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Why control systems on Lie algebroids?

Controllability problem: find conditions that guarantee system can move
locally in any direction.

Deciding local controllability must be addressed prior to other important
control questions (e.g., motion planning, trajectory generation, etc.)
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Why control systems on Lie algebroids?

Lack of unifying framework imposes separate study for various classes of
systems such as

(i) simple mechanical systems (Lewis& Murray 95)

(ii) systems subject to nonholonomic constraints (Bloch et al 92, Bullo&
Zefran 01, Lewis 97),

(iii) systems invariant under the action of a Lie group of symmetries (Cortés
et al 02, Kelly & Murray 05, Martin & Crouch 84, Mart́ınez & Cortés 03)

(iv) systems enjoying special homogeneity properties (Cortes et al 01,
Kawski 95, Vela & Burdick 03).

(v) systems evolving on semidirect products (Shen 02)

Most works build on the rich geometric structure of these systems. Is it
possible to combine both geometric wealth and generality?
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Lie algebroid formalism provides an answer!

Lie algebroid notion provides framework to overcome drawback

• Underlying structure of Lie algebroid on the phase space makes pos-
sible unified treatment

• Lie algebroid formalism allows us to establish morphisms between two
systems, and relate their control properties

Underlying idea: property of interest easier to decide for one system, and
morphism allows us to infer property for the other one
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Lie algebroids

Lie algebroid τ : E →M with anchor ρ : E → TM (∼ substitute of TM )

Some useful definitions:

• Lie(Y) is distribution obtained by closing Y ⊂ Sec(E) under Lie bracket

• a : [t0, t1] → E admissible if d
dt
τ (a(t)) = ρ(a(t))

• E locally transitive at m ∈ M if ρm : Em → TmM is surjective (m is
contained in a leaf of maximal dimension)

• Ψ: E → E is morphism of Lie algebroids if it is admissible (Tψ◦ρ = ρ◦Ψ)
and preserves Lie algebra structure of algebroids
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Linear connections

Linear E-connection on a vector bundle π : P → M (Fernandes 02,
Cantrijn & Langerock 02) is R-bilinear map ∇ : Sec(E)× Sec(P ) → Sec(P )

∇Fσα = F ∇σα and ∇σ(Fα) = (ρ(σ)F )α + F∇σα

for any F ∈ C∞(M), σ ∈ Sec(E) and α ∈ Sec(P ). We take P = E

Skew-symmetric part defines torsion tensor T (σ, η) = ∇ση −∇ησ − [σ, η]

Symmetric part determines symmetric product 〈σ : η〉 = ∇ση +∇ησ

Sym(Y) is distribution obtained by closing Y ⊂ Sec(E) under 〈· : ·〉

Covariant derivatives and geodesics of ∇ (admissible curves a : R → E
with ∇a(t)a(t) = 0)
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Levi-Civita and constrained connections

Levi-Civita connection: For metric G : E ×M E → R, unique torsion-less
connection ∇G on E metric with respect to G,

2G(∇ση, ζ) = ρ(σ)G(η, ζ) + ρ(η)G(σ, ζ)− ρ(ζ)G(η, σ) + G(σ, [ζ, η]) + G(η, [ζ, σ])− G(ζ, [η, σ])

• gradient of V ∈ C∞(M), gradG V ∈ Sec(E) is gradG V = ]G(ρ
∗dV )

Constrained connection: Let D subbundle of E, P : E → D projector,
Q = I − P , and Dc = Im(Q) (note D ⊕Dc = E). Given ∇ connection,

∇̌ση = P (∇ση) +∇σ(Qη), σ, η ∈ Sec(E)

Generalizes nonholonomic connection (Lewis 96, Synge 28)

• ∇̌ restricts to D, i.e., ∇̌ση ∈ D for η ∈ Sec(D), σ ∈ Sec(E)
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Prolongation of Lie algebroid

