Classical Field Theory on Lie Algebroids

Eduardo Martínez
University of Zaragoza
emf@unizar.es

Gent, August 2005

Abstract

I study the differential geometry around the following variational problem:
find the critical point of the integral of a Lagrangian function defined on a set of morphism between Lie algebroids.

It is a constrained variational problem.
It includes as particular cases the standard theory, systems with symmetry, Sigma models, Chern-Simons, ...

A generalized multisymplectic field theory is proposed.

Mechanics on Lie algebroids

(Weinstein 1996, Martínez 2001, de León et. al. 2004)
Lie algebroid $E \rightarrow M$.
$L \in C^{\infty}(E)$ or $H \in C^{\infty}\left(E^{*}\right)$
$\square E=T M \rightarrow M$ Standard classical Mechanics
$\square E=\mathcal{D} \subset T M \rightarrow M$ (integrable) System with holonomic constraints
$\square E=T Q / G \rightarrow M=Q / G$ System with symmetry
$\square E=\mathfrak{g} \rightarrow\{e\}$ System on Lie algebras
$\square E=M \times \mathfrak{g} \rightarrow M$ System on a semidirect products (ej. heavy top)

Symplectic and variational

The theory is symplectic:

$$
i_{\Gamma} \omega_{L}=d E_{L}
$$

with $\omega_{L}=-d \theta_{L}, \theta_{L}=S(d L)$ and $E_{L}=d_{\Delta} L-L$.
But d is the differential on the Lie algebroid.
It is also a constrained variational theory:
Constraints: $\dot{x}^{i}=\rho_{\alpha}^{i} y^{\alpha}$ (admissible curves)
Finite admissible variations exists.
Infinitesimal variations are

$$
\begin{aligned}
\delta x^{i} & =\rho_{\alpha}^{i} \sigma^{\alpha} \\
\delta y^{\alpha} & =\dot{\sigma}^{\alpha}+C_{\beta \gamma}^{\alpha} y^{\beta} \sigma^{\gamma}
\end{aligned}
$$

Time dependent systems

(Martínez, Mestdag and Sarlet 2002)
With suitable modifications one can describe time-dependent systems.

Cartan form

$$
\Theta_{L}=S(d L)+L d t
$$

Dynamical equation

$$
i_{\Gamma} d \Theta_{L}=0 \quad \text { and } \quad\langle\Gamma, d t\rangle=1
$$

Field theory in 1-d space-time

Example: standard case

$$
\begin{aligned}
& T M \xrightarrow{T \pi} T N \\
& \stackrel{\downarrow}{\downarrow} \xrightarrow{ } \begin{array}{l}
\\
M
\end{array} \stackrel{\downarrow}{N}
\end{aligned}
$$

$m \in M$ and $n=\pi(m)$

$$
0 \longrightarrow \operatorname{Ver}_{m} \longrightarrow T_{m} M \longrightarrow T_{n} N \longrightarrow 0
$$

Set of splittings: $J_{m} \pi=\left\{\phi: T_{n} N \rightarrow T_{m} M \mid T \pi \circ \phi=\mathrm{id}_{T_{n} N}\right\}$.
Lagrangian: $L: J \pi \rightarrow \mathbb{R}$

Example: principal bundle

$m \in M$

$$
0 \longrightarrow \mathrm{Ad}_{m} \longrightarrow(T Q / G)_{m} \longrightarrow T_{m} M \longrightarrow 0
$$

Set of splittings: $C_{m}(\pi)$.
Lagrangian: $L: C(\pi) \rightarrow \mathbb{R}$

Other examples

- Poisson Σ-model:
$T N \rightarrow N$ with $\operatorname{dim}(N)=2$
$\left(T^{*} M \rightarrow M, \Lambda\right)$ Poisson
- Chern-Simons:
$T N \rightarrow N$ with $\operatorname{dim}(N)=3$
$T N \times \mathfrak{g} \rightarrow N$

General case

Consider

with $\pi=(\bar{\pi}, \underline{\pi})$ epimorphism.
Consider the subbundle $K=\operatorname{ker}(\pi) \rightarrow M$.
For $m \in M$ and $n=\pi(m)$ we have

$$
0 \longrightarrow K_{m} \longrightarrow E_{m} \longrightarrow F_{n} \longrightarrow 0
$$

and we can consider the set of splittings of this sequence.

We define the sets

$$
\begin{aligned}
\mathcal{L}_{m} \pi & =\left\{w: F_{n} \rightarrow E_{m} \mid w \text { is linear }\right\} \\
\mathcal{J}_{m} \pi & =\left\{\phi \in \mathcal{L}_{m} \pi \mid \bar{\pi} \circ \phi=\operatorname{id}_{F_{n}}\right\} \\
\mathcal{V}_{m} \pi & =\left\{\psi \in \mathcal{L}_{m} \pi \mid \bar{\pi} \circ \psi=0\right\} .
\end{aligned}
$$

Projections

$$
\begin{array}{ll}
\underline{\tilde{\pi}_{10}}: \mathcal{L} \pi \rightarrow M & \text { vector bundle } \\
\underline{\pi_{10}}: \mathcal{J} \pi \rightarrow M & \text { affine subbundle } \\
\underline{\boldsymbol{\pi}_{10}}: \mathcal{V} \pi \rightarrow M & \text { vector subbundle }
\end{array}
$$

Local expressions

Take $\left\{e_{a}, e_{\alpha}\right\}$ adapted basis of $\operatorname{Sec}(E)$, i.e. $\left\{\bar{\pi}\left(e_{a}\right)=\bar{e}_{a}\right\}$ is a basis of $\operatorname{Sec}(F)$ and $\left\{e_{\alpha}\right\}$ basis of $\operatorname{Sec}(K)$. Also take adapted coordinates $\left(x^{i}, u^{A}\right)$ to the bundle $\underline{\pi}: M \rightarrow N$.

