˆ0);
<a line in ProjectiveSpace(5, 7)>
gap> v := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(7)ˆ0);
<a plane in ProjectiveSpace(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
<a flag of ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,4);
<shadow solids in ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,"solids");
<shadow solids in ProjectiveSpace(5, 7)>

5.3.3 ShadowOfFlag

♦ ShadowOfFlag(ps, list, i) (operation)

♦ ShadowOfFlag(ps, list, str) (operation)

Returns: the shadow elements of type i in the flag determined by list, i.e. the elements of type
i incident with all elements of the flag. The second variant determines the type i from the position
of str in the list returned by TypesOfElementsOfIncidenceStructurePlural

Internally, the function FlagOfIncidenceStructure is used to create a flag from list. This
function also performs the checking.

Example
gap> ps := PG(5,7);
ProjectiveSpace(5, 7)
gap> p := VectorSpaceToElement(ps,[1,0,0,0,0,0]*Z(7)ˆ0);
<a point in ProjectiveSpace(5, 7)>
gap> l := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0]]*Z(7)ˆ0);
<a line in ProjectiveSpace(5, 7)>
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gap> v := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(7)ˆ0);
<a plane in ProjectiveSpace(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
<a flag of ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,4);
<shadow solids in ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,"solids");
<shadow solids in ProjectiveSpace(5, 7)>

5.3.4 ElementsIncidentWithElementOfIncidenceStructure

♦ ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)

Returns: the elements of type i incident with el, in other words, the shadow of the elements of
type i of the element el

Internally, the function FlagOfIncidenceStructure is used to create a flag from list. This
function also performs the checking.

Example
gap> ps := PG(6,9);
ProjectiveSpace(6, 9)
gap> p := VectorSpaceToElement(ps,[1,0,1,0,0,0,0]*Z(9)ˆ0);
<a point in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(p,3);
<shadow planes in ProjectiveSpace(6, 9)>
gap> line := VectorSpaceToElement(ps,[[1,1,1,1,0,0,0],[0,0,0,0,1,1,1]]*Z(9)ˆ0);
<a line in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(line,1);
<shadow points in ProjectiveSpace(6, 9)>
gap> List(els);
[ <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)> ]



Chapter 6

Projective Groups

A collineation of a projective space is a type preserving bijection of the elements of the projective
space, that preserves incidence. The Fundamental Theorem of Projective Geometry states that every
collineation of a Desarguesian projective space is induced by a semi-linear map of the underlying
vector space. The group of all linear maps of a given n+ 1-dimensional vector space over a given
field GF(q) is denoted by GL(n+ 1,q). This is a matrix group consisting of all non-singular n+ 1-
dimensional square matrices over GF(q). The group of all semilinear maps of the vector space V (n,q)
is obtained as the semidirect product of GL(n,q) and Aut(GF(q)), and is denoted by ΓL(n+1,q). It
is clear that each semilinear map induces a collineation of PG(n,q). The Fundamental theorem of
Projective Geometry also guarantees that the converse holds. Note also that ΓL(n+ 1,q) does not
act faithfully on the projective points, and the kernel of its action is the group of scalar matrices,
Sc(n+1,q). So the group PΓL(n+1,q) is defined as the group ΓL(n+1,q)/Sc(n+1,q), and PGL(n+
1,q) = GL(n+1,q)/Sc(n+1,q). An element of the group PGL(n+1,q) is also called a projectivity
of PG(n,q), and the group PGL(n+ 1,q) is called the projectivity group of PG(n,q). An element
of PΓL(n+ 1,q) is called a collineation of PG(n,q) and the group PΓL(n+ 1,q) is the collineation
group of PG(n,q).

Consider the projective space PG(n,q). As described in Chapter 8, a point of PG(n,q) is rep-
resented by a row vector. A k-dimensional subspace of PG(n,q) is represented by a generating
set of k + 1 points, and as such, by a (k + 1)× (n+ 1) matrix. The convention in FinInG is that a
collineation φ with underlying matrix A and field automorphism θ maps that projective point repre-
sented by row vector (x0,x1, . . . ,xn) to the projective point represented by row vector (y0,y1, . . . ,yn) =
((x0,x1, . . . ,xn)A)θ. This convention determines completely the action of collineations on all elements
of a projective space, and it follows that the product of two collineations φ1,φ2 with respective un-
derlying matrices A1,A2 and respective underlying field automorphisms θ1,θ2 is the collineation with

underlying matrix A1 ·A
θ
−1
2

2 and underlying field automorphism θ1θ2 .
A correlation of the projective space PG(n,q) is a collineation from PG(n,q) to its dual. A

projectivity from PG(n,q) to its dual is sometimes called a reciprocity. The correlation group
of PG(n,q) is isomorphic to the semidirect product of PΓL(n+ 1,q) with the cyclic group of or-
der 2 generated by the standard duality of the projective space PG(n,q). The standard duality
of the projective space PG(n,q) maps any point v with coordinates (x0,x1, . . . ,xn) on the hyper-
plane with equation x0X0 + x1X1 + . . .+ xnXn. The standard duality acts as an automorphism on
PΓL(n + 1,q) by mapping the underlying matrix of a collineation to its inverse transpose matrix.
(Recall that the frobenius automorphism and the standard duality commute.) The convention in Fin-
InG is that a correlation φ with underlying matrix A and field automorphism θ maps that projective

42
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point represented by row vector (x0,x1, . . . ,xn) to the projective hyperplane represented by row vector
(y0,y1, . . . ,yn) = ((x0,x1, . . . ,xn)A)θ.

The product of two correlations of PG(n,q) is a collineation, and the product of a collineation
and a correlaton is a correlation. So the set of all collineations and correlations of PG(n,q) form a
group, called the correlation group of PG(n,q). The convention determines completely the action
of correlations on all elements of a projective space, and it follows that the product of two elements
of the correlation group φ1,φ2 with respective underlying matrices A1,A2, respective underlying field
automorphisms θ1,θ2, and respective underlying projective space isomorphisms (standard duality or

identity map) δ1,δ2, is the element of the correlation group with underlying matrix A1 · (A
θ
−1
2

2 )δ
2, un-

derlying field automorphism θ1θ2 , and underlying projective space automorphism δ1δ2.
Action functions for collineations and correlations on the subspaces of a projective space are

described in detail in Section 6.6

6.1 Projectivities, collineations and correlations of projective spaces

In FinInG, different categories are created for projectivities, collineations and correlations of a projec-
tive space.

6.1.1 Categories for group elements

♦ IsProjGrpEl (Category)

♦ IsProjGrpElWithFrob (Category)

♦ IsProjGrpElWithFrobWith (Category)

IsProjGrpEl is a category in which elements of PGL(n+ 1,q) can be constructed as objects in
this category. So projectivities in the mathematical sense can be constructed as objects in this category.
IsProjGrpElWithFrob is a category in which elements of PΓL(n+ 1,q) can be constructed. So
collineations in the mathematical sense (and thus also projectivities) can be constructed as objects in
this category.

6.1.2 Projectivity

♦ Projectivity(mat, f) (operation)

Returns: a projectivity of a projective space
mat must be a non-singular matrix over the finite field f. Creates an element of a projectivity

group. The returned object belongs to IsProjGrpEl.
Example

gap> mat := [[1,0,0],[0,1,0],[0,0,1]]*Z(9)ˆ0;
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> Projectivity(mat,GF(9));
<projective element [ [ Z(3)ˆ0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]>
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6.1.3 ProjectiveSemilinearMap

♦ ProjectiveSemilinearMap(mat, frob, f) (operation)

♦ ProjectiveSemilinearMap(mat, f) (operation)

♦ CollineationOfProjectiveSpace(mat, frob, f) (operation)

♦ CollineationOfProjectiveSpace(mat, f) (operation)

mat is a nonsingular matrix, frob is a field automorphism, and f is a field. This function (and
its synonym) returns the collineation with matrix mat and automorphism frob. If frob is not
specified then the companion automorphism of the resulting group element will be the identity map.
The returned object belongs to the category IsProjGrpElWithFrob

Example
gap> mat:=
> [[Z(2ˆ3)ˆ6,Z(2ˆ3),Z(2ˆ3)ˆ3,Z(2ˆ3)ˆ3],[Z(2ˆ3)ˆ6,Z(2)ˆ0,Z(2ˆ3)ˆ2,Z(2ˆ3)ˆ3],
> [0*Z(2),Z(2ˆ3)ˆ4,Z(2ˆ3),Z(2ˆ3)],[Z(2ˆ3)ˆ6,Z(2ˆ3)ˆ5,Z(2ˆ3)ˆ3,Z(2ˆ3)ˆ5 ]];
[ [ Z(2ˆ3)ˆ6, Z(2ˆ3), Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ3 ],
[ Z(2ˆ3)ˆ6, Z(2)ˆ0, Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3 ],
[ 0*Z(2), Z(2ˆ3)ˆ4, Z(2ˆ3), Z(2ˆ3) ],
[ Z(2ˆ3)ˆ6, Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ5 ] ]

gap> frob := FrobeniusAutomorphism(GF(8));
FrobeniusAutomorphism( GF(2ˆ3) )
gap> phi := ProjectiveSemilinearMap(mat,frobˆ2,GF(8));
<projective semilinear element: [ [ Z(2ˆ3)ˆ6, Z(2ˆ3), Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ3 ],
[ Z(2ˆ3)ˆ6, Z(2)ˆ0, Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3 ],
[ 0*Z(2), Z(2ˆ3)ˆ4, Z(2ˆ3), Z(2ˆ3) ],
[ Z(2ˆ3)ˆ6, Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ5 ] ], Fˆ4>

gap> mat2 := [[Z(2ˆ8)ˆ31,Z(2ˆ8)ˆ182,Z(2ˆ8)ˆ49],[Z(2ˆ8)ˆ224,Z(2ˆ8)ˆ25,Z(2ˆ8)ˆ45],
> [Z(2ˆ8)ˆ128,Z(2ˆ8)ˆ165,Z(2ˆ8)ˆ217]];
[ [ Z(2ˆ8)ˆ31, Z(2ˆ8)ˆ182, Z(2ˆ8)ˆ49 ], [ Z(2ˆ8)ˆ224, Z(2ˆ8)ˆ25, Z(2ˆ8)ˆ45 ],
[ Z(2ˆ8)ˆ128, Z(2ˆ8)ˆ165, Z(2ˆ8)ˆ217 ] ]

gap> psi := CollineationOfProjectiveSpace(mat2,GF(512));
<projective semilinear element: [ [ Z(2ˆ8)ˆ31, Z(2ˆ8)ˆ182, Z(2ˆ8)ˆ49 ],
[ Z(2ˆ8)ˆ224, Z(2ˆ8)ˆ25, Z(2ˆ8)ˆ45 ],
[ Z(2ˆ8)ˆ128, Z(2ˆ8)ˆ165, Z(2ˆ8)ˆ217 ] ], Fˆ0>

6.1.4 StandardDualityOfProjectiveSpace

♦ StandardDualityOfProjectiveSpace(ps) (operation)

This operation returns the standard duality of the projective space ps
Example

gap> ps := ProjectiveSpace(4,5);
PG(4, 5)
gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( Elements( ProjectiveSpace(4,GF(5)) ) )
gap> deltaˆ2;
IdentityMapping( <Elements of PG(4, 5)> )
gap> p := VectorSpaceToElement(ps,[1,2,3,0,1]*Z(5)ˆ0);
<a point in PG(4, 5)>
gap> h := pˆdelta;
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<a solid in PG(4, 5)>
gap> ElementToVectorSpace(h);
[ [ Z(5)ˆ0, 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ2 ],
[ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5), Z(5)ˆ3 ],
[ 0*Z(5), 0*Z(5), Z(5)ˆ0, 0*Z(5), Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0, 0*Z(5) ] ]

6.1.5 CorrelationOfProjectiveSpace

♦ CorrelationOfProjectiveSpace(mat, f) (operation)

♦ CorrelationOfProjectiveSpace(mat, frob, f) (operation)

♦ CorrelationOfProjectiveSpace(mat, f, delta) (operation)

♦ CorrelationOfProjectiveSpace(mat, frob, f, delta) (operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and delta is the standard
duality of the projective space PG(n,q). This function returns the correlation with matrix mat, auto-
morphism frob, and standard duality delta. If frob is not specified then the companion automor-
phism of the resulting group element will be the identity map. If the user specifies delta, then it must
be the standard duality of a projective space, created using StandardDualityOfProjectiveSpace
(6.1.4). If not specified, then the companion vector space isomorphism is the identity mapping. The
returned object belongs to the category IsProjGrpElWithFrobWithPSIsom

Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7ˆ3);
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ]

gap> phi1 := CorrelationOfProjectiveSpace(mat,GF(7ˆ3));
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ], Fˆ0, IdentityMapping( <Elements of PG(

3, 343)> ) >
gap> frob := FrobeniusAutomorphism(GF(7ˆ3));
FrobeniusAutomorphism( GF(7ˆ3) )
gap> phi2 := CorrelationOfProjectiveSpace(mat,frob,GF(7ˆ3));
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ], Fˆ7, IdentityMapping( <Elements of PG(

3, 343)> ) >
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7ˆ3)));
StandardDuality( ElementsOfIncidenceStructure( ProjectiveSpace(2,GF(7ˆ3)) ) )
gap> phi3 := CorrelationOfProjectiveSpace(mat,GF(7ˆ3),delta);
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ]

], Fˆ0, StandardDuality( ElementsOfIncidenceStructure( ProjectiveSpace(2,GF(
7ˆ3)) ) ) >
gap> phi4 := CorrelationOfProjectiveSpace(mat,frob,GF(7ˆ3),delta);
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ], Fˆ

7, StandardDuality( ElementsOfIncidenceStructure( ProjectiveSpace(2,GF(7ˆ
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3)) ) ) >

6.2 Basic operations for projectivities, collineations and correlations of
projective spaces

6.2.1 Representations for group elements

♦ IsProjGrpElRep (Representation)

♦ IsProjGrpElWithFrobRep (Representation)

♦ IsProjGrpElWithFrobWithPSIsom (Representation)

As we have seen, in FinInG, a projectivity is described by a matrix, a collineation of a projective
space by a matrix and a field automorphism, and a correlation of a projective space by a matrix, a
field automorphism and a isomorphism of the projective space that is either the standard duality or the
identity mapping. Also the basefield is stored as a component in the representation.

6.2.2 UnderlyingMatrix

♦ UnderlyingMatrix(g) (operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the
matrix that was used to construct g.

Example
gap> g:=CollineationGroup( ProjectiveSpace(3,3));
PGL(4,3)
gap> x:=Random(g);;
gap> UnderlyingMatrix(x);
[ [ 0*Z(3), Z(3), Z(3), Z(3)ˆ0 ], [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0 ],
[ 0*Z(3), Z(3)ˆ0, Z(3), Z(3) ], [ Z(3)ˆ0, Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ] ]

6.2.3 BaseField

♦ BaseField(g) (operation)

Returns: a field
g is a projectivity, collineation or correlation of a projective space. This function returns the

matrix that was used to construct g.
Example

gap> mat := [[0,1,0],[1,0,0],[0,0,2]]*Z(3)ˆ0;
[ [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3) ] ]

gap> g := Projectivity(mat,GF(3ˆ6));
<projective element [ [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3) ] ]>

gap> BaseField(g);
GF(3ˆ6)
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6.2.4 FieldAutomorphism

♦ FieldAutomorphism(g) (operation)

g is a collineation of a projective space or a correlation of a projective space. This function
returns the companion field automorphism which defines g. Note that in the following example, you
may want to execute it several times to see the different possible results generated by the random
choice of projective semilinear map here.

