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tA symmetri
 tensor T on a (pseudo-)Riemannian manifold whi
h sat-is�es Ti1i2:::irjj = S(i1i2:::ir�1gir)j for some symmetri
 tensor S is a
onformal Killing tensor of a spe
ial kind. Su
h spe
ial 
onformalKilling tensors of valen
e 1 and 2 have been extensively studied. Inthis paper spe
ial 
onformal Killing tensors of arbitrary valen
e, andindeed 
ertain non-metri
al generalizations of them, are investigated.In parti
ular, it is shown that the spa
e of spe
ial 
onformal Killingtensors is �nite-dimensional, and the maximal dimension is attained(in the (pseudo-)Riemannian 
ase) if and only if the manifold is a spa
eof 
onstant 
urvature. This result is obtained by 
onstru
ting a set ofstru
tural equations for spe
ial 
onformal Killing tensors.Keywords: spe
ial 
onformal Killing tensor; stru
tural equations;separation of variables; 
ompletely integrable system; proje
tively equiv-alent metri
s.1 Introdu
tionThis paper is 
on
erned with symmetri
 tensors T of valen
e r on a Rieman-nian or pseudo-Riemannian manifold whi
h satisfy equations of the formTi1i2:::irjj = S(i1i2:::ir�1gir)j ;1



where the rule signi�es 
ovariant di�erentiation with respe
t to the Levi-Civita 
onne
tion, S is a symmetri
 tensor of valen
e r� 1, g is the metri
,and the bra
kets denote symmetrization over the en
losed indi
es. Thetensor S is in fa
t determined by the equation. Manifolds of dimension 2are atypi
al, as is often the 
ase, and so it will be assumed throughout thatthe dimension of the manifold is at least 3.A tensor T whi
h satis�es su
h an equation also satis�esT(i1i2:::ir jj) = S(i1i2:::ir�1girj)and is therefore a 
onformal Killing tensor, albeit of a spe
ial kind: I there-fore 
all su
h tensors spe
ial 
onformal Killing tensors.Conformal Killing tensors are of 
ourse of interest in their own right. How-ever, spe
ial 
onformal Killing tensors with r = 1 and r = 2 in parti
ularhave been extensively studied, for reasons that are not always dire
tly re-lated to the fa
t that they are 
onformal Killing tensors.When r = 1 we are dealing with a 
ove
tor �eld su
h thatTijj = Sgijfor some fun
tion S. Thus T is a 
onformal Killing (
o-)ve
tor. MoreoverTjji = Tijj , and so T is a gradient. Su
h spe
ial 
onformal Killing ve
torsare of interest in at least two areas of resear
h.� Conformal Ri

i 
ollineations of Riemannian or pseudo-Riemannianmanifolds. A 
onformal Killing �eld X on a (pseudo-)Riemannianmanifold is a 
onformal Ri

i 
ollineation if LXRij = �gij where Rijis the Ri

i tensor. A 
onformal Killing �eld is a 
onformal Ri

i
ollineation if and only if the gradient of its 
onformal fa
tor is aspe
ial 
onformal Killing ve
tor [1℄.� Con
ir
ular transformations in Riemannian geometry. A transforma-tion of a Riemannian manifold preserves geodesi
 
ir
les if and only ifit is 
onformal, and the gradient of the 
onformal fa
tor is a spe
ial
onformal Killing ve
tor (see for example [2℄).The in�nitesimal generators of transformations preserving geodesi
 
ir
lesare 
alled 
on
ir
ular ve
tor �elds; the same name is also applied, 
onfus-ingly, to the solutions of the equation Tijj = Sgij. I shall adopt the latter
onvention. 2



