
PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON
DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS
May 24 – 27, 2002, Wilmington, NC, USA pp. 1–10

OPTIMAL CONTROL PROBLEMS WITH VARIABLE
ENDPOINTS
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Abstract. In a previous paper [5] we have proven a geometric formulation
of the maximum principle for non-autonomous optimal control problems with
fixed endpoint conditions. In this paper we shall reconsider and extend some
results from [5] in order to obtain the maximum principle for optimal control
problems with variable endpoint conditions. We only consider the case where
one of the endpoints may vary, whereas the other is kept fixed.

1. Introduction and preliminary definitions. The development of optimal
control theory in a differential geometric setting has been carried out by for instance
H.J. Sussmann in [14], where a coordinate-free formulation of the maximum princi-
ple is given. Many interesting problems that can be regarded as a control problems
are encountered in differential geometry. For instance, the problem of characterising
length minimising curves in sub-Riemannian geometry (see [4, 11, 12]) has become
one of the standard examples in “geometric optimal control theory”. Another field
of applications can be found in the geometric formulation of Lagrangian systems
subjected to nonholonomic constraints (see [10] and references therein). More re-
cently, the formulation of Lagrangian systems on Lie-algebroids, which has been
studied in [2, 8, 15], can also be treated as an optimal control problem.

In [5] we have given a proof of the coordinate-free maximum principle for (time-
dependent) optimal control systems with fixed endpoint conditions, relying on the
approach of L.S. Pontryagin et al. in [7]. As a side result of our approach, we
were able to derive some necessary and sufficient conditions for the existence of
what are called (strictly) abnormal extremals in sub-Riemannian geometry (for an
example of a strictly abnormal extremal, we refer to [9]). In this paper, it is our
goal to present an extension of the maximum principle for (time-dependent) optimal
control problems with variable endpoint conditions.

The outline of the paper is as follows. In the remainder of this section, we briefly
describe the geometric setting in which we study control systems. The maximum
principle and some intermediate results obtained in [5] are summarised in Section
2 without giving all the technical details. These results are indispensable in order
to present a comprehensive treatment of control problems with variable endpoints
in Section 3.

We now proceed towards the definition of a geometric control structure. It should
be noted that we impose rather strong smoothness conditions. However, it occurs
to us that there is a sufficiently large and relevant class of control problems that
fits into the framework presented below (see [14] for a different approach).
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2 B. LANGEROCK

Definition 1. A geometric control structure is a triple (τ, ν, ρ) consisting of: (i)
a fibre bundle τ : M → IR over the real line, where M is called the event space
and with typical fibre Q, which is referred to as the configuration manifold, (ii)
a fibre bundle ν : U → M , called the control space, and (iii) a bundle morphism
ρ : U → J1τ over the identity on M , such that τ1,0 ◦ ρ = ν.

In the above definition, the first jet space of τ is denoted by J1τ and the projec-
tions J1τ → IR and J1τ → M are denoted by τ1 and τ1,0 respectively. The map ρ,
which is called the anchor map, makes the following diagram commutative:

IR
?

M
?

U - J1τ

½
½

½
½=

ρ

τ

ν τ1,0

A section u : I → U of τ ◦ ν is called a smooth control if ρ ◦ u = j1c, where
c = ν ◦ u is called the smooth base section of the control u.

In order to fix the ideas we will first elaborate on the notion of smooth controls.
Fix a bundle adapted coordinate chart on M and let (t, x1, . . . , xn) (where dim Q =
n) denote the associated coordinate functions. In particular the projection τ maps
(t, x1, . . . , xn) onto t. Similarly we consider an adapted coordinate chart of the
control space U , with coordinate functions (t, x1, . . . , xn, u1, . . . , uk) (with dim U =
1 + n + k). A smooth control u, being a section of τ ◦ ν, locally represented by n
functions xi(t), i = 1, . . . , n and k functions ua(t), a = 1, . . . , k, and has to satisfy,
by definition, the following equation:

ẋi(t) = ρi(t, xi(t), ua(t)).

