Non-holonomic reduction by stages

Tom Mestdag
Ghent University

Tom. Mestdag@ugent. be

August 2005

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_{k}^{\alpha}(q) \dot{q}^{k}=0$.

The dynamics is determined by a Lagrangian $L: T Q \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_{q} \subset T_{q} Q$, representing the constraints.

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_{k}^{\alpha}(q) \dot{q}^{k}=0$.

The dynamics is determined by a Lagrangian $L: T Q \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_{q} \subset T_{q} Q$, representing the constraints.

The equations of motion are given by requiring that $q(t)$

1. satisfies the constraints,
i.e. $\dot{q}(t) \in D_{q(t)}$.
2. satisfies $\delta \int_{b}^{a} L(q, \dot{q}) d t=0$, for all
variations satisfying $\delta q(t) \in D_{q(t)}$,
$\forall t \in[a, b]$.

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_{k}^{\alpha}(q) \dot{q}^{k}=0$.

The dynamics is determined by a Lagrangian $L: T Q \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_{q} \subset T_{q} Q$, representing the constraints.

The equations of motion are given by requiring that $q(t)$

1. satisfies the constraints,
i.e. $\dot{q}(t) \in D_{q(t)}$.
2. satisfies $\delta \int_{b}^{a} L(q, \dot{q}) d t=0$, for all variations satisfying $\delta q(t) \in D_{q(t)}$, $\forall t \in[a, b]$.

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{array}{l}
a_{k}^{\alpha} \dot{q}^{k}=0 \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{k}}-\frac{\partial L}{\partial q^{k}}=\lambda_{\alpha} a_{k}^{\alpha}
\end{array}\right. \\
& \text { for some Lagrangian } \\
& \text { multipliers } \lambda_{\alpha} .
\end{aligned}
$$

The above equations are the Lagrange-d'Alembert equations!

Lagrange-d'Alembert equations

Choose coordinates $\left(q^{k}\right)=\left(s^{\alpha}, r^{I}\right)$ such that $a_{k}^{\alpha} \dot{q}^{k}=0$ can be rewritten as $\dot{s}^{\alpha}+A_{I}^{\alpha} \dot{r}^{I}=0$.

Then: Lagrange multipliers can be eliminated:

$$
\left\{\begin{array} { r l }
{ a _ { k } ^ { \alpha } \dot { q } ^ { k } = 0 } \\
{ \frac { d } { d t } \frac { \partial L } { \partial \dot { q } ^ { k } } - \frac { \partial L } { \partial q ^ { k } } = \lambda _ { \alpha } a _ { k } ^ { \alpha } }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\dot{s}^{\alpha} & =-A_{I}^{\alpha} \dot{r}^{I}, \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{r}^{I}}-\frac{\partial L}{\partial r^{I}} & =A_{I}^{\alpha}\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{s}^{\alpha}}-\frac{\partial L}{\partial s^{\alpha}}\right)
\end{array}\right.\right.
$$

Some examples of non-holonomic systems ${ }^{1}$

- The vertically rolling disk:

Configuration space Q is $S E(2) \times S^{1}=\mathbb{R}^{2} \times$ $S^{1} \times S^{1}$, with Lagrangian:

$$
L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} J \dot{\phi}^{2}
$$

Non-holonomic constraint = rolling without slipping

$$
\left\{\begin{array}{l}
\dot{x}=r \cos \phi \dot{\theta} \\
\dot{y}=r \sin \phi \dot{\theta}
\end{array}\right.
$$

[^0]- The snakeboard

- The rattleback

- The snakeboard

- The rattleback

- The roller racer

Symmetry of the vertically rolling disk

The Lagrangian $L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} J \dot{\phi}^{2}$ and the constraint $\left\{\begin{array}{l}\dot{x}=r \cos \phi \dot{\theta} \\ \dot{y}=r \sin \phi \dot{\theta}\end{array}\right.$ are invariant

1. under the $S E(2)$-action on $\left(Q=S E(2) \times S^{1}, T Q\right)$, given by

$$
\left\{\begin{aligned}
(a, b, \alpha) & \times(x, y, \theta, \phi) \mapsto(x \cos \alpha-y \sin \alpha+a, x \sin \alpha+y \cos \alpha+b, \theta, \phi+\alpha) \\
& \times(\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto(\dot{x} \cos \alpha-\dot{y} \sin \alpha, \dot{x} \sin \alpha+\dot{y} \cos \alpha, \dot{\theta}, \dot{\phi})
\end{aligned}\right.
$$

Symmetry of the vertically rolling disk

The Lagrangian $L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} J \dot{\phi}^{2}$ and the constraint $\left\{\begin{array}{l}\dot{x}=r \cos \phi \dot{\theta} \\ \dot{y}=r \sin \phi \dot{\theta}\end{array}\right.$ are invariant

