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Abstract

A symmetric tensor T on a (pseudo-)Riemannian manifold which sat-
isfies 155, 05 = SGiis..i,_19:i,); for some symmetric tensor S is a
conformal Killing tensor of a special kind. Such special conformal
Killing tensors of valence 1 and 2 have been extensively studied. In
this paper special conformal Killing tensors of arbitrary valence, and
indeed certain non-metrical generalizations of them, are investigated.
In particular, 1t 18 shown that the space of special conformal Killing
tensors is finite-dimensional, and the maximal dimension is attained
(in the (pseudo-)Riemannian case) if and only if the manifold is a space
of constant curvature. This result is obtained by constructing a set of
structural equations for special conformal Killing tensors.

Keywords: special conformal Killing tensor; structural equations;

separation of variables; completely integrable system; projectively equiv-
alent metrics.

1 Introduction

This paper is concerned with symmetric tensors T of valence r on a Rieman-
nian or pseudo-Riemannian manifold which satisfy equations of the form

Tivin.inlj = S(ivineciv—1 9ir)j»



where the rule signifies covariant differentiation with respect to the levi-
Civita connection, S is a symmetric tensor of valence r — 1, g is the metric,
and the brackets denote symmetrization over the enclosed indices. The
tensor S is in fact determined by the equation. Manifolds of dimension 2
are atypical, as is often the case, and so it will be assumed throughout that
the dimension of the manifold is at least 3.

A tensor T which satisfies such an equation also satisfies

Tiviaecirlj) = Siviaevis—1 9irj)

and is therefore a conformal Killing tensor, albeit of a special kind: T there-
fore call such tensors special conformal Killing tensors.

Conformal Killing tensors are of course of interest in their own right. How-
ever, special conformal Killing tensors with » = 1 and r = 2 in particular
have been extensively studied, for reasons that are not always directly re-
lated to the fact that they are conformal Killing tensors.

When r = 1 we are dealing with a covector field such that
Ty = S9ij

for some function S. Thus T is a conformal Killing (co-)vector. Moreover
Tii = Tiyjs
are of interest in at least two areas of research.

and so T is a gradient. Such special conformal Killing vectors

e Conformal Ricci collineations of Riemannian or pseudo-Riemannian
manifolds. A conformal Killing field X on a (pseudo-)Riemannian
manifold is a conformal Ricci collineation if Lx R;; = 7g;; where R;;
is the Ricci tensor. A conformal Killing field is a conformal Ricci
collineation if and only if the gradient of its conformal factor is a
special conformal Killing vector [1].

e Concircular transformations in Riemannian geometry. A transforma-
tion of a Riemannian manifold preserves geodesic circles if and only if
it is conformal, and the gradient of the conformal factor is a special
conformal Killing vector (see for example [2]).

The infinitesimal generators of transformations preserving geodesic circles
are called concircular vector fields; the same name is also applied, confus-
ingly, to the solutions of the equation T;; = Sg;;. T shall adopt the latter
convention.



The solutions of the tensor differential equation
T = 5(Sigin + S;gik)

(the case r = 2) are sometimes called Benenti tensors in the literature,
sometimes just special conformal Killing tensors. To avoid confusion with
the general case I shall use the former term. Benenti tensors play an impor-
tant role in at least three areas of research.

e Separation of the variables in the Hamilton-Jacobi equation. When
a Riemannian manifold admits a Benenti tensor whose eigenfunctions
are simple and functionally independent, those eigenfunctions are or-
thogonal separation coordinates for the Hamilton-Jacobi equation for
the geodesics of the manifold, or more generally for suitable Hamilto-
nian systems of mechanical type [3]-[6].

e Completely integrable dynamical systems. Benenti tensors are in-
volved in the definition of certain nonconservative Lagrangian systems,
so-called cofactor-pair systems, which provide interesting examples of
completely integrable systems [7]-[10]. Furthermore, the Nijenhuis tor-
sion of a Benenti tensor vanishes as a consequence of the defining con-
ditions, and so Benenti tensors may be used to treat suitable systems
as bi-Hamiltonian systems of Poisson-Nijenhuis type [5, 6]. Finally,
a class of superintegrable Hamiltonian systems constructed using Be-
nenti tensors has recently been receiving attention [11, 12].

e The projective equivalence of Riemannian manifolds. Two Rieman-
nian manifolds are said to be projectively equivalent if they have the
same geodesics up to reparametrization. This situation occurs if and
only if a certain tensor formed out of the two metric tensors is a Be-
nenti tensor [13]-[16].