The above equations are easily recognised (see [7]) as the “law of motion” that
occurs in standard control theory.

It turns out, however, that the class of smooth controls should be further ex-
tended to sections admitting (a finite number of) discontinuities in the form of
certain ‘jumps’ in the fibres of ν, such that the corresponding base section is
piecewise smooth (see also [7]). For instance, assume that u1 : [a, b] → U and
u2 : [b, c] → U are two smooth controls with respective base sections c1 and c2, such
that c1(b) = c2(b). The composite control u2 ·u1 : [a, c] → U of u1 and u2 is defined
by:

u2 · u1(t) =
{

u1(t) t ∈ [a, b],
u2(t) t ∈ ]b, c].

It is readily seen that u2 · u1 is (in general) discontinuous at t = b, however, the
base ν ◦ (u2 · u1) is continuous. This definition can easily be extended to any
finite number of smooth controls, yielding what we shall call in general a control (a
detailed definition can be found in [5]). We say that a control u : [a, b] → U with
base section c takes x to y if c(a) = x and c(b) = y, with x, y ∈ M .
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We now introduce the notion of optimality. Assume that a cost function L ∈
C∞(U) is given. For any control u : [a, b] → M we can define its cost J (u):

J (u) =
∫ b

a

L(u(t))dt.

A control u taking x to y is said to be optimal if, given any other control u′ taking
x to y then, we have

J (u) ≤ J (u′).

The problem of finding the optimal controls taking a given point to another given
point is called an optimal control problem with fixed endpoint conditions.

On the other hand, assume that two immersed submanifolds i : Si → M and
j : Sf → M are given. A control u taking a point x ∈ i(Si) to a point y ∈ j(Sf ) is
said to be optimal if, given any other control u′ taking x′ ∈ i(Si) to y′ ∈ j(Sf ), then
J (u) ≤ J (u′). The problem of finding the optimal controls taking a point in Si to
a point in Sf is called an optimal control problem with variable endpoint conditions.

The maximum principle gives necessary conditions to be satisfied by optimal
controls. In Section 2 we present a version of the maximum principle, proven in
[5], for optimal control problems with fixed endpoint conditions whereas in Section
3 we prove necessary conditions for optimal controls in the case of optimal control
problems with variable endpoints, in the specific case where either Si = {x} or
Sf = {y} (i.e. one of the endpoints is kept fixed). The more general case is
more involved and is left for future work. The case where one of the endpoints is
kept fixed, admits an elegant and concise approach, which is worth to be treated
separately.

2. Optimal control problems with fixed endpoints. This section gives a quick
review of some results obtained in [5], to which we refer for the proofs and further
technical details.

2.1. Controllability and the cone of variations. Consider the total time deriv-
ative T, which is a vector field along τ1,0, i.e. T : J1τ → TM : j1

t c 7→ Ttc(∂t) (where
∂t is the standard vector field on IR and Ttc the tangent map of c : IR → M at t). Us-
ing this map, the everywhere defined family of vector fields D = {T◦ρ◦σ | σ ∈ Γ(ν)}
on M , generated by (local) sections of ν, is well defined. The family D plays a cru-
cial role in deriving the maximum principle, as will become clear from the following
observation. In [5] it is proven that the base of any control is a concatenation of
integral curves of vector fields in D and vice versa (see below). We first proceed with
some elementary definitions associated with this family of vector fields (see also [6],
where one can find a detailed treatment of the theory of generalised distributions).

A composite flow of vector fields in D is defined in the following way. Let
(X`, . . . , X1) denote an ordered family of ` vector fields in D and let {φi

t} denote the
flow of Xi = T ◦ ρ ◦ σi. For T = (t`, . . . , t1) ∈ IR`, belonging to a suitable domain
the composite flow of the Xi is defined by

ΦT (x) = φ`
t`
◦ . . . ◦ φ1

t1(x),

where T is called the composite flow parameter. The concatenation γ through
x ∈ τ−1(a), associated with Φ and T , is a piecewise smooth curve defined as follows:
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γ : [a, a + |t1|+ . . . + |t`|] → M with