An element of $\mathcal{L} \pi$ is of the form

$$
w=\left(y_{a}^{b} e_{b}+y_{a}^{\alpha} e_{\alpha}\right) \otimes e^{a}
$$

Thus we have coordinates $\left(x^{i}, u^{A}, y_{a}^{b}, y_{a}^{\alpha}\right)$ on $\mathcal{L} \pi$.
An element of $\mathcal{J} \pi$ is of the form

$$
\phi=\left(e_{a}+y_{a}^{\alpha} e_{\alpha}\right) \otimes e^{a}
$$

Thus we have coordinates $\left(x^{i}, u^{A}, y_{a}^{\alpha}\right)$ on $\mathcal{J} \pi$.

Anchor and bracket

We will assume that F and E are Lie algebroids and π is a morphism of Lie algebroids. The anchors are

$$
\rho\left(\bar{e}_{a}\right)=\rho_{a}^{i} \frac{\partial}{\partial x^{i}} \quad\left\{\begin{array}{l}
\rho\left(e_{a}\right)=\rho_{a}^{i} \frac{\partial}{\partial x^{i}}+\rho_{a}^{A} \frac{\partial}{\partial u^{A}} \\
\rho\left(e_{\alpha}\right)=\rho_{\alpha}^{A} \frac{\partial}{\partial u^{A}}
\end{array}\right.
$$

and the brackets are

$$
\left[\bar{e}_{a}, \bar{e}_{b}\right]=C_{b c}^{a} \bar{e}_{a} \quad\left\{\begin{array}{l}
{\left[e_{a}, e_{b}\right]=C_{a b}^{\gamma} e_{\gamma}+C_{b c}^{a} e_{a}} \\
{\left[e_{a}, e_{\beta}\right]=C_{a \beta}^{\gamma} e_{\gamma}} \\
{\left[e_{\alpha}, e_{\beta}\right]=C_{\alpha \beta}^{\gamma} e_{\gamma}}
\end{array}\right.
$$

Affine functions

Given a section θ of $(\mathcal{L} \pi)^{*}$, we define the affine function $\hat{\theta} \in$ $C^{\infty}(\mathcal{J} \pi)$ by

$$
\hat{\theta}(\phi)=\operatorname{tr}\left(\theta_{m} \circ \phi\right)
$$

where $m=\underline{\pi_{10}}(\phi)$.
In coordinates, if

$$
\theta=\left(\theta_{b}^{a} e^{b}+\theta_{\alpha}^{a} e^{\alpha}\right) \otimes \bar{e}_{a}
$$

then

$$
\hat{\theta}=\theta_{a}^{a}+\theta_{\alpha}^{a} y_{a}^{\alpha} .
$$

Total derivative of f with respect to a section $\eta \in \operatorname{Sec}(F)$

$$
\widehat{d f \otimes \eta}=\hat{f}_{\mid a} \eta^{a} .
$$

where

$$
\dot{f}_{\mid a}=\rho_{a}^{i} \frac{\partial f}{\partial x^{i}}+\left(\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha}\right) \frac{\partial f}{\partial u^{A}} .
$$

Affine structure functions:

$$
\begin{aligned}
& Z_{a \gamma}^{\alpha}=\left(d_{e_{\gamma}} \widehat{e^{\alpha}}\right) \otimes \bar{e}_{a}=C_{a \gamma}^{\alpha}+C_{\beta \gamma}^{\alpha} y_{a}^{\beta} \\
& Z_{a c}^{\alpha}=\left(d_{e_{c}} \widehat{\left.e^{\alpha}\right) \otimes} \bar{e}_{a}=C_{a c}^{\alpha}+C_{\beta c}^{\alpha} y_{a}^{\beta}\right. \\
& Z_{a \gamma}^{b}=\left(d_{e_{\gamma}} e^{b}\right) \otimes \bar{e}_{a}=0 \\
& Z_{a c}^{b}=\left(d_{e_{c}} \widehat{\left.e^{b}\right) \otimes} \bar{e}_{a}=C_{a c}^{b}\right.
\end{aligned}
$$

Variational Problem

Only for $F=T N$.
Let ω be a fixed volume form on N.
Variational problem: Given a function $L \in C^{\infty}(\mathcal{J} \pi)$ find those morphisms $\Phi: F \rightarrow E$ of Lie algebroids such that $\pi \circ \Phi=\mathrm{id}_{F}$ and are critical points of the action

$$
\mathcal{S}(\Phi)=\int_{N} L(\Phi) \omega
$$

It is a constrained variational problem since Φ must be a morphism.