1. under the $S E(2)$-action on $\left(Q=S E(2) \times S^{1}, T Q\right)$, given by

$$
\left\{\begin{aligned}
(a, b, \alpha) & \times(x, y, \theta, \phi) \mapsto(x \cos \alpha-y \sin \alpha+a, x \sin \alpha+y \cos \alpha+b, \theta, \phi+\alpha) \\
& \times(\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto(\dot{x} \cos \alpha-\dot{y} \sin \alpha, \dot{x} \sin \alpha+\dot{y} \cos \alpha, \dot{\theta}, \dot{\phi})
\end{aligned}\right.
$$

2. under the $\mathbb{R}^{2} \times S^{1}$-action on $(Q, T Q)$, given by

$$
\left\{\begin{aligned}
(\lambda, \mu, \beta) & \times(x, y, \theta, \phi) \mapsto(x+\lambda, y+\mu, \theta+\beta, \phi) \\
& \times(\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto(\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi})
\end{aligned}\right.
$$

Reduction for a general symmetry group G

Invariance of the Lagrangian $L \in C^{\infty}(T Q)$ leads to $\bar{L} \in C^{\infty}(T Q / G)$

Reduction for a general symmetry group G

- Invariance of the Lagrangian $L \in C^{\infty}(T Q)$ leads to $\bar{L} \in C^{\infty}(T Q / G)$
- Invariance of the constraint $D \subset T Q$ leads to $D / G \subset T Q / G$.

Reduction for a general symmetry group G

- Invariance of the Lagrangian $L \in C^{\infty}(T Q)$ leads to $\bar{L} \in C^{\infty}(T Q / G)$
- Invariance of the constraint $D \subset T Q$ leads to $D / G \subset T Q / G$.
- Lagrange-d'Alembert equations on $T Q$ for L and D drop to equations on the quotient $T Q / G$ for \bar{L} and $D / G=$ the so-called Lagrange-d'Alembert-Poincaré equations.

Reduction by stages

Example: For the rolling disk example with $Q=S E(2) \times S^{1}$ and $G=\mathbb{R}^{2} \times S^{1}$-action:

1. $L \in C^{\infty}(T Q)$ and D

Reduction by $G=\mathbb{R}^{2} \times S^{1}$

2. $\bar{L} \in C^{\infty}(T Q / G)$ and D / G

Reduction by stages

Example: For the rolling disk example with $Q=S E(2) \times S^{1}$ and $G=\mathbb{R}^{2} \times S^{1}$-action:

1. $L \in C^{\infty}(T Q)$ and D

Reduction by $G=\mathbb{R}^{2} \times S^{1}$

2. $\bar{L} \in C^{\infty}(T Q / G)$ and D / G

Reduction by stages

Example: For the rolling disk example with $Q=S E(2) \times S^{1}$ and $G=\mathbb{R}^{2} \times S^{1}$-action:

1. $L \in C^{\infty}(T Q)$ and D

Reduction by $G=\mathbb{R}^{2} \times S^{1}$
2. $\bar{L} \in C^{\infty}(T Q / G)$ and D / G

1. $L \in C^{\infty}(T Q)$ and D

Reduction by $N=\mathbb{R}^{2} \subset G$
2. $\hat{L} \in C^{\infty}(T Q / N)$ and D / N $\downarrow \quad \downarrow$
Reduction by $H=G / N=S^{1}$
3. $\hat{\hat{L}} \in C^{\infty}((T Q / N) / H)$ and $(D / N) / H$

Reduction by stages

Example: For the rolling disk example with $Q=S E(2) \times S^{1}$ and $G=\mathbb{R}^{2} \times S^{1}$-action:

1. $L \in C^{\infty}(T Q)$ and D

Reduction by $G=\mathbb{R}^{2} \times S^{1}$
2. $\bar{L} \in C^{\infty}(T Q / G)$ and D / G

2. $\hat{L} \in C^{\infty}(T Q / N)$ and D / N $\downarrow \quad \downarrow$
Reduction by $H=G / N=S^{1}$
3. $\hat{\hat{L}} \in C^{\infty}((T Q / N) / H)$ and $(D / N) / H$

The dynamics obtained after reduction by G and after reduction by N and H should be equivalent!!!

How can we describe Lagrangian reduction?

One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)

How can we describe Lagrangian reduction?

- One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)
- Our description will make use of

1. Lie algebroids and quotient Lie algebroids
2. Prolongation bundles and quotients of prolongation bundles

How can we describe Lagrangian reduction?

- One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)
- Our description will make use of

1. Lie algebroids and quotient Lie algebroids
2. Prolongation bundles and quotients of prolongation bundles

Common idea: Define a category of systems that are stable under reduction.

