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Abstract

In this paper we introduce a generalisation of the notion of holonomy for connections
over a bundle map on a principal fibre bundle. We prove that, as in the standard
theory on principal connections, the holonomy groups are Lie subgroups of the
structure group of the principle fibre bundle and we also derive a straightforward
generalisation of the Reduction Theorem.
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1 Introduction

The standard notion of a connection (see e.g. [8]) has been generalised along
many different lines. To mention a few of these generalisations, we may refer
to the so-called “pseudo-connections” (see F. Etayo [2] for a review) and, in
particular, to the “partial connections” as studied, for instance, by F. Kamber
et al. [7]. More recently, a notion of connection on Lie algebroids has been in-
troduced and studied, among others, by R.L. Fernandes [4,5]. The importance
of these generalisations can be illustrated, for instance, by the fact that partial
connections were used to prove the vanishing of some cohomology classes on
manifolds admitting a regular integrable distribution, and the theory of Lie
algebroid connections has lead to the construction of a generalised Chern-Weil
homomorphism onto the set of Lie algebroid cohomology classes.
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In an attempt to establish a unified framework for the various types of con-
nections mentioned above, we have introduced in a recent paper a notion of
generalised connections over a vector bundle map [1]. In some subsequent
papers, we have investigated possible applications of these generalised con-
nections: to nonholonomic mechanics [9], to the study of length minimising
curves in sub-Riemannian geometry [10] and to the formulation and proof of
a geometric version of the maximum principle in control theory [11].

In [1] we managed to associate a notion of “parallelism” and “covariant deriva-
tion” with a generalised connection over a bundle map. However, torsion and
curvature are in general not well defined unless the bundles under consider-
ation admit some additional geometric structures, such as in the case of a
pre-Lie algebroid. In this paper we present a notion of “holonomy” for these
generalised connections and we derive a version of the Reduction Theorem
[8, p 83]. It should be mentioned that holonomy has already been studied for
partial connections in the framework of (contact) sub-Riemannian geometry,
see for instance [3], and for generalised connections in the framework of Lie
algebroids [5].

The structure of the paper is as follows. In Section 2 we introduce the notion of
an anchored bundle and discuss some of its basic properties. The structure of
an anchored bundle is encountered in sub-Riemannian geometry, control the-
ory, nonholonomic mechanics and also in the theory of (affine) Lie algebroids
[6,13,14]. Therefore, we believe it is worth to study this structure in its own
right. In Section 3 we introduce the notion of a lift over an anchored bundle,
which can be regarded as a right invariant anchor map on a principal fibre
bundle, commuting with a given anchor map on the base space. Furthermore,
the notion of “leafwise holonomy” of a lift over an anchored bundle is defined.
In Section 5 we prove that the generalised holonomy groups are Lie subgroups
of the structure group of the given principal fibre bundle. A generalisation of
the Reduction Theorem is then easily obtained. To conclude this paper we
briefly discuss some possible applications in sub-Riemannian geometry.

All manifolds considered in this paper are real, finite dimensional smooth
manifolds without boundary, and by smooth we will always mean of class C∞.
The set of (real valued) smooth functions on a manifold B will be denoted
by C∞(B), the set of smooth vector fields by X (B) and the set of smooth
one-forms by X ∗(B). The set of all smooth (local or global) sections of an
arbitrary fibre bundle τ : E → B will be denoted by Γ(τ).
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2 Anchored bundles

In this section we describe the basic structure on which our study of generalised
connections is based, namely that of an anchored bundle. Let M denote an
arbitrary n-dimensional manifold with tangent bundle τM : TM → M . The
conceptual idea of an anchored bundle is that one considers a bundle over M
which is related to TM , in such a way that, for further developments, the
bundle can be taken as an alternative to the tangent bundle of M . The notion
of an anchored bundle is also encountered in the work of P. Popescu [16], who
also uses the denomination “relative tangent space”.

Definition 1 An anchored bundle on M is a pair (ν, ρ) where, ν : N → M
denotes a fibre bundle over M , and ρ : N → TM is a bundle map, fibred over
the identity on M . We call ρ the anchor map of the anchored bundle.

The following diagram is commutative:

N TM

M

-

R 	
ν τM

ρ

We say that an anchored bundle (ν, ρ) is linear, if ν is a vector bundle and ρ
is a linear bundle morphism.

Consider two anchored bundles (ν ′, ρ′) and (ν, ρ) with base manifolds re-
spectively M ′ and M . An anchored bundle morphism (f, f) from (ν ′, ρ′) to
(ν, ρ) consists of a smooth mapping f : M ′ → M and a bundle morphism
f : N ′ → N fibred over f , in such a way that the following equation holds:

Tf ◦ ρ′ = ρ ◦ f.

We say that f is an anchored bundle isomorphism if f is a bundle isomorphism
(see e.g. [17]), and if, in addition, f−1 is also an anchored bundle morphism.
In this case we can write ρ′ = T (f)−1 ◦ρ◦f and conversely ρ = Tf ◦ρ′ ◦f−1. If
f is an injective immersion, then we say that (ν ′, ρ′) is an anchored subbundle
of (ν, ρ). Note that ρ′ is completely determined by ρ′ = T (f)−1 ◦ ρ ◦ f , which
is well defined since f is an immersion. Assume that both anchored bundles
are linear. Then, we say that f is a linear homomorphism if f : N ′ → N
is a linear bundle map. The following commutative diagram represents an
anchored bundle morphism:
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^

N ′ -

/
M ′

TM ′

ν ′ τM ′

ρ′

1
f

1 -ρ

/
M

τM

^
ν

f Tf
1 TMN

2.1 The foliation on anchored bundles

In this section we need some elements of the theory of integrability of dis-
tributions, developed by H.J. Sussmann [18] (see also [12]). We first briefly
recall the basic definitions and main results on distributions, before applying
them to anchored vector bundles. We also use this section to fix some nota-
tions regarding composite flows and concatenations of integral curves of vector
fields.

Consider a manifold M and assume that F is a differentiable distribution
on M , i.e. F is a subset of TM such that, for any point x ∈ M , the fibre
Fx = F ∩ TxM is a linear subspace of TxM and such that Fx is spanned by a
finite number of vector fields in F evaluated at x (we say that X ∈ X (M) is
a vector field in F if X(y) ∈ Fy, for arbitrary y ∈ M).

The rank of the distribution F at a point x ∈ M is the dimension of Fx. Note
that, in the above definition, a distribution need not have, in general, constant
rank. If F has constant rank, we say that F is a regular distribution.

A distribution is said to be completely integrable if, given any x ∈ M , then
there exists an immersed connected submanifold i : L ↪→ M containing x and
such that TyL = Fy, for each y ∈ L. A submanifold L satisfying the above
conditions, is called a leaf if it is maximal, in the sense that, given any other
submanifold L′, verifying the above conditions, and which contains L then
L′ = L. It can be proven that these leaves are unique and determine a parti-
tion on M which is called the foliation induced by the completely integrable
distribution. Note that, by definition, the distribution F has constant rank on
the points of the leaf L.

Assume that F is a family of vector fields on M , each defined on an open
subset of M . We say that F is everywhere defined if, given any x ∈ M , there
exists an element X of F containing x in its domain. An everywhere defined
family of vector fields F generates a distribution F in the following way:

Fx = span{X(x) | X ∈ F , x ∈ dom X}.
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It is readily seen that F is a differentiable distribution. H.J. Sussmann has
shown that, given of an everywhere defined family of vector fields F , generating
a distribution F , one can always construct the smallest completely integrable
distribution containing F . In order to discuss this construction, we need the
notion of a composite flow.

