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Abstract

In this paper we propose a new algorithm for obtaining the rational integrals of the full Kostant–Toda

lattice. This new approach is based on a reduction of a bi–Hamiltonian system on gl(n,R) . This system

was obtained by reducing the space of maps from Zn to GL(n,R) endowed with a structure of a pair of

Lie–algebroids

1 Introduction

The Toda lattice is arguably the most fundamental and basic of all finite
dimensional integrable systems. It has various intriguing connections with
other parts of mathematics and physics.

The Hamiltonian of the Toda lattice is given by

H(q1, . . . , qN , p1, . . . , pN) =
N

∑

i=1

1

2
p2

i +
N−1
∑

i=1

eqi−qi+1 . (1)

Equation (1) is known as the classical, finite, non–periodic Toda lattice
to distinguish the system from the many and various other versions, e.g., the
relativistic, quantum, periodic etc. This system was investigated in [9], [10],
[14], [18], [21], [22], [24] and numerous of other papers; see [4] for a more
extensive bibliography.

Hamilton’s equations become

q̇j = pj

ṗj = eqj−1−qj − eqj−qj+1 .
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The system is integrable. One can find a set of independent functions
{H1, . . . , HN} which are constants of motion for Hamilton’s equations. To
determine the constants of motion, one uses Flaschka’s transformation:

ai =
1

2
e

1

2
(qi−qi+1) , bi = −

1

2
pi . (2)

Then

ȧi = ai (bi+1 − bi)

ḃi = 2 (a2
i − a2

i−1) .
(3)

These equations can be written as a Lax pair L̇ = [B, L], where L is the
Jacobi matrix

L =





















b1 a1 0 · · · · · · 0

a1 b2 a2 · · ·
...

0 a2 b3
. . .

... . . . . . . ...

... . . . . . . aN−1

0 · · · · · · aN−1 bN





















, (4)

and B is the skew–symmetric part of L. This is an example of an isospec-
tral deformation; the entries of L vary over time but the eigenvalues remain
constant. It follows that the functions Hi = 1

i
tr Li are constants of motion.

Note that the Lax pair (4) has the form

L̇(t) = [P L(t), L(t)]

where P denotes the projection onto the skew-symmetric part in the de-
composition of L into skew-symmetric plus lower triangular.

The Toda lattice was generalized in several directions.
We mention the Bogoyavlensky–Toda lattices which generalize the Toda

lattice (which corresponds to a root system of type An) to other simple Lie
groups. This generalization is due to Bogoyavlensky [1]. These systems were
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studied extensively in [15] where the solution of the systems was connected
intimately with the representation theory of simple Lie groups.

Another generalization is due to Deift, Li, Nanda and Tomei [5] who
showed that the system remains integrable when L is replaced by a full
(generic) symmetric n × n matrix.

Another variation is the full Kostant-Toda lattice (FKT) [6], [11], [23].
We briefly describe the system: In [15] Kostant conjugates the matrix L in
(4 ) by a diagonal matrix to obtain a matrix of the form

L =





















b1 1 0 · · · · · · 0

a1 b2 1 . . . ...

0 a2 b3
. . . ...

... . . . . . . . . . 0

... . . . . . . 1
0 · · · · · · 0 an−1 bn





















. (5)

The equations take the form

Ẋ(t) = [X(t), P X(t)]

where P is the projection onto the strictly lower triangular part of X(t).
This form is convenient in applying Lie theoretic techniques to describe the
system.

To obtain the full Kostant-Toda lattice we fill the lower triangular part of
L in (4) with additional variables. (P is again the projection onto the strictly
lower part of X(t)). So, using the notation from [6], [11] and [23]

Ẋ(t) = [X(t), P X(t)] ,

where X is in ε + B− and P X is in N−. B− is the Lie algebra of lower
triangular matrices and N− is the Lie algebra of strictly lower triangular
matrices. The fixed matrix ε has a general form in terms of root systems:

ε =
∑

α∈∆

xα ,
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where ∆ denotes the set of simple roots. In fact the FKT lattice itself can
easily be generalized for each simple Lie group; see [2], [11].