1. Lie algebroids

Definition 1. A Lie algebroid is a vector bundle $\tau: \mathrm{V} \longrightarrow M$, which comes equipped with

- a bracket operation $[\cdot, \cdot]: \operatorname{Sec}(\tau) \times \operatorname{Sec}(\tau) \longrightarrow \operatorname{Sec}(\tau)$,
- a linear bundle map $\rho: \vee \longrightarrow T M$ (and its extension $\rho: \operatorname{Sec}(\tau) \longrightarrow \mathcal{X}(M)$),
which are related in such a way that

1. $[\cdot$, , $]$ is a real Lie algebra bracket on the vector space $\operatorname{Sec}(\tau)$ (skew-symmetry, bi-linear and Jacobi identity);
2. ρ satisfies for all $\mathrm{s}, \mathrm{r} \in \operatorname{Sec}(\tau), f \in C^{\infty}(M):[\mathrm{s}, f \mathrm{r}]=f[\mathrm{~s}, \mathrm{r}]+\rho(\mathrm{s})(f) \mathrm{r}$

Standard Example: Tangent bundle: $T M \rightarrow M$ with bracket of vector fields and anchor $\rho=i d: T M \rightarrow T M$

Exterior derivative of a Lie algebroid

k-Forms are skew-symmetric, $C^{\infty}(M)$-linear maps

$$
\omega: \overbrace{\operatorname{Sec}(\tau) \times \ldots \times \operatorname{Sec}(\tau)}^{k} \longrightarrow C^{\infty}(M) .
$$

Exterior derivative of a Lie algebroid

k-Forms are skew-symmetric, $C^{\infty}(M)$-linear maps

The exterior derivative on forms is a map $d: k$-form $\longmapsto(k+1)$-form which is such that:

- On functions, $d f(r)=\rho(r) f$.
- On 1-forms, $d \theta(\mathrm{r}, \mathrm{s})=\rho(\mathrm{r})(\theta(\mathrm{s}))-\rho(\mathrm{s})(\theta(\mathrm{r}))-\theta([\mathrm{r}, \mathrm{s}])$.
- For a k-form ω and a l-form $\varphi, d(\omega \wedge \varphi)=d \omega \wedge \varphi+(-1)^{k l} \omega \wedge d \varphi$.
$\rightsquigarrow d$ satisfies $d^{2}=0$

Quotients of vector bundles

Suppose $\bar{\pi}^{M}: M \rightarrow \bar{M}=M / G$ is a principal fibre bundle, with action $\psi^{M}:(g, m) \mapsto g m$.
Definition 2. An action $\psi^{\vee}: G \times \vee \rightarrow \mathrm{V} ;(g, \mathrm{v}) \mapsto g \mathrm{v}$ such that for each $g \in G$ the map $\psi_{g}^{\vee}: \mathrm{V}_{m} \rightarrow \mathrm{~V}_{g m}$ is an isomorphism (over ψ_{g}^{M}) and such that τ is equivariant (meaning that $\tau \circ \psi_{g}^{\vee}=\psi_{g}^{M} \circ \tau$) is called a vector bundle action.

Quotients of vector bundles

Suppose $\bar{\pi}^{M}: M \rightarrow \bar{M}=M / G$ is a principal fibre bundle, with action $\psi^{M}:(g, m) \mapsto g m$.
Definition 2. An action $\psi^{\mathrm{V}}: G \times \mathrm{V} \rightarrow \mathrm{V} ;(g, \mathrm{v}) \mapsto g \mathrm{v}$ such that for each $g \in G$ the map $\psi_{g}^{\vee}: \mathrm{V}_{m} \rightarrow \mathrm{~V}_{g m}$ is an isomorphism (over ψ_{g}^{M}) and such that τ is equivariant (meaning that $\tau \circ \psi_{g}^{\vee}=\psi_{g}^{M} \circ \tau$) is called a vector bundle action.
\rightsquigarrow At this stage, it is possible to define the quotient vector bundle $\bar{\tau}: \overline{\mathrm{V}}=\mathrm{V} / G \rightarrow \bar{M}=M / G$, with

$$
\mathrm{v}_{m^{\prime}}^{\prime} \in\left[\mathrm{v}_{m}\right] \text { if } \exists g \in G \text {, such that } m^{\prime}=g m \text { and } \mathrm{v}^{\prime}=g \mathrm{v}
$$

Quotients of vector bundles

Suppose $\bar{\pi}^{M}: M \rightarrow \bar{M}=M / G$ is a principal fibre bundle, with action $\psi^{M}:(g, m) \mapsto g m$.
Definition 2. An action $\psi^{\mathrm{V}}: G \times \mathrm{V} \rightarrow \mathrm{V} ;(g, \mathrm{v}) \mapsto g \mathrm{v}$ such that for each $g \in G$ the map $\psi_{g}^{\vee}: \mathrm{V}_{m} \rightarrow \mathrm{~V}_{g m}$ is an isomorphism (over ψ_{g}^{M}) and such that τ is equivariant (meaning that $\tau \circ \psi_{g}^{\vee}=\psi_{g}^{M} \circ \tau$) is called a vector bundle action.
\rightsquigarrow At this stage, it is possible to define the quotient vector bundle $\bar{\tau}: \overline{\mathrm{V}}=\mathrm{V} / G \rightarrow \bar{M}=M / G$, with

$$
\mathrm{v}_{m^{\prime}}^{\prime} \in\left[\mathrm{v}_{m}\right] \text { if } \exists g \in G \text {, such that } m^{\prime}=g m \text { and } \mathrm{v}^{\prime}=g \mathrm{v}
$$

$\mathbf{s} \in \operatorname{Sec}(\tau)$ is an invariant section if $\forall g, \mathbf{s}(g m)=g \mathbf{s}(m)$. Notation: $\mathbf{s} \in \operatorname{Sec}^{I}(\tau)$.
\rightsquigarrow Invariant sections are in 1-1 correspondence with sections of the quotient bundle $\bar{\tau}: \overline{\mathrm{V}} \rightarrow \overline{\mathrm{M}}$!