Assume that we have fixed an ordered `-tuple X = (X`, . . . , X1) of vector
fields on M , and let us represent the flow of Xi by {φi

t}.

The composite flow of X is the map

Φ : V ⊂ IR` ×B → B : ((t`, . . . , t1), x) 7→ φ`
t`
◦ . . . ◦ φ1

t1
(x),

defined on some open subset V of IR`×B. For brevity we shall write ΦT (x) in
stead of Φ(T, x), where T = (t`, . . . , t1). We shall sometimes refer to T as the
composite flow parameter. For each fixed T , ΦT determines a diffeomorphism
from an open subset of M (which may be empty) to another open subset of
M . It can be proven that, if we fix a point x ∈ M , then the map T ′ 7→ ΦT ′(x)
is smooth and defined on an open neighbourhood of T . For further details on
the domain of composite flows, we refer the reader to [12].

Assume that we have fixed two composite flows: Φ of X = (X`, . . . , X1) and
Ψ of Y = (Y`′ , . . . , Y1). The composition of Φ and Ψ is the composite flow
Ψ ? Φ of the `′ + `-tuple (Y`′ , . . . , Y1, X`, . . . , X1). Using these notations, it is
easily seen that, for instance, Φ equals φ` ? . . . ? φ1. If T is a composite flow
parameter for Φ and T ′ for Ψ, then T ′ ? T = (T ′, T ) ∈ IR`′+` is a composite
flow parameter for Ψ ? Φ.

The composite flow Φ of X = (X`, . . . , X1) is said to be generated by an
everywhere defined family of vector fields F if X is an ordered `-tuple of
elements of F . Using all composite flows generated by F , we can define an
equivalence relation on the points of M , denoted by ↔.

Definition 2 Assume that x, y ∈ M . Then x ↔ y if there exists a composite
flow Φ generated by F and a composite flow parameter T such that ΦT (x) = y.

It is easily seen that the relation ↔ is transitive (see the above definition of
the composition of composite flows) and reflexive (take T = (0, . . . , 0)). If
Φ is a composite flow of X = (X`, . . . , X1) and ΦT (x) = y for some T =
(t`, . . . , t1), then the composite flow Φ̃ of X̃ = (X1, . . . , X`) and the composite
flow parameter T̃ = (−t1, . . . ,−t`) satisfy Φ̃

T̃
(y) = x. Since Φ̃ is generated

by F , this makes the relation symmetric. Assume in the following that the
distribution F is generated by the family F .

Theorem 3 The smallest completely integrable distribution F̃ containing F
is the distribution generated by the everywhere defined family F̃ containing all
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elements of the form Φ∗
T Y where Y ∈ F and Φ is a composite flow generated

by F .

The leaves of the distribution F̃ are the equivalence classes of the equivalence
relation ↔.

Consider the distribution F̃ and let [X,Y ] denote the Lie bracket of two vector
fields in F . It is easily seen that [X,Y ] is a vector field in F̃ . Indeed, let {φt}
be the flow of X and observe that φ∗t Y is in F̃ . Then, for each x ∈ M , the
curve t 7→ φ∗t Y (x) is entirely contained in the linear space F̃x, and so is its
tangent vector:

d

dt

∣∣∣∣∣
0

(φ∗t Y (x)) = [X, Y ](x).

This reasoning can easily be extended to any finite number of iterated Lie
brackets of vector fields in F . In fact, this observation is rather important
since it leads to an alternative proof for the Theorem of Chow (see [18]).

Assume that X = (X`, . . . , X1) is an arbitrary finite ordered family of vector
fields, with composite flow Φ. Fix a value (t`, . . . , t1) of the composite flow
parameter T . The concatenation of integral curves of X trough x ∈ M is the
piecewise smooth curve γ : [a, a + |t1| + . . . + |t`|] → M defined as follows,
where ai = a +

∑i
j=1 |tj|, sgn(ti) = ti

|ti| for ti 6= 0 and sgn(0) = 0,

γ(t) =





φ1
sgn(t1)(t−a)(x) for t ∈ [a, a1]

φ2
sgn(t2)(t−a1)(φ

1
t1
(x)) for t ∈ ]a1, a2]

. . .

φ`
sgn(t`)(t−a`−1)(. . . (φ

1
t1
(x)) . . .) for t ∈ ]a`−1, a`],

Note that, if t ∈]ai−1, ai[ then γ̇(t) = sgn(ti)Xi(γ(t)) and, hence, the restriction
of γ to ]ai−1, ai[ is an integral curve of Xi if ti > 0 (or −Xi if ti < 0). Note
that γ(a`) = ΦT (x), i.e. the endpoint of γ coincides with the image of x under
the composite flow ΦT . It is easily seen that in the specific case where X is
generated by F , the concatenation of integral curves of X through x ∈ M is
entirely contained in the leaf Lx through x.

Let us now proceed towards the construction of an everywhere defined family
of vector fields on M , given an anchored bundle (ν, ρ) on M . Consider an
arbitrary (local) section σ of ν, i.e. σ : M → N is a smooth map with (ν ◦
σ)(x) = x. Using the anchor map we can define the following vector field on
M : ρ◦σ. Let D denote the set of all vector fields of the form ρ◦σ. Clearly, D is
everywhere defined and using the notations as described above, the manifold
M is equipped with a distribution D generated by D (with D = im ρ if (ν, ρ)
is linear) and the smallest completely integrable distribution D̃ containing D.
The leaf on M through x, induced by D̃, is denoted by Lx.
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Consider the immersion i : Lx ↪→ M , and let ν ′ : N ′ = Lx ×M N → Lx

denote the pull-back bundle of ν under i, i.e. (y, s) ∈ N ′ if i(y) = ν(s). Since
i is an immersion, we can define an anchor map ρ′ : N ′ → TLx as follows:
Tyi(ρ

′(y, s)) = ρ(s), given any (y, s) ∈ N ′. The projection π2 : N ′ → N of N ′

onto the second factor, determines an anchored bundle morphism, fibred over
the immersion i, i.e. (ν ′, ρ′) is an anchored subbundle of (ν, ρ). We shall call
(ν ′, ρ′) the pull-back anchor bundle under i.

Before passing to the next section, we first give two examples of an anchored
bundle and the distribution induced by it. The first example is taken from [15],
where it was used in the context of sub-Riemannian geometry to construct
length-minimising strictly abnormal extremals. The other example is taken
from [12] and provides a non-trivial completely integrable distribution on IR2.

Example 4 Assume that M = IR3 (we use cylindrical coordinates on IR3),
and that ν : N = IR3 × IR2 → IR3 is a trivial bundle over M . Consider the
following two vector fields on M : X1 = ∂

∂r
and X2 = ∂

∂θ
− p(r) ∂

∂z
, where p(r)

is a function on IR with a single non degenerate maximum at r = 1, i.e. p
satisfies:

d

dr
p(r)

∣∣∣∣∣
r=1

= 0 and
d2

dr2
p(r)

∣∣∣∣∣
r=1

< 0.

