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Abstract. A general notion of connections over a vector bundle map is
considered, and applied to the study of mechanical systems with linear
nonholonomic constraints and a Lagrangian of kinetic energy type. In particular,
it is shown that the description of the dynamics of such a system in terms of
the geodesics of an appropriate connection can be easily recovered within the
framework of connections over a vector bundle map. Also the reduction theory of
these systems in the presence of symmetry is discussed from this perspective.
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Inspired by some recent work of R.L. Fernandes on connections in Poisson geometry [5]
and, more generally, in the context of Lie algebroids [6], we have recently embarked
on the study of a general notion of connection, namely connections over a vector
bundle map. This new concept covers, besides the standard notions of linear and
nonlinear connections, various generalizations such as partial connections and pseudo-
connections, as well as the Lie algebroid connections considered by Fernandes. For a
detailed treatment we refer to a forthcoming paper, written in collaboration with F.
Cantrijn [2]. After briefly sketching the main idea underlying the notion of connection
over a vector bundle map, the purpose of the present Letter is to present an application
of this theory in the framework of nonholonomic mechanics.

Let M be a real (finite dimensional) C*° manifold and v : N — M a vector bundle
over M. Assume, in addition, that a linear bundle map p : N — T'M is given such
that 7as o p = v, where 1), denotes the natural tangent bundle projection TM — M.
Note that we do not require p to be of constant rank. Hence, the image set Im p need
not be a vector subbundle of TM but rather determines a generalized distribution as
defined by P. Stefan and H. Sussmann (see e.g. [10], Appendix 3). Denoting the set
of (local) sections of an arbitrary bundle E over M by I'(E), it follows that p induces
a mapping I'(N) — T'(TM) = X(M), which we will also denote by p. Next, let
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m: E — M be an arbitrary fibre bundle over M. We may then consider the pull-back
bundle 7; : #*N — FE which is a vector bundle. Note that #*N may be regarded
as a fibre bundle over N, with projection denoted by 7o : #* N — N. A connection
on E over p or, shortly, a p-connection on E, is then defined as a linear bundle map
h : N — TFE from 7; to 7g, over the identity on FE, such that, in addition, the
following diagram is commutative

N — > TE

ﬁ'g Tr

N ————————— " TM
p

(where T'm denotes the tangent map of ). The image set Im h determines a generalized
distribution on E which projects onto Im p. It is important to note that Im h may
have nonzero intersection with the bundle VE of m-vertical tangent vectors to E.
The standard notion of connection is recovered when putting N = T M, v = 75y and
p the identity map. In case P is a principal G-bundle over M, with right action
R:P xG— P,(e,g)— R(e,g) = Ry(e)(= eg), a p-connection h on P will be called
a principal p-connection if, in addition, it satisfies

TRg(h(ev n)) = h’(egv Tl),

for all ¢ € G and (e,n) € 7*N. Slightly modifying the construction described by
Kobayashi and Nomizu [7], given a principal p-connection on P, one can construct a
p-connection on any associated fibre bundle E.

Assume F is a vector bundle and let {¢:} denote the flow of the canonical dilation
vector field on E. A p-connection h is then called a linear p-connection on E if

T¢i(h(e,n)) = h(ei(e), n),

for all (e,n) € 7*N. In [2] it is shown that such a linear p-connection can be
characterized by a mapping V : T'(N) x T'(E) — I'(E),(s,0) — Vo such that the
following properties hold:

(i) V is R-linear in both arguments;
(if) V is C°°(M)-linear in s;
(iii) for any f € C*°(M) and for all s € T'(IN) and o € T'(F) one has: V4(fo) =
fVso+(pos)(fo.

It immediately follows that Vi o(m) only depends on the value of s at m, and therefore
we may also write it as V()0 Clearly, V plays the role of the covariant derivative
operator in the case of an ordinary linear connection. Henceforth, we will also refer
to V as a linear p-connection. Let k and ¢ denote the fibre dimensions of N and
E respectively, and let {s®:a =1,... k}, resp. {o4: A=1,...,¢}, be a local basis



Letter to the Editor 3

of sections of v, resp. w, defined on a common open neighborhood U C M. Then
we have Vao? = I'¢40 5, for some functions T'¢* € C>°(U), called the connection
coefficients of the given p-connection.

In order to associate a notion of parallel transport with linear p-connections, we first
need to introduce a special class of curves in N. A smooth curve ¢ : I — N, defined
on a closed interval I C IR, is called admissible if for all t € I, one has ¢(t) = (po¢)(¢),
where ¢ = v o ¢ is the projected curve on M. Curves in M that are projections of
admissible curves in N are called base curves. Note that, in principle, a base curve
may reduce to a point.

