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CONTROL PROBLEMS WITH VARIABLE ENDPOINTS

BAVO LANGEROCK

Abstract. In a previous paper [5] we have proven a geometric formulation
of the maximum principle for non-autonomous optimal control problems with
fixed endpoint conditions. In this paper we shall reconsider and extend some
intermediate results from [5] in order to obtain the maximum principle for
systems with variable endpoint conditions, where only the starting point or
the endpoint of the control is allowed to vary.

1. Introduction and preliminary definitions. The development of optimal
control theory in a differential geometric setting has been carried out by for in-
stance H.J. Sussmann in [14], where a coordinate-free formulation of the maximum
principle is given. Many examples that can be regarded as a control system are
encountered in differential geometry. For instance, the problem of characterising
length minimising curves in sub-Riemannian geometry (see [4, 11, 12]) has become
one of the standard examples in “geometric optimal control theory”. Another field
of applications can be found in the geometric formulation of Lagrangian systems
subjected to nonholonomic constraints (see [10] and references therein). More re-
cently, the formulation of Lagrangian systems on Lie-algebroids, which has been
studied in [2, 8, 15], can also be regarded as an optimal control problem.

The differential geometric approach to control theory has already proven to be
useful if we consider for instance the work of H.J. Sussmann in [13], where he consid-
ered integrability of generalised distributions in order to study some controllability
problems.

In [5] we have given a proof of the coordinate-free maximum principle for (time-
dependent) optimal control systems with fixed endpoint conditions, relying on the
approach of L.S. Pontryagin et al. in [7]. As a side result of our approach, we
were able to give some necessary and sufficient conditions on the existence of what
is called (strictly) abnormal extremals (for an example of a stricly abnormal ex-
tremal, we refer to [9]). In this paper, it is our goal to present an extension of the
maximum principle for (time-dependent) optimal control problems with variable
endpoint conditions.

The outline of the paper is as follows. In this section, we briefly describe the
geometric setting in which we study control systems. The maximum principle and
some intermediate results obtained in [5] are summarised in Section 2 without all
technical details. These results are indispensable in order to present a comprehen-
sive treatment in Section 3 of control problems with variable endpoints.

We now proceed towards the definition of a geometric control structure. It should
be noted that we impose rather strong smoothness conditions. However, it occurs
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to us that there is sufficiently large and relevant class of control problems that fit
within the framework presented below (see [14] for a different approach).

Definition 1. A geometric control structure is a triple (τ, ν, ρ) consisting of: (i)
a fibre bundle τ : M → IR over the real line, where M is called the event space
and with typical fibre Q, which is referred to as the configuration manifold, (ii)
a fibre bundle ν : U → M , called the control space, and (iii) a bundle morphism
ρ : U → J1τ over the identity on M , such that τ1,0 ◦ ρ = ν.

In the above definition, the first jet space of τ is denoted by J1τ and the projec-
tions J1τ → IR and J1τ → M are denoted by respectively τ1 and τ1,0. The map ρ
is called the anchor map and makes the following diagram commutative.

IR
?

M
?

U - J1τ

½
½

½
½=

ρ

τ

ν τ1,0

A section u : I → U of τ ◦ ν is called a smooth control if ρ ◦ u = j1c, where
c = ν ◦ u is called the smooth base of the control u.

In order to fix the ideas we will first elaborate on the notion of smooth controls.
Fix a bundle adapted coordinate chart on M and let (t, x1, . . . , xn) (where dim Q =
n) denote the associated coordinate functions, i.e. the projection τ equals the
function t. Similarly we consider an adapted coordinate chart of the control space
U , with coordinate functions (t, x1, . . . , xn, u1, . . . , uk) (with dim U = 1 + n + k). A
smooth control u, is a section of τ◦ν which is locally represented by n functions xi(t),
i = 1, . . . , n and k functions ua(t), a = 1, . . . , k, and has to satisfy, by definition,
the following equation:

ẋi(t) = ρi(t, xi(t), ua(t)).
The above equations are easily recognised (see [7]) as the “law of motion” that
occurs in standard control theory.

