Non-holonomic reduction by stages

Tom Mestdag Ghent University Tom.Mestdag@ugent.be

August 2005

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_k^{\alpha}(q)\dot{q}^k = 0$.

The dynamics is determined by a Lagrangian $L : TQ \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_q \subset T_qQ$, representing the constraints.

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_k^{\alpha}(q)\dot{q}^k = 0$.

The dynamics is determined by a Lagrangian $L : TQ \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_q \subset T_qQ$, representing the constraints.

The equations of motion are given by requiring that q(t)

1. satisfies the constraints, i.e. $\dot{q}(t) \in D_{q(t)}$.

2. satisfies $\delta \int_{b}^{a} L(q, \dot{q}) dt = 0$, for all variations satisfying $\delta q(t) \in D_{q(t)}$, $\forall t \in [a, b]$.

The Lagrange-d'Alembert principle

A non-holonomic system is a mechanical system $q(t) \in Q$ subjected to some velocity-dependent (i.e. non-holonomic) constraints $a_k^{\alpha}(q)\dot{q}^k = 0$.

The dynamics is determined by a Lagrangian $L : TQ \longrightarrow \mathbb{R}$ (kinetic minus potential energy) and a distribution $D_q \subset T_qQ$, representing the constraints.

The equations of motion are given by requiring that q(t)

1. satisfies the constraints, i.e. $\dot{q}(t) \in D_{q(t)}$. 2. satisfies $\delta \int_{b}^{a} L(q, \dot{q}) dt = 0$, for all variations satisfying $\delta q(t) \in D_{q(t)}$, $\forall t \in [a, b]$. $\forall a \in [a, b]$. $\langle a = 0 \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^{k}} - \frac{\partial L}{\partial q^{k}} = \lambda_{\alpha} a_{k}^{\alpha}$ for some Lagrangian multipliers λ_{α} .

The above equations are the Lagrange-d'Alembert equations!

Lagrange-d'Alembert equations

Choose coordinates $(q^k) = (s^{\alpha}, r^I)$ such that $a_k^{\alpha} \dot{q}^k = 0$ can be rewritten as $\dot{s}^{\alpha} + A_I^{\alpha} \dot{r}^I = 0$.

Then: Lagrange multipliers can be eliminated:

$$\begin{cases} a_k^{\alpha} \dot{q}^k = 0 & \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^k} - \frac{\partial L}{\partial q^k} = \lambda_{\alpha} a_k^{\alpha} & \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{r}^I} - \frac{\partial L}{\partial r^I} & = A_I^{\alpha} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{s}^{\alpha}} - \frac{\partial L}{\partial s^{\alpha}} \right) \end{cases}$$

Some examples of non-holonomic systems¹

The vertically rolling disk:

Configuration space Q is $SE(2) \times S^1 = \mathbb{R}^2 \times S^1 \times S^1$, with Lagrangian:

$$L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}J\dot{\phi}^2$$

Non-holonomic constraint = rolling without slipping

$$\begin{cases} \dot{x} &= r \cos \phi \, \dot{\theta} \\ \dot{y} &= r \sin \phi \, \dot{\theta} \end{cases}$$

¹All pictures were stolen from the internet!

The snakeboard

• The snakeboard

• The rattleback

The snakeboard

• The rattleback

• The roller racer

Symmetry of the vertically rolling disk The Lagrangian $L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}J\dot{\phi}^2$ and the constraint $\begin{cases} \dot{x} = r\cos\phi\dot{\theta} \\ \dot{y} = r\sin\phi\dot{\theta} \end{cases}$ are invariant

1. under the SE(2)-action on $(Q = SE(2) \times S^1, TQ)$, given by

$$\begin{cases} (a, b, \alpha) & \times (x, y, \theta, \phi) \mapsto (x \cos \alpha - y \sin \alpha + a, x \sin \alpha + y \cos \alpha + b, \theta, \phi + \alpha) \\ & \times (\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto (\dot{x} \cos \alpha - \dot{y} \sin \alpha, \dot{x} \sin \alpha + \dot{y} \cos \alpha, \dot{\theta}, \dot{\phi}) \end{cases}$$

Symmetry of the vertically rolling disk

The Lagrangian $L(x, y, \phi, \theta, \dot{x}, \dot{y}, \dot{\phi}, \dot{\theta}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}J\dot{\phi}^2$ and the constraint $\begin{cases} \dot{x} &= r\cos\phi\dot{\theta} \\ \dot{y} &= r\sin\phi\dot{\theta} \end{cases}$ are invariant