The solutions of the tensor di�erential equationTijjk = 12(Sigjk + Sjgik)(the 
ase r = 2) are sometimes 
alled Benenti tensors in the literature,sometimes just spe
ial 
onformal Killing tensors. To avoid 
onfusion withthe general 
ase I shall use the former term. Benenti tensors play an impor-tant role in at least three areas of resear
h.� Separation of the variables in the Hamilton-Ja
obi equation. Whena Riemannian manifold admits a Benenti tensor whose eigenfun
tionsare simple and fun
tionally independent, those eigenfun
tions are or-thogonal separation 
oordinates for the Hamilton-Ja
obi equation forthe geodesi
s of the manifold, or more generally for suitable Hamilto-nian systems of me
hani
al type [3℄-[6℄.� Completely integrable dynami
al systems. Benenti tensors are in-volved in the de�nition of 
ertain non
onservative Lagrangian systems,so-
alled 
ofa
tor-pair systems, whi
h provide interesting examples of
ompletely integrable systems [7℄-[10℄. Furthermore, the Nijenhuis tor-sion of a Benenti tensor vanishes as a 
onsequen
e of the de�ning 
on-ditions, and so Benenti tensors may be used to treat suitable systemsas bi-Hamiltonian systems of Poisson-Nijenhuis type [5, 6℄. Finally,a 
lass of superintegrable Hamiltonian systems 
onstru
ted using Be-nenti tensors has re
ently been re
eiving attention [11, 12℄.� The proje
tive equivalen
e of Riemannian manifolds. Two Rieman-nian manifolds are said to be proje
tively equivalent if they have thesame geodesi
s up to reparametrization. This situation o

urs if andonly if a 
ertain tensor formed out of the two metri
 tensors is a Be-nenti tensor [13℄-[16℄.Sin
e spe
ial 
onformal Killing tensors have these interesting appli
ations,it seems important to establish the basi
 properties of the solutions of thespe
ial 
onformal Killing tensor equations. It is known (see [15, 16℄) thatfor r = 1 and r = 2 the spa
e of solutions of the spe
ial 
onformal Killingtensor equations is a �nite-dimensional ve
tor spa
e, of maximal dimensionn + 1 for r = 1 and 12n(n + 1) for r = 2, where n is the dimension of theunderlying manifold. Moreover, the maximal dimension is a
hieved if andonly if the Riemannian spa
e is a spa
e of 
onstant 
urvature. The aim ofthis paper is to extend these results to the general 
ase.3



It turns out that, so far as deriving the main result of this paper is 
on
erned,it is just as easy to write the de�ning equation in the 
ontravariant formT i1i2:::ir jj = S(i1i2:::ir�1Æir)j :It is evident that equations of this type may be formulated without ap-peal to the existen
e of a metri
. The main result will hold therefore forsymmetri
 
ontravariant tensors on any manifold equipped with an aÆne
onne
tion, whi
h for 
onvenien
e I take to be symmetri
; the results 
on-tained in this paper are 
onsequently very 
onsiderable generalizations ofthe known results for 
on
ir
ular ve
tor �elds and Benenti tensors. I 
alltensors satisfying the equation immediately above generalized spe
ial 
on-formal Killing tensors (with an apology for the slight air of a

ompanyingparadox).The method of analysis employed here is to derive a system of stru
turalequations, in the sense of Hauser and Malhiot [17, 18℄ and Wolf [19℄, for gen-eralized spe
ial 
onformal Killing tensors. Hauser and Malhiot introdu
edthis method in the study of Killing tensors of valen
e 2; Wolf extended itto deal with Killing tensors of arbitrary valen
e. In outline, the methodworks as follows. Tensorial quantities FA are found whi
h satisfy a systemof equations of the form FAji = �ABiFB (sum over B intended), among whi
hare the generalized spe
ial 
onformal Killing tensor equations (or whi
heverequations are of a
tual interest). The equations of this extended set are thestru
tural equations. The FA 
onsist of the symmetri
 tensor T and tensors
onstru
ted from it and its 
ovariant derivatives; the 
oeÆ
ients �ABi aretensorial quantities whi
h are independent of the FA and in fa
t are builtout of the 
urvature and its 
ovariant derivatives. The stru
tural equationsare equivalent to the original generalized spe
ial 
onformal Killing tensorequations, in the sense that given any solution T of the generalized spe
ial
onformal Killing tensor equations, the 
orresponding FA satisfy the stru
-tural equations, and 
onversely given any solution of the stru
tural equationsthe T 
omponent of FA satis�es the generalized spe
ial 
onformal Killingtensor equations.The advantage of expressing the problem of �nding generalized spe
ial 
on-formal Killing tensors in the form of solving the stru
tural equations derivesfrom the distin
tive nature of these equations: ea
h 
ovariant derivative FAjiis a linear 
ombination of the FA. It follows that given any point x of theunderlying manifold, the linear map sending a solution T of the generalizedspe
ial 
onformal Killing tensor equations to FA(x) is inje
tive, so that the4