In coordinates,

$$
\begin{aligned}
& \quad \underline{\Phi}(x)=\left(x, u^{A}(x)\right) \quad \text { and } \quad \bar{\Phi}=\left(e_{a}+y_{a}^{\alpha}(x) e_{\alpha}\right) \otimes \bar{e}^{a} \\
& \text { and } \omega=d x^{1} \wedge \cdots \wedge d x^{r} .
\end{aligned}
$$

The variational problem is: find the critical points of

$$
\int_{N} L\left(x^{i}, u^{A}, y_{a}^{\alpha}\right) d x^{1} \wedge \cdots \wedge d x^{r}
$$

subject to the constraints

$$
\begin{aligned}
& \frac{\partial u^{A}}{\partial x^{a}}=\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha} \\
& \frac{\partial y_{c}^{\alpha}}{\partial x^{b}}-\frac{\partial y_{b}^{\alpha}}{\partial x^{c}}+C_{b \gamma}^{\alpha} y_{c}^{\gamma}-C_{c \gamma}^{\alpha} y_{b}^{\gamma}+C_{\beta \gamma}^{\alpha} y_{b}^{\beta} y_{c}^{\gamma}+C_{b c}^{\alpha}=0
\end{aligned}
$$

Variations

Let σ be a section of E projectable over a section η of F.
Let Ψ_{s} the flow of σ and Φ_{s} the flow of η,

$$
\begin{aligned}
& E \xrightarrow{\Psi_{s}} E \\
& \bar{\pi} \downarrow \underset{\Phi_{s}}{\downarrow} \stackrel{\downarrow}{ }{ }^{\downarrow}
\end{aligned}
$$

Define the map $\mathcal{J} \Psi_{s}: \mathcal{J} \pi \rightarrow \mathcal{J} \pi$ by

$$
\mathcal{J} \Psi_{s}(\phi)=\Psi_{s} \circ \phi \circ \Phi_{-s}
$$

for $\phi \in \mathcal{J} \pi$.
$\square \mathcal{J} \Psi_{s}$ is an affine bundle map (over $\psi_{s}: M \rightarrow M$, the flow of $\rho(\sigma))$.
\square If $\Phi: F \rightarrow E$ is a morphism then so is $\mathcal{J} \Psi_{s}(\Phi)=\Psi_{s} \circ \Phi \circ \Phi_{-s}$.

- $\mathcal{J} \Psi_{s}$ is a local flow. The vector field it defines is to be called the complete lift $X_{\sigma}^{(1)} \in \mathfrak{X}(\mathcal{J} \pi)$ of σ.

If σ projects to the zero section $\eta=0$ then

$$
X_{\sigma}^{(1)}=\rho_{\alpha}^{A} \sigma^{\alpha} \frac{\partial}{\partial u^{A}}+\left(\dot{\sigma}_{\mid a}^{\alpha} d x^{a}+Z_{a \beta}^{\alpha} \sigma^{\beta}\right) \frac{\partial}{\partial y_{a}^{\alpha}}
$$

with $Z_{a \beta}^{\alpha}=C_{a \beta}^{\alpha}+C_{\gamma \beta}^{\alpha} y_{a}^{\gamma}$

Euler-Lagrange equations

Infinitesimal admissible variations are

$$
\begin{aligned}
\delta u^{A} & =\rho_{\alpha}^{A} \sigma^{\alpha} \\
\delta y_{a}^{\alpha} & =\frac{d \sigma^{\alpha}}{d x^{a}}+Z_{a \beta}^{\alpha} \sigma^{\beta} .
\end{aligned}
$$

Integrating by parts we get the Euler-Lagrange equations

$$
\begin{gathered}
\frac{d}{d x^{a}}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=\frac{\partial L}{\partial y_{a}^{\gamma}} Z_{a \alpha}^{\gamma}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A} \\
u_{, a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha} \\
\left(y_{a, b}^{\alpha}+C_{b \gamma}^{\alpha} y_{a}^{\gamma}\right)-\left(y_{b, a}^{\alpha}+C_{a \gamma}^{\alpha} y_{b}^{\gamma}\right)+C_{\beta \gamma}^{\alpha} y_{b}^{\beta} y_{a}^{\gamma}+C_{b a}^{\alpha}=0 .
\end{gathered}
$$

Euler-Lagrange equations: autonomous case

If $M=N \times Q$ and $E=F \times G$, then

$$
\rho_{\alpha}^{a}=0 \quad \text { and } \quad C_{a \beta}^{\alpha}=0
$$

Thus

$$
\begin{gathered}
\frac{d}{d x^{a}}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=C_{\beta \alpha}^{\gamma} y_{a}^{\beta} \frac{\partial L}{\partial y_{a}^{\gamma}}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}, \\
u_{, a}^{A}=\rho_{\alpha}^{A} y_{a}^{\alpha} \\
y_{a, b}^{\alpha}-y_{b, a}^{\alpha}+C_{\beta \gamma}^{\alpha} y_{b}^{\beta} y_{a}^{\gamma}=0
\end{gathered}
$$

