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Chapter 1

Introduction

1.1 Philosophy

Forms is a package for computing with sesquilinear and quadratic forms on finite vector spaces. It
provides users with the basic algebraic tools to work with classical groups and polar geometries,
and enables one to specify a form and its corresponding geometry. The functionality of the package
includes:

• the construction of sesquilinear and quadratic forms;

• operations which allow a user to change coordinates, that is, to “change form” and work in an
isometric (or similar) formed vector space; and

• a way to determine the form(s) left invariant by a matrix group (up to a scalar).

1.2 Overview over this manual

The next chapter (2) gives some basic examples of the use of this package. In ”Background Theory
of Forms” (Chapter 3) we revise the basic notions of the theory of sesquilinear and quadratic forms,
where we also set the notation and conventions adopted by this package. In ”Constructing forms and
basic functionality” (Chapter 4), we describe all operations to construct sesquilinear and quadratic
forms and basic attributes and properties that do not require morphisms. In ”Morphims of forms”
(Chapter 5) we revise the basic notions of morphisms of forms, and the classification of sesquilinear
and quadratic forms on vector spaces over finite fields. Operations, attributes and properties that are
related to the computation of morphisms of forms, are also described in this chapter.

1.3 How to read this manual

We have tried to make this manual pleasant to read for the general reader. So it is inevitable that
we will use Greek symbols and simple mathematical formulas. To make these visible in the HTML
version of this documentation, you may have to change the default character set of your browser to
UTF-8.
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Chapter 2

Examples

Here we give some simple examples that display some of the functionality of Forms.

2.1 A conic of PG(2,8)

Consider the three-dimensional vector space V := V (3,GF(8)) = GF(8)3, and consider the following
quadratic polynomial in 3 variables:

x2
1 + x2x3.

Then this polynomial defines a quadratic form on V and the zeros form a conic of the associated
projective plane. So in particular, our quadratic form defines a degenerate parabolic quadric of Witt
Index 1. We will see now how we can use Forms to view this example.

Example
gap> gf := GF(8);
GF(2ˆ3)
gap> vec := gfˆ3;
( GF(2ˆ3)ˆ3 )
gap> r := PolynomialRing( gf, 3);
PolynomialRing(..., [ x_1, x_2, x_3 ])
gap> poly := r.1ˆ2 + r.2 * r.3;
x_1ˆ2+x_2*x_3
gap> form := QuadraticFormByPolynomial( poly, r );
< quadratic form >
gap> Display( form );
Quadratic form
Gram Matrix:
1 . .
. . 1
. . .
Polynomial: x_1ˆ2+x_2*x_3
gap> IsDegenerateForm( form );
#I Testing degeneracy of the *associated bilinear form*
true
gap> IsSingularForm( form );
false
gap> WittIndex( form );
1
gap> IsParabolicForm( form );

6
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true
gap> RadicalOfForm( form );
<vector space over GF(2ˆ3), with 0 generators>

Now our conic is stabilised by a group isomorphic to GO(3,8), but not identical to the group returned
by the GAP command GO(3,8). However, our conic is the canonical conic given in Forms.

Example
gap> canonical := IsometricCanonicalForm( form );
< parabolic quadratic form >
gap> form = canonical;
true

So we “change forms”...
Example

gap> go := GO(3,8);
GO(0,3,8)
gap> mat := InvariantQuadraticForm( go )!.matrix;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2) ] ]

gap> gapform := QuadraticFormByMatrix( mat, GF(8) );
< quadratic form >
gap> b := BaseChangeToCanonical( gapform );
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0 ] ]

gap> hom := BaseChangeHomomorphism( b, GF(8) );
ˆ[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0 ] ]

gap> newgo := Image(hom, go);
Group(
[ [ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2ˆ3), 0*Z(2) ], [ 0*Z(2), 0*Z(2),

Z(2ˆ3)ˆ6 ] ],
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ],

[ 0*Z(2), Z(2)ˆ0, 0*Z(2) ] ] ])

Now we look at the action of our new GO(3,8) on the conic.
Example

gap> conic := Filtered(vec, x -> IsZero( xˆform ));;
gap> Size(conic);
64
gap> orbs := Orbits(newgo, conic, OnRight);;
gap> List(orbs,Size);
[ 1, 63 ]

So we see that there is a fixed point, which is actually the nucleus of the conic, or in other words, the
radical of the form.

2.2 A form for W(5,3)

The symplectic polar space W (5,q) is defined by an alternating reflexive bilinear form on the six-
dimensional vector space GF(q)6. Any invertible 6× 6 matrix A which satisfies A + AT = 0 is a
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candidate for the Gram matrix of a symplectic polarity. The canonical form we adopt in Forms for an
alternating form is

f (x,y) = x1y2− x2y1 + x3y4− x4y3 · · ·+ x2n−1y2n− x2ny2n−1.

Example
gap> f := GF(3);
GF(3)
gap> gram := [
> [0,0,0,1,0,0],
> [0,0,0,0,1,0],
> [0,0,0,0,0,1],
> [-1,0,0,0,0,0],
> [0,-1,0,0,0,0],
> [0,0,-1,0,0,0]] * One(f);;
gap> form := BilinearFormByMatrix( gram, f );
< bilinear form >
gap> IsSymplecticForm( form );
true
gap> Display( form );
Symplectic form
Gram Matrix:
. . . 1 . .
. . . . 1 .
. . . . . 1
2 . . . . .
. 2 . . . .
. . 2 . . .
gap> b := BaseChangeToCanonical( form );
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> Display( b );
1 . . . . .
. . . 1 . .
. 1 . . . .
. . . . 1 .
. . 1 . . .
. . . . . 1
gap> Display( b * gram * TransposedMat(b) );
. 1 . . . .
2 . . . . .
. . . 1 . .
. . 2 . . .
. . . . . 1
. . . . 2 .
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2.3 What is the form preserved by this group?

Here we start with a matrix group which is available in GAP, namely GO(5,5). We then conjugate this
group by an element of GL(5,5), and then we find the forms left invariant by this copy of GO(5,5)
(which we expect to be a symmetric bilinear form).

Example
gap> go := GO(5, 5);
GO(0,5,5)
gap> x :=
> [ [ Z(5)ˆ0, Z(5)ˆ3, 0*Z(5), Z(5)ˆ3, Z(5)ˆ3 ],
> [ Z(5)ˆ2, Z(5)ˆ3, 0*Z(5), Z(5)ˆ2, Z(5) ],
> [ Z(5)ˆ2, Z(5)ˆ2, Z(5)ˆ0, Z(5), Z(5)ˆ3 ],
> [ Z(5)ˆ0, Z(5)ˆ3, Z(5), Z(5)ˆ0, Z(5)ˆ3 ],
> [ Z(5)ˆ3, 0*Z(5), Z(5)ˆ0, 0*Z(5), Z(5) ]
> ];;
gap> go2 := goˆx;
<matrix group of size 18720000 with 2 generators>
gap> forms := PreservedSesquilinearForms( go2 );
[ < bilinear form > ]
gap> Display( forms[1] );
Bilinear form
Gram Matrix:
4 2 4 3 3
2 2 2 3 3
4 2 3 1 4
3 3 1 2 4
3 3 4 4 3



Chapter 3

Background Theory on Forms

In this chapter we give a very brief overview of the theory of sesquilinear and quadratic forms. The
reader can find more in the texts: Cameron [Cam00], Taylor [Tay92], Aschbacher [Asc00], or Kleid-
man and Liebeck [KL90].

3.1 Sesquilinear forms

A sesquilinear form on an n-dimensional vector space V over a field F , is a map f from V ×V to F
which is linear in the first coordinate, but semilinear in the second coordinate; that is, there is a field
automorphism α (the companion automorphism of f ) such that f (v,λw) = λα f (v,w) for all v,w ∈ V
and λ ∈ F . If α is the identity, then f is bilinear.

A bilinear form is reflexive if f (v,w) = 0 ⇒ f (w,v) = 0 for all v,w ∈ V . A bilinear form is
symmetric if f (v,w) = f (w,v) for all v,w ∈V . It is clear that a symmetric bilinear form is reflexive. A
bilinear form is alternating if f (v,v) = 0 for all v ∈V . Using the linearity to compute f (v+w,v+w),
we see that an alternating form is also reflexive. When the characteristic of the field differs from 2, an
alternating form f can also be characterised as f (v,w) = − f (w,v) for all v,w ∈ V . It can be proved
(see Chapter 7 of [Tay92]) that symmetric and alternating bilinear forms are the only reflexive bilinear
forms.

For a given sesquilinear form f , the choice of the basis determines uniquely an n× n matrix M
such that

f (v,w) = vMwαT .

This matrix is also called the Gram matrix of f . Given a sesquilinear form f , we will denote its Gram
matrix by M f . In Forms, sesquilinear forms can be constructed using matrices or polynomials, where
we always suppose that the basis of the vector space is the standard basis (i.e., the rows of the identity
matrix).

One proves easily that a bilinear form f is symmetric if and only if M f is a symmetric matrix, i.e.,
MT

f = M f , and that a bilinear form f is alternating if and only if M f is a skew symmetric matrix, i.e.,
MT

f = −M f . When the characteristic of the field is two, the condition that f (v,v) = 0 for all v ∈ V
implies MT

f = M f AND (Mii) = 0 (denoting the matrix M f = (Mi j)). Since any skew symmetric odd
dimensional matrix is singular, it follows that an alternating form of an odd dimensional vector space
is degenerate.

A sesquilinear form f is hermitian (n.b., conjugate-symmetric in [CCN+85]) if f (v,w) = f (w,v)α

holds for all vectors v,w and α has order 2. Again, it can be easily proved that a sesquilinear form f

10
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is hermitian if and only if mT
f = mα

f (i.e., a hermitian matix). It is proved (see Chapter 7 of [Tay92])
that hermitian forms are the only reflexive sesquilinear forms that are not bilinear. Hence, in general,
all reflexive sesquilinear forms are known, they are either hermitian or bilinear, and in the latter case,
they are either symmetric or alternating (again, see Chapter 7 of [Tay92]).

In Forms, only the construction of REFLEXIVE sesquilinear forms is allowed. An error message
will be displayed if any attempt to construct a non-reflexive sesquilinear form is made. As a con-
sequence, the Gram Matrix of a sesquilinear form is always a symmetric, a skew symmetric or a
hermitian matrix. From now on, the notion of a “sesquilinear form” will always refer to a “reflexive
sesquilinear form”.

Given a sesquilinear form f , two vectors v and w are orthogonal with respect to f if f (v,w) = 0.
Note that the reflexivity makes orthogonality between two vectors a symmetric relation. A vector v is
called isotropic if f (v,v) = 0. The radical of f (n.b., kernel in [CCN+85]) is the subspace consisting
of vectors which are orthogonal to every vector. That is,

Rad( f ) = {v ∈V | f (v,w) = 0, ∀w ∈V},

and we say that f is non-degenerate if its radical is trivial (and degenerate otherwise).
Given a subspace W , we denote the set of vectors of V orthogonal with all vectors of W by W⊥.