As in standard connection theory, with any linear p-connection V on a vector bundle
7w : E — M, and any admissible curve ¢ : [a,b] — N, one can associate an operator
V&, acting on sections of 7 defined along the base curve ¢ = voc¢. More precisely, let o
be such a section, i.e. o : [a,b] — E with moo = ¢, then we may put (Vzo)(t) = Vo
for all ¢ € [a,b]. A section o, defined along the base curve of an admissible curve ¢, will
be called parallel along ¢ if V0 = 0 for all £. In coordinates this yields a system
of linear differential equations for the components of ¢ and, again using standard
arguments, one can show that this leads to a notion of parallel transport on E along
admissible curves in N (cf. [2] for more details).

As an application of the above formalism, we will consider a mechanical system
consisting of a free particle subjected to some linear nonholonomic constraints.

Nonholonomic mechanics

Let g be a Riemannian metric on a n-dimensional manifold M. Consider a free particle,
with configuration space M and Lagrangian L : TM — R,v — L(v) = 1/2¢(v,v).
It is well-known that the equation of motion can be written as the geodesic equation
Vié(t) = 0, with V9 the Levi-Civita connection corresponding to g. Suppose now
that the system is subjected to n — k (independent) linear nonholonomic constraints,
defining a regular non-integrable k-dimensional distribution @ on M. We then have
a direct sum decomposition TM = Q ® Q=+, where Q* is the orthogonal complement
of @ with respect to the given metric g. The projections of TM onto @ and Q=+
will be denoted by mg and 7'('57 respectively. It is well-known that the solution
curves of the nonholonomic free particle are curves ¢ in M satisfying the equation
q(Vie(t)) = 0, together with the constraint condition ¢(t) € @ for all ¢ (see, for
instance, [9]). Furthermore, one can define a linear connection V on M according
to VxY = V%Y + (V4mgu)(Y) for X, Y € X(M). This connection restricts to
@ and the equation of motion of the nonholonomic free particle can be rewritten as
V:¢(t) = 0, with initial velocity taken in Q (see [1, 9]).

We now reconsider the nonholonomic free particle from the point of view of connections
over a vector bundle map. Let i : Q@ — T'M denote the natural embedding of @ into
TM. In the sequel we will identify X € T'(Q) with T o X, regarded as a vector
field on M. In terms of the notations used above, we consider the following situation:
N=FE=Q,v=m=(Tu)g and p = i. We may now define a linear connection
V™ T(Q) xT(Q) — I'(Q) over i on the vector bundle 7 : Q — M by the prescription

VY =1oV%Y,
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where the superscript nh stand for “nonholonomic”. It is easily seen that this
determines indeed a linear i-connection and that, moreover, V¥'Y = VxY for
X,Y € I'(Q). Admissible curves in this setting are curves ¢ in @) that are prolongations
of curves in M, i.e. &(t) = ¢(t) for some curve ¢ in M. Note that for any base curve c,
¢ may be regarded here both as an admissible curve in () and as a section of 7 defined
along c. It follows that the equation of motion of the given nonholonomic problem
can be written as V2'¢(t) = 0, with ¢ a curve in M tangent to Q.

The restriction of the given Riemannian metric g on M to sections of @) defines a
bundle metric on @ which we denote by g°. The i-connection V™" considered above
now admits the following characterization.

Proposition 1 V™" is uniquely determined by the conditions that it is ‘metric’, i.e.
for all X,Y,Z € T'(Q) one has

X(g°(Y, 2)) = g°(VK'Y. Z) + ¢°(Y, VX' 2),
and that it satisfies

VY - VX = ng[X, Y],
for all XY € T'(Q).

Proof. First we prove that V™" satisfies both conditions. Using the fact that V9 is
metric for g, and regarding sections of ) as vector fields on M, we find:

X(9°(Y, 2)) = X(g(Y, 2))
=9(VXY, Z) +9(Y, V& 2)
= 9" (VXY 2) + ¢°(Y, VX'2),
where the last equality follows from the fact that g(X,Y) = 0 whenever X € I'(Q)

and Y € I'(Q*). The second condition follows from the symmetry property of V9 (i.e.
V¢ has zero torsion).

Conversely, let V be an arbitrary linear i-connection that satisfies both conditions.
One then easily derives that for any chosen X,Y € I'(Q) and all Z € I'(Q)

29°(VxY,2) = X(g(Y, 2)) + Y (9(X, Z)) = Z(9(X,Y))
+g(7TQ[Xa Y], 2) _g(ﬂ—Q[Xa Z,Y) - g(XﬂTQ[Ya Z))
=29(VkY, Z),
from which one readily deduces that VxY = mqV%Y, ie. V = AVALS O

It is easily proven that if @) is an integrable distribution defining a foliation of M (i.e.
the given constraints are holonomic), then the connection V™" induces the Levi-Civita
connection on the leaves of this foliation with respect to the induced metric.