Since special conformal Killing tensors have these interesting applications,
it seems important to establish the basic properties of the solutions of the
special conformal Killing tensor equations. It is known (see [15, 16]) that
for r = 1 and r = 2 the space of solutions of the special conformal Killing
tensor equations is a finite-dimensional vector space, of maximal dimension
n+1forr =1 and 1577/(77/ + 1) for r = 2, where n is the dimension of the
underlying manifold. Moreover, the maximal dimension is achieved if and
only if the Riemannian space is a space of constant curvature. The aim of
this paper is to extend these results to the general case.



It turns out that, so far as deriving the main result of this paper is concerned,
it is just as easy to write the defining equation in the contravariant form

T’7”72'“’7T|4 — gliriaeiy— gir)
A 7

It is evident that equations of this type may be formulated without ap-
peal to the existence of a metric. The main result will hold therefore for
symmetric contravariant tensors on any manifold equipped with an affine
connection, which for convenience | take to be symmetric; the results con-
tained in this paper are consequently very considerable generalizations of
the known results for concircular vector fields and Benenti tensors. T call
tensors satisfying the equation immediately above generalized special con-
formal Killing tensors (with an apology for the slight air of accompanying
paradox).

The method of analysis employed here is to derive a system of structural
equations, in the sense of Hauser and Malhiot [17, 18] and Wolf [19], for gen-
eralized special conformal Killing tensors. Hauser and Malhiot introduced
this method in the study of Killing tensors of valence 2; Wolf extended it
to deal with Killing tensors of arbitrary valence. In outline, the method
works as follows. Tensorial quantities F” are found which satisfy a system
of equations of the form Flf‘ = ngFB (sum over B intended), among which
are the generalized special conformal Killing tensor equations (or whichever
equations are of actual interest). The equations of this extended set are the
structural equations. The F4 consist of the symmetric tensor T and tensors
constructed from it and its covariant derivatives; the coefficients ng are
tensorial quantities which are independent of the 4 and in fact are built
out of the curvature and its covariant derivatives. The structural equations
are equivalent to the original generalized special conformal Killing tensor
equations, in the sense that given any solution T of the generalized special
conformal Killing tensor equations, the corresponding F'4 satisfy the struc-
tural equations, and conversely given any solution of the structural equations
the T component of F4 satisfies the generalized special conformal Killing
tensor equations.

The advantage of expressing the problem of finding generalized special con-
formal Killing tensors in the form of solving the structural equations derives
from the distinctive nature of these equations: each covariant derivative Flf‘
is a linear combination of the F4. Tt follows that given any point 2 of the

underlying manifold, the linear map sending a solution T of the generalized
special conformal Killing tensor equations to 4 () is injective, so that the



largest value the dimension of the solution space can have is the number of
variables F4 in the structural equations. Moreover, the integrability condi-
tions of the structural equations are in principle easily found by covariantly
differentiating the equations, using the Ricci identities to eliminate second
covariant derivatives, and substituting for the first derivatives introduced by
using the original equations. The resulting conditions are

A A O A O pA A\ A
(Tgi; — ey + Teil'e; — TeTei — Rpip) 7 =0,

where the Réi?’ are appropriate combinations of components of the curvature
tensor. When the solution space has maximal dimension the values of the
FA may be chosen arbitrarily at each point of the underlying manifold, so

A A C A el A A
Ui — Vg ¥ Veil'cy — Uglc: — Baij

must vanish everywhere, and this gives algebraic conditions on the curvature
and its covariant derivatives from which the properties of the spaces for
which the solution space has maximal dimension can be determined. (In
practice it may not be necessary to carry out this integrability analysis in
its entirety: short cuts may be available, as is the case here.)

The relevant features of structural equations, including those described
above, seem to be treated as common knowledge rather than derived in
the literature; T give a brief discussion with proofs in an appendix. As well
as obtaining an interesting result about a special class of conformal Killing
tensors, this paper provides a quite subtle example of the use of structural
equations.

In tensor calculations T follow the sign conventions of Eisenhart [20], so that
the Ricci identities are (for example) K, — Ky = Rfﬁjk K, and the Ricci
tensor is given by R;; = Rfjk. The Einstein summation convention is in
force almost throughout.

