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The Lagrange-d’Alembert principle

A non-holonomic system is a mechanical system ¢(¢) € @ subjected to some
velocity-dependent (i.e. non-holonomic) constraints a%(q)¢"* = 0.

The dynamics is determined by a Lagrangian L : T() — IR (kinetic minus
potential energy) and a distribution D, C T,Q, representing the constraints.
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A non-holonomic system is a mechanical system ¢(¢) € @ subjected to some
velocity-dependent (i.e. non-holonomic) constraints a%(q)¢"* = 0.

The dynamics is determined by a Lagrangian L : T() — IR (kinetic minus
potential energy) and a distribution D, C T,Q, representing the constraints.

The equations of motion are given by requiring that ¢(¢)

1. satisfies the constraints,

. [ apd" =0
l.e. q(t) € Dq(t)- W =
\ ddL 0L o
a — % Ak Nalg
2. satisfies 5/ L(q,q¢)dt = 0, for all . dtoq 0q
. . b . .
variations satisfying dq(t) € Dy, for some Lagrangian
Vt € [a, b]. multipliers \,.

The above equations are the Lagrange-d’Alembert equations!



Lagrange-d’Alembert equations

Choose coordinates (¢*)
$* 4+ A = 0.

Then: Lagrange multipliers can be eliminated:
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Some examples of non-holonomic systems

The vertically rolling disk:

St x St with Lagrangian:

& L(Qj,y’ ¢’ H’jj7yv ¢7 ‘9) = im($2‘|‘y2)—|—5192—|—§J¢2

Non-holonomic constraint = rolling without slipping

" Configuration space Q is SE(2) x S' = R* x

r = TCOS(bé
U rsing6

LAll pictures were stolen from the internet!



The snakeboard



c:/data/onderzoek/transparanten/swvooruit.avi
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The snakeboard

The rattleback



c:/data/onderzoek/transparanten/swvooruit.avi
c:/data/onderzoek/transparanten/rattleback.mpg
c:/data/onderzoek/transparanten/roller_racer.mov

The snakeboard

%

The rattleback



c:/data/onderzoek/transparanten/swvooruit.avi
c:/data/onderzoek/transparanten/rattleback.mpg
c:/data/onderzoek/transparanten/roller_racer.mov

Symmetry of the vertically rolling disk
The Lagrangian L(z,y, ¢, 0, @, 9, ¢,0) = im (22 + §?) + 110% + 1 J¢? and the

constraint § £ T Tcosol
y = rsingb

are invariant
1. under the SE(2)-action on (Q = SE(2) x S, TQ), given by

(a,b,a) x(x,9,0,¢) — (xrcosa —ysina+ a,xsina+ycosa+b,0,¢+ «)
X(2,9,0,¢) — (tcosa — ysina, rsina + ycos a, 0, ¢)



Symmetry of the vertically rolling disk
The Lagrangian L(z,y, ¢,0, &, 9, ¢,0) = 1m(i? + ¢?) + 316% + 1 J¢? and the

. i = rcosob . .
constraint , . are invariant

y = rsingb

1. under the SE(2)-action on (Q = SE(2) x S, TQ), given by

(a;b,0) X(z,y,6,0) — (zcosa—ysina+a,zsina+ycosa+0b,0,¢9+ a)
x(&,7,0,0) — (& cosa —ysina, &sina + gcosa, 0, §)

2. under the IR* x S'-action on (Q,7'Q), given by

{(Mu,ﬁ) x(2,9,0,0) = (z+ Ay +p, 0+ 5, ¢)
(&, 9,0, ¢) — (&,7,0, ))



Reduction for a general symmetry group GG

Invariance of the Lagrangian L € C>(TQ) leadsto L € C>~(TQ/G)



Reduction for a general symmetry group GG

Invariance of the Lagrangian L € C>(TQ) leadsto L € C>~(TQ/G)

Invariance of the constraint D C TQ) leadsto D/G C TQ/G.



Reduction for a general symmetry group GG

Invariance of the Lagrangian L € C>(TQ) leadsto L € C>~(TQ/G)

Invariance of the constraint D C TQ) leadsto D/G C TQ/G.

