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We investigate a geometric model for a certain class of first-order differential
equations on an affine bundle, called pseudo-Sodes. We mention a generalised
version of the concept of connection. Further, if the affine bundle is related to a
Lie algebroid, we give a definition for torsion and curvature for such a generalised
connection. Next, we show how a pseudo-Sode generates a generalised connection
and we characterise this construction by means of the vanishing of torsion.
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1. Introduction

Consider an affine bundle π : E → M (modeled on a vector bundle π : E → M) with
a given affine bundle map ρ : E → TM . In this context we will refer to ρ as anchor map
and to (π, ρ) as an anchored affine bundle. Let xa denote local coordinates for m ∈ M .
In order to coordinatise E, we choose a zero section e0 in Sec(π) and a local basis {eeeα}
for Sec(π). Then, every point e ∈ Em can be rewritten as e0(m) + yαeeeα(m), for some
(affine) fibre coordinates yα. Locally, ρ : (x, y) 7→ (x, ρa

α(x)yα + ρa
0(x)) for functions ρa

α

and ρa
0 on M . Consider a curve ψ in E, locally given by t 7→ (x(t), y(t)). This paper

concerns the geometrical modeling of dynamical systems of the form
{

ẋa = ρa
α(x)yα + ρa

0(x),
ẏα = fα(x, y), (1)

for a certain set of functions fα ∈ C∞(E).
First, we will say a few words to explain our interest in this kind of differential

equations. In [16], Weinstein was the first to study a certain generalisation of the class
of autonomous Lagrangian systems. The setup for this extension is an arbitrary Lie
algebroid whose vector bundle replaces the tangent bundle TM → M as carrying space,
while its anchor map serves as a bridge between these two bundles. In addition, an
extension of the Lie bracket of the algebroid takes the role of the canonical Lie bracket
structure on TTM → TM . Weinstein’s ideas were further explored in e.g. [2, 3, 8, 10].

[1]
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In previous papers [14, 11] we have modified this setup in such a way that also time
dependent Lagrangians fit in. This involved the use of an affine bundle E → M rather
than a vector bundle. As a consequence, we had to investigate how one can introduce
a structure on E that is similar to a Lie algebroid. We will come back to this affine
Lie algebroid in section 3.2. However, the ‘Lagrangian equations’ that we found for a
Lagrangian L(x, y) take the form





ẋa = ρa
αyα + ρa

0 ,
d

dt

(
∂L

∂yα

)
= ρa

α

∂L

∂xa
− (Cγ

αβyβ − Cγ
0α)

∂L

∂yγ

(2)

where the structure functions ρa
α, ρa

0 , Cγ
αβ , Cγ

0α ∈ C∞(M) further satisfy suitable com-
patibility conditions. Obviously, for a regular Lagrangian (meaning that the rank of

∂2L
∂yα∂yβ equals the fibre dimension of π) the system (2) can be transformed to (a special
case of) the equations (1).

In the special case that the affine bundle under investigation is the first jet bundle
J1M → M of a bundle M → IR, ρ is the natural injection J1M → TM (i.e. ρa

α = 1,
ρa
0 = 0) and the bracket structure is the canonical bracket one on TJ1M → J1M (i.e.

Cγ
0α = 0 and Cγ

αβ = 0) we recover in (2) the Lagrangian equations for a time-dependent
Lagrangian. In this special situation, one uses adapted coordinates (t, xi, ẋi) for (xa, yα).
With these assumptions on the anchor map, the system (1) takes the form of a set of
time-dependent second-order ordinary differential equations (in the following called a
Sode in short)

ẍi = f i(t, x, ẋ). (3)

The class of dynamical systems of the form (1) can thus be seen as an extension of the
class of Sodes. In the case that the affine bundle under consideration is in fact a vector
bundle (with a Lie algebroid structure on it), Weinstein has called the equations (1)
“second-order equations on a Lie algebroid”. It is clear that these equations are truly
second-order differential equations only when the base manifold and the fibres have the
same dimension and ρ is injective. Therefore we will adopt the name ‘pseudo’-Sode for
a system of the form (1).