In the case of sl(4,C) the matrix X has the form

X =









f1 1 0 0
g1 f2 1 0
h1 g2 f3 1
k1 h2 g3 f4









, (6)

with
∑

i fi = 0.

The functions Hi = 1
i
Tr X i are still in involution but they are not enough

to ensure integrability. This is a crucial point: the existence of a Lax pair
does not guarantee integrability. There are, however, additional integrals
which are rational functions of the entries of X. The method used to obtain
these additional integrals is called chopping and was used originally in [5] for
the full symmetric Toda and later in [6] for the case of the full Kostant–Toda
lattice.

In this paper we use a different method of obtaining these rational integrals
which does not involve chopping. This method uses a reduction of a bi–
Hamiltonian system on gl(N,R), a system which was first defined in [19],
[20]. In [20] A. Meucci presents the bi–Hamiltonian structure of Toda3, a
dynamical system studied by Kupershmidt in [16] as a reduction of the KP
hierarchy. Meucci derives this structure by a suitable restriction of the set of
maps from Zd to GL(3,R), in the context of Lie algebroids.

In [19] the bi–Hamiltonian structure of the periodic Toda lattice is in-
vestigated by the reduction process described above using maps from Zd to
GL(2,R). This approach parallels the work of [7] where the continuous ana-
log of the Toda lattice is studied, namely the KdV. If instead the target
space is gl(3,R) one obtains the Boussineq hierarchy. The work of Meucci
is a discrete version of this approach. If one generalizes the cases N = 2, 3
i.e. consider maps from Zd to GL(N,R) the resulting system will be denoted
by TodaN . In the present paper we use the results of [19], [20] as a starting
point. We begin with the bi–Hamiltonian system obtained on gl(N,R) in the
particular case d = N and use a further reduction to obtain the dynamics
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of the full Kostant–Toda lattice. We then propose a new algorithm which
produces all the rational integrals for the FKT lattice without using chop-
ping. We present this algorithm by specific examples (N = 3, 4) in section 4.
Sections 2 and 3 contain a general review of the old methods and results on
integrability and bi–Hamiltonian structure of the FKT lattice.

2 Integrability of the FKT lattice

Let G = sl(n), the Lie algebra of n × n matrices of trace zero. Using the
decomposition G = B+ ⊕ N− we can identify B∗

+ with the annihilator of N−

with respect to the Killing form. This annihilator is B−. Thus we can identify
B∗

+ with B− and therefore with ε + B− as well.

The Lie Poisson bracket in the case of sl(4,C) is given by the following
defining relations:

{gi, gi+1} = hi,
{gi, fi} = −gi,
{gi, fi+1} = gi,
{hi, fi} = −hi,
{hi, fi+2} = hi,
{g1, h2} = k1,
{g3, h1} = −k1,
{k1, f1} = −k1,
{k1, f4} = k1.

All other brackets are zero. Actually, we calculated the brackets on gl(4,C);
the trace of X now becomes a Casimir. The Hamiltonian in this bracket is
H2 = 1

2 Tr X2.

Remark: If we use a more conventional notation for the matrix X, i.e. xij

for i ≥ j, xii+1 = 1, and all other entries zero, then the bracket is simply

{xij, xkl} = δlixkj − δjkxil . (7)

The functions Hi = 1
i
Tr X i are still in involution but they are not enough

to ensure integrability. There are, however, additional integrals and the in-
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teresting feature of this system is that the additional integrals turn out to be
rational functions of the entries of X. We describe the constants of motion
following references [6], [10], [23].

For k = 0, . . . , [ (n−1)
2 ], denote by (X − λ Id)(k) the result of removing the

first k rows and last k columns from X − λ Id, and let

det (X − λ Id)(k) = E0kλ
n−2k + · · · + En−2k,k .

Set
det (X − λ Id)(k)

E0k
= λn−2k + I1kλ

n−2k−1 + · · · + In−2k,k .