Lie algebroid morphisms and quotient Lie algebroids

Let $\tau: \mathrm{V} \rightarrow M$ and $\tau^{\prime}: \mathrm{V}^{\prime} \rightarrow M^{\prime}$ be two Lie algebroids and $\Phi: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ a linear bundle map over $\phi: M \rightarrow M^{\prime}$ (so Φ is a morphism of vector bundles).

Then, for $\theta^{\prime} \in \bigwedge^{k}\left(\tau^{\prime}\right)$, define $\Phi^{*} \theta^{\prime} \in \bigwedge^{k}(\tau)$ given by

$$
\Phi^{*} \theta^{\prime}(m)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right)=\theta^{\prime}(\phi(m))\left(\Phi\left(\mathrm{v}_{1}\right), \ldots \Phi\left(\mathrm{v}_{k}\right)\right), \quad \mathrm{v}_{i} \in \mathrm{~V}_{m},
$$

Definition 3. Φ is called a Lie algebroid morphism if

$$
d\left(\Phi^{*} \theta^{\prime}\right)=\Phi^{*}\left(d^{\prime} \theta^{\prime}\right) \quad \text { for all } \theta^{\prime} \in \bigwedge\left(\tau^{\prime}\right) .
$$

Lie algebroid morphisms and quotient Lie algebroids

Let $\tau: \mathrm{V} \rightarrow M$ and $\tau^{\prime}: \mathrm{V}^{\prime} \rightarrow M^{\prime}$ be two Lie algebroids and $\Phi: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ a linear bundle map over $\phi: M \rightarrow M^{\prime}$ (so Φ is a morphism of vector bundles).

Then, for $\theta^{\prime} \in \bigwedge^{k}\left(\tau^{\prime}\right)$, define $\Phi^{*} \theta^{\prime} \in \bigwedge^{k}(\tau)$ given by

$$
\Phi^{*} \theta^{\prime}(m)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right)=\theta^{\prime}(\phi(m))\left(\Phi\left(\mathrm{v}_{1}\right), \ldots \Phi\left(\mathrm{v}_{k}\right)\right), \quad \mathrm{v}_{i} \in \mathrm{~V}_{m},
$$

Definition 3. Φ is called a Lie algebroid morphism if

$$
d\left(\Phi^{*} \theta^{\prime}\right)=\Phi^{*}\left(d^{\prime} \theta^{\prime}\right) \quad \text { for all } \theta^{\prime} \in \bigwedge\left(\tau^{\prime}\right) .
$$

Definition 4. A vector bundle action ψ^{v} is a Lie algebroid action if ψ_{g}^{v} is a Lie algebroid isomorphism over ψ_{g}^{M} for all $g \in G$.

Lemma 1. For a Lie algebroid action $\psi^{v}, \operatorname{Sec}^{I}(\tau)$ is a Lie subalgebra of $\operatorname{Sec}(\tau)$ and the reduction by the group G yields a Lie algebroid structure on the quotient $\bar{\tau}$ with bracket

$$
[\bar{r}, \bar{s}]=\left(\left[\bar{r}^{I}, \overline{\mathbf{s}}^{I}\right]\right)_{I} .
$$

and anchor

$$
\bar{\rho}[\mathrm{v}]=T \bar{\pi}^{M}(\rho(\mathrm{v})) .
$$

Lemma 1. For a Lie algebroid action $\psi^{v}, \operatorname{Sec}{ }^{I}(\tau)$ is a Lie subalgebra of $\operatorname{Sec}(\tau)$ and the reduction by the group G yields a Lie algebroid structure on the quotient $\bar{\tau}$ with bracket

$$
[\bar{r}, \bar{s}]=\left(\left[\bar{r}^{I}, \overline{\mathbf{s}}^{I}\right]\right)_{I} .
$$

and anchor

$$
\bar{\rho}[\mathbf{v}]=T \bar{\pi}^{M}(\rho(\mathrm{v})) .
$$

EXAMPLE: The standard Lie algebroid $T M$ with action $T \psi^{M}$ (for any G-action ψ^{M} on M) gives rise to a quotient Lie algebroid $T M / G$, the so-called Atiyah Lie algebroid.
(basically the Lie algebra of invariant vector fields)

- $\tau: \mathrm{V} \rightarrow M$ is a vector bundle and $\rho: \mathrm{V} \rightarrow$ $T M$ is a linear map
- $\mu: \mathrm{W} \rightarrow M$ is a second fibre bundle.

