Two separately developed theories,

e theory of geodesically equivalent metrics and

e theory of quadratically integrable Hamiltonian sys-
tems and separations of variables

study essentially the same object.

We apply methods of one in the other



Benenti-systems, L-systems, cofactor systems, quasi-
bi-hamiltonian systems, systems admitting special
conformal Killing tensor



Levi-Civita Painlevé Eisenhart

Levi-Civita Painlevé Eisenhart
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Definition: Two Riemannian metrics on one
manifold are geodesically equivalent, if every
geodesic of the first metric is a (probably, re-
parametrised) geodesic of the second metric.



Example 1: The geodesics of the Klein model
of the hyperbolic space are straight lines



Example 2: Given A € SL(n+ 1)\ O(n + 1),
Beltrami 1865 constructed a diffeomorphism
a:S™ — S™ of the standard sphere S™ ¢ R*T1

that is
e NOt an isometry

e but takes geodesics (great circles) to geodesics
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A(x)
|A(z)|

we construct\ a

Example 2: A , a(x) =

a takes great circles to great circles and is not
an isometry



Example 3: Levi-Civita’s Theorem 1896: Let g, g be
two metrics on M"™. Assume the roots of
P(t) := det(g — tg) are all simple at x € M™.

Then, the metrics are geodesically equivalent near x
if and only there exist coordinates z1,x>,...,z, in SOMe
neighbourhood of x such that in these coordinates the
metrics have the following model form:

ds; Midx? + Modzs + -+ Mpda?,

dss = piMidas + p2Nadas + - + puMnday,
where the functions I; and p; are given by

= [ 16—
jFE
ji=1
def 1 1
VY WS W

where, for each 2, the function )\; is a smooth function

of the variable z;.
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Relation with integrable systems and separa-
tion of variables

1
— we construct =1 det g\ n¥1
For g, gon M" »Li=g 9'(detg)n+

YVt € R define

> Sy = (L —t-Id)~1.det(L —t-Id)

consider\

> Iy 1 TM™ — R, 1i(€) = g(5¢(£),€).




Theorem (Topalov, Matveev 1998):
If g ~ g, then, Viq,t> € R, the functions Iy, are
commuting integrals for the geodesic flow of g
(i.e. for the Hamiltonian H(&) := g(&,€))



The family contains n integrals which are func-
tionally independent almost everywhere, if and
only if there exists a point where all roots of
P(t) := det(g — tg) are simple.
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Theorem (Topalov, Matveev 2001):
If g ~ g, then, Vt1,t> € R, the operators

1 0 0
Ti = \/detg ¢®7 -
ti vdet gox, 79 &, Ozg

commute with the Laplacian of g and mutually
commute.



There is no problem to introduce potential en-
ergy in the picture
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Plan:

Geometric sense of the integrals

First application of geodesic equivalence to
integrable systems: Sinjukov-Topalov hier-
archy

Second application of geodesic equivalence
to integrable systems: superintegrability

One application of integrable systems to
geodesic equivalence: topology

Probably one more application of integrable
systems to geodesic equivalence: proof of
Lichnerowicz-Obata conjecture



Symplectic nature of the integrals (Topalov, M~)
Consider Hamiltonian systems
(N?", w,H, Xp1) and (N2, &, H,Xg)
and their energy surfaces
Q?"l1:={H(z) =h} and Q?"!:={H(x)=h}
Suppose there exists m : Q2" 1 — Q%1
such that dm(Xpg) = AM(x)Xg

Then we can construct integrals for Xg:



indeed: consider o = wig,0 = w)g and the pull-back
m*o.

Lemma: The flow of Xy preserves o, m*o.

Proof: Lx,m*c = d[ix,m*c] 4+ 1x,d [m*c] = 0.



Since the forms o, m*c are preserved by the flow, a
function constructed invariantly by using these forms
must automatically be an integral. So the coefficients
of the characteristic polynomial of one form with respect
to the second are integrals.
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The procedure does not guarantee that the integrals
commute. The proof of commutativity is a separate
result. Bihamiltonian approach which also implies com-
mutativity is due to Ibort, Magri, Marmo 2000



First applications in integrable systems: We
can construct many new examples of (quan-
tum) integrable systems:

Given g, g let us construct L as above.

For every (1, 1)-tensor B, define:

gp(&n) ;= g(B(),n)
gp(&,n) == g(B(&),n)



Theorem (Topalov, Matveev 2001): As-
sume g ~ g. For every real-analytic function
F, the metrics gp(r) and gp(r) are geodesically
equivalent.



The example of Beltrami gives us a pair of
geodesically equivalent metrics. If we apply
the above Theorem to it for functions F(x) =
r and F(z) = z2, we get the metrics of the
ellipsoid and of the Poisson spheres. Thus,
the metrics of the ellipsoid and of the Poisson
sphere are (quantum) integrable
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Second application: superintegrable and
superseparable systems:

Problems:
1. How big can be the dimension of the integrals of a
certain form.
e | ocally, near a point
e Or globally, on a compact or a complete manifold

2. To construct all natural Hamiltonian superintegrable
systems.

3. Given a metric, to decide whether its geodesic flow
IS superintegrable



Second application: superintegrable and
superseparable systems:

“Reformulation” of (1) for geodesically equivalent met-
rics:

How big can be the degree of mobility of a metric?

(the degree of mobility is the dimension of the space of
metrics, geodesically equivalent to the given one).