The functions Irk, r = 1, . . . , n − 2k, are constants of motion for the FKT
lattice.

Example We consider in detail the gl(3,C) case:

X =





f1 1 0
g1 f2 1
h1 g2 f3



 .

Taking H2 = 1
2trX

2 as the Hamiltonian, and the above Poisson bracket

ẋ = {H2, x}

gives the following equations:

ḟ1 = −g1

ḟ2 = g1 − g2

ḟ3 = g2

ġ1 = g1(f1 − f2) − h1

ġ2 = g2(f2 − f3) + h1

ḣ1 = h1(f1 − f3)

Note that H1 = f1 + f2 + f3 while H2 = 1
2(f

2
1 + f 2

2 + f 2
3 ) + g1 + g2. These

equations can be written in Lax pair form, Ẋ = [B, X], by taking
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B =





0 0 0
g1 0 0
h1 g2 0



 .

The chopped matrix is given by
(

g1 f2 − λ

h1 g2

)

.

The determinant of this matrix is h1λ + g1g2 − h1f2 and we obtain the
rational integral

I11 =
g1g2 − h1f2

h1
. (8)

Note that the phase space is six dimensional, we have two Casimirs
(H1, I11) and the functions (H2, H3) are enough to ensure integrability.

Another Example In the case of gl(4,C) the additional integral is

I21 =
g1g2g3 − g1f3h2 − f2g3h1 + h1h2

k1
+ f2f3 − g2 .

and

I11 =
g1h2 + g3h1

k1
− f2 − f3

is a Casimir.
In this example the phase space is ten dimensional, we have two Casimirs

(H1, I11) and the functions (H2, H3, H4, I21) are independent and pairwise in
involution.

3 bi–Hamiltonian structure

We recall the definition and basic properties of master symmetries following
Fuchssteiner [13]. Consider a differential equation on a manifold M defined by
a vector field χ. We are mostly interested in the case where χ is a Hamiltonian
vector field. A vector field Z is a symmetry of the equation if

[Z, χ] = 0.
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A vector field Z is called a master symmetry if

[[Z, χ], χ] = 0,

but
[Z, χ] 6= 0.

Master symmetries were first introduced by Fokas and Fuchssteiner in [12] in
connection with the Benjamin-Ono Equation.

A bi-Hamiltonian system is defined by specifying two Hamiltonian func-
tions H1, H2 and two Poisson tensors π1 and π2, that give rise to the
same Hamiltonian equations. Namely, π1∇H2 = π2∇H1. The notion of bi–
Hamiltonian system was introduced in [17] in 1978.

We now return to the FKT lattice. We want to define a second bracket
π2 so that H1 is the Hamiltonian and

π2 ∇H1 = π1 ∇H2 .

i.e. we want to construct a bi-Hamiltonian pair. We will achieve this by
finding a master symmetry X1 so that

X1(Tr X i) = i Tr X i+1 .

We construct X1 by considering the equation

Ẋ = [Y, X] + X2 . (9)

We choose Y in such a way that the equation is consistent. One solution
is

Y =
n

∑

i=1

αiEii +
n−1
∑

i=1

βiEi,i+1 ,

where

βi = i,

αi = ifi +
∑i−1

k=1 fk.

The vector field X1 is defined by the right hand side of (9 ).
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For example, in gl(4,C) the components of X1 are:

X1(f1) = 2g1 + f 2
1 ,

X1(f2) = 3g2 + f 2
2 ,

X1(f3) = −g2 + 4g3 + f 2
3 ,

X1(f4) = −2g3 + f 2
4 ,

X1(g1) = 3h1 + g1f1 + 3g1f2,
X1(g2) = 4h2 + 4g2f3,
X1(g3) = −h2 − g3f3 + 5g3f4,
X1(h1) = g1g2 + 4k1 + h1f1 + h1f2 + 4h1f3,
X1(h2) = g2g3 + h2f3 + 5h2f4,
X1(k1) = g3h1 + g1h2 + k1f1 + k1f2 + k1f3 + 5k1f4.