Repeated jets

From now on F is again an arbitrary Lie algebroid.
■-tangent to $\mathcal{J} \pi$.
Consider $\tau_{\mathcal{J} \pi}^{E}: \mathcal{T}^{E} \mathcal{J} \pi \rightarrow \mathcal{J} \pi$

$$
\mathcal{T}^{E} \mathcal{J} \pi=\left\{(\phi, a, V) \in \mathcal{J} \pi \times E \times T \mathcal{J} \pi \mid T_{\phi} \underline{\pi_{10}}(V)=\rho(a)\right\}
$$

and the projection $\pi_{1}=\pi \circ \pi_{10}=\left(\bar{\pi} \circ \overline{\pi_{10}}, \underline{\pi} \circ \underline{\pi_{10}}\right)$

$$
\begin{aligned}
& \mathcal{T}^{E} \mathcal{J} \pi \xrightarrow{\overline{\pi_{1}}} F \\
& \underset{\partial}{\downarrow} \underset{\underline{\pi_{1}}}{\downarrow} \stackrel{\downarrow}{v}
\end{aligned}
$$

A repeated jet $\psi \in \mathcal{J} \pi_{1}$ at the point $\phi \in \mathcal{J} \pi$ is a map $\psi: F_{n} \rightarrow$ $\mathcal{T}_{\phi}^{E} \mathcal{J} \pi$ such that $\overline{\pi_{1}} \circ \psi=\operatorname{id}_{F_{n}}$.

Explicitly ψ is of the form $\Psi=(\phi, \zeta, V)$ with
$\square \underline{\pi_{10}}(\phi)=\underline{\pi_{10}}(\zeta)$,
$\square V: F_{n} \rightarrow T_{\phi} \mathcal{J} \pi$ satisfying

$$
T \underline{\pi_{10}} \circ V=\rho \circ \zeta .
$$

Locally

$$
\psi=\left(X_{a}+\Psi_{a}^{\alpha} X_{\alpha}+\Psi_{a b}^{\alpha} \mathcal{V}_{\alpha}^{b}\right) \otimes \bar{e}^{a}
$$

Contact forms

An element $(\phi, a, V) \in \mathcal{T}^{E} \mathcal{J} \pi$ is horizontal if $v_{\phi}(a)=0$;

$$
Z=a^{b}\left(X_{b}+y_{b}^{\beta} X_{\beta}\right)+V_{b}^{\beta} v_{\beta}^{b} .
$$

An element $\mu \in \mathcal{T}^{* E} \mathcal{J} \pi$ is vertical if it vanishes on horizontal elements.

A contact 1-form is a section of $\mathcal{T}^{* E} \mathcal{J} \pi$ which is vertical at every point. They are spanned by

$$
\theta^{\alpha}=X^{\alpha}-y_{a}^{\alpha} X^{a}
$$

The $\bigwedge \mathcal{T}^{E} \mathcal{J} \pi$-module generated by contact 1 -forms is the contact module \mathcal{M}^{c}

$$
\mathcal{M}^{c}=\left\langle\theta^{\alpha}\right\rangle .
$$

The differential ideal generated by contact 1-forms is the contact ideal J^{c}.

$$
\mathcal{J}^{c}=\left\langle\theta^{\alpha}, d \theta^{\alpha}\right\rangle
$$

Second order jets

\square A jet $\psi \in \mathcal{J}_{\phi} \pi_{1}$ is semiholonomic if $\psi^{\star} \theta=0$ for every θ in \mathcal{M}^{c}. The jet $\psi=(\phi, \zeta, V)$ is semiholonomic if and only if $\phi=\zeta$.

A jet $\psi \in \mathcal{J}_{\phi} \pi_{1}$ is holonomic if $\psi^{\star} \theta=0$ for every θ in \mathcal{J}^{c}.
The jet $\psi=(\phi, \zeta, V)$ is holonomic if and only if $\phi=\zeta$ and $\mathcal{M}_{a b}^{\gamma}=0$, where
$\mathcal{M}_{a b}^{\gamma}=y_{a b}^{\gamma}-y_{b a}^{\gamma}+C_{b \alpha}^{\gamma} y_{a}^{\alpha}-C_{a \beta}^{\gamma} y_{b}^{\beta}-C_{\alpha \beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta}+y_{c}^{\gamma} C_{a b}^{c}+C_{b a}^{\gamma}$.
The set of holonomic jets will be denoted $\mathfrak{J}^{2} \pi$.

Jet prolongation of sections

A bundle map $\Phi=(\bar{\Phi}, \underline{\Phi})$ section of π is equivalent to a bundle map $\check{\Phi}=(\check{\bar{\Phi}}, \underline{\Phi})$ from N to $\partial \pi \rightarrow M$ section of π_{1}

$$
\check{\bar{\Phi}}(n)=\left.\bar{\Phi}\right|_{F_{n}}
$$

The jet prolongation of Φ is the section $\Phi^{(1)} \equiv \mathcal{T}^{\Phi} \check{\Phi}$ of π_{1}.
In coordinates

$$
\Phi^{(1)}=\left(X_{a}+\Phi_{a}^{\alpha} X_{\alpha}+\dot{\Phi}_{b \mid a}^{\alpha} \mathcal{V}_{\alpha}^{b}\right) \otimes \bar{e}^{a}
$$

Theorem: Let $\Psi \in \operatorname{Sec}\left(\pi_{1}\right)$ be such that the associated map $\check{\Psi}$ is a semiholonomic section and let $\check{\Phi}$ be the section of $\underline{\pi_{1}}$ to which it projects. Then

1. The bundle map Ψ is admissible if and only if Φ is admissible and $\Psi=\Phi^{(1)}$.
2. The bundle map Ψ is a morphism of Lie algebroids if and only if $\Psi=\Phi^{(1)}$ and Φ is a morphism of Lie algebroids.

