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Introduction

The concept of a Finsler manifold is as old as the concept of a Riemannian manifold, since
it was Riemann himself who suggested the investigation of more general ‘non-Riemannian’
metrics in his Habilitationsvortrag of 1854 (see e.g. [21, 4]). A class of these more general
metrics, called now the class of Finsler metrics, was first investigated by Finsler in his
thesis (1918). However, Finsler geometers usually do not refer to a metric tensor as
the cornerstone of their theory: traditionally Finsler geometry is cast in terms of a 1-
homogeneous function, called the fundamental function, or a 2-homogeneous function,
the so-called energy, and only secondary, is the ‘Finsler metric’ introduced as the Hessian
of the energy. In contrast with this point of view, in our present paper, we intend to treat
Finsler metrics (and more general structures) as being prior to the energy.

Speaking in coordinate terms, the most striking difference between a Riemannian metric
and a Finsler metric is that the local components of the latter typically depend also on the
fibre coordinates of the tangent manifold. In the past, a lot of models have been proposed

∗We would like to dedicate this paper to Prof. L. Tamássy on the occasion of his 80th birthday.
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to describe Finsler geometry. In our experience it turns out to be convenient to think
about Finsler metrics as a special subset in the class of symmetric and non-degenerate
(0,2) tensor fields of a certain pullback bundle. In the following, we will refer to all such
tensor fields as metrics. In [13], M. Hashiguchi gave a necessary and sufficient condition
for a metric to be the Hessian of some Finsler energy and used for the first time the
adjective normal to distinguish Finsler metrics from all others.

Although Finsler geometry has proved its merit in a lot of domains in physics, biology,
ecology, etc. (see e.g. [2]), there remain a number of theories that need a less restricted
class of metrics (see e.g. [19] Ch. XI, Ch. XII and the references therein). In this paper
we will study metrics in a broader context, meaning that they need not necessarily be
the Hessian of some energy. There exists a long history of attempts to generalize Finsler
geometry, mainly written in the language of classical tensor calculus. Here, we will men-
tion only two papers which have a direct link with the current paper. In [23] and [18], the
two authors considered a subclass of metrics that is more general than the class of nor-
mal metrics. These two subclasses are different from each other: J.R. Vanstone, building
upon earlier work of A. Moór [20], studied certain aspects of homogeneous metrics, while
the metrics of R. Miron satisfy a weaker condition than M. Hashiguchi’s. We will come
back to the precise characterization of these two classes in the fourth section. A lot of
applications in metric geometry involve the use of a metric derivative. Both papers have
in common that the authors were able to provide a local coordinate formulation for a
‘canonical’ metric derivative in their subclass. The main reason why they could find such
a formulation is related to the ability of their subclass to generate a regular Lagrangian.
The regularity of this Lagrangian implies the existence of a canonical semispray, which in
turn leads to an associated horizontal distribution. In general, such a horizontal distribu-
tion is not ‘canonically’ available for an arbitrary metric. Its presence makes it possible to
simplify the problem of metric derivatives to the search for two appropriate tensor fields
on the pullback bundle. Later, in [19], R. Miron and M. Anastasiei recognized this idea
in a theorem that gives an explicit coordinate formulation for all ‘metrical connections’
when the availability of a horizontal distribution is assumed (which is a priori not related
to the metric).

After elaborating some elementary tools, we give a review on Hessians, Lagrangians and
metrics in the third section. Next, we investigate the circumstances under which a metric
admits a regular Lagrangian and thus an associated semispray. Section 3 ends with a
survey in the form of a tabular with the most interesting cases. In the last section we
present a coordinate-free description of a metric derivative associated to a given horizon-
tal distribution and we supply a simple coordinate-free formulation for all other metric
derivatives.

1 Basic setup

In order to keep our paper more or less self-contained, we shall start this section with
a brief overview of the elementary terminology and fix some notational conventions. A
recent reference for a detailed survey of this background material is the study [22].
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We work over an n-dimensional smooth manifold M and assume that its topology is Haus-
dorff, second countable and connected. C∞(M) denotes the ring of real-valued smooth
functions on M . X (M) and Ak(M) (1 ≤ k ≤ n) stand for the C∞(M)-modules of vector

fields and differential k-forms on M , respectively. A0(M) := C∞(M); A(M) :=
n⊕

k=0
Ak(M)

is the exterior algebra of M . The familiar wedge product ∧ makes A(M) into a graded
algebra over the ring C∞(M). A vector k-form on M is a C∞(M)-multilinear skew-
symmetric map (X (M))k → X (M) (1 ≤ k ≤ n). The C∞(M)-module of vector k-forms
will be denoted by Bk(M). We agree that B0(M) := X (M) and we denote the direct sum
n⊕

k=0
Bk(M) by B(M).

τ : TM → M is the tangent bundle of M ;
◦
TM ⊂ TM is the (open) set of all nonzero

tangent vectors. The natural projection
◦
TM → M is denoted by

◦
τ . We shall remain in the

smooth category, however, in Finsler geometry, the smoothness of some objects living on

the tangent bundle is guaranteed only over
◦
TM . The elements of the kernel of the tangent

map Tτ : TTM → TM of the tangent bundle projection τ form the vertical submanifold
V TM of TTM ; V TM is the total manifold of the vertical bundle V τ : V TM → TM
to τ . The C∞(TM)-module X v(TM) of the sections of the vertical bundle is called the
module of vertical vector fields on TM . The vertical lift of a smooth function f on M is
the function f v := f ◦ τ ∈ C∞(TM), the complete lift of f is the function f c : TM → IR,
v 7→ f c(v) := v(f). Any vector field on TM is uniquely determined by its action on the
complete lifts of smooth functions on M , so, given a vector field X on M , there exist
unique vector fields Xv and Xc on TM , such that Xvf c = (Xf)v and Xcf c = (Xf)c

for all X ∈ X (M). Xv and Xc are said to be the vertical and the complete lift of X,
respectively. Now we can formulate our first local basis principle: if (X1, . . . , Xn) is a
local basis of vector fields on M , then (Xc

1, . . . , X
c
n, X

v
1 , . . . , Xv

n) is a local basis of vector
fields on TM .

The majority of our concepts will live on the pullback bundle τ ∗τ of the tangent bundle
by its own projection. It is a vector bundle over TM with total manifold τ ∗TM =
TM ×M TM := {(v, w) ∈ TM × TM | τ(v) = τ(w)}. The fibres of τ ∗τ are the n-
dimensional real vector spaces {v}× Tτ(v)M ∼= Tτ(v)M, v ∈ TM . Any section of τ ∗τ is of
the form

X̃ : v ∈ TM 7→ X̃(v) = (v, X(v)) ∈ TM ×M TM,

where X : TM → TM is a smooth map such that τ ◦X = τ . In particular, we have the
specific section

δ : v ∈ TM 7→ δ(v) := (v, v) ∈ TM ×M TM

of τ ∗τ , called the canonical vector field along τ . In the following we shall identify the
sections of τ ∗τ with the smooth maps X : TM → TM that satisfy the requirement
τ ◦ X = τ . The C∞(TM)-module of such maps is denoted by X (τ), and an element of
this module is said to be a vector field along the tangent bundle projection. Under this
identification the canonical section δ corresponds to the identity map 1TM . A special class
of vector fields along the projection is formed by the sections of the form X̂ := X ◦ τ ,
where X is a vector field on M . For obvious reasons, X̂ will be called the lift of X
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into X (τ), or a basic vector field along τ . If (X1, . . . , Xn) is a local basis of X (M), then
(X̂1, . . . , X̂n) is a local basis for X (τ). This observation, referred to as the second local
basis principle, will simplify a great deal of our calculations.

By a one-form along τ we mean an element of the dual module of X (τ). As in the case
of vector fields along τ , any one-form α̃ along τ may be regarded as a smooth map of
TM into T ∗M :=

⋃
p∈M

(TpM)∗ that satisfies the condition τ ∗ ◦ α̃ = τ , where τ ∗ is the

natural projection T ∗M → M . We denote the C∞(TM)-module of these maps by A1(τ).
For any one-form α on M , the map α̂ := α ◦ τ is a one-form along τ , called the lift of
α into A1(τ), or a basic one-form along τ . By a k-fold contravariant, l-fold covariant
tensor field, briefly a type (k, l) tensor field along τ , we mean a C∞(TM)-multilinear

map
(A1(τ)

)k × (X (τ)
)l → C∞(TM). The C∞(TM)-module of these tensor fields will

be denoted by T k
l (τ). We agree, as usual, that T 0

0 (τ) := C∞(TM). The elements of
T k

l (τ) may indeed be regarded as ‘fields’ which smoothly assign to each element v of the
base manifold TM a type (k, l) tensor on the fibre {v} × Tτ(v)M ∼= Tτ(v)M over v. For
example, if g ∈ T 0

2 (τ), then g may be interpreted as a smooth map v ∈ TM 7→ gv, where
gv : Tτ(v)M×Tτ(v)M → IR is a bilinear form. Notice that any tensor field A on M induces

a basic tensor field Â := A ◦ τ along τ . To end this brief summary on vector fields, forms
and tensor fields along τ , we mention that we will also use τ ∗τ -valued vector forms on
TM . By a τ ∗τ -valued k-form on TM we mean a skew-symmetric C∞(TM)-multilinear
map of (X (TM))k into X (τ).

Most of our canonical objects may be identified from the short exact sequence

(1) 0 → τ ∗TM
i→ TTM

j→ τ ∗TM → 0

of vector bundles over TM . Here the map j is defined by j(z) := (v, T τ(z)), for all
v ∈ TM, z ∈ TvTM , while the simplest description of i uses local coordinates. Let(
U, (u)n

i=1

)
be a chart on M , and let us consider the induced chart

(2)
(
τ−1(U), (xi)n

i=1, (y
i)n

i=1

)
; xi := (ui)v, yi := (ui)c (1 ≤ i ≤ n).

on TM . Then for any vectors v, w ∈ Tτ(v)M ,

(3) i(v, w) =
n∑

i=1

yi(w)
( ∂

∂yi

)
v

=: yi(w)
( ∂

∂yi

)
v
.

