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Abstract

We compare the approaches of E. Cartan and of T.Y. Thomas and J.H.C. Whitehead
to the study of ‘projective connections’. Although the quoted phrase has quite
different meanings in the two contexts considered, we are able to show that a class
of projectively equivalent symmetric affine connections on a manifold (the latter
meaning) gives rise, in a global way, to a unique Cartan connection on a principal
bundle over the manifold, defining a development of curves in the manifold to curves
in projective space (the former meaning). The unparametrized geodesics of the affine
connections are identical to the geodesics of the Cartan connection. The principal
bundle on which the Cartan connection is defined is itself a geometric object, and
exists independently of any particular connection.
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1 Introduction

Elie Cartan’s paper on projective connections [2], published in 1924, was one of a series
intended to extend the idea of an affine connection as formulated by Levi-Civita and Weyl
to a more general, non-vector, situation. Cartan imagined, attached to each point of a
manifold, a projective space of the same dimension, together with a mechanism whereby
the spaces at two infinitely-neighbouring points could be ‘connected’. Such a connection
would define geodesics as those curves in the manifold which could be ‘developed’ into
straight lines in the connected projective spaces.
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A modern interpretation of Cartan’s idea can be found in the recent book by Sharpe [14].
According to Sharpe, the fruitful way to view Cartan’s theory of connections is to think
of it as a generalization of Klein’s concept of geometry. In this approach, each ‘Cartan
geometry’ is based upon a model geometry called a ‘Klein geometry’. A Klein geometry
is a homogeneous space G/H of a Lie group G; G itself is a principal H-bundle over G/H
and comes equipped with a g-valued 1-form (where g is the Lie algebra of G), its Maurer-
Cartan form. A Cartan geometry on a manifold M , corresponding to a Klein geometry
for which G/H has the same dimension, is a principal H-bundle P →M together with a
g-valued 1-form on P which is called the ‘connection form’ and is intended to generalize
the Maurer-Cartan form. A construction of this kind is called a Cartan connection. For
a Cartan projective connection on an m-dimensional manifold the model geometry is
m-dimensional real projective space Pm. To realise this as a homogeneous space G/H
we take for G the group of projective transformations of Pm, which is PGL(m+ 1), the
quotient of GL(m + 1) by non-zero multiples of the identity; and for H we take the
subgroup Hm+1 ⊂ PGL(m+ 1) which is the stabilizer of the point [1, 0, . . . , 0] ∈ Pm.

Cartan projective connections differ in concept and in practice from the type of connec-
tion on a principal bundle introduced in 1950 by Ehresmann. Ehresmann’s definition of a
connection is based on the idea of parallel transport originally formulated by Levi-Civita;
on the face of it, there is no notion of parallelism associated with a Cartan projective
connection. The practical differences show up in the fact that the connection form of a
Cartan connection takes its values in g while that of an Ehresmann connection takes its
values in the Lie algebra of H, the group of the principal bundle.

Cartan’s work on connections predates the formulation of the concept of a fibre bundle,
of course, so though he discusses in detail the projective connection as a local object,
there is no direct hint in [2] of what the principal Hm+1-bundle on which the global
connection form should live might be (except of course that it should embody the notion
of attaching a projective space to each point of the manifold). The same is true, in
a sense, of [14]: while Sharpe gives the general procedure for constructing the bundle
implicitly by inferring its transition functions from the local connection forms, he does
not carry it out in the particular case of the projective connection, let alone give an
explicit definition of the bundle.

Around the time that Cartan published his paper on projective connections a somewhat
different line of research, also described as a theory of projective connections, was being
pursued by several other authors, including T.Y. Thomas [15, 16] and J.H.C.Whitehead
[17]. This second theory is concerned with the relationship between two affine connections
whose geodesics, although having different parametrizations, are geometrically the same;
two such connections are said to be projectively related. Here the concept of connection
is that of Ehresmann. A brief history of the development of these ideas up to 1930, which
names the mathematicians principally involved, can be found in the introductory section
of Whitehead’s paper.

There has recently been a resurgence of interest in both of these approaches, with a view
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to applications, and for purely mathematical reasons. Cartan’s approach to connection
theory and the equivalence of geometric structures has been found to be relevant to the
programme of research in general relativity which has been carried out over the last
dozen years by E.T.Newman and his co-workers (see [6]). As a consequence Cartan’s
theory of projective connections has been subject to new scrutiny (see [11] and [12]).
The approach of Thomas and Whitehead, on the other hand, has been discussed in [1],
also from a relativistic perspective. So far as purely mathematical interest in Cartan is
concerned there is the book of Sharpe [14] which has already been mentioned; whereas a
modern version of the method used by Thomas and Whitehead, captured in the concept
of a Thomas-Whitehead projective connection, has been given by Roberts in [13] and
developed in [7].

Our plan in the present paper is to provide a geometrical formulation of projective
connections which unifies these ideas. The key result is the explicit construction of a
principal Hm+1-bundle over any manifold M which serves as the bundle for the global
Cartan projective connection according to Sharpe’s interpretation. We call this bundle
the Cartan bundle CM → M . The Cartan bundle is defined independently of any
particular connection; any Cartan projective connection form can be realised as a form
on it. We further show how a Thomas-Whitehead projective connection, representing
a projective equivalence class of connections on M , gives rise in a natural way to a
Cartan projective connection on CM having the same unparametrized geodesics, thus
establishing the exact relationship between the theories of Thomas and Whitehead and
of Cartan.

In Section 2 we recall relevant properties of projective equivalence classes of affine con-
nections, and describe the Thomas-Whitehead theory in the formulation due to Roberts.
We discuss the theory of Cartan projective connections in Section 3; in particular, we
show how the transformation properties of a Cartan connection specify the transition
functions of the principal bundle on which it is defined. In both Sections 2 and 3, in-
deed, the exposition, though carried out in local terms, is made with a view to global
properties. In Section 4 we give the construction of the Cartan bundle, and in Section 5
we describe the construction of a Cartan connection on CM from a projective equivalence
class via the Thomas-Whitehead theory.

The material in Sections 2 and 3, while broadly familiar, contains some new insights;
that in Sections 4 and 5 is to the best of our knowledge new in its entirety. In a second
paper [4] we will extend our results to what Douglas [5] called the general geometry of
paths, that is, from affine sprays (which are treated here) to general sprays. This involves
both a completely new version of the Thomas-Whitehead theory, and a major extension
of the Cartan theory (Cartan dealt only with the 2-dimensional case). While the present
paper is, we believe, of interest in its own right, it also serves an important introductory
function for this second paper.

We use the Einstein summation convention for repeated indices. Indices a, b, . . . range
and sum from 1 to m and indices α, β, . . . from 0 to m.
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2 Projective equivalence classes of affine connections

In this section we review the theory of projective transformations of a symmetric affine
connection.

2.1 The fundamental descriptive invariant

A symmetric affine connection ∇ on an m-dimensional manifold M with coordinates (xa)
has, as its geodesic field, an affine spray S on the tangent bundle TM (with coordinates
(xa, ua)) given by

S = ua
∂

∂xa
− Γcabu

aub
∂

∂uc
.

Two sprays S, Ŝ are projectively equivalent if Ŝ − S = −2α∆, where ∆ is the Liouville
field ua∂/∂ua and the function α is linear in the ua, α = αau

a, with αadx
a a 1-form on

M . From this transformation rule it follows that

Γ̂cab = Γcab + (αaδ
c
b + αbδ

c
a) .

By taking a trace and writing Γa = Γbab, Γ̂a = Γ̂bab we obtain Γ̂a = Γa + (m + 1)αa, so
that the quantities

Π c
ab = Γcab −

1

m+ 1
(Γaδ

c
b + Γbδ

c
a)

are projectively invariant, that is, unchanged under a projective transformation, and
therefore associated with a whole equivalence class of projectively related sprays rather
than with any individual spray. These quantities were introduced by T.Y. Thomas [15,
16], who called them collectively the projective connection; to use that terminology in
the present context would be to invite confusion, so we have adopted another. Dou-
glas [5] used a generalized form of the same quantities, and called them collectively the
fundamental descriptive invariant of a projective equivalence class of geodesics; this is
the term we will use. One particularly important property of the fundamental descriptive
invariant is that, defining Πa = Π b

ab = Π b
ba, we have Πa = 0.

On the face of it, if we take

αa = −
1

m+ 1
Γa

then the transformed spray has Π c
ab for its connection coefficients. However, the Γa are

not the components of a 1-form: their transformation law involves the determinant of the
Jacobian of the coordinate transformation; consequently the Π c

ab are not, in general, the
components of a connection. In fact if Π c

ab, Π̂ c
ab are the components of the fundamental

descriptive invariant with respect to coordinates (xa), (x̂a) then

Π̂ c
ab = J̄da J̄

e
b (J

c
fΠ

f
de − J c

de ) +
1

m+ 1

∂ log |J |

∂xd
(J̄da δ

c
b + J̄db δ

c
a),
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where Jab = ∂x̂a/∂xb are the elements of the Jacobian matrix of the coordinate trans-
formation, J̄ab those of its inverse, J c

ab = ∂Jca/∂x
b = ∂Jcb /∂x

a, and J is the Jacobian
determinant.