The second bracket π2 is defined by taking the Lie derivative of π1 in the
direction of X1. The bracket π2 is at most quadratic i.e. in the case n = 4

{gi, gi+1} = gigi+1 + hifi+1,
{gi, hi} = gihi,
{gi+1, hi} = −gi+1hi,
{gi, fi} = −gifi,
{gi, fi+1} = gifi+1,
{gi, fi+2} = hi,
{gi+1, fi} = −hi,
{hi, fi} = −hifi,
{hi, fi+2} = hifi+2,
{fi, fi+1} = gi.

This bracket was first obtained in [3] using the method described above
(i.e. master symmetries). A closed expression for this bracket was obtained
later by Faybusovich and Gekhman in [8]. It was obtained using R–matrices
and the expression takes the following simple form:

{xij , xkl} =















sign(k − i)xijxkj if j = l

xijxil if k = i

xijxkl + xilxkj if i < k ≤ j

xil if k = j + 1.

(10)
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As we will see in the next section, there is a linear and a quadratic bracket
on gl(n,R) whose restriction to the FKT lattice coincides with the brackets
π1, π2.

4 A new approach

As we mentioned in the introduction, our starting point is the work of A.
Meucci [19], [20]. His work is a discrete analogue of a procedure that produces
the KdV, Boussineq and Gelfand–Dickey hierarcies [7]. For example, the
KdV is bi–Hamiltonian and it can be obtained by reducing the space of
C∞ maps from S1 to gl(2,R). If one considers the space of maps from S1

to gl(3,R) the Boussineq hierarchy is obtained. In [19], [20] the discrete
version of the procedure is considered. The circle, S1, is replaced by the
cyclic group Zd and one considers maps from Zd to GL(N,R). One obtains,
after reduction, equations that are bi–Hamiltonian. In the case N = 2 the
resulting system is the periodic Toda lattice and for N = 3 a system studied
by Kupershmidt in [16]. We will not get into the details of the procedure
but rather we will use the results as our starting point for our own purposes.
We will content with a short outline of the constructions of [19] and [20].
The basic object is the space of maps from Zd to GL(N,R). This space is
endowed with a structure consisting of a Poisson manifold together with a
pair of Lie–algebroids suitably related. The next step is a Marsden–Ratiu
type of reduction and the result is a bi–Hamiltonian system with a pair of
Poisson stuctures on gl(N,R). The Lax pair of the resulting system contains
two spectral parameters and the theory of Gelfand–Zakarevich applies. The
system turns out to be integrable with the required number of integrals. We
give explicit formulas that we have computed from [19] in the case N = 3
both for the pair of Poisson brackets, the Lax pair and the integrals of motion.
In the case N = 4 we display the Lax pair and the polynomial integrals of
motion. To obtain the FKT lattice one has to perform a further reduction
to the phase space of the FKT lattice and to obtain the rational integrals we
propose a new algorithm which is the central new result of our paper. We
illustrate with two examples:
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Example 1: The gl(3,C) case

The phase space of the system obtained by the procedure of Meucci is nine
dimensional, i.e. matrices of the form





f1 h2 g3

g1 f2 h3

h1 g2 f3



 .

We compute the pair of Poisson brackets on the extended space with
variables

{f1, f2, f3, g1, g2, g3, h1, h2, h3} .

The Lie–Poisson bracket is defined by the following structure matrix































0 0 0 −g1 0 g3 −h1 h2 0
0 0 0 g1 −g2 0 0 −h2 h3

0 0 0 0 g2 −g3 h1 0 −h3

g1 −g1 0 0 −h1 h3 0 0 0
0 g2 −g2 h1 0 −h2 0 0 0

−g3 0 g3 −h3 h2 0 0 0 0
h1 0 −h1 0 0 0 0 0 0
−h2 h2 0 0 0 0 0 0 0
0 −h3 h3 0 0 0 0 0 0































,

and the quadratic Poisson bracket is defined by A − At where A is the
matrix
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





























0 g1 −g3 −g1f1 h1 − h2 g3f1 −h1f1 h2f1 0
0 0 g2 g1f2 −g2f2 h2 − h3 0 −h2f2 h3f2

0 0 0 h3 − h1 g2f3 −g3f3 h1f3 0 −h3f3

0 0 0 0 −h1f2 − g1g2 h3f1 + g1g3 −g1h1 0 g1h3

0 0 0 0 0 −h2f3 − g2g3 g2h1 −g2h2 0
0 0 0 0 0 0 0 g3h2 −g3h3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































.