1. under the SE(2)-action on $(Q = SE(2) \times S^1, TQ)$, given by

$$\begin{cases} (a, b, \alpha) & \times (x, y, \theta, \phi) \mapsto (x \cos \alpha - y \sin \alpha + a, x \sin \alpha + y \cos \alpha + b, \theta, \phi + \alpha) \\ & \times (\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto (\dot{x} \cos \alpha - \dot{y} \sin \alpha, \dot{x} \sin \alpha + \dot{y} \cos \alpha, \dot{\theta}, \dot{\phi}) \end{cases}$$

2. under the $\mathbb{R}^2 \times S^1$ -action on (Q, TQ), given by

$$\begin{cases} (\lambda, \mu, \beta) & \times (x, y, \theta, \phi) \mapsto (x + \lambda, y + \mu, \theta + \beta, \phi) \\ & \times (\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \mapsto (\dot{x}, \dot{y}, \dot{\theta}, \dot{\phi}) \end{cases}$$

Reduction for a general symmetry group *G*

• Invariance of the Lagrangian $L \in C^{\infty}(TQ)$ leads to $\overline{L} \in C^{\infty}(TQ/G)$

Reduction for a general symmetry group *G*

• Invariance of the Lagrangian $L \in C^{\infty}(TQ)$ leads to $\overline{L} \in C^{\infty}(TQ/G)$

• Invariance of the constraint $D \subset TQ$ leads to $D/G \subset TQ/G$.

Reduction for a general symmetry group *G*

• Invariance of the Lagrangian $L \in C^{\infty}(TQ)$ leads to $\overline{L} \in C^{\infty}(TQ/G)$

• Invariance of the constraint $D \subset TQ$ leads to $D/G \subset TQ/G$.

• Lagrange-d'Alembert equations on TQ for L and D drop to equations on the quotient TQ/G for \overline{L} and D/G = the so-called Lagrange-d'Alembert-Poincaré equations.

Example: For the rolling disk example with $Q = SE(2) \times S^1$ and $G = \mathbb{R}^2 \times S^1$ -action:

1. $L \in C^{\infty}(TQ)$ and D $\downarrow \qquad \downarrow$ Reduction by $G = \mathbb{R}^2 \times S^1$ $\downarrow \qquad \downarrow$ 2. $\overline{L} \in C^{\infty}(TQ/G)$ and D/G

Example: For the rolling disk example with $Q = SE(2) \times S^1$ and $G = \mathbb{R}^2 \times S^1$ -action:

1. $L \in C^{\infty}(TQ)$ and D $\downarrow \qquad \downarrow$ Reduction by $G = \mathbb{R}^2 \times S^1$ $\downarrow \qquad \downarrow$ 2. $\overline{L} \in C^{\infty}(TQ/G)$ and D/G 1. $L \in C^{\infty}(TQ)$ and D \downarrow \downarrow Reduction by $N = \mathbb{R}^2 \subset G$ \downarrow \downarrow 2. $\hat{L} \in C^{\infty}(TQ/N)$ and D/N

Example: For the rolling disk example with $Q = SE(2) \times S^1$ and $G = \mathbb{R}^2 \times S^1$ -action:

1. $L \in C^{\infty}(TQ)$ and D1. $L \in C^{\infty}(TQ)$ and D \downarrow \downarrow Reduction by $N = \mathbb{R}^2 \subset G$ Reduction by $G = \mathbb{R}^2 \times S^1$ $\hat{L} \in C^{\infty}(TQ/N)$ and D/N \downarrow \downarrow Reduction by $H = G/N = S^1$ \downarrow $\hat{L} \in C^{\infty}(TQ/G)$ and D/G $\hat{L} \in C^{\infty}((TQ/N)/H)$ and (D/N)/H

Example: For the rolling disk example with $Q = SE(2) \times S^1$ and $G = \mathbb{R}^2 \times S^1$ -action:

1. $L \in C^{\infty}(TQ)$ and D1. $L \in C^{\infty}(TQ)$ and D \downarrow \downarrow Reduction by $N = \mathbb{R}^2 \subset G$ Reduction by $G = \mathbb{R}^2 \times S^1$ \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow

The dynamics obtained after reduction by G and after reduction by N and H should be equivalent!!!