It turns out however (see also [7]) that the class of smooth controls should be
further extended to sections admitting (a finite number of) discontinuities in the
form of certain ‘jumps’ in the fibres of ν, such that the corresponding base section
is piecewise smooth. For instance, assume that u1 : [a, b] → U and u2 : [b, c] → U
are two smooth controls with respective bases c1 and c2, such that c1(b) = c2(b).
The composite control u2 · u1 : [a, c] → U of u1 and u2 is defined by:

u2 · u1(t) =
{

u1(t) t ∈ [a, b],
u2(t) t ∈ ]b, c].

It is readily seen that u2 · u1 is (in general) discontinuous at t = b, however, the
base ν ◦ (u2 · u1) is continuous. This definition can easily be extended for any finite
number of smooth control, yielding what we shall call in general a control (a detailed
definition can be found in [5]). We say that a control u : [a, b] → U with base section
c takes x to y if c(a) = x and c(b) = y, with x, y ∈ M .

We now introduce the notion of optimality. Assume that a cost function L ∈
C∞(U) is given. With any control u : [a, b] → M we are now able to define its cost
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J (u):

J (u) =
∫ b

a

L(u(t))dt.

A control u taking x to y is said to be optimal if, given any other control u′ taking
x to y then

J (u) ≤ J (u′).
The problem of finding the optimal controls taking a one point to another point is
called an optimal control problem with fixed endpoint conditions.

On the other hand, assume that two immersed submanifolds i : Si → M and
j : Sf → M are given. A control u taking a point x ∈ i(Si) to a point y ∈ j(Sf ) is
said to be optimal if, given any other control u′ taking x′ ∈ i(Si) to y′ ∈ j(Sf ), then
J (u) ≤ J (u′). The problem of finding the optimal controls taking a point in Si to
a point in Sf is called an optimal control problem with variable endpoint conditions.

The maximum principle gives necessary conditions for optimal controls to satisfy.
In Section 2 we will state the maximum principle, proven in [5], for optimal control
problem with fixed endpoint conditions whereas in Section 3 we prove necessary
conditions for optimal controls in the case of optimal control problems with variable
endpoints, in the specific case of Si = {x} or Sf = {y} (i.e. one of the endpoints is
kept fixed). The more general case takes more effort to prove and is left for future
work. The case if one keeps one of the endpoints fixed admits an elegant and concise
approach, worth to be mentioned separately.

2. Optimal control problems with fixed endpoints. This section gives a quick
review on some previously obtained results. For all proofs and technical details we
refer to [5].

2.1. Controllability and the cone of variations. Consider the total time de-
rivative T, which is a vector field along τ1,0, i.e. T : J1τ → TM : j1

t c 7→ Ttc(∂t)
(where ∂t is the standard vector field on IR). Using this map, the everywhere de-
fined family of vector fields D = {T◦ρ◦σ | σ ∈ Γ(ν)}, generated by (local) sections
of ν, is well defined. The family D plays a crucial role in deriving the maximum
principle, as will be made clear from the following observation. In [5] it is proven
that the base of any control is a concatenation of integral curves of vector fields in
D and vice versa (see below). We first proceed with some elementary definitions
associated with this family of vector fields (see also [6], where one can find a detailed
study on generalised distributions).

A composite flow of vector fields in D is defined in the following way. Let
(X`, . . . , X1) denote an ordered family of ` vector fields in D and let φi denote
the flow of Xi = T ◦ ρ ◦ σi. Let T = (t`, . . . , t1) ∈ IR`, then the composite flow is
defined by

ΦT (x) = φ`
t`
◦ . . . ◦ φ1

t1(x),
where T is called the composite flow parameter. The concatenation γ through
x ∈ τ−1(a) associated with Φ and T is a piecewise smooth curve defined as follows:
γ : [a, a + |t1|+ . . . + |t`|] → B with

γ(t) =





φ1
sgn(t1)(t−a)(x) for t ∈ [a, a1]

