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1. Introduction

The development of a differential geometric setting for optimal control theory has been
carried out, among other, by H.J. Sussmann in [12], where a coordinate-free formulation
of the maximum principle is given.

In [4] we have given a proof of a coordinate-free version of the maximum principle for
(time-dependent) optimal control systems with fixed endpoint conditions, relying on an
approach due to L.S. Pontryagin et al.in [5]. As a side result of our approach, we were able
to give some necessary and sufficient conditions for the existence of so-called (strictly)
abnormal extremals (for an example of a stricly abnormal extremal, we refer to [7]). In
this paper, it is our goal to prove the maximum principle for autonomous optimal control
problems and apply it to sub-Riemannian geometry ([9, 10]) and Lagrangian systems on
Lie-algebroids ([1, 6, 13]).

The outline of the paper is as follows. In the remainder of this section we first recall
the notion of a geometric control structure as described in [4] in a time-dependent setting,
as well as the notions of an optimal control problem with fixed and variable endpoints,
respectively. We then consider an adapted version of these notions for the autonomous
case. In Section 2. we briefly review the approach to the maximum principle presented in
[3] and [4] and use it as a starting point to derive a version of the maximum principle for
autonomous optimal control problems. Section 3. contains some specific results for linear
autonomous optimal control problems and in Section 4. we discuss some applications.

We start by recalling the definition of a geometric control structure (see [4] for more
details). A geometric control structure is a triple (7,v, p) where (i) 7 : M — R and
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(#9) v : U — M are fibre bundles, with typical fibres denoted by, respectively, @ and C,
where @ is called the configuration space and C' the control domain. The control bundle
U is related to the first jet bundle of 7 by means of a bundle map (iii) p : U — J7, with
Ti00p = v (where 71 o : J'7 — M denotes the standard projection, see for instance [8]).
This is represented schematically in the following commuting diagram:

r Jir

U

M
TJ
R

Let u denote a smooth section of Tov, i.e. u: I = [a,b] — U such that 7(v(u(t))) =t
(we assume that I is a compact interval in IR and that v admits a smooth extension to
an open interval containing I). Then u is a control if pou = jlc with ¢ = v o u the base
section of u. Given any section ¢ of 7, then c is called a controlled section if ¢ is the base
section of a control. We say that the control u takes the point c(a) to the point c(b), and
is represented schematically by c(a) — ¢(b). In order to fix the ideas we first investigate
locally the notion of smooth controls. Let (¢,2°) denote bundle adapted coordinates on
M, and, similarly, let (¢, 2%, u%) denote bundle adapted coordinates on U. Then, a control

u locally satisfies: , ' ,
pl(t, ¢ (t),u(t)) = é'(t),

for all t. It is easily seen that these equations correspond to the definition of a control
in [5].

However, it turns out that the class of smooth controls should be further extended to
sections admitting (a finite number of) discontinuities in the form of certain ‘jumps’ in the
fibres of v, such that the corresponding base section is piecewise smooth. For instance,
assume that ug : [a,b] — U and ugy : [b,¢] — U are two smooth controls with respective
bases ¢; and cg, such that ¢1(b) = ¢o(b). The composite control us - uy : [a,c] — U of uy
and uso is defined by:

71,0

uq (t) t € [a,bl,
up - ua(t) = { us(t) t € 1b, .

It is readily seen that, although in general us - u; is, discontinuous at ¢ = b, the base
section v o (ug - uy) is continuous. This definition can easily be extended to any finite
number of smooth controls, yielding what we shall call in general a control (a detailed
definition can be found in [4]).

In the remainder of this section we focus our attention on optimal control problems.
Assume that a cost function L on the control space U is given, i.e. L € C=(U). With
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any control u : [a,b] — M we are now able to define its cost J (u):

b
T(u) = / L(u(t))dt.

A control u taking x = v(u(a)) to y = v(u(b)) is said to be optimal if, for any other
control v’ taking  to y we have

JI(u) < J@W).

The problem of finding the optimal controls taking a given point to another given point
is called an optimal control problem with fized endpoint conditions.

On the other hand, assume that two immersed submanifolds ¢ : S; — M and j :
S¢ — M are given. A control u taking a point € i(.S;) to a point y € j(Sf) is said to
be (S;, Sr)-optimal if, given any other control u’ taking =’ € i(S;) to 3y € j(Sy), then
J(u) < J(W'). The problem of finding the (S;, Sy)-optimal controls taking a point in S;
to a point in Sy is called an optimal control problem with variable endpoint conditions
(see [3]).