Such a function can always be constructed (take, for instance, p(r) = 1
2
r2 −

1
4
r4). Let ρ denote the map defined by ρ(x, u1, u2) = u1X1(x)+u2X2(x), with

x = (r, θ, z) ∈ M . It is easily seen that (ν, ρ) is a linear anchored bundle. The
flows of X1, X2 are denoted by {φt}, {ψt}, respectively. In particular, we have
φt(r, θ, z) = (t + r, θ, z), ψt(r, θ, z) = (r, θ + t, z− p(r)t). The foliation induced
by im ρ is trivial. Indeed, all iterated Lie brackets of the two vector fields X1

and X2 span the total tangent space at each point, implying that D̃ = TM
and M itself is the only leaf.

Example 5 Let M = IR2 and let N = M× IR2, with ρ(x, u1, u2) = u1X(x)+
u2Y (x), where

X =
∂

∂x
and Y = y

∂

∂y
.

The distribution F on M defined by F = im ρ satisfies F = F̃ , since [X, Y ] =
0, i.e. F is completely integrable. The two 2-dimensional submanifolds {y < 0},
{y > 0} and the 1-dimensional submanifold {y = 0} are the leaves of the
foliation on M . We use this example to show that Lemma 7 in the following
section is non-trivial. We shall construct a curve, which is tangent to F , i.e.
has tangent vector everywhere contained in F , but, the curve itself is not
entirely contained in a single leaf. Indeed, consider c̃ : IR → M : t 7→ (t, t3).
It is readily seen that ˙̃c(t) = X(c̃(t)) + 3t−1Y (c̃(t)) ∈ Fc̃(t) for t 6= 0 and
˙̃c(0) = X(0, 0) ∈ Fx. However c̃ passes through the three leaves of F .

7



2.2 ρ-admissible curves

We introduce here the notion of a ρ-admissible curve. By a smooth curve in
a manifold M we will always mean a C∞ map c : I → M , where I ⊆ IR
may be either an open or a closed (compact) interval. In the latter case, the
denominations “path” or “arc” are also frequently used in the literature but,
for simplicity, we will make no distinction in terminology between both cases.
For a curve defined on a closed interval, say [a, b], it is tacitly assumed that
it admits a smooth extension to an open interval containing [a, b]. Fix an
anchored bundle (ν, ρ) on M .

Definition 6 Let c : [a, b] → N denote a smooth curve in N , and let c̃ = ν ◦ c
denote the projected curve in M , called the base curve of c. Then c is called a
smooth ρ-admissible curve if ρ ◦ c = ˙̃c.

Local coordinates on M will be denoted by (qi) and corresponding bundle
adapted coordinates on N by (qi, ua), with i = 1, . . . , n and a = 1, . . . , k,
where k is the dimension of the typical fibre of N . If we write the bundle map
ρ locally as

ρ(qi, ua) = γi(qj, ua)
∂

∂qi
(2.1)

Then a smooth ρ-admissible curve c(t) = (qi(t), ua(t)) locally satisfies

γi(qj(t), ua(t)) = q̇i(t).

In order to introduce a suitable concept of “leafwise holonomy” in the frame-
work of principal ρ-lifts, it turns out that the class of ρ-admissible curves
in N should be further extended to curves admitting (a finite number of)
discontinuities in the form of certain ‘jumps’ in the fibres of N , such that
the corresponding base curve is piecewise smooth. In order to define these
“piecewise” ρ-admissible curves we first consider the composition of smooth
ρ-admissible curves.

The composition of a finite number of, say `, smooth ρ-admissible curves ci :
[ai−1, ai] → N for i = 1, . . . , `, satisfying the conditions c̃i(ai) = c̃i+1(ai) for
i = 1, . . . , `− 1, is the map c` · . . . · c1 : [a0, a`] → N defined by

(c` · . . . · c1)(t) =





c1(t) t ∈ [a0, a1],

. . .

c`(t) t ∈ ]a`−1, a`].

(2.2)

Note that the base curve of c` · . . . ·c1 is a piecewise smooth curve. However, in
general c` · . . . · c1 is discontinuous at t = ai, i = 1, . . . , `− 1. The composition
c = c` · . . . · c1 is called a piecewise ρ-admissible curve, or simply a ρ-admissible
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curve. We now proceed towards the following important result, saying that
the base curve of a ρ-admissible curve is always entirely contained in a leaf of
the foliation on M , induced by the everywhere defined family of vector fields
D on M (see the previous section).

Lemma 7 The base curve c̃ of a ρ-admissible curve c : [a, b] → N is entirely
contained in the leaf Lx, with x = c̃(a).

Proof. It is sufficient to prove this result for c smooth. For any point y ∈ M ,
consider a coordinate neighbourhood U of y with coordinates (q1, . . . , qn),
adapted to the foliation induced by D, such that: (1) if qp+1(z), . . . , qn(z) =
0 then z ∈ Ly and (2) the coordinate functions q1, . . . , qp determine local
coordinates on the leaf Ly (this is always possible since Ly is an immersed
submanifold). Upon restricting U to a smaller subset, if necessary, we may
always assume, in addition, that the fibre bundle ν is trivial over U , and
we denote the adapted bundle coordinates by (qi, ua), for i = 1, . . . , n and
a = 1, . . . , k. In the following we only consider such coordinate charts. Recall
the definition of the pull-back anchored bundle (ν ′, ρ′) under i : Ly ↪→ M .
Note that (q1, . . . , qp, u1, . . . , uk) is a bundle adapted coordinate chart on N ′.

Fix a coordinate chart (in the sense specified above) containing the point
x = c̃(a) and assume that c is written in these coordinates as (c̃i(t), ua(t)).
Let d̃ denote the solution in Ly of the following differential equation, in the
anchored bundle (ν ′, ρ′):

˙̃
d(t) = ρ′(d̃1(t), . . . , d̃p(t), u1(t), . . . , uk(t)),

with initial condition d̃(a) = x. From standard arguments we know that d̃ is
defined on some interval, say [a, t + ε[, with ε > 0.

Consider the curve d̃′ = i ◦ d̃ : [a, t + ε[→ M in M , through y at time t. Then
we have, by uniqueness of solutions to differential equations, that d̃′ = c̃|[a,t+ε[,

since the curves d̃′ and c̃ both solve ˙̃c = ρ(c̃j, ua). Indeed, for c̃ this is trivially
satisfied and for d̃′ we have

˙̃
d′(t) = Ti(ρ′(d̃(t), c(t))) = ρ(d̃i, 0, ua(t′)).

Therefore we conclude that c̃|[a,t+ε[ is contained in the leaf Lx, since by making
use of the coordinate system, we have c̃i(t) = 0 for t ∈ [a, t + ε[ and i =
p + 1, . . . , n. Taking the limit from the left at t = a + ε, we obtain that
c̃i(a + ε) = 0 for i = p + 1, . . . , n, or c̃(a + ε) ∈ Lx. We can repeat the above
reasoning for the curve c|[a+ε,b], i.e. we start from the point c̃(a + ε) in stead
of the point x. We thus obtain that c̃(t) ∈ Lx for all t ∈ [a, a + ε + ε′] for some
ε′ > 0. Continuing this way, we eventually obtain that the entire curve c̃ is
contained in Lx, concluding the proof. 2
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It can be seen that the curve c̃ constructed in Example 5 does not contradict
the previous lemma although c̃ is a curve tangent to the distribution im ρ.
Indeed, c̃ can not be written as the base curve of a ρ-admissible curve, since,
at t = 0 a singularity is encountered.