γ(t) =





φ1
sgn(t1)(t−a)(x) for t ∈ [a, a1]

φ2
sgn(t2)(t−a1)

(φ1
t1(x)) for t ∈ ]a1, a2]

. . .
φ`

sgn(t`)(t−a`−1)
(. . . (φ1

t1(x)) . . .) for t ∈ ]a`−1, a`],

where ai = a +
∑i

j=1 |tj |, sgn(ti) = ti

|ti| for ti 6= 0 and sgn(0) = 0. Assume that all
ti ≥ 0, then γ̇(t) = Xi(γ(t)), and thus γ is an integral curve of Xi when restricted
to [ai−1, ai]. Moreover, since every Xi = T ◦ ρ ◦ σi is τ -related to ∂t on IR we have
that τ(γ(t)) = t and thus γ determines (at least on every smooth part) a section
of τ . Define the sections ui(t) = σi(φt−ai

(x)) on [ai−1, ai]. Then it is easily seen
that u = u` · . . . · u1 is a control with base curve γ; we shall call u the control
induced by the ordered family of sections (σ`, . . . , σ1). We can conclude that every
concatenation of integral curves of vector fields of an ordered set of D is the base
section of a control.

On the other hand, if u : [a, b] → U is a smooth control, then its base section c
is an immersion (i.e. ċ = T ◦ ρ ◦u 6= 0). Therefore, one can find a finite subdivision
of [a, b] such that on every subinterval, the section u along c can be extended to a
section σ of ν (see for instance [1]). It is then easily seen that the restriction of c to
each subinterval is an integral curve of the vector field T ◦ ρ ◦ σ in D. This implies
that the base curve of a control is a concatenation of integral curves associated with
vector fields in D.

Consider the following relation on M : x → y iff there exists a composite flow Φ
of vector fields in D such that ΦT (x) = y for some T = (t`, . . . , t1) ∈ IR` with ti ≥ 0
for all i = 1, . . . , `. This relation is reflexive, transitive, but not symmetric since if
x → y then τ(x) ≤ τ(y).

Using the notations introduced above, we can say that x → y iff there exists a
control u : [a, b] → U with base curve c such that c(a) = x and c(b) = y. This
justifies the following definition: the set of reachable points from x, denoted by Rx,
is the set of all y ∈ M such that x → y. In particular, if u is a control with base
section c taking x to y, we shall write x

u→ y. It is always assumed that, if we have
fixed a control u taking x to y, then we shall only consider an ordered family of
vector fields (X`, . . . , X1), with composite flow Φ such that ΦT (x) = y and such
that u is induced by the ordered family (σ`, . . . , σ1) of sections of ν and, in addition,
Xi = T ◦ ρ ◦ σi.

Using this convention, assume that x
u→ y, consider a composite flow Φ and

composite flow parameter T ∈ IR`, and let γ denote the concatenation associated
with Φ and T through x. Using the same notations from above, assume that
s ∈]ai−1, ai]. Then we define TΦb

s : Tγ(s)M → TyM by

TΦb
s = Tφ`

t`
◦ . . . ◦ Tφi

ai−s.

Definition 2. The cone of variations CyRx at y ∈ Rx is the convex cone in TyM
generated by the following set of tangent vectors in TyM :

{TΦb
s(Y (γ(s))) | ∀s ∈]a, b] and Y ∈ D} ∪ {TΦb

s(−γ̇(s)) | ∀s ∈]a, b]},
i.e. CyRx consists of all finite linear combinations, with nonnegative coefficients, of
tangent vectors in the above set.

In [5] we have proven the following theorem, which is fundamental for a proof of
the maximum principle.
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Theorem 1. Given any curve θ : [0, 1] → M through y at t = 0 and whose tangent
vector at t = 0 belongs to the interior of the cone CyRx, then there exists an ε > 0
such that θ(t) ∈ Rx for all t ∈ [0, ε].