The prolongation is a (vector) bundle μ^{ρ} : $T^{\rho} \mathrm{W} \longrightarrow \mathrm{W}$, with
(i) $T^{\rho} \mathrm{W}=\rho^{*} T \mathrm{~W}=\left\{\left(\mathrm{v}, X_{\mathrm{w}}\right) \in \mathrm{V} \times T \mathrm{~W} \mid \rho(\mathrm{v})=T \mu\left(X_{\mathrm{w}}\right)\right\}$;
(ii) $\mu^{\rho}=\tau_{\mathrm{W}} \circ \rho^{\mu}$, i.e. $\mu^{\rho}\left(\mathrm{v}, X_{\mathrm{w}}\right)=\mathrm{w}$.

2. Prolongation bundles

- $\tau: \mathrm{V} \rightarrow M$ is a vector bundle and $\rho: \mathrm{V} \rightarrow$ $T M$ is a linear map
- $\mu: \mathrm{W} \rightarrow M$ is a second fibre bundle.

The prolongation is a (vector) bundle μ^{ρ} : $T^{\rho} \mathrm{W} \longrightarrow \mathrm{W}$, with
(i) $T^{\rho} \mathrm{W}=\rho^{*} T \mathrm{~W}=\left\{\left(\mathrm{v}, X_{\mathrm{w}}\right) \in \mathrm{V} \times T \mathrm{~W} \mid \rho(\mathrm{v})=T \mu\left(X_{\mathrm{w}}\right)\right\}$;
(ii) $\mu^{\rho}=\tau_{\mathrm{W}} \circ \rho^{\mu}$, i.e. $\mu^{\rho}\left(\mathrm{v}, X_{\mathrm{w}}\right)=\mathrm{w}$.

Important property: If τ is a Lie algebroid, then so is the prolongation μ^{ρ} :

1) its anchor is $\rho^{\mu}: T^{\rho} \mathrm{W} \rightarrow T \mathrm{~W},\left(\mathrm{v}, X_{\mathrm{w}}\right) \mapsto X_{\mathrm{w}}$
2) its bracket is $\left[\mathcal{Z}_{1}, \mathcal{Z}_{2}\right]=\left(\left[r_{1}, r_{2}\right],\left[X_{1}, X_{2}\right]\right)$ for projectable sections
$\mathcal{Z}=(r \in \operatorname{Sec}(\tau), X \in \mathcal{X}(\mathrm{~W}))$.

Two prolongations of interest for non-holonomic systems

We suppose now:

- $\tau: \mathrm{V} \rightarrow M$ is a Lie algebroid with anchor ρ.
- $L \in C^{\infty}(\mathrm{V})$ is a (regular) Lagrangian
- $\mu: \mathrm{W} \rightarrow M$ is a vector subbundle of τ with injection i : $\mathrm{W} \rightarrow \mathrm{V}$ and $\lambda=\rho \circ i: \mathrm{W} \rightarrow$ $T M$.

Two prolongations of interest for non-holonomic systems

We suppose now:

- $\tau: \mathrm{V} \rightarrow M$ is a Lie algebroid with anchor ρ.
- $L \in C^{\infty}(\mathrm{V})$ is a (regular) Lagrangian
- $\mu: \mathrm{W} \rightarrow M$ is a vector subbundle of τ with injection i : $\mathrm{W} \rightarrow \mathrm{V}$ and $\lambda=\rho \circ i: \mathrm{W} \rightarrow$ $T M$.
τ^{ρ} is a Lie algebroid. μ^{λ} is not a Lie algebroid

Two prolongations of interest for non-holonomic systems

We suppose now:

- $\tau: \mathrm{V} \rightarrow M$ is a Lie algebroid with anchor ρ.
- $L \in C^{\infty}(\mathrm{V})$ is a (regular) Lagrangian
- $\mu: \mathrm{W} \rightarrow M$ is a vector subbundle of τ with injection i : $\mathrm{W} \rightarrow \mathrm{V}$ and $\lambda=\rho \circ i: \mathrm{W} \rightarrow$ $T M$.
τ^{ρ} is a Lie algebroid. $\quad \mu^{\lambda}$ is not a Lie algebroid
$\mu^{\lambda}: T^{\lambda} \mathrm{W} \rightarrow \mathrm{W}$ is a vector subbundle of $\tau^{\rho}: T^{\rho} \mathrm{V} \rightarrow \mathrm{V}$ with injection:

$$
\mathcal{T}^{i} i: T^{\lambda} \mathrm{W} \rightarrow T^{\rho} \mathrm{V},\left(\mathrm{w}_{1}, X_{\mathrm{w}_{2}}\right) \mapsto\left(i\left(\mathrm{w}_{1}\right), T i\left(X_{\mathrm{w}_{2}}\right)\right)
$$

Prolongation Lie algebroid τ^{ρ} is similar to $T T M \rightarrow T M$

On τ^{ρ}, it is possible to define the usual canonical objects:

- Vertical sections: those whose projection on V gives zero.
- Vertical endomorphism $S^{\tau}: \operatorname{Sec}\left(\tau^{\rho}\right) \rightarrow \operatorname{Sec}\left(\tau^{\rho}\right)$.
- Liouville Section $\mathcal{C}^{\tau} \in \operatorname{Sec}\left(\tau^{\rho}\right)$