We will nevertheless follow Douglas in taking the Π c
ab as fundamental in describing a

certain kind of path space, that is, a manifold together with a collection of paths (un-
parametrized curves) with the property that there is exactly one path of the collection
through a given point in a given direction. Douglas, in [5], deals with a more general type
of path space, and calls a path space of the kind discussed here a restricted path space.
In fact we could define a restricted path space as an assignment, to each coordinate
patch on a manifold, of a set of functions Π c

ab, symmetric in a and b, transforming under
a change of coordinates according to the formula given above. The paths are defined by

ẍc + Π c
abẋ

aẋb ∝ ẋc,

a condition which is invariant both under coordinate transformations and under change
of parametrization. It is not strictly necessary to impose the condition that Π b

ab = 0,
since if the Π c

ab transform as specified then the Π b
ab are components of a 1-form, and if

Π̃ c
ab = Π c

ab −
1

m+ 1
(Πaδ

c
b + Πbδ

c
a)

then Π̃ c
ab transforms in the same way, defines the same paths, and does satisfy Π̃a = 0.

Nevertheless we will reserve the term fundamental descriptive invariant for the Π c
ab which

satisfy Πa = 0. Clearly if Πa = 0 and Π̂ c
ab is related to Π c

ab by the transformation formula
given above then Π̂a = 0 also.

Every affine connection defines a restricted path space in this sense, with projectively
equivalent ones defining the same path space. As it happens the converse also holds, so
the concept of restricted path space is not more general; however, this is not immediately
apparent, so we will work with restricted path spaces for the moment, though we will
prove the converse shortly.

2.2 The projective curvature tensor

We denote by Rd
cab the curvature ‘tensor’ derived from the Π c

ab (we use gothic type to
indicate that it is not in fact a tensor):

Rd
cab =

∂Π d
bc

∂xa
−
∂Π d

ac

∂xb
+ Π d

aeΠ
e
bc − Π d

beΠ
e
ac;

its trace, the corresponding Ricci ‘tensor’ Rbc = Rd
bdc, is given, since Πa = 0, by

Rbc =
∂Π d

bc

∂xd
− Π d

beΠ
e
cd;
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it is symmetric. Despite appearances, the quantities P d
cab defined by

P dcab = Rd
cab −

1

m− 1

(

Rbcδ
d
a − Racδ

d
b

)

are the components of a tensor; it has the same symmetries as the curvature tensor, and
is in addition completely trace-free; it is projectively invariant, and its vanishing is the
necessary and sufficient condition, for m ≥ 3, for the paths of the restricted path space
to be rectifiable, that is, for there to be local coordinates with respect to which all the
paths are straight lines. This tensor is called the projective curvature tensor.

Since the case m = 2 is somewhat special, and has been discussed elsewhere [3], we will
for the remainder of this section assume that m ≥ 3.

2.3 Connections on projective space

The fundamental example of a restricted path space is projective space Pm itself. As a
manifold, Pm is the quotient of Rm+1 − {0} under the multiplicative action of R− {0};
the infinitesimal generator of this action is the radial vector field given in Cartesian
coordinates by xα∂α = Υ. We may represent objects on Pm as objects on Rm+1 − {0}
transforming appropriately under the action; for convenience this will be expressed in
terms of the Lie derivative with respect to Υ, together with invariance under the reflection
map j : x 7→ −x. So functions on Pm may be represented by functions f on Rm+1 −{0}
satisfying Υf = 0 and j∗(f) = f : call the set of such functions FΥ. Similarly, vector
fields on Pm may be represented by equivalence classes of vector fields X on Rm+1 −{0}
satisfying LΥX ∝ Υ and j∗X = X, with equivalence Y ≡ X if Y − X ∝ Υ. Let XΥ

denote the set of such vector fields, and for X ∈ XΥ let [[X]] denote the equivalence class
of X. The set [[XΥ]] of equivalence classes [[X]] for X ∈ XΥ is a Lie algebra over the
module FΥ, with [ [[X]] , [[Y ]] ] = [[ [X,Y ] ]]. Furthermore, for any f ∈ FΥ, Xf ∈ FΥ

if X ∈ XΥ and Y f = Xf if Y ≡ X: thus [[X]]f is well-defined (as Xf); [[XΥ]] acts as
derivations on FΥ; and the Lie bracket of equivalence classes is the commutator of the
corresponding derivations.

We will define a covariant derivative operator on [[XΥ]] as a map ∇ : [[XΥ]] × [[XΥ]] →
[[XΥ]] which is R-bilinear, FΥ-linear in the first variable, and satisfies

∇[[X]](f [[Y ]]) = f∇[[X]][[Y ]] + ([[X]]f)[Y ].

A covariant derivative is symmetric if

∇[[X]][[Y ]] −∇[[Y ]][[X]] = [ [[X]] , [[Y ]] ].

We now relate such operators to the standard covariant derivative D on Rm+1, by the
device of choosing a representative of each equivalence class. Let ϑ be a 1-form on
Rm+1 − {0} such that 〈Υ, ϑ〉 = 1 and j∗ϑ = ϑ, and for any vector field X set X̃ =
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X−〈X,ϑ〉Υ. Then if Y ≡ X, Ỹ = X̃; and if X ∈ XΥ, X̃ ∈ XΥ also. Thus such a 1-form
ϑ enables one to select a representative of each equivalence class, in fact by the condition
〈X,ϑ〉 = 0. If, furthermore, LΥϑ = 0 then LΥX̃ = 0. Now Υ is an infinitesimal affine
transformation of D, and so when LΥX̃ = LΥỸ = 0

LΥ(DX̃ Ỹ ) = DLΥX̃
Ỹ +DX̃(LΥỸ ) = 0

also. Furthermore, j is an affine transformation, so when j∗X̃ = X̃ and j∗Ỹ = Ỹ ,
j∗(DX̃ Ỹ ) = DX̃ Ỹ . So for any choice of ϑ such that 〈Υ, ϑ〉 = 1, LΥϑ = 0 and j∗ϑ = ϑ we
may set

∇ϑ
[[X]][[Y ]] =

[[

DX̃ Ỹ
]]

;

then ∇ϑ is a symmetric connection on XΥ.

We may now consider the geodesics of ∇ϑ. First of all, a geodesic will be a 2-surface Σ in
Rm+1 −{0} invariant under the action generated by Υ, that is, ruled by rays. It will be
defined by any curve in it transverse to the rays, and among such curves we can choose
those σ whose tangent vectors satisfy 〈σ̇, ϑ〉 = 0. Such curves are mapped to each other
by the action generated by Υ, so it is enough to consider one of them. Then Σ will be
a geodesic of ∇ϑ if and only if [[Dσ̇ σ̇]] ∝ [[σ̇]], that is, if and only if Dσ̇σ̇ = σ̈ is a linear
combination of σ̇ and Υ|σ. But this means that the tangent planes to Σ at all points on
it are parallel to one another, and therefore that Σ is itself a plane. Thus the geodesics
of ∇ϑ are the straight lines in Pm. We note for future reference that Υ has the property
that DΥ = id, where id is the identity tensor; and indeed this determines Υ up to the
addition of a constant vector field.

We can describe the idea behind the construction of Roberts [13] as follows: to introduce
for any manifold M , a manifold VM of one higher dimension, whose role in relation to
M is to be like that of Rm+1 − {0} in relation to Pm; and on VM to define a covariant
derivative operator whose role in relation to a projective equivalence class of connections
on M is to be like that of D in relation to Pm as described above. We can motivate the
construction of VM by introducing a particular way of thinking about Rm+1 − {0} in
this context.

Let Ω be the standard volume form on Rm+1. Let π be the projection Rm+1 → Sm,
where Sm, the m-sphere, is the quotient of Rm+1 − {0} by the action generated by Υ,
so that Pm is obtained from Sm by identifying diametrically opposite points. Then for
any point p ∈ Rm+1, p 6= 0, we can define an m-covector θ at π(p) ∈ Sm as follows: let
ξa be any m elements of Tπ(p)S

m, and let va be any m elements of TpR
m+1 such that

πp∗va = ξa; set
θ(ξ1, ξ2, . . . , ξm) = Ωp(Υp, v1, v2, . . . , vm);

θ is clearly well-defined since adding a multiple of Υp to any va doesn’t change the value
of the right-hand side. Now take any s ∈ R, s > 0, and carry out the same construction
but starting at sp. It is clear that the right-hand side gets multiplied by sm+1. There is
therefore a map ϕ : Rm+1 − {0} →

∧mSm such that ϕ(sp) = sm+1ϕ(p). In this case ϕ
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will be a diffeomorphism of Rm+1 −{0} with either of the two classes of oriented volume
forms on Sm. There is no need to take this any further here: our aim was just to suggest
that it will be profitable to consider volume forms.