An autonomous geometric control structure consists of a pair (7, p) where 0 : C — @
is a bundle and p : C' — T'Q a bundle map fibred over the identity on ). We can then
consider the following geometric control structure (7,v,p), in the sense defined above,
associated with (7, p):

I.7:M=RxQ—->R:(tq) — 7(t,q) =t,
22 v:U=RxC— M:(tp)—v(t,p) =(t,v(p), and
3. p:U— Jir: (t,p) — (t,p(p)), since J'T =R x TQ.

Let @ : [a,b] — C denote a curve in the control domain C. Then @ is called -
admissible if p(a(t)) = &(t), where &(t) = v(a(t)) is called the base of .

We now translate concepts defined in the autonomous geometric control structure
(7, p) to known concepts in the associated geometric control structure (7, v, p). For in-
stance, it is an easy exercise to see that every p-admissible curve @ : [a, b] — C determines
a smooth control v : [a,b] — U with u(t) = (¢,4(t)). On the other hand, if we assume
that w : [a,b] — U is a smooth control, then u can be written as u(t) = (¢, 4(t)) since u
is a section of 7 ov. The curve 4 : [a,b] — C' is p-admissible since p(u(t)) = (¢, p(a(t))
and jle = (t,é(t)) (where ¢(t) = (t,&(t)) denotes the base of u). This correspondence
between p-admissible curves and smooth controls is easily extended to the more general
notion of composite controls. Similar to the control setting, we say that the p-admissible
curve 4 takes é(a) to é(b).

Consider a function L on C. Then we can define a cost function on U by considering
L= pgi, where pc : U — C' denotes the natural projection. We define a functional on
the set of p-admissible curves by:
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where we have used the same notation as in the previous section since J(u) = J(u),
with u the control associated with .

A p-admissible curve @ : [a,b] — C, taking p to ¢, is called optimal if, given any p-
admissible curve @' : [a,b] — C taking p to ¢, then J (@) < J(@'). Note that @ is optimal
with respect to L iff the associated control u(t) = (t,@(t)) is optimal with respect to L.

We say that @ is strong optimal if, given any other control @’ : [a’,b] — C taking p
to g, then J(a) < J(@'). Consider S, =R and i, : S, = IR x Q : s+ (s,p). Similarly
we put S; = R with j, : S, = R x Q : s — (s,q). Using the notations from above, we
can write S; = Sp and Sy = S;. It is now easily seen that a p-admissible curve 1, taking
p to g is strong optimal iff the associated control w is (S,, S;)-optimal with respect to
pgf]. The problem of finding the optimal p-admissible curves taking p to g, is called the
autonomous optimal control problem.

2. The Maximum principle
2.1. Non-autonomous optimal control problems

We now proceed towards the formulation of the maximum principle for non-auton-
omous optimal control problems, proven in [4], providing necessary conditions for optimal
controls. We first define the notion of a multiplier of a control u. For that purpose, we
construct a l-parameter family of closed two-forms on U Xy V*7 (where V7 = ker T'r
is the vertical subbundle of TM and V*7 its dual). Let @ be the closed two-form on
the fibred product U x ; T* M, obtained by pulling back the canonical symplectic form
on T*M by the projection U X T*M — T*M. Next, for any real number A we can
define a section o), of the fibration U x y; T*M — U X j; V*7 in the following way. Take
Um, € U,y € Vi1 and put ox(Um, Mm) = (Um, Qm), where oy, € T5 M is uniquely
determined by the conditions (z) {(am, T(p(tm))) + AL(um) = 0 and (i) a,, projects
onto 7,,. As usual, T : J'7 — TM represents the total time derivative defined by
T(jic) = Tyc(8:), for jic € J'7 arbitrary and with d; the standard vector field on R.
The mapping o) is smooth, as can be easily seen from the following coordinate expression:
putting u,, = (¢, 2%,u®) and n,, = p; dmfm, a straightforward computation gives

U}x(t7xi7ua7pi) = (tyxiyuav _pi(taxiaua)pi - AI’(t7iz:i7ua)7pi) .

We can now use o to pull-back the closed two-form @ to a closed two-form on U X 3, V*7,
which will be denoted by wy = o5@. Herewith, we can introduce the following definition
of a multiplier.