We call a subspace W totally isotropic with respect to f if W is contained in W⊥, i.e.

f (v,w) = 0, ∀v,w ∈W.

Suppose that f is a non-degenerate sesquilinear form. The Witt index of f is the maximum di-
mension of a totally isotropic subspace with respect to f . Notice that all totally isotropic subspaces of
maximal dimension of a degenerate form f contain the radical of f .

We end this section with a short description of the conventions used in Forms for the notions
orthogonal, symplectic, pseudo, hyperbolic, elliptic and parabolic. We call a form f symplectic if and
only if f is alternating. When the characteristic of the field is odd, we call a form f orthogonal if and
only f is symmetric, and when the characteristic of the field is even, we call a form f pseudo if and
only if f is symmetric but not alternating. This terminology is related to the theory of polar spaces,
and in the case of orthogonal forms, we adopt the terms hyperbolic, elliptic and parabolic for the three
different isometry types of orthogonal forms. From the point of view of matrix groups, these three
types correspond as follows:

Hyperbolic Orthogonal of + type Even dimension, maximal Witt index
Elliptic Orthogonal of - type Even dimension, non-maximal Witt index
Parabolic Orthogonal of o type Odd dimension

Table: Summary of Orthogonal Forms

3.1.1 Examples

The examples we present in this section do not demonstrate the entire suite of operations entailed in
Forms. They are intended to allow the user to become familiar with particular aspects of this package.
All the functionality for sesquilinear forms will be listed in detail in the next chapter.

We try to construct a bilinear form...
Example

gap> mat := [[1,0,0],[0,1,4],[1,2,1]]*Z(5)ˆ0;
[ [ Z(5)ˆ0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)ˆ0, Z(5)ˆ2 ],
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[ Z(5)ˆ0, Z(5), Z(5)ˆ0 ] ]
gap> form := BilinearFormByMatrix(mat,GF(5));
Error, Invalid Gram matrix
called from
BilinearFormByMatrixOp( m, f ) called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

It is clear that the matrix used is not defining a reflexive bilinear form, which causes the system to
generate the error message.

We construct now a reflexive bilinear form. We investigate also the radical of the form.
Example

gap> mat := [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,-1]]*Z(9)ˆ0;
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]

gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
1 . . .
. 1 . .
. . 1 .
. . . 2
gap> IsReflexiveForm(form);
true
gap> IsSymmetricForm(form);
true
gap> IsAlternatingForm(form);
false
gap> r := RadicalOfForm(form);
<vector space over GF(3ˆ2), with 0 generators>
gap> Dimension(r);
0

Degenerate forms are allowed. As an example we construct an alternating bilinear form on an odd
dimensional vector space.

Example
gap> mat := [[0,0,-2],[0,0,1],[2,-1,0]]*Z(7)ˆ0;
[ [ 0*Z(7), 0*Z(7), Z(7)ˆ5 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ0 ],
[ Z(7)ˆ2, Z(7)ˆ3, 0*Z(7) ] ]

gap> form := BilinearFormByMatrix(mat,GF(7));
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
. . 5
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. . 1
2 6 .
gap> IsSymmetricForm(form);
false
gap> IsAlternatingForm(form);
true
gap> r := RadicalOfForm(form);
<vector space over GF(7), with 1 generators>
gap> Dimension(r);
1

When the characteristic of the field equals two, alternating forms are also symmetric. We construct an
example.

Example
gap> mat := [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],
> [0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]*Z(16)ˆ0;
[ [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := BilinearFormByMatrix(mat,GF(16));
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
. 1 . . . .
1 . . . . .
. . . . . 1
. . . . 1 .
. . . 1 . .
. . 1 . . .
gap> IsSymmetricForm(form);
true
gap> IsAlternatingForm(form);
true
gap> IsDegenerateForm(form);
false
gap> WittIndex(form);
3

To define a hermitian form, we need a matrix and the companion automorphism. Since this automor-
phism has order 2, it exists and is unique if the ground field has square order. In the next example,
the chosen matrix is somewhat special. Together with the companion automorphism, it determines
a hermitian sesquilinear form. Without the companion automorphism, it determines an alternating
bilinear form.

Example
gap> mat := [[0*Z(5),0*Z(5),0*Z(25),Z(25)ˆ3],[0*Z(5),0*Z(5),Z(25)ˆ3,0*Z(25)],
> [0*Z(5),-Z(25)ˆ3,0*Z(5),0*Z(5)],[-Z(25)ˆ3,0*Z(5),0*Z(25),0*Z(25)]];
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[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5ˆ2)ˆ3 ], [ 0*Z(5), 0*Z(5), Z(5ˆ2)ˆ3, 0*Z(5) ],
[ 0*Z(5), Z(5ˆ2)ˆ15, 0*Z(5), 0*Z(5) ],
[ Z(5ˆ2)ˆ15, 0*Z(5), 0*Z(5), 0*Z(5) ] ]

gap> form := HermitianFormByMatrix(mat,GF(25));
< hermitian form >
gap> Display(form);
Hermitian form
Gram Matrix:
z = Z(25)

. . . zˆ3

. . zˆ3 .

. zˆ15 . .
zˆ15 . . .
gap> WittIndex(form);
2
gap> form2 := BilinearFormByMatrix(mat,GF(25));
< bilinear form >
gap> Display(form2);
Bilinear form
Gram Matrix:
z = Z(25)

. . . zˆ3

. . zˆ3 .

. zˆ15 . .
zˆ15 . . .
gap> IsAlternatingForm(form2);
true
gap> Display(IsometricCanonicalForm(form));
Hermitian form
Gram Matrix:
1 . . .
. 1 . .
. . 1 .
. . . 1
Witt Index: 2
gap> Display(IsometricCanonicalForm(form2));
Bilinear form
Gram Matrix:
. 1 . .
4 . . .
. . . 1
. . 4 .
Witt Index: 2

We continue the previous example by exploring a little bit the sesquilinear form form, and hence
demonstrate some of the functionality of the Forms package. Eventually, we find a 2-dimensional
totally isotropic subspace, which lets us conclude that the Witt index of f orm is at least 2, which is
confirmed afterwards by calling the appropriate function.

Example
gap> V := GF(25)ˆ4;
( GF(5ˆ2)ˆ4 )
gap> u := [Z(5)ˆ0,Z(5ˆ2)ˆ11,Z(5)ˆ3,Z(5ˆ2)ˆ13 ];
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[ Z(5)ˆ0, Z(5ˆ2)ˆ11, Z(5)ˆ3, Z(5ˆ2)ˆ13 ]
gap> [u,u]ˆform;
0*Z(5)
gap> v := [Z(5)ˆ0,Z(5ˆ2)ˆ5,Z(5ˆ2),Z(5ˆ2)ˆ13 ];
[ Z(5)ˆ0, Z(5ˆ2)ˆ5, Z(5ˆ2), Z(5ˆ2)ˆ13 ]
gap> [v,v]ˆform;
0*Z(5)
gap> [u,v]ˆform;
Z(5ˆ2)ˆ7
gap> ([v,u]ˆform)ˆ5;
Z(5ˆ2)ˆ7
gap> w := [Z(5ˆ2)ˆ21,Z(5ˆ2)ˆ19,Z(5ˆ2)ˆ4,Z(5)ˆ3 ];
[ Z(5ˆ2)ˆ21, Z(5ˆ2)ˆ19, Z(5ˆ2)ˆ4, Z(5)ˆ3 ]
gap> [w,w]ˆform;
Z(5)
gap> v := [Z(5)ˆ0,Z(5ˆ2)ˆ10,Z(5ˆ2)ˆ15,Z(5ˆ2)ˆ3 ];
[ Z(5)ˆ0, Z(5ˆ2)ˆ10, Z(5ˆ2)ˆ15, Z(5ˆ2)ˆ3 ]
gap> u := [Z(5)ˆ3,Z(5ˆ2)ˆ9,Z(5ˆ2)ˆ4,Z(5ˆ2)ˆ16 ];
[ Z(5)ˆ3, Z(5ˆ2)ˆ9, Z(5ˆ2)ˆ4, Z(5ˆ2)ˆ16 ]
gap> w := [Z(5)ˆ2,Z(5ˆ2)ˆ9,Z(5ˆ2)ˆ23,Z(5ˆ2)ˆ11 ];
[ Z(5)ˆ2, Z(5ˆ2)ˆ9, Z(5ˆ2)ˆ23, Z(5ˆ2)ˆ11 ]
gap> [u,v]ˆform;
0*Z(5)
gap> [u,w]ˆform;
0*Z(5)
gap> [v,w]ˆform;
0*Z(5)
gap> s := Subspace(V,[v,u,w]);
<vector space over GF(5ˆ2), with 3 generators>
gap> Dimension(s);
2
gap> WittIndex(form);
2

3.2 Quadratic forms

A quadratic form on an n-dimensional vector space V over a field F , is a map Q from V to F satisfying
the following two conditions:

Q(λv) = λ
2Q(v), ∀λ ∈ F,∀v ∈V,

and, the map f defined from V ×V to F as follows,

f (v,w) := Q(v+w)−Q(v)−Q(w),

is a bilinear form on V . From this definition it follows that f (v,v) = Q(2v)−2Q(v) = 2Q(v).
The associated bilinear form f (which is called the polar form of Q in [CCN+85]) is clearly

reflexive. When the characteristic of the field is odd, it is clear that f is a symmetric bilinear form.
The equation f (v,v) = 2Q(v) allows us to reconstruct the quadratic form from the bilinear form, and
hence there is a one-to-one correspondence between quadratic forms and symmetric bilinear forms.
When the characteristic of the field equals 2, the bilinear form f is alternating (from the fact that
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f (v,v) = 2Q(v) = 0). Note, however, that different quadratic forms can determine the same alternating
form.

As in the case of sesquilinear forms, we will associate a matrix to a quadratic form. Chosing a
basis of the vector space V , it is clear that an n×n matrix determines the quadratic form completely.
In Forms, the Gram matrix of a quadratic form is always an upper triangle matrix M, such that

Q(v) = vMvT ,

where the basis of V is the standard basis. Although the Gram matrix stored with the quadratic form
is always an upper triangle matrix, the user is allowed to use any matrix to define the quadratic form,
since any matrix M defines a quadratic form Q(v) := vMvT . During the construction, an appopriate
upper triangle matrix is computed and stored as the Gram matrix. So the Gram matrix of the associated
bilinear form is M +MT .

The associated bilinear form could be used to define the notions “isotropic”, “totally isotropic”
and “non-degenerate”, however, under these restrictions the geometry of quadratic forms in even
characteristic is lost. In most of the literature, these notions refer indeed to the associated bilinear
form, and the notion of “singularity” is added to regain the geometrical structure.

In Forms, we use the above described approach. This means that a vector is isotropic if and only
if it is isotropic with respect to the associated bilinear form. A subspace is totally isotropic if and only
if it is totally isotropic with respect to the associated bilinear form, and we call the quadratic form
degenerate if and only if the associated bilinear form is degenerate.