The composite of i and δ yields another canonical object, the Liouville vector field C := i◦δ
on TM . The short exact sequence (1) gives rise to a short exact sequence

0 → X (τ)
i→ X (TM)

j→ X (τ) → 0.

of modules over C∞(TM), where, for simplicity, we also denote by i and j the induced
maps between the modules of sections. Notice that

(4) iX̂ = Xv, jXc = X̂ for all X ∈ X (M).
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The map i is an isomorphism between X (τ) and X v(TM), so any vertical vector field on
TM can be represented uniquely in the form iX̃ (X̃ ∈ X (τ)). The map j is surjective,
therefore any vector field along τ is of the form jξ, ξ ∈ X (TM). i and j enable us to
introduce our next canonical object, the vertical endomorphism J := i ◦ j. J is a type
(1, 1) tensor field on TM . Using (4) and the relation j ◦ i = 0, it follows that

(5) JXc = Xv, JXv = 0 for all X ∈ X (M),

therefore ImJ = KerJ = X v(TM) and J2 = 0.

Although we have now explained the most important canonical objects, sometimes it will
be convenient to assume the presence of one additional ingredient. A horizontal map for
τ is a (right) splitting H : τ ∗TM → TTM of the short exact sequence (1), i.e. a strong
bundle map such that j ◦H = 1τ∗TM . The existence of a horizontal map is guaranteed by
the second countability of the topology of the base manifold. Let Hv := H ¹ {v}×Tτ(v)M
(v ∈ TM), HTM :=

⋃
v∈TM

ImHv, and let Hτ be the natural projection of HTM onto TM .

There is a unique smooth manifold structure on HTM which makes Hτ : HTM → TM
into a vector bundle. This vector bundle is said to be the horizontal bundle induced by
H and denoted by Hτ . Then TTM = HTM ⊕V TM ; fibrewise TvTM = ImHv ⊕VvTM
(VvTM := KerTvτ) for all v ∈ TM . The sections of Hτ are called (H-)horizontal vector
fields on TM . For the C∞(TM)-module of horizontal vector fields we use the notation
X h(TM), then X (TM) = X h(TM)⊕X v(TM). Any horizontal map H makes it possible
to define a lifting process of vector fields on M to vector fields on TM . The horizontal
lift of X ∈ X (M) is the horizontal vector field Xh given by Xh(v) = H(v,X

(
τ(v)

)
)

for all v ∈ TM). Evidently, Xh = H ◦ X̂. Any right splitting H of (1) induces a left
splitting V : TTM → τ ∗TM of (1) such that V ◦ i = 1τ∗TM ; KerV = ImH and hence
V ◦H = 0. Thus, specifying a horizontal map for τ , we arrive at the fundamental ‘double
exact’ sequence

0 À τ ∗TM
i

À
V

TTM
j

À
H

τ ∗TM À 0.

V is called the vertical map belonging to H. The maps h := H ◦ j and v = 1TTM − h
are said to be (respectively) the horizontal and the vertical projectors determined by H.
h and v are obviously (1, 1) tensor fields on TM , or equivalently, vector one-forms on
TM , i.e. h,v ∈ B1(TM). We have the relations h2 = h, Imh = HTM , Kerh = V TM ;
v = i ◦ V , v2 = v, Imv = V TM , Kerv = HTM . Thus h and v are indeed projection
operators; h projects TTM onto HTM along V TM , v projects TTM onto V TM along
HTM . Concerning these technical tools, we collect here some useful formulae:

J ◦ h = J, h ◦ J = 0, J ◦ v = 0, v ◦ J = J.(6)

JXh = Xv, J [Xh, Y h] = [X,Y ]v, hXc = Xh, h[Xh, Y h] = [X, Y ]h.(7)

In general there is no canonical way to specify a horizontal map. However, in the presence
of some additional structure, a horizontal map may be given canonically. We recall here
a well-known and very important construction. Suppose that ξ is a semispray on M ,
i.e. ξ : TM → TTM is a C1 vector field which is smooth on TM and has the property
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Jξ = C. Then the map

(8) X ∈ X (M) 7→ Xh :=
1

2
(Xc + [Xv, ξ]) ∈ X (

◦
TM)

defines a horizontal lifting and, consequently, a horizontal map H for τ . H will be men-
tioned as the horizontal map generated by the semispray ξ. If ξ is a spray, i.e. [C, ξ] = ξ,
then the horizontal mapH is homogeneous in the sense that [Xh, C] = 0 for all X ∈ X (M).

2 Derivations and Berwald derivatives

Let r be an integer. By a graded derivation of degree r of the exterior algebra A(M)
we mean an IR-linear map D : A(M) → A(M) such that D(Ak(M)

) ⊂ Ak+r(M) for all
k ∈ {0, . . . , n} and D(α ∧ β) = (Dα) ∧ β + (−1)rkα ∧ Dβ if α ∈ Ak(M), β ∈ A(M).
The graded commutator of two graded derivations D1 and D2 is given by [D1,D2] :=
D1 ◦ D2 − (−1)r1r2D2 ◦ D1 where r1 and r2 are the degrees of D1 and D2, respectively.
[D1,D2] is also a graded derivation whose degree is r1+r2. The classical graded derivations
of A(M) are the substitution operator iX (induced by X ∈ X (M)), the Lie derivative dX

(with respect to X ∈ X (M)), and the exterior derivative d; their degrees are −1, 0, and
1, respectively. iX , dX and d are related by H. Cartan’s ‘magic’ formula

(9) dX = iX ◦ d + d ◦ iX = [iX , d].

In the Frölicher-Nijenhuis theory of derivations, two graded derivations of A(M) are
associated to any vector k-form K ∈ Bk(M): the derivation iK of degree k− 1 defined by
iK ¹ C∞(M) := 0 and iKα := α ◦K for α ∈ A1(M), and the derivation dK := [iK , d] =
iK ◦ d− (−1)k−1d ◦ iK of degree k. As an immediate consequence, we obtain

(10) if f ∈ C∞(M) and K ∈ Bk(M), then dKf = iKdf = df ◦K.

A characteristic property of dK is expressed by

(11) [d, dK ] := d ◦ dK − (−1)kdK ◦ d = 0.

For any vector k-form K and vector l-form L on M there is a unique vector (k + l)-form
on M , denoted by [K, L], such that d[K,L] = [dK , dL]. [K, L] is said to be the Frölicher–
Nijenhuis bracket of K and L. If K and L are 0-forms, i.e. vector fields on M , then
[K, L] is the usual bracket of vector fields. In the case L := Y ∈ X (M) = B0(M) and
K ∈ B1(M) we have

(12) [K, Y ]X = [KX,Y ]−K[X, Y ] for all X ∈ X (M).

If K and L are both vector one-forms, or in other words type (1, 1) tensor fields on M ,
then their brackets acts by

[K, L](X, Y ) = [KX,LY ] + [LX,KY ] + (K ◦ L + L ◦K)[X, Y ](13)

−K[LX, Y ]−K[X, LY ]− L[KX,Y ]− L[X, KY ].
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In our calculations over TM the operators iJ and dJ = iJ ◦ d− d ◦ iJ play a distinguished
role. Notice that over the induced chart (2) we have the coordinate expression

dJF ¹ τ−1(U) =
∂F

∂yi
dxi for all F ∈ C∞(TM).

We shall need the following relations:

(14) [iC , iJ ] = 0, [iC , dJ ] = iJ , [dJ , dC ] = dJ , [iJ , dJ ] = 0, [dJ , dJ ] = 0, [iξ, iJ ] = iJξ.

A more or less analogous theory of derivations of A(τ) was elaborated by E. Mart́ınez,
J.F. Cariñena and W. Sarlet [16, 17], see also [22]. We shall borrow only one ingredient
from this theory, the v-exterior derivative dv defined by

(dvF )(X̃) := dF (iX̃) = (iX̃)F for all F ∈ C∞(TM),(15)

dvα̂ := 0 for all α ∈ A1(M).(16)

Observe that dvF (jξ) = (dF ◦ J)(ξ)
(10)
= dJF (ξ) for any vector field ξ on TM . In coordi-

nates we have

dvF ¹ τ−1(U) =
∂F

∂yi
d̂ui.

We can easily deduce the important relation dv ◦ dv = 0.

Lemma 1. A k-form α̃ (1 ≤ k ≤ n) along τ is dv-exact, i.e. there is a (k − 1)-form β̃
along τ such that α̃ = dvβ̃ if, and only if, α̃ is dv-closed, i.e. dvα̃ = 0.

For a sketchy proof the reader is referred to [16]. A detailed account of dJ -cohomology is
presented in K. Ayassou’s thesis [3].

To complete this section about our main technical tools, first we define two partial dif-
ferentials, the canonical v-covariant differential ∇v and the h-covariant differential ∇h,
next we piece these together to obtain a covariant derivative operator ∇ (depending on a
horizontal map), called the Berwald derivative in τ ∗τ . The constructions goes as follows.
Consider first, for a given vector field X̃ along τ , the map ∇v

X̃
whose action on functions,

vector fields and one-forms along the projection is given by

(17) ∇v
X̃

F := (dvF )(X̃), ∇v
X̃

Ỹ := j[iX̃,HỸ ], (∇v
X̃

α̃)(Ỹ ) := ∇v
X̃

(
α̃(Ỹ )

)− α̃(∇v
X̃

Ỹ ).