largest value the dimension of the solution spa
e 
an have is the number ofvariables FA in the stru
tural equations. Moreover, the integrability 
ondi-tions of the stru
tural equations are in prin
iple easily found by 
ovariantlydi�erentiating the equations, using the Ri

i identities to eliminate se
ond
ovariant derivatives, and substituting for the �rst derivatives introdu
ed byusing the original equations. The resulting 
onditions are(�ABijj � �ABjji + �CBi�ACj � �CBj�ACi � RABij)FA = 0;where the RABij are appropriate 
ombinations of 
omponents of the 
urvaturetensor. When the solution spa
e has maximal dimension the values of theFA may be 
hosen arbitrarily at ea
h point of the underlying manifold, so�ABijj � �ABjji + �CBi�ACj � �CBj�ACi � RABijmust vanish everywhere, and this gives algebrai
 
onditions on the 
urvatureand its 
ovariant derivatives from whi
h the properties of the spa
es forwhi
h the solution spa
e has maximal dimension 
an be determined. (Inpra
ti
e it may not be ne
essary to 
arry out this integrability analysis inits entirety: short 
uts may be available, as is the 
ase here.)The relevant features of stru
tural equations, in
luding those des
ribedabove, seem to be treated as 
ommon knowledge rather than derived inthe literature; I give a brief dis
ussion with proofs in an appendix. As wellas obtaining an interesting result about a spe
ial 
lass of 
onformal Killingtensors, this paper provides a quite subtle example of the use of stru
turalequations.In tensor 
al
ulations I follow the sign 
onventions of Eisenhart [20℄, so thatthe Ri

i identities are (for example) Kijjk �Kijkj = RlijkKl, and the Ri

itensor is given by Rij = Rkijk. The Einstein summation 
onvention is infor
e almost throughout.2 Stru
tural equations for generalized spe
ial 
on-formal Killing tensorsLet r be the 
ovariant derivative operator of a symmetri
 aÆne 
onne
tionon a manifold M . The tensors under 
onsideration are 
ontravariant andsymmetri
: I denote the spa
e of valen
e r symmetri
 
ontravariant tensorsby Sr. 5



I shall 
onsider tensor equations of the following form:rT = S � I (1)where I is the identity tensor and � is the symmetrised tensor produ
t.This is to be 
onstrued as a set of �rst-order partial di�erential 
onditionson the unknown symmetri
 
ontravariant tensor T , namely that rT takesthe indi
ated form where S is some other symmetri
 
ontravariant tensor,whose valen
e is one less than that of T . In 
omponent form, if T 2 Sr,T i1i2:::ir jj = S(i1i2:::ir�1Æir)j :The bra
kets indi
ate symmetrization; sin
e S is by assumption alreadysymmetri
, the right-hand side is obtained by taking the 
y
li
 sum over theindi
es i1; i2; : : : ; ir and dividing by r.The tensor S in the equation rT = S� I 
an be expressed in terms of T bytaking a tra
e. If we take the tra
e over ir and j in the 
omponent versionwe obtain �n+ r � 1r �Si1i2:::ir�1 = T i1i2:::ir�1j jj :In order to be able to write this more su