A vector v is called singular with relation to the quadratic form Q if and only if Q(v) = 0. two
vectors v and w are orthogonal with respect to Q if and only if they are orthogonal with respect to the
associated bilinear form f . The radical of the quadratic form Q, is the intersection of the set of all
singular vectors with relation to Q and the radical of the associated bilinear form f , i.e.

Rad(Q) = {v ∈V |Q(v) = 0 and v ∈ Rad( f )}.

We call a quadratic form Q non-singular if and only if the radical contains only the zero vector, and
singular otherwise.

A subspace W of the vector space is called totally singular if and only if all vectors of W are
singular, i.e., Q vanishes totally on W . Necessarily, a totally singular subspace is also totally isotropic
with relation to the associated bilinear form f , but the converse is only true when the characteristic of
the field is odd.

Suppose now that Q is a non-singular quadratic form. The Witt index of Q is the maximum
dimension of a totally singular subspace with respect to Q. Notice that all totally singular subspaces
of maximal dimension of a singular quadratic form Q contain the radical of Q.

From the above definitions, it follows that, when the characteristic of the field differs from 2,
a quadratic form Q is non-degenerate if and only if its associated bilinear form f is non-degenerate.
When the characteristic of the field is 2, one can easily construct non-degenerate quadratic forms, with
a degenerate associated bilinear form. We will give an example of this situation in the next section.

3.2.1 Examples

We construct some quadratic forms to demonstrate some funcionality of Forms. As in the previous
example section, they are intended to allow the user to gain some familiarity. All the functionality for
quadratic forms will be listed in detail in the next chapter.

The user can construct quadratic forms using any matrix (provided it has the right dimension).
The Gram matrix is always stored as an upper triangle matrix, as explained above.
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Example
gap> V := GF(4)ˆ3;
( GF(2ˆ2)ˆ3 )
gap> mat := [[Z(2ˆ2)ˆ2,Z(2ˆ2),Z(2ˆ2)ˆ2],[Z(2ˆ2)ˆ2,Z(2)ˆ0,Z(2)ˆ0],
> [0*Z(2),Z(2)ˆ0,0*Z(2)]];
[ [ Z(2ˆ2)ˆ2, Z(2ˆ2), Z(2ˆ2)ˆ2 ], [ Z(2ˆ2)ˆ2, Z(2)ˆ0, Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2) ] ]

gap> qform := QuadraticFormByMatrix(mat, GF(4));
< quadratic form >
gap> Display( qform );
Quadratic form
Gram Matrix:
z = Z(4)
zˆ2 1 zˆ2
. 1 .
. . .

gap> PolynomialOfForm( qform );
Z(2ˆ2)ˆ2*x_1ˆ2+x_1*x_2+Z(2ˆ2)ˆ2*x_1*x_3+x_2ˆ2

In the previous example, we saw how we used a polynomial to display a quadratic form. Conversely,
Forms allows the user to construct (quadratic) forms using a polynomial.

Example
gap> r := PolynomialRing(GF(8),4);
GF(2ˆ3)[x_1,x_2,x_3,x_4]
gap> poly := r.1*r.2+r.3*r.4;
x_1*x_2+x_3*x_4
gap> qform := QuadraticFormByPolynomial(poly, r);
< quadratic form >
gap> Display(qform);
Quadratic form
Gram Matrix:
. 1 . .
. . . .
. . . 1
. . . .
Polynomial: x_1*x_2+x_3*x_4
gap> RadicalOfForm(qform);
<vector space over GF(2ˆ3), with 0 generators>

We construct now two different quadratic forms with the same associated bilinear form.
Example

gap> mat := [[Z(16)ˆ3,1,0,0],[0,Z(16)ˆ5,0,0],
> [0,0,Z(16)ˆ3,1],[0,0,0,Z(16)ˆ12]]*Z(16)ˆ0;
[ [ Z(2ˆ4)ˆ3, Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2ˆ2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2ˆ4)ˆ3, Z(2)ˆ0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ4)ˆ12 ]

]
gap> qform := QuadraticFormByMatrix(mat,GF(16));
< quadratic form >
gap> Display( qform );
Quadratic form
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Gram Matrix:
z = Z(16)
zˆ3 1 . .
. zˆ5 . .
. . zˆ3 1
. . . zˆ12

gap> mat2 := [[Z(16)ˆ7,1,0,0],[0,0,0,0],
> [0,0,Z(16)ˆ2,1],[0,0,0,Z(16)ˆ9]]*Z(16)ˆ0;
[ [ Z(2ˆ4)ˆ7, Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2ˆ4)ˆ2, Z(2)ˆ0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ4)ˆ9 ] ]

gap> qform2 := QuadraticFormByMatrix(mat2, GF(16));
< quadratic form >
gap> Display( qform2 );
Quadratic form
Gram Matrix:
z = Z(16)
zˆ7 1 . .
. . . .
. . zˆ2 1
. . . zˆ9

gap> biform := AssociatedBilinearForm( qform2 );
< bilinear form >
gap> Display( biform );
Bilinear form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .

We end with an example of a non-degenerate quadratic form with a degenerate associated bilinear
form.

Example
gap> mat := [ [ Z(2ˆ2), Z(2ˆ2), Z(2ˆ2), Z(2ˆ2), Z(2ˆ2) ],
> [ 0*Z(2), Z(2ˆ2), Z(2ˆ2)ˆ2, 0*Z(2), Z(2)ˆ0 ],
> [ 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ] ];;
gap> qform := QuadraticFormByMatrix(mat,GF(4));
< quadratic form >
gap> IsDegenerateForm(qform);
#I Testing degeneracy of the *associated bilinear form*
true
gap> biform := AssociatedBilinearForm(qform);
< bilinear form >
gap> Display(biform);
Bilinear form
Gram Matrix:
z = Z(4)

. zˆ1 zˆ1 zˆ1 zˆ1
zˆ1 . zˆ2 . 1
zˆ1 zˆ2 . 1 1
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zˆ1 . 1 . 1
zˆ1 1 1 1 .
gap> IsDegenerateForm(biform);
true



Chapter 4

Constructing forms and basic
functionality

In this chapter, all operations to construct sesquilinear and quadratic forms are listed, along with their
basic attributes and properties.

4.1 Important filters

4.1.1 Categories for forms

♦ IsBilinearForm (Category)

♦ IsHermitianForm (Category)

♦ IsSesquilinearForm (Category)

♦ IsQuadraticForm (Category)

♦ IsForm (Category)

♦ IsForm (Category)

♦ IsTrivialForm (Category)

The categories IsBilinearForm and IsHermitianForm are categories for bilinear and hermitian
forms, respectively. They are disjoint and are both contained in the category IsSesquilinearForm.

Quadratic forms are contained in the category IsQuadraticForm. The categories
IsSesquilinearForm and IsQuadraticForm are disjoint and are both contained in the category
IsForm.

The user is allowed to construct the trivial form (mapping all vectors to the zero element of the
field). The trivial form is an object in the category IsTrivialForm. This category is contained in
IsForm and disjoint from IsSesquilinearForm and IsQuadraticForm.

4.1.2 Representation for forms

♦ IsFormRep (Representation)

Every form is represented by a matrix, the base field and a string describing the “type” of the form.

20
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4.2 Constructing forms using a matrix

4.2.1 BilinearFormByMatrix

♦ BilinearFormByMatrix(matrix, field) (operation)

♦ BilinearFormByMatrix(matrix) (operation)

Returns: a bilinear form
The argument matrix must be a symmetric, or skew-symmetric, square matrix over the finite

field field. The argument field is an optional argument, and if it is not given, then we assume
that the defining field of the bilinear form is the smallest field containing the entries of matrix. Below
we give an example where the defining field can make a difference in some applications. As it is only
possible to construct reflexive bilinear forms, it is checked whether the matrix matrix is symmetric
or skew symmetric. If matrix matrix is not symmetric nor skew symmetric, then an error message
is returned. The output is a bilinear form (i.e., an object in IsBilinearForm) with Gram matrix
matrix and defining field field. (See 3.1 for more on bilinear forms).

Example
gap> mat := IdentityMat(4, GF(9));
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
1 . . .
. 1 . .
. . 1 .
. . . 1
gap> mat := [[0*Z(2),Z(16)ˆ12,0*Z(2),Z(4)ˆ2,Z(16)ˆ13],
> [Z(16)ˆ12,0*Z(2),0*Z(2),Z(16)ˆ11,Z(16)],
> [0*Z(2),0*Z(2),0*Z(2),Z(4)ˆ2,Z(16)ˆ3],
> [Z(4)ˆ2,Z(16)ˆ11,Z(4)ˆ2,0*Z(2),Z(16)ˆ3],
> [Z(16)ˆ13,Z(16),Z(16)ˆ3,Z(16)ˆ3,0*Z(2) ]];
[ [ 0*Z(2), Z(2ˆ4)ˆ12, 0*Z(2), Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ13 ],
[ Z(2ˆ4)ˆ12, 0*Z(2), 0*Z(2), Z(2ˆ4)ˆ11, Z(2ˆ4) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ3 ],
[ Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ11, Z(2ˆ2)ˆ2, 0*Z(2), Z(2ˆ4)ˆ3 ],
[ Z(2ˆ4)ˆ13, Z(2ˆ4), Z(2ˆ4)ˆ3, Z(2ˆ4)ˆ3, 0*Z(2) ] ]

gap> form := BilinearFormByMatrix(mat,GF(16));
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
z = Z(16)

. zˆ12 . zˆ10 zˆ13
zˆ12 . . zˆ11 zˆ1

. . . zˆ10 zˆ3
zˆ10 zˆ11 zˆ10 . zˆ3
zˆ13 zˆ1 zˆ3 zˆ3 .
gap> mat := [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]*Z(7)ˆ0;
[ [ Z(7)ˆ0, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)ˆ0, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ0 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ0, 0*Z(7) ] ]
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gap> form := BilinearFormByMatrix(mat);
< bilinear form >
gap> WittIndex(form);
1
gap> form := BilinearFormByMatrix(mat,GF(49));
< bilinear form >
gap> WittIndex(form);
2

4.2.2 QuadraticFormByMatrix

♦ QuadraticFormByMatrix(matrix, field) (operation)

♦ QuadraticFormByMatrix(matrix) (operation)

Returns: a quadratic form
The argument matrix must be a square matrix over the finite field field. The argument

field is an optional argument, and if it is not given, then we assume that the defining field of
the bilinear form is the smallest field containing the entries of matrix. Below we give an example
where the defining field can make a difference in some applications. Any square matrix determines a
quadratic form, but the Gram matrix is recomputed so that it is an upper triangle matrix. The output is
a quadratic form (i.e., an object in IsQuadraticForm) with defining field field. (See 3.2 for more
on bilinear forms).

Example
gap> mat := [[1,0,0,0],[0,3,0,0],[0,0,0,6],[0,0,6,0]]*Z(7)ˆ0;
[ [ Z(7)ˆ0, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ3 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ3, 0*Z(7) ] ]

gap> form := QuadraticFormByMatrix(mat,GF(7));
< quadratic form >
gap> Display(form);
Quadratic form
Gram Matrix:
1 . . .
. 3 . .
. . . 5
. . . .
gap> gf := GF(2ˆ2);
GF(2ˆ2)
gap> mat := InvariantQuadraticForm( SO(-1, 4, 4) )!.matrix;
[ [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2, Z(2)ˆ0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2 ] ]

gap> form := QuadraticFormByMatrix( mat, gf );
< quadratic form >
gap> Display(form);
Quadratic form
Gram Matrix:
z = Z(4)

. 1 . .