Prolongation of E (Martinez 01) is τ1 : TE → E with fiber

TaE = { (b, v) ∈ Em × TaE | ρ(b) = Taτ (v) } , a ∈ Em

• Anchor ρ1 : TE → TE, ρ1(a, b, v) = v. Also Tτ : TE → E, Tτ (a, b, v) = b

• Morphisms of Lie algebroids can also be prolonged: prolongation of
Ψ : E → E is T Ψ: TE → TE, T Ψ(a, b, v) = (Ψ(a),Ψ(b), TaΨ(v))
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Prolongation of Lie algebroid

Prolongation of E (Martinez 01) is τ1 : TE → E with fiber

TaE = { (b, v) ∈ Em × TaE | ρ(b) = Taτ (v) } , a ∈ Em

• Anchor ρ1 : TE → TE, ρ1(a, b, v) = v. Also Tτ : TE → E, Tτ (a, b, v) = b

• Morphisms of Lie algebroids can also be prolonged: prolongation of
Ψ : E → E is T Ψ: TE → TE, T Ψ(a, b, v) = (Ψ(a),Ψ(b), TaΨ(v))

Vertical space: Ver(TE) ⊂ TE are elements (a, 0, v) with v vertical vector

Vertical lift of σ ∈ Sec(E) is σV ∈ Sec(TE), σV (a) = (a, 0, σ(m)V

a)

Horizontal space: Horm(TE) ⊂ T0m
E along 0M ,

Horm(TE) = { (0m, b, v) ∈ T0m
E | v ∈ TmM ⊆ T0m

E } , m ∈M

Along 0M , T0M
E = Hor(TE)⊕ Ver0M

(TE)
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Homogeneity

Liouville section of TE is ∆(a) = (a, 0, aV

a)

F ∈ C∞(E) is homogeneous of degree s ∈ Z if Lρ1(∆)F = sF

Z ∈ Sec(TE) is homogeneous of degree s ∈ Z if [∆, Z] = sZ

Ps is set of homogeneous sections of TE of degree s

Proposition: Let r, s ∈ Z and Z ∈ Sec(TE). Then

(i) [Ps,Pr] ⊆ Ps+r, and Ps = {0} if s ≤ −2,

(ii) Z ∈ P−1 if and only if there exists a section σ of E such that Z = σV ,

(iii) Z ∈ P0 if and only if Z is a projectable section,

Note that for all Z ∈ Ps, s ≥ 1, Z(0m) = 00m
, m ∈M
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SODE sections

Γ ∈ Sec(TE) is SODE section on E if T τ ◦ Γ = IdE

• Adm(E) is set of admissible vectors v ∈ TaE of the form (a, a, v) ∈ TE
• Γ ∈ Sec(TE) is SODE if Γ ∈ Adm(E)

Sprays are homogeneous SODE sections with degree 1

• Associated symmetric product: for σ, η ∈ Sec(E), [σV , [Γ, ηV ]] is homo-
geneous with degree −1, hence 〈σ : η〉V

Γ = [σV , [Γ, ηV ]]

Symmetric product determines and is determined by Γ. Locally

[ηV , [Γ, σV ]] =
(
σγρk

γ

∂ηα

∂xk
+ ηγρk

γ

∂σα

∂xk
+ fα

βγσ
βηγ

)
Vα

• For Γ and skew-symmetric (2,1) tensor T , ∇Γ,T
σ η = 1

2

(
[σ, η] + T (σ, η)

)
+

1
2 〈σ : η〉Γ is unique connection with associated spray Γ and torsion T
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Nonlinear control

Affine nonlinear control system on manifold M ,

ṁ(t) = f (m(t)) +

k∑
i=1

ui(t)gi(m(t)) ,

where u = (u1, . . . , uk) ∈ U , 0 ∈ U open set of Rk

f is drift vector field
g1, . . . , gk are control vector fields

t 7→ u(t) = (u1(t), . . . , uk(t)) belongs to U , set of admissible controls
(for us, piecewise constant functions with values in U )
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Sample control problems