in
tly I shall de�ne a divergen
eoperator d : Sr ! Sr�1 by(dT )i1i2 :::ir�1 = T i1i2:::ir�1j jj :More generally, if U is a tensor of type (r; s) whi
h is symmetri
 in its
ontravariant indi
es I set(dU)i1i2:::ir�1j1j2:::js = U i1i2:::ir�1kj1j2:::js jk:Equation (1) 
an be writtenrT = � rn+ r � 1�dT � I:I shall need the 
ommutator of the operators r and d. Now for T 2 Sr(rdT )i1i2:::ir�1j = ((dT )i1i2:::ir�1)jj = T i1i2:::ir�1kjkj ;while (drT )i1i2:::ir�1 j = ((rT )i1i2:::ir�1kj)jk = T i1i2:::ir�1k jjk;6



thus ([r; d℄T )i1i2:::ir�1j = T i1i2 :::ir�1kjkj � T i1i2:::ir�1k jjk:Now by the Ri

i identityT i1i2:::ir�1ir jkj � T i1i2 :::ir�1ir jjk = rXs=1RisljkT li1i2:::̂{s:::ir ;where the hat indi
ates that the 
orresponding index is to be omitted. Itfollows that([r; d℄T )i1i2:::ir�1 j = r�1Xs=1RisljkT lki1i2:::̂{s:::ir�1 +RkjT ki1i2:::ir�1 :Thus [r; d℄ is an algebrai
 operatorSr ! Sr�1
T �M , whi
h I shall denoteby � for su

in
tness. Noti
e that �(T ) has zero tra
e:�(T )i1i2:::ir�2jj = r�2Xs=1RisljkT lki1i2:::̂{s:::ir�2j+RjljkT lki1i2:::ir�2 + RkjT ki1i2:::ir�2j= �RlkT lki1i2:::ir�2 +RkjT ki1i2:::ir�2j = 0;using the fa
t that Risljk is skew in j and k.I now start to derive the stru
tural equations. I shall use index-free notation,but in order to keep tra
k of the valen
es of the tensors involved, wherene
essary I shall write T(p) for an element of Sp, and U(p) for an element ofSp 
 T �M ; thus T(0) is a s
alar, and it will be 
onvenient to take T(p) = 0for p < 0. The stru
tural equations will turn out to have the formrT(p) = U(p) + T(p�1) � I; p = r; r� 1; : : : ; 0;where U(p) is a linear expression in the tensors T(q) with q > p, with 
oef-�
ients whi
h are 
omponents of the 
urvature and Ri

i tensors and their
ovariant derivatives; U(r) = 0; and as a type (p; 1) tensor U(p) is tra
e-free.Note that it follows from the latter fa
t that T(p�1) 
an be expressed as amultiple of dT(p), as before.(A linear expression, as envisaged here, will involve 
ontra
tions betweenthe indi
es of the T(q) and the 
oeÆ
ients: �T(q) provides a paradigmati
example. Su
h expressions will have the form �ABiFB o

uring on the right-hand side of tru
tural equations as they were des
ribed in the Introdu
tion:here the FA stand for 
omponents of the 
olle
tion of tensors T(p).)7



The stru
tural equations will be derived re
ursively, by use of the followinglemma.Lemma 1 Suppose that for some p � 1 tensors T(p), T(p�1) and U(p) (withthe notational 
onventions des
ribed above) satisfyrT(p) = U(p) + T(p�1) � Iwhere U(p) is tra
e-free (no assumption is made here about how it is relatedto T(p) et
.). Then there are tensors T(p�2) and U(p�1), with U(p�1) tra
e-freefor p > 1, su
h that rT(p�1) = U(p�1) + T(p�2) � I:Proof The expression for T(p�1) is obtained by taking a tra
e of the de�ningequation, as before; we obtainT(p�1) = � pn+ p� 1�dT(p): (2)Then (n + p� 1)rT(p�1) = prdT(p)= p �drT(p) + �T(p)�= p �d(U(p) + T(p�1) � I) + �T(p)� :The next point to note is thatpd(T(p�1) � I) = rT(p�1) + (p� 1)(dT(p�1) � I);as it is easy to see by a 
al
ulation in 
omponents. Thus(n+ p� 2)rT(p�1) = p �dU(p) + �T(p)�+ (p� 1) �dT(p�1) � I� :That is to say rT(p�1) = U(p�1) + T(p�2) � Iwith T(p�2) = � p� 1n + p� 2� dT(p�1)and U(p�1) = � pn+ p� 2��dU(p) + �T(p)� : (3)8