. . . .

. . zˆ2 1

. . . zˆ2
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The following example shows how using the argument field has influence on the properties of the
constructed form.

Example
gap> mat :=
> [[Z(2)ˆ0,Z(2)ˆ0,0*Z(2),0*Z(2)],[0*Z(2),Z(2)ˆ0,0*Z(2),0*Z(2)],
> [0*Z(2),0*Z(2),0*Z(2),Z(2)ˆ0],[0*Z(2),0*Z(2),0*Z(2),0*Z(2)]];
[ [ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat);
< quadratic form >
gap> WittIndex(form);
1
gap> form := QuadraticFormByMatrix(mat,GF(4));
< quadratic form >
gap> WittIndex(form);
2

4.2.3 HermitianFormByMatrix

♦ HermitianFormByMatrix(matrix, field) (operation)

Returns: a quadratic form
The argument matrix must be a hermitian square matrix over the finite field field, and field

has square order. The field must be specified, since we can only determine the smallest field containing
the entries of matrix. As it is only possible to construct reflexive sesquilinear forms, it is checked
whether the matrix is a hermitian matrix, and if not, an error message is returned. The output is a
hermitian sesquilinear form (i.e., an object in IsHermitianForm) with Gram matrix matrix and
defining field field. (See 3.1 for more on hermitian forms).

Example
gap> gf := GF(3ˆ2);
GF(3ˆ2)
gap> mat := IdentityMat(4, gf);
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> form := HermitianFormByMatrix( mat, gf );
< hermitian form >
gap> Display(form);
Hermitian form
Gram Matrix:
1 . . .
. 1 . .
. . 1 .
. . . 1
gap> mat := [[Z(11)ˆ0,0*Z(11),0*Z(11)],[0*Z(11),0*Z(11),Z(11)],
> [0*Z(11),Z(11),0*Z(11)]];
[ [ Z(11)ˆ0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11) ],
[ 0*Z(11), Z(11), 0*Z(11) ] ]

gap> form := HermitianFormByMatrix(mat,GF(121));
< hermitian form >
gap> Display(form);
Hermitian form
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Gram Matrix:
1 . .
. . 2
. 2 .

4.3 Constructing forms using a polynomial

Suppose that f is a sesquilinear form on an n-dimensional vectorspace. Consider a vector x with
coordinates x1, . . . ,xn with xi indeterminates over the field. Then f (x,x) is a polynomial in n indeter-
minates. When f is alternating, f (x,x) is identically zero, but in all other cases, f (x,x) determines f
completely.

Conversely, suppose that Q is a quadratic form on an n-dimensional vectorspace. Consider a
vector x with coordinates x1, . . . ,xn with xi indeterminates over the field. Then Q(x) is a polynomial
in n indeterminates, and Q(x) determines Q completely.

Forms provides functionality to construct bilinear, hermitian and quadratic forms using an appro-
priate polynomial.

4.3.1 BilinearFormByPolynomial

♦ BilinearFormByPolynomial(poly, r, n) (operation)

♦ BilinearFormByPolynomial(poly, r) (operation)

Returns: a bilinear form
The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument

is the dimension for the underlying vector space of the resulting form, which by default is the number
of indeterminates specified by poly . It is checked whether the polynomial is a homogeneous poly-
nomial of degree two over the given field, and if not, an error message is returned. It is not possible to
construct a nontrivial bilinear form from a polynomial in even characteristic. The output is a bilinear
(orthogonal) form in the category IsBilinearForm. (See 3.1 for more on bilinear forms).

Example
gap> r := PolynomialRing( GF(11), 4);
GF(11)[x_1,x_2,x_3,x_4]
gap> vars := IndeterminatesOfPolynomialRing( r );
[ x_1, x_2, x_3, x_4 ]
gap> pol := vars[1]*vars[2]+vars[3]*vars[4];
x_1*x_2+x_3*x_4
gap> form := BilinearFormByPolynomial(pol, r, 4);
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
. 6 . .
6 . . .
. . . 6
. . 6 .

Polynomial: x_1*x_2+x_3*x_4
gap> r := PolynomialRing(GF(4),2);
GF(2ˆ2)[x_1,x_2]
gap> pol := r.1*r.2;
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x_1*x_2
gap> form := BilinearFormByPolynomial(pol,r);
Error, No orthogonal form can be associated with a quadratic polynomial in eve
n characteristic
called from
BilinearFormByPolynomial( pol, pring, n ) called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

4.3.2 QuadraticFormByPolynomial

♦ QuadraticFormByPolynomial(poly, r, n) (operation)

♦ QuadraticFormByPolynomial(poly, r) (operation)

Returns: a quadratic form
The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument

is the dimension for the underlying vector space of the resulting form, which by default is the number
of indeterminates specified by poly . It is checked whether the polynomial is a homogeneous poly-
nomial of degree two over the given field, and if not, an error message is returned. The output is a
quadratic form in the category IsQuadraticForm. (See 3.2 for more on quadratic forms).

Example
gap> r := PolynomialRing( GF(8), 3);
GF(2ˆ3)[x_1,x_2,x_3]
gap> poly := r.1ˆ2 + r.2ˆ2 + r.3ˆ2;
x_1ˆ2+x_2ˆ2+x_3ˆ2
gap> form := QuadraticFormByPolynomial(poly, r);
< quadratic form >
gap> RadicalOfForm(form);
<vector space over GF(2ˆ3), with 63 generators>
gap> r := PolynomialRing(GF(9),4);
GF(3ˆ2)[x_1,x_2,x_3,x_4]
gap> poly := Z(3)ˆ2*r.1ˆ2+r.2ˆ2+r.3*r.4;
x_1ˆ2+x_2ˆ2+x_3*x_4
gap> qform := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> Display(qform);
Quadratic form
Gram Matrix:
1 . . .
. 1 . .
. . . 1
. . . .
Polynomial: x_1ˆ2+x_2ˆ2+x_3*x_4
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4.3.3 HermitianFormByPolynomial

♦ HermitianFormByPolynomial(poly, r, n) (operation)

♦ HermitianFormByPolynomial(poly, r) (operation)

Returns: an hermitian form
The argument poly must be a polynomial in the polynomial ring r defined over a finite field of

square order q2 The (optional) last argument is the dimension for the underlying vector space of the
resulting form, which by default is the number of indeterminates specified by poly . It is checked
whether the polynomial is a homogeneous polynomial of degree q + 1, and if not, an error message
is returned. The output is a hermitian form in the category IsHermitianForm. (See 3.1 for more on
hermitian forms).

Example
gap> r := PolynomialRing( GF(9), 4);
GF(3ˆ2)[x_1,x_2,x_3,x_4]
gap> vars := IndeterminatesOfPolynomialRing( r );
[ x_1, x_2, x_3, x_4 ]
gap> poly := vars[1]*vars[2]ˆ3+vars[1]ˆ3*vars[2]+
> vars[3]*vars[4]ˆ3+vars[3]ˆ3*vars[4];
x_1ˆ3*x_2+x_1*x_2ˆ3+x_3ˆ3*x_4+x_3*x_4ˆ3
gap> form := HermitianFormByPolynomial(poly,r);
< hermitian form >
gap> Display(form);
Hermitian form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .
Polynomial: x_1ˆ3*x_2+x_1*x_2ˆ3+x_3ˆ3*x_4+x_3*x_4ˆ3

4.4 Switching between bilinear and quadratic forms

When the characteristic of the field is odd, a homogeneous quadratic polynomial determines a bilinear
form, and a quadratic form. In some situations, when a quadratic form Q is given, it is useful to
consider the bilinear form f such that f (v,v) = Q(v), i.e., the bilinear form which is determined
by exactly the same polynomial determining the quadratic form Q. Forms provides functionality to
construct a bilinear form f from a given quadratic form Q such that f (v,v) = Q(v). Conversely, we
can extract a quadratic form from a given bilinear form.

4.4.1 QuadraticFormByBilinearForm

♦ QuadraticFormByBilinearForm(form) (operation)

Returns: a quadratic form
The argument f orm is an orthogonal bilinear form (and thus it belongs to IsBilinearForm),

otherwise a “No method found” error is returned. The output is the quadratic form Q (an object
in IsQuadraticForm), such that Q(v) = f orm(v,v) for all vectors v in a vector space equipped with
f orm. An error is returned when the characteristic of the field is even, or when f orm is not orthogonal.
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Example
gap> mat := [ [ Z(3ˆ2)ˆ7, Z(3)ˆ0, Z(3ˆ2)ˆ2, 0*Z(3), Z(3ˆ2)ˆ5 ],
> [ Z(3)ˆ0, Z(3ˆ2)ˆ7, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2 ],
> [ Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ7, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ2 ],
> [ 0*Z(3), Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ7 ],
> [ Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ7, Z(3) ] ];
[ [ Z(3ˆ2)ˆ7, Z(3)ˆ0, Z(3ˆ2)ˆ2, 0*Z(3), Z(3ˆ2)ˆ5 ],
[ Z(3)ˆ0, Z(3ˆ2)ˆ7, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2 ],
[ Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ7, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ2 ],
[ 0*Z(3), Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ7 ],
[ Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ7, Z(3) ] ]

gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> Q := QuadraticFormByBilinearForm(form);
< quadratic form >
gap> Display(form);
Bilinear form
Gram Matrix:
z = Z(9)
zˆ7 1 zˆ2 . zˆ5
1 zˆ7 zˆ6 zˆ5 zˆ2

zˆ2 zˆ6 zˆ7 zˆ2 zˆ2
. zˆ5 zˆ2 zˆ6 zˆ7

zˆ5 zˆ2 zˆ2 zˆ7 2
gap> Display(Q);
Quadratic form
Gram Matrix:
z = Z(9)
zˆ7 2 zˆ6 . zˆ1
. zˆ7 zˆ2 zˆ1 zˆ6
. . zˆ7 zˆ6 zˆ6
. . . zˆ6 zˆ3
. . . . 2

gap> Set(List(GF(9)ˆ5),x->[x,x]ˆform=xˆQ);
[ true ]
gap> PolynomialOfForm(form);
Z(3ˆ2)ˆ7*x_1ˆ2-x_1*x_2+Z(3ˆ2)ˆ6*x_1*x_3+Z(3ˆ2)*x_1*x_5+Z(3ˆ2)ˆ7*x_2ˆ2+Z(3ˆ2)ˆ2
*x_2*x_3+Z(3ˆ2)*x_2*x_4+Z(3ˆ2)ˆ6*x_2*x_5+Z(3ˆ2)ˆ7*x_3ˆ2+Z(3ˆ2)ˆ6*x_3*x_4+Z(3ˆ2
)ˆ6*x_3*x_5+Z(3ˆ2)ˆ6*x_4ˆ2+Z(3ˆ2)ˆ3*x_4*x_5-x_5ˆ2
gap> PolynomialOfForm(Q);
Z(3ˆ2)ˆ7*x_1ˆ2-x_1*x_2+Z(3ˆ2)ˆ6*x_1*x_3+Z(3ˆ2)*x_1*x_5+Z(3ˆ2)ˆ7*x_2ˆ2+Z(3ˆ2)ˆ2
*x_2*x_3+Z(3ˆ2)*x_2*x_4+Z(3ˆ2)ˆ6*x_2*x_5+Z(3ˆ2)ˆ7*x_3ˆ2+Z(3ˆ2)ˆ6*x_3*x_4+Z(3ˆ2
)ˆ6*x_3*x_5+Z(3ˆ2)ˆ6*x_4ˆ2+Z(3ˆ2)ˆ3*x_4*x_5-x_5ˆ2

Note that the given bilinear form form is NOT the associated bilinear form of the constructed
quadratic form Q, according to the definition in Section 3.2. We can construct the associated bilinear
forms by using AssociatedBilinearForm (4.4.3). (See 3.2 for more on quadratic forms).
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4.4.2 BilinearFormByQuadraticForm

♦ BilinearFormByQuadraticForm(Q) (operation)

Returns: a bilinear form
The argument Q must be a quadratic form (and thus it belongs to IsQuadraticForm). The output

is the orthogonal bilinear form f (an object in IsBilinearForm), such that f (v,v) = Q(v) for all
vectors v in a vector space equipped with Q. An error is returned when the characteristic of the field
is even.