Stabilization

• Stabilize an (otherwise) unstable equilibrium

• Shape the dynamics to make a desired configuration an equilibrium

Motion planning and trajectory tracking

• Generate controls that make system go from A to B

• Generate controls that make system track a desired trajectory

Parameter uncertainty and disturbance rejection

• Design controls that cope with errors in knowledge of parameters

• Make system behavior robust to unknown disturbances
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Controllability problem

RV
M(m,T ) is reachable set from m ∈ M at time T > 0, with trajectories

contained in neighborhood V of m for t ≤ T

RV
M(m,≤ T ) =

⋃
t≤T

RV
M(m, t)

Locally accessible from m ∈ M : RV
M(m,≤ T ) contains non-empty open

set of M for all neighborhoods V of m and all T > 0

Locally controllable from m ∈ M : RV
M(m,≤ T ) contains non-empty open

set of M to which m belongs for all neighborhoods V of m and all T > 0
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General control systems on Lie algebroids

τ : E →M Lie algebroid, σ, η1, . . . , ηk ∈ Sec(E)

Control problem on E →M with drift σ and inputs η1, . . . , ηk

ṁ(t) = ρ
(
σ(m(t))) +

k∑
i=1

ui(t)ηi(m(t))
)

Trajectories are admissible curves of E, and hence must lie on a leaf of E.

Only locally transitive Lie algebroids – otherwise, system cannot be locally
accessible at points m ∈M where ρ is not surjective

With f = ρ(σ), gi = ρ(ηi), standard affine nonlinear control system on M
Lie algebroid geometric structure enhances controllability analysis



JJ N II •

Accessibility algebra and subbundle

Accessibility algebra D is smallest subalgebra in Sec(E) containing
σ, η1, . . . , ηk

Elements of D are linear combinations of Lie brackets of the form

[ζl, [ζl−1, [. . . , [ζ2, ζ1] . . . ]]], ζi ∈ {σ, η1, . . . , ηk}, l ∈ N

Accessibility subbundle Lie({σ, η1, . . . , ηk}) is vector subbundle of E gen-
erated by accessibility algebra D,

Lie({σ, η1, . . . , ηk}) = span {ζ(m) | ζ section of E in D} , m ∈M

If dimension of Lie({σ, η1, . . . , ηk}) is constant, then Lie({σ, η1, . . . , ηk}) is
smallest Lie subalgebroid of E that has {σ, η1, . . . , ηk} as sections
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Accessibility and controllability tests

Theorem: Let E be locally transitive at m ∈M
Lie({σ, η1, . . . , ηk})(m) + ker ρ(m) = Em ⇒ locally accessible from m
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Accessibility and controllability tests

Theorem: Let E be locally transitive at m ∈M
Lie({σ, η1, . . . , ηk})(m) + ker ρ(m) = Em ⇒ locally accessible from m

Let B be iterated Lie bracket of elements in {X0, X1, . . . , Xk} ⊂ Sec(E)

• δi(B) is the number of times that Xi appears in B

• δ(B) = δ0(B) + δ1(B) + · · · + δk(B), degree of B

• B bad if δ0(B) odd and δi(B) even, i ∈ {1, . . . , k}. B good if not bad

Theorem: Assume system locally accessible from m ∈ M . If every bad
Lie bracket B in {σ, η1, . . . , ηk} evaluated at m can be put as an R-linear
combination of good Lie brackets in {σ, η1, . . . , ηk} of lower degree and
elements in ker ρ(m), then system is locally controllable from m
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Mechanical control systems on Lie algebroids