Example
gap> g:=CollineationGroup( ProjectiveSpace(3,9));
PGammaL(4,9)
gap> x:=Random(g);;
gap> FieldAutomorphism(x);
IdentityMapping( GF(3ˆ2) )

6.2.5 ProjectiveSpaceIsomorphism

♦ ProjectiveSpaceIsomorphism(g) (operation)

g is a correlation of a projective space. This function returns the companion isomorphism of the
projective space which defines g.

Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7ˆ3);
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ]

gap> frob := FrobeniusAutomorphism(GF(7ˆ3));
FrobeniusAutomorphism( GF(7ˆ3) )
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7ˆ3)));
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(2,GF(7ˆ
3)) ) )
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(7ˆ3),delta);
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(7ˆ3), 0*Z(7), 0*Z(7) ], [ Z(7ˆ3)ˆ58, 0*Z(7), Z(7ˆ3)ˆ115 ],
[ 0*Z(7), Z(7ˆ3)ˆ286, Z(7ˆ3)ˆ229 ] ], Fˆ

7, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(2,GF(7ˆ
3)) ) ) >
gap> ProjectiveSpaceIsomorphism(phi);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(2,GF(7ˆ
3)) ) )

6.3 Collineation groups of projective or polar spaces

6.3.1 CollineationGroup

♦ CollineationGroup(geom) (operation)

Returns: a group of collineations of geom
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geom must be an incidence geometry. If geom is a projective space, PG(n,q), then this operation
returns the full group of collineations ΓL(n+ 1,q) of the projective space. If geom is a polar space,
then this operation returns the full group of semi-similarities of geom.

Example
gap> p1 := ProjectiveSpace(3,3);
PG(3, 3)
gap> CollineationGroup(p1);
PGL(4,3)
gap> p2 := ProjectiveSpace(4,81);
PG(4, 81)
gap> CollineationGroup(p2);
PGammaL(5,81)
gap> p3 := EllipticQuadric(3,16);
Q-(3, 16)
gap> CollineationGroup(p3);
#I Computing nice monomorphism...
PGammaO-(4,16)
gap> p4 := SymplecticSpace(3,9);
W(3, 9)
gap> CollineationGroup(p4);
#I Computing nice monomorphism...
PGammaSp(4,9)

6.3.2 SimilarityGroup

♦ SimilarityGroup(geom) (operation)

Returns: a group of collineations of geom
geom must be a polar space. This operation returns the full group of similarities of geom (those

collineations which preserve the form up to a scalar).
Example

gap> w := SymplecticSpace(5,3);
W(5, 3)
gap> SimilarityGroup(w);
#I Computing nice monomorphism...
PGSp(6,3)

6.3.3 IsometryGroup

♦ IsometryGroup(geom) (operation)

Returns: a group of collineations of geom
geom must be a polar space. This operation returns the full group of isometries of geom (those

collineations which preserve the form).
Example

gap> w := SymplecticSpace(3,8);
W(3, 8)
gap> IsometryGroup(w);
#I Computing nice monomorphism...
PSp(4,8)
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6.3.4 SpecialIsometryGroup

♦ SpecialIsometryGroup(geom) (operation)

Returns: a group of collineations of geom
geom must be a polar space. This operation returns those isometries of geom which have unit

determinant.
Example

gap> hq := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> SpecialIsometryGroup(hq);
#I Computing nice monomorphism...
PSO(1,6,3)

6.4 Basic operations for projective groups

6.4.1 BaseField

♦ BaseField(g) (operation)

Returns: a field
g must be a projective group. This function finds the base field of the vector space on which the

group acts.

6.4.2 Dimension

♦ Dimension(g) (operation)

Returns: a number
g must be a projective group. This function finds the dimension of the vector space on which the

group acts.

6.5 Collineation group as a subgroup of a correlation group

In FinInG a collineation group is not constructed as a subgroup of a correlation group. However,
collineations can be multiplied with correlations (if they both belong mathematically to the same
correlation group.

Example
gap> x := Random(CollineationGroup(PG(3,4)));
<projective semilinear element: [ [ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2ˆ2) ],
[ 0*Z(2), Z(2ˆ2)ˆ2, Z(2)ˆ0, Z(2)ˆ0 ],
[ Z(2ˆ2)ˆ2, 0*Z(2), Z(2ˆ2)ˆ2, Z(2ˆ2)ˆ2 ],
[ 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2, Z(2ˆ2) ] ], Fˆ2>

gap> y := Random(CorrelationGroup(PG(3,4)));
<projective element with Frobenius with projectivespace isomorphism
[ [ 0*Z(2), Z(2ˆ2), 0*Z(2), Z(2ˆ2)ˆ2 ], [ Z(2)ˆ0, Z(2ˆ2)ˆ2, Z(2)ˆ0, 0*Z(2) ],
[ Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, 0*Z(2) ], [ Z(2ˆ2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ]

], Fˆ0, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(2ˆ2)) ) ) >
gap> x*y;
<projective element with Frobenius with projectivespace isomorphism
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[ [ 0*Z(2), Z(2ˆ2)ˆ2, Z(2)ˆ0, 0*Z(2) ], [ Z(2)ˆ0, Z(2ˆ2)ˆ2, Z(2)ˆ0, Z(2)ˆ0 ],
[ Z(2)ˆ0, Z(2ˆ2)ˆ2, Z(2)ˆ0, Z(2ˆ2) ], [ Z(2ˆ2), 0*Z(2), Z(2)ˆ0, Z(2ˆ2) ]

], Fˆ2, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(2ˆ2)) ) ) >

6.6 Projective group actions

Consider the projective space PG(n,q). As described in Chapter 8, a point of PG(n,q) is represented
by a row vector and a k-dimensional subspace of PG(n,q) is represented by a (k+1)×(n+1) matrix.

Consider a point p with row vector (x0,x1, . . . ,xn), and a collineation or correlation φ with under-
lying matrix A and field automorphism θ. Define the row vector (y0,y1, . . . ,yn) = ((x0,x1, . . . ,xn)A)θ.
When φ is a collineation, then pφ is the point with underlying row vector (y0,y1, . . . ,yn), when φ is
a correlation then is a hyperplane of PG(n,q) with equation y0X0 + y1X1 + . . .+ ynXn. The action
of collineations or correlations on points determines the action on subspaces of arbitrary dimension
completely.

6.6.1 OnProjSubspaces

♦ OnProjSubspaces(subspace, el) (function)

subspace is a subspace of a projective or polar space. el must be a projective semilinear map.
This function return the image of subspace under el, which is a subspace of the same dimension.

Example
gap> ps := ProjectiveSpace(4,27);
PG(4, 27)
gap> p := VectorSpaceToElement(ps,[ Z(3ˆ3)ˆ22,Z(3ˆ3)ˆ10,Z(3ˆ3),Z(3ˆ3)ˆ3,Z(3ˆ3)ˆ3]);
<a point in PG(4, 27)>
gap> Display(p);
[ Z(3)ˆ0, Z(3ˆ3)ˆ14, Z(3ˆ3)ˆ5, Z(3ˆ3)ˆ7, Z(3ˆ3)ˆ7 ]
gap> mat := [[ Z(3ˆ3)ˆ25,Z(3ˆ3)ˆ6,Z(3ˆ3)ˆ7,Z(3ˆ3)ˆ15],
> [Z(3ˆ3)ˆ9,Z(3)ˆ0,Z(3ˆ3)ˆ10,Z(3ˆ3)ˆ18],
> [Z(3ˆ3)ˆ19,0*Z(3),Z(3),Z(3ˆ3)ˆ12],
> [Z(3ˆ3)ˆ4,Z(3ˆ3),Z(3ˆ3),Z(3ˆ3)ˆ22]];
[ [ Z(3ˆ3)ˆ25, Z(3ˆ3)ˆ6, Z(3ˆ3)ˆ7, Z(3ˆ3)ˆ15 ],
[ Z(3ˆ3)ˆ9, Z(3)ˆ0, Z(3ˆ3)ˆ10, Z(3ˆ3)ˆ18 ],
[ Z(3ˆ3)ˆ19, 0*Z(3), Z(3), Z(3ˆ3)ˆ12 ],
[ Z(3ˆ3)ˆ4, Z(3ˆ3), Z(3ˆ3), Z(3ˆ3)ˆ22 ] ]

gap> theta := FrobeniusAutomorphism(GF(27));
FrobeniusAutomorphism( GF(3ˆ3) )
gap> phi := CollineationOfProjectiveSpace(mat,theta,GF(27));
<projective element with Frobenius:
[ [ Z(3ˆ3)ˆ25, Z(3ˆ3)ˆ6, Z(3ˆ3)ˆ7, Z(3ˆ3)ˆ15 ],
[ Z(3ˆ3)ˆ9, Z(3)ˆ0, Z(3ˆ3)ˆ10, Z(3ˆ3)ˆ18 ],
[ Z(3ˆ3)ˆ19, 0*Z(3), Z(3), Z(3ˆ3)ˆ12 ],
[ Z(3ˆ3)ˆ4, Z(3ˆ3), Z(3ˆ3), Z(3ˆ3)ˆ22 ] ], Fˆ3>

gap> r := OnProjSubspaces(p,phi);
<a point in PG(4, 27)>
gap> Display(r);
[ Z(3)ˆ0, 0*Z(3), 0*Z(3), Z(3ˆ3)ˆ17 ]
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gap> vect := [[Z(3ˆ3)ˆ9,Z(3ˆ3)ˆ5,Z(3ˆ3)ˆ19,Z(3ˆ3)ˆ21,Z(3ˆ3)ˆ17],
> [Z(3ˆ3)ˆ22,Z(3ˆ3)ˆ22,Z(3ˆ3)ˆ4,Z(3ˆ3)ˆ16,Z(3ˆ3)ˆ17],
> [Z(3ˆ3)ˆ8,0*Z(3),Z(3ˆ3)ˆ24,Z(3),Z(3ˆ3)ˆ21]];
[ [ Z(3ˆ3)ˆ9, Z(3ˆ3)ˆ5, Z(3ˆ3)ˆ19, Z(3ˆ3)ˆ21, Z(3ˆ3)ˆ17 ],
[ Z(3ˆ3)ˆ22, Z(3ˆ3)ˆ22, Z(3ˆ3)ˆ4, Z(3ˆ3)ˆ16, Z(3ˆ3)ˆ17 ],
[ Z(3ˆ3)ˆ8, 0*Z(3), Z(3ˆ3)ˆ24, Z(3), Z(3ˆ3)ˆ21 ] ]

gap> s := VectorSpaceToElement(ps,vect);
<a plane in PG(4, 27)>
gap> r := OnProjSubspaces(s,phi);
<a plane in PG(4, 27)>
gap> Display(r);
z = Z(27)

1 . . zˆ3
. 1 . zˆ22
. . 1 zˆ3

6.6.2 ActionOnAllProjPoints

♦ ActionOnAllProjPoints(g) (function)

g must be a projective group. This function returns the action homomorphism of g acting on its
projective points. This function is used by NiceMonomorphism when the number of points is small
enough for the action to be easy to calculate.

6.6.3 OnProjSubspacesReverseing

♦ OnProjSubspacesReverseing(subspace, el) (function)

subspace is a subspace of a projective or polar space. el must be an element of the correlation
group of the ambient geometry of subspace. This function return the image of subspace under
el, which is a subspace of the same dimension if el is a collineation.

Example
gap> ps := ProjectiveSpace(3,27);
PG(3, 27)
gap> mat := IdentityMat(4,GF(27));
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( Elements( ProjectiveSpace(3,GF(3ˆ3)) ) )
gap> frob := FrobeniusAutomorphism(GF(27));
FrobeniusAutomorphism( GF(3ˆ3) )
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(27),delta);
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ], Fˆ

3, StandardDuality( Elements( ProjectiveSpace(3,GF(3ˆ3)) ) ) >
gap> p := Random(Points(ps));
<a point in PG(3, 27)>
gap> OnProjSubspacesReversing(p,phi);
<a plane in PG(3, 27)>
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gap> l := Random(Lines(ps));
<a line in PG(3, 27)>
gap> OnProjSubspacesReversing(p,phi);
<a plane in PG(3, 27)>
gap> psi := CorrelationOfProjectiveSpace(mat,frobˆ2,GF(27));
<projective element with Frobenius with projectivespace isomorphism
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ], Fˆ

9, IdentityMapping( <Elements of PG(4, 27)> ) >
gap> OnProjSubspacesReversing(p,psi);
<a point in PG(3, 27)>
gap> OnProjSubspacesReversing(l,psi);
<a line in PG(3, 27)>

6.7 Nice Monomorphisms

6.7.1 CanComputeActionOnPoints

♦ CanComputeActionOnPoints(g) (operation)

Returns: true or false
g must be a projective group. This function returns true if GAP can feasibly compute the action

of g on the points of the projective space on which it acts. This function can be used (and is, by
other parts of FinInG) to determine whether it is worth trying to compute the action. This function
actually checks if the number of points of the corresponding projective space is less than the constant
DESARGUES.LimitForCanComputeActionOnPoints.

Example
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(6,7)));
Error, action on projective points not feasible to calculate
...

gap> DESARGUES.LimitForCanComputeActionOnPoints := 500000;
500000
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(6,7)));
<action isomorphism>



Chapter 7

Polarities of Projective Spaces

A polarity of a incidence structure is an incidence reversing, bijective, and involutory map on the
elements of the incidence structure. It is well known that every polarity of a projective space is
just an involutory correlation of the projective space. Construction of correlations of a projective
space is described in Chapter 6. In this chapter we describe methods and operations dealing with the
construction and use of polarities of projective spaces in FinInG.

7.1 Creating polarities of projective spaces

Since polarities of a projective space necessarily have an involutory field automorphism as compan-
ion automorphism and the standardduality of the projective space as the companion projective space
isomorphism, a polarity of a projective space is determined completely by a suitable matrix A. Every
polaritiy of a projective space PG(n,q) is listed in the following table, including the conditions on the
matrix A.

q odd q even
hermitian Aθ = AT Aθ = AT

symplectic AT =−A AT = A, all aii = 0
orthogonal AT = A
pseudo AT = A, all aii = 0

Table: polarities of a projective space

A hermitian polarity of the projective space PG(n,q) exists if and only if the field GF(q) admits
an involutory field automorphism θ.

It is well known that there is a correspondence between polarities of projective spaces and non-
degenerate sesquilinear forms on the underlying vector space. Consider a sesquilinear form f on
the vector space V (n+ 1,q). Then f induces a map on the elements of PG(n,q) as follows: every
element with underlying subspace by α is mapped to the element with underlying subspace α⊥, i.e.
the subspace of V (n+ 1,q) orhtogonal to α with relation to the form f . It is clear that this induced
map is a polarity of PG(n,q). Also the converse is true, with any polarity of PG(n,q) corresponds a
sesquilinear form on V (n+ 1,q). The above classification of polarities of PG(n,q)follows from the
classification of sesquilinear forms on V (n+ 1,q). For more information, we refer to [HT91] and
[KL90]. We mention that the implementation of the action of correlations on projective points (see
6.6) garantuees that a sesquilinear form with matrix M and field automorphism θ corresponds to a
polarity with matrix M and field automorphism θ and vice versa.