Lagrange-d'Alembert equations on T'Q) for L and D drop to equations on
the quotient TQ /G for L and D/G = the so-called
Lagrange-d’Alembert-Poincaré equations.



Reduction by stages

Example: For the rolling disk example with Q = SE(2) x S* and
G = R* x S'-action:

1. Le C*(TQ)and D
Lo
Reduction by G = R? x S

Lo

2. L ¢ C=(TQ/G)and D/G



Reduction by stages

Example: For the rolling disk example with Q = SE(2) x S* and
G = R* x S'-action:
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L Reductionlby Nl: R? C G
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Reduction by stages

Example: For the rolling disk example with Q = SE(2) x S* and
G = R* x S'-action:

1. L e C=(TQ) and D 1. L eC=(TQ)and D
L Reductionlby Nl: R? C G
Reduction by G = R* x S* 2. L e COO(lTQ/NL) and D/N
[ Reduction Iiy H i G/N = St
2.LeC=(TQ/G)and D/G 3. [ ¢ COO((TQ/lN) /Ij) and (D/N)/H

The dynamics obtained after reduction by G and after reduction by N and H
should be equivalent!!!
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How can we describe Lagrangian reduction?

One possible description makes use of so-called Lagrange-Poincaré
bundles (Cendra, Marsden and Ratiu)

Our description will make use of

1. Lie algebroids and quotient Lie algebroids
2. Prolongation bundles and quotients of prolongation bundles

Common idea: Define a category of systems that are stable under reduction.



1. Lie algebroids

Definition 1. A Lie algebroid is a vector bundle ~ : V — M, which comes
equipped with

a bracket operation [-, -] : Sec(7) x Sec(7) — Sec(7),
a linear bundle map p : V — T'M (and its extension p : Sec(t) — X (M)),
which are related in such a way that

1. |-,-] is a real Lie algebra bracket on the vector space Sec(r)
(skew-symmetry, bi-linear and Jacobi identity);

2. p satisfies for all s,r € Sec(7), f € C*(M): [s, fr] = fls,r] + p(s)(f) r

Standard Example: Tangent bundle: TM — M with bracket of vector fields
and anchor p=id: TM — TM



Exterior derivative of a Lie algebroid
k-Forms are skew-symmetric, C>°(M)-linear maps

k

7\
/7 N

w:Sec(T) X ... x Sec(t) — C*=(M).
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Exterior derivative of a Lie algebroid

k-Forms are skew-symmetric, C>°(M)-linear maps

k

\
/7 N

w:Sec(T) X ... x Sec(t) — C*=(M).

The exterior derivative on forms is a map d : k-form — (k + 1)-form which is
such that:

On functions, df (r) = p(r) f.
On 1-forms, df(r,s) = p(r)(6(s)) — p(s)(0(r)) — O([r,s)).
For a k-form w and a I-form ¢, d(w A ¢) = dw A ¢ + (—1)*w A d.

~ d satisfies d? = 0

10



Quotients of vector bundles
Suppose ™ : M — M = M /G is a principal fibre bundle, with action
P (g, m) — gm.
Definition 2. An action¢" : G x V — V; (g,v) — gv such that for each g € G

the map 1, : Vi, — Vg, is an isomorphism (over +,') and such that 7 is
equivariant (meaning that T o ¢, = 1" o 7) is called a vector bundle action.

11
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Quotients of vector bundles

Suppose ™ : M — M = M /G is a principal fibre bundle, with action
P (g, m) — gm.
Definition 2. An action¢" : G x V — V; (g,v) — gv such that for each g € G

the map 1, : Vi, — Vg, is an isomorphism (over +,') and such that 7 is
equar/ant (meaning that T oy = ' o) is ca//ed a vector bundle action.

~» At this stage, it is possible to define the quotient vector bundle
7:V=V/G— M = M/G, with

V' € [V if 3g € G, such that m’ = gm and v/ = gv

s € Sec(7) is an invariant section if V g, s(gm) = gs(m). Notation: s € Sec’ (7).