Corollary: Let Φ an admissible map and a section of π. Then Φ is a morphism if and only if $\Phi^{(1)}$ is holonomic.

Lagrangian formalism

$L \in C^{\infty}(\mathcal{J} \pi)$ Lagrangian, $\omega \in \bigwedge^{r} F^{\prime}$ 'volume' form.
Canonical form.
For every $\phi \in \mathcal{J}_{m} \pi$

$$
h_{\phi}(a)=\phi(\bar{\pi}(a)) \quad \text { and } \quad v_{\phi}(a)=a-\phi(\bar{\pi}(a))
$$

They define the map $\vartheta: \underline{\pi_{10}}{ }^{*} E \rightarrow \underline{\pi 10}^{*} E$ by

$$
\vartheta(\phi, a)=v_{\phi}(a) .
$$

Vertical lifting.

As in any affine bundle

$$
\psi_{\phi}^{V} f=\left.\frac{d}{d t} f(\phi+t \psi)\right|_{t=0}, \quad \psi \in \mathcal{V}_{m} \pi, \quad \phi \in \mathcal{J}_{m} \pi
$$

Thus we have a map $\xi^{V}:{\underline{\pi_{10}}}^{*}(\mathcal{L} \pi) \rightarrow \mathcal{T}^{E} \mathcal{J} \pi$

$$
\xi^{V}(\phi, \varphi)=\left(\phi,\left(v_{\phi} \circ \varphi\right)_{\phi}^{V}\right)
$$

Vertical endomorphism.

Every $\nu \in \operatorname{Sec}\left(F^{*}\right)$ defines $S_{\nu}: \mathcal{T}^{E} \mathcal{J} \pi \rightarrow \mathcal{T}^{E} \mathcal{J} \pi$

$$
S_{\nu}(\phi, a, V)=\xi^{V}(\phi, a \otimes \nu)=\left(\phi, 0, v_{\phi}(a) \otimes \nu\right)
$$

In coordinates

$$
S=\theta^{\alpha} \otimes \bar{e}_{a} \otimes \mathcal{V}_{\alpha}^{a}
$$

Finally

$$
S_{\omega}=\theta^{\alpha} \wedge \omega_{a} \otimes \mathcal{V}_{\alpha}^{a}
$$

Cartan forms.

$$
\begin{gathered}
\Theta_{L}=S_{\omega}(d L)+L \omega \\
\Omega_{L}=-d \Theta_{L}
\end{gathered}
$$

In coordinates

$$
\Theta_{L}=\frac{\partial L}{\partial y_{a}^{\alpha}} \theta^{\alpha} \wedge \omega_{a}+L \omega
$$

Euler-Lagrange equations.

A solution of the field equations is a morphism $\Phi \in \operatorname{Sec}(\pi)$ such that

$$
\Phi^{(1) \star}\left(i_{X} \Omega_{L}\right)=0
$$

for all π_{1}-vertical section $X \in \operatorname{Sec}\left(\mathcal{T}^{E} \mathcal{J} \pi\right)$.
More generally one can consider the De Donder equations

$$
\Psi^{\star}\left(i_{X} \Omega_{L}\right)=0
$$

If L is regular then $\Psi=\Phi^{(1)}$.

In coordinates we get the Euler-Lagrange partial differential equations

$$
\begin{aligned}
& \dot{u}_{\mid a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha} \\
& y_{a \mid b}^{\gamma}-y_{b \mid a}^{\gamma}+C_{b \alpha}^{\gamma} y_{a}^{\alpha}-C_{a \beta}^{\gamma} y_{b}^{\beta}-C_{\alpha \beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta}+y_{c}^{\gamma} C_{a b}^{c}+C_{a b}^{\gamma}=0 \\
& \left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)_{\mid a}^{\prime}+\frac{\partial L}{\partial y_{a}^{\alpha}} C_{b a}^{b}-\frac{\partial L}{\partial y_{a}^{\gamma}} Z_{a \alpha}^{\gamma}-\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}=0,
\end{aligned}
$$

Hamiltonian formalism

Consider the affine dual of $\mathcal{J} \pi$ considered as the bundle ${\underline{\pi_{10}}}^{\dagger}: \mathcal{I}^{\dagger} \pi \rightarrow M$ with fibre over m

$$
\mathcal{J}^{\dagger} \pi=\left\{\lambda \in\left(E_{m}^{*}\right)^{\wedge r} \mid i_{k_{1}} i_{k_{2}} \lambda=0 \text { for all } k_{1}, k_{2} \in K_{m}\right\}
$$

We have a canonical form Θ in $\mathcal{T}^{E} \mathcal{J}^{\dagger} \pi$, given by

$$
\Theta_{\lambda}=\left(\pi_{10}^{\dagger}\right)^{\star} \lambda
$$

Explicitly

$$
\Theta_{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{r}\right)=\lambda\left(a_{1}, a_{2}, \ldots, a_{r}\right)
$$

for $Z_{i}=\left(\lambda, a_{i}, V_{i}\right)$.