Consider two anchored bundles (ν ′, ρ′) and (ν, ρ), and a anchored bundle mor-
phism f between them, i.e. f : N ′ → N fibred over f : M ′ → M . Let c′ denote
a ρ′-admissible curve. Consider the curve c = f ◦ c′ in N , and let c̃, resp. c̃′,
denote the base curve of c, resp. c′. Then, we have that c is ρ-admissible, since

ρ ◦ c = ρ ◦ f ◦ c′ = Tf ◦ ρ′ ◦ c′ = Tf ◦ ˙̃c
′
= ˙̃c.

Let c denote a ρ-admissible curve. If x = c̃(a) and y = c̃(b), then we say that c
takes x to y, and we write x

c→ y (shortly x → y if we do not want to mention
the ρ-admissible curve explicitly). The relation → on M is transitive, and is
preserved by an anchored bundle morphism, i.e. if x′ → y′ then f(x′) → f(y′)
for x′, y′ ∈ M ′. The set of points y such that x → y for some fixed x is
denoted by Rx and is called the set of reachable points from x. Until now,
we have proven that the base curve of a ρ-admissible curves is contained in
a leaf Lx of the foliation on M , i.e. Rx ⊂ Lx. It is interesting to wonder if
every point in Lx can be reached from x following a ρ-admissible curve. In
general this is not the case. However, if we consider the composition of ρ- and
(−ρ)-admissible curves, then every point in Lx can be reached.

Definition 8 Given an anchored bundle (ν, ρ). The inverse anchored bundle
is defined as (ν,−ρ), where −ρ : N → TM : s 7→ −ρ(s).

An anchored bundle (ν, ρ) is related to its inverse in the following way. Assume
that c is a ρ-admissible curve taking x to y, i.e. x

c→ y. Then the curve
c∗ : [a, b] → N : t 7→ c((b − t) + a) is (−ρ)-admissible and takes y to x. We
shall call this curve the (−ρ)-admissible curve associated with c, or simply
the reverse of c. Note that, using these notations, (c∗)∗ = c. If we write, the
relation on M induced by the inverse anchored bundle as ←, we have the
following equivalence:

x
c→ y iff y

c∗← x.

Note that the family of vector fields on M defined by the inverse anchored
bundle equals −D = {−ρ ◦ σ | σ ∈ Γ(ν)}, and therefore produce the same
distribution D and the same foliation as D. We now consider the composition
of ρ- and (−ρ)-admissible curves. Thus, assume that we have ` curves ci :
[ai−1, ai] → N for i = 1, . . . , ` such that ci−1(ai−1) = ci(ai−1) and such that
ci is either ρ-admissible or (−ρ)-admissible. The composition of the curves ci

(defined as in Equation 2.2) c = c` · . . . · c1 is called a ±ρ-admissible curve.
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The projection c̃ of c onto M is a piecewise smooth curve which is called the
base curve of the ±ρ-admissible curve. If c̃(a0) = x and c̃(a`) = y we say that
the±ρ-admissible curve takes x to y. Note that, in this case, the ±ρ-admissible
curve c∗, defined by c∗ = (c1)

∗ · . . . · (c`)
∗, takes y to x.

We thus obtain an alternative characterisation of the leaves of the foliation
generated by the anchored bundle (ν, ρ).

Theorem 9 We have that x ↔ y, or y ∈ Lx, iff there exists a ±ρ-admissible
curve taking x to y.

Proof. The ‘if’-part of the proof follows straightforwardly from Lemma 7.
The ‘only if’-part is proven by the following reasoning. Assume that y ∈ Lx

and consider a composite flow Φ of X = (X`, . . . , X1), with Xi = ρ ◦ σi and
σi ∈ Γ(ν) (Φ is generated by D) such that ΦT (x) = y. Consider the following
curves,

ci : [ai−1, ai] → N : t 7→ σi ◦ γ|[ai−1,ai],

where γ is the concatenation associated with X and T through x (where we
have used the notations from the preceding section). It is easily seen that ci

is ρ-admissible if sgn(ti) > 0, and (−ρ)-admissible if sgn(ti) < 0. If we put
c = c` · . . . · c1, then c takes x to y and is ±ρ-admissible. 2

The proof of the following theorem now easily follow from Theorem 9. Note
that any anchored bundle morphism f between (ν ′, ρ′) and (ν, ρ), which is
fibred over f : M ′ → M , is also a morphism of the corresponding inverted
anchored bundles, i.e. f : (ν ′,−ρ′) → (ν,−ρ). This implies that, if x′ ← y′

then f(x′) ← f(y′), for x′, y′ ∈ M ′.

Theorem 10 Let f denote a morphism between (ν ′, ρ′) and (ν, ρ), fibred over
f : M ′ → M . Then f(Lx′) ⊂ Lf(x′). If (ν ′, ρ′) is the pull-back bundle along
i : Lx ↪→ M and f = π2, then i(Lx) = Li(x).

It is interesting to consider the special case of linear anchored bundles.

Theorem 11 Let (ν, ρ) denote a linear anchored bundle on M and take any
x, y ∈ M . Then y ∈ Lx or x ↔ y iff there exists a ρ-admissible curve that
takes x to y, i.e. we have Rx = Lx.

This theorem follows from the fact that, given a linear anchored bundle, then
x → y iff y → x. Indeed, assume that c : [a, b] → N is a ρ-admissible curve
taking x to y. Then the curve c−1 : [a, b] → N : t 7→ −c((b − t) + a) is also
ρ-admissible and takes y to x. Note that c−1 = −c∗. The curve c−1 is called
the inverse of c. In particular, the base curve of a ±ρ-admissible curve is the
base curve of a ρ-admissible curve on a linear anchored bundle, which proves

11



the above theorem. Let c : [a, b] → N denote a smooth ρ-admissible curve.
We now prove that any “reparameterisation” of c̃ is again a base curve of a ρ-
admissible curve. Assume that φ : [a, b] → [c, d] is a diffeomorphism satisfying
φ(a) = c and φ(b) = d. Consider the following curve c′ : [c, d] → N defined by

c′(s) =
dφ−1

ds
(s)c(φ−1(s)).

From elementary calculations, it is easily seen that c′ is ρ-admissible, and that
the base curve equals c̃(φ−1(s)), i.e. the reparameterisation of c. Note that the
above definitions are only valid if (ν, ρ) is a linear anchored bundle.

2.3 ±ρ-admissible loops

Consider a point x ∈ M and let C(x,N) denote the set of all ±ρ-admissible
curves taking x to itself. Elements of C(x,N) are called, with some abuse
of terminology, ±ρ-admissible loops with base point x. Indeed, in general a
±ρ-admissible loop need not be continuous, nor closed.

Let π1(x, M) denote the first homotopy group of M with reference point x
and consider the map C(x,N) → π1(x,M), associating to the base curve of a
±ρ-admissible loop c, its homotopy class in π1(x,M), i.e. if c̃ is the base curve
of c = c` · . . . · c1 ∈ C(x,N), then c̃ is mapped onto [c̃]. It is easily seen that
the image of C(x,N) determines a subgroup of π1(x,M), which is denoted by
πN

1 (x, M). Indeed, assume that c = c` · . . . · c1 and d = d`′ · . . . · d1 are elements
of C(x,N), with homotopy classes [c̃] and [d̃] in π1(x,M). Then, the product
[c̃] · [d̃] in π1(x,M) is the homotopy class of the base curve of

c` · . . . · c1 · d`′ · . . . · d1.