53
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In FinInG, polarities of projective spaces are always objects in the cate-
gory IsPolarityOfProjectiveSpace, which is a subcategory of the category
IsProjGrpElWithFrobWithPSIsom.

7.1.1 PolarityOfProjectiveSpace

♦ PolarityOfProjectiveSpace(mat, f) (operation)

Returns: a polarity of a projective space
the underlying correlation of the projective space is constructed using mat, f, the identity map-

ping as field automorphism and the standardduality of the projective space. It is checked whether the
mat satisfies the necessary conditions to induce a polaritiy.

Example
gap> mat := [[0,1,0],[1,0,0],[0,0,1]]*Z(169)ˆ0;
[ [ 0*Z(13), Z(13)ˆ0, 0*Z(13) ], [ Z(13)ˆ0, 0*Z(13), 0*Z(13) ],
[ 0*Z(13), 0*Z(13), Z(13)ˆ0 ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(169));
<polarity of PG(2, GF(13ˆ2)) >

7.1.2 PolarityOfProjectiveSpace

♦ PolarityOfProjectiveSpace(mat, frob, f) (operation)

♦ HermitianPolarityOfProjectiveSpace(mat, f) (operation)

Returns: a polarity of a projective space
the underlying correlation of the projective space is constructed using mat, frob, f as matrix,

field automorphism, field, and the standardduality of the projective space. It is checked whether the
mat satisfies the necessary conditions to induce a polaritiy, and whether frob is a non-trivial invo-
lutory field automorphism. The second operation only needs the arguments mat and f to construct
a hermitian polarity of a projective space, provided the field f allows an involutory field automor-
phism and mat satisfies the necessary conditions. The latter is checked by the method constructing
the underlying hermitian form.

Example
gap> mat := [[Z(11)ˆ0,0*Z(11),0*Z(11)],[0*Z(11),0*Z(11),Z(11)],
> [0*Z(11),Z(11),0*Z(11)]];
[ [ Z(11)ˆ0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11) ],
[ 0*Z(11), Z(11), 0*Z(11) ] ]

gap> frob := FrobeniusAutomorphism(GF(121));
FrobeniusAutomorphism( GF(11ˆ2) )
gap> phi := PolarityOfProjectiveSpace(mat,frob,GF(121));
<polarity of PG(2, GF(11ˆ2)) >
gap> psi := HermitianPolarityOfProjectiveSpace(mat,GF(121));
<polarity of PG(2, GF(11ˆ2)) >
gap> phi = psi;
true

7.1.3 PolarityOfProjectiveSpace

♦ PolarityOfProjectiveSpace(form) (operation)

Returns: a polarity of a projective space
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the polarity of the projective space is constructed using a non-degenerate sesquilinear form form.
It is checked whether the given form is non-degenerate.

Example
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)ˆ0;
[ [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ] ]

gap> form := BilinearFormByMatrix(mat,GF(16));
< bilinear form >
gap> phi := PolarityOfProjectiveSpace(form);
<polarity of PG(3, GF(2ˆ4)) >

7.1.4 PolarityOfProjectiveSpace

♦ PolarityOfProjectiveSpace(ps) (operation)

Returns: a polarity of a projective space
the polarity of the projective space is constructed using the non-degenerate sesquilinear form that

defines the polar space ps. When ps is a parabolic quadric in even characteristic, no polarity of the
ambient projective space can be associated to ps, and an error message is returned.

Example
gap> ps := HermitianVariety(4,64);
H(4, 8ˆ2)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(4, GF(2ˆ6)) >
gap> ps := ParabolicQuadric(6,8);
Q(6, 8)
gap> PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> c
alled from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

7.2 Operations, attributes and properties for polarties of projective
spaces

7.2.1 SesquilinearForm

♦ SesquilinearForm(f) (attribute)

Returns: a sesquilinear form
The sesquilinear form corresponding to the given polarity is returned.

Example
gap> mat := [[0,-2,0,1],[2,0,3,0],[0,-3,0,1],[-1,0,-1,0]]*Z(19)ˆ0;
[ [ 0*Z(19), Z(19)ˆ10, 0*Z(19), Z(19)ˆ0 ],
[ Z(19), 0*Z(19), Z(19)ˆ13, 0*Z(19) ],
[ 0*Z(19), Z(19)ˆ4, 0*Z(19), Z(19)ˆ0 ],
[ Z(19)ˆ9, 0*Z(19), Z(19)ˆ9, 0*Z(19) ] ]
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gap> phi := PolarityOfProjectiveSpace(mat,GF(19));
<polarity of PG(3, GF(19)) >
gap> form := SesquilinearForm(phi);
< non-degenerate bilinear form >

7.2.2 BaseField

♦ BaseField(f) (attribute)

Returns: a field
the basefield over which the polarity was constructed.

Example
gap> mat := [[1,0,0],[0,0,2],[0,2,0]]*Z(5)ˆ0;
[ [ Z(5)ˆ0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5) ],
[ 0*Z(5), Z(5), 0*Z(5) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(2, GF(5ˆ2)) >
gap> BaseField(phi);
GF(5ˆ2)

7.2.3 GramMatrix

♦ GramMatrix(f) (attribute)

Returns: a matrix
the Gram matrix of the polarity.

Example
gap> mat := [[1,0,0],[0,0,3],[0,3,0]]*Z(11)ˆ0;
[ [ Z(11)ˆ0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)ˆ8 ],
[ 0*Z(11), Z(11)ˆ8, 0*Z(11) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(11));
<polarity of PG(2, GF(11)) >
gap> GramMatrix(phi);
[ [ Z(11)ˆ0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)ˆ8 ],
[ 0*Z(11), Z(11)ˆ8, 0*Z(11) ] ]

7.2.4 CompanionAutomorphism

♦ CompanionAutomorphism(f) (attribute)

Returns: a field automorphism
the involutory fieldautomorphism accompanying the polarity

Example
gap> mat := [[0,2,0,0],[2,0,0,0],[0,0,0,5],[0,0,5,0]]*Z(7)ˆ0;
[ [ 0*Z(7), Z(7)ˆ2, 0*Z(7), 0*Z(7) ], [ Z(7)ˆ2, 0*Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ5 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ5, 0*Z(7) ] ]

gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(49));
<polarity of PG(3, GF(7ˆ2)) >
gap> CompanionAutomorphism(phi);
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FrobeniusAutomorphism( GF(7ˆ2) )

7.2.5 IsHermitianPolarityOfProjectiveSpace

♦ IsHermitianPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity f is a hermitian polarity of a projective space if and only if the underlying matrix is

hermitian.
Example

gap> mat := [[0,2,7,1],[2,0,3,0],[7,3,0,1],[1,0,1,0]]*Z(19)ˆ0;
[ [ 0*Z(19), Z(19), Z(19)ˆ6, Z(19)ˆ0 ], [ Z(19), 0*Z(19), Z(19)ˆ13, 0*Z(19) ],
[ Z(19)ˆ6, Z(19)ˆ13, 0*Z(19), Z(19)ˆ0 ],
[ Z(19)ˆ0, 0*Z(19), Z(19)ˆ0, 0*Z(19) ] ]

gap> frob := FrobeniusAutomorphism(GF(19ˆ4));
FrobeniusAutomorphism( GF(19ˆ4) )
gap> phi := PolarityOfProjectiveSpace(mat,frobˆ2,GF(19ˆ4));
<polarity of PG(3, GF(19ˆ4)) >
gap> IsHermitianPolarityOfProjectiveSpace(phi);
true

7.2.6 IsSymplecticPolarityOfProjectiveSpace

♦ IsSymplecticPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity f is a symplectic polarity of a projective space if and only if the underlying matrix is

hermitian.
Example

gap> mat := [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(8)ˆ0;
[ [ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(8));
<polarity of PG(3, GF(2ˆ3)) >
gap> IsSymplecticPolarityOfProjectiveSpace(phi);
true

7.2.7 IsOrthogonalPolarityOfProjectiveSpace

♦ IsOrthogonalPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity f is an orthogonal polarity of a projective space if and only if the underlying matrix

is symmetric and the characteristic of the field is odd.
Example

gap> mat := [[1,0,2,0],[0,2,0,1],[2,0,0,0],[0,1,0,0]]*Z(9)ˆ0;
[ [ Z(3)ˆ0, 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), Z(3)ˆ0 ],
[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(9));
<polarity of PG(3, GF(3ˆ2)) >
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gap> IsOrthogonalPolarityOfProjectiveSpace(phi);
true

7.2.8 IsPseudoPolarityOfProjectiveSpace

♦ IsPseudoPolarityOfProjectiveSpace(f) (property)

Returns: true or false
The polarity f is a pseudo polarity of a projective space if and only if the underlying matrix is

symmetric, not all elements on the main diagonal are zeor and the characteristic of the field is even.
Example

gap> mat := [[1,0,1,0],[0,1,0,1],[1,0,0,0],[0,1,0,0]]*Z(16)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ],
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(8));
<polarity of PG(3, GF(2ˆ3)) >
gap> IsPseudoPolarityOfProjectiveSpace(phi);
true

7.3 Polarities, absolute points, totally isotropic elements and polar
spaces

We already mentioned the equivalence between polarities of PG(n,q) and sesquilinear forms on V (n+
1,q), hence there is a relation between polarities of PG(n,q) and polar spaces induced by sesquilinear
forms. The following concepts express these relations geometrically.

Suppose that φ is a polarity of PG(n,q) and that α is an element of PG(n,q). We call α a totally
isotropic element or an absolute element if and only if α is incident with αφ. An absolute element
that is a point, is also called an absolute point or an isotropic point. It is clear that an element of
PG(n,q) is absolute if and only if the underlying vectorspace is totally isotropic with relation to the
sesquilinear form equivalent to φ. Hence the absolute elements induce a polar space, the same that is
induced by the equivalent sesquilinear form. When φ is a speudo polarity, the set of absolute elements
are the elements of a hyperplane of PG(n,q).

7.3.1 GeometryOfAbsolutePoints

♦ GeometryOfAbsolutePoints(f) (operation)

Returns: a polar space or a hyperplane
When f is not a pseudo polarity, this operation returns the polar space induced by f. When f is

a pseudo polartiy, this operation returns the hyperplane containing all absolute elements.
Example

gap> mat := IdentityMat(4,GF(16));
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ] ]

gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(16));
<polarity of PG(3, GF(2ˆ4)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<polar space over GF(2ˆ4)>
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gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(32));
<polarity of PG(3, GF(2ˆ5)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<a plane in ProjectiveSpace(3, 32)>

7.3.2 AbsolutePoints

♦ AbsolutePoints(f) (operation)

Returns: a set of points
This operation returns all points that are absolute with relation to f.

Example
gap> mat := IdentityMat(4,GF(3));
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(3));
<polarity of PG(3, GF(3)) >
gap> points := AbsolutePoints(phi);
<All elements of Q+(3, 3)>
gap> List(points);
[ <a point in Q+(3, 3)>, <a point in Q+(3, 3)>, <a point in Q+(3, 3)>,
<a point in Q+(3, 3)>, <a point in Q+(3, 3)>, <a point in Q+(3, 3)>,
<a point in Q+(3, 3)>, <a point in Q+(3, 3)>, <a point in Q+(3, 3)>,
<a point in Q+(3, 3)>, <a point in Q+(3, 3)>, <a point in Q+(3, 3)>,
<a point in Q+(3, 3)>, <a point in Q+(3, 3)>, <a point in Q+(3, 3)>,
<a point in Q+(3, 3)> ]

7.3.3 PolarSpace

♦ PolarSpace(f) (operation)

Returns: a polar space
When f is not a pseudo polarity, this operation returns the polar space induced by f.

Example
gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(32));
<polarity of PG(3, GF(2ˆ5)) >
gap> ps := PolarSpace(phi);
Error, <polarity> is pseudo and does not induce a polar space called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> mat := IdentityMat(5,GF(7));
[ [ Z(7)ˆ0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],
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[ 0*Z(7), Z(7)ˆ0, 0*Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), Z(7)ˆ0, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ0, 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ0 ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space over GF(7)>

7.4 Commuting polarities

FinInG constructs packages as correlations. This allows polarities to be multiplies easily, resulting in
is collineation. The resulting collineation is constructed in the correlation group but can be mapped
onto its unique representative in the collineation group. We provide an example.

Example
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(5)ˆ0;
[ [ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5) ], [ Z(5)ˆ0, 0*Z(5), 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0 ], [ 0*Z(5), 0*Z(5), Z(5)ˆ0, 0*Z(5) ] ]

gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(3, GF(5ˆ2)) >
gap> mat2 := IdentityMat(4,GF(5));
[ [ Z(5)ˆ0, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), Z(5)ˆ0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0 ] ]

gap> psi := PolarityOfProjectiveSpace(mat2,GF(25));
<polarity of PG(3, GF(5ˆ2)) >
gap> phi*psi = psi*phi;
true
gap> g := CorrelationGroup(PG(3,25));
<projective group with Frobenius with proj. space isomorphism of size
3719082276000000000000 with 4 generators>
gap> h := CollineationGroup(PG(3,25));
PGammaL(4,25)
gap> hom := Embedding(h,g);
MappingByFunction( PGammaL(4,25), <projective group with Frobenius with proj.
space isomorphism of size 3719082276000000000000 with
4 generators>, function( y ) ... end )
gap> coll := PreImagesRepresentative(hom,phi*psi);
<projective semilinear element: [ [ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5) ],
[ Z(5)ˆ0, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0 ],
[ 0*Z(5), 0*Z(5), Z(5)ˆ0, 0*Z(5) ] ], Fˆ5>

AT =−A. Aθ = AT .



Chapter 8

Classical Polar Spaces

In this chapter we describe how to use FinInG to work with finite classical polar spaces.

8.1 Creating Polar Spaces

A polar space is a point-line incidence geometry, also satisfying few well known axioms. Well known
examples of finite polar spaces are the geometries attached to sesquilinear and quadratic forms of
vector spaces over a finite field, these geometries are called the finite classical polar spaces. As in the
previous case, the underlying vector space and matrix group are to our advantage. We refer the reader
to [HT91] and [Cam00] for the necessary background theory (if it is not otherwise provided), and we
follow the approach of [Cam00] to introduce all different flavours.

Consider the projective space PG(n,q) with underlying vector space V (n+1,q). Consider a non-
degenerate sesquilinear form f . Then f is either Hermitian, alternating or symmetric. When the
characteristic of the field is odd, respectively even, a symmetric bilinear form is called orthogonal,
respectively, pseudo. We do not consider the pseudo case, so we suppose that f is Hermitian, sym-
plectic or orthogonal. It is well known that the geometry consisting of the subspaces of PG(n,q)
whose underlying vector subspace is totally isotropic with relation to f , is a polar space P. We call
a polar space Hermitian, respectively, symplectic, orthogonal, if the underlying sesquilinear form is
Hermitian, respectively, symplectic, orthogonal.