The Lax matrix with two spectral parameters is given by

Lλ,µ =





(f1 + λ)µ2 h2 − µ3 µg3

µg1 (f2 + λ)µ2 h3 − µ3

h1 − µ3 µg2 (f3 + λ)µ2



 .

Let p(λ, µ) = det Lµ,λ. Write

p(λ, µ) = −µ9 + c2(λ)µ6 + c1(λ)µ3 + c0(λ) .

Then
c2(λ) = λ3 + k2λ

2 + k1λ + k0

where
k2 = f1 + f2 + f3

k1 = f1f2 + f1f3 + f2f3 + g1 + g2 + g3

k0 = f1f2f3 + f1g2 + f2g3 + f3g1 + h1 + h2 + h3

and
c1(λ) = l1λ + l0

where

l1 = −h3g2 − g3h1 − h2g1

l0 = −f1g2h3 + g1g3g2 − g1h2f3 − h1g3f2 − h2h3 − h3h1 − h1h2 .

Finally,
c0(λ) = h1h2h3 .
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The functions ki, li, c0 are all in involution in the Lie–Poisson bracket. The
functions k2, l1, c0 are all Casimirs.

In the quadratic bracket ki, li, and c0 are all in involution. k0, l0 and c0

are Casimirs.
Let

l =
l0

l1
=

−f1g2h3 + g1g3g2 − g1h2f3 − h1g3f2 − h2h3 − h3h1 − h1h2

−h3g2 − g3h1 − h2g1
.

Setting h2 = h3 = 0 in l we obtain I11 (??).

Example 2: The gl(4,C) case

In order to give a complete comparison of the previous and the present
method of obtaining the rational invariants we consider first integrability
using chopping.

We consider the matrix L given by

L =









f1 −1 0 0
g1 f2 −1 0
h1 g2 f3 −1
k1 h2 g3 f4









.

Note that we are using −ε instead of ε in order to get the integrals to
match exactly.

In this case the chopped matrix has the form

Ch1(λ) =





g1 f2 − λ −1
h1 g2 f3 − λ

k1 h2 g3



 .

The characteristic polynomial has the form

k1λ
2+(g1h2+h1g3−k1f2−k1f3)λ+g1g3g2−g1h2f3−h1f2g3−h1h2+k1f2f3+k1g2 .

We obtain the following two rational invariants
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i11 =
h2g1 + g3h1

k1
− (f2 + f3) ,

and

i21 =
g1g3g2 − g1h2f3 − h1f2g3 − h1h2

k1
+ f2f3 + g2 .

We now turn to the gentle approach i.e. integrability without chopping.
Consider the following Lax pair with two spectral parameters:

Lλ,µ =









(f1 + λ)µ3 k2 − µ4 h3µ g4µ
2

g1µ
2 (f2 + λ)µ3 k3 − µ4 h4µ

h1µ g2µ
2 (f3 + λ)µ3 k4 − µ4

k1 − µ4 h2µ g3µ
2 (f4 + λ)µ3









. (11)

Taking determinant we obtain the polynomial

pλ,µ = −µ16 + K3(λ)µ12 + K2(λ)µ8 + K1(λ)µ4 + K0(λ) .

We present the explicit expressions for the polynomials Ki(λ).