φ2
sgn(t2)(t−a1)

(φ1
t1(x)) for t ∈ ]a1, a2]

. . .
φ`

sgn(t`)(t−a`−1)
(. . . (φ1

t1(x)) . . .) for t ∈ ]a`−1, a`],
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where ai = a +
∑i

j=1 |tj |, sgn(ti) = ti

|ti| for ti 6= 0 and sgn(0) = 0. Assume that all
ti ≥ 0, then γ̇(t) = Xi(γ(t)), and thus γ is an integral curve of Xi when restricted
to [ai−1, ai]. Moreover, since every Xi = T◦ρ◦σi is τ related with ∂t on IR we have
that τ(γ(t)) = t and thus determines (at least on every smooth part) a section of
τ . Define the sections ui(t) = σi(φt−ai

(x)) on [ai−1, ai]. Then it is easily seen that
u = u` · . . . · u1 is a control with base γ (we shall call u the control induced by the
ordered family of sections (σ`, . . . , σ1)). We can conclude that every concatenation
of vector fields in D is the base section of a control.

On the other hand, if u : [a, b] → U is a smooth control, then the base c is an
immersed curve (i.e. ċ = T ◦ ρ ◦u 6= 0). Therefore, one can find a finite subdivision
of [a, b] such that on every subinterval, the section u along c can be extended to a
section σ of ν (see for instance [1]). It is then easily seen that the restriction to the
subinterval of c is an integral curve of the vector field T ◦ ρ ◦ σ in D. This implies
that the base curve of a control is a concatenation associated with vector fields in
D.

Consider the following relation on M : x → y iff there exists a composite flow Φ
of vector fields in D such that ΦT (x) = y for some T = (t`, . . . , t1) ∈ IR` with ti ≥ 0
for all i = 1, . . . , `. This relation is reflexive, transitive, but however not symmetric
since if x → y then τ(x) ≤ τ(y).

Using the notations introduced above, we can say that x → y iff there exists a
control u : [a, b] → U with base c such that c(a) = x and c(b) = y. This justifies the
following definition: the set of reachable points from x, denoted by Rx, equals all
y ∈ M such that x → y. In particular if u is a control with base c taking x to y, we
shall write x

u→ y. It is always assumed that, if we have fixed a control u taking x
to y, then we shall only consider ordered family of vector fields (X`, . . . , X1), with
composite flow Φ such that ΦT (x) = y and such that u is induced by the ordered
family of sections of ν: (σ`, . . . , σ1) such that Xi = T ◦ ρ ◦ σi.

Using this convention, assume that x
u→ y, consider a composite flow Φ and

composite flow parameter T ∈ IR` and let γ denote the concatenation associated
with Φ and T through x (let us use in the following the same notations from above).
Assume that τ ∈]ai−1, ai]. Then we define TΦb

τ : Tγ(τ)M → TyM by

TΦb
τ = Tφ`

t`
◦ . . . ◦ Tφi

τ−ai−1
.

Definition 2. The cone of variations CyRx is the convex cone in TyM generated
by the following set of tangent vectors in TyM (i.e. consists of all finite linear
combinations, with nonnegative coefficients, of tangent vectors in):

{TΦb
τ (Y (γ(s))) | ∀s ∈]a, b] and Y ∈ D} ∪ {TΦb

τ (−γ̇(s)) | ∀s ∈]a, b]}
In [5] we have proven the following theorem, which is fundamental for a proof of

the maximum principle.

Theorem 1. Given any curve θ : [0, 1] → M through y at t = 0 and with tangent
vector at t = 0 in the interior of the cone CyRx, then there exists an ε > 0 such
that θ(t) ∈ Rx for all t ∈ [0, ε].

In particular, the above theorem implies that the interior of the cone CyRx can be
regarded as a “tangent cone” to the set of reachable points. Before proceedings we
introduce a vertical cone of variations VyRx, i.e. VyRx is the convex cone generated
by the set:

{TΦb
τ (Y (γ(s))− γ̇(s)) | ∀s ∈]a, b] and Y ∈ D}.
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It is easily seen that VyRx is contained in CyRx. Many results will be formulated
in terms of this vertical cone of variations.