How can we describe Lagrangian reduction?

 One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)

How can we describe Lagrangian reduction?

- One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)
- Our description will make use of
 - 1. Lie algebroids and quotient Lie algebroids
 - 2. Prolongation bundles and quotients of prolongation bundles

How can we describe Lagrangian reduction?

- One possible description makes use of so-called Lagrange-Poincaré bundles (Cendra, Marsden and Ratiu)
- Our description will make use of
 - 1. Lie algebroids and quotient Lie algebroids
 - 2. Prolongation bundles and quotients of prolongation bundles

Common idea: Define a category of systems that are stable under reduction.

1. Lie algebroids

Definition 1. A Lie algebroid is a vector bundle $\tau : V \longrightarrow M$, which comes equipped with

- a bracket operation $[\cdot, \cdot] : \operatorname{Sec}(\tau) \times \operatorname{Sec}(\tau) \longrightarrow \operatorname{Sec}(\tau)$,
- a linear bundle map $\rho: V \longrightarrow TM$ (and its extension $\rho: Sec(\tau) \longrightarrow \mathcal{X}(M)$),

which are related in such a way that

- 1. $[\cdot, \cdot]$ is a real Lie algebra bracket on the vector space $Sec(\tau)$ (skew-symmetry, bi-linear and Jacobi identity);
- 2. ρ satisfies for all $s, r \in Sec(\tau)$, $f \in C^{\infty}(M)$: $[s, fr] = f[s, r] + \rho(s)(f) r$

Standard Example: Tangent bundle: $TM \rightarrow M$ with bracket of vector fields and anchor $\rho = id : TM \rightarrow TM$

Exterior derivative of a Lie algebroid

k-Forms are skew-symmetric, $C^{\infty}(M)$ -linear maps

$$\omega: \underbrace{\operatorname{Sec}(\tau) \times \ldots \times \operatorname{Sec}(\tau)}^{k} \longrightarrow C^{\infty}(M).$$

Exterior derivative of a Lie algebroid

k-Forms are skew-symmetric, $C^{\infty}(M)$ -linear maps

$$\omega: \underbrace{\operatorname{Sec}(\tau) \times \ldots \times \operatorname{Sec}(\tau)}^{k} \longrightarrow C^{\infty}(M).$$

The exterior derivative on forms is a map d : k-form $\mapsto (k + 1)$ -form which is such that:

- On functions, $df(\mathbf{r}) = \rho(\mathbf{r})f$.
- On 1-forms, $d\theta(\mathbf{r}, \mathbf{s}) = \rho(\mathbf{r})(\theta(\mathbf{s})) \rho(\mathbf{s})(\theta(\mathbf{r})) \theta([\mathbf{r}, \mathbf{s}])$.
- For a k-form ω and a l-form φ , $d(\omega \wedge \varphi) = d\omega \wedge \varphi + (-1)^{kl} \omega \wedge d\varphi$.

 $\rightarrow d$ satisfies $d^2 = 0$

Quotients of vector bundles

Suppose $\overline{\pi}^M : M \to \overline{M} = M/G$ is a principal fibre bundle, with action $\psi^M : (g, m) \mapsto gm$.

Definition 2. An action $\psi^{\vee} : G \times V \to V; (g, v) \mapsto gv$ such that for each $g \in G$ the map $\psi_g^{\vee} : V_m \to V_{gm}$ is an isomorphism (over ψ_g^M) and such that τ is equivariant (meaning that $\tau \circ \psi_g^{\vee} = \psi_g^M \circ \tau$) is called a vector bundle action.

Quotients of vector bundles

Suppose $\overline{\pi}^M : M \to \overline{M} = M/G$ is a principal fibre bundle, with action $\psi^M : (g, m) \mapsto gm$.

Definition 2. An action $\psi^{\vee} : G \times V \to V; (g, v) \mapsto gv$ such that for each $g \in G$ the map $\psi_g^{\vee} : V_m \to V_{gm}$ is an isomorphism (over ψ_g^M) and such that τ is equivariant (meaning that $\tau \circ \psi_g^{\vee} = \psi_g^M \circ \tau$) is called a vector bundle action.