Symmetric bilinear forms have completely different geometric properties in even characteristic
than in odd characteristic. On the other hand, polar spaces geometrically comparable to orthogonal
polar spaces in odd characteristic, do exist in even characteristic. The algebraic background is now
established by quadratic forms on a vector space instead of bilinear forms. Consider a non-singular
quadratic form q on a vector space V (n+ 1,q). It is well known that the geometry consisting of the
subspaces of PG(n,q) whose underlying vector subspace is totally singular with relation to q, is a
polar space P. The connection with orthogonal polar spaces in odd characteristic is clear, since in odd
characteristic, quadratic forms and symmetric bilinear forms are equivalent. Therefore, we call polar
spaces with an underlying quadratic form in even characteristic also orthogonal polar spaces.

8.1.1 PolarSpace

♦ PolarSpace(form) (operation)

Returns: a classical polar space
form must be a bilinear, quadratic, or hermitian form created by use of the GAP package forms.

61
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Example
gap> mat := [[0,0,0,1],[0,0,-2,0],[0,2,0,0],[-1,0,0,0]]*Z(5)ˆ0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0 ], [ 0*Z(5), 0*Z(5), Z(5)ˆ3, 0*Z(5) ],
[ 0*Z(5), Z(5), 0*Z(5), 0*Z(5) ], [ Z(5)ˆ2, 0*Z(5), 0*Z(5), 0*Z(5) ] ]

gap> form := BilinearFormByMatrix(mat,GF(25));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space of rank 3 over GF(5ˆ2)>
gap> r := PolynomialRing(GF(32),4);
PolynomialRing(..., [ x_1, x_2, x_3, x_4 ])
gap> poly := r.3*r.2+r.1*r.4;
x_1*x_4+x_2*x_3
gap> form := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> ps := PolarSpace(form);
<polar space of rank 3 over GF(2ˆ5)>

FinInG relies on the package forms for its facility with sesquilinear and quadratic forms. One
can specify a polar space with a user-defined form, and we refer to the documention for forms for
information on how one can create and use forms. Here we just display a worked example.

Example
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space of dimension 6 over GF(3)>
gap> ## The construction of the ovoid: ##
gap> psl32 := PSL(3,2);
Group([ (4,6)(5,7), (1,2,4)(3,6,5) ])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0],
[1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)ˆ0;;
gap> ovoid := Union( List(reps, x-> Orbit(psl32, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;
gap> planes := AsList( Planes( ps ) );;
gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);
true

8.2 Canonical Polar Spaces

To introduce the classification of polar spaces, we use the classification of the underlying forms in
similarity classes. We follow mostly the approach and terminology of [KL90], as we did in the
manual of the package Forms.

Consider a vector space V = V (n+ 1,q) and a sequilinear form f on V . The couple (V, f ) is
called a formed space. Consider now two formed spaces (V, f ) and (V, f ′), where f and f ′ are two
sesquilinear forms on V . A non-degenerate linear map φ from V to itself induces a similarity of the
formed space (V, f ) to the formed space (V, f ′) if and only if f (v,w)= λ f ′(φ(v),φ(w)). , for all vectors
v,w some non-zero . Up to similarity, there is only one class of non-degenerate Hermitian forms, and
one class of non-degenerate symplectic forms on a given vector space V . For symmetric bilinear
forms in odd characteristic, the number of similarity classes is dependent of the dimension of V . In
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odd dimension, there is only one similarity class, and non-degenerate forms in this class are called
parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate
forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

Consider now a vector space V and a quadratic form q on V . The couple (V,q) is called a formed
space. Consider now two formed spaces (V,q) and (V,q′), where q and q′ are two quadratic forms on
V . A non-degenerate linear map φ from V to itself induces a similarity of the formed space (V,q) to the
formed space (V,q′) if and only if q(v) = λ f ′(φ(v))). , for all vectors v some non-zero . For quadratic
forms in even characteristic, the number of similarity classes is dependent of the dimension of V . In
odd dimension, there is only one similarity class, and non-degenerate forms in this class are called
parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate
forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

In the following table, we summerize the above information on polar spaces, together with the
canonical forms that are chosen in FinInG.

polar space canonical form characteristic projective dimension
hermitian variety Xq+1

0 +Xq+1
1 + . . .+Xq+1

n = 0 odd and even odd and even
symplectic space X0Y1−Y0X1 + . . .+Xn−1Yn−Yn−1Xn = 0 odd and even odd
hyperbolic quadric X0X1 + . . .+Xn−1Xn = 0 odd and even odd
parabolic quadric X2

0 +X1X2 + . . .+Xn−1Xn = 0 odd and even even
elliptic quadric νX2

0 +X2
1 +X2X3 + . . .+Xn−1Xn = 0, ν a non-square odd odd

elliptic quadric dX2
0 +X0X1 +X2

1 +X2X3 + . . .+Xn−1Xn = 0, Tr(d) = 1 even odd

Table: finite classical polar spaces

8.2.1 SymplecticSpace

♦ SymplecticSpace(d, F) (operation)

♦ SymplecticSpace(d, q) (operation)

Returns: a symplectic polar space
This function returns the symplectic polar space of dimension d over F for a field F or over GF(q)

for a prime power q .
Example

gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> Display(ps);
W(3, 4)
Non-degenerate symplectic form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .

Witt Index: 2

8.2.2 HermitianVariety

♦ HermitianVariety(d, F) (operation)

♦ HermitianVariety(d, q) (operation)
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Returns: a Hermitian variety
This function returns the Hermitian variety of dimension d over F for a field F or over GF(q) for

a prime power q .
Example

gap> ps := HermitianVariety(2,25);
H(2, 5ˆ2)
gap> Display(ps);
H(2, 25)
Hermitian form
Gram Matrix:
1 . .
. 1 .
. . 1

Witt Index: 1

8.2.3 ParabolicQuadric

♦ ParabolicQuadric(d, F) (operation)

♦ ParabolicQuadric(d, q) (operation)

Returns: a parabolic quadric
d must be an even positive integer. This function returns the parabolic quadric of dimension d

over F for a field F or over GF(q) for a prime power q .
Example

gap> ps := ParabolicQuadric(2,9);
Q(2, 9)
gap> Display(ps);
Q(2, 9)
Non-degenerate parabolic bilinear form
Gram Matrix:
1 . .
. . 2
. 2 .

Witt Index: 1
gap> ps := ParabolicQuadric(4,16);
Q(4, 16)
gap> Display(ps);
Q(4, 16)
Non-singular parabolic quadratic form
Gram Matrix:
1 . . . .
. . 1 . .
. . . . .
. . . . 1
. . . . .

Witt Index: 2
Bilinear form
Gram Matrix:
. . . . .
. . 1 . .
. 1 . . .
. . . . 1
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. . . 1 .

8.2.4 HyperbolicQuadric

♦ HyperbolicQuadric(d, F) (operation)

♦ HyperbolicQuadric(d, q) (operation)

Returns: a hyperbolic quadric
d must be an odd positive integer. This function returns the hyperbolic quadric of dimension d

over F for a field F or over GF(q) for a prime power q .
Example

gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> Display(ps);
Q+(5, 3)
Non-degenerate hyperbolic bilinear form
Gram Matrix:
. 2 . . . .
2 . . . . .
. . . 2 . .
. . 2 . . .
. . . . . 2
. . . . 2 .

Witt Index: 3
gap> ps := HyperbolicQuadric(3,4);
Q+(3, 4)
gap> Display(ps);
Q+(3, 4)
Non-singular hyperbolic quadratic form
Gram Matrix:
. 1 . .
. . . .
. . . 1
. . . .

Witt Index: 2
Bilinear form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .

8.2.5 EllipticQuadric

♦ EllipticQuadric(d, F) (operation)

♦ EllipticQuadric(d, q) (operation)

Returns: an elliptic quadric
d must be an odd positive integer. This function returns the elliptic quadric of dimension d over

F for a field F or over GF(q) for a prime power q .
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Example
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> Display(ps);
Q-(3, 27)
Non-degenerate elliptic bilinear form
Gram Matrix:
1 . . .
. 1 . .
. . . 2
. . 2 .

Witt Index: 1
gap> ps := EllipticQuadric(5,8);
Q-(5, 8)
gap> Display(ps);
Q-(5, 8)
Non-singular elliptic quadratic form
Gram Matrix:
1 1 . . . .
. 1 . . . .
. . . 1 . .
. . . . . .
. . . . . 1
. . . . . .

Witt Index: 2
Bilinear form
Gram Matrix:
. 1 . . . .
1 . . . . .
. . . 1 . .
. . 1 . . .
. . . . . 1
. . . . 1 .

8.2.6 CanonicalPolarSpace

♦ CanonicalPolarSpace(form) (operation)

♦ CanonicalPolarSpace(P) (operation)

Returns: a classical polar space
the canonical polar space similar to the given polar space P of the classical polar space with

underlying form form

8.3 Basic operations finite classical polar spaces

8.3.1 UnderlyingVectorSpace

♦ UnderlyingVectorSpace(ps) (operation)

Returns: a vector space
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Example

Equality of projective spaces? Projective dimension of a projective space and of an element

8.3.2 ProjectiveDimension

♦ ProjectiveDimension(ps) (operation)

♦ Dimension(ps) (operation)

♦ Rank(ps) (operation)

Returns:
Example

8.3.3 StandardFrame

♦ StandardFrame(ps) (operation)

Returns:
Example

8.3.4 Coordinates

♦ Coordinates(v) (operation)

Returns:
Example

8.3.5 EquationOfHyperplane

♦ EquationOfHyperplane(ps) (operation)

Returns:
Example

8.3.6 BaseField

♦ BaseField(ps) (operation)

Returns:
Example

8.3.7 AsList

♦ AsList(subspaces) (operation)

Returns: an Orb object or list
Example
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8.3.8 Random

♦ Random(subspaces) (operation)

Returns:
Example

8.3.9 RandomSubspace

♦ RandomSubspace(pg, i) (operation)

Returns:
Example

8.3.10 VectorSpaceToElement

♦ VectorSpaceToElement(geo, v) (operation)

Returns: an element
geo is a projective space or a polar space, such as ProjectiveSpace(3,3) or

EllipticQuadric(7,5), and v is either a row vector (for points) or an mxn matrix (for an (m−1)-
subspace of a geometry of projective dimension n− 1). In the case that v is a matrix, the rows
represent basis vectors for the subspace. An exceptional case is when v is a zero-vector, whereby the
trivial subspace [] is returned (note: by convention, the empty set is the unique subspace of projective
dimension -1). When geo is a polar space, it is checked whether v determines a point or an element
geo.

Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,3]*Z(7)ˆ0;
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
[ Z(7), Z(7)ˆ5, Z(7)ˆ3, 0*Z(7), Z(7), Z(7)ˆ2, Z(7) ]
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]*Z(4)ˆ0;
[ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]]*Z(4)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement(ps,[]);
Error, <v> does not represent any vectorspace called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
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brk> quit;

8.3.11 EmptySubspace

♦ EmptySubspace (global variable)

Returns: a GAP object
EmptySubspace is a GAP object which represents the ubiquitous trivial subspace of a projec-

tive or polar space, and is contained in every projective space.
Example

gap> EmptySubspace;
< trivial subspace >
gap> line := Random(Lines(PG(5,9)));
<a line in ProjectiveSpace(5, 9)>
gap> EmptySubspace * line;
true
gap> EmptySubspace * PG(3,11);
true

8.3.12 \in

♦ \in(v, geo) (operation)

Returns: true or false
v is an element of an incidence structure. It is checked whether v is a subspace of the polar space

geo.
Example

gap> ps := ProjectiveSpace(5,9);
ProjectiveSpace(5, 9)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(5, 9)>
gap> r := Random(Solids(ps));
<a solid in ProjectiveSpace(5, 9)>
gap> IsIncident(p,r);
false
gap> IsIncident(r,p);
false
gap> p*r;
false
gap> r*p;
false
gap> p in r;
false
gap> r in p;
false
gap> EmptySubspace(ps) in r;
true
gap> r in ps;
true
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8.3.13 Span

♦ Span(u, v) (operation)

Returns: an element
u and v are elements of a projective or polar space. This function returns the join of the two

elements, that is, the span of the two subspaces.
Example

ProjectiveSpace(3, 3)
gap> p := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> q := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> s := Span(p,q);
ProjectiveSpace(3, 3)
gap> s = Span([p,q]);
true
gap> t := Span(EmptySubspace(ps),p);
<a plane in ProjectiveSpace(3, 3)>
gap> t = p;
true
gap> Span(ps,p);
ProjectiveSpace(3, 3)

8.3.14 Meet

♦ Meet(u, v) (operation)

Returns: an element
u and v are elements of a projective or polar space. This function returns the meet of the two

elements. If two elements do not meet, then Meet returns EmptySubspace, which in FinInG, is an
element with projective dimension -1. (Note that the poset of subspaces of a polar space is a meet-
semilattice, but not closed under taking spans).

Example
gap> ps := HyperbolicQuadric(5,3);;
gap> pi := Random( Planes(ps) );;
gap> tau := Random( Planes(ps) );;
gap> Meet(pi,tau);
<a point in Q+(5, 3)>

Note: the above example will return different answers depending on the two planes chosen at random.

8.3.15 IsCollinear

♦ IsCollinear(ps, u, v) (operation)

Returns: Boolean
u and v are elements of the polar space ps. This function returns True if u and v are incident

with a common line and False otherwise.
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8.3.16 Polarity

♦ Polarity(ps) (operation)

Returns: a function for the polarity
ps must be a polar space. This operation returns the polarity of the polar space ps in the form of

a function. (Put more here when Jan has implemented polarities).
Example

gap> pq := ParabolicQuadric(4,3);
Q(4, 3)
gap> perp := Polarity(pq);
function( v ) ... end
gap> lines := Lines(ps);
<lines of Q(4, 3)>
gap> l:=Random(lines);
<a line in Q(4, 3)>
gap> perp(l);
<a plane in PG(4, 3)>

8.3.17 AmbientSpace

♦ AmbientSpace(ps) (operation)

Returns: the ambient projective space
ps is a polar space. This function returns the ambient projective spce of ps.

8.3.18 TypeOfSubspace

♦ TypeOfSubspace(ps, v) (operation)

Returns: a string
This operation is a convenient way to find out the intersection type of a projective subspace with

a polar space. The argument ps is a nondegenerate polar space, and the argument v is a subspace of
the ambient projective space. The operation returns a string in accordance with the type of subspace:
“degenerate”, “symplectic”, “hermitian”, “elliptic”, “hyperbolic” or “parabolic”.

