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Abstract. We introduce the notion of a connection over a
bundle map and apply it to a sub-Riemannian geometry. It
is shown that the concepts of normal and abnormal extremals
of a sub-Riemannian structure, can be characterized as parallel
transported sections with respect to these generalized connec-
tions. Using this formalism we are able to give necessary and
sufficient conditions for the existence of a specific class of abnor-
mal extremals.
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1 Sub-Riemannian structures on a manifold

A sub-Riemannian structure (M,Q, h) is a triple where M is a pathwise
connected manifold, Q is a regular distribution on M and h is a Riemannian
bundle metric on Q (considered as a linear bundle over M). The fact that one
can assign a notion of length to any curve tangent vector in Q (see below), is
an important property associated with a sub-Riemannian structure. Indeed,
once the length of a curve is defined, one can look for those curves which
minimize length. This problem has been solved locally using the Maximum
principle. For instance, in the paper by R. Strichartz, see [10] (and its
erratum in [11]), one can find necessary conditions for length minimizing
curves. In this section we shall give all preliminary definitions and properties
in order to arrive at a formulation of these conditions.

This paper is in final form and no version of it will be submitted for publication
elsewhere.
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The module of smooth (i.e. class C∞) sections of any bundle π : E → M
over a manifold M is denoted by Γ(E). With any Riemannian bundle metric
h on E we can associate the bundle isomorphism [h : E → E∗ with inverse
]h : E∗ → E.

Definition 1 Let (M, Q, h) be a sub-Riemannian structure. The linear
bundle mapping g : T ∗M → TM , fibred over the identity, is defined by
g = i∗ ◦ ]h ◦ i, where i : Q ↪→ TM is the natural inclusion.

Denote the module of 1-forms on M by X ∗(M) = Γ(T ∗M). The following
properties are easily proven: ker g = Q0 (the annihilator of Q), Im g = Q
and for any α, β ∈ X ∗(M),

〈β, g(α)〉 = 〈α, g(β)〉 = h(g(α), g(β)).

As a consequence of the last identity we introduce the symmetric tensor g ∈
Γ(TM⊗TM), defined by g(α, β) := 〈g(α), β〉. Then g(α, β) = h(g(α), g(β)).

A curve c : I = [a, b] → M is always assumed to be the restriction of a
smooth (i.e. class C∞) mapping defined on an open interval containing I.
We also assume that c is an injective immersion (in particular ċ(t) 6= 0, for
any t ∈ I).

Definition 2 A curve c is tangent to Q if ċ(t) ∈ Qc(t), for any t ∈ I. A
g-admissible curve α is a curve in T ∗M such that g(α(t)) = ċ(t), where
c(t) = πM (α(t)).

Since h(ċ(t), ċ(t)) exists for any curve c tangent to Q, the following notion
of length of c is well defined.

Definition 3 For any curve c : [a, b] → M tangent to Q, the length of c is
given by:

L(c) =
∫ b

a
h(ċ(t), ċ(t)).

It will be interesting to consider a Riemannian metric G on M , such that
the restriction of G to Q equals h. In this case, we say that G restricts to h
on Q. The length of a curve tangent to Q then equals the length measured
using the Riemannian metric G. In [10] it is proven that, given any sub-
Riemannian structure (M, Q, h), there always exists a Riemannian metric
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G that restricts to h on Q. With G we can associate projection mappings
π and π⊥ of TM onto Q and Q⊥, respectively, where Q⊥ is the orthogonal
complement of Q (with respect to the metric G). The projections of T ∗M
onto Q0 and (Q⊥)0 ≡ [G(Q) are denoted by τ⊥ and τ , respectively. Using
some elementary manipulations the following identities can be proven:

τ⊥ = [G ◦ π⊥ ◦ ]G,
τ = [G ◦ π ◦ ]G,
g ◦ [G(X) = X for all X ∈ Q,
g = π ◦ ]G.

From these results it is easily seen that any curve c tangent to Q admits a g-
admissible curve with base c (for instance, take α(t) = [G(ċ(t))). From now
on, we assume that Q is bracket generating, i.e. the iterated Lie-brackets of
section of Q pointwise generate the full tangent space to M . According to
a theorem of Chow [2], this condition guarantees that any two points in M
can be connected using a concatenation of curves tangent to Q. The next
theorem is taken from [10] and gives necessary conditions for “absolutely
continuous curves” tangent to Q connecting two given points to be length
minimizing. For simplicity we only consider length minimizing curves that
are smooth. All results in this paper can be extended to a more general
class of curves (namely piecewise smooth curves): this will be discussed in
detail in a forthcoming paper.