 \rightsquigarrow At this stage, it is possible to define the quotient vector bundle $\overline{\tau}: \overline{V} = V/G \rightarrow \overline{M} = M/G$, with

 $v'_{m'} \in [v_m]$ if $\exists g \in G$, such that m' = gm and v' = gv

Quotients of vector bundles

Suppose $\overline{\pi}^M : M \to \overline{M} = M/G$ is a principal fibre bundle, with action $\psi^M : (g,m) \mapsto gm$.

Definition 2. An action $\psi^{\vee} : G \times V \to V; (g, v) \mapsto gv$ such that for each $g \in G$ the map $\psi_g^{\vee} : V_m \to V_{gm}$ is an isomorphism (over ψ_g^M) and such that τ is equivariant (meaning that $\tau \circ \psi_g^{\vee} = \psi_g^M \circ \tau$) is called a vector bundle action.

 \rightsquigarrow At this stage, it is possible to define the quotient vector bundle $\overline{\tau}: \overline{V} = V/G \rightarrow \overline{M} = M/G$, with

 $v'_{m'} \in [v_m]$ if $\exists g \in G$, such that m' = gm and v' = gv

 $s \in Sec(\tau)$ is an invariant section if $\forall g, s(gm) = gs(m)$. Notation: $s \in Sec^{I}(\tau)$. \rightsquigarrow Invariant sections are in 1-1 correspondence with sections of the quotient bundle $\overline{\tau} : \overline{V} \to \overline{M}!$

Lie algebroid morphisms and quotient Lie algebroids

Let $\tau : V \to M$ and $\tau' : V' \to M'$ be two Lie algebroids and $\Phi : V \to V'$ a linear bundle map over $\phi : M \to M'$ (so Φ is a morphism of vector bundles).

Then, for $\theta' \in \bigwedge^k(\tau')$, define $\Phi^* \theta' \in \bigwedge^k(\tau)$ given by

$$\Phi^*\theta'(m)(\mathsf{v}_1,\ldots,\mathsf{v}_k)=\theta'(\phi(m))(\Phi(\mathsf{v}_1),\ldots\Phi(\mathsf{v}_k)),\qquad \mathsf{v}_i\in\mathsf{V}_m,$$

Definition 3. Φ is called a Lie algebroid morphism if

$$d(\Phi^*\theta') = \Phi^*(d'\theta')$$
 for all $\theta' \in \bigwedge(\tau')$.

Lie algebroid morphisms and quotient Lie algebroids

Let $\tau : V \to M$ and $\tau' : V' \to M'$ be two Lie algebroids and $\Phi : V \to V'$ a linear bundle map over $\phi : M \to M'$ (so Φ is a morphism of vector bundles).

Then, for $\theta' \in \bigwedge^k(\tau')$, define $\Phi^* \theta' \in \bigwedge^k(\tau)$ given by

$$\Phi^*\theta'(m)(\mathsf{v}_1,\ldots,\mathsf{v}_k)=\theta'(\phi(m))(\Phi(\mathsf{v}_1),\ldots\Phi(\mathsf{v}_k)),\qquad \mathsf{v}_i\in\mathsf{V}_m,$$

Definition 3. Φ is called a Lie algebroid morphism if

$$d(\Phi^*\theta') = \Phi^*(d'\theta')$$
 for all $\theta' \in \Lambda(\tau')$.

Definition 4. A vector bundle action ψ^{\vee} is a Lie algebroid action if ψ_g^{\vee} is a Lie algebroid isomorphism over ψ_g^M for all $g \in G$.

Lemma 1. For a Lie algebroid action ψ^{\vee} , $\operatorname{Sec}^{I}(\tau)$ is a Lie subalgebra of $\operatorname{Sec}(\tau)$ and the reduction by the group *G* yields a Lie algebroid structure on the quotient $\overline{\tau}$ with bracket

$$[\overline{\mathsf{r}},\overline{\mathsf{s}}] = \left([\overline{\mathsf{r}}^I,\overline{\mathsf{s}}^I]\right)_I.$$

and anchor

 $\overline{\rho}[\mathbf{v}] = T\overline{\pi}^{\scriptscriptstyle M}(\rho(\mathbf{v})).$

Lemma 1. For a Lie algebroid action ψ^{\vee} , $\operatorname{Sec}^{I}(\tau)$ is a Lie subalgebra of $\operatorname{Sec}(\tau)$ and the reduction by the group G yields a Lie algebroid structure on the quotient $\overline{\tau}$ with bracket

$$[\overline{\mathsf{r}},\overline{\mathsf{s}}] = \left([\overline{\mathsf{r}}^I,\overline{\mathsf{s}}^I]\right)_I.$$

and anchor

 $\overline{\rho}[\mathbf{v}] = T\overline{\pi}^{M}(\rho(\mathbf{v})).$

EXAMPLE: The standard Lie algebroid TM with action $T\psi^M$ (for any *G*-action ψ^M on *M*) gives rise to a quotient Lie algebroid TM/G, the so-called Atiyah Lie algebroid.