Prolongation Lie algebroid τ^{ρ} is similar to $T T M \rightarrow T M$

On τ^{ρ}, it is possible to define the usual canonical objects:

- Vertical sections: those whose projection on V gives zero.
- Vertical endomorphism $S^{\tau}: \operatorname{Sec}\left(\tau^{\rho}\right) \rightarrow \operatorname{Sec}\left(\tau^{\rho}\right)$.
- Liouville Section $\mathcal{C}^{\tau} \in \operatorname{Sec}\left(\tau^{\rho}\right)$

The dynamics requires a mix of objects on τ^{ρ} and μ^{λ}
The Lagrangian $L \in C^{\infty}(\mathrm{V})$ determines

- $\theta_{L}=S^{\tau}(d L) \in \bigwedge^{1}\left(\tau^{\rho}\right)$
- $E_{L}=\rho^{\tau}\left(\mathcal{C}^{\tau}\right) L-L \in C^{\infty}(\mathrm{V})$.

Recall the injection $\mathcal{T}^{i} i: T^{\lambda} \mathrm{W} \rightarrow T^{\rho} \mathrm{V}$.
Definition 5. Let $d: \bigwedge^{k}\left(\tau^{\rho}\right) \rightarrow \bigwedge^{k+1}\left(\tau^{\rho}\right)$ be the exterior derivative of the Lie algebroid τ^{ρ} and put

$$
\Delta=\left(\mathcal{T}^{i} i\right)^{*} \circ d: \bigwedge^{k}\left(\tau^{\rho}\right) \rightarrow \bigwedge^{k+1}\left(\mu^{\lambda}\right) .
$$

Recall the injection $\mathcal{T}^{i} i: T^{\lambda} \mathrm{W} \rightarrow T^{\rho} \mathrm{V}$.
Definition 5. Let $d: \bigwedge^{k}\left(\tau^{\rho}\right) \rightarrow \bigwedge^{k+1}\left(\tau^{\rho}\right)$ be the exterior derivative of the Lie algebroid τ^{ρ} and put

$$
\Delta=\left(\mathcal{T}^{i} i\right)^{*} \circ d: \bigwedge^{k}\left(\tau^{\rho}\right) \rightarrow \bigwedge^{k+1}\left(\mu^{\lambda}\right) .
$$

If Γ is the section of the prolongation bundle μ^{λ}, determined by

$$
i_{\Gamma} \Delta \theta_{L}=-\Delta E_{L},
$$

the vector field $\lambda^{\mu}(\Gamma) \in \mathcal{X}(\mathrm{W})$ is said to define the Lagrangian system on the subbundle μ of the Lie algebroid τ, associated to the given Lagrangian L on V .

Two Important cases

- Non-holonomic systems: If $\tau=\tau_{Q}: T Q \rightarrow Q, \mu: D \rightarrow Q$ distribution, $L \in C^{\infty}(T Q)$ and $i: D \rightarrow T Q$, then we get the Lagrange-d'Alembert equations.

Two Important cases

- Non-holonomic systems: If $\tau=\tau_{Q}: T Q \rightarrow Q, \mu: D \rightarrow Q$ distribution, $L \in C^{\infty}(T Q)$ and $i: D \rightarrow T Q$, then we get the Lagrange-d'Alembert equations.
- Non-holonomic systems with symmetry: If $\tau: T Q / G \rightarrow Q / G$, $\mu: D / G \rightarrow Q / G, L \in C^{\infty}(T Q / G)$ and $i: D / G \rightarrow T Q / G$, then we get the Lagrange-d'Alembert-Poincaré equations.

Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. τ is a Lie algebroid
2. $L \in C^{\infty}(\mathrm{V})$ is a Lagrangian and μ is a subbundle of τ

Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. τ is a Lie algebroid
2. $L \in C^{\infty}(\mathrm{V})$ is a Lagrangian and μ is a subbundle of τ
3. ψ^{\vee} is a Lie algebroid action and L is G-invariant

Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. τ is a Lie algebroid
2. $L \in C^{\infty}(\mathrm{V})$ is a Lagrangian and μ is a subbundle of τ
3. ψ^{v} is a Lie algebroid action and L is G-invariant
4. ψ^{w} is a constrained Lie algebroid action,

Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. τ is a Lie algebroid
2. $L \in C^{\infty}(\mathrm{V})$ is a Lagrangian and μ is a subbundle of τ
3. ψ^{\vee} is a Lie algebroid action and L is G-invariant
4. ψ^{w} is a constrained Lie algebroid action, and $\bar{\lambda}=\bar{\rho} \circ \bar{i}: \overline{\mathrm{W}} \rightarrow T \bar{M}$.

Non-holonomic systems on Lie algebroids with symmetry

From now on we suppose

1. τ is a Lie algebroid
2. $L \in C^{\infty}(\mathrm{V})$ is a Lagrangian and μ is a subbundle of τ
3. ψ^{v} is a Lie algebroid action and L is G-invariant
4. ψ^{w} is a constrained Lie algebroid action,
and $\bar{\lambda}=\bar{\rho} \circ \bar{i}: \bar{W} \rightarrow T \bar{M}$.