Although it may look as if we used a horizontal map in the definition of ∇v
X̃

Ỹ , it can
easily be checked that the operator ∇v is in fact independent of the choice of H. Indeed,
represent Ỹ in the form jη, η ∈ X (TM). Then we get ∇v

X̃
jη = j[iX̃,hη] = j[iX̃, η], since

[iX̃,vη] is vertical. In particular, we have

(18) ∇v
X̂

Ŷ = 0, ∇v
X̂

δ = X̂, ∇v
δX̂ = 0 for all X,Y ∈ X (M).

Now the formula

(∇v
X̃

Ã)(α̃1, . . . , α̃k, X̃1, . . . , X̃l) := (iX̃)Ã(α̃1, . . . , α̃k, X̃1, . . . , X̃l)

−
k∑

i=1

Ã(α̃1, . . . ,∇v
X̃

α̃i, . . . , α̃k, X̃1, . . . , X̃l)−
l∑

j=1

Ã(α̃1, . . . , α̃k, X̃1, . . . ,∇v
X̃

X̃j, . . . , X̃l)
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extends the action of ∇v
X̃

to a general type (k, l) tensor field along the projection. The
canonical v-covariant differential is then the operator ∇v that associates to a (k, l) tensor
field Ã along τ a (k, l + 1) tensor field ∇vÃ along τ given by

(∇vÃ)(X̃, α̃1, . . . , α̃k, X̃1, . . . , X̃l) := (∇v
X̃

Ã)(α̃1, . . . , α̃k, X̃1, . . . , X̃l).

In the same way as above, specifying a horizontal map H for τ , and starting from

(19) ∇h
X̃

F := (HX̃)F, ∇h
X̃

Ỹ := V [HX̃, iỸ ], (∇h
X̃

α̃)(Ỹ ) := ∇h
X̃

(
α̃(Ỹ )

)− α̃(∇h
X̃

Ỹ )

(F ∈ C∞(TM), Ỹ ∈ X (τ), α̃ ∈ A1(τ)) we can introduce the h-covariant differential ∇h.
Having these partial differentials, the map

∇ : (ξ, Ỹ ) ∈ X (TM)×X (τ) 7→ ∇ξỸ := ∇v
VξỸ +∇h

jξỸ ∈ X (τ)

is a covariant derivative operator in the vector bundle τ ∗τ in the sense that ∇ is an
IR-bilinear map satisfying the conditions ∇FξỸ = F∇ξỸ and ∇ξFỸ = (ξF )Ỹ + F∇ξỸ
concerning the multiplication with a smooth function F on TM . The covariant derivative
operator ∇ is said to be the Berwald derivative in τ ∗τ induced by H. Explicitly,

(20) ∇ξỸ = j[vξ,HỸ ] + V [hξ, iỸ ] for all ξ ∈ X (TM) and Ỹ ∈ X (τ).

The canonical v-covariant differential ∇v is intimately related to the v-exterior derivative
dv: we have

(21) dvα̃ = (k + 1)Alt∇vα̃ for all α̃ ∈ Ak(τ),

where Alt is the alternator in Ak(τ). For a proof the reader is referred to [22]. Applying
this observation, we exhibit now a convenient expression for the dv-exactness of a one-
form in terms of the operator ∇v. We say that a one-form α̃ along τ is ∇v-exact if there
exists a function F ∈ C∞(TM) such that ∇vF = α̃.

Lemma 2. A one-form α̃ along τ is ∇v-exact if, and only if, ∇vα̃ is symmetric, i.e.

(∇vα̃)(X̃, Ỹ ) = (∇vα̃)(Ỹ , X̃) for all X̃, Ỹ ∈ X (τ).

Proof: ∇v ¹ C∞(TM) = dv ¹ C∞(TM) by (17), so ∇v-exactness and dv-exactness are
equivalent conditions for one-forms. In view of Lemma 1, a one-form α̃ is dv-exact if,

and only if, it is dv-closed. Since (dvα̃)(X̃, Ỹ )
(21)
= 2Alt(∇vα̃)(X̃, Ỹ ) = (∇vα̃)(X̃, Ỹ ) −

(∇vα̃)(Ỹ , X̃), the assertion follows.

Finally, we point out that the Frölicher-Nijenhuis formalism provides a concise and ex-
tremely elegant way to define the basic geometric data of a horizontal map. Namely, let
H be a horizontal map on M , and let h be the horizontal projector determined by H.
Then the vector forms

(22) t := [h, C] ∈ B1(TM), T := [J,h] ∈ B2(TM), Ω := −1

2
[h,h] ∈ B2(TM)

are said to be the tension, the torsion and the curvature of H, respectively. It is known
that a horizontal map is generated by a semispray according to (8) if, and only if, its
torsion vanishes (a theorem of M. Crampin).
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3 Hessians, Lagrangians, and metrics

By the Hessian of a smooth function F on TM we mean the type (0, 2) tensor field
∇v∇vF := ∇v(∇vF ) = ∇v(dvF ) along τ . We have

(23) ∇v∇vF (X̂, Ŷ ) = Xv(Y vF ) for all X,Y ∈ X (M).

Indeed,∇v∇vF (X̂, Ŷ ) =
(∇v

X̂
(∇vF )

)
(Ŷ )

(17)
= ∇v

X̂

(∇vF (Ŷ )
)−∇vF (∇v

X̂
Ŷ )

(15)(18)
= Xv(Y vF ).

Observe that Xv(Y vF ) = [Xv, Y v]F + Y v(XvF ) = Y v(XvF ) whence ∇v∇vF is symmet-
ric, at least when its arguments are basic vector fields along τ . Since the basic vector fields
form a local basis for X (τ) and ∇v(∇vF ) is tensorial, we conclude that the Hessian of a
smooth function F : TM → IR is a symmetric type (0, 2) tensor field along τ . We obtain
by an analogous reasoning that ∇v(∇v∇vF ) is a totally symmetric type (0, 3) tensor field
along τ , and so forth.

A Lagrangian is a smooth function L : TM → IR. The one-form θL := dJL and the two-
form ωL := dθL = ddJL are said to be the Lagrange one-form and the Lagrange two-form,
respectively, while the function EL := CL−L is called the energy associated to L. In this
context, we shall use the notation gL for the Hessian ∇v∇vL. We have the relations

(24) iCωL = dJEL, iJωL = 0.

Indeed, iCωL = iCddJL
(11)
= −iCdJdL

(14)
= dJ iCdL − iJdL = dJ

(
dL(C) − L

)
= dJEL and

iJωL = iJddJL
(11)
= −iJdJdL

(14)
= −dJ iJdL

(10)
= −dJdJL = −1

2
[dJ , dJ ]L

(14)
= 0.

Lemma 3. The Lagrange two-form ωL and the Hessian gL are related by

(25) ωL(Jξ, η) = gL(jξ, jη) for all ξ, η ∈ X (TM).

Proof: For any vector fields X,Y on M we have ωL(JXc, Y c)
(5)
= ωL(Xv, Y c) =

d(dJL)(Xv, Y c) = XvdL(JY c) − Y cdL(JXv) − dL(J [Xv, Y c])
(5)
= Xv(Y vL)

(23)
= gL(X̂, Ŷ )

(taking into account that [Xv, Y c] is vertical). Remark that ωL(Xv, Y v) always vanishes.
Applying the first local basis principle, we can conclude the desired relation.

In order to avoid any confusion, before proceeding we emphasize that by the non-degeneracy
of a type (0, 2) tensor field we mean the usual pointwise property (see e.g. [1], 3.1.4 Def-
inition). This leads to a corresponding property at the level of vector fields, but not vice
versa.

Returning to our Lagrangian L ∈ C∞(TM): it is called a regular Lagrangian if the
Lagrange two-form ωL is non-degenerate. Due to Lemma 3, it is possible to cast the
regularity condition in terms of the Hessian gL.

Corollary 1. The Lagrange two-form ωL is non-degenerate if, and only if, the Hessian
gL is non-degenerate.

9



The proof is easy and is omitted. The regularity condition prescribed on L plays a
prominent role in the proof of the following well-known and fundamental fact [1], [8]: For
a regular Lagrangian L, there exists a unique semispray ξL such that

(26) iξL
ωL = −dEL.

To verify this, let us first observe that dEL 6= 0, since iJdEL = dJEL
(24)
= iCωL 6= 0 by

the non-degeneracy of ωL. Thus, also for this reason, there exists a unique, non-zero ξL

satisfying (26). Since iJξL
ωL

(14)
= iξL

iJωL − iJ iξL
ωL

(24)
= −iJ iξL

ωL
(26)
= iJdEL = dJEL

(24)
=

iCωL, we conclude, again by non-degeneracy, the desired relation JξL = C. The semispray
ξL is called the Lagrangian vector field for L.

Tensor fields of the form ∇v∇vL will be crucial in our argumentation. Therefore it is
important to know exactly when a type (0, 2) tensor field along τ is the Hessian of a
smooth function on TM . For a systematic treatment of this problem we need some
preparation.

Definition 1. By a generalized metric, briefly a metric, we mean a symmetric and non-
degenerate type (0, 2) tensor field along τ . The function E := 1

2
g(δ, δ) is the (absolute)

energy of g. The canonical v-covariant derivative C[ := ∇vg of g is said to be the lowered
Cartan tensor of g, the type (1, 2) tensor field C along τ determined by

(27) g
(C(X̃, Ỹ ), Z̃

)
:= (∇vg)(X̃, Ỹ , Z̃) = C[(X̃, Ỹ , Z̃)

is the first Cartan tensor of g. The one-form θg on TM given by

(28) θg(ξ) := g(jξ, δ), ξ ∈ X (TM),

or the one-form θ̃g : X̃ ∈ X (τ) 7→ θ̃g(X̃) := g(X̃, δ) along τ , is called the Lagrange
one-form associated to g; ωg := dθg is the Lagrange two-form associated to g.