For Lagrangian L : E → R, Euler-Lagrange operator δL : Adm(E) → E∗

(Cariñena & Martinez 01, Martinez 01, Weinstein 96). Locally

δL =

(
d

dt

∂L

∂yα
+ Cγ

αβy
β ∂L

∂yγ
− ρi

α

∂L

∂xi

)
eα

With input forces {θ1, . . . , θk} ⊂ Sec(E∗) acting on Lagrangian system

δL =

k∑
l=1

ul θl

If system is nonholonomically constrained by subbundle D of E, with pro-
jectors P : E → D and Q = I − P . Equations of motion read

P ∗(δL) =

k∑
l=1

ulP
∗(θl) , Q(a) = 0
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Connection control systems

Let ∇ connection on E, and {η, η1, . . . , ηk} ⊂ Sec(E)

∇a(t)a(t) + η(m(t))) =

k∑
i=1

ui(t)ηi(m(t))

Equivalently, control system on TE → E

ȧ(t) = ρ1
(
(Γ∇ − ηV )(a(t)) +

k∑
i=1

ui(t)η
V

i (a(t))
)

Equations capture mechanical control systems, both

• unconstrained: L = 1
2G−V ◦τ ,∇ = ∇G, η = gradG V , ηi = ]G(θi) ∈ Sec(E)

• constrained: L = 1
2G − V ◦ τ , D subbundle of E, ∇̌ = P (∇G

· ·) +∇G
· (Q·),

η = P (gradG V ), ηi = P (]G(θi)) ∈ Sec(E)
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Accessibility and controllability notions

I: Full-state accessibility and controllability

W neighborhood of 0m ∈ E,

RW
E (0m,≤ T ) reachable points in E from 0m

System locally accessible from m at zero if RW
E (0m,≤ T ) contains

non-empty open set of E for all neighb. W of 0m in E and all T > 0
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Accessibility and controllability notions

I: Full-state accessibility and controllability

W neighborhood of 0m ∈ E,

RW
E (0m,≤ T ) reachable points in E from 0m

System locally accessible from m at zero if RW
E (0m,≤ T ) contains

non-empty open set of E for all neighb. W of 0m in E and all T > 0

II: Base accessibility and controllability

Additional notions specialized to mechanical control systems
V neighborhood of m ∈M ,

RV
M(m,≤ T ) = τ (Rτ−1(V )

E (0m,≤ T )) reachable points in M from m

System locally base accessible fromm ifRV
M(m,≤ T ) contains non-

empty open set of M for all neighborhoods V of m in M all T > 0
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Accessibility and controllability notions

III: Accessibility and controllability with regards to a manifold

Let ψ : M → N be open. System is locally base accessible from m
with regards to N if ψ(RV

M(m,≤ T )) contains non-empty open set
of N for all neighborhoods V of m and all T > 0

Analogous definitions for controllability

Base accessibility and controllability with regards to M with IdM : M →M
corresponds to base accessibility and controllability

System base accessible (respec. controllability) ⇒ system base accessi-
ble (respec. controllability) with regards to N
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Structure of control algebra

Objective: analyze Lie({Γ−ηV , ηV

1 , . . . , η
V

k}) at points of the form 0m,m ∈M

Analysis

• extends Lewis & Murray 95 to mechanical control systems defined on
Lie algebroids

• relies on homogeneity and geometry of TE along zero-section

Strategy: Lie({Γ− ηV , ηV

1 , . . . , η
V

k}) ⊂ Lie({Γ, ηV

1 , . . . , η
V

k , η
V})

Theorem: Let m ∈M . Then,

Lie({Γ, ηV

1 , . . . , η
V

k , η
V}) ∩ Ver0m

(TE) = Sym({η, η1, . . . , ηk})(m)V

Lie({Γ, ηV

1 , . . . , η
V

k , η
V}) ∩ Horm(TE) = Lie(Sym({η, η1, . . . , ηk}))(m)
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Vertical and horizontal distributions
Let X ′ = {Γ− ηV , ηV