In the next section we recall a geometric model for a pseudo-Sode and in the first
part of the third section we investigate (generalised) connections on anchored affine
bundles and the notion of an affine Lie algebroid. Such concepts were fully explored
in [14, 11, 12]. We limit ourselves here to the main features which are needed to set
the stage for some new elements which will be developed in the present contribution.
First, for the kind of generalised connections under consideration, we look at the way
torsion and curvature can be introduced. More specifically, we show that such concepts
become apparent only within the new formalism introduced in [12], that of regarding the
connection as a splitting of a short exact sequence related to a prolonged bundle. Next,
we show that any given pseudo-Sode on an affine Lie algebroid gives rise in a natural
way to an associated generalised connection and prove that it can be characterised by a
zero torsion property.
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2. Pseudo-Sodes

A curve ψ in E which satisfies the condition ẋa = ρa
αyα + ρa

0 can be characterised by
the condition T (π ◦ψ) = ρ ◦ψ. Such a curve is called ρ-admissible. Obviously, a pseudo-
Sode is a vector field Γ on E whose integral curves are all admissible: Γ =

(
ρa

α(x)yα +
ρa
0(x)

)
∂

∂xa + fα(x, y) ∂
∂yα for some functions fα. There exists a direct formulation of this

property:

Definition 1. Γ ∈ X (E) is a pseudo-Sode if Tπ ◦ Γ = ρ.

It is possible to develop a second characterisation. The property that for every e ∈ E,
Tπ(Γ(e)) = ρ(e), indicates that the couple (e,Γ(e)) is actually a point of the manifold

T ρE = {(a,Xe) ∈ E × TE | ρ(a) = Tπ(Xe)}.

This manifold is the total manifold of the pullback bundle π2 : ρ∗TE → E : (a,Xe) 7→ a.
We will use the notation ρ1 for the projection on the second argument of a couple, i.e.
ρ1(a,Xe) = Xe. We prefer to use the notation T ρE for ρ∗TE because, as in [7], we would
like to look at it as being fibred over E via the projection π1 = τE ◦ρ1 (τE is the tangent
projection and thus π1(a, Xe) = e). We can then consider a pseudo-Sode as a section
e 7→ (e,Γ(e)) of π1, i.e. a section for which the projection π2 always coincides with the
bundle projection π1.

The bundle π1 : T ρE → E is affine again. Now, in order to avoid the technical
difficulties related for example to working with (vector valued) forms on affine bundles,
it is convenient to regard π1 as imbedded in a larger vector bundle which is constructed
in the following way. Let us have a look first at the affine bundle π again. Consider the
set E†

m := Aff(Em, IR) of all affine functions from Em to IR. The union of all such spaces
forms a manifold E† =

⋃
m∈M E†

m and leads to the vector bundle π† : E† → M , called the
extended dual. The dual of π† is again a vector bundle, denoted by π̃ : Ẽ := (E†)∗ → M .
This new bundle contains both E and E since there exist canonical injections ι : E → Ẽ
and ιιι : E → Ẽ. The map ι is defined by ι(e)(φ) = φ(e) for e ∈ Em and φ ∈ Aff(Em, IR).
It is an affine map and ιιι is its associated linear map. It can be shown that every element
of Ẽm is either of the form λι(e) (for a unique λ ∈ IR and e ∈ Em) or ιιι(eee) (for a unique
eee ∈ Em). As a consequence it follows that the set {e0 = ι(e0), eα = ιιι(eeeα)} forms a local
basis for Sec(π̃). Let us use ρρρ : E → TM for the linear map that is associated to ρ. It
is convenient to extend ρ to a map ρ̃ : Ẽ → TM , defined by means of ρ̃(λι(e)) := λρ(e)
and ρ̃(ιιι(eee)) := ρρρ(eee). In coordinates, ρ̃ : (x; y0, yα) 7→ (x; ρa

αyα + ρa
0y0).

We can now come to the construction of the required vector bundle. Consider now
the following (vector) bundle over E with total space

T ρ̃E := ρ̃∗TE = {(ẽ, Xe) ∈ Ẽ × TE | ρ̃(ẽ) = Tπ(Xe)}

and projection π̃1 := τE ◦ ρ̃1 : T ρ̃E → E : (ẽ, Xe) 7→ e (again, we use the notations
π̃2(ẽ, Xe) = ẽ and ρ̃1(ẽ, Xe) = Xe). In our special example, E = J1M , Ẽ = TM ,
ρ̃ = id and T idJ1M ∼= TJ1M . In general, π1 is an affine subbundle of π̃1 (see [11]),
but it contains also a canonical vector subbundle. An element of T ρ̃E is called vertical
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if it is in the kernel of the projection π̃2 and we will denote the whole set with V ρ̃E.
Remark that for any (0, Xe) ∈ V ρ̃E, Xe is also vertical as a tangent vector to TeE, since
Tπ(Xe) = ρ̃(0) = 0.