~~ Invariant sections are in 1-1 correspondence with sections of the quotient
bundle 7:V — M!
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Lie algebroid morphisms and quotient Lie algebroids

Let7:V — M and 7’ : V' — M’ be two Lie algebroids and ® : V — V' a linear
bundle map over ¢ : M — M’ (so ® is a morphism of vector bundles).

Then, for & € A\"('), define ®*¢’ € \"(r) given by
DY (m) (va, . .., vie) = 0'(p(m))(@(v1), ... D(v)), Vi € Vim,
Definition 3. ® /s called a Lie algebroid morphism if

d(®*0") = o*(d'0") forall ¢’ € \(7').
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Lie algebroid morphisms and quotient Lie algebroids

Let7:V — M and 7’ : V' — M’ be two Lie algebroids and ® : V — V' a linear
bundle map over ¢ : M — M’ (so ® is a morphism of vector bundles).

Then, for & € A\"('), define ®*¢’ € \"(r) given by
DY (m) (va, . .., vie) = 0'(p(m))(@(v1), ... D(v)), Vi € Vim,
Definition 3. ® /s called a Lie algebroid morphism if

d(®*0") = o*(d'0") forall ¢’ € \(7').

Definition 4. A vector bundle action +" is a Lie algebroid action if+, is a Lie
algebroid isomorphism over ' for all g € G.



Lemma 1. For a Lie algebroid action vV, Sec' (1) is a Lie subalgebra of Sec(7)
and the reduction by the group G yields a Lie algebroid structure on the
quotient T with bracket

and anchor

13
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Lemma 1. For a Lie algebroid action vV, Sec' (1) is a Lie subalgebra of Sec(7)
and the reduction by the group G yields a Lie algebroid structure on the
quotient T with bracket

and anchor

EXAMPLE: The standard Lie algebroid 7'M with action Tv" (for any G-action
Y™ on M) gives rise to a quotient Lie algebroid T'M /G, the so-called Atiyah
Lie algebroid.

(basically the Lie algebra of invariant vector fields)



W 2. Prolongation bundles

ot
/ ;\ 7 :V — M is a vector bundle and p : V —

TPW : -W TM is a linear map

u: W — M is a second fibre bundle.

L
/ \\ The prolongation is a (vector) bundle u”
\ Y T°PW — VV, W|th

Vv - M
()TPW_,O*TW {(v, Xw) €V XTW | p(v) =Tu(Xw)};
(i) pw? =71wo pH, ie. u(v,Xy) =

14



W 2. Prolongation bundles

ot
/ ;N 7 :V — M is a vector bundle and p : V —

TPW : -W TM is a linear map

u: W — M is a second fibre bundle.

7
/ \\ The prolongation is a (vector) bundle p”
\ Y T°PW — VV, W|th

v - M
()TPVV_,O*TW {(v,Xw) €eVXTW | p(v) = Tu(Xw)};
(i) 1 = rw o p, 6. pP(v, X.) =

Important property: If 7 is a Lie algebroid, then so is the prolongation p.”:
1) its anchor is p* : TPW — TW, (v, X,,) — X,

2) its bracket is [Z1, Z5] = ([r1, ro], [X1, X2]) for projectable sections
Z = (r € Sec(r), X € X(W)).

14



Two prolongations of interest for non-holonomic systems

TV

TW

7NN

TPV

-V T )\

TM
/ \
T

-M

wW

/\

- W

We suppose now:

T :V — M is a Lie algebroid
with anchor p.

L € (C>=V) is a (regular)
Lagrangian

v : W — M is a vector
subbundle of = with injection i :
W —-Vand A =poi: W —
TM.

15
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/ \ / \ with anchor p.
TPV VRS W L € (C>=V) is a (regular)

Lagrangian
TM
7 : L W — M is a vector
/ \ / \ subbundle of 7 with injection i :
y W " W —-Vand A\ =poi: W —
T TM.