It follows either from the fa
t that T(p�2) has the 
orre
t relationship withdT(p�1), or from the fa
t that �T(p) is tra
e-free, that U(p�1) is tra
e-free.Suppose now we have a tensor T(r) su
h that rT(r) = T(r�1) � I . De�neT(p) and U(p) re
ursively by equations (2) and (3), with in the latter 
aseU(r) = 0; in evaluating dU(p), terms involving 
ovariant derivatives of theT(q) will o

ur and these are to be repla
ed by the appropriate expressionsin T(q�1).Lemma 2 With T(p) and U(p) de�ned in this way, U(p) is a linear expressionin the T(q) with q > p, with 
oeÆ
ients formed from the 
urvature and Ri

itensors and their 
ovariant derivatives.Proof Clearly U(r�1) is of this form, sin
e it is just a 
onstant multiple of�T(r). Suppose that U(p) is of this form. Now up to numeri
al fa
tors, U(p�1)is obtained from U(p) by �rstly operating on it with d and substituting for
ovariant derivatives of the T(q), and se
ondly adding �T(p). The result is alinear expression in the T(q) with q > p � 1, with 
oeÆ
ients formed fromthe 
urvature and Ri

i tensors and their 
ovariant derivatives.It will sometimes be 
onvenient to denote by o(p) any 
olle
tion of termsdepending linearly on the T(q) with q � p.I shall need later the expli
it form of the terms involving T(p+1) in U(p). I
laim that these terms are of the form(apR[kj℄ + bpR(kj))T ki1i2:::ip + 
p pXs=1RisljkT lki1i2:::̂{s:::ip!for some numeri
al fa
tors ap, bp and 
p; R[ij℄ is the skew part of Rij andR(ij) the symmetri
 part. The formula above 
learly holds for p = r � 1,with ar = br = 
r = 1. Now from equation (3), to obtain the 
orrespondingterms in U(p�1) we must �rst operate on the expression above with d, andsin
e we are working to o(p + 1) we may ignore those terms whi
h involvethe derivatives of the 
urvature and Ri

i tensors. We are left with(apR[kj℄ + bpR(kj))T ki1i2:::ip�1ljl+ 
p0�p�1Xs=1RisljkT lki1i2:::̂{s:::ip�1mjm +RmljkT lki1i2:::ip�1 jm1A :All the T terms here are divergen
es ex
ept the last, and may be repla
ed bythe appropriate 
omponents of T(p) (with the appropriate numeri
al fa
tor).9



For the last we haveRmljkT lki1i2:::ip�1 jm = RmljkT (lki1i2:::ip�2Æip�1)m + o(p+ 1):Now pRmljkT (lki1i2:::ip�2Æip�1)m= p�1Xs=1RisljkT lki1i2:::̂{s:::ip�1 +RlljkT ki1i2:::ip�1 +RkljkT li1i2:::ip�1 :The sum is a term of the required form, and Rkljk = Rlj = R[lj℄+R(lj). Fromthe 
y
li
 identity we haveRlljk = �Rljkl � Rlklj = Rkj � Rjk = 2R[kj℄:So �nallypRmljkT (lki1i2:::ip�2Æip�1)m= p�1Xs=1RisljkT lki1i2:::{̂s:::ip�1 + (3R[kj℄ + R(kj))T ki1i2:::ip�1 :Colle
ting everything together we see that the terms involving T(p) in U(p�1)have the required form. Moreover, all the numeri
al 
oeÆ
ients o

urringin the expressions above are positive, whi
h means that ap, bp and 
p arepositive for all p.I 
an now derive the stru
tural equations.Theorem 1 The equationsrT(p) = U(p) + T(p�1) � I; p = r; r� 1; : : : ; 1; 0for the unknowns T(p), p = r; r� 1; : : : ; 1; 0 (with T(p) 2 Sp), whereU(p�1) = � pn+ p� 2��dU(p) + �T(p))� ; U(r) = 0;are stru
tural equations for the equationrT(r) = T(r�1) � I:10