2 Structural equations for generalized special con-
formal Killing tensors

l.et V be the covariant derivative operator of a symmetric affine connection
on a manifold M. The tensors under consideration are contravariant and
symmetric: T denote the space of valence r symmetric contravariant tensors

by ©,.



I shall consider tensor equations of the following form:
vr=5olI (1)

where [ is the identity tensor and & is the symmetrised tensor product.
This is to be construed as a set of first-order partial differential conditions
on the unknown symmetric contravariant tensor T, namely that VT takes
the indicated form where S is some other symmetric contravariant tensor,
whose valence is one less than that of T. Tn component form,if T € &,,,

ivizeir _ g(iviz.in_1 gir)
7 =+ 7
The brackets indicate symmetrization; since S is by assumption already
symmetric, the right-hand side is obtained by taking the cyclic sum over the
indices 11,179, ..., 2. and dividing by r.

The tensor S in the equation VT = S I can be expressed in terms of T' by
taking a trace. If we take the trace over 7, and j in the component version
we obtain

, |7

(77/ ‘I’ r—1 ) 547:1772“.7:7“71 — T?:17:2...7:r71,7 .

In order to be able to write this more succinctly T shall define a divergence
operator 0 : 6, — &,_; by

(‘OT)i17:2---7:r71 _ Tﬁ 191 ,7|'7,_

More generally, if U is a tensor of type (r,s) which is symmetric in its
contravariant indices T set

(D(])u ig...irH _ (]171 772---77;71 k|k-

J1J2--0s J1J2--0s

Equation (1) can be written

r

w—(i
nd+r—1

)DT@T.

T shall need the commutator of the operators V and 0. Now for T' € &,
(VOT) ity = ()it = Tttty

while '

(-OVT)i1772...77r71'7, — ((VT)i1772...77r71kj)|k _ Ti1i2...7r71k|'7k;



thus
Migete 1 | __ Pitigecie 1k 11201k
(IV,0]T) j=T |ki — T FLE

Now by the Ricci identity

r
7—7771772...7fr,17fr|kj - Tﬁig...ﬂ,mfr ik = Z R;E';leﬁiQ..jS...“?
s=1
where the hat indicates that the corresponding index is to be omitted. It
follows that

r—1
([V7D]T)71727T,17 — ZB;;kT]k71727Aq7T,1 ‘I’ Rijkﬁi?.“iT71 .
s=1

Thus [V, 0] is an algebraic operator &, — &, 1 @T*M, which T shall denote
by p for succinctness. Notice that p(7') has zero trace:

r—2
igadr 2], __ te plkivio.ds.ipr o]
p(T) i = ZlekT
s=1

+ R:]jllekﬁiQ---ier + Rijki”:Q---irf?j
7k .
— 7le7—7]k7'17'2---7'r72 + Rijk7r112---7rr72,7 =0,

using the fact that B;yk is skew in j and k.

I now start to derive the structural equations. T shall use index-free notation,
but in order to keep track of the valences of the tensors involved, where
necessary I shall write T, for an element of &, and Uy for an element of
&, @ T*M; thus T(oy is a scalar, and it will be convenient to take T, =0
for p < 0. The structural equations will turn out to have the form

VTipy=Upn+ T 0ol p=rr—1,...0,

where U, is a linear expression in the tensors T(,) with ¢ > p, with coef-
ficients which are components of the curvature and Ricci tensors and their
covariant derivatives; Uiy = 0; and as a type (p, 1) tensor Ugpy 18 trace-free.
Note that it follows from the latter fact that T(,_;) can be expressed as a
multiple of 07(,), as before.

(A linear expression, as envisaged here, will involve contractions between
the indices of the T,y and the coefficients: pT(,) provides a paradigmatic
example. Such expressions will have the form T'4.F? occuring on the right-
hand side of tructural equations as they were described in the Introduction:
here the F4 stand for components of the collection of tensors T(p).)



The structural equations will be derived recursively, by use of the following
lemma.

Lemma 1 Suppose that for some p > 1 tensors T, T(,,_1y and Uy, (with
the notational conventions described above) satisfy

VT =Upy+ Ty o1

where U, is trace-free (no assumption is made here about how it is related
to Ty etc.). Then there are tensors T(p—2y and Ug,_yy, with Ug,_yy trace-free

for p > 1, such that

p—2
Vg =Up-n+Tpo@ T

Proof The expression for T, 1y is obtained by taking a trace of the defining
equation, as before; we obtain

_ P
To-n= (n T ]) 0T (p)- (2)
Then
(77/ +p— ])VT(p*U = pVDT(p)

= OV +oT1y))
= p (D(U(p) + Ty 1) + pT(p)) )
The next point to note is that
pO(Tpy O T) =VT, 1+ (p— 10Ty O T),
as it is easy to see by a calculation in components. Thus
(n+p = 2DVT(o1y=p (Ui + pT1) + (0= 1) (3T & 1) .