A somewhat similar account is to be found in [7], but as an application of Roberts’s
construction rather than as motivation for it.

2.4 The volume bundle

The basic idea of the Thomas-Whitehead theory of projectively equivalent connections
is to represent a projective equivalence class on an m-dimensional manifold by a single
connection on a manifold of dimension m + 1, extending the approach of the previous
subsection from projective space to a more general manifold M . We start by describ-
ing the appropriate (m + 1)-dimensional manifold, broadly following Roberts [13] but
diverging from him over some details.

We start with the non-zero volume elements θ ∈
∧mT ∗M ; the set of pairs [±θ] of such

elements will be called the volume bundle of M (strictly speaking it should be called
the unoriented volume bundle but we will normally omit the prefix ‘unoriented’) and
denoted by VM . It is indeed a bundle, with projection ν : VM → M , defined by
ν[±θ] = x whenever θ,−θ ∈

∧mT ∗
xM . If xa are coordinates on M then a candidate for

the fibre coordinate on the (one-dimensional) fibre of ν is |v|, where v satisfies

θ = v(θ)
(

dx1 ∧ . . . dxm
)

x

for any θ ∈
∧mT ∗M ; however, in view of the discussion in the previous subsection we

choose instead to use x0 = |v|1/(m+1) as the fibre coordinate, with the convention that the
positive root is to be taken if m is odd so that x0 > 0. The local trivializations defined in
this way describe a principal R+-bundle structure on ν (R+ is the multiplicative group
of positive reals). We will let µ : VM × R+ → VM denote the corresponding (right)
action [±θ] 7→ [±sm+1θ] of R+ on the fibres of ν, and also write µs : VM → VM for the
map defined by µs([±θ]) = µ([±θ], s). The fundamental vector field of this bundle will
be denoted by Υ; in coordinates

Υ = x0 ∂

∂x0
.

Although our construction of the volume bundle is similar to that used by Roberts [13],
it is not quite the same. A small difference is that Roberts uses the structure of an
R-bundle rather than an R+-bundle, by exploiting the exponential isomorphism. More
significant is that his bundle is built from m-vectors rather than m-covectors — the two
bundles are isomorphic, but the natural fibre coordinate is |v|−1 rather than |v|. Another
significant difference is that our R+-bundle structure uses multiplication by sm+1 rather
than multiplication by s as the right action, and so our fundamental vector field Υ is
−(m+ 1) times the one used by Roberts.
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The volume bundle has some additional natural structure, a so-called odd scalar density,
which is defined in the following way. Observe first that

∧mT ∗M , as a bundle of m-
covectors, has a tautological m-form Θ; in coordinates

Θ = v dx1 ∧ . . . ∧ dxm.

The differential dΘ is a natural volume form on
∧mT ∗M defining, at each point [±θ] ∈

VM , a pair of (m+ 1)-covectors differing only in sign; this is the odd scalar density we
require. We will denote it by |dΘ|. In the coordinates on VM , this may be written as

±(m+ 1)(x0)mdx0 ∧ dx1 ∧ . . . ∧ dxm.

2.5 TW -connections

Roberts’s version of the Thomas-Whitehead theory is based on his notion of a Thomas-
Whitehead projective connection, or TW -connection for short. A TW -connection is a
symmetric affine connection ∇̃ on the volume bundle VM which is invariant under the
R+ action on ν : VM → M and which satisfies the condition that ∇̃Υ = id, where
id is the identity tensor on VM . The invariance condition is equivalent to saying that
Υ is an infinitesimal affine transformation of ∇̃, and we will generally use it in this
form. (The definition above is essentially the one given in [13], with the difference
that the formulæ there differ from ours by the constant factor −(m + 1) as we use a
different fundamental vector field). These conditions on ∇̃, when expressed in terms of
its connection coefficients Γ̃ γ

αβ with respect to coordinates (xα), adapted to the bundle

structure, give Γ̃0
a0 = Γ̃γ00 = 0, Γ̃ b

a0 = (x0)−1δba; furthermore, the Γ̃cab are functions on M
transforming as the components of the fundamental descriptive invariant of a restricted
path space (though not necessarily satisfying Γ̃aab = 0), while the Γ̃0

ab are of the form
x0αab where the αab are functions on M , transforming appropriately. There is therefore
a many-one correspondence between TW -connections and restricted path spaces. The
geodesic equations for a TW -connection are

ẍc + Γ̃cabẋ
aẋb = −2(ẋ0/x0)ẋc, ẍ0 + x0 αabẋ

aẋb = 0.

The first of these defines the paths on M . The second equation tells us that the terms
αab in the connection essentially determine a preferred parametrization of the paths.
Suppose that we wish to make a change of parametrization so that with respect to the
new parameter the equations become

ẍc + Γ̃cabẋ
aẋb = 0.

Then from the first equation s must satisfy s̈ = −2(ẋ0/x0)ṡ, and from the second

d

dt

(

s̈

ṡ

)

− 1
2

(

s̈

ṡ

)2

= 2αabẋ
aẋb.
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The left-hand side of this equation is the Schwarzian derivative of s, sometimes denoted
by S(s). It is known that if f is a Möbius function of t,

f(t) =
at+ b

ct+ d

for some constants a, b, c and d, then S(s ◦ f) = S(s); thus if s is a reparametrization to
the new parameter so is s ◦ f for any Möbius function f .

The importance of a TW -connection on the volume bundle is that it gives rise to a
family of connections on M . It is shown in [13] that given a TW -connection ∇̃, with
the aid of any 1-form ϑ on VM which is R+-invariant and satisfies 〈Υ, ϑ〉 = 1 one can
construct a symmetric affine connection ∇ϑ on M whose geodesics are the paths of the
restricted path space corresponding to ∇̃, just as we showed for Pm earlier. Such a 1-form
ϑ is the connection form of a connection on the principal bundle VM → M . It is well
known (see for example [9] Chapter II, Theorem 2.1) that every principal bundle over a
paracompact manifold admits a global connection. It follows that every restricted path
space on a paracompact manifold M is the space of geodesic paths of some symmetric
affine connection on M .

In fact ∇̃ gives rise in this way to a projective equivalence class [∇] of symmetric affine
connections on M , the different members of the class corresponding to different choices
of ϑ; the difference ϑ′ − ϑ of two such 1-forms on VM is the pull-back of a 1-form
on M , which determines the projective transformation relating the two corresponding
connections on M . Conversely, each such projective equivalence class [∇] gives rise to
many TW -connections, and in particular to a unique TW -connection ∇̃ satisfying the
additional conditions that ∇̃(|dΘ|) = 0 and that the Ricci curvature of ∇̃ vanishes. In
coordinates,

∇̃0(∂0) = 0, ∇̃0(∂b) = ∇̃b(∂0) = (x0)−1∂b, ∇̃a(∂b) = Π c
ab∂c −

1

m− 1
x0Rab∂0,

where as before Π c
ab is the fundamental descriptive invariant of the equivalence class [∇]

and Rab its Ricci ‘tensor’. More generally, those TW -connections for which ∇̃(|dΘ|) = 0
take the form

∇̃0(∂0) = 0, ∇̃0(∂b) = ∇̃b(∂0) = (x0)−1∂b, ∇̃a(∂b) = Π c
ab∂c − x0αab∂0.

That is to say, the condition ∇̃(|dΘ|) = 0 forces Γ̃cab to be Π c
ab, that is, to have vanishing

trace. We will accordingly call such a TW -connection trace-free, and we will call the
trace-free TW -connection whose Ricci curvature vanishes the normal TW -connection
for the given projective equivalence class.

It is also the case that if M is paracompact, ν : VM → M admits global sections
([9] Chapter I, Theorem 5.7). A global section σ determines a connection on the principal
bundle, which is integrable, and whose connection 1-form is exact, say dϕ; the function
ϕ satisfies Υϕ = 1, and the horizontal submanifolds are the level sets of ϕ. Such a global
section is called a choice of projective scale in [1]. The corresponding affine connection
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∇dϕ has the property that its Ricci tensor is symmetric, and any connection in the
projective equivalence class with this property is determined in this way. The projective
transformation relating two connections with this property is given by an exact 1-form
on M .