¢ is a Lie algebroid. x* is not a Lie algebroid
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Two prolongations of interest for non-holonomic systems
We suppose now:

o o T : V — M is a Lie algebroid

/ \ / \ with anchor p.
TPV VRS W L € (C>=V) is a (regular)

Lagrangian
TM
7 : L W — M is a vector
/ \ / \ subbundle of 7 with injection i :
y W " W —-Vand A\ =poi: W —
T TM.

¢ is a Lie algebroid. x* is not a Lie algebroid

pw : T*W — W is a vector subbundle of 7# : TPV — V with injection:

T : T'"W — TPV, (W1,Xw2) = (i(Wl)aT”:<XW2))



Prolongation Lie algebroid 77 is similar to TT'M — T'M
On 77, it is possible to define the usual canonical objects:

Vertical sections: those whose projection on V gives zero.
Vertical endomorphism S™ : Sec(7”) — Sec(7”).

Liouville Section C™ € Sec(7”)
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Prolongation Lie algebroid 77 is similar to TT'M — T'M
On 77, it is possible to define the usual canonical objects:

Vertical sections: those whose projection on V gives zero.
Vertical endomorphism S™ : Sec(7”) — Sec(7”).

Liouville Section C™ € Sec(7”)

The dynamics requires a mix of objects on 7” and "
The Lagrangian L € C*°(V) determines

0r, = S7(dL) € \' ()

Er = p™(CT)L — L € C=(V).

16



Recall the injection 7% : T*W — T*V.

Definition 5. Letd : \"(r*) — A\""'(7*) be the exterior derivative of the Lie
algebroid " and put

17
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Recall the injection 7% : T*W — T*V.

Definition 5. Letd : \"(r*) — A\""'(7*) be the exterior derivative of the Lie
algebroid " and put

IfT is the section of the prolongation bundle 1., determined by
irAl, = —AFEy,

the vector field \*(I") € X (W) is said to define the Lagrangian system on the
subbundle 1. of the Lie algebroid T, associated to the given Lagrangian L onV.



Two Important cases

Non-holonomic systems: If 7 =75 : TQ — Q, p : D — (@ distribution,
LeC>(TQ)andi: D — TQ, then we get the Lagrange-d‘Alembert
equations.
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Two Important cases

Non-holonomic systems: If 7 =75 : TQ — Q, p : D — (@ distribution,
LeC>(TQ)andi: D — TQ, then we get the Lagrange-d‘Alembert
equations.

Non-holonomic systems with symmetry: If 7 : TQ/G — Q/G,
u:D/G— Q/G,LeC>TQ/G)andi: D/G — TQ/G, then we get the
Lagrange-d‘Alembert-Poincaré equations.

18



Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. 7 is a Lie algebroid

2. L € C>~(V)is a Lagrangian and p is a subbundle of 7

19
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Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose
1. 7 is a Lie algebroid
2. L € C>~(V)is a Lagrangian and p is a subbundle of 7

3. ¢ is a Lie algebroid action and L is G-invariant

4. )V is a constrained Lie algebroid action, wy w/Y/

W L Ly
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Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. 7 is a Lie algebroid

2. L € C>~(V)is a Lagrangian and p is a subbundle of 7

3. ¢ is a Lie algebroid action and L is G-invariant

W=ty
4. 4" is a constrained Lie algebroid action, pr/ w/)’/
W L .y
and A\ =poi: W — TM. W v
W ——V

How can we perform reduction?



Quotients of prolongation bundles

Lie algebroid V — M with
Lie algebroid action "
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Lie algebroid V — M with
Lie algebroid action "

Lo

The quotient V — M is
a Lie algebroid
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Prolongation bundle TPV — V is
a Lie algebroid
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Quotients of prolongation bundles

Lie algebroid V — M with
Lie algebroid action "

Lo

The quotient V — M is
a Lie algebroid

Lo

Prolongation bundle TPV — V is
a Lie algebroid

Prolongation 77V — V is Lie algebroid
with induced Lie algebroid Action
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Quotients of prolongation bundles