From the fact that the nonholonomic connection V™" is metric it follows that for any
X, Y eT(Q)
X(g°(X,Y)) = g (VR X,Y) + g°(X, VY.
The second term on the right-hand side can be rewritten as:
9°(X, VYY) = g°(X, V¥ X) + g(X, [X,Y])
= %(ﬂyg)(X,X),
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(with £ denoting the Lie derivative operator). With any given Y € T'(Q) one can
associate a function Jy on @, given by Jy (X,,) 1= ¢°(Xm, Y (m)), for all m € M and
X € Q- Using the preceding identities, and considering a base curve ¢ in M which
s “geodesic” with respect to V™" (i.e. a solution of the nonholonomic equations), one
easily derives that

L @)D = HLva) @), 1),

This equation implies that every section Y of ) which, regarded as a vector field on
M, leaves the metric g invariant (i.e. is a Killing vector field) determines a conserved
quantity for the given nonholonomic system.

Reduction of the nonholonomic free particle with symmetry.

Let G be a Lie group defining a free and proper right action on M, denoted by
R, : M — M,m — R,(m) = ma, for all a € G, such that we have a principal fibre
bundle M & M := M /G. Assume this action leaves invariant both the Riemannian
metric g and the constraint distribution Q, i.e. Rfg = gand TR,(Q) C Q foralla € G.
We already know from above that the equations of motion of the nonholonomic free
particle are given by the “geodesic” equations: V7"é(t) = 0. Using the symmetry
assumption (i.e. the G-invariance of g and @), it is easily proven that if c¢(¢) is a
solution, so is c(t)a for all @ € G. Therefore, one obtains equivalence classes of
solutions, where two solutions ¢; and co are called equivalent iff ¢; = coa for some
a € G. In the reduction procedure described below, it is our intention to construct
a reduced connection over a suitable vector bundle map, such that the corresponding
“geodesics” are precisely these equivalence classes.

First of all, we note that the set Q/G, the quotient space of () under the lifted action
of G on @, admits a vector bundle structure over M with projection 7 : Q/G — M
defined by 7([X.,,]) = p(m). Here, [X,,] represents the G-orbit of X, € Q under the
lifted right action. Using the fact that this action on @ is fibre linear, and relying
on the local triviality of the principal bundle M — M , one can verify that 7 indeed
determines a vector bundle structure (see e.g. [11] p.29). Next, we define a map
p: Q/G — TM according to p([X,]) := Tu(X,m). Once again one can easily see
that this map is well defined (i.e. does not depend on the chosen representative X,
of [X,,]) and is fibred over the identity on M. We now first construct a principal
p-connection on M which, subsequently, will be used to define a linear p-connection

on Q/G.

Let h: p*(Q/G) — TM : (m,[ X)) — X, i.e. we take the image h(m, [X,,]) to
be the unique tangent vector at m belonging to the equivalence class [X,,]. Since
the action of G is free, it immediately follows that h is well defined and, moreover,
Im h = Q. We can also verify that h(ma, [X;]) = TRe(X ) = TRe(h(m, [X,])) and
Tu(h(m, [Xn])) = p([Xm]). Consequently, h determines a principal p-connection on
M (see the definition above).

Note that sections of the bundle 7 : Q/G — M can be put into one to one
correspondence with the set of right invariant vector fields on M taking values in
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Q (i.e. the right equivariant sections of Q — M). Indeed, for ¢ € I'(Q/G) and m € M
such that u(m) € dom %, put

WM (m) = h(m, v (u(m))).

Then 9" is a G-equivariant section of Q. On the other hand, let X be a right invariant
vector field on M with values in Q). Then, define an element X, of I'(Q/G) by

Xh(m) = [Xm]v

with m € p~'(1m). Clearly, this does not depend on the choice of m in the fibre
over m. Thus, by means of h we have established a bijective correspondence between
I'(Q/G) and the set of G-equivariant sections of Q — M. For the following derivation
of a reduced p-connection on Q/G, we may refer to Cantrijn et al [1] where, at least
for the so-called Chaplygin-case, a similar construction has been made in terms of
‘ordinary’ connections and, therefore, we will not enter into details. For completeness,
however, we recall the following useful properties. First, from the G-invariance of g
one can deduce that the vector field V%Y is right invariant whenever X,Y € X (M)
are right invariant, and that mg : TM — @ commutes with TR, for any a € G.
Secondly, the symmetry assumptions also imply that the induced bundle metric g° on
@ is G-invariant and, hence, determines a reduced bundle metric §° on @/G. Using
h we can construct §° as follows: for any ¢,v € I'(Q/G) put