In particular, the above theorem implies that the interior of the cone CyRx can
be regarded as a “tangent cone” to the set of reachable points. Before proceedings
we introduce the vertical cone of variations VyRx at y ∈ Rx, which is the convex
cone generated by the set: {TΦb

s(Y (γ(s))−γ̇(s)) | ∀s ∈]a, b] and Y ∈ D}. It is easily
seen that VyRx is contained in CyRx. Many results will be formulated in terms of
this vertical cone of variations. For simplicity, we always assume that CyRx has a
nonempty interior.

2.2. Optimality and the extended control structure. In the following we
concentrate on optimal control problems (with fixed endpoints). Assume that a cost
function L ∈ C∞(U) is given. One of the basic ideas in the book of L.S. Pontryagin
et al. in [7], was to consider an ‘extended geometric control structure’ in which
the cost function becomes part of the anchor map. More specifically, consider the
manifolds M = M × IR, U = U × IR and let τ : M → IR : (m,J) 7→ τ(m), ν :
U → M : (u, J) 7→ (ν(u), J) denote two projections, making M and U into bundles
over respectively IR and M . The extended anchor map ρ : U → J1τ is defined
by ρ(u, J) = (ρ(u), J, L(u)) (where we have used the standard identification of J1τ
with J1τ × IR2). From now on we shall refer to (τ , ν, ρ) as the extended geometric
control structure. It is instructive to see how the control structure (τ, ν, ρ) and
the extended control structure (τ , ν, ρ) can be related. Consider a control u in the
control structure (τ, ν, ρ) and define the following section of τ ◦ν: u(t) = (u(t), J(t))
with

J(t) = J0 +
∫ t

a

L(u(s))ds,

where J0 ∈ IR can be chosen arbitrary (note that J(b) = J0 + J (u)). It is easily
seen that u is a control in the extended control structure: ρ ◦ u = j1c follows from

ρ ◦ u = j1c, and J̇(t) = L(u(t)).

By reversing the above arguments, one can prove that any control in the extended
control structure (τ , ν, ρ) determines a control in the control structure (τ, ν, ρ).

In particular, we have that if x
u→ y with cost J (u), then (x, J0)

u→ (y, J0+J (u))
in the extended control structure (for arbitrary J0 ∈ IR). And, vice versa, if

(x, J0)
u→ (y, J1)

then there exists a control u such that x
u→ y and J (u) = J1−J0. These observations

justify the choice for calling the coordinate J the cost coordinate.
Assume that we fix a control u taking x to y and the associated control u in the

extended control structure taking (x, 0) to (y,J (u)) (i.e. we fix J0 = 0). Similar
to the construction in the control structure (τ, ν, ρ), we can associate with u a
composite flow and composite flow parameter and, consequently, we can introduce
the cone of variations C(y,J (u))R(x,0) in the extended control structure and apply
Theorem 1, in the following sense. If u is optimal, then the tangent vector −∂J ,
corresponding to the cost coordinate, can not be contained in the interior of the
cone of variations C(y,J (u))R(x,0). Indeed, using the notations from Theorem 1, the
curve defined by θ(t) = (y,J (u) − t) for t ∈ [0, 1] satisfies θ̇(0) = −∂J . Then, if
−∂J is contained in the interior of C(y,J (u))R(x,0), there exists an ε > 0 such that
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(x, 0) → (y,J (u)− ε) or, equivalently, there exists a control taking x to y with cost
J (u)− ε, which is impossible since u is assumed to be optimal.

The condition that −∂J is not contained in the interior of C(y,J (u))R(x,0) can
be translated into a ‘differential equation’ and a maximality condition, which are
known as the necessary conditions provided by the maximum principle. In the
remainder of this section we explain how these conditions are obtained.