DEFINITION 1. Given a control u : [a,b] — U, a pair (n, A) consisting of a piecewise
smooth section 7 of V*7 along ¢ = v o w and a real number ), is called a multiplier of «
if the following conditions are satisfied:

L. iae),n)wa = 0 on every smooth part of the curve (u(t),n(t)),

2. given any to € [a,b], and if we put oy (u(to),n(to)) = (u(to), ) then the function
u +— (g, T(p(u'))) + AL(), defined on v~1(c(ty)), attains a global maximum for
u' = u(ty),
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3. (n(t),\) # (0,0) for all ¢ € [a,b].
We then have the following result (cf. [4]).

THEOREM 1. Assume that x — y and that u is optimal. Then there exists a multi-
plier (n, A) with A <0.

In [3] we have considered optimal control problems with variable endpoints. Assume
that S; and Sy denote two immersed submanifolds of M, where either S; or Sy reduce
to a point (note that if we assume u, with 2 — y, to be (S;, S)-optimal, then u is also
(57, S%)-optimal where S; = S; and S} = {y} or S} = Sy and 5] = {z}). Let us denote
the annihilator of a linear subspace W in a vector space V by WP0.

THEOREM 2. Let x %y with v € S; and y € Sy. If u is (S;, Sy)-optimal then there
exists a multiplier (n, \) such that

1. A <0,

2. ox(u(a),n(a)) € (Ti(T,S;))°, if S§ = {y} or
ox(u(b),n(b)) € (T§(T,S¢))°, if Si = {x}.

2.2. Autonomous optimal control problems

Consider an autonomous optimal control problem as defined in Section 1. and how it
was related to a non-autonomous optimal control problem. Let wg denote the canonical
symplectic form on 7@, and consider the closed two-form &g on C x o T*(Q), which is the
pull-back of wg under the projection pr+g : C xgo T*Q — T*(Q). We can now prove the
following version of the maximum principle for autonomous optimal control problems.

THEOREM 3. If a p-admissible curve 4 : [a,b] — C is optimal with respect to L then
there exists a piecewise smooth one-form 7(t) along ¢(t) = v(u(t)) and a real number
A <0 such that:

1o iy q0n@we = —ha(a(t),7n(t)) on every smooth part of the curve (u,n)(t), with

hy € C=(C xq T*Q) defined by hx(ty,Cp) = (Gp, pU,)) + AL(Ty,) for arbitrary
(ﬂ;wé.p) eC XQ T*Q}

2. given any t € I, the function @' — hx(@,7(t)) on Cery = 0~ (c(t)) attains a global
mazimum for @' = u(t),

3. hy(u(t),n(t)) = const. for all t and,
4. ((t),\) #0 foralltel.

If u is strong optimal then condition (3) is to be replaced by hy(a(t),n(t)) = 0.

Proof. Since we already know from Section 1. that if @ is optimal, then the associated
control u is also optimal in the non-autonomous setting. This correspondence admits us
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to apply Theorem 1. The remainder of this proof consists of translating the necessary
conditions from the time-dependent setting to the autonomous setting.

First, note that V*7 =2 R x T*(Q and that the section o can be written as o (v, {)
—hx(pc (), ¢)dt + ¢ where (v/,¢) € U xpr V*1. Recalling the definition of a multiplier
then we know that there exists a piecewise smooth one-form 7(t) = (¢,7(¢)) and a A <0
such that, of u denotes the control associated with 1,

L. dga(e)i(e))wa = 0 on every smooth part of the curve (u,n) (),

2. given any t € I, then the function w’ +— (o) (u(t),n(t)), T(p(u'))) + AL(u') defined
on v~ 1(c(t)) attains a global maximum for v’ = u(t),

3. (n(t),\) #0foralltel.

The closed two form wy equals (with a slight abuse of notations) @g — dhy A dt. The
function

u' = (oa(u(t), n(t)), T(p(u))) + AL(u),

equals —hy(t(t),7(t)) + hx(pc ('), n(t)). We conclude that hy(pc(u'),7(t)) also attains
a global maximum for u" = u(t) or for @’ = pc(u') = u(t). .
Given any tangent vector X = X + Xt% € T(U xp V*r), with X € T(C xo T*Q),

then ixwy = igwg —dhx(X)dt+X'dhy. If we assume that X = (u(t),n(t)), then X* =1

and X = (u(t), 7(t)), and equation (1) is equivalently rewritten as: )i P = —dha.