We can also relate this construction to that of the so-called tractor bundle introduced
by Bailey et al [1]. Suppose given a connection form ϑ; let Ha be the corresponding
horizontal lifts of the ∂a from M to VM . The invariance of the connection form implies
that LΥHa = 0. Now consider the vector fields X on VM such that ∇̃ΥX = 0; call
them Υ-vectors. We may equivalently write the defining condition as LΥX = −X. The
Υ-vectors form a module over functions on M . For any Υ-vector X and for any Y such
that LΥY ∝ Υ (i.e. any projectable vector field Y ), ∇̃YX is also a Υ-vector, by virtue
of the rules for a TW -connection. If X is a Υ-vector and ϑ is a connection form then
the horizontal component of X, that is, X −〈X,ϑ〉Υ, is also a Υ-vector, as is its vertical
component 〈X,ϑ〉Υ. We can write a vertical Υ-vector as µ0Υ; then Υµ0 = −µ0, from
which it follows that µ0 is a scalar density on M of weight −1/(m + 1). We can write
a horizontal Υ-vector as µaHa; then similarly the µa are components of a contravariant
vector density of weight −1/(m+ 1).

We can now define a covariant derivative operator on Υ-vectors, with respect to vector
fields on M , by restricting the arguments of the TW -connection to be respectively pro-
jectable vector fields and Υ-vectors. For a trace-free TW -connection the representation
of this covariant derivative with respect to an exact connection form ϑ = dϕ coincides
with the formulæ given in [1].

2.6 TW -connections and sprays

A symmetric affine connection determines and is determined by its corresponding affine
spray; it is therefore not surprising that we can specify TW -connections, and in particular
the normal TW -connection, entirely in terms of sprays.

The defining conditions for a TW -connection, when expressed in terms of the corre-
sponding spray S̃ on T (VM), turn out to be

LΥCS̃ = 0; LΥVS̃ = ΥC − 2∆̃

where ΥC and ΥV are respectively the complete and vertical lifts of Υ to T (VM), and
∆̃ is the Liouville field on T (VM). The first of these conditions is equivalent to the
requirement that Υ is an infinitesimal affine transformation of the TW -connection, and
the second to the requirement that ∇̃Υ = id. The second condition may be reformulated
in terms of the horizontal lift ΥH of Υ to T (VM): since for any vector field X on VM

XH = 1
2(LXV S̃ +XC),

we have
ΥC − ΥH = ∆̃.

11



A variant of this formula will be important later.

Both of the claims above are easily confirmed by the following general coordinate cal-
culations. Consider a manifold (VM for example) equipped with a symmetric affine
connection ∇ and corresponding affine spray S. The condition in coordinates (xα) for a
vector field X to be an affine transformation of ∇ is

∂2Xγ

∂xα∂xβ
+
∂Xδ

∂xα
Γγδβ +

∂Xδ

∂xβ
Γγδα −

∂Xγ

∂xδ
Γ δ
αβ +Xδ

∂Γ γ
αβ

∂xδ
= 0,

while the condition that LXCS = 0 is just this contracted with uα and uβ. The condition
that ∇X = id is

∂Xα

∂xβ
+ ΓαβγX

γ = δαβ ,

while

LXVS =

[

Xα ∂

∂uα
, uα

∂

∂xα
− Γαβγu

βuγ
∂

∂uα

]

= Xα ∂

∂xα
−

(

uβ
∂Xα

∂xβ
+ 2Γαβγu

βXγ
)

∂

∂uα

= XC − 2uβ
(

∂Xα

∂xβ
+ ΓαβγX

γ
)

∂

∂uα
.

The odd scalar density on VM defines a volume form vol on T (VM) by ‘squaring’ (and
ignoring a constant factor):

vol = (x0)2mdx0 ∧ dx1 ∧ · · · ∧ dxm ∧ du0 ∧ du1 ∧ · · · ∧ dum.

It is easy to see that the necessary and sufficient condition for a TW -connection to be
trace-free is that the corresponding spray satisfies LS̃vol = 0.

For any affine spray S, the vertical component of LSX
H is

Rαβγδu
βXγuδ

∂

∂uα

where Rαβγδ is the curvature of the corresponding connection; the quantity Rα
βγδu

βuδ,
which is a type(1, 1) tensor field along the projection τM : TM → M in component
form, is often called the Jacobi endomorphism of the spray. The trace of the Jacobi
endomorphism is just Rβδu

βuδ, a function on TM formed out of the Ricci curvature of
the connection. In this way the Ricci curvature can be expressed entirely in terms of the
spray. Then a trace-free TW -connection is the normal TW -connection if and only if the
trace of its Jacobi endomorphism vanishes.

It can be shown that given a projective equivalence class of affine sprays on a manifold
M there is a unique affine spray S̃ on T (VM), whose integral curves when projected into
M belong to the path space determined by the projective class, such that

12



• LΥC S̃ = 0;

• ΥC − ΥH = ∆̃;

• LS̃vol = 0;

• the Jacobi endomorphism of S̃ has vanishing trace.

This spray is given in coordinates adapted to VM by

S̃ = uα
∂

∂xα
− (Π a

bcu
buc + (x0)−1u0ua)

∂

∂ua
+

1

(m− 1)
x0Rcdu

cud
∂

∂u0
.

We can define the normal TW -connection as the symmetric affine conection determined
by this spray.

Any other affine spray differs from this by a vertical vector field of the form

T = Tαβγu
βuγ

∂

∂uα

where T αβγ are the components of a tensor field on VM , symmetric in its lower indices.
The new spray will continue to define a TW -connection if and only if T satisfies

LΥCT = LΥVT = 0,

and a trace-free TW -connection if and only if T satisfies in addition

LTvol = 0.

From the first two conditions we find that T α0β = Tαβ0 = 0, T abc is independent of x0, and

T 0
ab = x0Tab where Tab is again independent of x0. This determines the general form of

a TW -connection. For a trace-free TW -connection we must have T aab = T aba = 0.

We will develop these ideas in our second paper [4], where we will base our generalization
of the concept of a TW -connection on the spray approach; the proof of the result above
will be given there.

3 Cartan projective geometry

We now turn to Cartan’s theory.

3.1 The projective group

The projective group PGL(m+ 1) is the quotient of GL(m+1) by non-zero multiples of
the identity. When m is even, PGL(m+ 1) ∼= SL(m + 1); when m is odd, on the other
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hand, elements of PGL(m+1) may be identified with equivalence classes containing pairs
of matrices ±g where det g = ±1 according as the corresponding element of PGL(m+1)
consists of matrices with positive or with negative determinant. We will take particular
care in the discussion below to identify any differences between the two cases. We will in
fact represent elements of PGL(m+ 1) by matrices g with |det g| = 1, but we will bear
it in mind that for m odd such a matrix is determined only up to sign.

Other authors take G be the group PSL(m + 1) instead: when m is even this the same
as PGL(m + 1), but when m is odd the latter group is not connected; PSL(m + 1) is
then its identity component. Using this subgroup when m is odd amounts to choosing
an orientation for the model geometry (recall that Pm is orientable in this case); a
corresponding Cartan geometry can then be constructed only when M is orientable.
The use of PGL(m+ 1) avoids this restriction.

In any event, the Lie algebra of G is sl(m+ 1).

The other group of importance in the definition of a Cartan projective connection is the
subgroup Hm+1 ⊂ PGL(m + 1) which is the stabilizer of the point [1, 0, . . . , 0] ∈ Pm.
In matrix representation its elements are matrices whose first column is zero below the
diagonal.

3.2 Cartan projective connections

A Cartan projective geometry, in the sense of Sharpe ([14], Definition 5.3.1), consists of
a suitable principal Hm+1-bundle P → M and an sl(m + 1)-valued 1-form ω on P , the
connection form, satisfying the following conditions:

1. the map ωp : TpP → sl(m+ 1) is an isomorphism for each p ∈ P ;

2. R∗
hω = ad(h−1)ω for each h ∈ Hm+1; and

3. 〈A†, ω〉 = A for each A ∈ hm+1, where hm+1 is the Lie algebra of Hm+1 and where
A† is the fundamental vector field corresponding to A.

Though the global, bundle definition of a Cartan connection is the most satisfying, in
practice one usually works locally, in a gauge (as indeed Cartan himself did, in effect).
By a gauge we simply mean a local section, say κ, of P → M ; the connection form in
that gauge is κ∗ω, a locally-defined sl(m+ 1)-valued 1-form on M .

It follows from the conditions on ω itemized above that given two overlapping local
gauges κ and κ̂, the corresponding locally-defined matrices of forms κ∗ω and κ̂∗ω on M
are related by the transformation rule κ̂∗ω = ad(h−1)(κ∗ω) + h∗(θHm+1

), where θHm+1
is

the Maurer-Cartan form on Hm+1 and h is the local Hm+1-valued function relating the
two gauges κ and κ̂. If the domain of h is simply connected we can consistently choose
a matrix-valued function to represent it, in which case the transformation rule may be
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written as
κ̂∗ω = h−1(κ∗ω)h+ h−1dh;

since h enters this equation quadratically, the possible sign indeterminacy in its matrix
representation has no effect.

Conversely, given a covering of M by local gauges and local matrices of forms satisfying
this transformation rule, it is possible to reconstruct the principal bundle in terms of
transition functions, as we will explain more fully below.