2.3. Multipliers and the maximum principle. Before proceeding we still have
to introduce a few additional concepts. First, let V τ denote the bundle of vertical
tangent vectors to τ , i.e. V τ = {w ∈ TM | Tτ(w) = 0}, with dual bundle V ∗τ .
Note that the vertical cone of variations VyRx is entirely contained in Vyτ , justifying
the denomination “vertical cone”. Consider the fibred product U ×M V τ of U and
V τ over M , i.e. (u,w) ∈ U ×M V τ if u ∈ U , w ∈ V τ and ν(u) = τM (w), where
τM : TM → M denotes the tangent bundle projection. Let λ ∈ IR and define a
section σλ of the fibration U ×M T ∗M → U ×M V ∗τ by σλ(u, η) = (u, α) where α
is uniquely determined by the conditions

1. 〈α,T(ρ(u))〉+ λL(u) = 0, and
2. α projects onto η.

The map σλ is smooth, as is easily seen from the coordinate expression α =
−(ρi(u)ηi + λL(u))dt + ηidxi. Using σλ we can pull-back the canonical symplec-
tic two-form ω on T ∗M to a closed two-form ωλ on U ×M V ∗τ : ωλ = σ∗λ(pr∗2ω)
with pr2 : U ×M T ∗M → T ∗M , the standard projection onto the second factor.
Herewith, we can introduce the notion of a multiplier of a control.

Definition 3. Let u denote a control with base c. A pair (η(t), λ), where η(t) is a
piecewise smooth section of V τ along c and λ ∈ IR, is called a multiplier of u if the
following three properties are satisfied:

1. i(u̇(t),η̇(t))ωλ = 0 (on every smooth part of the curve (u(t), η(t))),
2. for any fixed t ∈ I, the function u′ 7→ 〈σλ(u(t), η(t)),T(ρ(u′))〉 + λL(u′),

defined on ν−1(c(t)), attains a global maximum for u′ = u(t),
3. (η(t), λ) 6= 0 for any t ∈ I = [a, b].

Another concept that we will need is that of the ‘dual of a cone’. Let C denote
a convex cone in a vector space V. The dual convex cone C∗ in V∗ is defined by

C∗ = {α ∈ V∗ | 〈α, v〉 ≤ 0, ∀v ∈ C}.
A result from [7], which we shall take for granted here, tells us that, given two
convex cones C and C ′, such that the interior of C has an empty intersection with
C ′, then they can be separated in the sense that there exists an α ∈ C∗ for which
〈α, C ′〉 ≥ 0. It is also instructive to note that C∗ = (cl(C))∗ and C∗∗ = cl(C),
where cl(C) denotes the closure of C (these results are taken from [3]).

We are now ready to state the following theorem, establishing a connection be-
tween the multipliers of a control and elements in the dual cone of V(y,J (u))R(x,0).
We agree to write elements, say η, of V ∗

(y,J (u))τ as (η, λ), where η ∈ V ∗τ and
λ ∈ IR, using the identification of V ∗

(y,J (u))τ with V ∗
y τ × IR, i.e. η = η +λdJ(y,J (u)).

A similar identification between T ∗(y,J (u))M and T ∗y M × IR can be made valid.

Theorem 2. Let (η, λ) denote a multiplier, then the covector in V ∗
(y,J (u))τ defined

by (η(b), λ), is contained in the dual cone (V(y,J (u))R(x,0))∗. On the other hand, if
(ηy, λ) ∈ (V(y,J (u))R(x,0))∗ then there exists a multiplier (η, λ) with η(b) = ηy.
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A straightforward corollary of this theorem is the maximum principle, formu-
lated in the following way: if a control u is optimal then there exists a multi-
plier (η, λ) with λ ≤ 0. Indeed, since −∂J can not belong to the interior of
C(y,J (u))R(x,0) if u is optimal, there must exist an element in (C(y,J (u))R(x,0))∗,
say (αy, λ), such that 〈(αy, λ),−∂J〉 ≥ 0 or, more specifically, λ ≤ 0. Since
V(y,J (u))R(x,0) ⊂ C(y,J (u))R(x,0), the restriction (ηy, λ) ∈ V ∗τ of (αy, λ) to V τ
is contained in the dual cone of V(y,J (u))R(x,0). We conclude that there exists a
(ηy, λ) ∈ (V(y,J (u))R(x,0))∗ with λ ≤ 0. Using Theorem 2, we have that there ex-
ists a multiplier (η, λ) such that λ ≤ 0. This necessary condition is precisely the
necessary condition of the maximum principle. The following theorem is a minor
generalisation of a theorem proven in [5] which will be used in the following section.