Example
gap> r := PolynomialRing(GF(9),4);
GF(3ˆ2)[x_1,x_2,x_3,x_4]
gap> poly := -r.1*r.2+Z(3ˆ2)*r.3ˆ2+r.4ˆ2;
-x_1*x_2+Z(3ˆ2)*x_3ˆ2+x_4ˆ2
gap> qform := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> Display( qform );
Quadratic form
Gram Matrix:
z = Z(9)

. 2 . .

. . . .

. . zˆ1 .

. . . 1
Polynomial: -x_1*x_2+Z(3ˆ2)*x_3ˆ2+x_4ˆ2
gap> form := BilinearFormByQuadraticForm( qform );
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
z = Z(9)

. 1 . .
1 . . .
. . zˆ1 .
. . . 1

gap> Set(GF(9)ˆ4, x -> [x,x]ˆform = xˆqform);
[ true ]

Note that the constructed bilinear form f is NOT the associated bilinear form of the given quadratic
form Q, according to the definition in Section 3.2. We can construct the associated bilinear forms by
using AssociatedBilinearForm (4.4.3). (See 3.2 for more on quadratic forms).

4.4.3 AssociatedBilinearForm

♦ AssociatedBilinearForm(Q) (operation)

Returns: a bilinear form
The argument Q must be a quadratic form (and thus it belongs to IsQuadraticForm). The output

is the associated bilinear form f (an object in IsBilinearForm), as defined in Section 3.2, i.e. the
bilinear form f such that f (v,w) = Q(v + w)−Q(v)−Q(w) for all vectors v,w in a vector space
equipped with Q. (See 3.2 for more on quadratic forms).
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Example
gap> r:= PolynomialRing(GF(121),6);
GF(11ˆ2)[x_1,x_2,x_3,x_4,x_5,x_6]
gap> poly := r.1*r.5-r.2*r.6+r.3*r.4;
x_1*x_5-x_2*x_6+x_3*x_4
gap> form := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> aform := AssociatedBilinearForm(form);
< bilinear form >
gap> Display(aform);
Bilinear form
Gram Matrix:
. . . . 1 .
. . . . . 10
. . . 1 . .
. . 1 . . .
1 . . . . .
. 10 . . . .

4.5 Evaluating forms

4.5.1 EvaluateForm

♦ EvaluateForm(f, u, v) (operation)

♦ EvaluateForm(f, u) (operation)

Returns: a finite field element
The argument f is either a sesquilinear or quadratic form defined over a finite field GF(q). The

other argument is a pair of vectors or matrices, or a single vector or matrix, which represent the
bases of given subspaces of GF(q)d . This operation evaluates the form on the given vector or pair
of vectors and returns an element in GF(q). There is also an overloading of the operation \ˆ where
(u,v) f represents f (u,v) in the case that f is sesquilinear, and u f stands for f (u) in the quadratic case.
So for convenience, the user may use this compressed version of this operation, which we show in the
following example:

Example
gap> mat := [[Z(8),0,0,0],[0,0,Z(8)ˆ4,0],[0,0,0,1],[0,0,0,0]]*Z(8)ˆ0;;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> u := [ Z(2ˆ3)ˆ4, Z(2ˆ3)ˆ4, Z(2)ˆ0, Z(2ˆ3)ˆ3 ];
[ Z(2ˆ3)ˆ4, Z(2ˆ3)ˆ4, Z(2)ˆ0, Z(2ˆ3)ˆ3 ]
gap> EvaluateForm( form, u );
Z(2ˆ3)ˆ6
gap> uˆform;
Z(2ˆ3)ˆ6
gap> gram := [[0,0,0,0,0,2],[0,0,0,0,2,0],[0,0,0,1,0,0],
> [0,0,1,0,0,0],[0,2,0,0,0,0],[2,0,0,0,0,0]]*Z(3)ˆ0;;
gap> form := BilinearFormByMatrix(gram,GF(3));
< bilinear form >
gap> u := [ [ Z(3)ˆ0, 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ],
> [ 0*Z(3), 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3), 0*Z(3) ] ];;
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gap> v := [ [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3), 0*Z(3), Z(3) ],
> [ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3), Z(3), Z(3) ] ];;
gap> EvaluateForm( form, u, v);
[ [ Z(3)ˆ0, Z(3)ˆ0 ], [ 0*Z(3), 0*Z(3) ] ]
gap> [u,v]ˆform;
[ [ Z(3)ˆ0, Z(3)ˆ0 ], [ 0*Z(3), 0*Z(3) ] ]

4.6 Orthogonality, totally isotropic subspaces, and totally singular sub-
spaces

4.6.1 OrthogonalSubspaceMat

♦ OrthogonalSubspaceMat(form, v) (operation)

Returns: a base of the subspace orthogonal to the given vector with relation to the given form
The argument form is a sesquilinear or quadratic form. The operation returns a base of the

subspace orthogonal to the given vector v with relation to the sesquilinear form or with relation to
the associated bilinear form of the quadratic form form

Example
gap> mat := [[0,0,0,-2],[0,0,-3,0],[0,3,0,0],[2,0,0,0]]*Z(7)ˆ0;
[ [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ5 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ4, 0*Z(7) ],
[ 0*Z(7), Z(7), 0*Z(7), 0*Z(7) ], [ Z(7)ˆ2, 0*Z(7), 0*Z(7), 0*Z(7) ] ]

gap> form := BilinearFormByMatrix(mat);
< bilinear form >
gap> v := Random(GF(7)ˆ4);
[ Z(7)ˆ3, Z(7)ˆ2, Z(7)ˆ4, Z(7) ]
gap> vperp := OrthogonalSubspaceMat(form,v);
[ [ Z(7)ˆ5, Z(7)ˆ0, 0*Z(7), 0*Z(7) ], [ Z(7)ˆ0, 0*Z(7), Z(7)ˆ0, 0*Z(7) ],
[ Z(7)ˆ2, 0*Z(7), 0*Z(7), Z(7)ˆ0 ] ]

gap> sub := [[1,1,0,0],[0,0,1,2]]*Z(7)ˆ0;
[ [ Z(7)ˆ0, Z(7)ˆ0, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)ˆ0, Z(7)ˆ2 ] ]
gap> subperp := OrthogonalSubspaceMat(form,sub);
[ [ Z(7)ˆ0, Z(7)ˆ0, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)ˆ4, Z(7)ˆ0 ] ]
gap> mat := [[1,0,0],[0,0,1],[0,0,0]]*Z(2)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat);
< quadratic form >
gap> v := Random(GF(2)ˆ3);
<a GF2 vector of length 3>
gap> vperp := OrthogonalSubspaceMat(form,v);
[ <an immutable GF2 vector of length 3>, <an immutable GF2 vector of length

3> ]
gap> sub := [[1,0,1],[1,0,0]]*Z(2)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ], [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]
gap> subperp := OrthogonalSubspaceMat(form,sub);
[ <an immutable GF2 vector of length 3>, <an immutable GF2 vector of length

3> ]
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4.6.2 IsIsotropicVector

♦ IsIsotropicVector(form, v) (operation)

Returns: true or false
The operation return true if and only if v is isotropic with relation to the sesquilinear or quadratic

form form.
Example

gap> mat := [[1,0,0,0],[0,-1,0,0],[0,0,0,1],[0,0,1,0]]*Z(41)ˆ0;
[ [ Z(41)ˆ0, 0*Z(41), 0*Z(41), 0*Z(41) ],
[ 0*Z(41), Z(41)ˆ20, 0*Z(41), 0*Z(41) ],
[ 0*Z(41), 0*Z(41), 0*Z(41), Z(41)ˆ0 ],
[ 0*Z(41), 0*Z(41), Z(41)ˆ0, 0*Z(41) ] ]

gap> form := BilinearFormByMatrix(mat);
< bilinear form >
gap> v := [1,1,0,0]*Z(41)ˆ0;
[ Z(41)ˆ0, Z(41)ˆ0, 0*Z(41), 0*Z(41) ]
gap> IsIsotropicVector(form,v);
true
gap> mat := [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0]]*Z(8)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat);
< quadratic form >
gap> v1 := [1,0,0,0,0]*Z(8)ˆ0;
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> v2 := [0,1,0,0,0]*Z(8)ˆ0;
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> IsIsotropicVector(form,v1);
true
gap> IsIsotropicVector(form,v2);
true

4.6.3 IsSingularVector

♦ IsSingularVector(form, v) (operation)

Returns: true or false
The operation return true if and only if v is singular with relation to the quadratic form form.

Note that only when the characteristic of the field is odd, the singular vectors with relation to a
quadratic form are the isotropic vectors with relation to its associated form.

Example
gap> mat := [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0]]*Z(8)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat);
< quadratic form >
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gap> v1 := [1,0,0,0,0]*Z(8)ˆ0;
[ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> v2 := [0,1,0,0,0]*Z(8)ˆ0;
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> IsSingularVector(form,v1);
false
gap> IsSingularVector(form,v2);
true
gap> IsIsotropicVector(form,v1);
true
gap> IsIsotropicVector(form,v2);
true

4.6.4 IsTotallyIsotropicSubspace

♦ IsTotallyIsotropicSubspace(form, sub) (operation)

Returns: true or false
The operation return true if and only if the subspace spanned by the vectors in the list sub is

totally isotropic with relation to the sesquilinear or quadratic form form. Note that when form is a
quadratic form, it is checked whether sub generates a subspace that is totally isotropic with relation
to the associated bilinear form of form.