Example
gap> h1 := HermitianVariety(2, 3ˆ2);
H(2, 3ˆ2)
gap> h2 := HermitianVariety(3, 3ˆ2);
H(3, 3ˆ2)
gap> pg := AmbientSpace( h2 );
PG(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)ˆ0 );
<a plane in PG(3, 9)>
gap> TypeOfSubspace(h2, pi);
"hermitian"
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,Z(9)]] * Z(9)ˆ0 );
<a plane in PG(3, 9)>
gap> TypeOfSubspace(h2, pi);
"degenerate"
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8.4 All the elements or just one at a time

In FinInG, we can either use AsList to get all of the elements of a projective/polar space efficiently,
or we can ask for an iterator or enumerator of a collection of elements. The word collection is im-
portant here. Subspaces of a vector space are not calculated on calling Subspaces, rather primitive
information is stored in an IsComponentObjectRep. So for example

Example
gap> v:=GF(31)ˆ5;
( GF(31)ˆ5 )
gap> subs:=Subspaces(v,1);
Subspaces( ( GF(31)ˆ5 ), 1 )

takes almost no time at all. But if you want a random element from this set, you could be waiting
a while. Instead, the user is better off using an iterator or an enumerator to access elements of this
collection. So too do we have such a facility for the elements of a projective or polar space. At the
moment, we have made available iterators for projective spaces, and enumerators for polar spaces.

8.4.1 Enumerators for polar spaces

If you are not familiar with “enumerators” in GAP, it is worthy to explain a little bit about them in
this section. An enumerator is a particular object in GAP which allows the user to compute the i-th
entry in a collection. Mathematically speaking, it is a bijection from the positive integers to the given
collection. So for example, the rationals are totally ordered and there is an enumerator in GAP so that
the user can access rational numbers one at a time:

Example
gap> enum:=Enumerator(Rationals);
<enumerator of Rationals>
gap> enum[10];
3/2

For more on enumerators, see the relevant section in the GAP manual.

8.4.2 Enumerator

♦ Enumerator(elements) (operation)

Returns: an enumerator
elements is a collection of elements, such as Points( ParabolicQuadric( 4, 3 )). This

function returns an enumerator for elements.
Example

gap> lines := Lines( ParabolicQuadric(6, 3) );
<lines of Q(6, 3)>
gap> enum := Enumerator( lines );
EnumeratorOfSubspacesOfClassicalPolarSpace( <lines of Q(6, 3)> )
gap> enum[10];
<a line in Q(6, 3)>

8.4.3 Iterators for projective spaces

An iterator is a particular object in GAP which allows the user to compute the NEXT entry in a
collection. So iterators are a way to loop over the elements of a (countable) collection or a list, without
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repetition. The most important operations for the user are NextIterator and IsDoneIterator. We
show an example of how this works with the rationals.

Example
gap> iter := Iterator( Rationals );
<iterator>
gap> x := NextIterator( iter );
0
gap> x := NextIterator( iter );
1
gap> x := NextIterator( iter );
-1
gap> x := NextIterator( iter );
1/2
gap> x := NextIterator( iter );
2
gap> IsDoneIterator( iter );
false

For more on iterators, see the relevant section in the GAP manual.

8.4.4 Iterator

♦ Iterator(elements) (operation)

Returns: an iterator
elements is a collection of elements, such as Points( ProjectiveSpace( 4, 3 )). This

function returns an iterator for elements.
Example

gap> lines := Lines( ProjectiveSpace(6, 3) );
<lines of PG(6, 3)>
gap> iter := Iterator(lines);
<iterator>
gap> x := NextIterator( iter );
<a line in PG(6, 3)>
gap> x := NextIterator( iter );
<a line in PG(6, 3)>
gap> Display( x );
1 . . . . . .
. 1 . . . . 1

gap> IsDoneIterator( iter );
false



Chapter 9

Affine Geometry

In this chapter we show how one can work with finite affine spaces in FinInG.

9.1 Overview

An affine space can be loosely described as the “geometry you get” when you remove a hyperplane
from a projective space. Lines which were concurrent in a point of the subtracted hyperplane, are
now parallel. Conversely, one can “complete” an affine space naturally to produce a projective space,
by adding a hyperplane at infinity. In order to implement (Desarguesian) affine spaces in FinInG, we
have to represent the subspaces in a standard fashion. The common representation is that of a coset of
a vector subspace

v+S.

Hence one can think of an affine variety as consisting of: (i) a projective variety, and (ii) a “direction”.
Thus in FinInG, we represent a variety of rank at least 2 by a pair

[v,mat]

where v is a row vector and mat is a matrix (representing a basis of the associated projective variety).
For affine points, we simply use vectors. Here is a basic example of how we can work with affine
spaces in FinInG.

Example
gap> ag := AffineSpace(3,3);
AG(3, 3)
gap> points := Points(ag);;
gap> x := Random(points);
<a point in AG(3, 3)>
gap> Display(x);
Affine point: [ Z(3), Z(3), 0*Z(3) ]
gap> planes := AsList( Planes(ag) );;
gap> p := Random(planes);
<a plane in AG(3, 3)>
gap> Display(p);
Affine plane:
Coset representative: [ 0*Z(3), 0*Z(3), 0*Z(3) ]
Coset (direction): [ [ Z(3)ˆ0, 0*Z(3), Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ] ]
gap> g := CollineationGroup( ag );
AGL(3,3)

74
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9.2 Construction of affine spaces and subspaces

9.2.1 AffineSpace

♦ AffineSpace(d, F) (operation)

♦ AffineSpace(d, q) (operation)

♦ AG(d, F) (operation)

♦ AG(d, q) (operation)

Returns: an affine space
d must be a positive integer. In the first form, F is a field and the function returns the (Desargue-

sian) affine space of dimension d over F. In the second form, q is a prime power specifying the size
of the field. We have also installed the synonym AG, as this is the customary shorthand notation for an
affine space.

Example
gap> AffineSpace(3,GF(3));
AG(3, 3)
gap> AffineSpace(3,3);
AG(3, 3)

9.2.2 AffineSubspace

♦ AffineSubspace(geo, v) (operation)

♦ AffineSubspace(geo, v, M) (operation)

Returns: a subspace of an affine space
geo is an affine space, v is a row vector, and M is a matrix. There are two representations neces-

sary for affine subspaces in FinInG: (i) points represented as vectors and (ii) subspaces of dimension
at least 2 represented as a coset of a vector subspace:

v+S.

For the former, the underlying object is just a vector, whereas the second is a pair [v,M] where v is a
vector and M is a matrix representing the basis of S. Now there is a canonical representative for the
coset v+ S, and the matrix M is in semi-echelon form , therefore we can easily compare two affine
subspaces. If no matrix is given in the arguments, then it is assumed that the user is constructing an
affine point.

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> x := [[1,1,0]]*Z(3)ˆ0;
[ [ Z(3)ˆ0, Z(3)ˆ0, 0*Z(3) ] ]
gap> v := [0,-1,1] * Z(3)ˆ0;
[ 0*Z(3), Z(3), Z(3)ˆ0 ]
gap> line := AffineSubspace(ag, v, x);
<a line in AG(3, 3)>
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9.3 Basic operations

9.3.1 Span

♦ Span(u, v) (operation)

Returns: a subspace
u and v are subspaces of an affine space. This function returns the join of the two subspaces, that

is, the span of the two subspaces.
Example

gap> ag := AffineSpace(4,5);
AG(4, 5)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> r := AffineSubspace(ag, [0,1,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> l := Join(p, r);
<a line in AG(4, 5)>
gap> lˆ_;
[ [ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5) ], [ [ Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5) ] ] ]
gap> Display(l);
Affine line:
Coset representative: [ 0*Z(5), Z(5)ˆ0, 0*Z(5), 0*Z(5) ]
Coset (direction): [ [ Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5) ] ]

9.3.2 Meet

♦ Meet(u, v) (operation)

Returns: a subspace
u and v are subspaces of an affine space. This function returns the meet of the two subspaces. If

the two subspaces are disjoint, then Meet returns [ ].
Example

gap> ag := AffineSpace(4,5);
AG(4, 5)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)),
> [[1,0,0,-1], [0,1,0,0],[0,0,1,3]] * One(GF(5)));
<a solid in AG(4, 5)>
gap> l := AffineSubspace(ag, [0,0,0,0] * One(GF(5)), [[1,1,0,0]] * One(GF(5)) );
<a line in AG(4, 5)>
gap> x := Meet(p, l);
<a point in AG(4, 5)>
gap> xˆ_;
[ Z(5)ˆ0, Z(5)ˆ0, 0*Z(5), 0*Z(5) ]
gap> Display(x);
Affine point: [ Z(5)ˆ0, Z(5)ˆ0, 0*Z(5), 0*Z(5) ]

9.3.3 ShadowOfElement

♦ ShadowOfElement(as, v, type) (operation)

Returns: the subspaces of the affine space as of dimension type which are incident with v
as is an affine space and v is an element of as. This operation computes and returns the subspaces

of dimension typewhich are incident with v . In fact, this operation returns a collection which is only
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computed when iterated (such as when applying AsList to the collection). Some shorthand notation
for ShadowOfElement is available for affine spaces: Points(as,v), Points(v), Lines(v), etc.

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> planesonl := Planes(l);
<shadow planes in AG(3, 3)>
gap> AsList(planesonl);
[ <a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,
<a plane in AG(3, 3)> ]

9.3.4 ShadowOfFlag

♦ ShadowOfFlag(as, list, type) (operation)

Returns: the subspaces of the affine space as of dimension type which are incident with each
element of list

as is an affine space and list is a list of pairwise incident elements of as. This operation
computes and returns the subspaces of dimension type which are incident with every element of
list. In fact, this operation returns a collection which is only computed when iterated (such as when
applying AsList to the collection).

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> x := Random( Points( as ) );
<a point in AG(3, 3)>
gap> flag := [x, l];
[ <a point in AG(3, 3)>, <a line in AG(3, 3)> ]
gap> shadow := ShadowOfFlag( as, flag, 3 );
<shadow planes in AG(3, 3)>
gap> AsList(shadow);
[ <a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,
<a plane in AG(3, 3)> ]

9.3.5 IsParallel

♦ IsParallel(u, v) (operation)

Returns: true or false
The arguments u and v must be affine subspaces of a common affine space, of the same dimension.

These two subspaces are parallel if and only if they are cosets of the same vector subspace.

9.3.6 ParallelClass

♦ ParallelClass(as, v) (operation)

♦ ParallelClass(v) (operation)

Returns: a collection of affine subspaces
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The argument v is an affine subspace of as. This operation returns a collection for which an
iterator is installed for it. The collection represents the set of elements of as of the same type as v
which are parallel to v; they have the same direction. If v is a point, then this operation returns the
collection of all points of as. If one argument is given, then it is assumed that the affine space which
we are working with is that which v contains as a component.

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> pclass := ParallelClass( l );
<parallel class of lines in AG(3, 3)>
gap> AsList(pclass);
[ <a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,
<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,
<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)> ]

9.4 Iterators and enumerators

Recall from “All the subspaces or just one at a time” from Chapter 8, that an iterator allows us to
obtain elements from a collection one at a time in sequence, whereas an enumerator for a collection
give us a way of picking out the i-th element. In FinInG we have enumerators and iterators for subspace
collections of affine spaces.

9.4.1 Iterator

♦ Iterator(subs) (operation)

Returns: an iterator for the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points( AffineSpace(3, 3) ).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
<lines of AG(3, 3)>
gap> iter := Iterator( lines );
<iterator>
gap> l := NextIterator( iter );
<a line in AG(3, 3)>

9.4.2 Enumerator

♦ Enumerator(subs) (operation)

Returns: an enumerator for the the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points( AffineSpace(3, 3) ).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
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<lines of AG(3, 3)>
gap> enum := Enumerator( lines );
<enumerator of <lines of AG(3, 3)>>
gap> l := enum[20];
<a line in AG(3, 3)>
gap> Display(l);
Affine line:
Coset representative: [ 0*Z(3), 0*Z(3), Z(3)ˆ0 ]
Coset (direction): [ [ Z(3)ˆ0, 0*Z(3), Z(3) ] ]

One technical aspect of the design behind affine spaces in FinInG are having canonical transversals
for subspaces of vector spaces. So we provide some documentation below for the interested user.

9.4.3 IsVectorSpaceTransversal

♦ IsVectorSpaceTransversal (filter)

The category IsVectorSpaceTransversal represents a special object in FinInG which car-
ries a record with two components: space and subspace. This category is a subcategory of
IsSubspacesOfVectorSpace, however, we do not recommend that the user apply methods normally
used for this category to our objects (they won’t work!). Our objects are only used in order to facilitate
computing enumerators of subspace collections.

9.4.4 VectorSpaceTransversal

♦ VectorSpaceTransversal(space, mat) (operation)

Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V .

A transversal for U in V is a set of coset representatives for the quotient V/U . This collection comes
equipped with an enumerator operation.

9.4.5 VectorSpaceTransversalElement

♦ VectorSpaceTransversalElement(space, mat, vector) (operation)

Returns: a canonical coset representative
space is a vector space V , mat is a matrix whose rows are a basis for a subspace U of V , and

vector is a vector v of V . A canonical representative v′ is returned for the coset U + v.

9.4.6 ComplementSpace

♦ ComplementSpace(space, mat) (operation)

Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V . The

operation is almost a complete copy of the function BaseSteinitzVector except that just a basis for
the complement of U is returned instead of a full record.
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9.5 Affine groups

A collineation of an affine space is a permutation of the points which preserves the relation of
collinearity within the affine space. The fundamental theorem of affine geometry states that the
collineations of an affine space AG(d,F) form the group AΓL(d,F), which is generated by the trans-
lations T , matrices of GL(d,F) and the automorphisms of the field F . Since the translations T form a
normal subgroup of AΓL(d,F), we see that AΓL(d,F) is the semidirect product of T and ΓL(d,F). In
FinInG, we represent the affine groups as projective semilinear transformations so that we can use all
the functionality that exists for collineations of projective spaces. Suppose we have an affine transfor-
mation of the form x+A where x is a vector representing a translation, and A is a matrix in GL(d,q).
Then by using the natural embedding of AGL(d,q) in PGL(d+1,q), we can write this collineation as

a matrix:


0

A 0
0

x 1

 We can also extend this idea to the full affine collineation group by

adjoining the field automorphisms as we would for projective collineations. Here is an example:
Example

gap> ag := AffineSpace(3,3);
AG(3, 3)
gap> g := AffineGroup(ag);
AGL(3,3)
gap> x:=Random(g);;
gap> Display(x);
<projective element with Frobenius, underlying matrix:
2 1 2 .
1 2 2 .
1 1 2 .
1 2 2 1

, Fˆ0>

Here we see that this affine transformation is

(1,2,2)+



1
2
1
2
2
1
1
2


.

9.5.1 AffineGroup

♦ AffineGroup(as) (operation)

Returns: a group
This operation returnes the affine linear group AGL(V ) acting on the affine space with underlying

vector space V . The elements of this group are collineations of the associated projective space. In
order to get the full group of collineations of the affine space, one may need to use the operation
CollineationGroup.
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Example
gap> as := AffineSpace(4, 7);
AG(4, 7)
gap> g := AffineGroup( as );
AGL(4,7)

9.5.2 CollineationGroup

♦ CollineationGroup(as) (operation)

Returns: a group
This operation returnes the affine semilinear group AΓL(V ) acting on the affine space with under-

lying vector space V . The elements of this group are collineations of the associated projective space.
Note that if the defining field has prime order, then AΓL(V ) = AGL(V ).