•

K3(λ) = K33λ
3 + K32λ

2 + K31λ + K30 ,

where
K33 = f1 + f2 + f3 + f4 ,

K32 = g1 + g2 + g3 + g4 + f1f2 + f1f3 + f1f4 + f2f3 + f2f4 + f3f4 ,

K31 = h1 + h2 + h3 + h4 + f1f2f3 + f1f2f4 + f1f3f4 + f2f3f4 + f2g4

+f3g4 + f3g1 + f4g1 + f4g2 + f2g3 + f1g2 + f1g3 ,

K30 = k1 + k2 + k3 + k4 + f1f2f3f4 + g1g3 + g2g4 + f2h3 + f4h1 +

f1h2 + f3h4 + f2f3g4 + f3f4g1 + f1f4g2 + f1f2g3 .
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•

K2(λ) = K22λ
2 + K21λ + K20 ,

where

K22 = −h2h4 − g2k3 − g3k4 − h1h3 − g1k2 − k1g4 ,

K21 = g2h4g3 − g1k2f4 − f1h2h4 − k1g4f3 − k1f2g4 − f1g2k3 − h2h4f3

−g1k2f3 + g1g2h3 + h1g4g3 + g1h2g4 − f1g3k4 − h1f2h3 − g2k3f4

−f2g3k4 − h2k4 − h2k3 − h1h3f4 − k2h4 − h3k4 − h1k2 − h1k3

−k1h3 − k1h4 ,

K20 = −k2k4 − k2k3 − k1k2 − k1k3 − k1k4 − k3k4 − k1f2g4f3

+f1g2h4g3 − f1h2h4f3 − h1k2f4 − f1g2k3f4 − f1f2g3k4

−g1g2g4g3 + g1h2g4f3 − h1f2h3f4 + g1g2h3f4 + h1f2g4g3

−g1k2f3f4 − f1h2k3 − g1k2g3 − f1h2k4 − k1g2g4

+h1h2g4 − k2h4f3 − f2h3k4 + g2h3h4 − g2g4k3

−g1g3k4 + g1h2h3 − h1k3f4 + h1h4g3 − k1f2h3 − k1h4f3 .

• K1(λ) = K11λ + K10 where

K11 = h1k2k3 + h2k3k4 + k1k2h4 + k1h3k4 ,

K10 = h1k2k3f4 + f1h2k3k4 − k1g2h3h4 + k1g2g4k3 + k1k2h4f3

+k1f2h3k4 − h1h2g4k3 + h1h2h3h4 − h1k2h4g3 − g1h2h3k4

+g1k2g3k4 + k1k2k4 + k1k2k3 + k2k3k4 + k1k3k4 .
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•

K0(λ) = −k1k2k3k4 .

Remark We note that K3(λ) gives the polynomial invariants. Clearly H1 =
K33 = trace L.

We also have H2 = 1
2traceL

2 = 1
2K

2
33 − K32 and H3 = 1

3traceL
3 = 1

3K
3
33 −

K33K32 + K31.
Finally, H4 = 1

4K
4
33 + K33K31 + 1

2K32 − K30 − K33K32.
These last relations hold provided that k2 = k3 = k4 = 0, h3 = h4 = 0 and

g4 = 0.

Remark The next coefficient K2(λ) gives the rational invariants:
We form the quotient K21

K22
and set k2 = k3 = k4 = 0 and h3 = h4 = 0. We

obtain

K21

K22
=

−g4(k1f3 + k1f2 − h1g3 − g1h2)

−k1g4
= f2 + f3 −

(h1g3 + g1h2)

k1
.

This is precisely −i11.

Similarly, we form K20

K22
to obtain precisely i21.

Remark The last two terms, namely K1(λ) and K0(λ) become identically zero
once we set k2 = k3 = k4 = 0, h3 = h4 = 0.

In the general case, the polynomial pλ,µ involves polynomials A(λ),

B1(λ), . . . , Bk(λ) and C1(λ), . . . , Cs(λ) with k = [ (n−1)
2 ] and s = n − k − 1.

The polynomial A(λ) can be used to obtain the polynomial integrals. The
polynomials Bi(λ) give the rational integrals using the procedure described
above and the Cj(λ) vanish identically once we restrict to the phace space of
the FKT lattice.
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