One advantage of working in a gauge is that it may be possible to select a particularly
simple gauged connection form, and this is certainly the case for a projective connection.
We start with an arbitrary gauged connection form κ∗ω which we assume is defined in a
coordinate patch. We can write κ∗ω as a matrix-valued form as follows:

κ∗ω =

(

ω0
0 ω0

b

ωa0 ωab

)

;

each entry in the matrix is a locally defined 1-form on M . It is a consequence of the
defining conditions for a connection form that the map TxM → Rm defined by the
elements ωa0 below the diagonal in the first column of κ∗ω is an isomorphism, or in other
words if we set ωa0 = ω a

0bdx
b then the m×m matrix (ω a

0b) is nonsingular. We will show
that by a change of gauge we can transform ωa0 to dxa. To see this, note first that if h
is a matrix of the form

h =

(

h0
0 h0

b

0 hab

)

,

then its inverse is given by

h−1 =

(

h̄0
0 −h̄0

0h
0
c h̄

c
b

0 h̄ab

)

where the overbar signifies (an element of) the inverse matrix (m × m or 1 × 1 as the
case may be). Note that det h = h0

0 det(hab ). We denote the matrix elements of κ̂∗ω =
h−1(κ∗ω)h + h−1dh by ω̂αβ , so that ω̂αβ = h̄αγω

γ
δ h

δ
β + h̄αγdh

γ
β ; then ω̂a0 = h0

0h̄
a
bω

b
0. In order

to make ω̂a0 = dxa we must therefore solve the equations

h0
0h̄
a
cω

c
0b = δab

for elements h0
0, h

a
b of a matrix h representing an element of Hm+1. From these equations

we obtain, by taking determinants,

(h0
0)
m+1(deth)−1 detω0 = 1,

where ω0 = (ω a
0b) and detω0 6= 0. If m is even we require that deth = 1, so h0

0 =
(detω0)

−1/(m+1); this solution is unique. On the other hand, if m is odd we require
only that |det h| = 1; then a necessary condition for a solution to exist is that det h
and detω0 have the same sign: if detω0 > 0 then we must take det h = 1 and so
h0

0 = ±(detω0)
−1/(m+1), whereas if detω0 < 0 then we must take deth = −1 and so
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h0
0 = ±(det(−ω0))

−1/(m+1). In either case, we obtain a unique solution for h0
0 modulo

sign. If we set hab = h0
0ω

a
0b we obtain (for any choice of h0

a) an element of Hm+1 such that
ω̂a0 = dxa.

We can combine the solutions for even and odd m in one formula by setting

h0
0 =

detω0

|detω0|
|detω0|

−1/(m+1);

it must be understood that when m is odd both (m+ 1)-th roots must be taken.

There is still some freedom in the choice of gauge, which we can eliminate as follows.
The gauge transformation rule gives

ω̂0
0 = ω0

0 − h0
b h̄

b
aω

a
0 + h̄0

0dh
0
0;

so if we define h0
a by

h0
adx

a = h0
0ω

0
0 + dh0

0,

we will have ω̂0
0 = 0. Therefore, for any projective connection on a manifold M there is

a covering of M by coordinate patches and for each patch a unique choice of gauge with
respect to which the gauged connection form is

(

0 ω0
b

dxa ωab

)

,

where ωaa = 0. We call such a gauge the standard gauge for those coordinates.

We can use the standard gauges to find transition functions for the bundle P → M ,
and thus define it implicitly. Let (ωαβ ), (ω̂αβ ) be gauged connection forms for a projective
connection, in standard gauge with respect to two overlapping coordinate patches with
coordinates (xa) and (x̂a). By considering the gauge transformation of (ω̂αβ ) to standard

form with respect to the coordinates (xa) we have ωαβ = h̄αγ ω̂
γ
δ h

δ
β + hαγdh

γ
β with

h0
0 = εJ |J |

−1/(m+1), hab = εJ |J |
−1/(m+1)Jab , h0

cdx
c = εJd|J |

−1/(m+1)

where as before (Jab ) is the Jacobian matrix of the coordinate transformation, J is the
Jacobian determinant, and εJ = J/|J |. That is,

h =









εJ |J |
−1/(m+1) −

εJ
m+ 1

|J |−(m+2)/(m+1) ∂|J |

∂xb

0 εJ |J |
−1/(m+1)Jab









= εJ |J |
−1/(m+1)









1 −
1

m+ 1

∂ log |J |

∂xb

0 Jab









.
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If m is even then this is a matrix in SL(m+1), but if m is odd then both (m+1)-th roots
must be taken and the result is a pair of matrices in GL(m+ 1) whose determinants are
of absolute value 1. In either case we obtain an element of Hm+1 ⊂ PGL(m+ 1).

Thus given a manifold M with a Cartan projective connection we have an open covering
of M by coordinate neighbourhoods {Uλ} and smooth maps hµλ : Uλ ∩ Uµ → Hm+1

determined by the gauge transformation between the gauged connections in standard
form on the two coordinate patches. The maps hµλ satisfy

hνµhµλ = hνλ on Uλ ∩ Uµ ∩ Uν ;

this follows from their construction, but can also be established easily from the explicit
formula. They are therefore transition functions in the definition of a principal Hm+1-
bundle P ; then the connection form in standard gauge will be the pull-back by a suitable
local section of a global Cartan connection form on P , and we regain the principal bundle
definition of the projective connection.

The transition functions are derived from consideration of the left column of the gauged
conection form alone. Using the transition functions and assuming that we have a globally
defined Cartan connection form we can compute the coordinate transformation properties
of the remaining entries in the gauged connection form. We find, in particular, that if
we set ωca = ω c

abdx
b then

ω̂ c
ab = J̄da J̄

e
b (J

c
fω

f
de − J c

de ) +
1

m+ 1

∂ log |J |

∂xd
(J̄da δ

c
b + J̄db δ

c
a),

that is, that the symmetric part of ω c
ab,

ω c
(ab) = 1

2 (ω c
ab + ω c

ba) ,

transforms as the fundamental descriptive invariant of a projective equivalence class.
However, although ω a

ab = 0, it is not necessarily the case that ω a
(ab) = 0.

3.3 Curvature and torsion

The curvature of a Cartan projective connection is the sl(m + 1)-valued 2-form (Ωα
β)

where
Ωα
β = dωαβ + ωαγ ∧ ωγβ.

The vanishing of the curvature is the necessary and sufficient condition for the Cartan
geometry to be locally diffeomorphic to Pm, the Klein geometry on which it is modelled.

The torsion of the Cartan connection is the Rm-valued 2-form (Ωa
0).

We can consider curvature and torsion in a local gauge; the definitions are formally the
same. Under a change of gauge the curvature transforms by Ω̂α

β = h̄αγΩγ
δh

δ
β ; it follows

that the torsion transforms by Ω̂a
0 = h0

0h̄
a
bΩ

b
0. Of particular interest are connections
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with vanishing torsion. It is clear from the transformation rule that this is a gauge-
independent property of a connection. If we take a connection in standard gauge, its
torsion is just

Ωa
0 = −ω a

bcdx
b ∧ dxc;

so the connection has zero torsion if and only if ω a
bc is symmetric in its lower indices.

3.4 Geodesics

The definition of a geodesic in a Cartan geometry depends on the notion of the devel-
opment of a curve in M into a curve in the Klein geometry G/H on which the Cartan
geometry is modelled. Let ω be the Cartan connection form, and κ a gauge. A curve
x(t) in M defines a curve Xκ in g by

Xκ(t) = 〈ẋ(t), κ∗ω〉.

We assume that G is a matrix group, for simplicity. Let g(t) be a curve in G which
is a solution of the matrix differential equation ġ = gXκ, and set ξ(t) = g(t)ξ0 where
ξ0 is the point in the homogeneous space of which H is the stabilizer. It is easy to see
that, unlike g(t), ξ(t) is unchanged by a change of gauge: in fact g(t) changes to g(t)h(t)
where h(t) is a curve in H. Then ξ(t) is a development of x(t). It is clear that there is
a development of a given curve in M through each point of G/H.

If the Klein geometry contains straight lines, a curve in M is called a geodesic of the
Cartan geometry if all of its developments into G/H are straight lines.

Since projective space Pm contains straight lines, any Cartan projective geometry has
geodesics. We will now find them. We take a connection form in standard gauge and
write X(t) for

(

0 ω 0
bcẋ

c

ẋa ω abcẋ
c

)

.

Then any development ξ(t) of x(t) into Pm is given by ξ(t) = g(t)ξ0 where ξ0 =
[1, 0, . . . , 0] and g(t) satisfies ġ = gX. Now ξ(t) is a curve in projective space Pm; if
we wish to consider the equation defining it as a vector equation we must introduce an
arbitrary non-vanishing scalar factor, say φ(t). That is, the development of x(t) is [u(t)]
where u(t) is a curve in Rm+1 such that u(t) = φ(t)g(t)e0 where e0 = (1, 0, . . . , 0). Let
us assume that the parametrization is chosen such that the straight line in Pm is given
by ü = 0. Then

0 =
d2

dt2
(φg)e0 = (φ̈g + 2φ̇ġ + φg̈)e0 = g(φ̈I + 2φ̇X + φ(Ẋ +X2))e0.