The differential of Θ is a multisymplectic form

$$
\Omega=-d \Theta
$$

For a section h of the projection $\partial^{\dagger} \pi \rightarrow \nu^{*} \pi$ we consider the Liouville-Cartan forms

$$
\Theta_{h}=(\mathcal{T} h)^{\star} \Theta \quad \text { and } \quad \Omega_{h}=(\mathcal{T} h)^{\star} \Omega
$$

We set the Hamilton equations

$$
\Lambda^{\star}\left(i_{X} \Omega_{h}\right)=0
$$

for a morphism Λ.

In coordinates we get the Hamiltonian field PDEs

$$
\begin{aligned}
& \dot{u}_{\mid a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} \frac{\partial H}{\partial \mu_{\alpha}^{a}} \\
& \left(\frac{\partial H}{\partial \mu_{\alpha}^{a}}\right)_{\mid b}^{\prime}-\left(\frac{\partial H}{\partial \mu_{\alpha}^{b}}\right)_{\mid a}^{\prime}+C_{\beta \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\beta}^{b}} \frac{\partial H}{\partial \mu_{\gamma}^{a}}+C_{b \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{a}}-C_{a \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{b}}=C_{a b}^{\alpha} \\
& \dot{\mu}_{\alpha \mid c}^{c} x^{i}+\mu_{\alpha}^{b} C_{b c}^{c}=-\rho_{\alpha}^{A} \frac{\partial H}{\partial u^{A}}+\mu_{\gamma}^{c}\left(C_{c \alpha}^{\gamma}+C_{\beta \alpha}^{\gamma} \frac{\partial H}{\partial \mu_{\beta}^{c}}\right)
\end{aligned}
$$

Legendre transformation

There is a Legendre transformation $\widehat{\mathcal{F}}_{\mathcal{L}}: \mathcal{J} \pi \rightarrow \mathcal{J}^{\dagger} \pi$ defined by affine approximation of the Lagrangian as in the standard case. We have similar results:
$\square \Theta_{L}=\left(\mathcal{T} \widehat{\mathcal{F}}_{\mathcal{L}}\right)^{\star} \Theta$
$\square \Omega_{L}=\left(\mathcal{T} \widehat{\mathcal{F}}_{\mathcal{L}}\right)^{\star} \Omega$
\square For hyperregular Lagrangian L : if Φ is a solution of the Euler-Lagrange equations then $\Lambda=\mathcal{T} \mathcal{F}_{\mathcal{L}} \circ \Phi^{(1)}$ is a solution of the Hamiltonian field equations. Conversely if Λ is a solution of the Hamiltonian field equations, then there exists a solution Φ of the Euler-Lagrange equations such that $\Lambda=$ $\mathcal{T} \mathcal{F}_{\mathcal{L}} \circ \Phi^{(1)}$.

Example: Standard case

$E=T M$ and $F=T N$. In pseudocordinates

$$
\bar{e}_{i}=\frac{\partial}{\partial x^{i}}, \quad \text { and } \quad e_{i}=\frac{\partial}{\partial x^{i}}+\Gamma_{i}^{A} \frac{\partial}{\partial u^{A}}, \quad e_{A}=\frac{\partial}{\partial u^{A}}
$$

We have the brackets
$\left[e_{i}, e_{j}\right]=-R_{i j}^{A} e_{A}, \quad\left[e_{i}, e_{B}\right]=\Gamma_{i B}^{A} e_{A} \quad$ and $\quad\left[e_{A}, e_{B}\right]=0$, where we have written $\Gamma_{i A}^{B}=\partial \Gamma_{i}^{B} / \partial u^{A}$.

The components of the anchor maps are $\rho_{j}^{i}=\delta_{j}^{i}, \rho_{i}^{A}=\Gamma_{i}^{A}$ and $\rho_{B}^{A}=\delta_{B}^{A}$.

The Euler-Lagrange equations are

$$
\begin{aligned}
& \frac{\partial u^{A}}{\partial x^{i}}=\Gamma_{i}^{A}+y_{i}^{A} \\
& \frac{\partial y_{i}^{A}}{\partial x^{j}}-\frac{\partial y_{j}^{A}}{\partial x^{i}}+\Gamma_{j B}^{A} y_{i}^{B}-\Gamma_{i B}^{A} y_{j}^{B}=R_{i j}^{A} \\
& \frac{d}{d x^{i}}\left(\frac{\partial L}{\partial y_{i}^{A}}\right)-\Gamma_{i A}^{B} \frac{\partial L}{\partial y_{i}^{B}}=\frac{\partial L}{\partial u^{A}} .
\end{aligned}
$$

Example: Chern-Simons

We consider a Lie algebra \mathfrak{g} with an ad-invariant metric so that the structure constants $C_{\alpha \beta \gamma}$ are skewsymmetric.

Let N be a 3-dimensional manifold, $E=T N \times \mathfrak{g} \rightarrow N$ and $F=T N \rightarrow N$.

A section $\Phi: F \rightarrow E$ is of the form $\Phi(v)=\left(v, A^{\alpha}(v) \epsilon_{\alpha}\right)$ for some 1-forms A^{α} on N.