That is to say
VTip-1y = Up-1) + Tp2) @ 1

with
p—1
Tip—2) = (n T 2) 071y
and
P
Uiy = (m) (30U + 2T - (3)

8



It follows either from the fact that T(,,_) has the correct relationship with

07,1y, or from the fact that pT(,) is trace-free, that U, ) is trace-free. [

p—1

Suppose now we have a tensor T{,) such that VT{,) = T(,_1) ® I. Define
T(p) and U,y recursively by equations (2) and (3), with in the latter case

=

() = 0; in evaluating 00/, terms involving covariant derivatives of the
T(4y will occur and these are to be replaced by the appropriate expressions
in T(‘J*U'

Lemma2 With 7,y and U, defined in this way, U, is a linear expression
in the T(,) with ¢ > p, with coefficients formed from the curvature and Ricci
tensors and their covariant derivatives.

Proof Clearly Uy, _1y is of this form, since it is just a constant multiple of
pT(ry- Suppose that Uy, is of this form. Now up to numerical factors, U, 1)
is obtained from U,y by firstly operating on it with 0 and substituting for
covariant derivatives of the T(,), and secondly adding pT(,). The result is a
linear expression in the T,y with ¢ > p — 1, with coefficients formed from
the curvature and Ricci tensors and their covariant derivatives. ]

It will sometimes be convenient to denote by o(p) any collection of terms
depending linearly on the T,y with ¢ > p.

I shall need later the explicit form of the terms involving T(, ) in Uyy. T
claim that these terms are of the form

P
(0p By + by By T 4, (Z BT)

s=1

for some numerical factors a,, b, and ¢,; Ry is the skew part of R;; and

K]

R(;;) the symmetric part. The formula abovg clearly holds for p = r — 1,
with a, = b, = ¢, = 1. Now from equation (3), to obtain the corresponding
terms in U(, 4y we must first operate on the expression above with 0, and
since we are working to o(p + 1) we may ignore those terms which involve

the derivatives of the curvature and Ricci tensors. We are left with

(ap Ry + by Ry TH 21y

p—1
s lki1ig . dg.cip_1m m lki1io . dp_1
e | D BT P A Ry T 7 m
s=1

All the T terms here are divergences except the last, and may be replaced by
the appropriate components of 7}, (with the appropriate numerical factor).



For the last we have

.

/Z,leki”:Q...f:pq _ /Z,kT(lkﬁiQ...f:p,Q(siﬁq) To(pt1).

Now

D ,;?kT(lk“ 12...0p_2 5%—1 )

p—1
— ZR;;leki1i2...i,q...ip,1 4 R;ikai1i2...ip71 4 R;fjlei17f2...7:p,1 )

. . .
The sum is a term of the required form, and R@k = Rij = Ryj+ Bjy- From
the cyclic identity we have

I} I I
Bijp = —Rjy — By = By — Rjp = 28y

So finally

pR;?,kT(zki”:Q...i,,,Q(siﬁq)

p—1
=D R Tttt g 3Ry Ry TR 20
s=1

Collecting everything together we see that the terms involving T(,) in U, )
have the required form. Moreover, all the numerical coefficients occurring
in the expressions above are positive, which means that a,, b, and ¢, are
positive for all p.

I can now derive the structural equations.
Theorem 1 The equations
Vipy=Upn+Tp-ny©Il, p=rr—1,...,1,0
for the unknowns Ty, p=r,r — 1,...,1,0 (with T(,) € &), where

p
Up—1y = (7n+p 2) (o) +0Ti)) . Uiy =0,

are structural equations for the equation

VT(,,) = T(T*U o T.

10



Proof These equations have the right form. 1f T(,,), p=r,r —1,...,1,0,is
a solution then T(,) evidently satisfies the initial equation, and each other
T(py is given by

- —(?’“)w _ (p+1)(p+2)--r
W\t p) T it )t p 1) (1)

T (4)

Conversely, if T|,) satisfies the initial equation then the T{,) given by equa-
tion (4) satisfy the other structural equations. ]

Corollary The set of solutions T(,y of VT(,y = T4y @ T is a finite-
dimensional real vector space whose maximal dimension is the dimension
of the space of constant symmetric r-tensors on R*+1.