1 , . . . , η
V

k} and X = {Γ, ηV

1 , . . . , η
V

k , η
V}

For B′ in Br(X ′), let S(B′) ⊂ Br(X ) contain B ∈ Br(X ) obtained by replacing any Γ− ηV

in B′ by either Γ or ηV (denote δk+1(B) number of occurrences of ηV in B)

B′ =
∑

B∈S(B′)

(−1)δk+1(B)B

Reciprocally, for B ∈ Br(X ), determine B′ such that B ∈ S(B′) by substituting occur-
rence of Γ or ηV in B by Γ− ηV (pseudoinv(B) = B′)

Define σ ∈ C(k)
ver(η; η1, . . . , ηk) ⊂ Sec(E) iff

σV = B′′, B′′ =
∑

B̃∈S(pseudoinv(B))
∩Br−1(X )∩Br0(X )

(−1)δk+1(B̃)B̃ , B ∈ Br2k−1(X ) primitive

and σ ∈ C(k)
hor(η; η1, . . . , ηk) ⊂ Sec(E) iff

σ = σB′′, B′′ =
∑

B̃∈S(pseudoinv(B))
∩Br−1(X )∩Br0(X )

(−1)δk+1(B̃)B̃ , B ∈ Br2k(X ) primitive
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The accessibility subbundle

Cver(η; η1, . . . , ηk) = ∪C(k)
ver(η; η1, . . . , ηk)

Chor(η; η1, . . . , ηk) = ∪C(k)
hor(η; η1, . . . , ηk)

Subbundles of E are Cver(η; η1, . . . , ηk) and Chor(η; η1, . . . , ηk)

Theorem: Let m ∈M . Then,

Lie({Γ− ηV , ηV

1 , . . . , η
V

k}) ∩ Ver0m
(TE) = Cver(η; η1, . . . , ηk)(m)V

Lie({Γ− ηV , ηV

1 , . . . , η
V

k}) ∩ Horm(TE) = Chor(η; η1, . . . , ηk)(m)

When η = 0 (no potential)

Cver(0; η1, . . . , ηk) = Sym({η1, . . . , ηk})
Chor(0; η1, . . . , ηk) = Lie(Sym({η1, . . . , ηk}))
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Accessibility tests

Theorem: Let m ∈M and assume E is locally transitive at m. Then, system

• locally base accessible from m if Chor(η; η1, . . . , ηk)(m) + ker ρ = Em

• locally accessible from m at zero if Chor(η; η1, . . . , ηk)(m) + ker ρ = Em

and Cver(η; η1, . . . , ηk)(m) = Em

When η = 0 (no potential), if Lie(Sym({η1, . . . , ηk}))(m) + ker ρ 6= Em, let N
denote maximal integral manifold of Lie(Sym({η1, . . . , ηk}))(m) through m

For each neighborhood V of m in M and each T sufficiently small,
RV

M(m,≤ T ) ⊂ N contains a non-empty open subset of N
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Controllability tests

Let P be symmetric product in {η, η1, . . . , ηk}
P is bad if the number of occurrences of each ηi in P is even
P is good otherwise

Accordingly, 〈ηi : ηi〉 is bad and 〈〈η : ηj〉 : 〈ηi : ηi〉〉 is good

Theorem: Let m ∈ M . System is locally base controllable from m if
locally base accessible from m and every bad symmetric product in
{η, η1, . . . , ηk} evaluated at m can be put as an R-linear combination of
good symmetric products of lower degree and elements of ker ρ

Similar tests for

• locally controllable at zero

• base accessibility/controllability with regards to manifold
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Morphism-related mechanical systems (I)

Let Ψ : E → E be morphism of Lie algebroids and weakly T Ψ-related
systems (Γ− ηV , {ηV

1 , . . . , η
V

k}) on E, (Γ− ηV , {ηV

1 , . . . , η
V

k
}) on E

Using homogeneity, one can deduce that

• associated connections are also Ψ-related

• TΨ-relation among vertical lifts of potential terms and input sections
translates into a Ψ-relation of potential terms and input sections