On the other hand, if c = c` · . . . · c1 is a ±ρ-admissible loop with base point
x, then the curve c∗ = (c1)

∗ · . . . · (c`)
∗ is also contained in C(x, N), and the

homotopy class of the base curve of c∗ is precisely the inverse [c̃]−1 of [c̃].
Therefore, the ±ρ-admissible loops generate a subgroup of π1(x,M) which is
denoted by πN

1 (x, M). Note that, if (ν, ρ) is linear, then πN
1 (x,M) is generated

by the set of ρ-admissible loops with base point x, i.e. ρ-admissible curves
taking x to itself.

We now elaborate on how the above defined structures on anchored bundles
behave under homomorphisms. From Section 2.2, we already now that ±ρ-
admissible curves are preserved under anchored bundle morphisms. Similarly,
±ρ-admissible loops are preserved, taking us to a group morphism between the
corresponding subgroups of the first fundamental group of the base manifolds.
More precisely, assume that f denotes a homomorphism between two anchored
bundles (ν ′, ρ′) and (ν, ρ), fibred over f . Then, if [f ] denotes the corresponding
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group morphism from π1(x
′,M ′) to π1(f(x′),M), we have that [f ] can be

restricted to a morphism from πN ′
1 (x′, M ′) to πN

1 (f(x′),M).

Consider the pull-back setting under i : Lx ↪→ M , and let π2 : N ′ = i∗N → N
denote the associated anchored bundle morphism. From the above, we now
that [i] maps the subgroup πN ′

1 (y, Lx) of π1(Lx) to the subgroup πN
1 (y,M)

π1(y, M) (note that Lx is connected, allowing us to omit the reference point
in the first homotopy group of Lx). We now prove that [i] : πN ′

1 (y, Lx) →
πN

1 (y,M) is onto. Consider an arbitrary element of πN
1 (y, M) associated with

some c ∈ C(y, N). From Lemma 7 we know that c̃ is contained in the leaf
Ly = Lx, which in turn implies that there exists a ±ρ-admissible loop c′ ∈
C(y,N ′) such that π2 ◦ c̃′ = c. In particular, we have that [i]([c̃′]) = [c̃], and,
hence, [i] is onto, when restricted to πN ′

1 (y, Lx).

Moreover, from Theorem 11, we know that any two points in Lx can be con-
nected by the base curve of a±ρ-admissible curve. This implies, using standard
arguments, that we can omit the reference point in πN ′

1 (y, Lx), and from now
on, we use the notation πN

1 (Lx) for πN ′
1 (y, Lx). Similarly, we write πN

1 (Lx,M)
for πN

1 (x,M).

3 Principal ρ-lifts

Let us first briefly recall the notion of a connection over a bundle map in the
context of principal fibre bundles and describe some elementary properties.
For further details we refer to [1]. Let (ν, ρ) denote an anchored bundle on M
and let π : P → M denote a principal fibre bundle with structure group G.
Consider the pull-back bundle π̃1 : π∗N → P and let π̃2 : π∗N → N denote
the projection onto the second factor.

Definition 12 A principal lift over the bundle map ρ, simply a principal ρ-
lift, is a bundle map h : π∗N → TP , fibred over the identity on P , such that
in addition the following conditions are satisfied for any (u, s) ∈ π∗N :

(1) TRg(h(u, s)) = h(ug, s), and
(2) Tπ ◦ h = ρ ◦ π̃2.

If (ν, ρ) is a linear anchor bundle, the bundle π̃1 : π∗N → P can be given
linear structure. In this case, we say that a principal ρ-lift h is a principal
ρ-connection if h : π∗N → TP is, in addition, a linear bundle morphism from
π̃1 to τP

It is easily seen from the definition of a principal ρ-lift h that (π̃1, h) determines
an anchored bundle and that the projection π̃2 : π∗N → N , which a bundle
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morphism fibred over π : P → M , determines an anchored bundle morphism
between (π̃1, h) and (ν, ρ). Moreover, if h is a ρ-connection, we have that (π̃1, h)
is a linear anchored bundle and that π̃2 is a linear anchored bundle morphism.
The situation is illustrated by the following diagram:

^

π∗N -

/
P

TP

π̃1 τP

h

1
π

1 -ρ

/
M

τM

^
ν

π̃2 Tπ
1 TMN

We will now apply the tools from the previous section to the study of principal
ρ-lifts. We first fix some notations and make some preliminary comments. The
everywhere defined family of vector fields on P generated by (π̃1, h) is denoted
byQ, and correspondingly, the distribution on P generated byQ is denoted by
Q. We refrain from calling Q a horizontal distribution since for arbitrary u ∈ P
it may be that Qu has non-zero intersection with the distribution of vertical
tangent vectors Vuπ = ker Tπ. Moreover, in general Qu + Vuπ 6= TuE, i.e.
Qu and Vuπ do not necessarily span the full tangent space TuP . The smallest
integrable distribution containing Q is denoted by denoted by Q̃. The leaf of
Q̃ through an arbitrary point u ∈ P is written as H(u). The principal ρ-lift h
can be used to lift several kinds of objects from the anchored bundle (ν, ρ) on
M to the anchored bundle (π̃1, h) on P . For instance, given any (local) section
s of ν, we can define a mapping sh : P → TP by

sh(u) = h(u, s(π(u))). (3.1)

It is seen that, by construction, sh is smooth and verifies τP (sh(u)) = u, i.e.
sh is a (local) vector field on P , called the lift of the section s with respect to
h, or simply the lift of s if no confusion can arise. Let us denote by Dh the
everywhere defined family of vector fields on P defined by the lift of (local)
sections of ν.

Next, we recall some definitions and results on principal fibre bundles and
principal connections from [8] since they will be used extensively in the fol-
lowing sections. Let π : P → M denote a principle fibre bundle with structure
group G. The Lie algebra of G is denoted by g.

Consider the smooth map σu : G → P for each u ∈ P defined by σu(g) = ug.
Then we have Teσu : g → Vuπ and TRg ◦ Teσu = Teσug ◦ Adg−1 , where Adh :
g → g denotes the adjoint action of G on its Lie algebra. Given any A ∈ g,
let σ(A) denote the vertical vector field on P defined by σ(A)(u) = Teσu(A).
It is easily seen that (Rg)∗σ(A) = σ(Adg−1A).
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A standard principal connection on P is defined by a connection form ω on P ,
i.e. ω is a g-valued one form on P satisfying the following two conditions: (1)
for any A ∈ g, ω(σ(A)) = A, and (2) for any g ∈ G, R∗

gω = Adg−1 ·ω. It is well
known that ω is equivalently defined by a horizontal lift hω : P×M TM → TP ,
where hω and ω are related in the following way: hω(u,X) = X̃ −Teσu(ω(X̃))
for any X̃ ∈ TuP satisfying Tπ(X̃) = X. From (2) it follows that hω is
right invariant, i.e. TRg(h

ω(u,X)) = hω(ug, X) for X ∈ Tπ(u)M and g ∈
G arbitrary. For the sake of completeness, we mention that, equivalently, a
principal connection can be defined by the right invariant distribution spanned
by the image of hω, determining a direct decomposition of TP , i.e. if im hω =
Hπ, then TP = Hπ ⊕ V π.