Example
gap> as := AffineSpace(4, 8);
AG(4, 8)
gap> g := CollineationGroup( as );
AGammaL(4,8)

9.5.3 OnAffineSpaces

♦ OnAffineSpaces(subspace, el) (operation)

Returns: an element of an affine space
subspace must be an element of an affine space and el is a collineation of an affine space

(which is in fact also a collineation of an associated projective space). This is the action one should
use for collineations of affine spaces, and it acts on subspaces of all types of affine spaces: points,
lines, planes, etc.



Chapter 10

Geometry Morphisms

Here we describe what is meant by a geometry morphism in FinInG and the various operations and
tools available to the user.

10.1 Geometry morphisms in FinInG

A geometry morphism from P to P’ is defined to be a map from the elements of P to the elements of
P’ which preserves incidence and induces a function from the type set of P to the type set of P’. For
instance, a correlation and a collineation are examples of geometry morphisms, but they have been
dealt with in more specific ways in FinInG. We will mainly be concerned with geometry morphisms
where the source and range are different. Hence, the natural embedding of a projective space in a
larger projective space, the mapping induced by field reduction, and the Klein correspondence are
examples of such geometry morphisms.

10.1.1 IsGeometryMorphism

♦ IsGeometryMorphism (family)

The category IsGeometryMorphism represents a special object in FinInG which carries attributes
and the given element map. The element map is given as a IsGeneralMapping, and so has a source
and range.

Example
gap> ShowImpliedFilters(IsGeometryMorphism);
Implies:

IsGeneralMapping
IsTotal
Tester(IsTotal)
IsSingleValued
Tester(IsSingleValued)

The usual operations of ImagesElm, ImagesSet, PreImagesElm, PreImagesSet work for geometry
morphisms, as well as the overload operator \ˆ. Since Image is a GAP function, we advise the user to
not use this for geometry morphisms.

For some geometry morphisms, there is also an accompanying intertwiner for the automorphism
groups of the source range. Given a geometry morphism f from P to P’, an intertwiner φ is a map

82
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from the automorphism group of P to the automorphism group of P’, such that for every element p
of P and every automorphism g of P, we have

f (pg) = f (p)φ(g).

10.1.2 Intertwiner

♦ Intertwiner(f) (attribute)

Returns: a group homomorphism
The arguments f is a geometry morphism. If f comes equipped with a natural intertwiner from

the the automorphism group of the source of f to the automorphism group to the image of f, then
the user may be able to obtain the intertwiner by calling this operation (see the individual geometry
morphism constructions). Here is a simple example of the intertwiner for the isomorphism of two
polar spaces (see IsomorphismPolarSpaces (10.1.3)).

Example
gap> form := BilinearFormByMatrix( IdentityMat(3,GF(3)), GF(3) );
< bilinear form >
gap> ps := PolarSpace(form);
<polar space of rank 2 over GF(3)>
gap> pq := ParabolicQuadric(2,3);
Q(2, 3)
gap> iso := IsomorphismPolarSpaces(ps, pq);
<geometry morphism from <Elements of <polar space of rank 2 over GF(
3)>> to <Elements of Q(2, 3)>>
gap> KnownAttributesOfObject(iso);
[ "Range", "Source", "Intertwiner" ]
gap> hom := Intertwiner(iso);;

10.1.3 IsomorphismPolarSpaces

♦ IsomorphismPolarSpaces(ps1, ps2) (operation)

♦ IsomorphismPolarSpaces(ps1, ps2, boolean) (operation)

Returns: a geometry morphism
The arguments ps1 and ps2 are equivalent polar spaces, and this function returns a geometry

isomorphism between them. The optional third argument boolean can take either true or false
as input, and then our operation will or will not compute the intertwiner accordingly. The user may
wish that the intertwiner is not computed when working with large polar spaces. The default (when
calling the operation with two arguments) is set to true, and in this case, if at least one of ps1 or ps2
has a collineation group installed as an attribute, then an intertwining homomorphism is installed as
an attribute. That is, we also obtain a natural group isomorphism from the collineation group of ps1
onto the collineation group of ps2 (see also Intertwiner (10.1.2)).

Example
gap> id := IdentityMat(6, GF(5));;
gap> form := BilinearFormByMatrix( id, GF(5) );
< bilinear form >
gap> ps := PolarSpace( form );
<polar space of rank 5 over GF(5)>
gap> PolarSpaceType( ps );
"hyperbolic"
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gap> quadric := HyperbolicQuadric( 5, 5 );
Q+(5, 5)
gap> iso := IsomorphismPolarSpaces( ps, quadric );
<geometry morphism from <Elements of <polar space of rank 5 over GF(
5)>> to <Elements of Q+(5, 5)>>
gap> HasCollineationGroup( ps );
true
gap> hom := Intertwiner( iso );;
gap> ImagesSet(hom, SpecialIsometryGroup( ps ));
<projective group with Frobenius of size 14508000000 with 3 generators>

Both functions also have a ”no check” version. ♦ IsomorphismPolarSpacesNC(ps1, ps2)
(operation)

♦ IsomorphismPolarSpacesNC(ps1, ps2, boolean) (operation)

Returns: a geometry morphism

10.2 When will you use geometry morphisms?

When using groups in GAP, we often use homomorphisms to pass from one situation to another, even
though mathematically it may appear to be unneccessary, there can be ambiguities if the functionality
is too flexible. This also applies to finite geometry. Take for example the usual exercise of thinking of
a hyperplane in a projective space as another projective space. To conform with similar things in GAP,
the right thing to do is to embed one projective space into another, rather than having one projective
space automatically a substructure of another. The reason for this is that there are many ways one can
do this embedding, even though we may dispense with this choice when we are working mathemat-
ically. So to avoid ambiguity, we stipulate that one should construct the embedding explicitly. How
this is done will be the subject of the following section.

10.3 Natural geometry morphisms

The most natural of geometry morphisms include, for example, the embedding of a projective space
into another via a subspace, or the projection of a polar space to a smaller polar space of the same
type via a totally isotropic subspace.

10.3.1 NaturalEmbeddingBySubspace

♦ NaturalEmbeddingBySubspace(geom1, geom2, v) (operation)

♦ NaturalEmbeddingBySubspaceNC(geom1, geom2, v) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 are both projective spaces, or both polar spaces, and v is

an element of a projective or polar space. This function returns a geometry morphism representing
the natural embedding of geom1 into geom2 as the subspace v . Hence geom1 and v must be
equivalent as geometries. The operation NaturalEmbeddingBySubspaceNC is the “no check” version
of NaturalEmbeddingBySubspace.

Example
gap> geom1 := ProjectiveSpace(2, 3);
PG(2, 3)
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gap> geom2 := ProjectiveSpace(3, 3);
PG(3, 3)
gap> planes := Planes(geom2);
<planes of PG(3, 3)>
gap> hyp := Random(planes);
<a plane in PG(3, 3)>
gap> em := NaturalEmbeddingBySubspace(geom1, geom2, hyp);
<geometry morphism from <Elements of PG(2, 3)> to <Elements of PG(3, 3)>>
gap> points := Points(geom1);
<points of PG(2, 3)>
gap> x := Random(points);
<a point in PG(2, 3)>
gap> xˆem;
<a point in PG(3, 3)>

Another example, this time with polar spaces:
Example

gap> h1 := HermitianVariety(2, 3ˆ2);
H(2, 3ˆ2)
gap> h2 := HermitianVariety(3, 3ˆ2);
H(3, 3ˆ2)
gap> pg := AmbientSpace( h2 );
PG(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)ˆ0 );
<a plane in PG(3, 9)>
gap> em := NaturalEmbeddingBySubspace( h1, h2, pi );
<geometry morphism from <Elements of H(2, 3ˆ2)> to <Elements of H(3, 3ˆ2)>>

10.3.2 NaturalEmbeddingByFieldReduction

♦ NaturalEmbeddingByFieldReduction(geom1, geom2) (operation)

♦ NaturalEmbeddingByFieldReduction(geom1, geom2, B) (operation)

♦ NaturalEmbeddingByFieldReduction(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 are projective or polar spaces. This function returns a ge-

ometry morphism representing the natural embedding of geom1 into geom2 via field reduction. By
natural for projective spaces, we mean that the embedding is induced by considering the field F1
of geom1 as a vector space over the field F2 of geom2, perhaps with a choice of basis B in the
case we have projective spaces. If geom1 and geom2 are polar spaces, then the only such possible
embeddings are listed in the table below (see [Gil08]):
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Polar Space 1 Polar Space 2 Conditions
W (2n−1,qa) W (2na−1,q) –
Q+(2n−1,qa) Q+(2na−1,q) –
Q−(2n−1,qa) Q−(2na−1,q) –
Q(2n,q2a) Q+(2(2n+1)a−1,q) q=1 mod 4
Q(2n,q2a) Q−(2(2n+1)a−1,q) q=3 mod 4
Q(2n,q2a+1) Q((2a+1)(2n+1)−1,q) q odd
H(n,q2a+1) H((2a+1)(n+1)−1,q) q square
H(2n,q2a) Q+(2a(2n+1)−1,q) q odd square
H(2n−1,q2a) Q−(4an−1,q) q odd square
H(n,q2a) W (2n−1,q) –

Table: Field reduction of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (10.1.2)). In
the case polar spaces, this intertwiner has as its domain the isometry group of geom1. The optional
third argument boolean can take either true or false as input, and then our operation will or will
not compute the intertwiner accordingly. The user may wish that the intertwiner is not computed when
embedding into large polar spaces. The default (when calling the operation with two arguments) is
set to true. Here is a simple example where the geometry morphism takes the points of PG(2,9) and
maps them to the lines of PG(5,3).

Example
gap> pg1 := ProjectiveSpace(2,9);
PG(2, 9)
gap> pg2 := ProjectiveSpace(5,3);
PG(5, 3)
gap> em := NaturalEmbeddingByFieldReduction(pg1, pg2);
<geometry morphism from <Elements of PG(2, 9)> to <Elements of PG(5, 3)>>
gap> line := Random( Lines(pg1) );
<a line in PG(2, 9)>
gap> solid := line ˆ em;
<a solid in PG(5, 3)>
gap> l := em!.prefun(solid);
<a line in PG(2, 9)>

Suppose we have field reduction from a polar space P1 to a polar space P2, and suppose that they are
both defined by sesquilinear forms. Let M be the Gram matrix for the sesquilinear form defining P1
and let {b1, ..,bm} be a basis for the larger defining field of F P1 over the smaller defining field K
of P2. Now the BlownUpMat command takes as input a matrix mat over F and returns the matrix
of the linear transformation on the row space Kmn with respect to the K-basis whose vectors are
{b1v1, ...bmv1, ...,bmvn}, where {v1, ...,vn} is a basis for Fn. Hence if we have a singular vector
x = (x1, ...,xn) of P1, then the blow-up of x will be singular if and only if for all i, j ∈ {1, ...,m},
we have

n

∑
k=1

Coe f f (xkbi) ·Coe f f (Mk · xb j) = 0

where Coe f f is the map which takes the coefficients of an element of F with respect to {b1, ..,bm},
and Mk is the k-th row of M.

In this example, we consider the image of the Hermitian variety H(2,25) in Q−(5,5).
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Example
gap> h := HermitianVariety(2, 5ˆ2);
H(2, 5ˆ2)
gap> quadric := EllipticQuadric(5, 5);
Q-(5, 5)
gap> em := NaturalEmbeddingByFieldReduction(h, quadric);
#I Testing degeneracy of the *associated bilinear form*
<geometry morphism from <Elements of H(2, 5ˆ2)> to <Elements of Q-(5, 5)>>
gap> points := AsList(Points(h));;
gap> image := ImagesSet(em, points);;
gap> image[1];
<a line in Q-(5, 5)>
gap> hom := Intertwiner( em );;
gap> g := Range( hom );
<projective group with Frobenius of size 378000 with 2 generators>
gap> OrbitLengths(g, image);
[ 126 ]

10.3.3 BlownUpProjectiveSpace

♦ BlownUpProjectiveSpace(basis, pg1) (operation)

Returns: a projective space
Blows up the projective space pg1 with respect to the basis using field reduction. If the ar-

gument pg1 is has projective dimension r-1 over the finite field GF(qˆt), and basis is a basis of
GF(qˆt) over GF(q), then this functions returns a projective space of dimension rt-1 over GF(q).

10.3.4 BlownUpProjectiveSpaceBySubfield

♦ BlownUpProjectiveSpaceBySubfield(subfield, pg) (operation)

Returns: a projective space
Blows up a projective space pg with respect to the standard basis of the basefield of pg over the

subfield.

10.3.5 BlownUpSubspaceOfProjectiveSpace

♦ BlownUpSubspaceOfProjectiveSpace(basis, subspace) (operation)

Returns: a subspace of a projective space
Blows up a subspace of a projective space with respect to the basis using field reduction and

returns it a subspace of the projective space obtained from blowing up the ambient projective space of
subspace with respect to basis using field reduction.

10.3.6 BlownUpSubspaceOfProjectiveSpaceBySubfield

♦ BlownUpSubspaceOfProjectiveSpaceBySubfield(subfield, subspace) (operation)

Returns: a subspace of a projective space
Blows up a subspace of a projective space with respect to the standard basis of the basefield

of subspace over the subfield, using field reduction and returns it a subspace of the projective
space obtained from blowing up the ambient projective space of subspace over the subfield.
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10.3.7 IsDesarguesianSpreadElement

♦ IsDesarguesianSpreadElement(basis, subspace) (operation)

Returns: true or false
Checks wether the subspace is a subspace which is obtained from a blowing up a projective

point using field reduction with respect to basis.

10.3.8 NaturalEmbeddingBySubField

♦ NaturalEmbeddingBySubField(geom1, geom2) (operation)

♦ NaturalEmbeddingBySubField(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 are projective or polar spaces of the same dimension. This

function returns a geometry morphism representing the natural embedding of geom1 into geom2 as
a subfield geometry. If geom1 and geom2 are polar spaces, then the only such possible embeddings
are listed in the table below (see [KL90]):

Polar Space 1 Polar Space 2 Conditions
W (2n−1,q) W (2n−1,qa) –
W (2n−1,q) H(2n−1,q2) –
H(d,q2) H(d,q2r) r odd
Oε(d,q) H(d,q2) q odd
Oε(d,q) Oε′(d,qr) ε = (ε′)r

Table: Subfield embeddings of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (10.1.2)).
The optional third argument boolean can take either true or false as input, and then our operation
will or will not compute the intertwiner accordingly. The user may wish that the intertwiner is not
computed when embedding into large polar spaces. The default (when calling the operation with two
arguments) is set to true. Here is a simple example where the geometry morphism takes the points
of PG(2,3) and embeds them into PG(2,9).