The Lagrangian density for Chern-Simons theory is

$$
L d x^{1} \wedge d x^{2} \wedge d x^{3}=\frac{1}{3!} C_{\alpha \beta \gamma} A^{\alpha} \wedge A^{\beta} \wedge A^{\gamma}
$$

There is no admissibility condition in this case, since there are no coordinates u^{A}.

The morphism conditions can be written conveniently in terms of the 1 -forms A^{α} as

$$
d A^{\alpha}+\frac{1}{2} C_{\beta \gamma}^{\alpha} A^{\beta} \wedge A^{\gamma}=0
$$

The Euler-Lagrange equations reduce to a linear combination of the morphism condition, and thus vanish identically.

The conventional Lagrangian density for the Chern-Simons theory is

$$
L^{\prime} \omega=k_{\alpha \beta}\left(A^{\alpha} \wedge d A^{\beta}+\frac{1}{3} C_{\mu \nu}^{\beta} A^{\alpha} \wedge A^{\mu} \wedge A^{\nu}\right)
$$

The difference between L^{\prime} and L is a multiple of the morphism condition

$$
L^{\prime} \omega-L \omega=k_{\alpha \mu} A^{\mu}\left[d A^{\alpha}+\frac{1}{2} C_{\beta \gamma}^{\alpha} A^{\beta} \wedge A^{\gamma}\right]
$$

Therefore both Lagrangians coincide on the set of morphisms, which is the set where the action is defined.

Example: Poisson sigma-model

Is an example of autonomous theory.
Let N be a 2-dimensional and $F=T N$.
Let (Q, Λ) Poisson manifold and $G=T^{*} Q$ with the associated Lie algebroid structure.

The Lagrangian density $\mathcal{L}(\phi)=-\phi^{\star} \Lambda$. For a morphism Φ, we write $A_{K}=\Phi^{\star}\left(\partial / \partial u^{K}\right)=y_{K i} d x^{i}$, so that the Lagrangian density reads

$$
\mathcal{L}=-\frac{1}{2} \Lambda^{J K} A_{J} \wedge A_{K}
$$

The Euler-Lagrange equations reduce to a linear combination of the morphism condition.

Thus the field equations are just

$$
\begin{aligned}
& d \phi^{J}+\Lambda^{J K} A_{K}=0 \\
& d A_{J}+\frac{1}{2} \Lambda_{, J}^{K L} A_{K} \wedge A_{L}=0
\end{aligned}
$$

The conventional Lagrangian density for the Poisson Sigma model is $\mathcal{L}^{\prime}=\operatorname{tr}(\bar{\Phi} \wedge T \underline{\Phi})+\frac{1}{2} \Phi^{\star} \Lambda$. The difference between \mathcal{L}^{\prime} and \mathcal{L} is a multiple of the admissibility condition $d \phi^{J}+\Lambda^{J K} A_{K}$;

$$
\mathcal{L}^{\prime}-\mathcal{L}=A_{J} \wedge\left(d \phi^{J}+\Lambda^{J K} A_{K}\right)
$$

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms.

Example: Time-dependent Mechanics

Consider the case of a Lie algebroid $E \rightarrow M$ and $F=T \mathbb{R} \rightarrow$ $N=\mathbb{R}$. Define the affine space

$$
A=\left\{\begin{array}{l|l}
a \in E & \bar{\pi}(a)=\frac{\partial}{\partial t}
\end{array}\right\},
$$

modeled on the kernel of π. Then $\left(A^{\dagger}\right)^{*}=E$ and the Lie algebroid on E restricts to a Lie algebroid structure on the affine bundle A (a Lie Afffffgebroid structure).

Conversely, given a structure of Lie algebroid on an affine bundle $A \rightarrow M$, with $\underline{\pi}: M \rightarrow \mathbb{R}$ fiber bundle, we have that $E=\left(A^{\dagger}\right)^{*}$ has a Lie algebroid structure. If $\tilde{\rho}$ is the anchor on E then $\bar{\pi}(z)=$ $T \underline{\pi}(\tilde{\rho}(z))$ is a morphism form E to $T \mathbb{R}$ and we have a canonical identification $I: A \rightarrow \mathcal{J} \pi$ given by

$$
I(a)=a d t
$$

Thus we recover the time dependent formulation.

Many more examples

Variational problems for holomorphic maps.

Systems with symmetry.

Other sigma-models.

The End

Appendices

Flow of a derivation

Let $\tau: E \rightarrow M$ be a vector bundle.