Lie algebroid V — M with Prolongation 77V — V is Lie algebroid
Lie algebroid action 1 : with induced Lie algebroid Action
| l l |
The quotient V — M is ! |
a Lie algebroid
| l l |
Prolongation bundle 77V — V is The quotient T?V — V is

a Lie algebroid a Lie algebroid
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Quotients of prolongation bundles

Lie algebroid V — M with Prolongation 77V — V is Lie algebroid
Lie algebroid action 1 : with induced Lie algebroid Action
Lo Lo
The quotient V — M is | |
a Lie algebroid
Lo Lo
Prolongation bundle 77V — V is The quotient T?V — V is
a Lie algebroid a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, Sec(t?),
Sec(7P) and Sec’ (°) are isomorphic as Lie algebras.
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Quotients of prolongation bundles

Lie algebroid V — M with Prolongation 77V — V is Lie algebroid
Lie algebroid action 1 : with induced Lie algebroid Action
Lo Lo
The quotient V — M is | |
a Lie algebroid
Lo Lo
Prolongation bundle 77V — V is The quotient T?V — V is
a Lie algebroid a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, Sec(t?),
Sec(7P) and Sec’ (°) are isomorphic as Lie algebras.

Proposition 2. If W C V and " is a constrained Lie algebroid action, then the
bundles u* : T"W — W and i* : T*W — W are isomorphic as vector bundles.




Reduction of non-holonomic systems on Lie algebroids

I € Sec(u?) such that

and regular irAfp, = —AFE],

L € C>(V) is G-invariant .
1 is subbundle of 7

21



Reduction of non-holonomic systems on Lie algebroids

I € Sec(u?) such that

L € C>(V) is G-invariant .
and regular

11 is subbundle of 7 Al = —AEL
Lol
L € C>=(V) is regular — T € Sec(g) such that
f is subbundle of 7 iwAbr = —AEf

21



Reduction of non-holonomic systems on Lie algebroids

' € Sec(u?) such that

L € C>(V) is G-invariant .
and regular . B
1 is subbundle of 7 i, = =8
Lo
L € C>=(V) is regular — T € Sec(g) such that
f is subbundle of 7 iwAbr = —AEf

Proposition 3. If L is a regular invariant Lagrangian on \, then also L is
regular. Moreover the Lagrangian section T € Sec(u?) is invariant and the
solutions of the non-holonomic equations on L (i.e. the integral curves of
M\(T)) project to those for the reduced Lagrangian L (i.e. the integral curves of

(D).

21



PROOF. Define the map T7 7 . TAW — TAW as

Then

T 7 (w1, Xu,) = (7 (w1), TR (X,,)) € T

T (w)

W.

22



Reduction by stages

N C G normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is
equivalent with the one obtained from a reduction by G directly.
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Reduction by stages

N C G normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is
equivalent with the one obtained from a reduction by G directly.

1. " invariant under GG

Lo

Reduction by G

Lo

2.T
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Reduction by stages

N C G normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is
equivalent with the one obtained from a reduction by G directly.

1. " invariant under G 1. I' invariant under N C G normal

or ! |

| | Reduction by N
A Lo

Reduction by G 2. I' invariant under H = G/N

! !

| | Reduction by H
! !

2



PROOF. There is an isomorphism g% : W — W, wlg — [[wW]N]a.

Then 768" 8% : T°W — T*W with

T 8% (wil ey Xpugger) = (B (W1]6)s T (X funier)):

IS an isomorphism and

77" 8T ([wle) = D(8"(wle)).

24



Multiple reduction: e.g. for {e} C ... € N» C N; C G.

SecI’G(T) —_ Secl:M1 (1)

|

SeclHo2 (7 /Ny) Sec!H12(7 / Ny)

| |

Sec"H01(r/Ny) ~» | Sec(T/Ny) =~

Sec!H01((7/Ny)/H1z) Sec((7/N2)/H12)

|

Sec(17/G) ~ Sec((T/N2)/H02) ~ Sec((7/N1)/Ho1) =~ Sec(((7‘/N2)/H12)/H01)

Sec!N2(7) —

Sec(7/N>)

Sec(T)
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