From Corollary 1 we can immediately conclude that if L is a regular Lagrangian, then
gL = ∇v∇vL is a metric. Its absolute energy is E = 1

2

(∇v(∇vL)
)
(δ, δ) = 1

2

(∇v
δ(∇vL(δ))−

∇vL(∇v
δδ)

) (18)
= 1

2

(∇v
δ((iδ)L)−∇vL(δ)

)
= 1

2

(
C(CL)− CL

)
= 1

2
CEL.

Now we list some elementary properties of the first Cartan tensor associated to a metric
g.

(29) C[(X̂, Ŷ , Ẑ) = Xv
(
g(Ŷ , Ẑ)

)
for all X, Y, Z ∈ X (M);

therefore C[ is symmetric in its last two variables.

(30) C vanishes if, and only if, g = ĝM := gM ◦ τ ,

where gM is a pseudo-Riemannian metric on M .

(31) If g = ∇v∇vF
(
F ∈ C∞(TM)

)
, then C[(X̂, Ŷ , Ẑ) = Xv

(
Y v(ZvF )

)
,

therefore if g is a Hessian, then the first Cartan tensor associated to g is symmetric, the
lowered first Cartan tensor is totally symmetric.
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Lemma 4. The Hessian gE := ∇v∇vE = 1
2
∇v∇v

(
g(δ, δ)

)
of the absolute energy of g can

be expressed in terms of g and the first Cartan tensor of g as follows:

gE(X̂, Ŷ ) =
1

2
g
(C(X̂, δ), C(Ŷ , δ)

)
+

1

2
g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
+ g

(C(Ŷ , δ), X̂
)

(32)

+g
(C(X̂, Ŷ ), δ

)
+ g(X̂, Ŷ ), for all X,Y ∈ X (M).

Proof: gE(X̂, Ŷ ) = 1
2
Xv

(
Y vg(δ, δ)

)
= 1

2
Xv

(
(∇v

Ŷ
g)(δ, δ) + 2Xvg(∇v

Ŷ
δ, δ)

)

(18)
= 1

2
Xv

(
g
(C(Ŷ , δ), δ

))
+ Xvg(Ŷ , δ) = 1

2
(∇v

X̂
g)

(C(Ŷ , δ), δ
)

+ 1
2
g
(
∇v

X̂

(C(Ŷ , δ)
)
, δ

)

+ 1
2
g
(C(Ŷ , δ), X̂

)
+(∇v

X̂
g)(Ŷ , δ)+g(Ŷ , X̂) = 1

2
g
(
C(X̂, C(Ŷ , δ)

)
, δ

)
+ 1

2
g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
+

1
2
g
(C(Ŷ , X̂), δ

)
+ 1

2
g
(C(Ŷ , δ), X̂

)
+ g

(C(X̂, Ŷ ), δ
)

+ g(X̂, Ŷ )
(29)
= 1

2
g
(C(X̂, δ), C(Ŷ , δ)

)
+

1
2
g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
+ g

(C(Ŷ , δ), X̂
)

+ g
(C(X̂, Ŷ ), δ

)
+ g(X̂, Ŷ ).

Definition 2. A metric g along τ is said to be variational, if the first Cartan tensor
associated to g is symmetric (or, equivalently, the lowered first Cartan tensor is to-
tally symmetric); weakly variational, if g

(C(X̃, Ỹ ), δ
)

= g
(C(Ỹ , X̃), δ

)
, or, equivalently

C[(X̃, Ỹ , δ) = C[(Ỹ , X̃, δ) for all X̃, Ỹ ∈ X (τ); normal, if C(X̃, δ) = 0 for all X̃ ∈ X (τ);
weakly normal, if C[(X̃, δ, δ) = 0 for all X̃ ∈ X (τ) and homogeneous, if C[(δ, X̃, Ỹ ) = 0 for
all X̃, Ỹ ∈ X (τ).

Since g(C(δ, X̃), Ỹ ) = (∇v
δg)(X̃, Ỹ ), g is homogeneous if, and only if ∇v

δg = 0. In coordi-
nates this means that the components of g are homogeneous functions of degree 0. We
shall deal systematically with the weak variationality, normality and weak normality in
the next section. The meaning of variationality is explained by the next

Result 1. A metric g is the Hessian of a (necessarily regular) Lagrangian if, and only if,
it is variational.

We sketch a simple proof, whose idea is taken from a paper by O. Krupková [15]. The
necessity of the condition is obvious from (31), the regularity of the desired Lagrangian
is guaranteed by Corollary 1. To verify the sufficiency, first we construct a Lagrangian
for g locally. Choose an induced chart

(
τ−1(U), (xi)n

i=1, (y
i)n

i=1

)
on TM according to (2).

Let τU be the natural projection of τ−1(U) into M , and let us consider the pull-back
bundle τ ∗Uτ : τ−1(U)×M TM → τ−1(U). We denote the restriction of g to τ ∗Uτ by gU . If

gij := gU

(
∂̂

∂ui ,
∂̂

∂uj

)
(1 ≤ i, j ≤ n), then for the lowered first Cartan tensor (C[)U of gU we

have the coordinate expression (C[)U

(
∂̂

∂ui ,
∂̂

∂uj ,
∂̂

∂uk

)
=

∂gjk

∂yi (1 ≤ i, j, k ≤ n). Thus, locally,

the variationality of g means that the expressions
∂gjk

∂yi are totally symmetric in i, j, k; in
particular,

(33)
∂gij

∂yk
=

∂gik

∂yj
(1 ≤ i, j, k ≤ n).

Let us denote by ı the natural inclusion t ∈ [0, 1] 7→ t ∈ IR, and for each fixed v ∈ τ−1(U),
let cv be the map given by t ∈ [0, 1] 7→ tv ∈ τ−1(U). We define the functions Fij on τ−1(U)
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by setting Fij(v) :=
∫ 1

0
ı(gij ◦ cv); 1 ≤ i, j ≤ n. Let LU(v) := yi(v)yj(v)

∫ 1

0
Fij ◦ cv. Using

(33) repeatedly, it is easy to check that ∇v∇vLU = gU . Having local solutions, the desired
global Lagrangian can immediately be constructed with the help of a partition of unity
on M . Let (Uk)k∈K be an open covering of M , constituted by coordinate neighbourhoods.
Choose a (smooth) partition of unity (fk)k∈K subordinate to (Uk). If L :=

∑
k∈K

(fk)
vLUk

,

where ∇v∇vLUk
= gUk

for all k ∈ K, then L is a smooth function on TM . Since
∇v(fk)

v = 0, it follows that ∇v∇vL = g.

4 Variationality and regularity

In Definition 1, we have introduced the Lagrange one-form and two-form associated to g.
For a variational metric, their interpretation is easy.

Lemma 5. Let g be a variational metric, g = ∇v∇vL. Then θg = θEL
= dJEL and

therefore ωg = ωEL
.

Proof: For any vector field X on M we have θg(X
c) := g(jXc, δ) = g(X̂, δ) =

∇v(∇vL)(X̂, δ) = ∇v
X̂

(∇vL(δ)
)−∇vL(∇v

X̂
δ)

(17)(18)
= Xv(CL)−∇vL(X̂) = Xv(CL−L) =

XvEL = (dJEL)(Xc) = θEL
(Xc). Since obviously θg(X

v) = (dJEL)(Xv) = 0, by the
appropriate local basis principle we conclude the assertion.

By far the most important metrics are the variational metrics. In some special cases it is
possible to associate a variational metric to a generalized metric g. As a first example,
consider the Hessian gE := ∇v∇vE of the absolute energy E = 1

2
g(δ, δ). Then, due to

Corollary 1, gE is non-degenerate (and hence a metric) if, and only if, ωE = dθE = ddJE is
non-degenerate, i.e. E is a regular Lagrangian. In what follows we shall call metrics that
satisfy this requirement E-regular. Using the non-degeneracy of g, it is always possible to
introduce a new vector one-form Ã along the projection, implicity given by

(34) g
(
Ã(X̃), Ỹ

)
:= gE(X̃, Ỹ ) for all X̃, Ỹ ∈ X (τ).

A second way to define Ã uses relation (25) to connect Ã with ωE:

(35) g
(
Ã(jξ), jη

)
= ωE(Jξ, η) for all ξ, η ∈ X (TM).

Lemma 6. A metric g along τ is E-regular if, and only if, the vector one-form Ã, regarded
as a type (1,1) tensor field along the projection, is injective.

Proof: Let us remark first that by injectivity we mean here that the maps Ãv : Tτ(v)M →
Tτ(v)M are injective for all v ∈ TM . However, it will be convenient to verify the statement

only at vector field level. Suppose that g is E-regular, i.e. gE is non-degenerate but Ã is
not injective. Then there exist distinct vector fields X̃, Ỹ along τ such that Ã(X̃) = Ã(Ỹ ).
So, g

(
Ã(X̃)− Ã(Ỹ ), Z̃

)
= gE(X̃ − Ỹ , Z̃) for all Z̃ ∈ X (τ). It follows that X̃ − Ỹ = 0, but

this is a contradiction.
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Conversely, let Ã be injective. If 0 = gE(X̃, Ỹ ) = g
(
Ã(X̃), Ỹ

)
for all Ỹ in X (τ), then,

due to the non-degeneracy of g, Ã(X̃) = 0, and consequently X̃ = 0. This concludes the
proof.

Proposition 1. If g is a variational metric along τ , then we have for the vector one-form
Ã the formula

(36) Ã(X̃) = X̃ + 2C(X̃, δ) +
1

2
(∇v

X̃
C)(δ, δ) +

1

2
C(X̃, C(δ, δ)

)
.

Proof: We may restrict ourselves to basic vector fields. By (34), Lemma 4, and the
total symmetry of C[, for any vector fields X, Y on M we have

g(Ã(X̂), Ŷ ) = g(X̂, Ŷ ) + 2g(C(X̂, δ), Ŷ ) +
1

2
g
(C(X̂, δ), C(Ŷ , δ)

)
+

1

2
g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
.