A derivation of the $C^{\infty}(M)$-module $\operatorname{Sec}(E)$ is a \mathbb{R}-linear map $D: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}(E)$ for which there exists a vector field D^{M} on M such that

$$
D(f \sigma)=\left(D^{M} f\right) \sigma+f D \sigma
$$

The action of D can be extended to $\operatorname{Sec}\left(E^{*}\right)$ by duality: if α is a section of E^{*} then $D \alpha$ is defined by the equation

$$
D\langle\alpha, \sigma\rangle=\langle D \alpha, \sigma\rangle+\langle\alpha, D \sigma\rangle
$$

\square There exists a linear local flow $\phi_{s}: E \rightarrow E$ projecting to the flow of the vector field D^{M} such that

$$
D \sigma=\left.\frac{d}{d s} \phi_{s}^{*} \sigma\right|_{s=0} \quad \text { and } \quad D \alpha=\left.\frac{d}{d s} \phi_{s}^{*} \alpha\right|_{s=0}
$$

\square There exists a vector field D^{E} on E such that

$$
D^{E} \hat{\sigma}=\widehat{D \sigma}
$$

for every section σ of E. The vector field D^{E} projects to D^{M} and its flow is precisely ϕ_{s}.
\square There exists a vector field $D^{E^{*}}$ on E^{*} such that

$$
D^{E^{*}} \hat{\alpha}=\widehat{D \alpha}
$$

for every section α of E^{*}. The vector field $X_{D}^{E^{*}}$ projects to D^{M} and its flow is ϕ_{-s}^{*}. (i.e. $\phi_{-s}^{*}(\mu)=\mu \circ \phi_{-s}$.)

Examples

\square Lie derivative.
$E=T M$ and $D=\mathcal{L}_{X}$, so that $D^{M}=X$. Then $D^{T M}=X^{c}$ the complete lift of X. The flow is $\phi_{s}=T \varphi_{s}$.

Lie derivatives on a Lie algebroid.
More generally, if E is a Lie algebroid and $D=d_{\sigma}$ then $D^{T M}=$ $\rho^{1}\left(\sigma^{c}\right)$ the vector field associated to the complete lift of σ.
\square Covariant derivative.
On a vector bundle with a linear connection, take $D=\nabla_{X}$ then $D^{E}=X^{h}$ the horizontal lift of X to E. The flow is parallel transport along the integral curves of X.
ρ-Covariant derivative.
More generally, if we have a ρ-covariant derivative on a vector bundle E, take $D=\nabla_{\sigma}$ then $D^{E}=\rho^{1}\left(\sigma^{h}\right)$ the horizontal lift of σ to E. The flow is parallel transport along the integral curves of σ.

Lie Algebroids

A Lie algebroid structure on the vector bundle $\tau: E \rightarrow M$ is given by
\square a Lie algebra structure $(\operatorname{Sec}(E),[]$,$) on the set of sections$ of E, and
\square a morphism of vector bundles $\rho: E \rightarrow T M$ over the identity, such that

$$
\begin{aligned}
& \triangleright \rho([\sigma, \eta])=[\rho(\sigma), \rho(\eta)] \\
& \quad \triangleright[\sigma, f \eta]=f[\sigma, \eta]+(\rho(\sigma) f) \eta, \\
& \text { where } \rho(\sigma)(m)=\rho(\sigma(m)) \text {. }
\end{aligned}
$$

Examples-

Tangent bundle.
$E=T M$,
$\rho=\mathrm{id}$,
$[]=$, bracket of vector fields.

- Integrable subbundle.
$E \subset T M$, integrable distribution
$\rho=i$, canonical inclusion
$[]=$, restriction of the bracket to vector fields in E.

Lie algebra.
$E=\mathfrak{g} \rightarrow M=\{e\}$, Lie algebra (fiber bundle over a point)
$\rho=0$, trivial map (since $T M=\left\{0_{e}\right\}$)
$[]=$, the bracket in the Lie algebra.
Atiyah algebroid.
Let $\pi: Q \rightarrow M$ a principal G-bundle.
$E=T Q / G \rightarrow M$, (Sections are equivariant vector fields)
$\rho([v])=T \pi(v)$ induced projection map
$[]=$, bracket of equivariant vectorfields (is equivariant).

Transformation Lie algebroid.

Let $\Phi: \mathfrak{g} \rightarrow \mathfrak{X}(M)$ be an action of a Lie algebra \mathfrak{g} on M.
$E=M \times \mathfrak{g} \rightarrow M$,
$\rho(m, \xi)=\Phi(\xi)(m)$ value of the fundamental vectorfield
$[]=$, induced by the bracket on \mathfrak{g}.

Exterior differential

On 0-forms

$$
d f(\sigma)=\rho(\sigma) f
$$

On p-forms $(p>0)$

$$
\begin{aligned}
& d \omega\left(\sigma_{1}, \ldots, \sigma_{p+1}\right)= \\
& \quad=\sum_{i=1}^{p+1}(-1)^{i+1} \rho\left(\sigma_{i}\right) \omega\left(\sigma_{1}, \ldots, \widehat{\sigma}_{i}, \ldots, \sigma_{p+1}\right) \\
& \quad-\sum_{i<j}(-1)^{i+j} \omega\left(\left[\sigma_{i}, \sigma_{j}\right], \sigma_{1}, \ldots, \widehat{\sigma}_{i}, \ldots, \widehat{\sigma_{j}}, \ldots, \sigma_{p+1}\right) .
\end{aligned}
$$

Admissible maps and Morphisms

A bundle map $\Phi=(\bar{\Phi}, \underline{\Phi})$ between E and E^{\prime} is said to be admissible map if

$$
\Phi^{\star} d f=d \Phi^{\star} f
$$

A bundle map $\Phi=(\bar{\Phi}, \underline{\Phi})$ between E and E^{\prime} is said to be a morphism of Lie algebroids if

$$
\Phi^{\star} d \theta=d \Phi^{\star} \theta
$$

Obviously every morphism is an admissible map.