Theorem 3. Assume that u is a control taking x to y and let (η, λ) denote a
multiplier. Fix a composite flow Φ in the extended setting, such that ΦT ((x, 0)) =
(y,J (u)) and with associated vertical cone of variations V(y,J (u))R(x,0). Then

η(t) + λdJ = (TΦ
b

t)
∗ (η(b) + λdJ) .

Moreover, if we define α(t) = σλ(u(t), η(t)), then we also have:

α(t) + λdJ = (TΦ
b

t)
∗ (α(b) + λdJ) .

Remark 1. Let (αy, λ) denote an element in (C(y,J (u))R(x,0))∗. By definition
it is easily seen that both γ̇(b) + L(u)∂J and −(γ̇(b) + L(u)∂J) are elements in
C(y,J (u))R(x,0). Since (αy, λ) is an element in the dual cone, we have that

〈(αy, λ),± (γ̇(b) + L(u)∂J)〉 ≤ 0,

which is only possible if 〈(αy, λ), γ̇(b)+L(u)∂J〉 = 0. More specifically, since γ̇(b) =
T(ρ(u(b))), we obtain that αy = σλ(u(b), ηy), where ηy is the restriction of αy to
elements in Vyτ .

3. Optimal control problems with variable endpoints. Recall the definition
of an optimal control problem with variable endpoints from Section 1 and consider
two immersed submanifolds i : Si → M and j : Sf → M . We only treat the specific
case where either Si = {x} or Sf = {y}. We would like to mention explicitly that,
in this section, a control u taking a point x ∈ i(Si) to a point y ∈ j(Sf ) is said
to be optimal if, given any other control u′ taking x′ ∈ i(Si) to y′ ∈ j(Sf ), then
J (u) ≤ J (u′). Note that this notion of optimality is stronger then the notion of
optimality from the previous section. Consequently, we can already conclude that
if u is optimal among all controls taking points from Si to Sf , then there exists a
multiplier (η, λ) with λ ≤ 0. In this section we shall construct two more conditions
(one for the case where Si = {x} and one if Sf = {y}), which are known as the
transversality conditions (see [7]). The first of these two transversality conditions
(i.e. for Si = {x}) is easily derived in the next section. The second condition
(Sf = {y}) takes some more effort. In the sequel, we use the notations introduced
in the previous section.

3.1. The transversality condition at the endpoint (Si = {x}). Assume that
u is optimal. We consider the following tangent vector in T(y,J (u))M : w = −∂J +
Tj(v), where v ∈ TySf can be chosen arbitrarily. We shall now prove by contradic-
tion, that w is not contained in the interior of C(y,J (u))R(x,0).

Assume that w is in the interior of C(y,J (u))R(x,0). Fix any curve in Sf , say
θ : [0, 1] → Sf , satisfying the condition that the tangent vector at t = 0 equals v,
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i.e. θ̇(0) = v. We now define a curve θ : [0, 1] → M in the extended control structure
and apply Theorem 1. More specifically, let θ(t) = (j(θ(t)),J (u) − t) ∈ M . It is
easily seen that θ(0) = (y,J (u)), and that θ̇(0) = w = −∂J + Tj(v).

Using Theorem 1, we know that there exists an ε > 0 such that (j(θ(ε)),J (u)−
ε) ∈ R(x,0). In particular, we have that there exists a control taking x to j(θ(ε)) ∈ Sf

with cost J (u)− ε. However, since u is assumed to be optimal, this is not possible.
The same construction can be carried out for any positive multiple of w, implying
that the convex cone, generated by all vectors w = −∂J + Tj(v) for v ∈ Tj(TySf ),
can be separated from the cone of variations C(y,J (u))R(x,0). Therefore, there exists
a hyperplane in (αy, λ) ∈ (C(y,J (u))R(x,0))∗ such that 〈(αy, λ),−∂J + Tj(v)〉 ≥ 0,
for all v ∈ TySf . In particular, putting v = 0, we have 〈(αy, λ),−∂J〉 ≥ 0, or λ ≤ 0.
Following the same arguments as in the preceding section, we may conclude that
there exists a multiplier (η, λ) with λ ≤ 0, where η(b) equals the restriction of αy

to V τ . In Remark 1 we have stated that η(b) satisfies σλ(u(b), η(b)) = αy.
Take an arbitrary vector in the tangent space to Sf , i.e. v ∈ TySf . Then