2.2. Optimality and the extended control structure. In the following we
concentrate on optimal control problems (with fixed endpoints). Assume that a cost
function L ∈ C∞(U) is given. One of the basic ideas in the book of L.S. Pontryagin
et al. in [7], was to consider an ‘extended geometric control structure’ in which
the cost function becomes part of the anchor map. More specifically, consider the
manifolds M = M × IR, U = U × IR and let τ : M → IR : (m,J) 7→ τ(m), ν :
U → M : (u, J) 7→ (ν(u), J) denote two projections (making M and U into bundles
over respectively IR and M). The extended anchor map ρ : U → J1τ is defined
by ρ(u, J) = (ρ(u), J, L(u)) (where we have used the standard identification of J1τ
with J1τ × IR2). From now on we shall refer to (τ , ν, ρ) as the extended geometric
control structure. It is instructive to see how the control structure (τ, ν, ρ) and
the extended control structure (τ , ν, ρ) can be related. Consider a control u in the
control structure (τ, ν, ρ) and define the following section of τ ◦ν: u(t) = (u(t), J(t))
with

J(t) = J0 +
∫ t

a

L(u(s))ds,

where J0 ∈ IR can be chosen arbitrary (note that J(b) = J0 + J (u)). It is easily
seen that u is a control in the extended control structure: ρ ◦ u = j1c follows from

ρ ◦ u = j1c, with c(t) = (ν ◦ u)(t) = (c(t), J(t)) and

J̇(t) = L(u(t)), by definition.
By reversing the above arguments, one can prove that any control in the extended

control structure determines a control in the control structure (τ, ν, ρ).
In particular, we have that if x

u→ y with cost J (u), then (x, J0)
u→ (y, J0+J (u))

in the extended control structure (for J0 ∈ IR arbitrary). And, vice versa, if

(x, J0)
u→ (y, J1)

then there exists a control u such that x
u→ y and J (u) = J1−J0. These observations

justify the choice of referring to the coordinate J as the cost coordinate.
Assume that we fix a control u taking x to y and the associated control u in the

extended control structure taking (x, 0) to (y,J (u)) (i.e. we fix J0 = 0). Similar to
the construction in the control structure (τ, ν, ρ), we can associate with u a com-
posite flow and composite flow parameter and, consequently, the cone of variations
C(y,J (u))R(x,0) in the extended control structure and use Theorem 1, in the following
sense. If u is optimal, then the tangent vector to the cost coordinate −∂J can not
be contained in the interior of the cone of variations C(y,J (u))R(x,0). Indeed, using
the notations from Theorem 1, the curve defined by θ(t) = (y,J (u)−t) for t ∈ [0, 1]
satisfies θ̇(0) = −∂J . Then, if −∂J is contained in the interior of C(y,J (u))R(x,0),
there exists an ε > 0 such that (x, 0) → (y,J (u)− ε) or equivalently there exists a
control taking x to y with cost J (u)− ε, which is impossible since u is assumed to
be optimal.

The condition that −∂J is not contained in the interior of C(y,J (u))R(x,0) can be
translated into a ‘differential equation’ and a maximum condition, which are known
as the necessary conditions of the maximum principle. In the remainder of this
section we explain how these conditions are obtained.
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2.3. Multipliers and the maximum principle. Before proceeding we still have
to introduce a few additional concepts. First, let V τ denote the bundle of vertical
tangent vectors to τ , i.e. V τ = {w ∈ TM | Tτ(w) = 0}, with dual V ∗τ . Note
that the vertical cone of variations VyRx is entirely contained in Vyτ , justifying
the denomination “vertical cone”. Consider the fibred product U ×M V τ of U and
V τ over M , i.e. (u,w) ∈ U ×M V τ if u ∈ U , w ∈ V τ and ν(u) = τM (w) where
τM : TM → M denotes the tangent bundle projection. Let λ ∈ IR and define a
section σλ of the fibration U ×M T ∗M → U ×M V ∗τ by σλ(u, η) = (u, α) where α
is uniquely determined from

1. 〈α,T(ρ(u))〉+ λL(u) = 0, and
2. α projects onto η.