Example
gap> pg1 := ProjectiveSpace(2, 3);
PG(2, 3)
gap> pg2 := ProjectiveSpace(2, 9);
PG(2, 9)
gap> em := NaturalEmbeddingBySubfield(pg1,pg2);
<geometry morphism from <Elements of PG(2, 3)> to <Elements of PG(2, 9)>>
gap> points := AsList(Points( pg1 ));
[ <a point in PG(2, 3)>, <a point in PG(2, 3)>, <a point in PG(2, 3)>,
<a point in PG(2, 3)>, <a point in PG(2, 3)>, <a point in PG(2, 3)>,
<a point in PG(2, 3)>, <a point in PG(2, 3)>, <a point in PG(2, 3)>,
<a point in PG(2, 3)>, <a point in PG(2, 3)>, <a point in PG(2, 3)>,
<a point in PG(2, 3)> ]

gap> image := ImagesSet(em, points);
[ <a point in PG(2, 9)>, <a point in PG(2, 9)>, <a point in PG(2, 9)>,
<a point in PG(2, 9)>, <a point in PG(2, 9)>, <a point in PG(2, 9)>,
<a point in PG(2, 9)>, <a point in PG(2, 9)>, <a point in PG(2, 9)>,
<a point in PG(2, 9)>, <a point in PG(2, 9)>, <a point in PG(2, 9)>,
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<a point in PG(2, 9)> ]

In this example, we embed W (5,3) in H(5,32).
Example

gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> h := HermitianVariety(5, 3ˆ2);
H(5, 3ˆ2)
gap> em := NaturalEmbeddingBySubfield(w, h);
<geometry morphism from <Elements of W(5, 3)> to <Elements of H(5, 3ˆ2)>>
gap> points := AsList(Points(w));;
gap> image := ImagesSet(em, points);;
gap> ForAll(image, x -> x in h);
true

10.3.9 NaturalProjectionBySubspace

♦ NaturalProjectionBySubspace(ps, v) (operation)

♦ NaturalProjectionBySubspaceNC(ps, v) (operation)

Returns: a geometry morphism
The argument ps is a projective or polar space, and v is a subspace of ps. In the

case that ps is a projective space, this operation returns a geometry morphism from the sub-
spaces containing v to the subspaces of a smaller projective space over the same field. Simi-
larly, if ps is a polar space, this operation returns a geometry morphism from the totally singu-
lar subspaces containing v to a polar space of smaller dimension, but of the same polar space
type. The operation NaturalProjectionBySubspaceNC performs in exactly the same way as
NaturalProjectionBySubspace except that there are fewer checks such as whether v is a subspace
of ps, and whether the input of the function and preimage of the returned geometry morphism is valid
or not. We should also mention here a shorthand for this operation which is basically and overload of
the quotient operation. So, for example, SymplecticSpace(3, 3) / v achieves the same thing as
NaturalProjectionBySubspace(SymplecticSpace(3,3), v).

Example
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> x := Random( Points(ps) );;
gap> planes_on_x := AsList( Planes(x) );
[ <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,
<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,
<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)> ]

gap> proj := NaturalProjectionBySubspace(ps, x);
<geometry morphism from <Elements of Q+(5,
3)> to <Elements of <polar space of rank 3 over GF(3)>>>
gap> image := ImagesSet(proj, planes_on_x);
[ <a line in Q+(3, 3)>, <a line in Q+(3, 3)>, <a line in Q+(3, 3)>,
<a line in Q+(3, 3)>, <a line in Q+(3, 3)>, <a line in Q+(3, 3)>,
<a line in Q+(3, 3)>, <a line in Q+(3, 3)> ]
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10.4 Some special kinds of geometry morphisms

In this section we provide some more specialised geometry morphisms, that are commonly used in
finite geometry.

10.4.1 KleinCorrespondence

♦ KleinCorrespondence(quadric) (operation)

Returns: a geometry morphism
The argument quadric is a 5-dimensional hyperbolic quadric Q+( 5,q), and this function re-

turns the Klein correspondence from the lines of PG(3,q) to the points of quadric.
Example

gap> quadric := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> k := KleinCorrespondence( quadric );
#I Finding base change...
#I Computing nice monomorphism...
<geometry morphism from <lines of PG(3, 3)> to <points of Q+(5, 3)>>
gap> pg := ProjectiveSpace(3, 3);
PG(3, 3)
gap> l := Random( Lines(pg) );
<a line in PG(3, 3)>
gap> lˆk;
<a point in Q+(5, 3)>

10.4.2 NaturalDuality

♦ NaturalDuality(gq) (operation)

Returns: a geometry morphism
The argument gq is either the symplectic generalised quadrangle W(3,q) or the hermitian gen-

eralised quadrangle H(3,qˆ2). By the Klein correspondence, the lines of W (3,q) are mapped to the
points of Q(4,q), which results in a point-line duality from W (3,q) onto Q(4,q). Likewise, the Klein
correspondence induces a duality between H(3,q2) and Q−(5,q). At the moment, the geometry mor-
phism returned is a map from lines to points. This operation does not require that the input is the
canonical version of the generalised quadrangle; it suffices that the input has the correct polarity type.

Example
gap> w := SymplecticSpace(3,5);
W(3, 5)
gap> lines:=AsList(Lines(w));;
#I Computing nice monomorphism...
gap> duality := NaturalDuality(w);
#I Finding base change...
#I No intertwiner computed. One of the polar spaces must have a collineation
group computed
<geometry morphism from <lines of W(3, 5)> to <points of Q(4, 5)>>
gap> l:=lines[1];
<a line in W(3, 5)>
gap> lˆduality;
<a point in Q(4, 5)>
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gap> PreImageElm(duality,last);
<a line in PG(3, 5)>

10.4.3 ProjectiveCompletion

♦ ProjectiveCompletion(as) (operation)

Returns: a geometry morphism
The argument as is an affine space. This operation returns an embedding of as into the pro-

jective space ps of the same dimension, and over the same field. For example, the point (x,y,z)
goes to the projective point with homogeneous coordinates (1,x,y,z). An intertwiner is unnecessary,
CollineationGroup(as) is a subgroup of CollineationGroup(ps).

Example
gap> as := AffineSpace(3,5);
AG(3, 5)
gap> map := ProjectiveCompletion(as);
<geometry morphism from <Elements of AG(3, 5)> to <Elements of PG(3, 5)>>
gap> p := Random( Points(as) );
<a point in AG(3, 5)>
gap> pˆmap;
<a point in PG(3, 5)>



Chapter 11

Algebraic Varieties

In FinInG we provide some basic functionality for algebraic varieties defined over finite fields. The
algebraic varieties in FinInG are defined by a list of multivariate polynomials over a finite field, and an
ambient geometry. This ambient geometry is either a projective space, and then the algebraic variety
is called a projective variety, or an affine geometry, and then the algebraic variety is called an affine
variety. In this chapter we give a brief overview of the features of FinInG concerning these two types
of algebraic varieties.

11.1 Projective Varieties

A projective variety in FinInG is an algebraic variety in a projective space defined by a list of homo-
geneous polynomials over a finite field.

11.1.1 ProjectiveVariety

♦ ProjectiveVariety(pg, pring, pollist) (operation)

♦ ProjectiveVariety(pg, pollist) (operation)

♦ AlgebraicVariety(pg, pring, pollist) (operation)

♦ AlgebraicVariety(pg, pollist) (operation)

Returns: a projective algebraic variety
The argument pg is a projective space over a finite field F, the argument pring is a multivariate

polynomial ring defined over (a subfield of) F, and pollist is a list of homogeneous polynomials
in pring.

Example
gap> F:=GF(9);
GF(3ˆ2)
gap> r:=PolynomialRing(F,4);
GF(3ˆ2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
PG(3, 9)
gap> f1:=r.1*r.3-r.2ˆ2;
x_1*x_3-x_2ˆ2
gap> f2:=r.4*r.1ˆ2-r.4ˆ3;
x_1ˆ2*x_4-x_4ˆ3
gap> var:=AlgebraicVariety(pg,[f1,f2]);

92
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Algebraic Variety V( [ x_1*x_3-x_2ˆ2, x_1ˆ2*x_4-x_4ˆ3 ] ) in PG(3, 9)

11.2 Affine Varieties

An affine variety in FinInG is an algebraic variety in an affine space defined by a list of polynomials
over a finite field.

11.2.1 AffineVariety

♦ AffineVariety(ag, pring, pollist) (operation)

♦ AffineVariety(ag, pollist) (operation)

♦ AlgebraicVariety(ag, pring, pollist) (operation)

♦ AlgebraicVariety(ag, pollist) (operation)

Returns: an affine algebraic variety
The argument ag is an affine space over a finite field F, the argument pring is a multivariate

polynomial ring defined over (a subfield of) F, and pollist is a list of polynomials in pring.
Example



Chapter 12

Generalised Polygons

A generalised n-gon is a point/line geometry whose incidence graph is bipartite of diameter n and
girth 2n. Although these rank 2 structures are very much a subdomain of Grape and Design, their
significance in finite geometry warrants their inclusion in FinInG. By the famous theorem of Feit and
Higman, a generalised n-gon which has at least three points on every line, must have n in {2,3,4,6,8}.
The case n = 2 concerns the complete multipartite graphs, which we disregard. The more interesting
cases are accordingly projective planes (n= 3), generalised quadrangles (n= 4), generalised hexagons
(n = 6) and generalised octagons (n = 8).

12.1 Projective planes

12.1.1 ProjectivePlaneByBlocks

♦ ProjectivePlaneByBlocks(l) (operation)

Returns: a projective plane
The argument l is a finite homogeneous list consisting of ordered sets of a common size n+ 1

from the number 1 up to n2 +n+1. This operation returns the projective plane of order n.
Example

gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> pp := ProjectivePlaneByBlocks( blocks );
<projective plane of order 4>

12.1.2 ProjectivePlaneByIncidenceMatrix

♦ ProjectivePlaneByIncidenceMatrix(mat) (operation)

Returns: a projective plane
The argument mat is a square matrix with entries from {0,1}; the incidence matrix of a projective

plane. The rows represent the lines of the projective plane and the columns represent the points. That
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is, the (i, j)-entry of mat is equal to 0 or 1 according to whether the i-th line is incident or not incident
with the j-th points.

Example
gap> incmat := [
> [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ],
> [ 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0 ],
> [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0 ],
> [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 ],
> [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ],
> [ 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0 ] ];;
gap> pp := ProjectivePlaneByIncidenceMatrix( incmat );
<projective plane of order 4>

12.2 Generalised quadrangles

The classical generalised quadrangles were treated in the chapter on polar spaces (Chapter 8), and
here we provide operations which create elation generalised quadrangles arising from Kantor families.
Suppose we have a generalised quadrangle of order (s, t) for which there exists a point P and a group
of collineations G fixing P and each line through P, with the extra property that G acts regularly on the
points not collinear with P. Then we have an elation generalised quadrangle with base point P and
elation group G. Such an elation generalised quadrangle is equivalent to a Kantor family of subgroups
of G: a set of t +1 subgroups F of order s and a set of t +1 subgroups F∗ of order st such that (i) each
element of F is a subgroup of one element of F∗ and intersects the other elements of F∗ trivially, and
(ii) any three elements A,B,C of F satisfy AB∩C = 1. The standard text for generalised quadrangles
is Payne and Thas [PT84].

12.2.1 IsKantorFamily

♦ IsKantorFamily(grp, f1, f2) (operation)

Returns: true or false
This operation tests to see if (f1, f2) forms a Kantor family of subgroups for the group grp. The

elements of f1 are smaller than the elements of f2. See the example for ”EGQByKantorFamily”.
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12.2.2 EGQByKantorFamily

♦ EGQByKantorFamily(grp, f1, f2) (operation)

Returns: an elation generalised quadrangle
The argument grp is a finite group and f1 and f2 are each lists of subgroups of grp which

form a Kantor family. The i-th member of f1 must be a subgroup of the i-th member of f2. We
should mention that this operation does not check that the input is a valid Kantor family, as this would
slow this operation down. Thus if the user is unsure of their input, they would best use the operation
IsKantorFamily (12.2.1) beforehand. In the following example we construct the unique generalised
quadrangle of order 3.

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2ˆ2*g.3]), Group([g.2, g.1ˆ2*g.3 ]),
> Group([g.3, g.1ˆ2*g.2]), Group([g.1ˆ2*g.2, g.1ˆ2*g.3 ]) ];;
gap> IsKantorFamily( g, flist1, flist2 );
true
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>

Let C be a set of 2×2 upper triangular matrices over GF(q), which are indexed by GF(q). If the
pairwise difference of any two elements of C is anisotropic, that is, represents a nondegenerate binary
quadratic form, then we say that C is a q-clan. These sets of matrices were introduced by Stanley
Payne [Pay85] to construct Kantor families for flock generalised quadrangles.

12.2.3 IsqClan

♦ IsqClan(qclan, f) (operation)

Returns: true or false
This operation tests to see if qclan defines a q-Clan over the field f. See the example for

EGQByqClan (12.2.4).

12.2.4 EGQByqClan

♦ EGQByqClan(qclan, f) (operation)

Returns: an elation generalised quadrangle
The argument qclan is a list of matrices (i.e., IsFFECollCollColl) which form a q-Clan, and f

is the defining field. In the following example, we construct the classical generalised quadrangle of
order (9, 3) (i.e., H(3,9)).

Example
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t * id );;
gap> IsqClan( clan, f );
true
gap> egq := EGQByqClan( clan, f );
<EGQ of order [ 9, 3 ] and basepoint 0>
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12.2.5 KantorFamilyByqClan

♦ KantorFamilyByqClan(qclan, f) (operation)

Returns: a kantor family
The argument qclan is a list of matrices (i.e., IsFFECollCollColl) which form a q-Clan, and f

is the defining field. The operation returns a triple [g, list1, list2] where g is a group of order
s2t, list1 is a list of subgroups os order s and list2 is a list of subgroups of order st.

A BLT-set is a set S of points of the parabolic quadric Q(4,q) such that for any three points of
S, there is no point of Q(4,q) collinear (in a line of Q(4,q)) with all three of the points. BLT-sets,
which were introduced by Bader, Lunardon and Thas [BLT90], give rise to q-clans and hence flock
quadrangles.

12.2.6 BLTSetByqClan

♦ BLTSetByqClan(qclan, f) (operation)

Returns: a list of points of Q(4,q)
The argument qclan is a list of matrices (i.e., IsFFECollCollColl) which form a q-Clan, and f is

the defining field. This field must have odd order. This operation returns a BLT-set for the parabolic

quadric defined by the bilinear form with Gram matrix


0 0 0 0 1
0 0 0 1 0
0 0 w(q+1)/2 0 0
0 1 0 0 0
1 0 0 0 0

 where w is a

primitive root of GF(q). See EGQByBLTSet (12.2.7) for an example of how to use this operation.

12.2.7 EGQByBLTSet

♦ EGQByBLTSet(list, point, solid) (operation)

♦ EGQByBLTSet(list) (operation)

Returns: an elation generalised quadrangle
The argument list is a list of points of a BLT-set of ParabolicQuadric(4,q), where q is odd.

The user may enter the point and solid as extra arguments which are used in the Knarr construction
of the elation generalised quadrangle from the BLT-set. Otherwise, we take the W (5,q) in the Knarr
construction to be defined by the canonical form used in FinInG, and we take point and solid
to be the elements [1,0,0,0,0,0] and [[1,0,0,0,0,1], [0,0,1,0,0,0], [0,0,0,1,0,0], [0,0,0,0,1,0]] re-
spectively. We show how we can construct the classical generalised quadrangle of order (9, 3) (i.e.,
H(3,9)) from a conic of Q(4,3).