Proof These equations have the right form. If T(p), p = r; r� 1; : : : ; 1; 0, isa solution then T(r) evidently satis�es the initial equation, and ea
h otherT(p) is given byT(p) = � p+ 1n+ p�dT(p+1) = (p+ 1)(p+ 2) � � �r(n+ p)(n+ p+ 1) � � �(n+ r � 1)dr�pT(r): (4)Conversely, if T(r) satis�es the initial equation then the T(p) given by equa-tion (4) satisfy the other stru
tural equations.Corollary The set of solutions T(r) of rT(r) = T(r�1) � I is a �nite-dimensional real ve
tor spa
e whose maximal dimension is the dimensionof the spa
e of 
onstant symmetri
 r-tensors on Rn+1.Proof The dimension is Prp=0 �(p; n), where �(p; n) is the dimension of thespa
e of 
onstant symmetri
 p-tensors on Rn. But Prp=0 �(p; n) = �(n +1; r), as may easily be seen by 
onsidering the expression of a homogeneouspolynomial of degree r on Rn+1 in terms of variables (x0; xi) with i =1; 2; : : : ; n.The next question is: what 
an we say about a spa
e when the dimension ismaximal?First, it is easy to see that in Rn the general solution of the equation rT(r) =T(r�1) � I isT i1;i2:::ir = Axi1xi2 � � �xir +A(i1xi2 � � �xir) +A(i1i2xi3 � � �xir) + � � �+Ai1i2 :::irwhere the A s are 
onstant and symmetri
; so the dimension in this 
ase isPrp=0 �(p; n).Se
ondly, I 
onsider the e�e
ts of a restri
ted proje
tive transformation ofthe 
onne
tion. Re
all that a proje
tive transformation of a 
onne
tion takesthe form � ijk 7! � ijk +  jÆik +  kÆij = �̂ ijk ;the transformation is a restri
ted proje
tive transformation if  k is a gra-dient, say  k =  jk. Under a restri
ted proje
tive transformation, for anyT 2 Sr r̂(e�r T ) = e�r (rT + T ( )� I)where T ( )i1i2 :::ir�1 = rT i1i2:::ir�1j jj. Thus the dimensions of the solutionsin spa
es whi
h are proje
tively equivalent in the restri
ted sense are the11



same. A spa
e is proje
tively equivalent in the restri
ted sense to a 
at spa
eif and only if it is Ri

i-symmetri
 and has vanishing proje
tive 
urvaturetensor, or equivalentlyRiljk � 1n � 1 �RljÆik � RlkÆij� = 0; Rij �Rji = 0: (5)Thus if the 
urvature satis�es equations (5) the solution spa
e of rT(r) =T(r�1) � I has maximal dimension.I show that this result is suÆ
ient as well as ne
essary. For this purpose,
onsider the stru
tural equations with p = 2, p = 1 and p = 0:rT(2) = U(2) + T(1) � IrT(1) = U(1) + T(0)IrT(0) = U(0)where U(2) = o(3), and from the 
al
ulations of the leading terms in theU(p), U(1)ij = (a1R[kj℄ + b1R(kj))T ki + 
RiljkT klU(0)i = (a0R[ki℄ + b0R(ki))T kwhere the numeri
al 
oeÆ
ients are all positive.Theorem 2 The solution spa
e of rT(r) = T(r�1)�I has maximal dimen-sion if and only if the 
urvature satis�es equations (5), that is, the spa
e isRi

