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Abstract. A general notion of connections over a vector bundle map is
considered, and applied to the study of mechanical systems with linear
nonholonomic constraints and a Lagrangian of kinetic energy type. In particular,
it is shown that the description of the dynamics of such a system in terms of
the geodesics of an appropriate connection can be easily recovered within the
framework of connections over a vector bundle map. Also the reduction theory of
these systems in the presence of symmetry is discussed from this perspective.
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Inspired by some recent work of R.L. Fernandes on connections in Poisson geometry [5]
and, more generally, in the context of Lie algebroids [6], we have recently embarked
on the study of a general notion of connection, namely connections over a vector
bundle map. This new concept covers, besides the standard notions of linear and
nonlinear connections, various generalizations such as partial connections and pseudo-
connections, as well as the Lie algebroid connections considered by Fernandes. For a
detailed treatment we refer to a forthcoming paper, written in collaboration with F.
Cantrijn [2]. After briefly sketching the main idea underlying the notion of connection
over a vector bundle map, the purpose of the present Letter is to present an application
of this theory in the framework of nonholonomic mechanics.

Let M be a real (finite dimensional) C∞ manifold and ν : N → M a vector bundle
over M . Assume, in addition, that a linear bundle map ρ : N → TM is given such
that τM ◦ ρ = ν, where τM denotes the natural tangent bundle projection TM → M .
Note that we do not require ρ to be of constant rank. Hence, the image set Im ρ need
not be a vector subbundle of TM but rather determines a generalized distribution as
defined by P. Stefan and H. Sussmann (see e.g. [10], Appendix 3). Denoting the set
of (local) sections of an arbitrary bundle E over M by Γ(E), it follows that ρ induces
a mapping Γ(N) → Γ(TM) = X (M), which we will also denote by ρ. Next, let
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π : E → M be an arbitrary fibre bundle over M . We may then consider the pull-back
bundle π̃1 : π∗N → E which is a vector bundle. Note that π∗N may be regarded
as a fibre bundle over N , with projection denoted by π̃2 : π∗N → N . A connection
on E over ρ or, shortly, a ρ-connection on E, is then defined as a linear bundle map
h : π∗N → TE from π̃1 to τE , over the identity on E, such that, in addition, the
following diagram is commutative

N
-

TM

?

TE
-

π∗N

?

ρ

h

Tππ̃2

(where Tπ denotes the tangent map of π). The image set Im h determines a generalized
distribution on E which projects onto Im ρ. It is important to note that Im h may
have nonzero intersection with the bundle V E of π-vertical tangent vectors to E.
The standard notion of connection is recovered when putting N = TM , ν = τM and
ρ the identity map. In case P is a principal G-bundle over M , with right action
R : P ×G → P, (e, g) 7→ R(e, g) = Rg(e)(= eg), a ρ-connection h on P will be called
a principal ρ-connection if, in addition, it satisfies

TRg(h(e, n)) = h(eg, n),

for all g ∈ G and (e, n) ∈ π∗N . Slightly modifying the construction described by
Kobayashi and Nomizu [7], given a principal ρ-connection on P , one can construct a
ρ-connection on any associated fibre bundle E.

Assume E is a vector bundle and let {φt} denote the flow of the canonical dilation
vector field on E. A ρ-connection h is then called a linear ρ-connection on E if

Tφt(h(e, n)) = h(φt(e), n),

for all (e, n) ∈ π∗N . In [2] it is shown that such a linear ρ-connection can be
characterized by a mapping ∇ : Γ(N) × Γ(E) → Γ(E), (s, σ) 7→ ∇sσ such that the
following properties hold:

(i) ∇ is IR-linear in both arguments;
(ii) ∇ is C∞(M)-linear in s;
(iii) for any f ∈ C∞(M) and for all s ∈ Γ(N) and σ ∈ Γ(E) one has: ∇s(fσ) =

f∇sσ + (ρ ◦ s)(f)σ.

