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Introduction

We start with an elementary classical problem of variational calculus, the
so-called isoperimetric problem (see [46]). A variant of it is encountered in
the legend about the founding of the city of Carthage, about 2850 years ago,
and is described in the Aeneid of Vergil. This example is rewarding in that
it touches the various topics encountered in this thesis.

Queen Dido had to flee from her brother Pygmalion who had already killed
her husband. She landed, accompanied by some servants, at the African
shore, where King Jarbas ruled. Dido begged Jarbas for help, and she per-
suaded him to give her as much land as she could enclose with the hide of a
bull. Dido summoned her servants to cut the bull’s hide into a single narrow
strip. In order to obtain as much land as possible, Dido was confronted with
the following geometric problem: given a strip with endpoints on a fixed line
L (the coastline) and with fixed length; what shape should the strip have
in order that, together with the line L, it encloses a piece of land with the
largest possible area. The following picture sketches a possible situation.

strip

-¾

sea

Africa

L

area

We shall study here the isoperimetric problem, formulated as follows. Given
a rectifiable strip with endpoints on a fixed line L and such that the domain
enclosed by the strip and the line has a prescribed area S; what shape should
the strip have in order that its length be minimal. J. Steiner proved in 1841
that the solution to this problem is a half-circle. The isoperimetric problem
is also called the dual to Dido’s problem because one can prove that the
solution of the isoperimetric problem is also the solution of Dido’s problem
(and vice versa).
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When having a closer look at the formulation of the dual problem, one can
see that the only shapes of the strip that are admissible, are those for which
the enclosed domain has a given fixed area S. This condition is generally
called a constraint and is an essential ingredient of the kind of variational
problems that are investigated in this thesis. In order to formulate a more
detailed characterisation of the constraint we are dealing with, we choose
coordinates (x, y) in the plane of the strip such that we can describe a shape
of the strip by a curve c : [a, b] → IR2 : t 7→ c(t) = (x(t), y(t)). The initial
point c(a) = (xa, ya) and the endpoint c(b) = (xb, yb) of the curve both
coincide with the line L. We assume that the coordinate axes are chosen
such that the origin (0, 0) coincides with c(a) and such that L coincides with
the y-axis, i.e. xa = ya = xb = 0. If Ω denotes the domain enclosed by c
and L, then the area S of Ω equals:

S =

∫∫

Ω
dxdy.

By Stokes’ theorem we know that the area S of Ω equals the line integral of
the smooth vector field −y∂/∂x + x∂/∂y along the oriented boundary of Ω:

S =

∫∫

Ω
dxdy =

1

2

∫

c

xdy − ydx =
1

2

∫ b

a

(
x(t)ẏ(t) − y(t)ẋ(t)

)
dt;

The line segment on L between the initial and endpoint does not contribute
to the line integral. If we define the following function of t:

z(t) =
1

2

∫ t

a

(
x(t′)ẏ(t′) − y(t′)ẋ(t′)

)
dt′,

then, obviously, we have z(b) = S. This property encourages us to consider
the curve ĉ(t) = (x(t), y(t), z(t)) in IR3. The components of the velocity
curve ˙̂c(t) satisfy the following differential equation:

ż =
1

2
(xẏ − yẋ). (0.1)

On the other hand, assume that ĉ(t) = (x(t), y(t), z(t)) is an arbitrary curve
in IR3 with starting point ĉ(a) = (0, 0, za) and endpoint ĉ(b) = (0, yb, zb) and
let c(t) = (x(t), y(t)) denote the projection of ĉ(t) onto the (x, y)-plane. If
the components of ˙̂c satisfy (0.1), then, after integration one obtains

z(b) − z(a) =

∫∫

Ω
dxdy = S,
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where Ω equals the domain in the (x, y)-plane enclosed by c and the line
segment on the y-axis bounded by the endpoints of c. More generally, if the
initial point (xa, ya, za) of a curve ĉ coincides with the origin (0, 0, 0) and
if the components of ˙̂c satisfy (0.1), then ĉ has the property that, for each
t0 ∈ [a, b], the z-component of ĉ(t0) equals the area S(t0) of the domain
in the (x, y)-plane enclosed by c|[a,t0] and the line segment connecting the
origin with c(t0).
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This allows us to reformulate the dual problem as follows. Given a point
(0, yb, S) in IR3; what curve ĉ, connecting the origin with (0, yb, S), satisfies
equation (0.1) and minimises the length of the projected curve in the (x, y)-
plane. (Note that, in comparison with Dido’s problem, we assumed here
that the endpoint (0, yb) of the projected curve is a fixed point on L. We
return to this assumption when discussing the solution of Dido’s problem.)
We now briefly discuss, one by one, the various elements encountered in the
above formulation.