i-symmetri
 and proje
tively 
at.Proof It remains to be proved that if the solution spa
e has maximal di-mension then the 
urvature satis�es equations (5). For 
onvenien
e I shalldenote T(2) by T , T(1) by S and T(0) by Q. The equations above readT ijjk = 12(SiÆjk + SjÆik) + o(3)Sijj = QÆij + (a1R[kj℄ + b1R(kj))T ki + 
RiljkT kl + o(3)Qji = (a0R[ki℄ + b0R(ki))Sk + o(2):The integrability 
onditions for the last of these equations are0 = Qjij � Qjji = 2a0QR[ji℄ + o(1):12



If the dimension is maximal this must hold at any point with an arbitrary
hoi
e of values of the variables, and in parti
ular with Q = 1, all othervariables zero. Thus the spa
e must be Ri

i-symmetri
.We may therefore rewrite the se
ond equations asSijj = QÆij + bRkjT ki + 
RiljkT kl + o(3)The integrability 
onditions for these equations are�RiljkSl = QjkÆij �QjjÆik + b(RljT lijk � RlkT lijj )+ 
(RiljmT lmjk �RilkmT lmjj ) + o(2)= b0(RlkÆij � RljÆik)Sl+ 12b �Rlj(SlÆik + SiÆlk)�Rlk(SlÆij + SiÆlj)�+ 12
 �Riljm(SlÆmk + SmÆlk)� Rilkm(SlÆmj + SmÆlj)�+ o(2)= (b0 � 12b)(RlkÆij � RljÆik)Sl+ 12
(Riljk +Rikjl � Rilkj �Rijkl)Sl + o(2)= (b0 � 12b)(RlkÆij � RljÆik)Sl + 32
RiljkSl + o(2):Thus when the dimension is maximal we have a relation of the form�Riljk + �(RlkÆij � RljÆik) = 0where � = 1 + 32
 is nonzero. But by taking a tra
e we obtain�Rlj � �(n � 1)Rlj = 0;so that Riljk � 1n � 1(RljÆik �RlkÆij) = 0(or indeed the spa
e is 
at).3 Some 
onsequen
esIf T1 is a generalized spe
ial 
onformal Killing tensor of valen
e r1 and T2one of valen
e r2 then T1 � T2 is a generalized spe
ial 
onformal Killingtensor of valen
e r1 + r2, sin
er(T1 � T2) = (rT1)� T2 + T1 �rT2:13



In parti
ular, any symmetrized produ
t of say r generalized spe
ial 
on-formal Killing ve
tors is a generalized spe
ial 
onformal Killing tensor ofvalen
e r. Now when equations (5) are satis�ed, so that the dimension ofthe spa
e of generalized spe
ial 
onformal Killing ve
tors is n+ 1, the spa
eof their symmetrized r-fold produ
ts has dimension �(n+ 1; r), whi
h 
oin-
ides with the dimension of the spa
e of generalized spe
ial 
onformal Killingtensors of valen
e r. That is to say, when equations (5) are satis�ed, andthe dimension of the spa
e of generalized spe
ial 
onformal Killing tensorsof ea
h valen
e is maximal, every generalized spe
ial 
onformal Killing ten-sor of valen
e r 
an be uniquely expressed as a linear 
ombination (in thestri
t sense of ve
tor spa
e theory) with 
onstant 
oeÆ
ients of symmetrizedr-fold produ
ts of generalized spe
ial 
onformal Killing ve
tors.I now turn my attention brie
y to the (pseudo-)Riemannian 
ase. In this
ase we 
an write the de�ning equations asTi1i2:::ir jj = S(i1i2:::ir�1gir)j ;and the solutions are spe
ial 
onformal Killing tensors. The Ri