Example
gap> mat := [[1,0,0,0],[0,-1,0,0],[0,0,0,1],[0,0,1,0]]*Z(7)ˆ0;
[ [ Z(7)ˆ0, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)ˆ3, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)ˆ0 ], [ 0*Z(7), 0*Z(7), Z(7)ˆ0, 0*Z(7) ] ]

gap> form := BilinearFormByMatrix(mat);
< bilinear form >
gap> sub:= [[Z(7)ˆ0,0*Z(7),Z(7)ˆ0,Z(7)],[0*Z(7),Z(7)ˆ0,Z(7)ˆ0,Z(7)ˆ4]];
[ [ Z(7)ˆ0, 0*Z(7), Z(7)ˆ0, Z(7) ], [ 0*Z(7), Z(7)ˆ0, Z(7)ˆ0, Z(7)ˆ4 ] ]
gap> IsTotallyIsotropicSubspace(form,sub);
true
gap> mat := IdentityMat(6,GF(2));
[ <a GF2 vector of length 6>, <a GF2 vector of length 6>,
<a GF2 vector of length 6>, <a GF2 vector of length 6>,
<a GF2 vector of length 6>, <a GF2 vector of length 6> ]

gap> form := HermitianFormByMatrix(mat,GF(4));
< hermitian form >
gap> sub := [[Z(2)ˆ0,0*Z(2),0*Z(2),Z(2)ˆ0,Z(2)ˆ0,Z(2)ˆ0],
> [0*Z(2),Z(2)ˆ0,0*Z(2),Z(2ˆ2)ˆ2,Z(2ˆ2),Z(2)ˆ0],
> [0*Z(2),0*Z(2),Z(2)ˆ0,Z(2)ˆ0,Z(2ˆ2),Z(2ˆ2)ˆ2]];
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2ˆ2)ˆ2, Z(2ˆ2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2 ] ]

gap> IsTotallyIsotropicSubspace(form,sub);
true
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4.6.5 IsTotallySingularSubspace

♦ IsTotallySingularSubspace(form, sub) (operation)

Returns: true or false
The operation return true if and only if the subspace spanned by the vectors in the list sub is

totally singular with relation to quadratic form form. Note that only when the characteristic of the
field is odd, the totally singular subspaces of given dimension n with relation to a quadratic form are
exactly the totally isotropic subspaces of dimension n with relation to its associated form.

Example
gap> mat := [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0]]*Z(8)ˆ0;
[ [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat);
< quadratic form >
gap> sub := [[Z(2)ˆ0,0*Z(2),Z(2ˆ3)ˆ6,Z(2ˆ3),Z(2ˆ3)ˆ3],
> [0*Z(2),Z(2)ˆ0,Z(2ˆ3)ˆ6,Z(2ˆ3)ˆ2,Z(2ˆ3)]];
[ [ Z(2)ˆ0, 0*Z(2), Z(2ˆ3)ˆ6, Z(2ˆ3), Z(2ˆ3)ˆ3 ],
[ 0*Z(2), Z(2)ˆ0, Z(2ˆ3)ˆ6, Z(2ˆ3)ˆ2, Z(2ˆ3) ] ]

gap> IsTotallySingularSubspace(form,sub);
true

4.7 Attributes and properties of forms

4.7.1 IsReflexiveForm

♦ IsReflexiveForm(f) (property)

Returns: true or false.
A sesquilinear form f on a vector space V is reflexive if f (v,w) = 0 ⇒ f (w,v) = 0 for all v,w ∈

V . The argument f must be a sesquilinear form (and thus it belongs to IsSesquilinearForm). A
sesquilinear form f is reflexive if whenever we have f (u,v) = 0, for two vectors u,v in the associated
vector space, then we also have f (v,u) = 0. This attribute simply returns true or false according
to whether f is reflexive or not, and is stored as a property of f. It is not possible in this version of
Forms to construct non-reflexive forms. (See 3.1 for more on reflexive sesquilinear forms).

4.7.2 IsAlternatingForm

♦ IsAlternatingForm(f) (property)

Returns: true or false.
A sesquilinear form f on a vector space V is alternating if f (v,v) = 0 for all v ∈V . The argument

f must be a sesquilinear form (and thus it belongs to IsSesquilinearForm). A bilinear form f is
alternating if f (v,v) = 0 for all v. This method simply returns true or false according to whether
f is alternating or not, and is stored as a property of f. (See 3.1 for more on alternating sesquilinear
forms).
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4.7.3 IsSymmetricForm

♦ IsSymmetricForm(f) (property)

Returns: true or false.
A sesquilinear form f on a vector space V is symmetric if f (v,w) = f (w,v) for all v,w ∈ V . The

argument f must be a sesquilinear form (and thus it belongs to IsSesquilinearForm). A bilinear
form f is symmetric if f (u,v) = f (v,u) for all pairs of vectors u and v. This attribute simply returns
true or false according to whether f is symmetric or not, and is stored as a property of f. (See
3.1 for more on symmetric sesquilinear forms).

4.7.4 IsOrthogonalForm

♦ IsOrthogonalForm(f) (property)

Returns: true or false.
The argument f must be a sesquilinear form (and thus it belongs to IsSesquilinearForm). A

bilinear form f is called orthogonal if the characteristic of the underlying field is odd, and f is a
symmetric form. (See 3.1 for more on bilinear forms). This operation simply returns true or false
according to whether f is an orthogonal bilinear form or not, and is stored as a property of f.

4.7.5 IsPseudoForm

♦ IsPseudoForm(f) (property)

Returns: true or false.
When the characteristic of the field is odd, we call a form f orthogonal if and only f is sym-

metric, and when the characteristic of the field is even, we call a form f pseudo if and only if f is
symmetric but not alternating. The argument f must be a sesquilinear form (and thus it belongs to
IsSesquilinearForm). (See 3.1 for more on pseudo forms). This method simply returns true or
false according to whether f is a pseudo form or not, and is stored as a property of f.

4.7.6 IsSymplecticForm

♦ IsSymplecticForm(f) (property)

Returns: true or false.
We call a bilinear form f symplectic if and only if f is alternating. The argument f must be a

sesquilinear form (and thus it belongs to IsSesquilinearForm). (See 3.1 for more on symplectic
forms). This method simply returns true or false according to whether f is symplectic or not,
and is stored as a property of f.

4.7.7 IsDegenerateForm

♦ IsDegenerateForm(f) (property)

Returns: true or false.
The argument f must be a form (and thus it belongs to IsForm). A sesquilinear form f is de-

generate if its radical is non-trivial. A quadratic form is degenerate if and only if the radical of the
associated bilinear form is non-trivial. Note that degeneracy for quadratic forms is too restrictive if
the characteristic is even. See also IsSingularForm (4.7.8). This attribute simply returns true or
false according to whether f is degenerate or not, and is stored as a property of f.
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4.7.8 IsSingularForm

♦ IsSingularForm(f) (property)

Returns: true or false.
The argument f must be a quadratic form (and thus it belongs to IsQuadraticForm). A quadratic

form f is singular if its radical is non-trivial. When the characteristic of the field is odd, a quadratic
form is singular if and only if it is degenerate. This is not the case when the characteristic of the field
is even. This method simply returns true or false according to whether f is singular or not, and
is stored as a property of f.

4.7.9 BaseField

♦ BaseField(f) (attribute)

Returns: the underlying field of f.
The argument f must be a form (and thus it belongs to IsForm). The method returns the field

which is stored as the defining field of f . We sometimes stipulate in Forms that a form have a defining
field, for mathematical reasons. Clearly, to define a hermitian form one needs to specify the field of
scalars for the vector space that you wish your hermitian form to act on. The default, if the user has
not specified a field on creation of a form, is the smallest field containing the entries or coefficients of
the input (a matrix or polynomial). Having a particular defining field for a form can be very useful,
for example, when one wants to find a change of basis from one form to another (isometric) form. In
this case, one needs to know in which GL(d,q) the base-transition matrix should be taken.

4.7.10 GramMatrix

♦ GramMatrix(f) (attribute)

Returns: the Gram matrix of f.
The argument f must be a form (and thus it belongs to IsForm). This method returns the Gram

matrix of f (see 3.1 and 3.2).

4.7.11 RadicalOfForm

♦ RadicalOfForm(f) (attribute)

Returns: The radical of the form f
The argument f must be a form (and thus it belongs to IsForm) on some vector space V . The

radical of a form f is the subspace consisting of vectors which are orthogonal to every vector, i.e.,

Rad( f ) = {v ∈V | f (v,w) = 0, ∀w ∈V}.
Example

gap> r := PolynomialRing( GF(8), 3 );
GF(2ˆ3)[x_1,x_2,x_3]
gap> poly := r.1ˆ2 + r.2 * r.3;
x_1ˆ2+x_2*x_3
gap> form := QuadraticFormByPolynomial( poly, r );
< quadratic form >
gap> r := RadicalOfForm( form );
<vector space over GF(2ˆ3), with 0 generators>
gap> Dimension(r);
0
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4.7.12 PolynomialOfForm

♦ PolynomialOfForm(f) (attribute)

Returns: the polynomial associated with f.
The argument f must be a form (and thus it belongs to IsForm). All forms, except for bilinear

forms in even characteristic, have an associated polynomial defining a quadratic or hermitian form
(see 3.1 and 3.2). This method returns the polynomial associated with f, and if not already bound,
stores it as a property of f.

Example
gap> mat := [ [ Z(8) , 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), Z(2)ˆ0, Z(2ˆ3)ˆ5, 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ];;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> PolynomialOfForm(form);
Z(2ˆ3)*x_1ˆ2+x_2ˆ2+Z(2ˆ3)ˆ5*x_2*x_3+x_4*x_5

4.7.13 DiscriminantOfForm

♦ DiscriminantOfForm(f) (attribute)

Returns: a string
The argument f must be a form (and thus it belongs to IsForm). Given a quadratic or bilinear

form f of even dimension, this operation returns a string: “square” or “nonsquare”. More specifically,
let f be a from over GF(q), and let M be the Gram matrix of f . Define the discriminant of Q
(n.b., quasideterminant in [CCN+85]) as ‘square’ if det(M) is a square of GF(q), and ‘non-square’
otherwise. The discriminant is an invariant of nondegenerate orthogonal spaces over finite fields of
odd order, up to isometry. Thus, discriminants can be used to delineate the isometry type of an
orthogonal form in even (algebraic) dimension. The discriminant of a hermitian form is not defined,
and applying this operation on a hermitian form, will result in an error message.

Example
gap> gram := InvariantQuadraticForm(GO(-1,4,5))!.matrix;;
gap> qform := QuadraticFormByMatrix(gram, GF(5));
< quadratic form >
gap> DiscriminantOfForm( qform );
"nonsquare"

4.8 Recognition of sesquilinear forms preserved by a classical group

In this section, we describe a function that was initially developed by Frank Celler (and which has
now been adapted to Forms) for the recognition of sesquilinear forms left invariant by a matrix group.
More importantly, we should stress that this routine differs to that already offered by the MeatAxe in
that it finds sesquilinear forms preserved up to SCALARS. Eventually, the procedure used for finding
preserved sesquilinear forms does use the MeatAxe but in some cases it can rule out the existence
of preserved forms without calling the MeatAxe. For more information on the algorithm, please see
[CLGN+08].
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4.8.1 PreservedSesquilinearForms

♦ PreservedSesquilinearForms(group) (operation)

Returns: a list of forms
The argument group is a matrix group. The function uses random methods to find all of the

bilinear or unitary forms preserved by group (the trivial form is also a possibility) up to a scalar.
Since the procedure relies on a pseudo-random generator, the user may need to execute the operation
more than once to find all invariant sesquilinear forms.