Theorem: Under above conditions, with ψ open,

if system on E is locally base accessible (respectively locally base
controllable) from m⇒ system on E is locally base accessible (re-
spectively locally base controllable) from ψ(m)
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Morphism-related mechanical systems (II)

If Ψ isomorphism between fibers of Lie algebroids, then conditions are
either simultaneously satisfied on E and E or simultaneously not satisfied

Theorem: Let Ψ : E → E be a morphism of Lie algebroids which is an isomorphism
on each fiber. Consider two mechanical control systems on E and E, with k ≥ k,
that are Ψ-related. Let m ∈M . Then

(i) Cver(η; η1, . . . , ηk)(m) = Em if and only if Cver(η; η1, . . . , ηk)(ψ(m)) = Eψ(m),

(ii) Chor(η; η1, . . . , ηk)(m) + ker ρ = Em if and only if Chor(η; η1, . . . , ηk)(ψ(m)) + ker ρ = Eψ(m),
(iii) Every bad symmetric product in {η, η1, . . . , ηk} evaluated at m can be put as an

R-linear combination of good symmetric products of lower degree if and only
if every bad symmetric product in {η, η1, . . . , ηk} evaluated at ψ(m) can be put
as an R-linear combination of good symmetric products of lower degree.
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Applications: Simple Mechanical Control Systems (SMCS)

A simple mechanical control system (Q,G, V,F),

• Q is the manifold of configurations of the system

• G is a Riemannian metric on Q (kinetic energy metric of the system)

• V ∈ C∞(Q) is the potential function

• F = {F 1, . . . , F k} is a set of k linearly independent 1-forms on Q

The dynamics of simple mechanical control systems is classically de-
scribed by the forced Euler-Lagrange’s equations

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
=

k∑
i=1

ui(t)F
i

where L : TQ→ R, L(q, q̇) = 1
2G(q̇, q̇)− V (q)
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Applications: Simple Mechanical Control Systems (SMCS)

Lie algebroid τ = τQ : E1 = TQ→M1 = Q, with ρ = IdTQ : TQ→ TQ
Forces F correspond to sections of the dual bundle E∗

1 = T ∗Q

Dynamics is intrinsically written as

ȧ(t) = ρ1
(
Γ(a(t))− (gradG V )V (a(t)) +

k∑
i=1

ui(t)Y
V

i (a(t))
)

where Γ is SODE associated with ∇G and ρ1 = IdTTM

(i) Base accessibility (resp. accessibility at zero) in M = Q corresponds
to configuration accessibility (resp. accessibility at zero velocity) in Q
(Lewis & Murray 95)

(ii) Tests on Lie algebroid render previously known tests for accessibility
(Lewis & Murray 95)

Analogous situation with controllability
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Applications: SMCS with symmetry

SMCS (Q,G, V,F) invariant under free and proper action Φ of Lie group G

Then Q(Q/G,G, π) principal fiber bundle with bundle space Q, base
space Q/G, structure group G and projection π

Φ induces lifted (free and proper) action of G on TQ, Φ̂ : G× TQ→ TQ,
Φ̂g = TΦg, with p : TQ→ TQ/G, p(vq) = [vq], surjective submersion

Lie algebroid E2 = TQ/G→M2 = Q/G, with

τ2([vq]) = [q] ρ2([vq]) = Tπ(vq)

SMCS induces mechanical control system on E2:

• Y induce sections B = {Bi : Q/G→ TQ/G}k
i=1 such that p◦Yi = Bi ◦π;

• V and G induce gradG V such that p ◦ gradG V = gradG V ◦ π
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Applications: SMCS with symmetry – tests

Accessibility notions:

(i) Base accessibility on E2 corresponds to configuration accessibility in
Q/G

(ii) Accessibility at zero in E2 (reachable sets in TQ/G) stronger than ac-
cessibility at zero velocity in Q/G (accessible sets in T (Q/G))

(iii) If bundle Q = G × Q/G trivial, consider τ : G × Q/G → G. Then,
base accessibility with regards to G corresponds to fiber configuration
accessibility (Cortes et al 02)

Same deal with controllability

What about accessibility/controllability tests in Q which make use of the
SMCS symmetry?