Proof The dimension is 7 _q a(p,n), where o(p, n) is the dimension of the
space of constant symmetric p-tensors on R”. But 37 _0(p,n) = a(n +
1,7), as may easily be seen by considering the expression of a homogeneous
polynomial of degree r on R™! in terms of variables (2°,2%) with i =
1,2,...,m. ]

The next question is: what can we say about a space when the dimension is
maximal?

First, it is easy to see that in R" the general solution of the equation VT, =
T(wa O I is

Tivieie — Aphigia o gie Al pia L ir) + Aliriz i | ir) I

where the As are constant and symmetric; so the dimension in this case is

> =00 (pyn).

Secondly, T consider the effects of a restricted projective transformation of
the connection. Recall that a projective transformation of a connection takes
the form

Uik = Ui 0505 + ¥y = T3
the transformation is a restricted projective transformation if ¢y is a gra-
dient, say ¢p = ¢;. Under a restricted projective transformation, for any
T e 6,
V(e Ty =e "(VT +T() 1)

where T'(¢p)"172r=1 = pTh2-=tr=104h . Thus the dimensions of the solutions

in spaces which are projectively equivalent in the restricted sense are the

11



same. A space is projectively equivalent in the restricted sense to a flat space
if and only if it is Ricci-symmetric and has vanishing projective curvature
tensor, or equivalently

7 1 7 7
(e (Rl.¢5k - Ru«(%) =0, Rij—R;i=0. (5)

Thus if the curvature satisfies equations (5) the solution space of VT =
T—1y @ I has maximal dimension.

I show that this result is sufficient as well as necessary. For this purpose,
consider the structural equations with p =2, p=1 and p = 0O:

Vi = U+ Tmol
VT = Un+Tofl
Vi) = Vo)
where Uiy = o(3), and from the calculations of the leading terms in the
U(p),
Uny; = (B + bRy T + cRyp T
Uy = (a0Bpq + boRi)T*

where the numerical coefficients are all positive.

Theorem 2 The solution space of VT{,) = T(,_1y© I has maximal dimen-
sion if and only if the curvature satisfies equations (5), that is, the space is
Ricci-symmetric and projectively flat.

Proof Tt remains to be proved that if the solution space has maximal di-
mension then the curvature satisfies equations (5). For convenience [ shall
denote Ty by T, T1y by .S and T(o) by (. The equations above read

T = LS8+ 576 + o(3)
Sli = QO+ (B + bRy TH + Ry T + 0(3)
Qi = (aoBp;+ bOR(ki))Sk +0(2).

The integrability conditions for the last of these equations are

0=Qyj — Qi = 200Q [ + o(1).

12



If the dimension is maximal this must hold at any point with an arbitrary
choice of values of the variables, and in particular with Q = 1, all other
variables zero. Thus the space must be Ricci-symmetric.

We may therefore rewrite the second equations as
Sl = Q0%+ bRy T + cRj T + 0(3)
The integrability conditions for these equations are
“RyS" = Qud; — Qs + b(By T — RuTy))
+ ¢ ;7mT|]1:n - /}:kaIT) + 0(2)
= bo(Rud. — Ry;6;)8"
+ 30 (B (S'0] + 5°0}) — R (5"} + S741))
3 (Rl (S187 +5780) — Ripa (897 4+ 575) + 0(2)
= (bo — 1b)(Rud: — Ry;6;)S"
+ 3e(Riz + Rt — Rig; — R;‘M)Sl + 0(2)
= (b() — %b) (B,k(S; — 31752)51 + %(ER;}]{S! + ()(2).
Thus when the dimension is maximal we have a relation of the form
ARM + M(le(s,;‘ - Rl.f‘%) =0
where A =1+ %(5 is nonzero. But by taking a trace we obtain
ARpj — p(n — 1) Ry =0,

so that !
Ri — m(le(s;; — Ripdi) =0

(or indeed the space is flat). O

3 Some consequences

If Ty is a generalized special conformal Killing tensor of valence ry and Ty
one of valence ro then Ty & Ty is a generalized special conformal Killing
tensor of valence ry + ro, since