A lot of properties become more visible, once we have selected an appropriate basis for
the sections of T ρ̃E. Evidently, the local sections Vα, given by Vα(e) =

(
0, ∂

∂yα

∣∣∣
e

)
, span

the vertical sections. We can extend this set to a full basis for Sec(π̃1) by making use
of the sections XA, given by XA(e) =

(
eA(x), ρa

A(x) ∂
∂xa

∣∣
e

)
, which project to the original

basis {eA} of Sec(π̃) (Here, and in what follows x denote coordinates for π(e) ∈ M
and indices such as A stand for either 0 or α). An arbitrary section of π̃1 can thus be
represented by

Z = ζAXA + ZαVα

(with ζA, Zα ∈ C∞(E)). The dual basis in Sec(π̃1∗) is denoted by {XA,Vα}. It can be
shown that X 0 is a globally defined 1-form. We have shown in [11] that it is possible to
define a (vertical) lift procedure, mapping sections of π∗Ẽ onto vertical ones. As usual,
this results in the definition of the vertical endomorphism S, which is a (1,1)-tensor field
on T ρ̃E whose coordinates expression reads

S = (Xα − yαX 0)⊗ Vα. (4)

After this brief introduction of the essential machinery on T ρ̃E, we can give two
equivalent formulations for a pseudo-Sode as a section of π̃1. Hereto, we will use the
same symbol Γ as its image under ρ̃1 in Definition 1.

Definition 2. Γ ∈ Sec(π̃1) is a pseudo-Sode if one of the following equivalent
conditions is satisfied: (i) π̃2 ◦ Γ = ι ◦ π̃1 ◦ Γ, (ii) S(Γ) = 0 and X 0(Γ) = 1.

Of course, the first is a direct consequence of what we first found for π1, while the second
is the direct analogue of the way one usually singles out the Sodes in X (J1M). In
coordinates, a pseudo-Sode can be represented by

Γ = X0 + yαXα + fαVα. (5)

3. Generalised connections on π associated with a pseudo-Sode

It is well known (see e.g. [4]) that, given a Sode Γ (3), we can construct a nonlinear
connection on J1M → M . A nonlinear connection is usually characterised as a (right)
splitting of the short exact sequence

0 → V J1M → TJ1M → π∗TM → 0

(V J1M being the vertical subbundle in TJ1M). For the nonlinear connection that is
generated by Γ, it is most convenient to present an explicit formula for its associated
horizontal projector:

PH =
1
2

(
I − LΓS + dt⊗ Γ

)
. (6)
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Remark that in expression (6) some of the most important canonical structures on
TJ1M → J1M , such as the vertical endomorphism S = (dxi − ẋidt) ⊗ ∂

∂ẋi and the
global 1-form dt, are involved. In addition, the presence of the term LΓS demonstrates
that the above construction highly relies on the canonical Lie algebroid structure on
TJ1M → J1M . We will show next how the above construction easily carries over to the
more general case of a pseudo-Sode.

3.1. Generalised connections on π

With the vector bundle π̃1 : T ρ̃E → E, we have provided an appropriate analogue for
the bundle TJ1M → J1M . Let’s have a look now if we can define a suitable generalisation
of a nonlinear connection on it. The vertical subbundle in T ρ̃E indeed leads to a short
exact sequence

0 → V ρ̃E → T ρ̃E
j→ π∗Ẽ → 0. (7)

Here, the second arrow denotes the injection of V ρ̃E as a subbundle in T ρ̃E. The fibre
linear map j is given by j(ẽ, Xe) = (e, ẽ). It is surjective and its kernel is V ρ̃E. A
splitting of this sequence is a map H : π∗Ẽ → T ρ̃E such that j ◦ H = idπ∗Ẽ .

Let pẼ denote the projection π∗Ẽ → Ẽ. In [12], we have shown that

Proposition 1. The existence of a linear bundle map h : π∗Ẽ → TE such that
Tπ ◦ h = ρ̃ ◦ pẼ is equivalent to the existence of a right splitting H of the short exact
sequence (7).

The map h is called a ρ̃-connection on π and is, in this most general form, introduced in
[1], where the authors were inspired by earlier work in e.g. [6, 5, 15]. The characterisation
of a ρ̃-connection in terms of a horizontal lift H can be represented locally by

(xa, yα, uA)
H

=
(

(xa, uA), uA

(
ρa

A

∂

∂xa
− Γα

A

∂

∂yα

))

for some connection coefficients Γα
A ∈ C∞(E). It is convenient to introduce a local basis

for the horizontal sections of π̃1 (i.e. those whose image belong to the direct complement
of V ρ̃E), which is given by HA = XA − Γα

A(x, y)Vα. A better representation of a section
Z, adapted to the given connection, then becomes:

Z = ζAHA + (Zα + ζAΓα
A)Vα.

