How the Inverse Problem changed my Life

Geoff Prince

20th Anniversary Workshop

Gent

August 2005.

1.	The	inverse	problem	and	its	status

- 2. Compensations
- 3. Geometric formulation
- 4. Geometrisation of SODE's
- 5. Open Questions

1. The Inverse Problem in the Calculus of Variations.

"When are the solutions of

$$\ddot{x}^a = F^a(t, x^b, \dot{x}^b) \ a, b = 1, \dots, n$$

the solutions of

$$\frac{\partial^2 L}{\partial \dot{x}^a \partial \dot{x}^b} \ddot{x}^b + \frac{\partial^2 L}{\partial x^b \partial \dot{x}^a} \dot{x}^b + \frac{\partial^2 L}{\partial t \partial \dot{x}^a} = \frac{\partial L}{\partial x^a}$$

for some $L(t, x^a, \dot{x}^a)$?"

So, find regular g_{ab} (and L) so that

$$g_{ab}(\ddot{x}^b - F^b) \equiv \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^a} \right) - \frac{\partial L}{\partial \dot{x}^a}$$

- The multiplier problem.

Helmholtz conditions (Douglas 1941, Sarlet 1982)

necessary and sufficient conditions on g_{ab} :

$$g_{ab} = g_{ba}, \quad \Gamma(g_{ab}) = g_{ac}\Gamma_b^c + g_{bc}\Gamma_a^c$$

$$g_{ac}\Phi_b^c = g_{bc}\Phi_a^c, \quad \frac{\partial g_{ab}}{\partial \dot{x}^c} = \frac{\partial g_{ac}}{\partial \dot{x}^b}$$

where

$$\Gamma_b^a := \frac{-1}{2} \frac{\partial F^a}{\partial \dot{x}^b}, \quad \Phi_b^a := -\frac{\partial F^a}{\partial x^b} - \Gamma_b^c \Gamma_c^a - \Gamma(\Gamma_b^a)$$

$$\Gamma := \frac{\partial}{\partial t} + u^a \frac{\partial}{\partial x^a} + F^a \frac{\partial}{\partial u^a}$$

Helmholtz conditions: 1st order linear algebraic/differential equations for g_{ab} with data $f^a, \; \Gamma^a_b, \; \Phi^a_b$.

Two approaches/problems:

1. For given F^a find all g's

e.g.

$$\ddot{x} + \dot{y} = 0$$
$$\ddot{y} + y = 0$$

admits no multipliers.

2. For given n classify 2nd order ode's according to existence and multiplicity of solutions of the Helmholtz condition.

Done by Douglas for n = 2.

Current Status

- Still not done for n = 3.
- done for some cases for arbitrary n, eg $\Phi = \mu I_n$, Φ diagonalisable with distinct e'vals and integrable eigendist'ns
- pretty poor really!!

2. Compensations

- geometric theory of SODE's
- geometrisation of Euler-Lagrange eqns and classic thms
- geometry along the projection
- degenerate and constrained systems
- classical mechanics of Riemannian manifolds

 classical mechanics of contact manifolds
 affine geometry of Euler-Lagrange eqns
 Berwald connections and Finsler geometry
higher order mechanics
• and so on

3. Geometric Formulation

Theorem (CPT 1984) Given a SODE Γ , necessary and sufficient conditions for the existence of a Lagrangian whose E-L field is Γ are that there exists $\Omega \in \Lambda^2(E)$:

1. Ω has max'l rank

2.
$$\Omega(V_1, V_2) = 0 \ \forall V_1, V_2 \in V(E)$$

3.
$$i_{\Gamma}\Omega = 0$$

4.
$$d\Omega = 0$$

Every SODE satisfies these locally except the second one!

Details:

$$\ddot{x}^{a} = F^{a}(t, x^{b}, \dot{x}^{b})$$

$$\rightarrow \qquad \Gamma = \frac{\partial}{\partial t} + u^{a} \frac{\partial}{\partial x^{a}} + F^{a} \frac{\partial}{\partial u^{a}} \in \mathfrak{X}(E)$$

E is equipped with

- vertical dist'n $V(E) = Sp\{V_a := \frac{\partial}{\partial u^a}\}$
- contact dist'n $\Theta(E) = Sp\{\theta^a := dx^a u^a dt\}$
- vertical endomorphism $S = V_a \otimes \theta^a$

$$\underline{\Gamma = \frac{\partial}{\partial t} + u^a \frac{\partial}{\partial x^a} + F^a \frac{\partial}{\partial u^a}}, \qquad S = V_a \otimes \theta^a$$

$$\underline{\mathcal{L}_{\Gamma}S}$$

$$TE = Sp\{\Gamma\} \oplus H(E) \oplus V(E)$$

Projectors:

$$P_{\Gamma} = \Gamma \otimes dt, \quad P_H = H_a \otimes \theta^a, \quad P_V = V_a \otimes \psi^a$$

$$\begin{pmatrix}
H_a := \frac{\partial}{\partial x^a} - \Gamma_a^b \frac{\partial}{\partial u^b}, & \psi^a := du^a - F^a dt + \Gamma_b^a \theta^b \\
[H_a, H_b] = R_{ab}^d V_d
\end{pmatrix}$$