Example
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t * id );;
gap> bltset := BLTSetByqClan( clan, f );
[ <a point in Q(4, 3)>, <a point in Q(4, 3)>, <a point in Q(4, 3)>, <a point in Q(4, 3)> ]
gap> geo := AmbientGeometry( bltset[1] );
Q(4, 3)
gap> Display( geo );
Q(4, 3)
Non-degenerate parabolic bilinear form
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Gram Matrix:
. . . . 1
. . . 1 .
. . 1 . .
. 1 . . .
1 . . . .

Witt Index: 2
gap> egq := EGQByBLTSet( bltset );
<EGQ of order [ 9, 3 ] and basepoint [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ]>

12.2.8 ElationGroup

♦ ElationGroup(egq) (attribute)

Returns: a group
This method returns the elation group of order s2t of the elation generalised quadrangle egq ,

which has order (s, t). This is the stored as an attribute of egq .

12.2.9 BasePointOfEGQ

♦ BasePointOfEGQ(egq) (attribute)

Returns: a point of egq
This method returns the base point for the elation generalised quadrangle egq , that is, a point for

which the elation group of egq fixes every line through it. This is the stored as an attribute of egq .
(Note, some elation generalised quadrangles are known to have more than choice of base point; so we
are assuming that egq has a particular choice for its base point.)

12.3 Generalised hexagons and octagons

Due to the sheer sizes of generalised octagons, they have not yet been included into FinInG, and there
is (at the moment) limited functionality with the twisted triality hexagons. The only other known
family of generalised hexagons (up to duality) are the Split Cayley hexagons.

12.3.1 SplitCayleyHexagon

♦ SplitCayleyHexagon(f) (operation)

♦ SplitCayleyHexagon(q) (operation)

Returns: a generalised hexagon of order (q,q)
The Split Cayley hexagons were first constructed by Jacques Tits via the absolute points and lines

of a triality of the 7-dimensional hyperbolic quadric. The input is either a finite field f or a prime
power q , and a generalised hexagon is returned consisting of points and lines of Q(6, q) if q is odd,
or of W(5,q) if q is even.

Example
gap> hexagon := SplitCayleyHexagon( 3 );
<generalised hexagon of order [ 3, 3 ]>
gap> points := Points( hexagon );
<points of <generalised hexagon of order [ 3, 3 ]>>
gap> lines := AsList( Lines(hexagon) );;
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gap> lines[1];
<a line in Q(6, 3)>
gap> AmbientSpace( hexagon );
Q(6, 3)
gap> coll := CollineationGroup( hexagon );
G_2(3)
gap> DisplayCompositionSeries( coll );
G (size 4245696)
| G(2,3)

1 (size 1)

12.3.2 TwistedTrialityHexagon

♦ TwistedTrialityHexagon(f) (operation)

♦ TwistedTrialityHexagon(q) (operation)

Returns: a generalised hexagon of order (q, 3
√

q)
Just like the Split Cayley hexagons (see SplitCayleyHexagon (12.3.1)), the Twisted Triality

hexagons arise as absolute points and lines of a triality. The input is either a finite field f or a prime
power q , where the order of the field is a cube, and a generalised hexagon is returned consisting of
points and lines of Qˆ+(7, q). The smallest Twisted Triality hexagon has 2457 points and 819 lines.

12.4 General attributes and operations of generalised polygons

12.4.1 Order

♦ Order(gp) (attribute)

Returns: a pair of positive integers
This method returns the parameters (s, t) of the generalised polygon gp. That is, s+ 1 is the

number of points on any line of gp, and t +1 is the number of lines incident with any point of gp.

12.4.2 AmbientSpace

♦ AmbientSpace(gp) (attribute)

Returns: an incidence geometry
Some of our generalised polygons have a natural ambient space, for example, the Split Cay-

ley hexagons in odd characteristic are naturally embedded in the 6-dimensional parabolic quadrics.
Therefore, for some generalised polygons the user can use this method to return the natural ambient
geometry for the generalised polygon, provided such a geometry exists.

12.4.3 CollineationGroup

♦ CollineationGroup(gp) (attribute)

Returns: a group
Some of our generalised polygons come equipped automatically with a collineation group. For

example, the generalised hexagons have their collineation groups already installed, and so do the
classical generalised quadrangles. However, the collineation group of a projective plane is calculated
via using the package Grape. We refer to CollineationAction (12.4.4) for an example.
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12.4.4 CollineationAction

♦ CollineationAction(gp) (attribute)

Returns: a function
Unlike some of the other geometries in FinInG, the collineations of generalised polygons to not

have a uniform representation. Thus depending on the generalised polygon we are working with, a
group element and its action could be very different. For example, we use ordinary permutations when
acting on the elements of a projective plane (modulo some wrapping), whereas elation generalised
quadrangles arising from Kantor families must employ a completely different group action. So our
collineation groups come equipped with the attribute CollineationAction, which is a function with
input a pair (x,g) where x is an element of gp, and g is a collineation.

Example
gap> LoadPackage("Grape");
true
gap> Print("Collineations of projective planes...\n");
Collineations of projective planes...
gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> pp := ProjectivePlaneByBlocks( blocks );
<projective plane of order 4>
gap> coll := CollineationGroup( pp );
#I Computing incidence graph of projective plane...
<permutation group with 8 generators>
gap> DisplayCompositionSeries( coll );
G (8 gens, size 120960)
| Z(2)

S (3 gens, size 60480)
| Z(3)

S (2 gens, size 20160)
| A(2,4) = L(3,4)

1 (0 gens, size 1)
gap> Display( CollineationAction(coll) );
function ( x, g )

if x!.type = 1 then
return Wrap( plane, 1, OnPoints( x!.obj, g ) );

elif x!.type = 2 then
return Wrap( plane, 2, OnSets( x!.obj, g ) );

fi;
return;

end
gap> Print("Collineations of generalised hexagons...\n");
Collineations of generalised hexagons...
gap> hex := SplitCayleyHexagon( 5 );
<generalised hexagon of order [ 5, 5 ]>
gap> coll := CollineationGroup( hex );
G_2(5)
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gap> CollineationAction(coll) = OnProjSubspaces;
true
gap> Print("Collineations of elation generalised quadrangles...\n");
Collineations of elation generalised quadrangles...
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2ˆ2*g.3]), Group([g.2, g.1ˆ2*g.3 ]),
> Group([g.3, g.1ˆ2*g.2]), Group([g.1ˆ2*g.2, g.1ˆ2*g.3 ]) ];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> elations := ElationGroup( egq );
<pc group of size 27 with 3 generators>
gap> CollineationAction( elations ) = OnKantorFamily;
true
gap> HasCollineationGroup( egq );
false

12.4.5 BlockDesignOfGeneralisedPolygon

♦ BlockDesignOfGeneralisedPolygon(gp) (attribute)

Returns: a block design
This method allows one to use the GAP package DESIGN to analyse a generalised polygon, so the

user must first load this package. The argument gp is a generalised polygon, and if it has a collineation
group, then the block design is computed with this extra information and thus the resulting design is
easier to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group,
then we use the elation group’s action to efficiently compute the block design. We should also point
out that this method returns a mutable attribute of gp, so that accquired information about the block
design can be added. For example, the automorphism group of the block design may be computed
after the design is stored as an attribute of gp. Normally, attributes of GAP objects are immutable.

Example
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> egq := EGQByqClan( clan, f );
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> HasElationGroup( egq );
true
gap> design := BlockDesignOfGeneralisedPolygon( egq );;
gap> aut := AutGroupBlockDesign( design );
<permutation group with 5 generators>
gap> NrBlockDesignPoints( design );
280
gap> NrBlockDesignBlocks( design );
112
gap> DisplayCompositionSeries(aut);
G (5 gens, size 26127360)
| Z(2)
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S (4 gens, size 13063680)
| Z(2)

S (4 gens, size 6531840)
| Z(2)

S (3 gens, size 3265920)
| 2A(3,3) = U(4,3) ˜ 2D(3,3) = O-(6,3)

1 (0 gens, size 1)

12.4.6 IncidenceGraphOfGeneralisedPolygon

♦ IncidenceGraphOfGeneralisedPolygon(gp) (attribute)

Returns: a graph
This method allows one to use the GAP package GRAPE to analyse a generalised polygon, so the

user must first load this package. The argument gp is a generalised polygon, and if it has a collineation
group, then the incidence graph is computed with this extra information and thus the resulting graph is
easier to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group,
then we use the elation group’s action to efficiently compute the incidence graph. We should also
point out that this method returns a mutable attribute of gp, so that accquired information about the
incidence graph can be added. For example, the automorphism group of the incidence graph may be
computed and stored as a record component after the incidence graph is stored as an attribute of gp.
Normally, attributes of GAP objects are immutable.

Example
gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> pp := ProjectivePlaneByBlocks( blocks );
<projective plane of order 4>
gap> incgraph := IncidenceGraphOfGeneralisedPolygon( pp );;
gap> Diameter( incgraph );
3
gap> Girth( incgraph );
6
gap> VertexDegrees( incgraph );
[ 5 ]
gap> aut := AutGroupGraph( incgraph );
<permutation group with 9 generators>
gap> DisplayCompositionSeries(aut);
G (9 gens, size 241920)
| Z(2)

S (3 gens, size 120960)
| Z(2)

S (3 gens, size 60480)
| Z(3)

S (2 gens, size 20160)
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| A(2,4) = L(3,4)
1 (0 gens, size 1)

12.4.7 IncidenceMatrixOfGeneralisedPolygon

♦ IncidenceMatrixOfGeneralisedPolygon(gp) (attribute)

Returns: a matrix
This method returns the incidence matrix of the generalised polygon via the operation

CollapsedAdjacencyMat in the GRAPE package (so you need to load this package first). The rows
of the matrix correspond to the points of gp, and the columns correspond to the lines.



Chapter 13

Coset Geometries and Diagrams

13.1 Preliminary version of the manual

Suppose we have a flag-transitive incidence geometry Γ. This means that a group G of automorphisms
of Γ is also given such that G is transitive on the set of chambers of Γ. This implies that G is also
transitive on the set of all elements of any chosen type i. If we consider a chamber c1,c2, ...,cn such
that ci is of type i, we can look at the stabilizer Gi of ci in G. The subgroups Gi are called parabolic
subgroups of Γ. For a type i, transitivity of G on the elements of type i gives a correspondence between
the cosets of the stabilizer Gi and the elements of type i in Γ. Two elements of Γ are incident if and
only if the corresponding cosets have a nonempty intersection. We now use the above oservation to
define an incidence structure from a group G together with a set of subgroups G1,G2, ...,Gn. The type
set is {1,2, ...,n}. By definition the elements of type i are the (right) cosets of the subgroup Gi. Two
cosets are incident if and only if their intersection is not empty.

13.1.1 CosetGeometry

♦ CosetGeometry(G, l) (operation)

Returns: Returns the coset geometry defined by the list l of subgroups of the group G
G must be a group and l is a list of subgroups of G. The subgroups in l will be the parabolic

subgroups of the coset geometry whose rank equals the length of l.
Example

gap> g:=SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> g1:=Stabilizer(g,[1,2],OnSets);
Group([ (4,5), (3,5), (1,2)(4,5) ])
gap> g2:=Stabilizer(g,[1,2,3],OnSets);
Group([ (4,5), (2,3), (1,2,3) ])
gap> cg:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )

13.1.2 IsIncident

♦ IsIncident(ele1, ele2) (operation)

Returns: true if ans only if ele1 and ele2 are incident
ele1 and ele2 must be two elements in thes same coset geometry.
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13.1.3 ParabolicSubgroups

♦ ParabolicSubgroups(cg) (operation)

Returns: List of parabolic subgroups defining the coset geometry cg

13.1.4 AmbientGroup

♦ AmbientGroup(cg) (operation)

Returns: the group of the coset geometry cg
cg must be a coset geometry.

13.1.5 DiagramOfGeometry

♦ DiagramOfGeometry(Gamma) (operation)

Returns: The diagram of the geometry Gamma
Gamma must be a coset geometry.

13.1.6 DrawDiagram

♦ DrawDiagram(Diag, filename) (operation)

Returns: Does not return anything but wirtes a file filename.ps
Diag must be a diagram. Writes a file filename.ps in the current directory with a pic-

torial version of the diagram. This command uses the graphviz package which is available from
http://www.graphviz.org.

13.1.7 Borelsubgroup

♦ Borelsubgroup(cg) (operation)

Returns: The Borel subgroup of de geometry cg
The Borel subgroup is equal to the stabilizer of a chamber. It corresponds to the untersection of

all parabolic subgrops.

13.1.8 IsFlagTransitiveGeometry

♦ IsFlagTransitiveGeometry(cg) (operation)

Returns: true if and only if the group G defining cg acts flag-transitively.
cg must be a coset geometry.

13.1.9 IsFirmGeometry

♦ IsFirmGeometry(cg) (operation)

Returns: true if and only if cg is firm.
An incidence geometry is said to be firm if every nonmaximal flag is contained in at least two

chambers. cg must be a coset geometry.
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13.1.10 IsConnected

♦ IsConnected(cg) (operation)

Returns: true if and only if cg is connected.
A geometry is connected if and only if its incidence graph is connected. cg must be a coset

geometry.

13.1.11 IsResiduallyConnected

♦ IsResiduallyConnected(cg) (operation)

Returns: true if and only if cg is residually connected.
A geometry is residually connected the incidence graphs of all its residues of rank at least 2 are

connected. cg must be a coset geometry.

13.1.12 StandardFlagOfCosetGeometry

♦ StandardFlagOfCosetGeometry(cg) (operation)

Returns: Standard chamber of cg
The standard chamber just consists of all parabolic subgroups (i.e. the trivial cosets of these

subgroups). cg must be a coset geometry. Maybe this function should be called StandardCham-
berOfCosetGeometry.

13.1.13 FlagToStandardFlag

♦ FlagToStandardFlag(cg, fl) (operation)

Returns: element of the defining group of cg which maps fl to the standard chamber of cg.
fl must be a chamber given as a list of cosets of the parabolic subgroups of cg. The order of the

elements of the chamber should be the same as the order of the parabolics defining cg.

13.1.14 CanonicalResidueOfFlag

♦ CanonicalResidueOfFlag(cg, fl) (operation)

Returns: coset geometry isomorphic to residue of fl in cg
cg must be a coset geometry and fl must be a flag in that geometry. The returned coset geometry

for a flag {giGi} is ...

13.1.15 ResidueOfFlag

♦ ResidueOfFlag(cg, fl) (operation)

Returns: The residue of fl in cg.
CHECK the back-mapping.

13.1.16 IncidenceGraph

♦ IncidenceGraph(cg) (operation)

Returns: incidence graph of cg.
cg must be a coset geometry. The graph returned is a GRAPE object. Be sure the GRAPE is

loaded!
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13.1.17 Rank2Parameters

♦ Rank2Parameters(cg) (operation)

Returns: a list of length 3.
cg must be a coset geometry of rank 2. This function computes the gonality, point and line

diameter of cg. These appear as a list in the first entry of the returned list. The second entry contains
a list of length 2 with the point order and the total number of points (i.e. elements of type 1) in the
geometry. The last entry contains the line order and the number of lines.
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