(basically the Lie algebra of invariant vector fields)

2. Prolongation bundles

- $\tau : V \to M$ is a vector bundle and $\rho : V \to TM$ is a linear map
- $\mu : W \to M$ is a second fibre bundle.

The prolongation is a (vector) bundle μ^{ρ} : $T^{\rho}W \longrightarrow W$, with

(i) $T^{\rho}W = \rho^{*}TW = \{(v, X_{w}) \in V \times TW \mid \rho(v) = T\mu(X_{w})\};$ (ii) $\mu^{\rho} = \tau_{W} \circ \rho^{\mu}$, i.e. $\mu^{\rho}(v, X_{w}) = w$.

2. Prolongation bundles

- $\tau : V \to M$ is a vector bundle and $\rho : V \to TM$ is a linear map
- $\mu: W \to M$ is a second fibre bundle.

The prolongation is a (vector) bundle μ^{ρ} : $T^{\rho}W \longrightarrow W$, with

(i) $T^{\rho}W = \rho^{*}TW = \{(v, X_{w}) \in V \times TW \mid \rho(v) = T\mu(X_{w})\};$ (ii) $\mu^{\rho} = \tau_{W} \circ \rho^{\mu}$, i.e. $\mu^{\rho}(v, X_{w}) = w$.

Important property: If τ is a Lie algebroid, then so is the prolongation μ^{ρ} : 1) its anchor is $\rho^{\mu} : T^{\rho}W \to TW, (v, X_w) \mapsto X_w$ 2) its bracket is $[\mathcal{Z}_1, \mathcal{Z}_2] = ([r_1, r_2], [X_1, X_2])$ for projectable sections $\mathcal{Z} = (r \in \text{Sec}(\tau), X \in \mathcal{X}(W)).$

Two prolongations of interest for non-holonomic systems

We suppose now:

- $\tau : V \rightarrow M$ is a Lie algebroid with anchor ρ .
- $L \in C^{\infty}(V)$ is a (regular) Lagrangian
- μ : W \rightarrow M is a vector subbundle of τ with injection i : W \rightarrow V and $\lambda = \rho \circ i$: W \rightarrow TM.

Two prolongations of interest for non-holonomic systems

 τ^{ρ} is a Lie algebroid. μ^{λ} is not a Lie algebroid

We suppose now:

- $\tau : V \rightarrow M$ is a Lie algebroid with anchor ρ .
- $L \in C^{\infty}(V)$ is a (regular) Lagrangian
- μ : W \rightarrow M is a vector subbundle of τ with injection i : W \rightarrow V and $\lambda = \rho \circ i$: W \rightarrow TM.

Two prolongations of interest for non-holonomic systems

 τ^{ρ} is a Lie algebroid. μ^{λ} is not a Lie algebroid

We suppose now:

- $\tau : V \rightarrow M$ is a Lie algebroid with anchor ρ .
- $L \in C^{\infty}(V)$ is a (regular) Lagrangian

• μ : W \rightarrow M is a vector subbundle of τ with injection i : W \rightarrow V and $\lambda = \rho \circ i$: W \rightarrow TM.

 $\mu^{\lambda}: T^{\lambda}W \to W$ is a vector subbundle of $\tau^{\rho}: T^{\rho}V \to V$ with injection:

$$\mathcal{T}^{i}i: T^{\lambda}\mathsf{W} \to T^{\rho}\mathsf{V}, (\mathsf{w}_{1}, X_{\mathsf{w}_{2}}) \mapsto (i(\mathsf{w}_{1}), Ti(X_{\mathsf{w}_{2}}))$$

Prolongation Lie algebroid τ^{ρ} is similar to $TTM \rightarrow TM$

On τ^{ρ} , it is possible to define the usual canonical objects:

- Vertical sections: those whose projection on V gives zero.
- Vertical endomorphism $S^{\tau} : \operatorname{Sec}(\tau^{\rho}) \to \operatorname{Sec}(\tau^{\rho})$.
- Liouville Section $C^{\tau} \in \operatorname{Sec}(\tau^{\rho})$

Prolongation Lie algebroid $au^{ ho}$ is similar to $TTM \to TM$

On τ^{ρ} , it is possible to define the usual canonical objects:

- Vertical sections: those whose projection on V gives zero.
- Vertical endomorphism $S^{\tau} : \operatorname{Sec}(\tau^{\rho}) \to \operatorname{Sec}(\tau^{\rho}).$
- Liouville Section $C^{\tau} \in \operatorname{Sec}(\tau^{\rho})$

The dynamics requires a mix of objects on $au^ ho$ and μ^λ

The Lagrangian $L \in C^{\infty}(V)$ determines

- $\theta_L = S^{\tau}(dL) \in \bigwedge^1(\tau^{\rho})$
- $E_L = \rho^{\tau}(\mathcal{C}^{\tau})L L \in C^{\infty}(\mathsf{V}).$

Recall the injection $T^i i : T^{\lambda} W \to T^{\rho} V$.

Definition 5. Let $d : \bigwedge^k (\tau^{\rho}) \to \bigwedge^{k+1} (\tau^{\rho})$ be the exterior derivative of the Lie algebroid τ^{ρ} and put

$$\Delta = (\mathcal{T}^{i}i)^{*} \circ d : \bigwedge^{k} (\tau^{\rho}) \to \bigwedge^{k+1} (\mu^{\lambda}).$$

Recall the injection $T^i i : T^{\lambda} W \to T^{\rho} V$.

Definition 5. Let $d: \bigwedge^k (\tau^{\rho}) \to \bigwedge^{k+1} (\tau^{\rho})$ be the exterior derivative of the Lie algebroid τ^{ρ} and put

$$\Delta = (\mathcal{T}^{i}i)^{*} \circ d : \bigwedge^{k} (\tau^{\rho}) \to \bigwedge^{k+1} (\mu^{\lambda}).$$

If Γ is the section of the prolongation bundle μ^{λ} , determined by

$$i_{\Gamma}\Delta\theta_L = -\Delta E_L,$$

the vector field $\lambda^{\mu}(\Gamma) \in \mathcal{X}(W)$ is said to define the Lagrangian system on the subbundle μ of the Lie algebroid τ , associated to the given Lagrangian L on V.

Two Important cases

• Non-holonomic systems: If $\tau = \tau_Q : TQ \to Q$, $\mu : D \to Q$ distribution, $L \in C^{\infty}(TQ)$ and $i : D \to TQ$, then we get the Lagrange-d'Alembert equations.

Two Important cases

- Non-holonomic systems: If $\tau = \tau_Q : TQ \to Q, \ \mu : D \to Q$ distribution, $L \in C^{\infty}(TQ)$ and $i : D \to TQ$, then we get the Lagrange-d'Alembert equations.
- Non-holonomic systems with symmetry: If *τ* : *TQ/G* → *Q/G*, μ : *D/G* → *Q/G*, *L* ∈ *C*[∞](*TQ/G*) and *i* : *D/G* → *TQ/G*, then we get the Lagrange-d'Alembert-Poincaré equations.

From now on we suppose

- 1. τ is a Lie algebroid
- 2. $L \in C^{\infty}(V)$ is a Lagrangian and μ is a subbundle of τ

From now on we suppose

- 1. τ is a Lie algebroid
- 2. $L \in C^{\infty}(V)$ is a Lagrangian and μ is a subbundle of τ
- 3. ψ^{\vee} is a Lie algebroid action and L is G-invariant

From now on we suppose

- 1. τ is a Lie algebroid
- 2. $L \in C^{\infty}(V)$ is a Lagrangian and μ is a subbundle of τ
- 3. ψ^{\vee} is a Lie algebroid action and L is G-invariant
- 4. $\psi^{\rm W}$ is a constrained Lie algebroid action,

From now on we suppose

- 1. τ is a Lie algebroid
- 2. $L \in C^{\infty}(V)$ is a Lagrangian and μ is a subbundle of τ
- 3. ψ^{\vee} is a Lie algebroid action and L is G-invariant
- 4. ψ^{W} is a constrained Lie algebroid action,

and $\overline{\lambda} = \overline{\rho} \circ \overline{i} : \overline{W} \to T\overline{M}$.