Next, taking the Xv-derivative of the identity g
(C(Ŷ , δ), δ

)
= g

(C(δ, δ), Ŷ
)
, it can be

easily shown that

g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
= g

(
(∇v

X̂
C)(δ, δ), Ŷ

)
+ g

(C(X̂, C(δ, δ)
)
, Ŷ

)− g
(C(X̂, δ), C(Ŷ , δ)

)
.

Replacing this expression of g
(
(∇v

X̂
C)(Ŷ , δ), δ

)
into the above relation, the non-degeneracy

of g leads to the desired formula.

Corollary 2. A variational metric g is variational with respect to its own absolute energy
E if Ã = 1X (τ), or

2C(X̃, δ) +
1

2
(∇v

X̃
C)(δ, δ) +

1

2
C(C(δ, δ), X̃

)
= 0 for all X̃ ∈ X (τ).

As any regular Lagrangian via the Euler-Lagrange equation (26), an E-regular metric also
generates a semispray ξE by the relation iξE

ωE = −d(CE − E). The crucial factor here
is the presence of a symplectic form (in our case ωE). Next, we will introduce a new class
of metrics, to which a symplectic form can also be associated. First we relate a metric g
with its Lagrange two-form ωg utilizing the first Cartan tensor.

Lemma 7. For any vector fields ξ, η on TM we have

(37) ωg(Jξ, η) = g(jξ, jη) + g
(C(jξ, δ), jη

)
.

Proof: Due to our first local basis principle, we can assume that ξ = Xc, X ∈ X (M);
then Jξ = Xv, jξ = X̂. If η = Y v, Y ∈ X (M), then the right-hand side of (37) vanishes
automatically, while ωg(X

v, Y v) = dθg(X
v, Y v) = Xvθg(Y

v)− Y vθg(X
v)− θg([X

v, Y v]) =
Xvg(jY v, δ) − Y vg(jXv, δ) = 0. So it remains to check the statement for an η of the
form Y c. A straightforward calculation leads to the result: ωg(X

v, Y c) = Xvθg(Y
c) −

Y cθg(X
v) − θg([X

v, Y c]) = Xvg(Ŷ , δ) − Y cg(jXv, δ) − g(j[X,Y ]v, δ) = Xvg(Ŷ , δ) =

(∇v
X̂

g)(Ŷ , δ) + g(Ŷ , X̂) = g
(C(X̂, Ŷ ), δ

)
+ g(Ŷ , X̂) = g(X̂, Ŷ ) + g

(C(X̂, δ), Ŷ
)
.
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Compared with (35), Lemma 7 brings the map

(38) B̃ : X̃ ∈ X (τ) 7→ B̃(X̃) := X̃ + C(X̃, δ)

into the spotlight. Obviously, B̃ is a type (1,1) tensor field, or, equivalently, a vector
one-form along τ . Using our new ingredient we have

(39) ωg(Jξ, η) = g(B̃(jξ), jη) for all ξ, η ∈ X (TM).

Proposition 2. The Lagrange two-form ωg of a metric g is non-degenerate if, and only
if, the (1,1) tensor field B̃ defined by (38) is injective.

Proof: For the sake of simplicity, we shall again give a proof only at the level of vector
fields. The reasoning at the level of fibres is analogous and left to the reader. Suppose
that ωg is non-degenerate, but B̃ is not injective. Then there exists a non-zero vector field
X̃0 along τ such that B̃(X̃0) = 0. X̃0 may be represented in the form jξ0, ξ0 ∈ X (TM).

So for all η ∈ X (TM) we have 0 = g
(
B̃(X̃0), jη

) (39)
= ωg(Jξ0, η). Thus Jξ0 = ijξ0 = 0,

which is a contradiction, since jξ0 = X̃0 6= 0.

Conversely, let B̃ be injective. Then B̃ is surjective as well. Therefore, if 0 = ωg(ξ0, Jη)
(39)
=

−g
(
B̃(jη), jξ0

)
for all η ∈ X (TM), then also g(X̃, jξ0) = 0 for all X̃ ∈ X (τ). Non-

degeneracy of g implies that ξ0 must be vertical, and hence of the form Jξ1, for a certain
ξ1 ∈ X (TM). Thus, finally, 0 = ωg(Jξ1, η) = g(jξ1, jη) for all η ∈ X (TM), which implies
jξ1 = 0 and so ξ0 = ijξ1 = 0. This concludes the proof of the converse statement.

It can be checked immediately that B̃ is injective (and therefore surjective) if, and only
if, in any induced chart of type (2) we have

det
(
(δj

i ) +
(
yl ∂glk

∂yi
gjk

))
6= 0

(
(gij) =

(
g
( ∂̂

∂ui
,

∂̂

∂uj

))
, (gij) = (gij)

−1
)
.

This local condition for a generalized metric was introduced by R. Miron in [18], so we
shall use the following terminology:

Definition 3. A metric g along τ is said to be Miron regular, if the map B̃ : X̃ ∈ X (τ) 7→
B̃(X̃) := X̃ +C(X̃, δ) is injective (in the sense that the linear maps B̃v : Tτ(v)M → Tτ(v)M
are injective for all v ∈ TM).

Corollary 3. For a variational metric g = ∇v∇vL the condition of Miron-regularity
coincides with the condition that the energy EL associated to L is a regular Lagrangian.

Indeed, this is an immediate consequence of Lemma 5 and Proposition 2. We can push
this idea a little bit further: given a metric g along τ , when does there exist a smooth
function Lg on TM , such that θLg = θg? In such a case, Miron-regularity will turn out to
be equivalent with the regularity of the Lagrangian Lg. If the Lagrangian Lg is regular,
then we can associate a semispray ξg to it, by means of (26). Our next answer clarifies
the meaning of weak variationality introduced in Definition 2.
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Proposition 3. For a metric g there exists a Lagrangian Lg on TM such that θg = θLg

if, and only if, g is weakly variational, i.e. g
(C(X̃, Ỹ ), δ

)
= g

(C(Ỹ , X̃), δ
)

for all vector

fields X̃, Ỹ along τ .

Proof: Observe first that for any function F in C∞(TM) we have θF (η) := (dJF )(η)
(10)
=

(Jη)F = i(jη)F = ∇vF (jη) (η ∈ X (TM)). Thus the question ‘when is θg = θLg for a
Lagrangian Lg?’ is equivalent with the question ‘when does a Lagrangian Lg exist, such
that θ̃g = ∇vLg?’. But the latter question has been answered in Lemma 2: if, and only if,

(40) (∇vθ̃g)(X̃, Ỹ ) = (∇vθ̃g)(Ỹ , X̃) for all X̃, Ỹ ∈ X (τ).

Since (∇vθ̃g)(X̃, Ỹ ) = (∇v
X̃

θ̃g)(Ỹ ) = (iX̃)[θ̃g(Ỹ )]− θ̃g(∇v
X̃

Ỹ ) = (iX̃)[g(Ỹ , δ)]− g(∇v
X̃

Ỹ , δ)
(18)
= (∇v

X̃
g)(Ỹ , δ)+g(Ỹ , X̃) = g

(C(X̃, Ỹ ), δ
)
+g(X̃, Ỹ ), and in the same way (∇vθ̃g)(Ỹ , X̃) =

g
(C(Ỹ , X̃), δ

)
+ g(X̃, Ỹ ), it follows that (40) holds if, and only if, g is weakly varia-

tional.

From our reasoning we infer immediately

Corollary 4. A generalized metric is weakly variational if, and only if, its Lagrange
one-form is ∇v-exact.

Notice that if g is weakly variational and hence θg = θLg (Lg ∈ C∞(TM)), then we also
have ωg = ωLg . By Lemma 5 any variational metric g = ∇v∇vL is weakly variational with
the Lagrange one-form θg = θEL

. It is easy to recognize where the idea of the Lagrangian
Lg is coming from. The definition (39) of the tensor B̃ strongly resembles the definition
(35) of the tensor Ã. Inspired by this analogy, let us define a type (0,2) tensor field γg

along τ , associated to B̃ in such a way that it plays the same role as gE in (34). To make
a long story short, let

(41) γg(X̃, Ỹ ) := g
(
B̃(X̃), Ỹ

)
for all X̃, Ỹ ∈ X (τ).

When does γg become a metric? The answer is conveyed in the next

Proposition 4. For a generalized metric g along τ the following conditions are equivalent:

(i) The type (0,2) tensor field γg given by (41) is a metric.

(ii) g is Miron-regular and weakly variational.

(iii) γg is the Hessian of a regular Lagrangian.

Proof: (i)⇒(ii) If γg is a metric, then its symmetry implies immediately that g is
weakly variational. Following the same line of reasoning as in the proof of Lemma 6, we
can conclude that non-degeneracy of γg implies that B̃ is injective, i.e. g is Miron-regular.

(ii)⇒(iii) If g is weakly variational, then θ̃g is ∇v-exact by Corollary 4, i.e. θ̃g = ∇vLg,

Lg ∈ C∞(TM). Thus for any basic vector fields X̂, Ŷ we have γg(X̂, Ŷ ) = g
(
B(X̂), Ŷ

) (39)
=

ωg(X
v, Y c) = ωLg(X

v, Y c)
(25)
= ∇v∇vLg(X̂, Ŷ ), so γg is the Hessian of the Lagrangian Lg.

Since g is Miron-regular, ωg = ωLg is non-degenerate, therefore Lg is a regular Lagrangian.

(iii)⇒(i) This is clear by Corollary 1.
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Corollary 5. For a weakly variational metric the tensor Ã also takes the form (36).

Indeed, analyzing the proof of Proposition 1, we find that it relies only on the weak
variationality of the metric.

