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1. The Inverse Problem in the Calculus
of Variations.
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- The multiplier problem.



Helmholtz conditions (Douglas 1941, Sarlet
1982)

necessary and sufficient conditions on gg:
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Helmholtz conditions: 1st order linear alge-
braic/differential equations for g,, with data
fé ry, &3,



Two approaches/problems:

1. For given F? find all ¢'s

e.g.

r+y=0
y+y=20

admits no multipliers.

2. For given n classify 2nd order ode’s
according to existence and multiplicity of so-
lutions of the Helmholtz condition.

Done by Douglas for n = 2.



Current Status

e Still not done for n = 3.

e done for some cases for arbitrary n, eg
® = ulp, P diagonalisable with distinct
e'vals and integrable eigendist'ns

e pretty poor really!!



2.

Compensations

geometric theory of SODE's

geometrisation of Euler-Lagrange eqns and
classic thms

geometry along the projection

degenerate and constrained systems

classical mechanics of Riemannian mani-
folds



classical mechanics of contact manifolds

affine geometry of Euler-Lagrange egns

Berwald connections and Finsler geome-
try

higher order mechanics

and so on.....



3. Geometric Formulation

Theorem (CPT 1984) Given a SODE T,
necessary and sufficient conditions for the ex-
istence of a Lagrangian whose E — L field is
[ are that there exists Q2 € A2(E) :

1. €2 has max’'l rank

2. Q(V1,Vo) =0VVq, Vo € V(F)

3. ZrQZO

4. d€2 =20

Every SODE satisfies these locally except the
second one!



Details:

E:=RxTM (t,z%u%)
St dim(F) =2n+1

R <T RXM (t,ﬂ?a)
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E is equipped with
e vertical dist'n V(F) = Sp{V, := %}

e contact dist'n
O©(F) = Sp{6? .= dz? — u?dt}

e vertical endomorphism S =V, & 6
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TE = Sp{I} & H(E) & V(E)

Projectors:

Pr=Tr®dt, Pp=H,®60% Py=V,®y°

Hy = 2 — 1020 9% = du® — Fedt + 6P
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[Ha, Hy) = R4,V

Jacobi endomorphism:

b = PV ) LI_PH



When ¢ = F(¢, 20, 2%) are (normalized) Euler-
LLagrange equations, then I is the unique vec-
tors field on F s.t.

ir dfp =0, dt(lN) =1

___0°L
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(eL .= Ldt + dL o S = Ldt + gl{aea)



Usually begin the search for €2 by assuming
1., 2., 3i.e.

Q = gpp?N8°, |gap| # O

and requiring

dS2 = 0.

dQ(X,Y,Z) = 0 give the Helmholtz condi-
tions e.q.

dS2(I", Vo, Hy) = 0 < T (gqp) — guel” gacr
dS2(I", Va, V) = 0 < gup = Gba
dQ(I—, Ha, Hb) - O = gCLCCDZ — gCCLCDg

etc.

O



4. Geometrisation of SODE'’s

The model is the auto-parallel egn of a linear
connection with torsion.

V,Z =0

Shape map:

Ax(Y) =Vy X —T(X,Y)
=VyY - [X,Y]

If Z is auto-parallel then Ay is the key to
Raychaudhuri's eqn, Morse theory etc.

Only need V  for these purposes.



For a given SODE [:

e oNn R x M no connection, but:

AZ = O'EPV

Jacobi egn

VZX = —®(X)

T his coincides with the autoparallel case.

e Oon E connection is the Massa and Pagani
V with
Ar _PVO'CI_PH_PHO'C’I_PV

—® — Py o LrPy

Jacobi egn

VEX = —d(X)



Open Questions

e quantum mechanics of Lagrangian sys-
tems

e solution of the Inverse Problem — what is
the classification for arbitrary n 7

e Morse theory of SODE’'s

e relation to contact manifolds

e congruence design problems

e mechanics with quadratic forms
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