(

Since (@, 1) solves the implicit Hamiltonian system with Hamiltonian hy, the function
hy is constant on every smooth part of the curve (a(t),7(t)). Thus, it remains to prove
that hy(@(t),7(t)) is continuous. Consider therefore a discontinuous point (at t = tg) of

u(t), and assume that we have fixed an adapted coordinate chart containing it. Then,

hA(E (1), 0 (1), 7 () = ha(E(t), w®, 7 (t)),

for all w®. If we consider this inequality and take successively the limit from the left and
from the right for t — t4, we obtain the continuity of hy(¢(t), (), 7;(t)) as a function of
t. It now remains to prove, in the case of strong optimality, that h) is zero on (u(t),7(t)).
We make use of Theorem 2. From the fact that

ax(u(a),n(a)) = —hx(a(a),j(a))dt + ii(a)dz’ € (T'S,)" = V*r,

we obtain hy(@(a),7(a)) =0. =

Before proceeding to the following section, we introduce some additional definitions.
Assume that a p-admissible curve @ is given. A couple (7], A), where 7] denotes a one form
along the base of @ and a real number J, is called a local multiplier if the conditions (1),
(3) and (4) from Theorem 3 are satisfied. If, in addition, condition (2) is satisfied then
(77, \) is called a global multiplier. Note that the implicit Hamiltonian system in condition
(1), implies that hy attains a local extremum which justifies the above definitions. It
is well known from literature, that the g-admissible curve @ is called a global (local)
extremal if it admits a global (local) multiplier (7, A) with A < 0. Furthermore if A = 0,
then w is called an abnormal extremal, and if A < 0, then w is called a normal extremal.



[Author and title] 7

Using these definitions, Theorem 3 says that any optimal p-admissible curve is a global
extremal. Note that, given any global multiplier (7, A), then for any a > 0, the pair
(am, @) is also a multiplier. Therefore, we shall henceforth always assume that the
multiplier (7, A) is ‘normalised’, in the sense that A equals 0, 1 or —1.

3. Linear autonomous control problems

In the following we shall concentrate on linear autonomous geometric optimal control
structures, i.e. autonomous geometric optimal control structures satisfying the additional
conditions that v : C' — @ is a linear bundle and p is a linear bundle map.

We first consider the maximality condition derived in Theorem 3. Fix any ¢(° € T*Q
and let zop = m(¢®). The function @ — hy(@,¢°) for any @ € C,, attains a local
extremum at @ = ug iff

0

oul ia

(PauCa + AL(zp, u®, () =0,

or equivalently p*(¢{) = —AFL(u), where FL : C' — C* denotes the fibre derivative of L
and p* : T*@Q — C* is the dual of the linear bundle map p.

If @ is an abnormal local extremal (i.e. there exists a local multiplier (7, A) with A = 0),
then 5*(7)(t)) = 0 for any t or, equivalently, 7j(t) € (p(Cy4)))° (the annihilator space of the
image of Cy;) under ). Moreover, in this specific case, the function @’ +— ho(@’,7(t))
equals 0 for all @' € Cy), which implies that @ is a global abnormal extremal. We
conclude that for linear autonomous control problems, the abnormal local extremals are
global abnormal extremals.

On the other hand, if % is a normal local extremal i.e. A = —1, then §5*(¢) = FL(u).
We say that L is a regular cost if the fibre derivative of L is invertible. We say that a
curve 7j(t) in T*Q generates a curve @(t) in C, if a(t) = (FL)~1(p*(7(t))). In this case,
if 77 is piecewise smooth, then the curve @ generated by 7 is also continuous. Therefore,
a normal local extremal is a piecewise smooth curve in C. Moreover, from the following
proposition it follows that it is a smooth curve.

THEOREM 4. Assume that L denotes a reqular cost. Every normal local extremal @ is
generated by an integral curve 7(t) of the hamiltonian vector field X on T*Q associated
with the function G(¢) = hx(FL7Y(5*(¢),(), for ¢ € T*Q and with A = —1. The
converse also holds, i.e. every integral curve of Xg generates a normal local extremal.