Now we have a look at the class of variational and Miron-regular metrics. Metrics enjoying
these two properties at the same time will be called semi-Finsler metrics. If g is a semi-
Finsler metric, then the function ẼL := CEL − EL is said to be the principal energy
associated to g. Notice, that dJẼL 6= 0, and hence dẼL 6= 0. Indeed, since g is Miron-
regular, the Lagrange two-form ωg is non-degenerate by Proposition 2, therefore 0 6=
iCωg = iCdθg

Lemma 5
= iCddJEL = −iCdJdE

(14)
= −iJdEL + dJ iCdEL = −dJEL + dJ(CEL) =

dJẼL.

Proposition 5. Let g = ∇v∇vL be a semi-Finsler metric along τ . There exists a unique
semispray ξg on M such that

iξgωg = −dẼL, ẼL := CEL − EL.

ξg is just the Lagrangian vector field for the Lagrangian EL, i.e.

(42) iξgωEL
= −dẼL, EL := CL− L.

Proof: By Corollary 3, EL is indeed a regular Lagrangian, so the general result quoted
in section 3 guarantees the existence and uniqueness of the Lagrangian vector field ξEL

satisfying iξEL
ωEL

= −dẼL (cf. (26)). We have remarked above (after Corollary 4) that
ωEL

= ωg; this concludes the proof.

ξg is called the canonical semispray of the semi-Finsler metric g. If g = ∇v∇vL is a semi-
Finsler metric, then, as a consequence of Corollary 1, L is also a regular Lagrangian. So
we have another semispray on M , the Lagrangian vector field ξL for L. Next we establish
an important relation between ξL and canonical semispray ξg.

Proposition 6. Let g = ∇v∇vL be a semi-Finsler metric, ξg the canonical semispray
for g, ξL the Lagrangian vector field for L. The difference ξ := ξg − ξL is the unique
(necessarily vertical) vector field on TM such that

(43) iξωg = i[C,ξL]−ξL
ωL,

where ωg and ωL are the Lagrange two-forms associated to g and to L, respectively.

Proof: On the one hand we have i[C,ξL]ωL = dCiξL
ωL−iξL

dCωL
(26)
= −dCdEL−iξL

(iCdωL+

diCωL)
(24)
= −dCdEL − iξL

ddJEL
Lemma 5

= −dCdEL − iξL
ωg. On the other hand, iξgωg

(42)
=

−d(CEL − EL) = −ddCEL + dEL
(26)
= −dCdEL − iξL

ωL and therefore i[C,ξL]ωL − iξgωg =
iξL

ωL − iξL
ωg, i.e. iξg−ξL

ωg = i[C,ξL]−ξL
ωL, as was to be shown.

Using formulae (25), (39) and (43), it is clear that if, ξ = iX̃, X̃ ∈ X (τ), then (due to the
injectivity of B̃) this X̃ is the unique vector field along τ such that B̃(X̃) = j[C, ξL]− δ.
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Corollary 6. If g = ∇v∇vL is a semi-Finsler metric, then the Lagrangian vector field
for L is a spray if, and only if, it coincides with the canonical semispray for g.

Next we turn to those special weakly variational metrics which are distinguished by the
property θ̃g = ∇vE = 1

2
∇v

(
g(δ, δ)

)
, or, equivalently, for which θg = θE.

Lemma 8. (θE − θg)(X
c) = 1

2
C[(X̂, δ, δ) for all X ∈ X (M), therefore θg = θE if, and

only if, C[(., δ, δ), i.e. (see Definition 2) if g is weakly normal.

Proof: (θE − θg)(X
c) = dJE(Xc) − g(jXc, δ) = XvE − g(X̂, δ) = 1

2
Xv

(
g(δ, δ)

) −
g(∇v

X̂
δ, δ) = 1

2
(∇v

X̂
g)(δ, δ) = 1

2
C[(X̂, δ, δ).

Proposition 7. Suppose that g is a weakly normal metric. Then

γg = gE, therefore Ã = B̃;(44)

gE(X̃, δ) = g(X̃, δ) = θ̃g(X̃) for all X̃ ∈ X (τ),(45)

and the absolute energy E = 1
2
g(δ, δ) is homogeneous of degree 2, i.e. CE = 2E.

Proof: Since θg = θE by Lemma 8, we also have ωg = dθg = dθE = ωE. Thus,

for all vector fields X,Y on M , we obtain γg(X̂, Ŷ ) := g
(
B̃(X̂), Ŷ

) (39)
= ωg(X

v, Y c) =

ωE(Xv, Y c) = Xv(Y vE)
(23)
= (∇v∇vE)(X̂, Ŷ ) = gE(X̂, Ŷ ). Hence γg = gE, which implies

by (34) and (41) that Ã = B̃. The verification of (45) is also easy. Let ξ0 be a semispray

on M . Then gE(X̂, δ) = gE(jXc, jξ0)
Lemma 3

= ωE(Xv, ξ0) = ωg(X
v, ξ0)

(39)
= g

(
B̃(X̂), δ

)
=

g(X̂, δ) + g
(C(X̂, δ), δ

)
= g(X̂, δ) =: θ̃g(X̂), since g

(C(X̂, δ), δ
)

= C[(X̂, δ, δ) = 0 by our
assumption. This proves (45). Finally, CE = 1

2
iδ

(
g(δ, δ)

)
= 1

2

(
(∇v

δg)(δ, δ) + 2g(∇v
δδ)

)
=

1
2
C[(δ, δ, δ) + g(δ, δ) = 2E.

R. Miron studied (in our terminology) Miron-regular and weakly normal metrics. In
[18], he gives a coordinate expression of a horizontal map. This horizontal map is clearly
generated by the semispray ξE, in this case defined by iξE

ωE = −dE. In fact, we can prove

that ξE is a spray. Let us calculate first dCθE = iCdθE +diCθE = iCωE
(24),P rop. 7

= dJE = θE

and dCωE
(11)
= ddCθE = dθE = ωE. It follows that i[C,ξE ]ωE = dCiξE

ωE − iξE
dCωE =

−dCdE − iξE
ωE = −d(CE)− iξE

ωE = 2iξE
ωE − iξE

ωE = iξE
ωE, and thus ξE = [C, ξE].

Corollary 7. If g is both variational (g = ∇v∇vL) and weakly normal, then E and EL

differ only in a vertical lift.

Proof: For a variational metric g = ∇v∇vL we have θg = dJEL by Lemma 5. Since
θg = θE = dJE by Lemma 8, we get dJ(E − EL) = 0. This implies easily (see e.g. [22],
2.31) that E − EL is the vertical lift of a smooth function on M .

In the cases of a variational metric w.r.t. L, a weakly variational and Miron-regular metric
w.r.t. Lg and an E-regular metric, respectively, equation (26) guarantees the existence of
a unique ‘canonical’ semispray, which we denote by ξL, ξg and ξE. As can be seen from
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(8), these semisprays generate a corresponding horizontal map, that we will denote by H
(in all cases).

It is well-known in the study of semisprays that an important role is played by the Jacobi
endomorphism, Φ and the Lie derivative with respect to ξ, Lh

ξ . The first is a (1,1) tensor

field along τ : if ξ is a fixed semispray, then Φ(X̃) := V [ξ,HX̃]. The second object is
a derivation. In the same way as e.g. the definitions for ∇v

X̃
and ∇h

X̃
were cast (for

X̃ ∈ X (τ)), it is only necessary to prescribe the action of Lh
ξ on functions, vector fields

and one-forms:

Lh
ξf = ξ(f), Lh

ξ X̃ = j[ξ,HX̃], Lh
ξ α̃(X̃) = Lh

ξ (α̃(X̃))− α̃(Lh
ξ X̃)

for any f ∈ C∞(TM), X̃ ∈ X (τ) and α̃ ∈ A1(τ). More details about this horizontal Lie
derivative are available in [22].

Suppose now that a variational metric g = ∇v∇vL is also given. It is possible to verify
directly when a given semispray ξ is the Lagrangian vector field of L.

Result 2. [5, 17] Let g be a variational metric with respect to L and let a semispray ξ be
given. ξ is the semispray associated to L by means of (26) if, and only if,

(46) g(Φ(X̃), Ỹ ) = g(X̃, Φ(Ỹ )) and Lh
ξg = 0,

for all X̃, Ỹ ∈ X (τ).

The requirement that g is variational, together with the conditions (46) are called the
Helmholtz conditions. A similar version of this proposition can be found in [5], although
it is cast there in the setup of time-dependent Lagrangians. However, only minor mod-
ifications on that proof lead to the statement of our proposition. It is possible to find
an analogue of this statement for an E-regular metric or for a weakly variational and
Miron-regular metric.

Corollary 8. Let g be an E-regular metric and let a semispray ξ be given. ξ is the
semispray associated to E if, and only if,

(47) g(Ã(Φ(X̃)), Ỹ ) = g(X̃, Ã(Φ(Ỹ ))) and (Lh
ξg)(Ã(X̃), Ỹ ) = −g((Lh

ξ Ã)(X̃), Ỹ ),

for all X̃, Ỹ ∈ X (τ).

Proof: In this case ξ must obey the conditions of the previous result with respect to the
variational metric gE. Using (34), the first condition in (47) follows immediately, while also

0 = (Lh
ξgE)(X̃, Ỹ ) = Lh

ξ

(
gE(X̃, Ỹ )

) − gE(Lh
ξ X̃, Ỹ ) − gE(X̃,Lh

ξ Ỹ )
(34)
= Lh

ξ

(
g(Ã(X̃), Ỹ )

) −
g(Ã(Lh

ξ X̃), Ỹ ) − g(Ã(X̃),Lh
ξ Ỹ ) = (Lh

ξg)(Ã(X̃), Ỹ ) − g(Ã(Lh
ξ X̃), Ỹ ) + g(Lh

ξ

(
Ã(X̃)

)
, Ỹ ) =

(Lh
ξg)(Ã(X̃), Ỹ ) + g((Lh

ξ Ã)(X̃), Ỹ ).