It immediately follows that ∇sσ(m) only depends on the value of s at m, and therefore
we may also write it as ∇s(m)σ. Clearly, ∇ plays the role of the covariant derivative
operator in the case of an ordinary linear connection. Henceforth, we will also refer
to ∇ as a linear ρ-connection. Let k and ` denote the fibre dimensions of N and
E,respectively, and let {sα : α = 1, . . . , k}, resp. {σA : A = 1, . . . , `}, be a local basis
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of sections of ν, resp. π, defined on a common open neighborhood U ⊂ M . Then
we have ∇sασA = ΓαA

B σB , for some functions ΓαA
B ∈ C∞(U), called the connection

coefficients of the given ρ-connection.

In order to associate a notion of parallel transport with linear ρ-connections, we first
need to introduce a special class of curves in N . A smooth curve c̃ : I → N , defined
on a closed interval I ⊂ IR, is called admissible if for all t ∈ I, one has ċ(t) = (ρ◦ c̃)(t),
where c = ν ◦ c̃ is the projected curve on M . Curves in M that are projections of
admissible curves in N are called base curves. Note that, in principle, a base curve
may reduce to a point.

As in standard connection theory, with any linear ρ-connection ∇ on a vector bundle
π : E → M , and any admissible curve c̃ : [a, b] → N , one can associate an operator
∇c̃, acting on sections of π defined along the base curve c = ν ◦ c̃. More precisely, let σ
be such a section, i.e. σ : [a, b] → E with π◦σ = c, then we may put (∇c̃σ)(t) = ∇c̃(t)σ
for all t ∈ [a, b]. A section σ, defined along the base curve of an admissible curve c̃, will
be called parallel along c̃ if ∇c̃(t)σ = 0 for all t. In coordinates this yields a system
of linear differential equations for the components of σ and, again using standard
arguments, one can show that this leads to a notion of parallel transport on E along
admissible curves in N (cf. [2] for more details).

As an application of the above formalism, we will consider a mechanical system
consisting of a free particle subjected to some linear nonholonomic constraints.

Nonholonomic mechanics

Let g be a Riemannian metric on a n-dimensional manifold M . Consider a free particle,
with configuration space M and Lagrangian L : TM → IR, v 7→ L(v) = 1/2g(v, v).
It is well-known that the equation of motion can be written as the geodesic equation
∇g

ċ ċ(t) = 0, with ∇g the Levi-Civita connection corresponding to g. Suppose now
that the system is subjected to n− k (independent) linear nonholonomic constraints,
defining a regular non-integrable k-dimensional distribution Q on M . We then have
a direct sum decomposition TM = Q⊕Q⊥, where Q⊥ is the orthogonal complement
of Q with respect to the given metric g. The projections of TM onto Q and Q⊥

will be denoted by πQ and π⊥Q, respectively. It is well-known that the solution
curves of the nonholonomic free particle are curves c in M satisfying the equation
πQ(∇g

ċ ċ(t)) = 0, together with the constraint condition ċ(t) ∈ Q for all t (see, for
instance, [9]). Furthermore, one can define a linear connection ∇̄ on M according
to ∇̄XY = ∇g

XY + (∇g
XπQ⊥)(Y ) for X, Y ∈ X (M). This connection restricts to

Q and the equation of motion of the nonholonomic free particle can be rewritten as
∇̄ċċ(t) = 0, with initial velocity taken in Q (see [1, 9]).

We now reconsider the nonholonomic free particle from the point of view of connections
over a vector bundle map. Let i : Q → TM denote the natural embedding of Q into
TM . In the sequel we will identify X ∈ Γ(Q) with Ti ◦ X, regarded as a vector
field on M . In terms of the notations used above, we consider the following situation:
N = E = Q, ν = π = (τM )|Q and ρ = i. We may now define a linear connection
∇nh : Γ(Q)×Γ(Q) → Γ(Q) over i on the vector bundle π : Q → M by the prescription

∇nh
X Y = πQ∇g

XY ,
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where the superscript nh stand for “nonholonomic”. It is easily seen that this
determines indeed a linear i-connection and that, moreover, ∇nh

X Y = ∇̄XY for
X,Y ∈ Γ(Q). Admissible curves in this setting are curves c̃ in Q that are prolongations
of curves in M , i.e. c̃(t) = ċ(t) for some curve c in M . Note that for any base curve c,
ċ may be regarded here both as an admissible curve in Q and as a section of π defined
along c. It follows that the equation of motion of the given nonholonomic problem
can be written as ∇nh

ċ ċ(t) = 0, with c a curve in M tangent to Q.