Definition 4 Let c(t) be a curve tangent to Q, contained in a coordinate
neighborhood U . We say that c is a normal extremal if there exists a section
ψ of T ∗M along c such that





ψ̇i(t) = −1
2

∂gjk

∂xi
(c(t))ψj(t)ψk(t),

g(ψ(t)) = ċ(t),
(1)

c is said to be an abnormal extremal if there exists a section ψ along c such
that 




ψ̇i(t) = −∂gjk

∂xi
(c(t))ψj(t)αk(t),

g(ψ(t)) = 0,
(2)

where α(t) is any g-admissible curve with base c.

Theorem 1 Let c : [a, b] → M be a curve tangent to Q contained in a
coordinated neighborhood. If c minimizes length, then c is either a normal
or abnormal extremal.
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Note that if c is normal, then ψ is a g-admissible curve. On the other hand if
c is abnormal, then ψ lies in Q0. At first sight, the definition of an abnormal
extremal depends on the choice of α. However, this is not the case as will
become clear later on.

2 Connections over a bundle map

We first develop the more general setting in which connections over a bundle
are defined (a more detailed description will be given in a forthcoming paper
[1]). The concept of connections over a bundle map is inspired on the work
by R.L. Fernandes [3, 4] and, as we have recently found out, is closely related
to work done by M. Popescu and P. Popescu (see [9] and references therein).
Denote the tangent bundle over M by τM : TM → M . Consider two linear
bundles ν : N → M and π : E → M and a linear bundle mapping ρ : ν → τM

fibred over the identity:

@
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We use the notation F(M) to denote the ring of smooth functions on a
manifold M .

Definition 5 A connection over the bundle map ρ on the bundle π : E → M
(shortly, a ρ-connection on E), is defined as a mapping ∇ : Γ(N)×Γ(E) →
Γ(E), (s, σ) 7→ ∇sσ such that the following properties hold:

1. ∇ is IR-linear in both arguments;

2. ∇ is F(M)-linear in s;

3. for any f ∈ F(M) and for all s ∈ Γ(N) and σ ∈ Γ(E) one has:
∇s(fσ) = f∇sσ + (ρ ◦ s)(f)σ.

Let k and ` denote the fibre dimensions of N and E, respectively, and let
{sα : α = 1, . . . , k}, resp. {σA : A = 1, . . . , `}, be a local basis for the
F(M)-module of sections of ν : N → M , resp. π : E → M , defined on a
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common open neighborhood U ⊂ M . Then we have ∇sασA = ΓαA
B σB, for

some functions ΓαA
B ∈ F(U), called the connection coefficients of the given

ρ-connection. In order to associate a notion of parallel transport with linear
ρ-connections, we first need to introduce a special class of curves in N . A
curve c̃ : I = [a, b] → N is called ρ-admissible if ċ(t) = (ρ ◦ c̃)(t), for any
t ∈ I, where c is assumed to be the base curve of c̃, i.e. c = ν ◦ c̃. Note that,
in principle, a base curve may reduce to a point.

As in standard connection theory, with any linear ρ-connection ∇ on a
vector bundle π : E → M , and any ρ-admissible curve c̃ : [a, b] → N , one
can associate an operator ∇c̃, acting on sections of π defined along the base
curve c = ν◦c̃. More precisely, let σ be such a section, i.e. σ : [a, b] → E with
π ◦ σ = c and let f ∈ F([a, b]), then the operator ∇c̃ is uniquely determined
from ∇ if it satisfies

1. ∇c̃ is IR linear;

2. ∇c̃fσ = ḟσ + f∇c̃σ;

3. ∇c̃σ(t) = ∇c̃(t)σ, for σ ∈ Γ(E) such that σ(c(t)) = σ(t) for all t ∈ [a, b].

Definition 6 A section σ of π, defined along the base curve c of a ρ-
admissible curve c̃, will be called parallel along c̃ if and only if ∇c̃σ(t) = 0
for all t.