From now on we suppose

- 1. τ is a Lie algebroid
- 2. $L \in C^{\infty}(V)$ is a Lagrangian and μ is a subbundle of τ
- 3. ψ^{\vee} is a Lie algebroid action and L is G-invariant
- 4. ψ^{W} is a constrained Lie algebroid action,

and $\overline{\lambda} = \overline{\rho} \circ \overline{i} : \overline{W} \to T\overline{M}$.

How can we perform reduction?

Lie algebroid V $\rightarrow M$ with Lie algebroid action $\psi^{\rm V}$

Lie algebroid $V \to M$ with Lie algebroid action ψ^{v} $\downarrow \qquad \downarrow$

The quotient $\overline{V} \to \overline{M}$ is a Lie algebroid

```
Lie algebroid V \to M with
Lie algebroid action \psi^{\vee}
\downarrow \downarrow \downarrow
The quotient \overline{V} \to \overline{M} is
a Lie algebroid
```

Prolongation bundle $T^{\overline{\rho}}\overline{V} \to \overline{V}$ is a Lie algebroid

Lie algebroid V $\rightarrow M$ with Lie algebroid action ψ^{\vee} \downarrow \downarrow

The quotient $\overline{V} \to \overline{M}$ is a Lie algebroid $\downarrow \qquad \downarrow$

Prolongation bundle $T^{\overline{\rho}}\overline{V} \to \overline{V}$ is a Lie algebroid Prolongation $T^{\rho}V \rightarrow V$ is Lie algebroid with induced Lie algebroid Action

a Lie algebroid

a Lie algebroid

Prolongation bundle $T^{\overline{\rho}}\overline{V} \to \overline{V}$ is a Lie algebroid The quotient $\overline{T^{\rho}V} \rightarrow \overline{V}$ is a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, $Sec(\overline{\tau^{\rho}})$, $Sec(\overline{\tau^{\rho}})$ and $Sec^{I}(\tau^{\rho})$ are isomorphic as Lie algebras.

Prolongation bundle $T^{\overline{\rho}}\overline{V} \to \overline{V}$ is a Lie algebroid The quotient $\overline{T^{\rho}V} \rightarrow \overline{V}$ is a Lie algebroid

Proposition 1. They are isomorphic as Lie algebroids. Moreover, $Sec(\overline{\tau^{\rho}})$, $Sec(\overline{\tau^{\rho}})$ and $Sec^{I}(\tau^{\rho})$ are isomorphic as Lie algebras.

Proposition 2. If $W \subset V$ and ψ^W is a constrained Lie algebroid action, then the bundles $\overline{\mu^{\lambda}} : \overline{T^{\lambda}W} \to \overline{W}$ and $\overline{\mu}^{\overline{\lambda}} : T^{\overline{\lambda}}\overline{W} \to \overline{W}$ are isomorphic as vector bundles.

Reduction of non-holonomic systems on Lie algebroids

 $L \in C^{\infty}(V)$ is *G*-invariant and regular μ is subbundle of τ

 $\Gamma \in \operatorname{Sec}(\mu^{\lambda})$ such that $i_{\Gamma}\Delta\theta_L = -\Delta E_L$

Reduction of non-holonomic systems on Lie algebroids

 $L \in C^{\infty}(\mathsf{V}) \text{ is } G \text{-invariant}$ and regular $\mu \text{ is subbundle of } \tau$

 $\left. \begin{array}{c} \overline{L} \in C^{\infty}(\overline{\mathsf{V}}) \text{ is regular} \\ \overline{\mu} \text{ is subbundle of } \overline{\tau} \end{array} \right\}$

 \rightarrow

 $\Gamma \in \operatorname{Sec}(\mu^{\lambda}) \text{ such that}$ $i_{\Gamma} \Delta \theta_L = -\Delta E_L$

 $\overline{\Gamma} \in \operatorname{Sec}(\overline{\mu}^{\overline{\lambda}}) \text{ such that } i_{\overline{\Gamma}} \overline{\Delta} \theta_{\overline{L}} = -\overline{\Delta} E_{\overline{L}}$