The restriction of the given Riemannian metric g on M to sections of Q defines a
bundle metric on Q which we denote by go. The i-connection ∇nh considered above
now admits the following characterization.

Proposition 1 ∇nh is uniquely determined by the conditions that it is ‘metric’, i.e.
for all X,Y, Z ∈ Γ(Q) one has

X(go(Y, Z)) = go(∇nh
X Y,Z) + go(Y,∇nh

X Z),

and that it satisfies

∇nh
X Y −∇nh

Y X = πQ[X, Y ],

for all X,Y ∈ Γ(Q).

Proof. First we prove that ∇nh satisfies both conditions. Using the fact that ∇g is
metric for g, and regarding sections of Q as vector fields on M , we find:

X(go(Y, Z)) = X(g(Y, Z))
= g(∇g

XY, Z) + g(Y,∇g
XZ)

= go(∇nh
X Y,Z) + go(Y,∇nh

X Z),
where the last equality follows from the fact that g(X,Y ) = 0 whenever X ∈ Γ(Q)
and Y ∈ Γ(Q⊥). The second condition follows from the symmetry property of ∇g (i.e.
∇g has zero torsion).

Conversely, let ∇ be an arbitrary linear i-connection that satisfies both conditions.
One then easily derives that for any chosen X,Y ∈ Γ(Q) and all Z ∈ Γ(Q)

2go(∇XY,Z) = X(g(Y, Z)) + Y (g(X, Z))− Z(g(X, Y ))
+ g(πQ[X,Y ], Z)− g(πQ[X,Z], Y )− g(X, πQ[Y,Z])

= 2g(∇g
XY,Z) ,

from which one readily deduces that ∇XY = πQ∇g
XY , i.e. ∇ ≡ ∇nh. ut

It is easily proven that if Q is an integrable distribution defining a foliation of M (i.e.
the given constraints are holonomic), then the connection ∇nh induces the Levi-Civita
connection on the leaves of this foliation with respect to the induced metric.

From the fact that the nonholonomic connection ∇nh is metric it follows that for any
X,Y ∈ Γ(Q)

X(go(X,Y )) = go(∇nh
X X, Y ) + go(X,∇nh

X Y ).

The second term on the right-hand side can be rewritten as:
go(X,∇nh

X Y ) = go(X,∇nh
Y X) + g(X, [X, Y ])

= 1
2LY (g(X, X)) + g(X, [X, Y ])

= 1
2 (LY g)(X, X) ,
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(with L denoting the Lie derivative operator). With any given Y ∈ Γ(Q) one can
associate a function JY on Q, given by JY (Xm) := go(Xm, Y (m)), for all m ∈ M and
Xm ∈ Qm. Using the preceding identities, and considering a base curve c in M which
is “geodesic” with respect to ∇nh (i.e. a solution of the nonholonomic equations), one
easily derives that

d

dt
(JY (ċ))(t) = 1

2 (LY g)(ċ(t), ċ(t)).

This equation implies that every section Y of Q which, regarded as a vector field on
M , leaves the metric g invariant (i.e. is a Killing vector field) determines a conserved
quantity for the given nonholonomic system.

Reduction of the nonholonomic free particle with symmetry.

Let G be a Lie group defining a free and proper right action on M , denoted by
Ra : M → M, m 7→ Ra(m) = ma, for all a ∈ G, such that we have a principal fibre
bundle M

µ→ M̂ := M/G. Assume this action leaves invariant both the Riemannian
metric g and the constraint distribution Q, i.e. R∗ag = g and TRa(Q) ⊂ Q for all a ∈ G.
We already know from above that the equations of motion of the nonholonomic free
particle are given by the “geodesic” equations: ∇nh

ċ ċ(t) = 0. Using the symmetry
assumption (i.e. the G-invariance of g and Q), it is easily proven that if c(t) is a
solution, so is c(t)a for all a ∈ G. Therefore, one obtains equivalence classes of
solutions, where two solutions c1 and c2 are called equivalent iff c1 = c2a for some
a ∈ G. In the reduction procedure described below, it is our intention to construct
a reduced connection over a suitable vector bundle map, such that the corresponding
“geodesics” are precisely these equivalence classes.