Answers locally (Lie 1882 Fubini 1903 Egorov 1939
Solodovnikov 1956 Mikes 1982 Shandra 2000):

In dim 2, the degree of mobility can be 1,2,3,4,6 (locally
and globally) only

If dim(M) > 3 then, locally, the degree of mobility of a
metric of nonconstant curvature can take the values
m(m2-|— 1) ey

only, where 1 <m <n and 1 <[ < [2E=m]




Globally, the following theorem is true:

Theorem (Matveev 2004): Let (M",g), n > 2, be
a connected complete irreducible Riemannian manifold
of nonconstant sectional curvature. Then the degree of
mobility of g is < 2.
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Second application: superintegrable and
superseparable systems:

“Reformulation” of (2) for geodesically equivalent met-
rics:

To obtain a list of all metrics whose degree of mobility
is > 3.



For dimensions > 3 the local version of the problem was
solved by Solodovnikov in 1956—1969 and Shandra in

2001.

In dimension 2, the local version is nontrivial and is not
solved yet.



Concerning the global version, the compact variant is
due to Kolokoltsov 1986 and Kiyohara 1991

Theorem: (Matveev 2004) Suppose the degree of
mobility of a compete metric on R? of the form A\(z, y) (dz?+
dy?) be > 3. Then the metric is isomorphic to one of
the following metrics:

1. (224 y? 4 C)(dx? + dy?),
2. (22 +y?/4 4+ C)(dz? + dy?),
3. dx? —|—dy2,

where C' is a constant.
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Second application: superintegrable and
superseparable systems:

“Reformulation” of (3) for geodesically equivalent met-
rics:

Given a metric to decide how big is the space of metrics
geodesically equivalent to a given one
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For dimensions > 3 the problem was almost solved by
Solodovnikov in 1956—1969 and Shandra in 2000.

In dimension 2,

Theorem: (Manno, Matveev 2005) If the dimension
of the space of quadratic integrals is precisely 4, then
there exists three independent projective vector fields.

(A vector field is projective if its flow sends geodesics
to geodesics).
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In 1996 Romanovskii constructed a differential opera-
tor which decides whether a affine connection admits
three projective vector fields. Combining his result with
the result above we obtain a differential operator which
decides whether a metric is Darboux-superintegrable.
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Application of integrable systems in geodesic
equivalence

Geodesic rigidity problem (generalisation of Bel-
trami 1865): What closed manifolds admit geodesi-
cally equivalent nonproportional metrics.
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Theorem (Matveev 2006) Suppose M is closed con-
nected. Let Riemannian metrics g and g on M be
geodesically equivalent and nonproportional. Then the
manifold can be covered by the sphere, or it admits a
metric with reducible holonomy group.
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Corollary 1 (Topalov, Matveev, 2001): A closed ori-
entable surface admitting nonproportional geodesically
equivalent metrics is S? or T2.

Corollary (Matveev 2003): A closed 3-manifold ad-
mitting nonproportional geodesically equivalent metrics
is Ly, or Seifert manifold with zero Euler number. (L,
are covered by S3, Seifert manifold with zero Euler num-
ber are 3-manifolds admitting metrics with reducible
holonomy groups.)
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Proof of Corollary 1: In dimension 2, the
integral Ig is

Because of topology, there exists xg such that
Yjzo = Glap- VVE assume g, = gjz, and find a
contradiction.
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Explanation of Corollary 2 Assume dim(M) = 3

Case 1: There exists a point of the manifold
such that that the polynomial det(g — A\g) has
3 different roots. Then, the geodesic flow of
g is Liouville-integrable.
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Theorem ( Kruglikov, Matveev 2005): Then,
the topological entropy of g vanishes.

(And therefore modulo the Poincare conjecture
the manifold can be covered by S3, S2 x S1 or
by S1 x sl xs1)
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Case 2: At every point the number of roots of
the polynomial is < 2.

Then precisely the same trick as in dimension
2 works.
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Another application in global differential
geometry

I proved Lichnerowicz-Obata-Solodovnikov

Conjecture (50th): Let a Lie group (of dim>

1) act on a closed Riemannian manifold by
geodesic-preserving transformations. Then, the
manifold is covered by the round sphere, or the

group acts by isometries.
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History of L-O-S conjecture:
first examples Beltrami 1865

first paper of Lie groups of geodesic transformations Lie
1882.

first local results Fubini 1903
formulated as a question Schouten 1924
proved under different tensor assumptions 1950—1980

proved assuming dim(M™) > 3 and that all objects are
real analytic Solodovnikov 1969



Explanation if there exists a point such that
the roots of P(t) := det(g — tg) are all simple.
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Recall

e Levi-Civita 1896: locally the metrics are :

d8§ = Z—[ N (i) — N () |da?
#i

1 JFL

ds

QN

_ ) 1 () — () | dae?
= Z AZ,(QCZ_)fa[M(%)jf[;muz( i) = X () e
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Matveev 2004: If the manifold is not (covered
by) the round sphere, the degree of mobility < 2.
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Combining the facts above, we obtain that an essential
projective vector field v must have the entries

(v1(x1),v2(x2), ..., vn(xn)).

Then a projective transformation gives a system of ODE.
One can analyse the system and prove the conjecture.
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Open problems (Benenti, Rauch-Wojciechowski, Matveev)
1. How to decide?

e To construct a differential operator that decides
whether the geodesic flow of a metric admits an
additional quadratic in momenta integral.

e [0 construct a differential operator that decides
whether a metrics admits a geodesically equiv-
alent one.
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2. Superintegrable systems

e [0 construct all metrics whose space of quadratic
in momenta integrals has dimension 3.

e To introduce the potential energy in Solodovnikov’s
results
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3. To construct global theory of geodesically equiva-
lent pseudo-Riemannian metrics.

e To understand topology of closed manifolds car-
rying geodesically equivalent pseudo-Riemannian
metrics.

e To solve pseudo-Riemannian analog of projec-
tive L-O-S conjecture.
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