Reduction of non-holonomic systems on Lie algebroids

 $\left. \begin{array}{c} L \in C^{\infty}(\mathsf{V}) \text{ is } G \text{-invariant} \\ \text{ and regular} \\ \mu \text{ is subbundle of } \tau \\ \downarrow \quad \downarrow \end{array} \right\} \xrightarrow{} \qquad \Gamma \in \operatorname{Sec}(\mu^{\lambda}) \text{ such that} \\ i_{\Gamma} \Delta \theta_{L} = -\Delta E_{L} \\ \hline \overline{L} \in C^{\infty}(\overline{\mathsf{V}}) \text{ is regular} \\ \overline{\mu} \text{ is subbundle of } \overline{\tau} \end{array} \right\} \xrightarrow{} \qquad \overline{\Gamma} \in \operatorname{Sec}(\overline{\mu}^{\overline{\lambda}}) \text{ such that} \\ i_{\overline{\Gamma}} \overline{\Delta} \theta_{\overline{L}} = -\overline{\Delta} E_{\overline{L}} \end{array}$

Proposition 3. If *L* is a regular invariant Lagrangian on V, then also \overline{L} is regular. Moreover the Lagrangian section $\Gamma \in \text{Sec}(\mu^{\lambda})$ is invariant and the solutions of the non-holonomic equations on *L* (i.e. the integral curves of $\lambda^{\mu}(\Gamma)$) project to those for the reduced Lagrangian \overline{L} (i.e. the integral curves of $\overline{\lambda^{\mu}}(\overline{\Gamma})$).

PROOF. Define the map $\mathcal{T}^{\overline{\pi}^{W}}\overline{\pi}^{W}: T^{\lambda}W \to T^{\overline{\lambda}}\overline{W}$ as

$$\mathcal{T}^{\overline{\pi}^{\mathsf{W}}}\overline{\pi}^{\mathsf{W}}(\mathsf{w}_1, X_{\mathsf{w}_2}) = (\overline{\pi}^{\mathsf{W}}(\mathsf{w}_1), T\overline{\pi}^{\mathsf{W}}(X_{\mathsf{w}_2})) \in T^{\overline{\lambda}}_{\overline{\pi}^{\mathsf{W}}(\mathsf{w})}\overline{\mathsf{W}}.$$

Then

$$\mathcal{T}^{\overline{\pi}^{\mathsf{W}}}\overline{\pi}^{\mathsf{W}}(\Gamma(\mathsf{w})) = \overline{\Gamma}(\overline{\pi}^{\mathsf{W}}(\mathsf{w})).$$

Reduction by stages

 $N \subset G$ normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

Reduction by stages

 $N \subset G$ normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

1. Γ invariant under *G*

 $\downarrow \qquad \downarrow$ Reduction by *G* $\downarrow \qquad \downarrow$ 2. $\overline{\Gamma}$

Reduction by stages

$N \subset G$ normal subgroup

Proposition 4. The dynamics obtained by a twofold reduction (by N and H) is equivalent with the one obtained from a reduction by G directly.

PROOF. There is an isomorphism $\beta^{W} : \overline{W} \to \hat{W}, [w]_{G} \to [[w]_{N}]_{H}.$ Then $\mathcal{T}^{\beta^{W}}\beta^{W} : T^{\overline{\lambda}}\overline{W} \to T^{\hat{\lambda}}\hat{W}$ with

$$\mathcal{T}^{\beta^{\mathsf{W}}}\beta^{\mathsf{W}}([\mathsf{w}_1]_G, X_{[\mathsf{w}_2]_G}) = (\beta^{\mathsf{W}}([\mathsf{w}_1]_G), T\beta^{\mathsf{W}}(X_{[\mathsf{w}_2]_G})).$$

is an isomorphism and

$$\mathcal{T}^{\beta^{\mathsf{W}}}\beta^{\mathsf{W}}(\overline{\Gamma}([\mathsf{w}]_G) = \hat{\widehat{\Gamma}}(\beta^{\mathsf{W}}([\mathsf{w}]_G))$$

Multiple reduction: e.g. for $\{e\} \subset ... \subset N_2 \subset N_1 \subset G$.

 $\operatorname{Sec}(\tau/G) \simeq \operatorname{Sec}((\tau/N_2)/H_{02}) \simeq \operatorname{Sec}((\tau/N_1)/H_{01}) \simeq \operatorname{Sec}(((\tau/N_2)/H_{12})/H_{01})$