First of all, we note that the set Q/G, the quotient space of Q under the lifted action
of G on Q, admits a vector bundle structure over M̂ , with projection τ : Q/G → M̂
defined by τ([Xm]) = µ(m). Here, [Xm] represents the G-orbit of Xm ∈ Q under the
lifted right action. Using the fact that this action on Q is fibre linear, and relying
on the local triviality of the principal bundle M → M̂ , one can verify that τ indeed
determines a vector bundle structure (see e.g. [11] p.29). Next, we define a map
ρ : Q/G → TM̂ according to ρ([Xm]) := Tµ(Xm). Once again one can easily see
that this map is well defined (i.e. does not depend on the chosen representative Xm

of [Xm]) and is fibred over the identity on M̂ . We now first construct a principal
ρ-connection on M which, subsequently, will be used to define a linear ρ-connection
on Q/G.

Let h : µ∗(Q/G) → TM : (m, [Xm]) → Xm, i.e. we take the image h(m, [Xm]) to
be the unique tangent vector at m belonging to the equivalence class [Xm]. Since
the action of G is free, it immediately follows that h is well defined and, moreover,
Im h = Q. We can also verify that h(ma, [Xm]) = TRa(Xm) = TRa(h(m, [Xm])) and
Tµ(h(m, [Xm])) = ρ([Xm]). Consequently, h determines a principal ρ-connection on
M (see the definition above).

Note that sections of the bundle τ : Q/G → M̂ can be put into one to one
correspondence with the set of right invariant vector fields on M taking values in
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Q (i.e. the right equivariant sections of Q → M). Indeed, for ψ ∈ Γ(Q/G) and m ∈ M
such that µ(m) ∈ dom ψ, put

ψh(m) := h(m,ψ(µ(m))) .

Then ψh is a G-equivariant section of Q. On the other hand, let X be a right invariant
vector field on M with values in Q. Then, define an element Xh of Γ(Q/G) by

Xh(m̂) = [Xm],

with m ∈ µ−1(m̂). Clearly, this does not depend on the choice of m in the fibre
over m̂. Thus, by means of h we have established a bijective correspondence between
Γ(Q/G) and the set of G-equivariant sections of Q → M . For the following derivation
of a reduced ρ-connection on Q/G, we may refer to Cantrijn et al [1] where, at least
for the so-called Chaplygin-case, a similar construction has been made in terms of
‘ordinary’ connections and, therefore, we will not enter into details. For completeness,
however, we recall the following useful properties. First, from the G-invariance of g
one can deduce that the vector field ∇g

XY is right invariant whenever X, Y ∈ X (M)
are right invariant, and that πQ : TM → Q commutes with TRa for any a ∈ G.
Secondly, the symmetry assumptions also imply that the induced bundle metric go on
Q is G-invariant and, hence, determines a reduced bundle metric ĝo on Q/G. Using
h we can construct ĝo as follows: for any φ, ψ ∈ Γ(Q/G) put

ĝo(m̂)(φ(m̂), ψ(m̂)) := go(m)(φh(m), ψh(m)),

with m ∈ µ−1(m̂). Let a ∈ G, then

go(ma)(φh(ma), ψh(ma)) = g(ma)(TRaφh(m), TRaψh(m))
= go(m)(φh(m), ψh(m)),

where, again, we have relied on the G-invariance of g. From this we may conclude
that ĝo is indeed well defined.

Let ∇nh be the nonholonomic connection over i, introduced in the previous section.
We now construct a linear ρ-connection on the bundle Q/G, as follows: for any
ψ, φ ∈ Γ(Q/G) put

∇̂nh
ψ φ = (∇nh

ψhφh)h .

Again, one may check that this is well defined and verifies the conditions of a linear
ρ-connection.