Thus x(t) will be a geodesic if and only if there is some function φ(t) such that

(φ̈I + 2φ̇X + φ(Ẋ +X2))e0 = 0.
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This is equivalent to a pair of equations, one vector and one scalar:

ẍc + ω c
abẋ

aẋb = −2(φ̇/φ)ẋc, φ̈+ φω 0
ab ẋ

aẋb = 0.

From the first of these we see that a global Cartan projective connection determines a
restricted path space whose paths are its geodesics; and conversely, given a restricted path
space there is a global Cartan connection (in fact there are many) whose geodesics are its
paths. For a torsion-free Cartan projective connection the ω c

ab are the components of the
fundamental descriptive invariant of the corresponding path space. In fact the geodesic
equations are exactly the same as the equations for the geodesics of a TW -connection
obtained earlier, with the substitutions of ω c

(ab) for Γ̃cab, ω
0

(ab) for αab, and φ for x0.

3.5 Normalizing the Cartan projective connection

One of the achievements of Cartan [2] was to show that, although many projective
connections give rise to the same restricted path space, there is a distinguished torsion-
free connection which can be specified uniquely by conditions on its curvature.

Assume that we are given a restricted path space, and a torsion-free Cartan projective
connection adapted to it as just described. We will show how to determine the remaining
elements of the Cartan connection by further conditions on the curvature, so as to fix
them uniquely. These conditions will be specified in terms of the standard gauge, but
will be gauge-independent, which is to say that if they hold in one gauge they hold in
any; we can then be sure that a connection which satisfies the conditions and is uniquely
determined by them will be globally defined.

By assumption, in standard gauge the gauged connection and curvature forms are given
by

(

0 ω0
b

dxa Π a
bcdx

c

)

and

(

Ω0
0 Ω0

b

0 Ωa
b

)

.

First,
Ω0

0 = −ω 0
bcdx

b ∧ dxc

where of course ω0
b = ω 0

bcdx
c; thus if we take ω 0

bc to be symmetric we will have Ω0
0 = 0.

Note that if the connection is torsion-free then Ω0
0 is unchanged by a gauge transforma-

tion, so this property is gauge-independent for torsion-free connections. Then

Ωa
b = dωab + ωac ∧ ω

c
b + ωa0 ∧ ω0

b

= 1
2

(

Ra
bcd + δacω

0
bd − δabω

0
cd

)

dxc ∧ dxd

where (using notation from a previous subsection) Ra
bcd is the curvature ‘tensor’ derived

from the Π a
bc. Thus if Ωa

b = 1
2Ωa

bcddx
c ∧ dxd, with Ωa

bcd skew in c and d,

Ωa
bcd = Ra

bcd + δacω
0
bd − δadω

0
bc.
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We can make Ωa
bcd trace-free (Ωc

bcd = 0) by choosing (m− 1)ω 0
bc = −Rbc,in which case

Ωa
bcd = Ra

bcd −
1

m− 1
(Rbdδ

a
c − Rbcδ

a
d) = P abcd,

the projective curvature tensor. The condition that Ωa
bcd be trace-free is gauge-independent.

The conditions that Ω0
0 = 0 and Ωc

bcd = 0 determine ω uniquely. That is to say, given
a restricted path space, there is a unique globally defined torsion-free sl(m + 1)-valued
Cartan projective connection form with the paths as its geodesics, whose curvature sat-
isfies Ω0

0 = 0 and Ωc
bcd = 0. It is called the normal projective connection form, and in

the standard gauge it is given by

ω =









0 −
1

m− 1
Rbcdx

c

dxa Π a
bcdx

c









Note that

Ω0
b = −

1

m− 1

(

d(Rbcdx
c) + Rcddx

d ∧ Π c
bedx

e
)

=
1

m− 1
Rb[c|d]dx

c ∧ dxd,

where the brackets in the suffix indicate skew-symmetrization and the solidus ‘covariant
differentiation’ with respect to the fundamental invariant. The curvature of the normal
projective connection is therefore

Ω =









0
1

m− 1
Rb[c|d]dx

c ∧ dxd

0 1
2P

a
bcddx

c ∧ dxd









.

4 The Cartan bundle

In this section we will describe a canonical procedure, starting with a manifold M , for
constructing a principal bundle CM → M with structure group Hm+1 ⊂ PGL(m + 1)
where m = dimM . This procedure does not require a connection (of any kind) for the
construction of the principal bundle: it just uses geometric properties of the manifold
M . Nevertheless, the bundle constructed in this way has the same transition functions
as one built synthetically using the transformation properties of a Cartan projective
connection obtained above. We emphasise that the construction works whether or not
M is orientable, and whether m is even or odd.
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4.1 The Cartan algebroid

In order to construct a principal bundle as the domain for a Cartan projective connection,
we will first consider the problem from Cartan’s point of view: that at each point of M
there should be attached a projective space of the same dimension m. Of course there is
already a projective space of dimension m−1, namely the fibre of the projective tangent
bundle PTM , but this is too small for our purposes. There are, however, projective
spaces of dimension m attached to each point of the volume bundle VM , and so we
will describe a mechanism for transferring these consistently to M . This mechanism
will initially work on the underlying vector spaces, and so it will create a vector bundle
WM →M which we will call the Cartan algebroid.

We start with the tangent bundle to the volume bundle, τVM : T (VM) → VM . Let
µs∗ : T (VM) → T (VM) be the derivative of the action µs on the fibres of ν : VM →M ,
and let WM be the space of orbits of µ∗; then WM is a manifold with coordinates
(xa, ua, w) where w = (x0)−1u0, that is, if ξ ∈ T (VM) and [ξ] is its µ∗-orbit,

w ([ξ]) =
u0(ξ)

x0(ξ)

(recall that x0 > 0). It is clear that the action µ∗ respects the fibration ν∗ : T (VM) →
TM , so that WM is fibred over M . If ρ, τ are the two projections from WM to TM and
M respectively, and if χ satisfies ν∗ = ρ ◦ χ, then we have the following diagram.

T (VM)

VM

WM

M

TM

M

- -

- -

? ? ?

ν =

χ ρ

ττVM τM

Furthermore, the action µs∗ is linear on the fibres of τVM , so τ : WM → M is a vector
bundle, and the projection χ : T (VM) → WM is linear on the fibres. In fact χ is a
fibrewise isomorphism, as is evident from the coordinate representation

ua ◦ χ = ua, w ◦ χ = (x0)−1u0

of the isomorphism T[±θ](VM) → Wν[±θ]M . Two other significant facts about WM are

worth mentioning. First, the fibres of χ : T (VM) → WM are the integral curves of ΥC,
the complete lift of Υ to T (VM). Second, we may identify T (VM) with the pullback
ν∗(WM) by the map ξ 7→ (τVM(ξ), χ(ξ)).
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Using the first of these observations we note that since the spray S̃ corresponding to a
TW -connection satisfies the condition LΥC S̃ = 0, it projects to a vector field on WM ,
say S̃W . We can use S̃W to construct the projective equivalence class of affine sprays on
TM in another way, as follows. The line bundle ρ : WM → TM admits global sections.
A section σ is linear (in the fibre coordinates of TM →M) if σ∗(∆) = ∆W ◦ σ, where ∆
is the Liouville field of TM and ∆W is that of the vector bundle τ : WM →M . For any
linear section σ, ρ∗(S̃W |σ) is a spray on M . The difference between two linear sections
is a linear function on TM , so the corresponding sprays are projectively equivalent. In
terms of the construction given previously, a 1-form ϑ on VM defines a linear function ϑ̂
on T (VM); if LΥϑ = 0 then ΥC(ϑ̂) = 0, in which case ϑ determines a function on WM ;
the zero set of such a function defines a linear section σ of WM → TM , and the spray
on TM determined by σ is the spray of the connection on M determined by ϑ.

We will denote the vector space of vector fields on VM by X(VM), and the subspace of
vector fields projectable to sections of τ : WM →M by XM (VM). The latter is a proper
subspace of the space of ‘projectable vector fields’ in the ordinary sense, that is those
projectable to vector fields on M : for instance ∂0 projects to a vector field on M (it is,
indeed, vertical) but does not project to a section of τ . In fact XM (VM), although not a
module over the ring of all functions on VM , is a module over the sub-ring of functions
constant on the fibres of ν. If X ∈ XM (VM) then X must satisfy

Xµs[±θ] = µs∗(X[±θ]),

and a local basis for the module is given by

{

Υ,
∂

∂xa

}

.