How can we perform reduction?

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{v}

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{v}
$\downarrow \quad \downarrow$
The quotient $\overline{\mathrm{V}} \rightarrow \bar{M}$ is
a Lie algebroid

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{v}

The quotient $\overline{\mathrm{V}} \rightarrow \bar{M}$ is
a Lie algebroid

Prolongation bundle $T^{\bar{p}} \overline{\mathrm{~V}} \rightarrow \overline{\mathrm{~V}}$ is
a Lie algebroid

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{v}
Prolongation $T^{\rho} \mathrm{V} \rightarrow \mathrm{V}$ is Lie algebroid with induced Lie algebroid Action

The quotient $\overline{\mathrm{V}} \rightarrow \bar{M}$ is
a Lie algebroid

Prolongation bundle $T^{\bar{\rho} \bar{V}} \rightarrow \overline{\mathrm{~V}}$ is
a Lie algebroid

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{\vee}

The quotient $\bar{V} \rightarrow \bar{M}$ is
a Lie algebroid

Prolongation bundle $T^{\bar{\rho}} \overline{\mathrm{V}} \rightarrow \overline{\mathrm{V}}$ is a Lie algebroid

Prolongation $T^{\rho} \mathrm{V} \rightarrow \mathrm{V}$ is Lie algebroid with induced Lie algebroid Action

The quotient $\overline{T^{\rho} \mathrm{V}} \rightarrow \overline{\mathrm{V}}$ is
a Lie algebroid

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with
Lie algebroid action ψ^{v}

The quotient $\overline{\mathrm{V}} \rightarrow \bar{M}$ is
a Lie algebroid

Prolongation bundle $T^{\bar{\rho}} \overline{\mathrm{V}} \rightarrow \overline{\mathrm{V}}$ is a Lie algebroid

Prolongation $T^{\rho} \mathrm{V} \rightarrow \mathrm{V}$ is Lie algebroid with induced Lie algebroid Action

The quotient $\overline{T^{\rho} \mathrm{V}} \rightarrow \overline{\mathrm{V}}$ is a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, $\operatorname{Sec}\left(\overline{\tau^{\rho}}\right)$, $\operatorname{Sec}\left(\bar{\tau}^{\bar{\rho}}\right)$ and $\operatorname{Sec}^{I}\left(\tau^{\rho}\right)$ are isomorphic as Lie algebras.

Quotients of prolongation bundles

Lie algebroid $\mathrm{V} \rightarrow M$ with Lie algebroid action ψ^{v}

The quotient $\overline{\mathrm{V}} \rightarrow \bar{M}$ is
a Lie algebroid

Prolongation bundle $T^{\bar{\rho}} \overline{\mathrm{V}} \rightarrow \overline{\mathrm{V}}$ is a Lie algebroid

Prolongation $T^{\rho} \mathrm{V} \rightarrow \mathrm{V}$ is Lie algebroid with induced Lie algebroid Action

The quotient $\overline{T \rho \mathrm{~V}} \rightarrow \overline{\mathrm{~V}}$ is a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, $\operatorname{Sec}\left(\overline{\tau^{\rho}}\right)$, $\operatorname{Sec}\left(\bar{\tau}^{\bar{\rho}}\right)$ and $\operatorname{Sec}{ }^{I}\left(\tau^{\rho}\right)$ are isomorphic as Lie algebras.

Proposition 2. If $\mathrm{W} \subset \mathrm{V}$ and ψ^{W} is a constrained Lie algebroid action, then the bundles $\overline{\mu^{\lambda}}: \overline{T^{\lambda} \mathrm{W}} \rightarrow \overline{\mathrm{W}}$ and $\bar{\mu}^{\bar{\lambda}}: T^{\lambda} \overline{\mathrm{W}} \rightarrow \overline{\mathrm{W}}$ are isomorphic as vector bundles.

Reduction of non-holonomic systems on Lie algebroids

$\left.\begin{array}{c}L \in C^{\infty}(\mathrm{V}) \text { is } G \text {-invariant } \\ \text { and regular } \\ \mu \text { is subbundle of } \tau\end{array}\right\}$

$$
\begin{aligned}
& \Gamma \in \operatorname{Sec}\left(\mu^{\lambda}\right) \text { such that } \\
& i_{\Gamma} \Delta \theta_{L}=-\Delta E_{L}
\end{aligned}
$$

Reduction of non-holonomic systems on Lie algebroids

$$
\left.\begin{array}{c}
\begin{array}{c}
L \in C^{\infty}(V) \text { is } G \text {-invariant } \\
\text { and regular } \\
\mu \text { is subbundle of } \tau \\
\downarrow \\
\downarrow
\end{array} \\
\left.\begin{array}{c}
\bar{L} \in C^{\infty}(\bar{V}) \text { is regular } \\
\bar{\mu} \text { is subbundle of } \bar{\tau}
\end{array}\right\}
\end{array} \quad \rightarrow \begin{array}{c}
\Gamma \in \operatorname{Sec}\left(\mu^{\lambda}\right) \text { such that } \\
i_{\Gamma} \Delta \theta_{L}=-\Delta E_{L}
\end{array}\right] \begin{gathered}
\bar{\Gamma} \in \operatorname{Sec}\left(\bar{\mu}^{\bar{\lambda}}\right) \text { such that } \\
i_{\bar{\Gamma}} \overline{\bar{\Delta} \theta_{\bar{L}}}=-\bar{\Delta} E_{\bar{L}}
\end{gathered}
$$