Proposition 2 The linear ρ-connection ∇̂nh is metric with respect to the reduced
bundle metric ĝo on Q/G, and satisfies the property:

∇̂nh
ψ φ− ∇̂nh

φ ψ − [ψ, φ] = 0,

where, by definition, [ψ, φ] := (πQ[ψh, φh])h.
Proof. For any ψ ∈ Γ(Q/G), we have that ψh is µ-related to ρ ◦ ψ as vector fields
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on M and M̂ , respectively. Using this, together with the properties of ∇nh, we can
prove that ∇̂nh is metric with respect to ĝo. Indeed, let ψ, φ, η ∈ Γ(Q/G), then

(ρ ◦ ψ)(ĝo(φ, η)) ◦ µ = ψh(ĝo(φ, η) ◦ µ)
= ψh(go(φh, ηh))
= go(∇nh

ψhφh, ηh) + go(φh,∇nh
ψhηh)

=
(
ĝo(∇̂nh

ψ φ, η) + ĝo(φ, ∇̂nh
ψ η)

)
◦ µ,

from which the result readily follows.

The second property can also be proven in a straightforward manner. ut
It is also not difficult to verify that ∇̂nh is uniquely determined by the two properties
mentioned in the proposition.

To complete the reduction picture, it can be proved that every solution of the geodesic
equation for ∇nh projects onto a solution of the “geodesic problem” for the reduced
nonholonomic connection ∇̂nh in the following sense. Assume that c is a solution of
the nonholonomic equations, i.e. ∇nh

ċ ċ(t) = 0. Consider the curve ĉ = µ ◦ c in M̂ .
Then the section [ċ](t) = [ċ(t)] of Q/G along ĉ is autoparallel with respect to the
ρ-connection ∇̂nh, i.e. ∇̂nh

[ċ] [ċ](t) = 0. This follows from the fact that for each m ∈ M ,
h(m, .) : τ−1(µ(m)) → TmM is injective and that for any base curve c in M ,

h(c(t), ∇̂nh
[ċ] [ċ](t)) = ∇nh

ċ ċ(t), ∀t.

On the other hand, any solution [ċ] of the equation ∇̂nh
[ċ] [ċ](t) = 0 determines an

equivalence class of solutions of the initial nonholonomic problem on M . Given
any point c0 in µ−1(τ([ċ](0))), a unique curve c in M can be constructed which is
horizontal with respect to the principal ρ-connection h on M , i.e. c satisfies for all
t: ċ(t) = h(c(t), [ċ](t)) with initial condition c(0) = c0 (note that [ċ(t)] = [ċ](t)). It is
easily seen that µ(c) = τ([ċ]) and from this we can deduce ∇nh

ċ ċ(t) = 0.

We conclude that the set of equivalence classes of solutions of the free nonholonomic
mechanical problem in M is in a one-to-one correspondence with the set of solutions of
autoparallel admissible curves with respect to the reduced nonholonomic connection
(i.e. using the principal ρ-connection h).

To close this section, we note that much of the preceding discussion can be easily
extended to more general nonholonomic systems with symmetry, admitting forces
derivable from a G-invariant potential energy function.

Final remarks

Our approach to the reduction problem of a nonholonomic free particle with symmetry,
using the generalized notion of connections over a bundle map, differs from other
approaches in that we do not have to make any assumption regarding the (constant)
rank of the constraint distribution Q. In treatments of the so-called Chaplygin case,
for instance, the assumption is that Q is the horizontal distribution of a principal
G-connection (see e.g. [1, 4, 8]), i.e. besides being G-invariant Q also satisfies
TM = Q ⊕ kerTµ. In the more general case treated e.g. by H. Cendra et al [?],
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it is assumed that TM = Q + kerTµ (but one may have Q ∩ kerTµ 6= {0}). In our
treatment we only require G-invariance of Q.

Finally, in a forthcoming paper devoted to the use of the concept of a connection over
a vector bundle map in sub-Riemannian geometry, it will be demonstrated that the
above application to nonholonomic mechanics may also shed some new light on the
relationship between the so-called “vakonomic” and the “nonholonomic” treatment of
systems with constraints.
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