Corollary 9. Let g be a Miron-regular and weakly variational metric w.r.t. Lg and let a
semispray ξ be given. ξ is the semispray associated to Lg if, and only if,

(48) g(B̃(Φ(X̃)), Ỹ ) = g(X̃, B̃(Φ(Ỹ ))) and (Lh
ξg)(B̃(X̃), Ỹ ) = −g((Lh

ξ B̃)(X̃), Ỹ ),

for all X̃, Ỹ ∈ X (τ).
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Proof: We can follow the same line of reasoning as in the previous corollary, if we
substitute γg for gE and B̃ for Ã.

The last corollary can be useful because, even if we do not know exactly the Lagrangian
Lg, we can always check the conditions (48) on a given semispray to conclude if it is
indeed the canonical semispray of the given weakly variational and Miron-regular metric.

We are now ready to recover Finsler geometry.

Proposition 8. A metric is variational with respect to a homogeneous function of degree
2 if, and only if, it is normal, i.e. C(X̃, δ) = 0 for all X̃ ∈ X (τ).

Proof: Suppose first that g = ∇v∇vL, where CL = 2L. Then for all vector fields
X,Y on M we have 2Xv(Y vL) = Xv

(
Y v(CL)

)
= Xv

(
[Y v, C]L + C(Y vL)

)
= Xv(Y vL) +

[Xv, C](Y vL) + C
(
Xv(Y vL)

)
= 2Xv(Y vL) + C

(
Xv(Y vL)

)
, hence 0 = C

(
Xv(Y vL)

)
=

C
(∇v∇vL(X̂, Ŷ )

)
= C

(
g(X̂, Ŷ )

)
= (∇v

δg)(X̂, Ŷ ) = g
(C(δ, X̂), Ŷ

) Res.1
= g

(C(X̂, δ), Ŷ
)
; so

we obtain C(., δ) = 0. Conversely, if g is normal, then B̃ = 1X (τ) by (38), and hence

Ã = 1X (τ) by Proposition 7. Thus g = γg = gE = ∇v∇vE, proving that g is variational.
Here the energy E is homogeneous of degree two, also by Proposition 7.

Corollary 10. For a homogeneous metric, variationality and normality are equivalent
conditions.

Before going on, let us see an immediate way to obtain a normal metric.

Corollary 11. If g is a weakly normal and E-regular (or, equivalently, Miron-regular)
metric, then gE is normal.

Proof: Since g is weakly normal, we have CE = 2E. The E-regularity of g implies,
that gE is a variational metric, namely gE = ∇v∇vE, so Proposition 8 leads to the desired
conclusion.

As stated in the Introduction, a Finsler metric is the Hessian of a Lagrangian E. To

be more precise: E is assumed to be of class C1 on TM , smooth on
◦
TM , positive-

homogeneous of degree 2, and, of course, it is required that the two-form ddJE is non-
degenerate. As is well-known, the weakening of the differentiability is necessary: if E is
(at least) of class C2 on the whole tangent manifold TM , then the first Cartan tensor of
gE vanishes, and gE comes from a pseudo-Riemannian metric on M (see (30)). It follows
from our above considerations that if g is a metric in the pull-back bundle of τ by the map
◦
τ :

◦
TM → M , and satisfies the normality condition C(., δ) = 0, then g is a Finsler metric,

and (M,E), E := 1
2
g(δ, δ), is a Finsler manifold in the usual sense. (The only, minor

difficulty is to check that E has a (unique) C1-extension into TM ; for this technicality
we refer to [22].)

Thus, roughly speaking, normal metrics lead to the territory of Finsler geometry. Ac-
cording to our preceding remark, when we speak of a normal metric g, we shall always

assume (at least tacitly) that g lives in the pull-back bundle
◦
τ
∗
τ .
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We end this section with a summarizing tabular.

metric no weakly weakly variational variational normal
condition variational normal w.r.t. E

g - - - ∃L L = E L = E

γg - ∃Lg Lg = E Lg = EL Lg = CE − E Lg = E

gE E E E = Lg E = 1
2CEL E = 1

2 (CCE − CE) E = E

Comment. For an arbitrary generalized metric it is possible that its absolute energy
E is regular. When we start to impose restrictions on the metric, we get two main
subclasses: the class of variational metrics (meaning that there should exist a Lagrangian
L) and the class of weakly variational metrics (providing the existence of a Lagrangian
Lg via Proposition 4). The regularity of the Lagrangian L is guaranteed; that of Lg has
to be imposed (Miron-regularity, see Proposition 4). For each class we can consider a
subcategory, consisting of those special metrics where the Lagrangian (L or Lg) is exactly
the absolute energy E, so we get metrics that are variational with respect to E (column
6) and weakly normal metrics (column 4). In these cases, the regularity of L and Lg

coincides with the regularity of E. The two subclasses have a non-empty intersection
with each other, constituted by those metrics that are both variational with respect to
E and weakly variational with respect to E. In the intersection, Lg = CE − E should
also be E, and thus E is homogeneous of degree 2. In accordance with Proposition 8, we
mention here the metrics that are variational with respect to a homogeneous function of
degree 2, normal (column 7).

5 The metric derivatives

In this section we will give an elegant formulation for all metric derivatives. We assume
that g is a metric along τ and that a horizontal map H : X (τ) → X (TM) is specified.
A covariant derivative operator D in τ ∗τ is said to be metric if ξg(Ỹ , Z̃) = g(DξỸ , Z̃) +
g(Ỹ , DξZ̃) for all ξ ∈ X (TM) and Ỹ , Z̃ ∈ X (τ). Equivalently, once a horizontal map H
is specified, D is metric if it is both v-metric and h-metric, i.e. if we have iX̃g(Ỹ , Z̃) =
g(Dv

X̃
Ỹ , Z̃) + g(Ỹ , Dv

X̃
Z̃) and HX̃g(Ỹ , Z̃) = g(Dh

X̃
Ỹ , Z̃) + g(Ỹ , Dh

X̃
Z̃), where Dv

X̃
Ỹ :=

DiX̃ Ỹ , Dh
X̃

Ỹ = DHX̃ Ỹ , X̃ ∈ X (τ). Applying the covariant exterior derivative dD with
respect to D, we now define the torsions of D. If K : X (TM) → X (τ) is a τ ∗τ -valued
one-form on TM , then

(49) dDK(ξ, η) := Dξ(Kη)−Dη(Kξ)−K[ξ, η]; ξ, η ∈ X (TM).

(A general definition of dD in the context of vector bundles can be found in [10]). The
canonical map j and the vertical map V belonging to H may be regarded as τ ∗τ -valued
one-forms on TM ; their covariant exterior derivatives T v(D) := dDV and T h(D) := dDj
are said to be the vertical and the horizontal torsion of D, respectively (although T h(D)
does not depend on any horizontal structure). With the help of T h(D), we define the
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h-horizontal torsion T and the h-mixed torsion S of D by

T (X̃, Ỹ ) := T h(D)(HX̃,HỸ )
(49)
= DHX̃ Ỹ −DHỸ X̃ − j[HX̃,HỸ ] and(50)

S(X̃, Ỹ ) := T h(D)(HX̃, iỸ )
(49)
= −DiỸ X̃ − j[HX̃, iỸ ]

(17)
= −DiỸ X̃ +∇iỸ X̃.(51)

Following [9], a covariant derivative D in τ ∗τ is called symmetric, if T = 0 and S is
symmetric. Using T v(D), it is possible to define three more partial torsions of D, the
v-horizontal torsion R1, the v-mixed torsion P1, and the v-vertical torsion Q1:

R1(X̃, Ỹ ) := T v(D)(HX̃,HỸ ) = −V [HX̃,HỸ ],(52)

P1(X̃, Ỹ ) := T v(D)(HX̃, iỸ ) = DHX̃ Ỹ − V [HX̃, iỸ ]
(19)
= DHX̃ Ỹ −∇HX̃ Ỹ ,(53)

Q1(X̃, Ỹ ) := T v(D)(iX̃, iỸ ) = DiX̃ Ỹ −DiỸ X̃ − V [iX̃, iỸ ].(54)

Observe that R1 does not depend on the covariant derivative operator D: since

(55) iR1(jξ, jη) = −v[hξ,hη] = Ω(ξ, η) for all ξ, η ∈ X (TM),

(see (13) and (23)), R1 is merely another expression for the curvature of H. It can also
readily be seen that a covariant derivative operator in τ ∗τ is completely determined, once
one has given two τ ∗τ -valued two-forms to play the role of the h-mixed and v-mixed
torsions. In particular, as it can be seen at once from (51) and (54), the choice S = 0,

P1 = 0 leads to the Berwald derivative∇ induced byH. We denote the torsions of∇ by
◦
T ,

◦
S, etc. Another remark will also be appropriate. Let X,Y ∈ X (M). Then i

◦
T (jXh, jY h) =

i
◦
T (X̂, Ŷ )

(50)
= i∇XhŶ − i∇Y hX̂ − J [Xh, Y h]

(19)(7)
= [Xh, Y v] − [Y h, Xv] − [X, Y ]v. On the

other hand, applying (12), (6) and (7), we get T(Xh, Y h)
(23)
:= [J,h](Xh, Y h) = [Xh, Y v]−

[Y h, Xv]− [X,Y ]v, therefore

(56) i
◦
T (jXh, jY h) = T(Xh, Y h) for all X, Y ∈ X (M).

This means that the h-horizontal torsion of the Berwald derivative induced by H and the
torsion of H contain the same information.