9°(m)(e(1), (1)) := ¢°(m) (9" (m), ¥" (m)),
with m € p=1(rn). Let a € G, then
9°(ma)(¢" (ma), ¢"(ma)) = g(ma)(TRa¢" (m), TRY" (m))
= g°(m)(¢" (m), ¥" (m)),

where, again, we have relied on the G-invariance of g. From this we may conclude
that ¢° is indeed well defined.

Let V™ be the nonholonomic connection over i, introduced in the previous section.
We now construct a linear p-connection on the bundle Q/G, as follows: for any

¥, ¢ € I(Q/G) put
Vite = (Vire .

Again, one may check that this is well defined and verifies the conditions of a linear
p-connection.

Proposition 2 The linear p-connection V" is metric with respect to the reduced
bundle metric §° on Q/G, and satisfies the property:

Vihe — Vihy — [y, ¢] = 0,

where, by definition, [, ¢] := (7mq[¥", #"]).
Proof. For any ¢ € T'(Q/G), we have that ¥ is p-related to p o ¢ as vector fields
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on M and M , respectively. Using this, together with the properties of V™", we can
prove that V™" is metric with respect to §°. Indeed, let 1, ¢, € I'(Q/G), then

(po¥)(§°(6,m) 0 = 9"(3°(¢,m) o )
=¢"(g°(¢" "))
= g°(Viho",n") + g° (6", Viin")
= (ﬁ"(%%, )+ §°(¢, %hn)) o p,
from which the result readily follows.
The second property can also be proven in a straightforward manner. 0O

It is also not difficult to verify that v is uniquely determined by the two properties
mentioned in the proposition.

To complete the reduction picture, it can be proved that every solution of the geodesic
equation for V™" projects onto a solution of the “geodesic problem” for the reduced
nonholonomic connection V" in the following sense. Assume that c¢ is a solution of
the nonholonomic equations, i.e. V7"¢(t) = 0. Consider the curve é = po ¢ in M.
Then the section [¢](t) = [¢(t)] of Q/G along ¢é is autoparallel with respect to the
p-connection V' i.e. @ﬁ‘ [¢](t) = 0. This follows from the fact that for each m € M,
h(m,.) : 7Y (u(m)) — T,, M is injective and that for any base curve ¢ in M,

h(c(t), VEHE ) = VERé(t), vt.

On the other hand, any solution [¢] of the equation @ﬁ‘ [¢](t) = 0 determines an
equivalence class of solutions of the initial nonholonomic problem on M. Given
any point cg in u~(7([¢](0))), a unique curve ¢ in M can be constructed which is
horizontal with respect to the principal p-connection h on M, i.e. c¢ satisfies for all
t: ¢(t) = h(c(t),[¢](t)) with initial condition ¢(0) = ¢¢ (note that [¢(¢)] = [¢](t)). It is
easily seen that u(c) = 7([¢]) and from this we can deduce V2"é(t) = 0.

We conclude that the set of equivalence classes of solutions of the free nonholonomic
mechanical problem in M is in a one-to-one correspondence with the set of solutions of
autoparallel admissible curves with respect to the reduced nonholonomic connection
(i.e. using the principal p-connection h).

To close this section, we note that much of the preceding discussion can be easily
extended to more general nonholonomic systems with symmetry, admitting forces
derivable from a G-invariant potential energy function.

Final remarks

Our approach to the reduction problem of a nonholonomic free particle with symmetry,
using the generalized notion of connections over a bundle map, differs from other
approaches in that we do not have to make any assumption regarding the (constant)
rank of the constraint distribution (. In treatments of the so-called Chaplygin case,
for instance, the assumption is that ) is the horizontal distribution of a principal
G-connection (see e.g. [1, 4, 8]), i.e. besides being G-invariant ) also satisfies
TM = @Q @ ker Tu. In the more general case treated e.g. by H. Cendra et al [?],
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it is assumed that TM = @ + ker T (but one may have @ Nker Tu # {0}). In our
treatment we only require G-invariance of Q.

Finally, in a forthcoming paper devoted to the use of the concept of a connection over
a vector bundle map in sub-Riemannian geometry, it will be demonstrated that the
above application to nonholonomic mechanics may also shed some new light on the
relationship between the so-called “vakonomic” and the “nonholonomic” treatment of
systems with constraints.
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