The global condition for X ∈ XM (VM) is [X,Υ] = 0, and the Jacobi identity then
implies that XM (VM) is a Lie subalgebra of X(VM). We will denote the image sections
of the local basis by {e0, ea} (where of course e0, as the image of Υ, is defined globally).

It follows from the preceding remarks that the bundle τ : WM → M is a Lie algebroid,
with base dimension m and fibre dimension m+1. If χ : XM (VM) → sect(τ) denotes the
induced map of sections (so that χ(X)ν[±θ] = χ(X[±θ])) then χ is a module isomorphism,
and so may be used to define a Lie bracket on sections of τ ; the map ρ : WM → TM is
the anchor map. We will call this bundle the Cartan algebroid of M . It contains no more
information than the canonical tangent bundle algebroid because the global section e0 is
in its centre: [e0, e] = 0 for any section e.

The quotient of the Cartan algebroid by the equivalence relation of non-zero multipli-
cation in the fibres is the Cartan projective bundle PWM ; this is the projective bundle
with m-dimensional fibres that we need.

We have proposed that the construction of the Cartan projective bundle PWM corre-
sponds to Cartan’s notion of attaching a projective space to each point of the manifold
M . To make this correspondence even clearer, we now point out just how firmly the
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projective spaces are attached to M by our construction: the Cartan projective bundle
is actually soldered to M . (If one is given a Cartan projective connection one can use
it to define a soldering: but here we are dealing just with the Cartan projective bundle
and make no appeal to the existence of a connection.)

The following definition is taken from Kobayashi [8]. A fibre bundle B → M with
standard fibre F is soldered to M if the following conditions are satisfied:

• dimF = dimM ;

• B admits a cross-section which will be identified with M ;

• let T̃M be the space of all tangent vectors to Fx (fibre over x ∈M) for all x ∈M :
then TM is isomorphic to T̃M ; more precisely, there is a mapping σ of TM onto
T̃M such that, for each x in M , σ is a non-singular linear mapping of TxM onto
the space of all tangent vectors to Fx at x.

We now show that PWM is soldered to M according to this definition.

The condition on the dimensions is clearly satisfied. We know that PWM →M admits
a global section, namely [e0]. Notice that the projection ρ : WM → TM maps the
section e0 of WM to the zero section of TM , and more generally that the kernel of ρ
(as a vector bundle over M) is just the 1-dimensional sub-bundle of WM spanned by e0.
Let V0(WM) be the restriction to the section e0 of the vertical sub-bundle of T (WM),
and V0(TM) the restriction to the zero section of the vertical sub-bundle of TTM , which
can of course be canonically identified with TM . Then ρ∗ restricts to a linear map of
V0(WM) onto V0(TM), which is just ρ in a different guise; its kernel is again spanned
by e0, considered now as a section of V0(WM) via its vertical lift eV0 . We will show that
V0(PWM), the restriction to the section [e0] of the vertical sub-bundle of T (PWM),
is canonically isomorphic to V0(WM)/〈eV0 〉, the quotient bundle of V0(WM) by the 1-
dimensional sub-bundle spanned by eV

0 . It will follow that V0(PWM) is canonically
isomorphic to V0(TM), and therefore to TM , as required.

This is simply a matter of identifying the tangent space to a projective space in an
appropriate way. Let W be a vector space with distinguished non-zero element e, PW
the corresponding projective space with distinguished point [e], and π : W → PW the
projection. Then π∗ : TeW → T[e](PW ) is a surjective linear map whose kernel is the 1-
dimensional subspace of TeW which is the tangent space to the ray through e; and TeW is
canonically isomorphic to W , with the tangent space to the ray through e corresponding
to the 1-dimensional subspace of W spanned by e itself. Thus T[e](PW ) is isomorphic to
the quotient space W/〈e〉, and the result follows.

It is worth noticing that the soldering isomorphism is canonical only because there is a
canonical way of choosing a representative of the projective point [e0], that is, because
WM has a canonical global section e0.
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4.2 The Cartan principal bundles

By a frame of a vector bundle we mean an ordered basis of a fibre. We define an
equivalence relation on frames of the Cartan algebroid as follows. Let (ζα) and (ζ̄α) be
frames of WM at some point x ∈M ; we let (ζ̄α) ≡ (ζα) if there is a non-zero real number
λ such that ζ̄α = λζα. The corresponding equivalence class will be denoted by [ζα], and is
a reference (m+ 1)-simplex for the m-dimensional projective space PWxM . The bundle
containing all these equivalence classes at all points of M will be denoted by SWM : it
is a principal PGL(m+ 1)-bundle over M . If the first element ζ0 of such an equivalence
class is a multiple of the global vector section e0 then we will call it a Cartan simplex.
We will let CM ⊂ SWM be the bundle containing all the Cartan simplices, and call it
the Cartan bundle: it is a principal Hm+1-bundle over M , and is a reduction of SWM .

As Cartan says: ‘It is natural to take each point of the manifold to be one of the vertices of
the frame attached at that point’; this corresponds precisely to restricting one’s attention
to Cartan simplices, having first identified M with the global section [e0] of PWM as
specified in the definition of soldering.

The Cartan projective bundle PWM is an associated bundle of the principal bundle CM ,
using the representation of Hm+1 as a group of automorphisms of the standard fibre Pm.

4.3 Transition functions

We will now calculate the transition functions for the Cartan bundle CM relative to local
trivializations of the form [eα], where (eα) is a local frame field for the Cartan algebroid
WM which is the image of the local frame field

(

Υ,
∂

∂xa

)

, Υ = x0 ∂

∂x0

on VM , which in turn is an ordered local basis of the module XM (VM) of vector fields
projectable to WM . In fact if (eα), (êα) are two such local frame fields for WM , corre-
sponding to coordinates (xa), (x̂a) on overlapping coordinate patches U , Û on M , and
we define a GL(m + 1)-valued function G on U ∩ Û by eα = Gβαêβ, then the transition

function for U ∩ Û is just [G], the projection of G into PGL(m+ 1).

We must first find the transformation law for the above local basis of XM (VM) with
respect to coordinate transformations on M . Suppose that (U, xa) and (Û , x̂a) are over-
lapping coordinate patches on M , and that (ν−1(U), xα) and (ν−1(Û ), x̂α) are the cor-
responding coordinate patches on VM . Then from x̂0 = |J |−1/(m+1)x0 we obtain

∂

∂xa
= J ba

∂

∂x̂b
+
∂x̂0

∂xa
∂

∂x̂0
= J ba

∂

∂x̂b
+

1

x̂0

∂x̂0

∂xa
Υ

= J ba
∂

∂x̂b
−

1

m+ 1

∂ log |J |

∂xa
Υ.
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As we have noted before, Υ is a global vector field and is unchanged by the coordinate
transformation. To obtain the corresponding transformation for the eα we have merely
to replace ∂/∂xa by ea and Υ by e0 in these formulæ. Thus

G =









1 −
1

m+ 1

∂ log |J |

∂xb

0 Jab









.

So in fact G takes its values in the affine group A(m) (in its standard representation in
GL(m+ 1)).

The transition function for CM with respect to local trivializations [eα], [êα], is just the
projective equivalence class of G. We may represent this projective class by a single
matrix with determinant 1 for m even, or by a pair of matrices with determinant ±1 for
m odd, as before. Note that detG = J . When m is even we can form (detG)−1/(m+1) =
J−1/(m+1) whatever the sign of detG, and then (detG)−1/(m+1)G is the unique member
of the projective equivalence class of G whose determinant is 1. When m is odd, on the
other hand, we must treat the cases detG > 0 and detG < 0 differently. In the first
case we can form (detG)−1/(m+1) = J−1/(m+1), and then (detG)−1/(m+1)G gives the
two members of the projective equivalence class of G with determinant 1. In the second
case we can form (−detG)−1/(m+1) = (−J)−1/(m+1), and then (−detG)−1/(m+1)G gives
the two members of the projective equivalence class of G with determinant −1. These
prescriptions can be combined in the single formula

[G] ≡ εJ |J |
−1/(m+1)









1 −
1

m+ 1

∂ log |J |

∂xb

0 Jab









,

as before, which shows that the transition functions for CM corresponding to the given
local trivializations take their values in Hm+1 and are exactly the functions obtained
from the consideration of Cartan projective connections in standard gauge in the previ-
ous section. We conclude that the principal Hm+1-bundle implicitly defined via Cartan
projective connections is (up to equivalence) CM .

5 Projective connections

We now show how the theory of projective connections of Thomas and Whitehead fits
in with the theory of Cartan. We will do so by showing how to construct a torsion-free
Cartan connection on the bundle CM → M from any trace-free TW -connection ∇̃ on
VM . This will be a global construction, in that we will end up with an sl(m+ 1)-valued
form on CM , although we will need to use local gauges to compare the connections
obtained.
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We first state and prove in general terms a result which will be used in the construction.