The map σλ is smooth, as is easily seen from the following coordinate expression α =
−(ρi(u)ηi + λL(u))dt + ηidxi. Using σλ we can pull-back the canonical symplectic
two-form ω on T ∗M to a closed two-form ωλ on U ×M V ∗τ : ωλ = σ∗λ ◦ pr∗2ω with
pr2 : U ×M T ∗M → T ∗M , the standard projection on the second factor. Herewith,
we can introduce the definition of a multiplier.

Definition 3. Let u denote a control with base c. A pair (η(t), λ), where η(t) is a
piecewise smooth section η(t) of V τ along c and λ ∈ IR, is called a multiplier of u
if the following three properties are satisfied:

1. i(u̇(t),η̇(t))ωλ = 0 (on every smooth part of (u, η)),
2. given any t ∈ I, then the function u′ 7→ 〈σλ(u(t), η(t)),T(ρ(u′))〉+ λL(u′) on

ν−1(c(t)) attains a global maximum for u′ = u(t),
3. (η(t), λ) 6= 0 for any t ∈ I = [a, b].

Another concept that we will need is that of the ‘dual of a cone’. Let C denote
a convex cone in a vector space V. The dual convex cone C∗ in V∗ is defined by

C∗ = {α ∈ V∗ | 〈α, v〉 ≤ 0, ∀v ∈ C}
A result, taken from [7] and which we shall take for granted, tells that, given two
convex cones C and C ′, satisfying the condition that if the interior of C has an empty
intersection with C ′, then they can be separated in the sense that there exists an
α ∈ C∗ for which 〈α, C ′〉 ≥ 0. It is also instructive to note that C∗ = (cl(C))∗ and
C∗∗ = cl(C), where cl(C) denotes the closure of C (these results ar taken from [3]).

We are now ready to state the following theorem, establishing a connection be-
tween the notion of multipliers and elements in the dual cone of V(y,J (u))R(x,0). We
agree to write elements, say η, of V ∗

(y,J (u))τ as (η, λ), where η ∈ V ∗τ and λ ∈ IR,
using the identification of V ∗

(y,J (u))τ with V ∗
y τ × IR, i.e. η = η + λdJ(y,J (u)). A

similar identification is valid between T ∗(y,J (u))M and T ∗y M × IR.

Theorem 2. Let (η, λ) denote a multiplier, then the dual vector in V ∗
(y,J (u))τ de-

fined by (η(b), λ) is contained in the dual cone (V(y,J (u))R(x,0))∗. On the other hand,
if (ηy, λ) ∈ (V(y,J (u))R(x,0))∗ then there exists a multiplier (η, λ) with η(b) = ηy.

A straightforward corollary of this theorem is the maximum principle, formulated
in the following way: if a control u is optimal then there exists a multiplier (η, λ)
with λ ≤ 0. Indeed, since −∂J is not in the interior of C(y,J (u))R(x,0), there must
exist an element in (C(y,J (u))R(x,0))∗, say (αy, λ) such that 〈(αy, λ),−∂J 〉 ≥ 0, or
more specifically λ ≤ 0. Since V(y,J (u))R(x,0) ⊂ C(y,J (u))R(x,0), or, we have that
the restriction of (αy, λ) to V τ , denote (ηy, λ) ∈ V ∗τ , is contained in the dual cone
of V(y,J (u))R(x,0). We conclude that there exists a (ηy, λ) ∈ (V(y,J (u))R(x,0))∗ with
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λ ≤ 0. Using Theorem 2, we have that there exists a multiplier (η, λ) such that
λ ≤ 0, which is precisely the maximum principle. The following theorem is a minor
generalisation of a theorem proven in [5] and will be used in the following section.