Proof. = We assume that @ is a local extremal and fix a local multiplier (7, \) with
A = —1. Consider the function £ : T%Q — C x¢g T*Q), defined by:

L(¢) = (FLTY(5"(¢)). ©)-

Note that £ is a section of the bundle pr+g : €' xgT*Q — T*Q, with pr-g the projection
onto the second factor. Then it is easily seen that £L*hy = G and that L*@0g = wq.
Recall the implicit Hamiltonian system: a multiplier has to satisfy: i(ﬂ(t) ﬁ(t))cDQ =
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—dh(@(t),7(t)), and consider the tangent vectors X = (u(t),7n(t)) = TL(7(t)) and
Y = TL(w) € T(C xg T*Q) for w € T(T*Q) arbitrary, then 0o (X,Y) = wo(7(t), w).
By substituting £*hy = G we obtain that iz, \wg = —dG(ij(t)) for every smooth part of
7. By uniqueness of solutions to differential equations, it follows that 7 is smooth (and
therefore we have that @ is smooth).

On the other hand, assume that i;, wg = —dG(7)(t)) and consider the smooth curve
a(t) = (FL)~1(p*(7(t))) in C. Then, by reversing the above arguments, we obtain that
0Q(X,Y) = —dhy(Y) with X = (u(t),7(t)) = TL(#(t)) and Y = TL(w) € T(C xoT*Q)
for w € T(T*Q) arbitrary and A = —1. It remains to check that this is also valid for
arbitrary Y € T(C' xoT*Q). Since L is a section of pr«g, any element Y in T(C' xoT*Q)
can be written as Y = T'L(w) + Z where w = Tpr-g(Y) € T(T*Q) and Z € ker Tpr-g.
Since wg = pr.qwq it is easily seen that izwg = 0. From this we conclude that
ix@q = —dhy(a(t),n(t)) for arbitrary ¢t. m

4. Applications

1. Consider a sub-Riemannian structure (@, D,h), where Q is a manifold, D a
regular, i.e. constant rank and smooth, distribution on @ and h is a Riemannian bundle
metric on D. Let i : D — TQ denote the natural injection of D into T'Q) (note that
U : D — @ can be considered as a linear bundle on Q). We would like to solve the
length-minimising problem in the sub-Riemannian structure (Q, D, h), i.e. we have to
solve the autonomous optimal control problem with control structure (Q, 7,4) and cost
E € C=(D), where E(v) = Zh(v,v). It is easily seen that E is a regular cost, i.e.
FE = by, with by, defined by h(v,w) = (by(v),w) for arbitrary v,w € D. Let f;, denote
the inverse of by. The function G, introduced in the above theorem, takes the form:
G(O) = (C,i(En(i"(0)))) — Bh(En(7(O)), £ (i (C)))- Tf we consider the tensor g € TQ@TQ
defined by g(C,€) = h(a(i*(0), £ (*(€))) with €, ¢ € T*Q, then G(C) = 2g(¢,¢). In [2]
we have further investigated the equations of a local extremal using connections over a
bundle map and we gave necessary and sufficient conditions for abnormal extremals.

In the next example we consider the case where C is a Lie-algebroid with anchor map
p. We refer to [1, 6, 13] where the importance of this specific case for a generalisation of
Lagrangian mechanics is thoroughly investigated. It should be noted that we only derive
the Lagrangian equations, using the theory developed above.

2. Assume that C is a Lie-algebroid with anchor map p and assume that L is
a regular cost. It is a well known fact that the Lie-algebroid structure determines a
Poisson structure on C*, where the bracket on C>(C*) is denoted by {-, - }¢~, whereas the
Poisson bracket on C*=(T*Q) is denoted by {-,-}. It is also well known that both Poisson
structures are p* connected, i.e. if y = p*, then, given arbitrary f,g € C>=(C*) the
following equality holds: {x*f,x*9} = x*{f,9}c~. This implies that any Hamiltonian
vector field Xy on C* is p*-connected to the Hamiltonian vector field X,-; on T7Q.
Consider the function G on T*@Q), introduced in the previous section. Define g € C*(C*)
by g(a) = (o, FL7}(a)) — L(FL™!(cv)). Then, it is easily seen that x*¢g = G. This
guarantees that, given any integral curve n(t) of X¢, then p*(n(t)) is an integral curve
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of X, and, conversely, any integral curve «(t) of X, through a point in the image of p*
is the projection under p* of an integral curve of X¢. From this we conclude that, in the
case where C* is a Lie-algebroid, the integral curves of X, through a point in the image
of p* are projections of normal local extremals.
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