Before starting our study of principal ρ-lifts, we state the following lemma,
taking from [8, p 69].

Lemma 13 Let G be a Lie group and g its Lie algebra. Let Yt, for a ≤ t ≤ b,
define a continuous curve in g. Then there exists in G a unique curve gt of
class C1 such that g(a) = e and ġtg

−1
t = Yt for a ≤ t ≤ b.

Let us now return to the general treatment of principal ρ-lifts. Let (ν, ρ) denote
an anchored bundle on M and let P denote a principal fibre bundle on M with
structure group G.

Fix a standard principal connection ω on P . In the following we will use
the connection form ω in order to obtain an alternative description for a
principal ρ-lift h. This alternative description will allow us to easily derive
some properties of lifts of ρ-admissible curves with respect to h (see below)
using the theory of standard connections. Thus, let h be a given principal ρ-lift
and consider the map χ : π∗N → g defined by χ(u, s) = ω(h(u, s)) for any
(u, s) ∈ π∗N . Note that the following relation holds χ(ug, s) = Adg−1 · χ(u, s)
and that h(u, s) = Teσu(χ(u, s)) + hω(u, ρ(s)). We shall sometimes refer to χ
as the coefficient of h with respect to ω. The pair (ω, χ) determines uniquely
the principal ρ-lift h, in the following way. Given any connection form ω on P
and a map χ : π∗N → g, such that χ transforms under the right action in the
following way: χ(ug, s) = Adg−1 ·χ(u, s), then the map h : π∗N → TP , defined
by h(u, s) = hω(u, s) + Teσu(χ(u, s)), determines a principal ρ-lift. Note that
the coefficient of h with respect to ω is precisely χ.

Theorem 14 Given any principal ρ-lift h, then the following properties hold:

(1) the family Dh generates the distribution Q, and, hence the integrable dis-
tribution Q̃;

(2) any h-admissible curve is mapped by π̃2 onto a ρ-admissible curve;
(3) given any ρ-admissible curve c taking x to y and a point u ∈ Px, then

there exists a unique h-admissible curve projecting onto c by π̃2 and whose
base curve in P passes through u.
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Proof. Properties 1 and 2 are trivial. In order to prove 3, we fix a principal
connection ω and consider the coefficient χ of h with respect to ω.

First we prove that, given any ρ-admissible curve c : [a, b] → N with base
curve c̃, then there always exists a h-admissible curve whose base curve passes
through u ∈ Pc̃(a) at t = a. First, consider the horizontal lift of c̃ with respect

to the principal connection ω, i.e. d̃ω(t) is the unique curve satisfying ḋω(t) =
hω(dω(t), ˙̃c(t)) and dω(a) = u. Let g(t) denote the curve in G satisfying the
equation TRg(t)−1 ġ(t) = χ(dω(t), c(t)) and g(a) = e, with e the unit element
of G. From 13 the curve g(t) always exists and is unique. We now prove that
(d(t), c(t)) ∈ π∗N , with d(t) = dω(t)g(t), is a h-admissible curve. Indeed, we
find that:

ḋ(t) = TRg(t)(ḋ
ω(t)) + Teσdω(t)(ġ(t)),

= TRg(t)h
ω(dω(t), c̃(t)) + Teσd(t)(TLg−1(t) · ġ(t)),

= hω(d(t), c̃(t)) + Teσd(t)(Adg−1(t) · χ(dω(t), c(t))).

From the definition of χ, the tangent vector ḋ(t) equals the desired vector
h(d(t), c(t)). Clearly (d(t), c(t)) projects onto c(t) and its base curve d(t) passes
through u at t = a. It easily follows that d(t) is uniquely determined by
these conditions, since it satisfies a first order differential equation, i.e. ḋ(t) =
h(d(t), c(t)), with given initial condition d(a) = u. 2

h-Displacement and holonomy

Using the notations from the above theorem, we have that d(t) is uniquely
determined from the ρ-admissible curve c and a point u in the fibre Pc̃(a). The
curve d(t) is called the lift of the ρ-admissible curve c through u with respect
to h and we write from now on ch

u(t) to denote d(t). Similar to standard
connection theory, we call the map ch : π−1(c̃(a)) → π−1(c̃(b)) : u 7→ ch

u(b),
the h-displacement along c. It is easily seen that ch commutes with Rg for
g ∈ G arbitrary, i.e. ch(ug) = ch(u)g. Therefore, ch determines a morphism
on the fibres of P . The lift of a composition of ρ-admissible curves, in the
sense of Section 2, equals the composition of the corresponding h-admissible
curves. Following the constructions described in the previous section, we can
also consider the inverse anchored bundles of (ν, ρ) and (π̃1, h). We have that
(c∗)−h = (ch)−1, i.e. ch is invertible, that any ±h-admissible curve projects
onto a ±ρ-admissible curve and that any ρ-admissible curve is the projection
of a ±h-admissible curve. Hence, using Theorem 9, we obtain π(H(u)) = Lπ(u).
This result is of great importance for the development of a notion of leafwise
holonomy for principal ρ-lifts.

Definition 15 The set of all g ∈ G such that ug ∈ H(u), which is called the
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holonomy group with reference point u, is denoted by Φ(u).

The fact that Φ(u) is a subgroup follows from the following lemma. First,
note that, given any g ∈ Φ(u), there exists a ±h-admissible curve taking u
to v = ug, since v ∈ H(u). This ±h-admissible curve projects onto a ±ρ-
admissible loop with base point π(u) = π(v) = x. This implies that v can
be reached from u by composing h-admissible curves and (−h)-admissible
curves. Since a h-admissible curve is a lift of a ρ-admissible curve and since
a (−h)-admissible curve is a lift of a (−ρ)-admissible curve, we obtain that
g is determined by composing a finite number of h-displacements along ρ-
admissible curves and (−h)-displacements along (−ρ)-admissible curves. In
particular, using the notations from Section 2, we can define a map from the
loop space C(x,N) to Φ(u), which is onto. These observations are used in the
proof of the following lemma.

Lemma 16 Φ(u) is a subgroup of G.

Proof. Given any two elements g, g′ ∈ Φ(u) and let ug = ((c`)±h ◦ . . . ◦
(c1)±h)(u), and ug′ = ((c`+`′)±h ◦ . . . ◦ (c`+1)±h)(u), for some ±ρ-admissible
curves ci, i = 1, . . . , `+`′, and where (ci)±h stands for (ci)h if ci is ρ-admissible,
and (ci)−h if ci is (−ρ)-admissible.

Then g′g−1 ∈ Φ(u) since

ug−1g′ = ((c`+`′)±h ◦ . . . ◦ (c`+1)±h ◦ ((c∗)1)±h ◦ . . . ◦ ((c∗)`)±h(u),

and, hence, ug′g−1 belongs to H(u). 2

In the above proof, we used the fact that any ±ρ-admissible loop c = c` · . . . ·c1

with base point x ∈ M , we can associate a map on the fibre π−1(x) which
commutes with the right action (i.e. such a map is called an automorphism
on π−1(x)). Indeed, for u ∈ π−1(x) and g ∈ G arbitrary, we have

(c`)±h ◦ . . . ◦ (c1)±h(ug) = (c`)±h ◦ . . . ◦ (c1)±h(u)g.