Reduction of non-holonomic systems on Lie algebroids

Proposition 3. If L is a regular invariant Lagrangian on V, then also \bar{L} is regular. Moreover the Lagrangian section $\Gamma \in \operatorname{Sec}\left(\mu^{\lambda}\right)$ is invariant and the solutions of the non-holonomic equations on L (i.e. the integral curves of $\left.\lambda^{\mu}(\Gamma)\right)$ project to those for the reduced Lagrangian \bar{L} (i.e. the integral curves of $\left.\bar{\lambda}^{\bar{\mu}}(\bar{\Gamma})\right)$.

Proof. Define the map $\mathcal{T}^{\bar{\pi}^{W}} \bar{\pi}^{W}: T^{\lambda} \mathrm{W} \rightarrow T^{\bar{\lambda}} \overline{\mathrm{W}}$ as

$$
\mathcal{T}^{\bar{\pi}^{\mathrm{W}} \bar{\pi}^{\mathrm{w}}\left(\mathrm{w}_{1}, X_{\mathrm{w}_{2}}\right)=\left(\bar{\pi}^{\mathrm{w}}\left(\mathrm{w}_{1}\right), T \bar{\pi}^{\mathrm{w}}\left(X_{\mathrm{w}_{2}}\right)\right) \in T_{\bar{\pi}^{\mathrm{w}}(\mathrm{w})}^{\overline{\mathrm{W}}} \overline{\mathrm{~W}}}
$$

Then

$$
\mathcal{T}^{\bar{\pi}^{w}} \bar{\pi}^{w}(\Gamma(w))=\bar{\Gamma}\left(\bar{\pi}^{w}(w)\right) .
$$

Reduction by stages

$N \subset G$ normal subgroup
Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

Reduction by stages

$N \subset G$ normal subgroup
Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

1. Γ invariant under G

Reduction by G

2. $\bar{\Gamma}$

Reduction by stages

$N \subset G$ normal subgroup
Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

1. Γ invariant under G

Reduction by G

2. $\bar{\Gamma}$

1. Γ invariant under $N \subset G$ normal
or
2. $\hat{\Gamma}$ invariant under $H=G / N$

Reduction by H
3. $\hat{\hat{\Gamma}}^{\downarrow}$

Proof. There is an isomorphism $\beta^{\mathrm{w}}: \overline{\mathrm{W}} \rightarrow \hat{\hat{\mathrm{W}}},[\mathrm{w}]_{G} \rightarrow\left[[\mathrm{w}]_{N}\right]_{H}$. Then $\mathcal{T}^{\beta^{W}} \beta^{\mathrm{W}}: T^{\bar{\lambda}} \overline{\mathrm{W}} \rightarrow T^{\hat{\lambda}} \hat{\mathrm{W}}$ with

$$
\mathcal{T}^{\beta^{\mathrm{w}}} \beta^{\mathrm{w}}\left(\left[\mathrm{w}_{1}\right]_{G}, X_{\left[\mathrm{w}_{2}\right]_{G}}\right)=\left(\beta^{\mathrm{w}}\left(\left[\mathrm{w}_{1}\right]_{G}\right), T \beta^{\mathrm{w}}\left(X_{\left[\mathrm{w}_{2}\right]_{G}}\right)\right) .
$$

is an isomorphism and

$$
\mathcal{T}^{\beta^{\mathrm{w}}} \beta^{\mathrm{w}}\left(\bar{\Gamma}\left([\mathrm{w}]_{G}\right)=\hat{\hat{\Gamma}}\left(\beta^{\mathrm{w}}\left([\mathrm{w}]_{G}\right)\right) .\right.
$$

Multiple reduction: e.g. for $\{e\} \subset \ldots \subset N_{2} \subset N_{1} \subset G$.

$\operatorname{Sec}^{I, H_{02}}\left(\tau / N_{2}\right) \longrightarrow \operatorname{Sec}^{I, H_{12}\left(\tau / N_{2}\right) \longrightarrow \operatorname{Sec}\left(\tau / N_{2}\right)}$

$$
\operatorname{Sec}(\tau / G) \simeq \operatorname{Sec}\left(\left(\tau / N_{2}\right) / H_{02}\right) \simeq \operatorname{Sec}\left(\left(\tau / N_{1}\right) / H_{01}\right) \simeq \operatorname{Sec}\left(\left(\left(\tau / N_{2}\right) / H_{12}\right) / H_{01}\right)
$$

[^0]: ${ }^{1}$ All pictures were stolen from the internet!