Control theory and anchored bundles

The restriction (0.1) imposed on the class of curves ĉ(t) is an example of
what is called a nonholonomic constraint. It determines a restriction on
the velocity vector of the curve: in the present case, the z-component of
the velocity is completely determined by x(t), y(t), ẋ(t) and ẏ(t). We now
rewrite this condition in order to introduce the concept of a control. We
introduce two new variables v and w and we consider the following function:

γ : IR3 × IR2 → IR3 : (x, y, z, v, w) 7→ (v, w, 1
2(xw − yv)).
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A curve ĉ in IR3 satisfies condition (0.1) if and only if there exists functions
v(t) and w(t) such that

γ
(
ĉ(t),

(
v(t), w(t)

))
≡ dĉ

dt
(t). (0.2)

This correspondence easily follows from the definition of γ and by taking
v(t) = ẋ(t), w(t) = ẏ(t) and 1

2(x(t)w(t) − y(t)v(t)) = ż(t).

We take the structure of (0.2) as an example in order to consider the follow-
ing more general situation. Let γ be a smooth function, defined on IRn×IRk,
with values in IRn. We call IRn the configuration space and IRk the control
domain. Coordinates on the configuration space are denoted by (q1, . . . , qn)
and on the control domain by (u1, . . . , uk). Consider a curve u : [a, b] → IRk

in the control domain and a curve q : [a, b] → IRn in the configuration space.
We say that u(t) controls q(t) if:

q̇i(t) = γi
(
q1(t), . . . , qn(t), u1(t), . . . , uk(t)

)
, for i = 1, . . . , n.

This terminology is justified by noting that q(t) is a solution to the following
set of time dependent differential equations: q̇ = γ(q, u(t)). From unique-
ness of solutions of differential equations it follows that q(t) is completely
determined by u(t) and the initial condition q(a). A pair (q(t), u(t)) is called
admissible if u(t) controls q(t).

Besides the relation to Dido’s problem, the “control systems” introduced
above are important for the study of physical systems in technological ap-
plications. The curve u(t) can be regarded as an external (human) input
in a physical system, whose evolution is modeled by q(t). The function γ
expresses how the human input u(t) affects the configuration of the system.
The curve u is called the control. Let us illustrate these ideas in the case of
a mechanical problem.

Consider a mechanical system with n degrees of freedom on which k forces
act, represented by Fi : IR2n → IRn and which are controlled by k indepen-
dent smooth functions ui(t) such that the total force acting on the system
is given by uiFi. For the sake of simplicity we assume in addition that the
kinetic energy metric of the system equals the standard euclidian metric on
IRn, i.e. all masses are equal to unity. We define a control system as follows.
The configuration space of the control system is taken to be the phase space
IR2n of the physical system and the control domain is identified with IRk.
Define the function γ as, with (q, v) = (q1, . . . , qn, v1, . . . , vn) ∈ IR2n:

γ((q, v), u) = (v1, . . . , vn, uiF 1
i (q, v), . . . , uiFn

i (q, v)).



Introduction v

It is now easily seen that a curve (q(t), v(t)) in IR2n is controlled by u(t) =
(u1(t), . . . , uk(t)) iff

q̇i(t) = vi(t) and

v̇i(t) = uj(t)F i
j (q

1(t), . . . , qn(t), v1(t), . . . , vn(t))

hold, for i = 1, . . . , n. In particular this implies that Newton’s second law is
satisfied:

q̈i(t) = ui(t)Fi(q(t), q̇(t)).

Let us keep in mind the example of a hovercraft. Roughly speaking, the
input force is a variable magnitude and variable direction force (i.e. two
inputs) influenced by the turbine on the boat. The control (u1(t), u2(t)) is
a measure for the “steering” of the pilot, i.e. u1 and u2 parameterise the
magnitude and direction of the input force (for a detailed treatment, see
[32]).

The above mentioned example, is only one of the many possible applications
of control theory. We will see that the differential geometric structure, in
which a control system is defined, is that of an anchored bundle. Roughly
speaking, an anchored bundle consists of a bundle over the configuration
manifold (here IRn × IRk → IRn) and an “anchor map”, which is a mapping
from the bundle to the tangent bundle of the configuration manifold (here
γ : IRn × IRk → IRn). In Chapter I we will study some aspects of anchored
bundles and introduce the notion of an admissible curve in this general
setting. In particular, we will be interested in a geometric description of the
set of points that can be reached by admissible curves having a fixed initial
point. Moreover, we also consider the notion of admissible loops and prove
that these curves generate a subgroup of the first fundamental group of the
configuration space.