V(TyoTy)=(VT) @ Te+ Ty & VT,

13



In particular, any symmetrized product of say r generalized special con-
formal Killing vectors is a generalized special conformal Killing tensor of
valence r. Now when equations (5) are satisfied, so that the dimension of
the space of generalized special conformal Killing vectors is n+ 1, the space
of their symmetrized r-fold products has dimension o(n+ 1, r), which coin-
cides with the dimension of the space of generalized special conformal Killing
tensors of valence r. That is to say, when equations (5) are satisfied, and
the dimension of the space of generalized special conformal Killing tensors
of each valence is maximal, every generalized special conformal Killing ten-
sor of valence r can be uniquely expressed as a linear combination (in the
strict sense of vector space theory) with constant coefficients of symmetrized
r-fold products of generalized special conformal Killing vectors.

I now turn my attention briefly to the (pseudo-)Riemannian case. In this
case we can write the defining equations as
Tivin.inlj = S(ivineciv—1 9ir)j»

and the solutions are special conformal Killing tensors. The Ricci tensor is
automatically symmetric; the remaining part of equations (5), which states
that the projective curvature vanishes, holds if and only if the space is of
constant curvature. So on a Riemannian space, the space of special con-
formal Killing tensors of any given valence has maximal dimension if and
only if the Riemannian space is a space of constant curvature. The maximal
dimension with valence r is o(n + 1,r), as before; and the decomposition
property above continues to hold.

Finally, T shall write down explicitly the structural equations in the low di-
mensional cases of greatest interest. The structural equations for concircular
vector fields are

! !
Ty = Sgij, S = lekT .

The equations

Tije = 5(Sigjn + Sigi)
] m,
Si|j = ; (QBI;TM — Qf]klRij'lem + !]ijQ)
2 4
Qi = — (9'71(23f'|z ~ Ry Ti + (n + ])R'Z:Sj)

are structural equations for Benenti tensors.

14



Appendix

I derive here the results about structural equations used in the main body of
the paper. Such equations may be interpreted as follows. Consider a vector
bundle ¥ — M, where M is a manifold with an arbitrary symmetric affine
connection; F is supposed to be the Whitney sum of tensor bundles over M,
so that the connection induces a connection on F. Take fibre coordinates
u? on F, and denote by Agi the connection coefficients for the induced
connection with respect to coordinates (z*,u”). The structural equations
F? = ngFB may be regarded as equations for a section of F, given in

coordinates by u? = F4(27).

My approach is motivated by the case in which the ng all vanish. Then a
solution of the equations defines a section of F/ which is covariantly constant;
or if we think of the connection as defining and being defined by a horizontal
distribution on F, a section which is horizontal (that is, an n-dimensional
submanifold of F, transverse to the fibres, to which the horizontal distribu-
tion is everywhere tangent). Given any point u € F| if there is a horizontal
section through u it is unique. Now the zero section of any vector bundle
equipped with a linear connection is a horizontal section, and is the unique
horizontal section through any point (2%,0). Thus if Flf‘ =0and FA(2") =0

anywhere then F4 (T’) = () everywhere, so that the linear map from solu-
tions of the equations F? = () to their values at an arbitrary point of M
is injective, and the maximum dimension of the solution space is the fibre
dimension of F/. The necessary and sufficient condition for the equations to
be completely integrable, that is for there to be a horizontal section through
every point of F is that the horizontal distribution should be integrable (in
the sense of Frobenius), or equivalently that the curvature of the induced
connection should vanish.

Theorem  Consider a system of structural equations Flf‘ = ngF’B, as
interpreted above. Then
1. if, for any 2 € M, there is a solution with prescribed values F* (x) it

is unique;

2. the space of solutions has maximum dimension equal to the fibre di-
mension of F/;

3. the maximum dimension of the solution space is attained if and only

15



if the equations are completely integrable;

4. the necessary and sufficient conditions for the system to be completely
integrable are that
A A C 1A C pA A
Ugij = Ugii T Uity — Ul = By
where Réi?’ are the components of the curvature of the induced con-
nection on F.

Proof Tt is only necessary to note that since the coefficients ng are assumed
to be tensorial, Agi — ng determines a new connection on F, with respect
to which the structural equations are equations for covariantly constant
sections. Thus items (1), (2) and (3) follow immediately from the earlier
discussion. Tt is easy to see that the curvature of the new connection is
Rgm‘ - (ng

A C A C A
i~ Ve + el — FB]‘rm) ;

whence item (4). O
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