Theorem 3. Assume that u is a control taking x to y and let (η, λ) denote a
multiplier. Fix a composite flow Φ in the extended setting, such that ΦT ((x, 0)) =
(y,J (u)) and with associated vertical cone of variations V(y,J (u))R(x,0). Then

η(t) + λdJ = (TΦ
b

t)
∗ (η(b) + λdJ) .

Moreover, if we define α(t) = σλ(u(t), η(t)), then we also have:

α(t) + λdJ = (TΦ
b

t)
∗ (α(b) + λdJ) .

Remark 1. Let (αy, λ) denote an element in (C(y,J (u))R(x,0))∗. By definition
it is easily seen that both γ̇(b) + L(u)∂J and −(γ̇(b) + L(u)∂J) are elements in
C(y,J (u))R(x,0). Since (αy, λ) is an element in the dual cone, we have that

〈(αy, λ),± (γ̇(b) + L(u)∂J)〉 ≤ 0,

which is only possible if 〈(αy, λ), γ̇(b)+L(u)∂J〉 = 0. More specifically, since γ̇(b) =
T(ρ(u(b))), we obtain that αy = σλ(u(b), ηy), where ηy is the restriction of αy to
elements in Vyτ .

3. Optimal control problems with variable endpoints. Recall the definition
of an optimal control problem with variable endpoints from Section 1 and consider
two immersed submanifolds i : Si → M and j : Sf → M . We only treat the specific
case where either Si = {x} or Sf = {y}. We would like to mention explicitly that,
in this section, a control u taking a point x ∈ i(Si) to a point y ∈ j(Sf ) is said
to be optimal if, given any other control u′ taking x′ ∈ i(Si) to y′ ∈ j(Sf ), then
J (u) ≤ J (u′). Note that this notion of optimality is stronger then the notion of
optimality from the previous section. Consequently, we can already conclude that
if u is optimal among all controls taking points from Si to Sf , then there exists a
multiplier (η, λ) with λ ≤ 0. In this section we shall construct two more conditions
(one for the case where Si = {x} and one if Sf = {y}), which are known as the
transversality conditions, see [7]. The first (i.e. Si = {x}) of these two transersality
conditions is easily derived in the next section. The second condition (Sf = {y})
takes some more effort. We use all notations introduced in the previous section,
without explicit mentioning.

3.1. The transversality condition at the endpoint (Si = {x}). Assume that
u is optimal. We consider the following tangent vector in T(y,J (u))M : w = −∂J +
Tj(v), where v ∈ TySf can be chosen arbitrarily. We shall now prove by contradic-
tion that w is not contained in the interior of C(y,J (u))R(x,0).

Assume that this is the case, i.e. w is in the interior of C(y,J (u))R(x,0). Fix
any curve in Sf , say θ : [0, 1] → Sf , satisfying the condition that the tangent
vector at t = 0 equals v, i.e. θ̇(0) = v. We now define a curve θ : [0, 1] → M in
the extended control structure and apply Theorem 1. More specifically, let θ(t) =
(j(θ(t)),J (u)− t) ∈ M . It is easily seen that θ(0) = (y,J (u)), and that

θ̇(0) = w = −∂J + Tj(v).

Using Theorem 1, we obtain that there exists an ε > 0 such that (j(θ(ε)),J (u)−
ε) ∈ R(x,0). In particular we have that there exists a control taking x to j(θ(ε)) ∈ Sf
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with cost J (u)− ε. However, since u is assumed optimal, this is not possible. The
same construction can be carried out for any positive multiple of w, implying that
the convex cone, generated by all w = −∂J + Tj(v) with v ∈ Tj(TySf ), can be
separated from the cone of variations C(y,J (u))R(x,0).