λ ≤ 〈αy, v〉 holds by definition of (αy, λ). This equations is also valid for −v,
implying that λ ≤ −〈αy, v〉.

Assume λ = 0, then αy ∈ (Tj(TySf ))0 (where we use V0 denotes the annihilator
space in W∗ of a linear subspace V of W). On the other hand, if λ < 0, then we
obtain 1 ≥ 〈αy, λ−1v〉 and 1 ≥ −〈αy, λ−1v〉. Now, since this equation holds for any
multiple of v, we find again that αy ∈ (Tj(TySf ))0. We conclude that if u is optimal,
there exists a multiplier (η, λ) with λ ≤ 0 and σλ(u(b), η(b)) ∈ (Tj(TySf ))0.

3.2. The transversality condition at the starting point (Sf = {y}). In order
to prove a similar result for the initial submanifold Si, we are obliged to construct
a new control structure (τ ′, ν, ρ′), which we shall call the inverse control structure.

Consider the following bundle τ ′ : M → IR : x 7→ −τ(x). And consider the
map ξ : Γ(τ) → Γ(τ ′) defined as follows, if c :]a, b[→ M is contained in Γ(τ) then
ξ(c) :] − b,−a[→ M, t′ 7→ c(−t′). It is easily seen that ξ is invertible, and that it
induces a bundle morphism between J1τ and J1τ ′, which will be denoted by the
same letter for the sake of simplicity, and is defined by

ξ(j1
t c) = j1

−t(ξ(c)).

It is easily seen that ξ : J1τ → J1τ ′ is fibred over the identity on M and over the
mapping −1 : IR → IR : t 7→ −t, making the following diagram commutative.

J1τ -ξ J1τ ′

? ?
M M

? ?
IRIR -−1

-

τ τ ′

τ1,0 τ ′1,0

The total time derivative T′ : J1τ ′ → TM is related to T : J1τ → TM as follows:
T′(ξ(j1

t c)) = −T(j1
t c). Define a new anchor map ρ′ : U → J1τ ′ : u 7→ ξ ◦ ρ(u). We

shall now further investigate the relation between the geometric control structures
(τ ′, ν, ρ′) and (τ, ν, ρ), and in particular between the order relations induced by the
families of vector fields D′ and D, respectively.
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Assume that σ ∈ Γ(ν). The vector field T′ ◦ ρ′ ◦ σ equals T ◦ ρ ◦ σ up to a minus
sign. Indeed, since T′ ◦ ξ = −T, we obtain that

T′ ◦ ρ′ ◦ σ = T′ ◦ ξ ◦ ρ ◦ σ = −T ◦ ρ ◦ σ.

Therefore, we have D′ = −D. Let us write the order relation induced by D′ as
→′ and, as before the order relation induced by D as →. We then have that, if
x → y, then y →′ x, and vice versa. Indeed, assume that ΦT (x) = y, where Φ is
a composite flow associated with the ordered family (X`, . . . , X1) of vector fields in
D and T = (t`, . . . , t1) ∈ IR`

+. It is now easily seen that (ΦT )−1 is precisely ΨT∗ ,
where Ψ is the composite flow associated with (−X1, . . . ,−X`) of vector fields in
D′ and T ∗ = (t1, . . . , t`). Thus ΨT∗(y) = x or y →′ x. Moreover, if we consider
the cone of variations CxR′y in TxM with respect to the inverse control setting,
we obtain that CxR′y = −(TΦb

a)−1(CyRx). We will now reformulate Theorem 1
in terms of the inverse control structure (τ ′, ν, ρ′) leading to a new theorem in the
control structure (τ, ν, ρ).