Using similar arguments as in the above proof, the set of all such automor-
phisms on the fibre π−1(x) forms a group, which is called the holonomy group
with reference point x and denoted by Φ(x). We thus have the following com-
mutative diagram:

Φ(x) Φ(u)

C(x,N)

�
-
U
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Remark 17 In the specific case where h is a principal ρ-connection, the situa-
tion becomes more simple. In order to define the concept of holonomy groups it
is sufficient to consider only ρ-admissible loops. Indeed, if c is (−ρ)-admissible,
then −c is ρ-admissible, and c−h = (−c)h. Moreover, we can consider repa-
rameterisations of ρ-admissible curves and the notion of h-displacement does
not depend on the parametrisation of c, in the following sense. Assume that
φ : [a, b] → [c, d] is a diffeomorphism with φ(a) = c and φ(b) = d, then the
curve c′ : [c, d] → N , defined by

c′(s) =
dφ−1

ds
(s)c(φ−1(s)),

is ρ-admissible and, as can be seen from elementary calculations, it follows
that h-displacement along c or c′ is the same. Recall the definition of the
inverse c−1 = −c∗ of a ρ-admissible curve c. The following identity holds
(c−1)h = (ch)−1.

The following properties are well known from the standard theory of holonomy.

Proposition 18 (i) Given any v ∈ H(u), then Φ(u) = Φ(v). (ii) Given any
g ∈ G, then Φ(ug) = Ig−1(Φ(u)), where, I denotes the inner automorphism
on G (i.e. for h ∈ G, Ih : G → G : h′ 7→ hh′h−1).

Proof. By definition of H(u), we have that H(ug) = Rg(H(u)). Indeed, H(u)
is the leaf of a foliation of a distribution generated by right invariant vector
fields. Thus, if h ∈ Φ(u), then h−1 ∈ Φ(u) and uh−1 ∈ H(u), or H(uh−1) =
H(u) = H(v). Acting on the right by h, we obtain H(u) = H(vh). And since
H(u) = H(v), we have h ∈ Φ(v), proving (i). Since H(ug) = H(u)g, we have
that, for any h ∈ Φ(u), then H(uhg) = H(ug). Thus g−1hg ∈ Φ(ug), proving
(ii). 2

4 Mappings between generalised connections

We first fix some notations. Let (ν ′, ρ′) and (ν, ρ) denote anchored bundles
with base manifolds, respectively, M ′ and M and consider an anchored bundle
morphism f : N ′ → N between (ν ′, ρ′) and (ν, ρ), which is fibred over f : M ′ →
M . Assume that π′ : P ′ → M ′ and π : P → M are principal fibre bundles
with structure groups, respectively G′ and G. Furthermore, we assume that
a principal fibre bundle morphism F : P ′ → P between P ′ and P is given,
such that F is also fibred over the map f : M ′ → M between the base spaces.
The group morphism between G′ and G, corresponding to F , is denoted by
F : G′ → G, i.e. for all u′ ∈ P ′ g′ ∈ G′, we have F (u′g′) = F (u′)F (g′).
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The principal fibre bundle morphism F is called a morphism between the
principal ρ′-lift h′ and the principal ρ-lift h if the map (F, f), defined by
(F, f) : (π′)∗N ′ → π∗N : (u′, s′) 7→ (F (u′), f(s′), is an anchored bundle mor-
phism between (π̃′1, h

′) and (π̃1, h). More precisely we have that:

TF (h′(u′, s′)) = h(F (u′), f(s′)).

Theorem 19 Assume that f is an isomorphism, and that F is a principal fi-
bre bundle morphism from P ′ to P , fibred over f . Let h′ be a principal ρ′-lift on
P ′. There exists a unique principal ρ-lift h such that F is a morphism between
h′ and h. The holonomy group Φ(u′) of h′ is mapped by F onto Φ(F (u′)).

Proof. Let u denote an arbitrary point of P , with π(u) = x. Then fix an
element u′ in P ′

f
−1

(x)
and an element g in G such that F (u′) = ug. Define

h(u, s) ∈ TuP , for any s ∈ N
f
−1

(x)
, by

h(u, s) = TRg−1

(
Tu′F (h′(u′, f−1(s)))

)
.

This tangent vector in TuP is well defined, in the sense that it does not depend
on the choice of u′, since for any other element v′ = u′g′, then v′ satisfies
F (v′) = F (u′)F (g′) = uh with h = gF (g′), implying that

h(u, s) = TRh−1

(
Tv′F (h′(v′, f−1(s)))

)

= TRh−1

(
Tv′F (TRg′h

′(u′, f−1(s)))
)

= TRg−1TRF (g′−1)TRF (g′)

(
Tu′F (u′, f−1(s))

)

= TRg−1

(
Tu′F (h′(u′, f−1(s)))

)
.

In this way, we have constructed a mapping h : π∗P → TP , which is clearly
right invariant and, by definition, it follows that F is an anchored bundle
morphism between (π̃′1, h

′) and (π̃1, h). From the fact that f−1 maps any ±ρ-
admissible curve onto a ±ρ′-admissible curve, we have that H(u′) is mapped
by F onto H(F (u′)), concluding the proof. 2

In the specific case that P ′ is a reduced subbundle of P , i.e. F is an injective
immersion and F is an monomorphism, then we say that h is reducible to a
principal ρ-lift on P ′. This is important for our treatment of holonomy, where
we prove a generalisation of the Reduction Theorem, which says that H(u) is
a reduced subbundle with structure group the holonomy group Φ(u) and that
h is reducible to H(u).

For the following theorem we take for (ν ′, ρ′) the pull-back anchored bundle of
(ν, ρ) under i : Lx ↪→ M , with Lx the leaf through some x ∈ M . Let P ′ = i∗P
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and F : P ′ → P the projection onto the second factor. Note that the structure
group of P ′ is precisely G.

Theorem 20 There exists a unique ρ′-lift h′ on P ′ such that F is a morphism
between h′ and h. Moreover, F (H(u′)) = H(F (u′)) and, therefore Φ(u′) =
Φ(F (u′)).

Proof. Since F is an injective immersion, we know from Section 2 that a
unique anchor map h′ on P ′ can be defined such that F is an anchored bundle
morphism between (π̃′1, h

′) and (π̃1, h). It is trivial to check that h′ satisfies
the “right invariance” condition making it into a principal ρ-lift.

The fact that the induced foliations coincide follows from the fact that ±ρ-
admissible curves are in one-to-one correspondence with the ±ρ′-admissible
curves. 2

In the following section we prove that the holonomy groups Φ(u) of a principal
ρ-lift is a Lie subgroup of G. In view of the above theorem, we will assume
that, without loss of generality, we are working with the ρ′-lift h′ on the bundle
i∗P , with i : Lx ↪→ M . Indeed, the holonomy groups of h and h′ are the same.