Therefore, there exists a hyperplane in (αy, λ) ∈ (C(y,J (u))R(x,0))∗ such that
〈(αy, λ),−∂J + Tj(v)〉 ≥ 0, for all v ∈ TySf . In particular, by taking v = 0, we
have 〈(αy, λ),−∂J〉 ≥ 0, or λ ≤ 0. Using the same arguments as in the preceding
section, we conclude that there exists a multiplier (η, λ) with λ ≤ 0, where η(b)
equals the restriction of αy to V τ . In Remark 1 we have proven that η(b) satisfies
σλ(u(b), η(b)) = αy.

Take an arbitrary vector in the tangent space to Sf , i.e. v ∈ TySf . Then
λ ≤ 〈αy, v〉 holds by definition of (αy, λ). This equations is also valid for −v,
implying that λ ≤ −〈αy, v〉.

Assume (i) that λ = 0, then αy ∈ (Tj(TySf ))0 (where we use V0 denotes the
annihilator space in W∗ of a linear subspace V of W). On the other hand, (ii)
if λ < 0, then we obtain 1 ≥ 〈αy, λ−1v〉 and 1 ≥ −〈αy, λ−1v〉. Now, since this
equation is valid for any multiple of v, we obtain again that αy ∈ (Tj(TySf ))0. We
conclude that if u is optimal then there exists a multiplier (η, λ) with λ ≤ 0 and
σλ(u(b), η(b)) ∈ (Tj(TySf ))0.

3.2. The transversality condition at the starting point (Sf = {y}). In order
to prove a similar result for the initial submanifold Si, we are obliged to construct
a new control structure (τ ′, ν, ρ′), which we shall call the inverse control structure.

Consider the following bundle τ ′ : M → IR : x 7→ −τ(x). And consider the
map ξ : Γ(τ) → Γ(τ ′) defined by, if c :]a, b[→ M is contained in Γ(τ) then ξ(c) :
]− b,−a[→ M : t′ 7→ c(−t′). It is easily seen that ξ is invertible, and that it induces
a bundle morphism between J1τ and J1τ ′, which will be denoted by the same letter
for the sake of simplicity and is defined by

ξ(j1
t c) = j1

−tξ(c).

It is easily seen that ξ : J1τ → J1τ ′ is fibred over the identity on M and over the
multiplication by −1 on IR, making the following diagram commutative.

J1τ -ξ J1τ ′

? ?
M M

? ?
IRIR -−1

-

τ τ ′

τ1,0 τ ′1,0

The total time derivative T′ : J1τ ′ → TM is related to T : J1τ → TM as follows:
T′(ξ(j1

t c)) = −T(j1
t c). Define a new anchor map ρ′ : U → J1τ ′ : u 7→ ξ ◦ ρ(u). We

shall now further investigate the relation between the geometric control structures
(τ ′, ν, ρ′) and (τ, ν, ρ), and in particular the order relations induced by the families
of vector fields D′ and D.

Assume that σ ∈ Γ(ν). The vector field T′ ◦ ρ′ ◦ σ equals T ◦ ρ ◦ σ up to a minus
sign. Indeed, since T′ ◦ ξ = −T, we obtain that

T′ ◦ ρ′ ◦ σ = T′ ◦ ξ ◦ ρ ◦ σ = −T ◦ ρ ◦ σ.
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Therefore, we have D′ = −D. Let us write the order relation determined by D′ by
→′ and, as usual the order relation determined by D by →. We then have that, if
x → y, then y →′ x and vice versa. Indeed, assume that ΦT (x) = y, where Φ is a
composite flow associated with the ordered family (X`, . . . , X1) of vector fields in D
and T = (t`, . . . , t1) ∈ IR`

+. It is now easily seen that (ΦT )−1 is precisely ΨT∗ where
Ψ is the composite flow associated with (−X1, . . . ,−X`) of vector fields in D′ and
T ∗ = (t1, . . . , t`). Thus ΨT∗(y) = x or y →′ x. Moreover, if we consider the cone
of variations CxR′y in TxM with respect to the inverse control setting, we obtain
that CxR′y = −(TΦb

a)−1(CyRx). We will now reformulate Theorem 1 in the inverse
control structure (τ ′, ν, ρ′) to a new theorem in the control structure (τ, ν, ρ).