Let θ : [0, 1] → M denote an arbitrary curve through x ∈ M at t = 0 such that
θ̇(0) is contained in the interior of CxR′y. Using Theorem 1 we obtain that there
exists an ε > 0 such that γ(t) ∈ R′y for 0 ≤ t ≤ ε. This brings us to the following
theorem, which is merely a reformulation of Theorem 1 applied to (τ ′, ν, ρ′).

Theorem 4. Let θ : [0, 1] → M with γ(0) = x. If −TΦb
a(θ̇(0)) is contained in the

interior of CyRx, then there exists an ε > 0 such that θ(t) → y for all 0 ≤ t ≤ ε.

We shall now use this result. Assume that x
u→ y, such that u is optimal.

Let v ∈ TxSi and let θ : [0, 1] → Si denote a curve with θ̇(0) = v. Let Φ denote a
composite flow in the extended setting such that ΦT ((x, 0)) = (y,J (u)) and consider
the curve θ : [0, 1] → M defined by θ(t) = (i(θ(t)), t), with θ̇(0) = Ti(v) + ∂J =
w. Assume that −TΦ

b

a(w) is contained in the interior of the cone of variations
C(y,J (u))R(x,0) in the extended setting. Then, from Theorem 4, it is easily seen
that (i(θ(ε)), ε) → (y,J (u)) for some ε > 0. This implies that there exists a control

u′ with i(θ(ε)) u′→ y with cost J (u′) = J (u) − ε. Since θ(ε) ∈ Si and since we
assumed u to be optimal, this is impossible.

The further analysis is basically the same as the one in Section 3.1. Again we
consider the convex cone generated by all tangent vectors of the form −TΦ

b

a(∂J +
Ti(v)), where v ∈ TxSi is arbitrary. Using a result from above, this cone can be
separated from the cone of variations C(y,J (u))R(x,0). This implies the existence of
an element (αy, λ) in the dual cone of C(y,J (u))R(x,0) such that, in addition,

〈(αy, λ),−TΦ
b

a(∂J + Ti(v))〉 ≥ 0.

Consider the restriction ηy of αy to the set of vertical vectors V τ (see Remark 1).
Since (ηy, λ) is an element of the dual to the vertical cone of variations, we have
that there exists a multiplier (η, λ) (with η(b) = ηy and αy = σλ(u(b), ηy)) such
that

〈σλ(u(b), η(b)) + λdJ,−TΦ
b

a(∂J + Ti(v))〉 ≥ 0,

for all v ∈ TxSi. If we use Theorem 3, then

〈σλ(u(a), η(a)) + λdJ,−∂J − Ti(v)〉 ≥ 0.

For v = 0, we find that λ ≤ 0, which is the standard necessary condition from the
maximum principle. If v can be chosen arbitrarily we have 〈αy, T i(v)〉 ≤ −λ. If λ =
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0, then 〈αy, T i(v) ≤ 0 and −〈αy, T i(v)〉 ≤ 0, implying that αy ∈ (Ti(TxSi))0. If, on
the other hand, λ < 0, then 〈αy, T i(λ−1v)〉 ≥ 1 and −〈αy, T i(λ−1v)〉 ≥ 1. Since this
inequality holds for any multiple of v, we obtain once more that αy ∈ (Ti(TxSi))0.
The results from Sections 3.1 and 3.2 can now be combined in the following theorem,
which is a geometric version of the maximum principle for optimal control problem
with variable endpoint conditions, provided either Si or Sf reduces to a point.

Theorem 5. Assume that u is a control taking x to y. If u is optimal among all
controls with initial point in Si and final point in Sf then there exists an extremal
(η, λ) such that

1. λ ≤ 0,
2. σλ(u(a), η(a)) ∈ (Ti(TxSi))0, if Sf = {y}, or

σλ(u(b), η(b)) ∈ (Tj(TySf ))0, if Si = {x}.
It is easily seen that this theorem agrees with the results obtained in [7, p 48].
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