Example
gap> g := SU(4,3);
SU(4,3)
gap> forms := PreservedSesquilinearForms(g);
[ < hermitian form > ]
gap> Display( forms[1] );
Hermitian form
Gram Matrix:
. . . 2
. . 2 .
. 2 . .
2 . . .

Here is another example which shows that this procedure is suitable in some cases where using the
MeatAxe is not applicable. Here, our matrix group is the group of similarities preserving a (hyperbolic)
bilinear form on GF(3)6.

Example
gap> a := [ [ -1, 0, 0, -1, 0, 1 ], [ 0, -1, -1, 0, 0, 1 ],
> [ -1, 0, 0, 1, 0, 0 ], [ 0, -1, 1, 0, 0, -1 ],
> [ 0, 0, 0, 0, 0, -1 ], [ 0, -1, -1, 1, 1, 1 ] ] * One(GF(3));;
gap> b := [ [ 1, -1, 1, -1, 1, -1 ], [ 1, 1, -1, 1, 1, 0 ],
> [ -1, 0, 1, 0, 0, 0 ], [ 0, -1, 0, 0, 0, 1 ],
> [ 1, 1, 1, 1, 1, 1 ], [ -1, 1, 1, 1, -1, 0 ] ] * One(GF(3));;
gap> g := Group( a, b );
<matrix group with 2 generators>
gap> forms := PreservedSesquilinearForms( g );
[ < bilinear form > ]
gap> Display( forms[1] );
Bilinear form
Gram Matrix:
. 1 . . . .
1 . . . . .
. . . 1 . .
. . 1 . . .
. . . . . 1
. . . . 1 .
gap> m := GModuleByMats( [a,b], GF(3) );;
gap> usemeataxe := MTX.InvariantBilinearForm(m);
fail



Chapter 5

Morphisms of forms

In this chapter we give a very brief overview on morphisms of sesquilinear and quadratic forms.
The reader can find more in the texts: Cameron [Cam00], Taylor [Tay92], Aschbacher [Asc00], or
Kleidman and Liebeck [KL90].

In this chapter we consider an n-dimensional vector space V over a finite field. Suppose that f is
a sesquilinear form or a quadratic form on V , then we call the pair (V, f ) a formed vector space.

5.1 Morphisms of sesquilinear forms

Consider two formed vector spaces (V, f ) and (W,g) over the same field F , where both f and g are
sesquilinear forms. Suppose that φ is a linear map from V to W . The map φ is an isometry from the
formed space (V, f ) to the formed space (W,g) if for all v,w in V we have

f (v,w) = f ′(φ(v),φ(w)).

The map φ is a similarity from the formed space (V, f ) to the formed space (W,g) if for all v,w in V
we have

f (v,w) = λ f ′(φ(v),φ(w)).

for some non-zero λ ∈ F . Finally, the map φ. is a semi-similarity from the formed space (V, f ) to the
formed space (W,g) if for all v,w in V we have

f (v,w) = λ f ′(φ(v),φ(w))α

for some non-zero λ ∈ F and a field automorphism α of F .
One of the objectives of studying maps between formed vector spaces is the classification of

sesquilinear forms on a vector space V , where it is sufficient to classify non-degenerate forms. The
following results are well known.

It can be proved that (see for example Section 6.3 of [Cam00]):

• all non-degenerate alternating forms of a given vector space over a given finite field are similar,

• all non-degenerate hermitian forms of a given vector space over a given finite field are similar,
and,

• the non-degenerate symmetric bilinear forms on a vector space over a field with odd character-
istic come in three flavours, two of which occur when the dimension of the vector space is even,
one of which occurs when the dimension of the vector space is odd.

38
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In principle, within each similarity class, different isometry classes can occur, but we will see that in
most cases, each similarity class contains exactly one isometry class.

Given a sesquilinear form f over a vector space V , Forms provides functionality to compute the
linear map φ from V to itself (or, equivalently, a matrix describing a change of basis), such that f
is mapped to its canonical representative in its isometry class. In the next sections, we describe the
representative(s) of the similarity class(es) used in Forms, and, when necessary, the different isometry
classes, for each of the three reflexive sesquilinear forms. The easiest cases are the hermitian and
alternating cases.

5.1.1 Hermitian forms

We suppose that f is a non-degenerate hermitian form on a vector space V over the finite field F ,
with involutory field automorphism α. It can be proved (see [KL90]) that any vector space equipped
with a non-degenerate hermitian form f contains an orthogonal basis such that f (ei,ei) = 1 for each
basisvector ei. Hence (V, f ) is isometric with (V, f ′) with f ′ the non-degenerate hermitian form with
the identity matrix over F . The Witt index of f equals n/2 when n is even and (n− 1)/2 when n is
odd.

5.1.2 Alternating forms

We suppose that f is a non-degenerate alternating bilinear form on a vector space V over a finite
field F . As already mentioned in Section 3.1, non-degenerate alternating forms only exist on even
dimensional vector spaces. Restricting to a two dimensional vector space, it is clear immediately

that the Gram matrix of f must be
(

0 r
−r 0

)
for some non-zero r ∈ F . If we rescale one of the

basisvectors, which induces an isometry, then we see that there always exists a basis such that r = 1.
We call a two dimensional vector space equipped with a non-degenerate alternating form a symplectic
hyperbolic line, and it is proved (see Theorem 6.7 of [Cam00]) that the formed space (V, f ) can be
written as an orthogonal direct sum of symplectic hyperbolic planes. Hence, up to isometry, there
is only one non-degenerate alternating form of an even dimensional vector space, and we choose as
canonical representative the alternating form with Gram matrix

0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0


.

The Witt index of f equals n/2.

5.1.3 Bilinear forms

We suppose that f is a non-degenerate symmetric bilinear form on a vector space V over a finite field
F with odd characteristic. We call a two dimensional vector space a hyperbolic line if it contains
a non-zero vector such that f (v,v) = 0. It is proved (see Proposition 6.9 of [Cam00]) that any two
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hyperbolic lines are isometric, and we choose as canonical representative the orthogonal form with
Gram matrix (

0 1
1 0

)
.

It can be proved (see Theorem 6.10 of [Cam00]) that the formed space (V, f ) can be written
as the orthogonal direct sum of hyperbolic lines and one subspace U of dimension at most two. The
behaviour of f on the subspace U determines the similarity class of f . We describe the three occurring
cases, to describe the chosen canonical form, we use the polynomial rather than the Gram matrix.

• If the dimension of U is zero, then (V, f ) is the orthogonal direct sum of hyperbolic lines, and
hence (V, f ) is isometric to the formed space (V, f ′), where the Gram matrix of f ′ consists of
blocks as described above. The chosen canonical form has polynomial

x1x2 + . . .+ xn−1xn

Note that the dimension of the vector space V is necessarily even. We call f hyperbolic (see
also Section 3.1). It follows also that in this similarity class, there is only one isometry class.
The Witt index of f equals n/2.

• If the dimension of U is one, then necessarily the polynomial of f equals

µx2
1 + x2x3 + . . .+ xn−1xn

for some µ ∈ F , and the dimension of the vector space V is odd. We call f parabolic (see also
Section 3.1). It is clear that if µ is a square in F , then rescaling the first basis vector yields a
polynomial

x2
1 + x2x3 + . . .+ xn−1xn

which we choose as the canonical form for this similarity class. If µ is a non-square, a rescaling
of x2,x4, . . . ,xn−1 yields a polynomial

µ(x2
1 + x2x3 + . . .+ xn−1xn)

which represents now a bilinear form that is SIMILAR BUT NOT ISOMETRIC to the given one.
Hence, the parabolic similarity class contains two isometry classes. The Witt index of f equals
(n−1)/2.

• Suppose at last that the dimension of U is two. We may suppose that U is not a hyperbolic line.
It is not too difficult to see that a suitable base change yields the polynomial

µx2
1 + x2

2 + x3x4 + . . .+ xn−1xn

for a non-square µ ∈ F , and the dimension of the vector space V is even. We call f elliptic. The
Witt index of f equals (n−2)/2.
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5.1.4 Degenerate forms

Suppose that f is a degenerate sesquilinear form on the vector space V , then Rad( f ) is a non-trivial
subspace of the vector space V . The vector space V can be written as the orthogonal direct sum of a
subspace W and Rad( f ), and the restriction of f to W is a non-degenerate sesquilinear form on W .
Hence, f is isometric with a sesquilinear form having Gram matrix(

M A
B C

)
where M is the Gram matrix of a non-degenerate sesquilinear form and A,B and C are appropriate
zero matrices. The dimension of the maximal isotropic subspaces is the sum of the Witt index and the
dimension of the radical.

5.2 Morphisms of quadratic forms

Consider two formed vector spaces (V, f ) and (W,g) over the same field F , where both f and g are
quadratic forms. Suppose that φ is a linear map from V to W . The map φ is an isometry from the
formed space (V, f ) to the formed space (W,g) if for all v,w in V we have

f (v) = f ′(φ(v)).

The map φ is a similarity from the formed space (V, f ) to a formed space (W,g) if for all v,w in V we
have

f (v) = λ f ′(φ(v)).

for some non-zero λ ∈ F . Finally, the map φ. is a semi-similarity from the formed space (V, f ) to the
formed space (W,g) if for all v,w in V we have

f (v) = λ f ′(φ(v))α

for some non-zero λ ∈ F and a field automorphism α of F .
Also in this case, one of the objectives of studying maps between formed vector spaces is the

classification of quadratic forms of the same vector space V , where it is sufficient to classify non-
degenerate forms.

Since there is a one-to-one relationship between quadratic forms in odd characteristic and orthog-
onal bilinear forms in odd characteristic, we suppose in this section that f is a quadratic form in even
characteristic. We call a two dimensional vector space a hyperbolic line if it contains a non-zero vector
such that f (v) = 0. It is proved (see Proposition 6.9 of [Cam00]) that any two hyperbolic lines are iso-
metric, and we choose as canonical representative the quadratic form with polynomial x1x2. As in the
case of the orthogonal bilinear forms, it can be proved (see Theorem 6.10 of [Cam00]) that (V, f ) can
be written as the orthogonal direct sum of hyperbolic lines and one subspace U of dimension at most
two. The behaviour of f on the subspace U determines the similarity class of f . The classification of
quadratic forms in even characteristic is analogous to the one in odd characteristic.

• If the dimension of U is zero, then (V, f ) is the orthogonal direct sum of hyperbolic lines, and
hence (V, f ) is isometric to the formed space (V, f ′), with polynomial

x1x2 + . . .+ xn−1xn,
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which is chosen as the canonical form. Note that the dimension of the vector space V is nec-
essarily even. We call f hyperbolic (see also Section 3.1). It follows also that in this similarity
class, there is only one isometry class. The Witt index of f equals n/2.