Optimal control theory

Let us return to the treatment of the dual of Dido’s problem and assume
that (ĉ(t), u(t)) is admissible, with u(t) = (v(t), w(t)) ∈ IR2. We know that
being admissible is equivalent to the condition (0.1) for the curve ĉ. As
is clearly expressed in the formulation of the problem, we have to find the
curve minimising the length of the projected curve c(t) in the (x, y)-plane.
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The length `(c) of the projected curve c with respect to the standard metric
is defined as:

`(c) =

∫ b

a

√
ẋ2(t) + ẏ2(t)dt.

By making use of the fact that v(t) = ẋ(t) en w(t) = ẏ(t), the integrand of
the above integral equals

√
v2(t) + w2(t). When taking the latter expression

as a function L on the control domain, i.e. L(u) =
√

v2 + w2 with u =
(v, w) ∈ IR2 arbitrary, we can define a functional J on the class of admissible
curves:

J (ĉ, u) =

∫ b

a

L(u(t))dt = `(c).

Using these definitions, we have that, the admissible curve solving the dual of
Dido’s problem, is precisely the admissible curve minimising this functional.

The theory dealing with similar problems on an arbitrary control system,
is called optimal control theory and this is the topic of Chapter III. Recall
the notations introduced in the previous section. Assume that L denotes
a smooth function on IRn × IRk which is called the cost function, and let
(q, u) : [a, b] → IRn × IRk denote an admissible curve with q(a) = qa and
q(b) = qb. Then, in turn, the cost function determines a functional J on the
class of admissible curves, as follows:

J (q, u) =

∫ b

a

L(q(t), u(t))dt.

An admissible curve (q, u) and the associated control u is called optimal
if for every admissible curve (q′, u′), defined on [a, b] with q′(a) = qa and
q′(b) = qb, the inequality J (q, u) ≤ J (q′, u′) holds.

In [47] necessary conditions for an admissible curve to be optimal are for-
mulated and these conditions are stated in the maximum principle (for the
sake of simplicity we leave out all technical details).

Theorem (The maximum principle). Assume that the admissible curve
(q, u) : [a, b] → IRn × IRk is optimal with respect to a given cost function
L(q, u). Then, there exists a pair (λ, p(t)), with p : [a, b] → IRn and λ ∈ IR,
such that the following conditions are satisfied:
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1. (q(t), p(t)) is a solution to the following Hamiltonian system,

ṗi = −∂H

∂qi
(q, u, p),

q̇i =
∂H

∂pi
(q, u, p) = γi(q, u),

where the Hamiltonian H is given by IRn × IRk × IRn → IR : (q, u, p) 7→
piγ

i(q, u) + λL(q, u);

2. H(q(t), u(t), p(t)) ≥ H(q(t), u′, p(t)) with u′ ∈ IRk arbitrary and for all
t ∈ [a, b] (or: H(q(t), u′, p(t)) reaches a maximal value at u′ = u(t));

3. the pair (p(t), λ) is not trivial, i.e. p(t) 6= 0 or λ 6= 0;

4. λ = 0 or λ = −1.

An important observation is that the maximum principle also allows the
constant λ to be zero. In the past, this subtlety was often wrongly inter-
preted (see e.g. [50, 51]). If λ = 0 then the Hamiltonian H equals piγ

i(q, u)
and, therefore, in that case the conditions of the maximum principle become
independent of the cost function ! This extraordinary situation motivated
some people to call the corresponding admissible curves abnormal extremals,
precisely because the above conditions are necessary for admissible curves
to be optimal and that one would expect that these conditions naturally de-
pend on the cost function. R. Montgomery proved in 1994 that there exist
abnormal extremals that are minimising [45].

In Chapter III, we study optimal control theory from a differential geo-
metric point of view. We will prove a differential geometric version of the
maximum principle in the case of optimal control theory for time dependent
and time independent (autonomous) control systems. We also consider the
case where the endpoints of an optimal control are allowed to vary on a
given submanifold. We introduce the notion of a variation of an admissible
curve and we define a cone of variations in the tangent space of the con-
figuration manifold at the endpoint of an admissible curve. The geometric
picture behind this cone, is that it will contain all possible directions near
this endpoint that are also reachable by an admissible curve. The notion of
abnormal extremal is thoroughly investigated and it will turn out that these
abnormal extremals are precisely those admissible curves that do not allow
variations in all possible directions, i.e. in this case, the cone of variations is
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not equal to the full tangent space at the endpoint. Amongst others, we will
prove necessary and sufficient conditions for an admissible curve to be ab-
normal. At the end of Chapter III, we mention several possible applications
of the maximum principle in differential geometry, such as Hamiltonian and
Lagrangian mechanics on (affine) Lie algebroids, simple mechanical control
systems, etc.