5 Leafwise Holonomy of a principal ρ-lift

In view of the above comment, we have that M = Lx is a connected manifold
and that D̃ = TM . The main consequence of these assumptions is that the
distribution Q̃ generated by a principal ρ-lift h is regular, i.e. has constant
rank. We have to prove that dim Q̃u = dim Q̃v, given two arbitrary points
u, v in P . Let x = π(u) and y = π(v). Then, since M = Lx, there exists a
composite flow Φ associated with (ρ ◦ σ`, . . . , ρ ◦ σ1) of vector fields in D and
a composite flow parameter T such that ΦT (x) = y (cf. Theorem 3). Consider
the vector fields (σi)h in Q. The flows of (σi)h and ρ ◦ σi are π-related by
definition, and therefore, if Φh is the composite flow of ((σ`)h, . . . , (σ1)h), we
have π(Φh

T (u)) = y, or there exists a g ∈ G such that Φh
T (u)g = v. By definition

of Q̃ we have TΦh
T (Q̃u) = Q̃Φh

T (u). On the other hand since Dh consists of right

invariant vector fields and since Dh generates Q̃, we have TRh(Q̃w) = Q̃wh for
any w ∈ P and h ∈ G. Thus, we obtain TRg ◦ TΦh

T is an isomorphism from
Q̃u to Q̃v.

Take an arbitrary point u ∈ P and consider the linear subspace g(u) of g

defined by Teσu(g(u)) = Vuπ ∩ Q̃u.
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Proposition 21 Take u ∈ P and let g ∈ G arbitrary. Then, (i) g(u) = g(v)
for any v ∈ H(u), (ii) Adg−1(g(u)) = g(ug) and (iii) g(u) is a Lie subalgebra
of g.

Proof. (i) follows from the fact that V π and Q̃ are invariant under the image
of the tangent map to a composite flow associated with vector fields in Dh. (ii)
follows from TRg ◦ Teσu = Teσug ◦ Adg−1 , TRg(Vuπ) = Vugπ and TRg(Q̃u) =

Q̃ug. (iii) follows from [σ(A), σ(B)] = σ([A,B]), for A,B ∈ g and the fact
that Q̃ is involutive (since it is integrable, by definition). 2

These properties allow us to consider the connected Lie group Φ0(u) generated
by the Lie algebra g(u), which is called the restricted holonomy group. From
the preceding proposition, we have that Φ0(u) = Φ0(v) for v ∈ H(u) and
Φ0(ug) = Ig−1(Φ0(u)).

We prove that Φ0(u) is a normal subgroup of Φ(u) and that Φ(u)/Φ0(u) is
countable, implying that Φ(u) is a Lie-subgroup of G whose identity com-
ponent is precisely Φ0(u), see [8, p 73]. We first prove that Φ0(u) is normal
subgroup of Φ(u).

Let h ∈ Φ0(u). By construction of the Lie subgroup Φ0(u) (i.e. it is the leaf
through e of the left invariant distribution generated by g(u)), h is obtained
from e by a composite flow associated with left invariant vector fields generated
by g(u). Note that, if g(t) denotes the integral curve through e of the left
invariant vector field corresponding to A ∈ g(u), then ug(t) ∈ H(u), since
σ(A) determines a vector field tangent to H(u), and hence g(t) ∈ Φ(u). We
therefore have Φ0(u) < Φ(u). Since Φ0(ug) = Ig−1(Φ0(u)) and Φ0(u) = Φ0(ug)
for any g ∈ Φ(u) (i.e. g(u) = g(ug)), we may conclude that Φ0(u) is a normal
subgroup of Φ(u).

Following a similar reasoning as in [8, p 73], we now prove that Φ(u)/Φ0(u)
is countable by constructing a group morphism from πN

1 (Lx) to Φ(u)/Φ0(u)
which is onto. Since πN

1 (Lx) < π1(M) and π1(M) is at most countable, the
obtain that the quotient is also countable.

Proof. Let us first make the following basic observation. In order to prove that
the map between C(x,N) and Φ(u) reduces to a well defined morphism from
πN

1 (Lx) → Φ(u)/Φ0(u), we must prove that the images of two ±ρ-admissible
loops, whose base curves are homotopic, equal up to an element in Φ0(u). This
is achieved by using some results from standard connection theory. Once we
have obtained this morphism πN

1 (Lx) → Φ(u)/Φ0(u) it is easily seen to be
onto, which concludes the proof.
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Consider a connection ω on P , such that im hω is a subspace of Q̃. This is
always possible since Q̃ is regular and Tπ(Q̃) = TM . Consider the coefficient
χ of h with respect to ω (see Section 3). Note that Teσu(χ(u, s)) = h(u, s) −
hω(u, ρ(s)) is contained in Q̃ for any (u, s) ∈ π∗N . This implies that χ(u, s) ∈
g(u), for all s ∈ Nπ(u). On the other hand, the holonomy group with reference
point through x of the standard connection ω is a subgroup of Φ(u) and the
restricted holonomy group of ω is a subgroup of Φ0(u), since the smallest
integrable distribution spanned by im hω must be contained in Q̃ (see [8]).

In Section 3 we have proven that the h-lift ch
u(t) of a ρ-admissible curve through

u ∈ π−1(x) equals ch
u(t) = dω(t)g(t), where g(t) is a curve in G with g(a) =

e and Rg(t)−1 ġ(t) = χ(dω(t), c(t)), and where ḋω(t) = hω(dω(t), ˙̃c(t)), with
dω(a) = u. In particular we have g(t) ∈ Φ0(u) (since the image of χ is contained
in g(u)). This is also valid for the inverted anchored bundles. Thus we can
conclude that any element belonging to Φ(u) can be written as a product of
elements belonging to the holonomy group of ω at u and of elements in Φ0(u).
Moreover, if the base of a ±ρ-admissible curve is homotopic to zero, then the
corresponding product of elements is entirely contained in Φ0(u), since the
restricted holonomy group of ω is a subgroup of Φ0(u). This completes the
proof. 2

Corollary 22 The holonomy group Φ(u) is a Lie subgroup of the structure
group G with Lie algebra g(u).

We are now able to state a generalisation of the reduction theorem for principal
h-lifts.

Theorem 23 H(u) is a reduced subbundle of P with structure group Φ(u)
and h reduces to a principal ρ-lift on H(u).

Proof. It is sufficient to prove that, given a point y ∈ Lx, there exists a
neighbourhood U 3 y and a section σ of P defined on U such that σ(U) ⊂
H(u). The existence of such a cross-section follows by using a result from [8,
p 84] with respect to a connection ω with horizontal distribution contained in
Q̃.

Since H(u) is the leaf of the foliation induced by Q, we can consider the pull-
back anchor map of h. Using the fact that H(u) is a principal fibre bundle
over Lπ(u) and using Theorem 19, it is easily seen that h is reducible to the
pull-back of h. 2

Assume that dim M ≥ 2. Then, since H(u) is connected, there exists a stan-
dard principal connection ω on H(u) whose holonomy group is the structure
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group Φ(u) (see [8, p 90]). Using Theorem 19 from Section 4, then ω can be
extended to a connection on P .

Corollary 24 If dim M ≥ 2, then there exists a connection ω on P such that
the holonomy groups of ω equal the holonomy groups of the lift h.

6 Possible field of applications

The equations of motion a free particle subjected to linear nonholonomic con-
straints can be described as the “geodesics” of a unique connection along the
natural injection of the constraint distribution into the tangent bundle of the
configuration manifold, see [9]. This unique generalised connection admits a
notion of holonomy and, consequently, one can wonder wether the holonomy
groups may play a role in the study of nonholonomic motions.

Another field of application could be found in sub-Riemannian geometry, see
[10]. However, until now, we haven’t been able to construct a unique gener-
alised connection in sub-Riemannian geometry. These possible applications of
the above developed theory on holonomy groups of generalised connections is
left for future work.
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