Our next objective is to construct a metric derivative which has as many vanishing partial
torsions as possible. To achieve this, we need the lowered second Cartan tensor Ch

[ := ∇hg

and its metrical equivalent, the second Cartan tensor Ch defined by g
(Ch(X̃, Ỹ ), Z̃

)
:=

Ch
[ (X̃, Ỹ , Z̃) := (∇h

X̃
g)(Ỹ , Z̃) for all X̃, Ỹ , Z̃ ∈ X (τ).

Lemma 9. The tensors
◦
C and

◦
Ch given by

g(
◦
C(X̃, Ỹ ), Z̃) := C[(X̃, Ỹ , Z̃) + C[(Ỹ , Z̃, X̃)− C[(Z̃, X̃, Ỹ ) and

g(
◦
Ch(X̃, Ỹ ), Z̃) := Ch

[ (X̃, Ỹ , Z̃) + Ch
[ (Ỹ , Z̃, X̃)− Ch

[ (Z̃, X̃, Ỹ )

are well-defined, symmetric (1,2) tensor fields along τ .

21



Indeed, well-definedness is assured by non-degeneracy of g. Since both C[ and Ch
[ are

symmetric in their last two arguments, it follows that
◦
C and

◦
Ch are symmetric. Some

easy consequences may be inferred immediately from the definition of
◦
C. For example, g

is variational if, and only if, C =
◦
C and if

◦
C(., δ) = 0, then g is weakly normal. We show

that
◦
C(., δ) = 0 also implies that g is weakly variational and homogeneous, and vice versa.

Indeed, if
◦
C(., δ) = 0, then for all X̃, Ỹ ∈ X (τ) we have

0 = g(
◦
C(X̃, δ), Ỹ ) = C[(X̃, δ, Ỹ ) + C[(δ, Ỹ , X̃)− C[(Ỹ , X̃, δ) and

0 = g(
◦
C(Ỹ , δ), X̃) = C[(Ỹ , δ, X̃) + C[(δ, X̃, Ỹ )− C[(X̃, Ỹ , δ).

Since C[ is symmetric in its last two variables, after subtraction, the property C[(X̃, Ỹ , δ) =
C[(Ỹ , X̃, δ) drops out. Thus g is weakly variational, and hence both of the above relations
imply C(δ, .) = 0, i.e. g is homogeneous. Conversely, if g is weakly variational and

homogeneous, then the right-hand sides of our above relations vanish, therefore
◦
C(., δ) = 0.

Notice that it is more difficult to handle
◦
Ch (and Ch).

Proposition 9. Let g = ∇v∇vL be a variational metric and H the horizontal map,

generated by ξL. Then,
◦
Ch = Ch.

Proof: It is well-known (see e.g. [7]) that one can derive from the properties (46) that

(57) ∇hg(X̃, Ỹ , Z̃) = ∇hg(Ỹ , X̃, Z̃) or g(Ch(X̃, Ỹ ), Z̃) = g(Ch(Ỹ , X̃), Z̃),

for all X̃, Ỹ , Z̃ ∈ X (τ). Indeed, let X, Y ∈ X (M) and take the ξL derivative of the
integrability condition Xv

(
g(Ŷ , Ẑ)

)
= Y v

(
g(X̂, Ẑ)

)
. Interchange now the positions of ξL

and Xv, using the bracket [ξL, Xv] = −Xh + i(Lh
ξL

X̂). The property Lh
ξL

g = 0 leads to
(57) and the statement now easily follows.

Proposition 10. Suppose that the horizontal map H has vanishing torsion and let ∇ be

the Berwald derivative induced by H in τ ∗τ . If
◦
C and

◦
Ch are the tensors given by Lemma

9, then the rules

(58) DiX̃ Ỹ := ∇iX̃ Ỹ +
1

2

◦
C(X̃, Ỹ ), DHX̃ Ỹ := ∇HX̃ Ỹ +

1

2

◦
Ch(X̃, Ỹ )

define a symmetric, metric derivative in τ ∗τ . More explicitly

(59) DξỸ = j[vξ,HỸ ] + V [hξ, iỸ ] +
1

2

( ◦
C(Vξ, Ỹ ) +

◦
Ch(jξ, Ỹ )

)
.

For the partial torsions of D we have:

T = 0, S = −1

2

◦
C, (R1)0 = Ω, P1 =

1

2

◦
Ch, Q1 = 0; where (R1)0(ξ, η) := iR1(jξ, jη).
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Proof: First we check that D is v-metric. For all vector fields X, Y, Z on M we
have (Dvg)(X̂, Ŷ , Ẑ) = (DXvg)(Ŷ , Ẑ) = Xv(g(Ŷ , Ẑ)) − g(DXv Ŷ , Ẑ) − g(Ŷ , DXv Ẑ) =

C[(X̂, Ŷ , Ẑ)−1
2
g(

◦
C(X̂, Ŷ ), Ẑ)−1

2
g(Ŷ ,

◦
C(X̂, Ẑ)) = C[(X̂, Ŷ , Ẑ)−1

2
g(

◦
C(X̂, Ŷ ), Ẑ)−1

2
g(

◦
C(Ẑ, X̂), Ŷ )

= C[(X̂, Ŷ , Ẑ) − C[(X̂, Ŷ , Ẑ) = 0, as we claimed. By a completely analogous calculation
we obtain that D is h-metric and hence it is metric. Next we calculate the partial torsions
of D.

T (X̃, Ỹ )
(50)
= DHX̃ Ỹ −DHỸ X̃− j[HX̃,HỸ ]

(58)
= ∇HX̃ Ỹ −∇HỸ − j[HX̃,HỸ ]+ 1

2

◦
Ch(X̃, Ỹ )−

1
2

◦
Ch(Ỹ , X̃) =

◦
T (X̃, Ỹ )

(56)
= 0, since T = 0 by our assumption. From (51) and (58),

S = −1
2

◦
C. Thus, by Lemma 9, S is symmetric, therefore the covariant derivative operator

D is also symmetric. (55) yields immediately (R1)0 = Ω, while (52) and (58) lead to

P1 = 1
2

◦
Ch. Finally,Q1(X̂, Ŷ )

(54)
= DXv Ŷ−DY vX̂−V [Xv, Y v]

(58)
= 1

2

◦
C(X̂, Ŷ )− 1

2

◦
C(Ŷ , X̂) = 0,

concluding the proof of the proposition.

In [18], R. Miron gave a coordinate formulation for this metric derivative in the case that
the metric is weakly normal and Miron-regular and the horizontal map is generated by
ξE. A coordinate expression of the general case (58) can also be found in [19]. Now we
are in a position to describe all metric derivatives (depending on a horizontal map). We
begin by a simple remark. The difference of two covariant derivative operators D1 and D2

can be characterized by means of a C∞(TM)-bilinear map % : X (TM) × X (τ) → X (τ)
such that

D1
ξX̃ −D2

ξX̃ = %(ξ, X̃) for all ξ ∈ X (TM), X̃ ∈ X (τ).

% can be decomposed into a v-part %v and a h-part %h given by

%v(X̃, Ỹ ) := %(iX̃, Ỹ ) and %h(X̃, Ỹ ) := %(HX̃, Ỹ );

then %(ξ, X̃) = %v(Vξ, X̃) + %h(jξ, X̃).

Proposition 11. Let D be the metric derivative described in Proposition 10. Then any
other metric derivative D̄ can be uniquely determined with the help of two (1,2)-tensor
fields Φ and Ψ which are related to the difference % of D and D̄ by means of

g(%v(X̃, Ỹ ), Z̃) =
1

2

(
g(Φ(X̃, Ỹ ), Z̃)− g(Φ(X̃, Z̃), Ỹ )

)
and(60)

g(%h(X̃, Ỹ ), Z̃) =
1

2

(
g(Ψ(X̃, Ỹ ), Z̃)− g(Ψ(X̃, Z̃), Ỹ )

)
(61)

for all vector fields X̃, Ỹ , Z̃ along τ .

Proof: First, we will show that for a given Φ and Ψ, the above construction gives indeed
a metric derivative. For example, if we use the fact that D is metric, then

(
D̄HX̃g

)
(Ỹ , Z̃) =

HX̃
(
g(Ỹ , Z̃)

)− g(D̄HX̃ Ỹ , Z̃)− g(Ỹ , D̄HX̃Z̃) = g(%h(X̃, Ỹ ), Z̃) + g(Ỹ , %h(X̃, Z̃) =
1
2

(
g(Ψ(X̃, Ỹ ), Z̃) − g(Ψ(X̃, Z̃), X̃) + g(Ỹ , (Ψ(X̃, Z̃)) − g(Z̃, (Ψ(X̃, Ỹ ))

)
= 0, and analo-

gously for the %v part. On the other hand, suppose that D̄ is a metric derivative. Then
D̄ is completely determined by the tensor fields Φ = %v and Ψ = %h, which are exactly of
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the type (60) and (61) since (due to D̄g = 0) g(%v(X̃, Ỹ ), Z̃) + g(%v(X̃, Z̃), Ỹ ) = 0 and
g(%h(X̃, Ỹ ), Z̃) + g(%h(X̃, Z̃), Ỹ ) = 0.

A coordinate version of this proof is mentioned in [18, 19]. In fact, there one made use of
the so-called Obata-operators. In our context, the first Obata-operator can best be viewed
as a map Ob that maps a (1,2)-tensor field onto another (1,2)-tensor field, Ob : Ψ 7→ ObΨ,
where ObΨ is defined by

g(ObΨ(X̃, Ỹ ), Z̃) :=
1

2

(
g(Ψ(X̃, Ỹ ), Z̃)− g(Ψ(X̃, Z̃), Ỹ )

)
.

The second Obata-operator Ob∗, has an analogous definition

g(Ob∗Ψ(X̃, Ỹ ), Z̃) :=
1

2

(
g(Ψ(X̃, Ỹ ), Z̃) + g(Ψ(X̃, Z̃), Ỹ )

)
.

Therefore, (60) and (61) can be restated as %v = ObΦ and %h = ObΨ.
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