Jacobi endomorphism:

$$\Phi := P_V \circ \mathcal{L}_{\Gamma} P_H$$

When $\ddot{x}^a = F^a(t, x^b, \dot{x}^b)$ are (normalized) Euler-Lagrange equations, then Γ is the unique vectors field on E s.t.

$$i_{\Gamma} d\theta_L = 0, dt(\Gamma) = 1$$

$$\begin{pmatrix} \theta_L := Ldt + dL \circ S = Ldt + \frac{\partial L}{\partial u^a} \theta^a \\ d\theta_L = \frac{\partial^2 L}{\partial u^a \partial u^b} \psi^a \wedge \theta^b \end{pmatrix}$$

Usually begin the search for Ω by assuming 1., 2., 3 i.e.

$$\Omega = g_{ab}\psi^a \wedge \theta^b, |g_{ab}| \neq 0$$

and requiring

$$d\Omega = 0$$
.

 $d\Omega(X,Y,Z)=0$ give the Helmholtz conditions e.g.

$$d\Omega(\Gamma, V_a, H_b) = 0 \Leftrightarrow \Gamma(g_{ab}) - g_{bc}\Gamma_a^c - g_{ac}\Gamma_b^c = 0$$
$$d\Omega(\Gamma, V_a, V_b) = 0 \Leftrightarrow g_{ab} = g_{ba}$$
$$d\Omega(\Gamma, H_a, H_b) = 0 \Leftrightarrow g_{ac}\Phi_a^c = g_{ca}\Phi_b^c$$
etc.

4. Geometrisation of SODE's

The model is the auto-parallel eqn of a linear connection with torsion.

$$\nabla_Z Z = 0$$

Shape map:

$$A_X(Y) = \nabla_Y X - T(X, Y)$$
$$= \nabla_X Y - [X, Y]$$

If Z is auto-parallel then A_Z is the key to Raychaudhuri's eqn, Morse theory etc.

Only need ∇_Z for these purposes.

For a given SODE Γ :

ullet on $\mathbb{R} \times M$ no connection, but:

$$A_Z := \sigma_Z^* P_V$$

Jacobi eqn

$$\nabla_Z^2 X = -\bar{\Phi}(X)$$

This coincides with the autoparallel case.

 \bullet on E connection is the Massa and Pagani $\widehat{\nabla}$ with

$$A_{\Gamma} = -P_{V} \circ \mathcal{L}_{\Gamma} P_{H} - P_{H} \circ \mathcal{L}_{\Gamma} P_{V}$$
$$= -\Phi - P_{H} \circ \mathcal{L}_{\Gamma} P_{V}$$

Jacobi eqn

$$\hat{\nabla}_{\Gamma}^2 X = -\Phi(X)$$

Open Questions

- quantum mechanics of Lagrangian systems
- solution of the Inverse Problem what is the classification for arbitrary n ?
- Morse theory of SODE's
- relation to contact manifolds
- congruence design problems
- mechanics with quadratic forms

Selected References

- 1. I. Anderson and G. Thompson. The inverse problem of the calculus of variations for ordinary differential equations. *Memoirs Amer. Math. Soc.* **98** No. 473 (1992).
- 2. M. Crampin, E. Martínez and W. Sarlet. Linear connections for systems of second—order ordinary differential equations. *Ann. Inst. H. Poincaré Phys. Théor.* **65** (1996), 223–249.
- 3. M. Crampin, G. E. Prince and G. Thompson. A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics. *J. Phys. A: Math. Gen.* **17** (1984), 1437–1447.
- 4. M. Crampin, W. Sarlet, E. Martínez, G. B. Byrnes and G. E. Prince. Toward a

geometrical understanding of Douglas's solution of the inverse problem in the calculus of variations. *Inverse Problems* **10** (1994), 245-260.

- 5. J. Douglas. Solution of the inverse problem of the calculus of variations. *Trans. Am. Math. Soc.* **50** (1941), 71–128.
- M. Jerie and G.E. Prince. Jacobi fields and linear connections for arbitrary second oreder ODE's. *J. Geom. Phys.* 43 (2002) 351-370.
- M. Jerie and G.E. Prince. A generalised Raychaudhuri equation for second—order differential equations. *J. Geom. Phys.* 34 (2000), 226–241.
- 8. E. Massa and E. Pagani. Jet bundle geometry, dynamical connections, and the

inverse problem of Lagrangian mechanics. *Ann. Inst. Henri Poincaré, Phys. Theor.* **61** (1994), 17–62.

- 9. T. Mestdag and W. Sarlet. The Berwaldtype connection associated to time-dependent second-order differential equations. *Houston J. Math.* **27** (2001), 763–797.
- 10. G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano. The inverse problem in the calculus of variations and the geometry of the tangent bundle. *Phys. Rep.* 188 (1990), 147–284.
- 11. G. E. Prince. The inverse problem in the calculus of variations and its ramifications in *Geometric Approaches to Differential Equations* ed. P. Vassiliou. Lecture Notes of the Australian Mathematical Society, CUP (2001).

- 12. W. Sarlet. The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. *J. Phys. A: Math. Gen.* **15** (1982), 1503–1517.
- 13. W. Sarlet, A. Vandecasteele, F. Cantrijn and E. Martínez. *Derivations of forms along a map: the framework for time-dependent second-order equations.* Diff. Geom. Applic. **5** (1995), 171–203.