Using the notation from above and putting σ(t) = rA(t)σA(c(t)) in such a
coordinate chart, we have

∇c̃σ(t) =
(
ṙA(t) + ΓαB

A (c̃(t))rB(t)c̃α(t)
)
σA(c(t)) = 0,

for all t ∈ I. This is a set of linear differential equations in the components of
σ and therefore, given any ρ-admissible curve and an initial element in Ec̃(a),
a unique parallel transported section of E along c̃ can be found, defined on
the whole of [a, b].

We will now apply the theory of ρ-connections to a sub-Riemannian struc-
ture (M,Q, h). Using the notations from above we now take N = T ∗M ,
ρ = g and E = T ∗M (note that the notion of a g-admissible curve, intro-
duced in the previous section, coincides with the notion of a ρ-admissible
curve for ρ = g). Our main goal is to characterize the concepts of normal
and abnormal extremals making use of g-connections.
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Definition 7 Given a sub-Riemannian structure (M,Q, h), we define the
following bracket of 1-forms on M :

{α, β} = Lg(α)β + Lg(β)α− d(g(α, β)), for α, β ∈ X ∗(M).

It is easily seen that this bracket satisfies the following properties:

1. {α, β} = {β, α},
2. the bracket is IR linear in both arguments,

3. {fα, β} = g(β)(f)α + f{α, β}, with f ∈ F(M),

4. {α, η} = Lg(α)η, with η ∈ Γ(Q0) and equals zero if α is also contained
in Γ(Q0).

Definition 8 A g-connection ∇ is said to be normal if ∇αβ+∇βα = {a, β}
for all α, β ∈ X ∗(M).

It is easily verified that this notion of normal g-connection is well defined.
On a local coordinate chart, the connection coefficients for a normal g-
connection satisfy:

Γij
k + Γji

k =
∂gij

∂xk
, for all i, j, k = 1, . . . , n,

or equivalently, for all α ∈ T ∗xM :

Γij
k (x)αiαj = 1

2

∂gij

∂xk
(x)αiαj . (3)

In order to state the following theorem we need to introduce the notion
of an autoparallel curve of a g-connection. A g-admissible curve α : I →
T ∗M is said to be an autoparallel curve with respect to a g-connection ∇ if
∇αα(t) = 0 for all t ∈ I.

Theorem 2 A normal extremal is the base curve of an autoparallel curve
of a normal g-connection.

The proof immediately follows from the definitions, see equations (3) and
(1).
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Definition 9 We say that a g-connection ∇ is bundle adapted (shortly B-
adapted) if

∇αη = {α, η} = Lg(α)η = ig(α)dη

for all α ∈ X ∗(M) and η ∈ Γ(Q0).

Let α be a g-admissible curve with base curve c (contained in a coordi-
nate neighborhood) and η a section of Q0 along c. If ∇ is a B-adapted
g-connection, then the connection coefficients have to satisfy:

Γij
k (x)βiζj =

∂gij

∂xk
(x)βiζj , for any ζjdxj ∈ Q0

x, βjdxj ∈ T ∗xM

Therefore ∇αη(t) is completely determined by the fact that ∇ is B-adapted,
as can be seen from the following expression:

∇αη(t) =
(

η̇i(t) +
∂gjk

∂xi
(c(t))αj(t)ηk(t)

)
dxi(c(t)).

Note that, if βidxi ∈ Q0
x, then ∂gij

∂xk (x)βiηj = 0. This implies that ∇αη(t)
only depends on g(α). We introduce a new notation ∇B for this operator
acting on sections of Q0 along curves tangent to Q: ∇B

ċ η(t) = ∇αη(t), where
∇ is a B-adapted g-connection. Since ∇αη(t) only depends on g(α) = ċ, the
notation is justified. By comparing the coordinate expressions for ∇B

ċ η(t)
with equation (2), the following theorem can be easily proven.

Theorem 3 Let c : I → M be a curve tangent to Q. Then c is an abnormal
extremal if and only if there exists a parallel transported section η of Q0 along
c with respect to a B-adapted g-connection, i.e. ∇B

ċ η(t) = 0 for all t ∈ I.