The horizontal projector PH : Sec(π̃1) → Sec(π̃1) is then given by

PH(Z) = ζAHA.

3.2. Affine Lie algebroids

So far, we have only talked about anchored affine bundles. In order to introduce
torsion and curvature for generalised connections, we will require, next to the anchor
map, also the presence of a Lie bracket structure. We first recall the definition of an
affine Lie algebroid from [14] and [11].
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Definition 3. A Lie algebroid structure on the affine bundle π consists of:

1. a real Lie algebra structure on Sec(π);

2. an action by derivations of the affine bundle Sec(π) on the real Lie algebra Sec(π)
which is compatible with the bracket on Sec(π);

3. an affine anchor map ρ : E → TM which is such that Sec(π) also acts by derivations
on Sec(π), regarded as C∞(M)-module.

Of course, it is necessary to be more precise about the correct interpretation of the
terminology used in this compact formulation. The first item is clear and we use the
standard bracket notation [ , ] for the (real) Lie algebra on Sec(π). If Dζ is used for the
action of ζ ∈ Sec(π) on Sec(π), then the derivation property referred to in the second
item means that we have the properties: Dζ(λσσσ) = λDζσσσ (for all σσσ ∈ Sec(π) and λ ∈ IR);
Dζ(σσσ1 +σσσ2) = Dζσσσ1 +Dζσσσ2 and Dζ [σσσ1,σσσ2] = [Dζσσσ1,σσσ2]+[σσσ1, Dζσσσ2]. The compatibility
requirement mentioned in the same item further means that Dζ+σσσηηη = Dζηηη + [σσσ,ηηη].
Finally, the compatibility requirement with respect to the anchor map, referred to in the
third item, means that for f ∈ C∞(M), Dζ(fσσσ) = ρ(ζ)(f)σσσ + f Dζσσσ.

As shown in [11], having a Lie algebroid structure on the affine bundle π is equivalent
to having a Lie algebroid on the vector bundle π̃ : Ẽ → M (with respect to the extended
anchor map ρ̃), which is such that the bracket of sections of π̃ belonging to the image of
ι, belongs to the image of ιιι. It is then appropriate to use bracket notation also for the
action of Dζ , i.e. to put [ζ,σσσ] = Dζσσσ.

Having chosen a local frame (e0; {eeeα}) for Sec(π), with corresponding local basis
{eA} = {e0, eα} for Sec(π̃), there exist structure functions on M , determined by

[e0, eα] = Cβ
0α(x)eβ and [eα, eβ ] = Cγ

αβ(x)eγ .

An important further property, proved in [11], is the following.

Proposition 2. An affine Lie algebroid structure on π prolongs to a vector Lie
algebroid structure on the bundle π̃1 : T ρ̃E → E, with respect to the anchor map ρ̃1.

Locally, the Lie algebroid structure on the prolonged bundle is determined by the
bracket relations:

[XA,XB ] = Cγ
ABXγ , [XA,Vα] = 0, and [Vα,Vβ ] = 0.

Suppose now again that we have a ρ̃-connection on π. Then, it will often be more suitable
to use as local basis for Sec(π̃1) the set {HA,Vα}, as discussed in the previous section.
For later use, therefore, it is of interest to list the following brackets of horizontal and
vertical sections:

[HA,Vα] =
∂Γδ

A

∂yα
Vδ, [HA,HB ] = Cδ

ABHδ+(Cδ
ABΓγ

δ +ρ̃1(HB)(Γγ
A)−ρ̃1(HA)(Γγ

B))Vγ . (8)
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3.3. Torsion and curvature

Once we have a Lie algebroid structure on a vector bundle, it becomes possible to
define a bracket operation also on ‘vector-valued forms’ on sections of that bundle, in
exactly the same way as it is done in the standard Frölicher and Nijenhuis theory (see
e.g. [13]). Coming back now to our present situation, we have already come across two
type (1,1) tensor fields on the Lie algebroid T ρ̃E, namely the vertical endomorphism S
and the horizontal projector PH . Using the Lie algebroid bracket on π̃1, we thus can
define torsion and curvature of the given (non-linear) ρ̃-connection on π in the way this
is usually done for connections on a tangent bundle.