i tensor isautomati
ally symmetri
; the remaining part of equations (5), whi
h statesthat the proje
tive 
urvature vanishes, holds if and only if the spa
e is of
onstant 
urvature. So on a Riemannian spa
e, the spa
e of spe
ial 
on-formal Killing tensors of any given valen
e has maximal dimension if andonly if the Riemannian spa
e is a spa
e of 
onstant 
urvature. The maximaldimension with valen
e r is �(n + 1; r), as before; and the de
ompositionproperty above 
ontinues to hold.Finally, I shall write down expli
itly the stru
tural equations in the low di-mensional 
ases of greatest interest. The stru
tural equations for 
on
ir
ularve
tor �elds are Tijj = Sgij; Sjk = 1n � 1RlkT l:The equationsTijjk = 12(Sigjk + Sjgik)Sijj = 1n �2RkjTik � 2gklRmijkTlm + gijQ�Qji = 2n� 1 �gjl(2Rkijl � Rklji)Tjk + (n+ 1)RjiSj�are stru
tural equations for Benenti tensors.14



AppendixI derive here the results about stru
tural equations used in the main body ofthe paper. Su
h equations may be interpreted as follows. Consider a ve
torbundle E ! M , where M is a manifold with an arbitrary symmetri
 aÆne
onne
tion; E is supposed to be the Whitney sum of tensor bundles over M ,so that the 
onne
tion indu
es a 
onne
tion on E. Take �bre 
oordinatesuA on E, and denote by �ABi the 
onne
tion 
oeÆ
ients for the indu
ed
onne
tion with respe
t to 
oordinates (xi; uA). The stru
tural equationsFAji = �ABiFB may be regarded as equations for a se
tion of E, given in
oordinates by uA = FA(xi).My approa
h is motivated by the 
ase in whi
h the �ABi all vanish. Then asolution of the equations de�nes a se
tion of E whi
h is 
ovariantly 
onstant;or if we think of the 
onne
tion as de�ning and being de�ned by a horizontaldistribution on E, a se
tion whi
h is horizontal (that is, an n-dimensionalsubmanifold of E, transverse to the �bres, to whi
h the horizontal distribu-tion is everywhere tangent). Given any point u 2 E, if there is a horizontalse
tion through u it is unique. Now the zero se
tion of any ve
tor bundleequipped with a linear 
onne
tion is a horizontal se
tion, and is the uniquehorizontal se
tion through any point (xi; 0). Thus if FAji = 0 and FA(xi) = 0anywhere then FA(xi) = 0 everywhere, so that the linear map from solu-tions of the equations FAji = 0 to their values at an arbitrary point of Mis inje
tive, and the maximum dimension of the solution spa
e is the �bredimension of E. The ne
essary and suÆ
ient 
ondition for the equations tobe 
ompletely integrable, that is for there to be a horizontal se
tion throughevery point of E, is that the horizontal distribution should be integrable (inthe sense of Frobenius), or equivalently that the 
urvature of the indu
ed
onne
tion should vanish.Theorem Consider a system of stru
tural equations FAji = �ABiFB , asinterpreted above. Then1. if, for any x 2 M , there is a solution with pres
ribed values FA(x) itis unique;2. the spa
e of solutions has maximum dimension equal to the �bre di-mension of E;3. the maximum dimension of the solution spa
e is attained if and only15



if the equations are 
ompletely integrable;4. the ne
essary and suÆ
ient 
onditions for the system to be 
ompletelyintegrable are that�ABijj � �ABjji + �CBi�ACj � �CBj�ACi = RABij;where RABij are the 
omponents of the 
urvature of the indu
ed 
on-ne
tion on E.Proof It is only ne
essary to note that sin
e the 
oeÆ
ients �ABi are assumedto be tensorial, �ABi � �ABi determines a new 
onne
tion on E, with respe
tto whi
h the stru
tural equations are equations for 
ovariantly 
onstantse
tions. Thus items (1), (2) and (3) follow immediately from the earlierdis
ussion. It is easy to see that the 
urvature of the new 
onne
tion isRABij � ��ABijj � �ABjji + �CBi�ACj � �CBj�ACi� ;when
e item (4).A
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