Consider a manifold N with connection ∇, on which there is defined a 1-parameter group
φt of affine transformations whose infinitesimal generator X satisfies ∇X = id, such that
N is fibred over an m-dimensional manifold M where the fibres are the orbits of φt.

Let FN be the frame bundle of N (that is, the bundle of frames of TN ). The group
R × R × {±1} acts freely on FM by ψ(s,t,ε) : (x, (eα)) 7→ (φsx, (εe

tφs∗eα)); note that
this action commutes with the right action of GL(m + 1) on FN . Let SψM be the
quotient of FN under the action; it is a principal fibre bundle over M with group
PGL(m+ 1), and for any a ∈ GL(m+ 1), π ◦Ra = Ro(a) ◦ π where π : FN → SψM and
o : GL(m+ 1) → PGL(m+ 1) are the projections.

Introduce local coordinates (xα, xαβ) on FN , where for a frame (eα), eα = xβα∂β. The

vector field X has a complete lift XC to FN given by

XC = Xα ∂

∂xα
+ xγβ

∂Xα

∂xγ
∂

∂xαβ
;

it is the infinitesimal generator of ψ(s,0,1). The generator of ψ(0,t,1), or in other words the
fundamental vector field on the GL(m+1)-bundle FN corresponding to the unit matrix
I ∈ gl(m+ 1), is

I† = xαβ
∂

∂xαβ
.

The vector fields XC and I† commute, and the leaves of the integrable distribution D
they define on FN are just the orbits of the ψ(s,t,1) action. The distribution is invariant
under ψ(0,0,±1).

With respect to the connection ∇, X has a horizontal lift XH to FN given by

XH = Xα ∂

∂xα
− xγβΓ

α
γδX

δ ∂

∂xαβ
.

Thus

XC −XH = xγβ

(

∂Xα

∂xγ
+ ΓαγδX

δ
)

∂

∂xαβ
.

For any vector field X and connection ∇, the condition that ∇X = id is

∂Xα

∂xβ
+ ΓαβγX

γ = δαβ .

Thus if ∇X = id
XC −XH = I†

(indeed, the two statements are equivalent). This is the frame bundle version of a result
proved earlier in the tangent bundle case.

We denote by ω the connection form on FN corresponding to ∇. The vector field
X generates affine transformations, and so its complete lift XC satisfies LXCω = 0
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([9] Chapter VI, Prop. 2.2). Moreover, LI†ω = [I, ω] = 0. We can write any vector
field in D in the form Z = fXC + gI†, and ω(XC) = ω(I†) = I. It follows that
LZω = I(df + dg). Furthermore, ω is clearly invariant under the action of ψ(0,0,±1). We
can therefore define an sl(m + 1)-valued 1-form ω̂ on SψM as follows: for q ∈ SψM,
v ∈ Tq(SψM),

〈v, ω̂q〉 = 〈u, o∗ωp〉

for any p ∈ FN such that π(p) = q, and any u ∈ Tp(FN ) such that π∗u = v, where o∗ :
gl(m+1) → sl(m+1) is the homomorphism of Lie algebras induced by o. Since o∗ωp(u)
is not affected if different choices are made of p and u (so long as the same conditions
are satisfied), ω̂ is well-defined. We have π∗ω̂ = o∗ω, and so for any a ∈ GL(m+ 1),

π∗(R∗
o(a)ω̂) = R∗

a(π
∗ω̂) = R∗

a(o∗ω)

= o∗(R
∗
aω) = o∗(ad(a−1)ω) = ad(o(a)−1)o∗ω

= π∗(ad(o(a)−1)ω̂),

and so since π is surjective, R∗
o(a)ω̂ = ad(o(a)−1)ω̂. Moreover, for any A ∈ gl(m+ 1), we

have π∗(A
†) = (o∗A)†, and therefore

ω̂((o∗A)†) = (π∗ω̂)(A†) = o∗(ω(A†)) = o∗A.

Thus ω̂ is the connection form of a connection on the principal PGL(m+1)-bundle SψM.

From the fact that ∇X = id it follows that a non-zero multiple of X can be parallel along
a non-trivial curve in N only if that curve is (up to reparametrization) an integral curve
of X: for ∇u(fX) = u(f)X + fu = 0 only if u is proportional to X. The same holds for
a frame any member of which is a multiple of X. We now interpret this observation in
terms of the properties of the connection on FN , using the fact that a horizontal curve in
FN can be thought of as a curve in N (its projection) with a parallel frame along it. Let
us denote by FXN ⊂ FN the sub-bundle consisting of those frames whose first member
is a multiple of X. Then at any point p ∈ FXN , we have Hp ∩ Tp(FXN ) = 〈XH

p 〉, that
is, the horizontal subspace at p (the kernel of ωp) intersects the tangent space to FXN
at p in the 1-dimensional subspace spanned by the horizontal lift of X to p. When we
pass to the quotient, at any point q ∈ π(FXN ) we have ker ω̂q ∩ Tq(π(FXN )) = {0}.

We now return to the TW -connection, which we represent in the standard way as an
Ehresmann connection ω̃ on the frame bundle F(VM) of the volume bundle; we wish to
construct from this a Cartan connection form on CM . Since the TW -connection satisfies
the conditions of the theorem above with respect to Υ, we can as a first step construct
from it a related Ehresmann connection ω̂ on the simplex bundle SWM .

The second and final step of our construction is to use this Ehresmann connection on
SWM to define a Cartan connection on the sub-bundle CM ⊂ SWM . This sub-bundle
has codimension m, and so the restriction ω of ω̂ to CM will define a Cartan connection
if the intersection (in T (SWM)) of ker ω̂ and T (CM) contains only zero vectors ([14],
Proposition A.3.1; see also [10]). But CM is the image in SWM of the sub-bundle of
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F(VM) consisting of those frames with first element a multiple of Υ, so this follows from
the fact that for the TW -connection ∇̃Υ = id.

We now follow the construction through using explicit representations of the connections
in suitable gauges. Since by assumption the TW -connection is trace-free, in the gauge
(∂α) on VM it will be given by the gl(m+ 1)-valued form

ω̃(∂α) =

(

0 x0αbcdx
c

(x0)−1dxa Π a
bcdx

c + δab (x
0)−1dx0

)

.

This gauge is not, however, a projectable gauge, in that the vector field ∂0 is not pro-
jectable to a local section of the Cartan algebroid. In the projectable gauge (Υ, ∂a), we
have

ω̃(Υ,∂a) =

(

(x0)−1dx0 αbcdx
c

dxa Π a
bcdx

c + δab (x
0)−1dx0

)

= ((x0)−1dx0)I +

(

0 αbcdx
c

dxa Π a
bcdx

c

)

.

The Ehresmann connection ω̂ on the simplex bundle SWM , in the gauge [eα], is

ω̂[eα] =

(

0 αbcdx
c

dxa Π a
bcdx

c

)

,

and this is also the connection form of the Cartan connection ω in the same gauge.

If [∇] is a projective equivalence class of affine connections on M , and ∇̃ any correspond-
ing trace-free TW -connection, it is immediate from the entries in the matrix that the
Cartan connection we obtain has the same unparametrized geodesics as the equivalence
class [∇]. Furthermore, this procedure establishes a 1-1 correspondence between the
trace-free TW -connections and the torsion-free Cartan connections satisfying Ω0

0 = 0
associated with any given restricted path space, in which the normal TW -connection
corresponds to the normal projective Cartan connection.

6 Conclusion

The investigation of the relationship between the theories of Cartan and of Thomas and
Whitehead which we have described in this paper is, as we have mentioned, the first part
of a more general study of projective connections. The second part, which is contained
in [4], deals with the following generalization.

In place of a class of projectively equivalent symmetric affine conections on a manifold,
and their corresponding (quadratic) geodesic sprays on the tangent manifold, we con-
sider instead a class of projectively equivalent sprays on the slit tangent manifold whose
coefficients Γa are homogeneous of degree 2 rather than quadratic. These are the path
spaces described by Douglas, without the prefix ‘restricted’ [5]. They do not in general
arise from affine connections on the manifold; instead they are related to connections on
a pull-back bundle, the Berwald connections.
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The corresponding general second-order differential equation was also studied by Car-
tan [2] with an indication that his calculations could be extended to systems of differential
equations, and hence to manifolds of dimension greater than 2. In modern terminology,
Cartan’s constructions also take place on a pull-back bundle.

In [4] we show that, by analogy with the affine case, each equivalence class of sprays gives
rise to a unique Cartan connection on a sub-bundle of a suitable pull-back bundle and
that, once again, the geodesics of the sprays (their base integral curves, unparametrized)
are precisely the geodesics of the Cartan connection. We also show that, when the
spray is actually quadratic, so that its Berwald connection is the pull-back of an affine
connection on the manifold, then the Cartan connections constructed by the restricted
theory and the general theory are essentially the same.
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