JJ N II •

Applications: SMCS with symmetry – geometry

TM1
Tψ
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//Q/G

• Both algebroids have fibers of the same dimension n = dimQ

• Ψ is surjective
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Applications: SMCS with symmetry – tests

Theorem [accessibility]:

Chor(gradG V ;Y) = TQ⇐⇒ Chor(gradG V ;B) = TQ/G

Cver(gradG V ;Y) = TQ⇐⇒ Cver(gradG V ;B) = TQ/G

(resp. accessibility at zero velocity)

• reduced representation (space of smaller dimension)

• extends results in Cortes et al 02 to nontrivial potential terms.

Theorem [controllability]: Enough to check bad symmetric products in
{gradG V ,B1, . . . , Bk} are R-linear combinations of good ones in TQ/G
(plus accessibility)

Furthermore, if reduced system is not base accessible (resp. control-
lable), then original system is not base accessible (resp. controllable)
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Applications: semidirect products – geometry

Let g → X(M), ξ ∈ g 7→ ξM ∈ X(M), surjective Lie algebra homomorphism

Lie algebroid τ : E = M × g →M , with ρ(m, ξ) = ξM(m)

With TE ≡ TM × Tg ≡ TM × g× g (left multiplication),

(a, b, v) ∈ TE is
(
(m, ξ), (m, η), (vm, ξ, ζ)

)
, with vm = ηM(m)

Therefore, TE ≡M × g× g× g, with

τ1(m, ξ, η, ζ) = (m, ξ), Tτ (m, ξ, η, ζ) = (m, η), ρ1(m, ξ, η, ζ) = (ηM(m), ξ, ζ)

Let (G, V, {θ1, . . . , θk}) be mechanical control system on E
Assume G comes from inner product on g, G((m, ξ1), (m, ξ2)) = G(ξ1, ξ2)
For ξ ∈ g, define ad†ξ : g → g by G(ad†ξ η1, η2) = G(η1, [ξ, η2]g)
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Applications: semidirect products – dynamics

SODE reads Γ∇G(m, ξ) = (m, ξ, ξ, ad†ξ ξ), and controlled equations

ȧ− ad†a a = − gradG V (m) +

k∑
i=1

uiηi(m)

For constant sections σi(m) = (m, ξi), i = 1, 2,

∇G
σ1
σ2(m) =

(
m,

1

2
[ξ1, ξ2]g −

1

2
(ad†ξ1

ξ2 + ad†ξ2
ξ1)

)
〈σ1 : σ2〉 (m) =

(
m,−(ad†ξ1

ξ2 + ad†ξ2
ξ1)

)
(i) Tests can be applied to these problems to determine base accessibil-

ity (resp. controllability) – generalizes Shen 02

(ii) Systems appear frequently as mechanical systems defined on homo-
geneous spaces for a given group action
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Conclusions

• Investigated controllability properties of systems on Lie algebroids. Es-
tablished controllability results for nonlinear affine control systems

• Introduced mechanical control system on Lie algebroid. Defined con-
trollability notions and investigated sufficient tests. Applications to sys-
tems related by morphism of Lie algebroids

• Illustrated results with the classes of simple mechanical control systems
and of systems evolving on semidirect products

Future work

• investigation of controllability tests along relative equilibria of me-
chanical control systems on Lie algebroids

• treatment of models that include gyroscopic forces and dissipation
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Thanks for your attention!

Check out

http: // www. ams. ucsc. edu/ ~jcortes !

http://www.ams.ucsc.edu/~jcortes