Let θ : [0, 1] → M denote an arbitrary curve through x ∈ M at t = 0 such that
θ̇(0) is contained in the interior of CxR′y. Using Theorem 1 we obtain that there
exists an ε > 0 such that γ(t) ∈ R′y for 0 ≤ t ≤ ε. This leads us to the following
theorem, which is merely a reformulation of Theorem 1 applied in (τ ′, ν, ρ′).

Theorem 4. Let θ : [0, 1] → M with γ(0) = x. If −TΦb
a(θ̇(0)) is contained in the

interior of CyRx, then there exists an ε > 0 such that θ(t) → y for all 0 ≤ t ≤ ε.

We shall now use this result. Assume that x
u→ y, such that u is optimal.

Let v ∈ TxSi and let θ : [0, 1] → Si denote a curve with θ̇(0) = v. Let Φ denote a
composite flow in the extended setting such that ΦT ((x, 0)) = (y,J (u)) and consider
the curve θ : [0, 1] → M defined by θ(t) = (i(θ(t)), t), with θ̇(0) = Ti(v) + ∂J =
w. Assume that −TΦ

b

a(w) is contained in the interior of the cone of variations
C(y,J (u))R(x,0) in the extended setting. Then, from Theorem 4, it is easily seen
that (i(θ(ε)), ε) → (y,J (u)) for some ε > 0. This implies that there exists a control

u′ with i(θ(ε)) u′→ y with cost J (u′) = J (u) − ε. Since θ(ε) ∈ Si and since we
assumed u to be optimal, this is impossible.

The remaining analysis is basically the same as the one we did in Section 3.1.
Again we consider the convex cone generated by all tangent vectors of the form
−TΦ

b

a(∂J + Ti(v)), where v ∈ TxSi is arbitrary. Using the conclusion from above,
this cone is separable from the cone of variations C(y,J (u))R(x,0). This implies the
existence of an element (αy, λ) in the dual cone of C(y,J (u))R(x,0) such that, in
addition,

〈(αy, λ),−TΦ
b

a(∂J + Ti(v))〉 ≥ 0.

Consider the restriction ηy of αy to the set of vertical vectors V τ (see Remark 1).
Since (ηy, λ) is an element of the dual to the vertical cone of variations, we have
that there exists a multiplier (η, λ) (with η(b) = ηy and αy = σλ(u(b), ηy)) such
that

〈σλ(u(b), η(b)) + λdJ,−TΦ
b

a(∂J + Ti(v))〉 ≥ 0,

for all v ∈ TxSi. If we use Theorem 3, then

〈σλ(u(a), η(a)) + λdJ,−∂J − Ti(v)〉 ≥ 0.

Assume v = 0, then we obtain λ ≤ 0, which is the standard necessary condition of
the maximum principle. If v can be chosen arbitrary we have 〈αy, T i(v)〉 ≤ −λ. If (i)
λ = 0, then 〈αy, T i(v) ≤ 0 and −〈αy, T i(v)〉 ≤ 0, implying that αy ∈ (Ti(TxSi))0. If
(ii) λ < 0, then 〈αy, T i(λ−1v)〉 ≥ 1 and −〈αy, T i(λ−1v)〉 ≥ 1. Since this inequality
holds for any multiple of v, we obtain once more that αy ∈ (Ti(TxSi))0. The results
from Sections 3.1 and 3.2 are now brought together in the following theorem which
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is a geometric version of the maximum principle for optimal control problem with
variable endpoint conditions, where either Si or Sf reduces to a point.

Theorem 5. Assume that u is a control taking x to y. If u is optimal among all
controls with initial point in Si and final point in Sf then there exists an extremal
(η, λ) such that

1. λ ≤ 0,
2. σλ(u(a), η(a)) ∈ (Ti(TxSi))0, if Sf = {y}, or

σλ(u(b), η(b)) ∈ (Tj(TySf ))0, if Si = {x}.
It is easily seen that this theorem agrees with the results obtained in [7, p 48].
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