• If the dimension of U is one, then necessarily the polynomial of f equals

µx2
1 + x2x3 + . . .+ xn−1xn

for some µ ∈ F , and the dimension of the vector space V is odd. We call f parabolic (see also
Section 3.1). Since every element is a square in even characteristic, rescaling the first basis
vector yields µ = 1. The Witt index of f equals (n−1)/2.

• Suppose at last that the dimension of U is two. We may suppose that U is not a hyperbolic line.
It is not difficult to see that a suitable base change yields the polynomial

dx2
1 + x1x2 + x2

2 + x3x4 + . . .+ xn−1xn

for an element of category 1, this is, an element d such that T (d) = 1 with T the trace map from
F to GF(2). Furthermore, an easy argument shows that an appropriate base change allows to
choose any element of category 1 for d. It follows also that the dimension of the vector space
V is even. We call f elliptic (see also Section 3.1). The Witt index of f equals (n−2)/2.

Hence, non-degenerate quadratic forms in even characteristic come in three similarity classes, which
is analogous to the odd characteristic case, and each similarity class contains only one isometry class,
which is different than in the odd characteristic case

Suppose that f is a degenerate quadratic form on the n-dimensional vector space V , then Rad( f )
is a non-trivial subspace of the vector space V . The vector space V can be written as the orthogonal
direct sum of a subspace W and Rad( f ), and the restriction of f to W is a non-degenerate quadratic
form on W . Hence, f is isometric with a quadratic form with one of the three above polynomials. The
dimension of the maximal isotropic subspaces is the sum of the Witt index and the dimension of the
radical.

5.3 Operations based on morphisms of forms

5.3.1 BaseChangeToCanonical

♦ BaseChangeToCanonical(f) (attribute)

Returns: a transition matrix b from one basis to another
The argument f is a sesquilinear or quadratic form. For every isometry class of forms, there is

a canonical representative, as described in Section 5.1. If M is the Gram matrix of the form f, then
this method returns an invertible matrix b such that b * M * TransposedMat(b) is the Gram
matrix of the canonical representative. That is, b is the transition matrix from a basis of the underlying
vector space of f to another basis.

Example
gap> gf := GF(3);
GF(3)
gap> gram := [
> [0,0,0,1,0,0],
> [0,0,0,0,1,0],
> [0,0,0,0,0,1],
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> [-1,0,0,0,0,0],
> [0,-1,0,0,0,0],
> [0,0,-1,0,0,0]] * One(gf);;
gap> form := BilinearFormByMatrix( gram, gf );
< bilinear form >
gap> b := BaseChangeToCanonical( form );;
gap> Display( b * gram * TransposedMat(b) );
. 1 . . . .
2 . . . . .
. . . 1 . .
. . 2 . . .
. . . . . 1
. . . . 2 .

5.3.2 BaseChangeHomomorphism

♦ BaseChangeHomomorphism(b, gf) (operation)

Returns: the inner automorphism of GL(d,q) associated to the transition matrix b.
The argument b must be an invertible matrix of size d over the finite field gf of order q. This

method returns the inner automorphism of GL(d,q) induces by conjugation by b.
Example

gap> gl:=GL(3,3);
GL(3,3)
gap> go:=GO(3,3);
GO(0,3,3)
gap> form := PreservedSesquilinearForms(go)[1];
< bilinear form >
gap> gram := GramMatrix( form );
[ [ 0*Z(3), Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

gap> b := BaseChangeToCanonical(form);;
gap> hom := BaseChangeHomomorphism(b, GF(3));
ˆ[ [ 0*Z(3), Z(3)ˆ0, 0*Z(3) ], [ Z(3), Z(3), Z(3)ˆ0 ],
[ Z(3)ˆ0, Z(3), 0*Z(3) ] ]

gap> newgo := Image(hom, go);
Group(
[ [ [ Z(3)ˆ0, Z(3)ˆ0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3)ˆ0,

Z(3) ] ],
[ [ Z(3)ˆ0, Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3)ˆ0 ], [ 0*Z(3), Z(3)ˆ0,

0*Z(3) ] ] ])
gap> gens := GeneratorsOfGroup(newgo);;
gap> canonical := b * gram * TransposedMat(b);
[ [ Z(3)ˆ0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3) ],
[ 0*Z(3), Z(3), 0*Z(3) ] ]

gap> ForAll(gens, y -> y * canonical * TransposedMat(y) = canonical);
true
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5.3.3 IsometricCanonicalForm

♦ IsometricCanonicalForm(f) (attribute)

Returns: the canonical form isometric to the sesquilinear or quadratic form f.
The argument f is a sesquilinear or quadratic form. For every isometry class of forms, there is a

canonical representative, as described in Section 5.1, which is the returned form.
Example

gap> mat := [ [ Z(8) , 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), Z(2)ˆ0, Z(2ˆ3)ˆ5, 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ];;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> iso := IsometricCanonicalForm(form);
< parabolic quadratic form >
gap> Display(form);
Parabolic quadratic form
Gram Matrix:
z = Z(8)
zˆ1 . . . .
. 1 zˆ5 . .
. . . . .
. . . . 1
. . . . .

Witt Index: 2
gap> Display(iso);
Parabolic quadratic form
Gram Matrix:
1 . . . .
. . 1 . .
. . . . .
. . . . 1
. . . . .
Witt Index: 2

5.3.4 ScalarOfSimilarity

♦ ScalarOfSimilarity(M, form) (operation)

Returns: a finite field element
Recall that a similarity of a form f on a vector space V , is a linear transformation g of V where

there exists some nonzero scalar c such that for all v,w in V , f (ug,vg) = c f (u,v). This operation finds
for a particular matrix M , giving rise to a similarity of the sesquilinear form form, the said scalar c.

Example
gap> gram := [ [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ] ];;
gap> form := BilinearFormByMatrix( gram, GF(3) );
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< bilinear form >
gap> m := [ [ Z(3)ˆ0, Z(3)ˆ0, Z(3), 0*Z(3), Z(3)ˆ0, Z(3) ],
> [ Z(3), Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3) ],
> [ 0*Z(3), Z(3), 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), Z(3), Z(3)ˆ0, Z(3), Z(3), Z(3) ],
> [ Z(3)ˆ0, Z(3)ˆ0, Z(3), Z(3), Z(3)ˆ0, Z(3)ˆ0 ],
> [ Z(3)ˆ0, 0*Z(3), Z(3), Z(3)ˆ0, Z(3), Z(3) ] ];;
gap> ScalarOfSimilarity( m, form );
Z(3)

5.3.5 WittIndex

♦ WittIndex(f) (attribute)

Returns: the Witt index of the form f.
The argument f is a sesquilinear or quadratic form. When f is degenerate, its Witt index is defined

as the Witt index of its non-degenerate part, see Sections 3.1 and 3.2.

5.3.6 IsEllipticForm

♦ IsEllipticForm(f) (property)

Returns: true or false.
The argument f is a sesquilinear or quadratic form. This operation returns true is and only if f is

elliptic; that is, it is orthogonal of minus type, or in other words, has even dimension and non-maximal
Witt index (see Section 5.1.3 for sesquilinear forms and Section 5.2 for quadratic forms).

5.3.7 IsParabolicForm

♦ IsParabolicForm(f) (property)

Returns: true or false.
The argument f is a sesquilinear or quadratic form. This operation returns true is and only if

f is parabolic; that is, it is orthogonal of neutral type, or in other words, it has odd dimension (see
Section 5.1.3 for sesquilinear forms and Section 5.2 for quadratic forms).

5.3.8 IsHyperbolicForm

♦ IsHyperbolicForm(f) (attribute)

Returns: true or false.
The argument f is a sesquilinear or quadratic form. This operation returns true is and only if f

is hyperbolic; that is, it is orthogonal of plus type, or in other words, has even dimension and maximal
Witt index (see Section 5.1.3 for sesquilinear forms and Section 5.2 for quadratic forms).



References

[Asc00] M. Aschbacher. Finite group theory, volume 10 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, second edition, 2000. 10, 38

[Cam00] Peter J. Cameron. Projective and Polar Spaces. Online notes,
http://www.maths.qmul.ac.uk/∼pjc/pps/, 2000. 10, 38, 39, 40, 41

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 10,
11, 15, 36

[CLGN+08] Frank Celler, Charles R. Leedham-Green, Peter M. Neumann, Alice C. Niemeyer, Dmit-
tri Pasechnik, and Cheryl E. Praeger. Finding invariant forms. preprint, 2008. 36

[KL90] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical
groups, volume 129 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1990. 10, 38, 39

[Tay92] Donald E. Taylor. The geometry of the classical groups, volume 9 of Sigma Series in
Pure Mathematics. Heldermann Verlag, Berlin, 1992. 10, 11, 38

46



Index

AssociatedBilinearForm, 28

BaseChangeHomomorphism, 43
BaseChangeToCanonical, 42
BaseField, 35
BilinearFormByMatrix, 21
BilinearFormByPolynomial, 24
BilinearFormByQuadraticForm, 28

Companion Automorphism, 10

DiscriminantOfForm, 36

EvaluateForm, 29

Form
Alternating, 33
alternating, 10
bilinear, 10
elliptic, 11
hermitian, 10
hyperbolic, 11
orthogonal, 11, 16, 34
parabolic, 11
pseudo, 11, 34
Reflexive, 33
reflexive, 10
sesquilinear, 10
Symmetric, 34
symmetric, 10
symplectic, 11, 34

Non-degenerate
sesquilinear, 11

Quadratic Form
quadratic, 15

Totally Isotropic
sesquilinear, 11

Witt Index
sesquilinear, 11

GramMatrix, 35

HermitianFormByMatrix, 23
HermitianFormByPolynomial, 26

IsAlternatingForm, 33
IsBilinearForm, 20
IsDegenerateForm, 34
IsEllipticForm, 45
IsForm, 20
IsFormRep, 20
IsHermitianForm, 20
IsHyperbolicForm, 45
IsIsotropicVector, 31
IsometricCanonicalForm, 44
Isometry, 38, 41
IsOrthogonalForm, 34
isotropic, 11
IsParabolicForm, 45
IsPseudoForm, 34
IsQuadraticForm, 20
IsReflexiveForm, 33
IsSesquilinearForm, 20
IsSingularForm, 35
IsSingularVector, 31
IsSymmetricForm, 34
IsSymplecticForm, 34
IsTotallyIsotropicSubspace, 32
IsTotallySingularSubspace, 33
IsTrivialForm, 20

Orthogonal, 11
OrthogonalSubspaceMat, 30

PolynomialOfForm, 36
PreservedSesquilinearForms, 37

QuadraticFormByBilinearForm, 26
QuadraticFormByMatrix, 22
QuadraticFormByPolynomial, 25

Radical, 11

47



GAP 4 Package Forms 48

RadicalOfForm, 35

ScalarOfSimilarity, 44
Semi-similarity, 38, 41
Semilinear, 10
Similarity, 38, 41

WittIndex, 45