3 Characterizing abnormal extremals

We first mention that, given any curve c : I → M tangent to Q, contained in
a coordinate neighborhood, a vector field X ∈ Γ(Q) can be found such that
ċ(t) = X(c(t)). This is a special case of a more general result proven by S.
Helgason in [5, p. 26]. In the following we always assume that c is contained
in a coordinate neighborhood and that it is an integral curve of a vector
field tangent to Q (usually integral curves are defined on open intervals, we
assume here that c is the restriction to I of an integral curve defined on an
open interval containing I).
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Lemma 1 Let c(t) : [a, b] → M be an integral curve of a vector field X ∈
Γ(Q), with flow {φs}. Assume that η(t) is a section of Q0 along c(t). Then
the following two equations are equivalent:

∇B
ċ η(t) = 0 ⇐⇒ η(t) = T ∗φ−(t−a)(η(a)).

Proof. We first proof that ∇B
ċ η(t) = d

ds

∣∣
0
(T ∗φs(η(t + s))). In coordinates,

taking any α ∈ X ∗(M) such that g(α) = X (for instance α = [G(X)), we
find:

∇B
ċ η(t) =

(
η̇i(t) + ηj(t)

∂Xj

∂xi
(c(t))

)
dxi(c(t)).

On the other hand we have that

d

ds

∣∣∣∣
0

(T ∗φs(η(t + s))) =
d

ds

∣∣∣∣
0

(
ηj(t + s)

∂φj
s

∂xi
(c(t))dxi(c(t))

)

=
(

η̇i(t) + ηj(t)
∂Xj

∂xi
(c(t))

)
dxi(c(t)).

Assume that ∇B
ċ η(t) = 0 then

d

ds

∣∣∣∣
0

(T ∗φs(η(t + s))) = 0, ∀t ∈ I.

For fixed t ∈ I, we apply the linear isomorphism Tφ−(t−a) to this relation
and we obtain:

d

dt

∣∣∣∣
t

(T ∗φt−a(η(t))) = 0.

This holds for any t ∈ I, implying that η(t) = T ∗φ−(t−a)(η(a)). The converse
is simply proven by reversing the above arguments. ¤

Definition 10 Let Q denote a distribution on M . Let {φs} denote the flow
of a vector field X ∈ Γ(Q) with integral curve c(t) = φt−a(c(a)) : [a, b] → M .
We define a subspace c∗t Q of Tc(t)M as follows:

c∗t Q := Span
{
Tφ−(s−t)(Yc(s)) | ∀Yc(s) ∈ Qc(s), s ∈ [a, b]

}
.

Theorem 4 Let c(t) : [a, b] → M be an integral curve a vector field X with
flow {φs}. Then c(t) is an abnormal extremal if and only if c∗t Q 6= Tc(t)M .
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Proof. Assume c(t) is abnormal, i.e. there exists a section of Q0 along c(t),
say η(t). From the preceding lemma we know that η(t) = T ∗φ−(t−a)(η(a)).
Since η(t) ∈ Q0 we have

〈η(t), Yc(t)〉 = 〈η(a), Tφ−(t−a)(Yc(t))〉 = 0,

for all Yc(t) ∈ Qc(t) and ∀t ∈ [a, b]. Following the definition of c∗aQ we
conclude that η(a) ∈ (c∗aQ)0. This proves one part of the theorem.

Assume that c∗aQ 6= Tc(a)M , i.e. there exists a non-trivial ηa ∈ (c∗aQ)0. The
curve η(t) defined by η(t) = T ∗φ−(t−a)(ηa) lies entirely in Q0 (using the
same equation as above). The preceding lemma says that ∇B

ċ η(t) = 0 for
all t ∈ [a, b]. ¤
Note that Tφt−a determines an isomorphism between c∗aQ and c∗t Q, implying
that the rank of c∗t Q is constant for every t. Moreover, the Theorem 4 implies
that the subspace c∗t Q is in fact independent of the flow {φs} used to define
it. Indeed, every element in (c∗t Q)0 (t fixed) is in a one-to-one correspondence
with a parallel transported section η along c with respect to a B-adapted
connection, i.e. we have that

(c∗t Q)0 = {η(t) | ∇B
ċ η(s) = 0 ∀s ∈ I}.

This justifies the notation we used.

Remark. In a recent paper by P. Piccione and D.V. Tausk [7] a similar
characterization for abnormal extremals was obtained but following a com-
pletely different approach.
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