Definition 4. The torsion T and curvature R of a ρ̃-connection on π are skew-
symmetric, C∞(E)-bilinear maps: Sec(π̃1) × Sec(π̃1) → Sec(π̃1), determined by T =
[PH , S] and R := 1

2 [PH , PH ].

We can use (8) to calculate T and R in coordinates.

T =
1
2

(
∂Γγ

α

∂yβ
− ∂Γγ

β

∂yα
− Cγ

αβ

)
Xα ∧ X β ⊗ Vγ

+
(

∂Γγ
0

∂yα
− Γγ

α + yβ ∂Γγ
α

∂yβ
− Cγ

0α

)
X 0 ∧ Xα ⊗ Vγ ,

R =
1
2

(
ρ̃1(Hβ)(Γγ

α)− ρ̃1(Hα)(Γγ
β) + Cµ

αβΓγ
µ

)
Xα ∧ X β ⊗ Vγ

+
(
ρ̃1(Hα)(Γγ

0)− ρ̃1(H0)(Γγ
α) + Cµ

0αΓγ
µ

)
X 0 ∧ Xα ⊗ Vγ .

In [1] the notions of torsion and curvature of a generalised connection were only intro-
duced under rather special circumstances, namely that the connection is linear (which
requires, in the current set-up, that π is in fact a vector bundle). That there exist
such notions as torsion and curvature for the non-linear case also, becomes clear only
if the interest is shifted, as we do, from horizontality on TP → P to horizontality on
π̃1 : T ρP → P .

3.4. Generalised connection associated with a pseudo-Sode

It is time to bring the pseudo-Sodes back into the picture. In the special case that
the pseudo-Sode Γ lives on the extended Lie algebroid π̃1 of an affine Lie algebroid π,
we can easily define a ρ̃-connection on π that is associated with the pseudo-Sode : we
only have to formally copy the formula (6):

PH =
1
2

(
I − dΓS + X 0 ⊗ Γ

)
. (9)

Here, the vertical endomorphism is given by (4) and, if d is the exterior derivative of the
extended Lie algebroid π̃1, dΓ = [iΓ, d] plays the role of the Lie derivative in the classical
theory (see e.g. [9, 13] for a definition). The proof relies (exactly as in the case of Sodes,
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see e.g. [4]) on the observation that the square of the operator Q = LΓS−X 0⊗Γ equals
the identity, and thus gives rise to two complementary operators PH = 1

2 (I − Q) and
PV = 1

2 (I + Q). We will omit it here. The connections coefficients for the pseudo-Sode
(5) are

Γα
0 = −fα +

1
2
yβ

(∂fα

∂yβ
+ Cα

0β

)
= −fα − yβΓα

β and

Γα
β = −1

2

(∂fα

∂yβ
+ yγCα

γβ + Cα
0β

)
. (10)

Proposition 3. A ρ̃-connection on π is associated with a pseudo-Sode (by means
of (9)) if and only if its torsion vanishes.

Proof. We give a short coordinate proof. Substituting connection coefficients of the
form (10), one finds that indeed T = 0 holds. On the other hand, if T = 0, then
∂Γγ

α

∂yβ + 1
2Cγ

βα =
∂Γγ

β

∂yα + 1
2Cγ

αβ and thus ∂
∂yβ

(
Γγ

α + 1
2yµCγ

µα

)
= ∂

∂yα

(
Γγ

β + 1
2yµCγ

µβ

)
. This

means that there exist functions gγ ∈ C∞(E), such that

Γγ
α +

1
2
yµCγ

µα =
∂gγ

∂yα
. (11)

We will use this observation in the other part of the (zero) torsion: the coefficient of
X 0 ∧ Xα ⊗ Vγ can be rewritten as ∂

∂yα

(
Γγ

0 − yµCγ
0µ − 2gγ + yβ ∂gγ

∂yβ

)
= 0, thus

Γγ
0 − yµCγ

0µ − 2gγ + yβ ∂gγ

∂yβ
= hγ (12)

for some functions hγ on M . Let us introduce now the functions fγ = −2gγ−hγ−Cγ
0µyµ.

Expressions (11,12) for gγ and hγ can be rewritten in terms of fα, leading indeed to the
connection coefficients (10).

Acknowledgments. I am indebted to W. Sarlet and E. Mart́ınez for many useful
discussions.
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Birkhäuser, Basel, (1994).

[16] A. Weinstein, In: Mechanics day (Waterloo, ON, 1992), (Fields Institute Communications
7, American Mathematical Society, 1996), 207–231.