Generalised connections

In the treatment of the maximum principle for control systems on anchored
bundles, an important role is assigned to the notion of a generalised connec-
tion. In Chapter II we develop the theory of generalised connections over
a bundle map and show, among others, that it allows us to define a trans-
port operator along admissible curves. In particular, the variational cone of
an admissible curve can be defined by transporting certain tangent vectors
along the admissible curve under consideration.

The notion of a generalised connection, presented in Chapter II, was inspired
on recent work by R.L. Fernandes [11, 14, 15]. He introduced a generalisa-
tion of the notion of connection, some of the essential elements of which can
be found in earlier work by, among others, I. Vaisman [56], Y.C. Wong [59]
and F. Kamber and P. Tondeur [21] on respectively, contravariant connec-
tions, pseudo-connections and partial connections. The relevance of creating
such a model in which all the above mentioned different notions of connec-
tion fit, lies within the fact that it brings within the reach of connection
theory certain differential geometric structures which have not been consid-
ered previously from such a point of view. As is already mentioned, one of
these possible fields of applications is geometric control theory.

Sub-Riemannian geometry versus nonholonomic mechanics

Another field of applications of optimal control theory can be found in sub-
Riemannian geometry. Let us first describe very briefly what is meant by a
sub-Riemannian geometry using the definitions above. Let γ : IRk × IRn →
IRn denote a control system. Consider the map γq : u′ 7→ γ(q, u′), defined
for an arbitrary fixed point q ∈ IRn. Assume that γq is injective and linear

for all q ∈ IRn, i.e. γi(q, u) =
∑k

j=1 γi
j(q)u

j for i = 1, . . . , n. If gij(q), for
i, j = 1, . . . , n denotes a Riemannian metric on IRn, then we can define a
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Riemannian bundle metric on the trivial bundle IRn × IRk → IRn as follows:
hmn = gijγ

i
mγj

n for m, n = 1, . . . , k. Since γq is assumed to be injective for
all q ∈ IRn, this bundle metric is well defined. The control system and the
bundle metric determine what is called a sub-Riemannian structure. Using
this metric one can define the length of an admissible curve (q(t), u(t)) as
usual by

∫ b

a

√
gij(q(t))q̇i(t)q̇j(t)dt.

Using the definition of an admissible curve, it is easily seen that the following
equality holds:

gij(q(t))q̇
i(t)q̇j(t) = hmn(q(t))um(t)un(t).

One of the main topics is to find those admissible curves that minimise
length among all admissible curves connecting two given points or, equiv-
alently, since q̇(t) = γ(q(t), u(t)), those admissible curves that are optimal
with respect to the cost function L(q, u) =

√
hmn(q)umun. It is easily seen

that the dual of Dido’s problem fits into the definition of a sub-Riemannian
geometry.

In Chapter IV we discuss the general setting of sub-Riemannian geometry
and its relation to optimal control theory. Further, we shall demonstrate
the applicability of the theorems on abnormal curves from Chapter III and
we present an alternative approach to, respectively, sub-Riemannian geom-
etry and nonholonomic mechanics (i.e. mechanical systems subjected to
nonholonomic constraints) by means of the generalised connections intro-
duced in Chapter II. We show that the geometrical framework in which
nonholonomic mechanics is modeled also fixes a sub-Riemannian structure.
Necessary and sufficient conditions are derived for “geodesics” (curves sat-
isfying the necessary conditions of the maximum principle for λ = −1) to
be solutions of the equations of motion of a free nonholonomic particle. In
Chapter V we further discuss an alternative reduction procedure of nonholo-
nomic mechanics with symmetry using the tools developed in Chapter II on
generalised connections. The importance of this new reduction procedure
lies within the fact that the conditions on the nonholonomic constraint distri-
bution, necessary for applying the theory, are less restrictive in comparison
with other reduction procedures. We consider an example of a nonholonomic
mechanical system with symmetry, the Snakeboard, to fix these ideas.
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The solution of Dido’s problem

To close this introduction, we point out how the maximum principle can be
used to solve the dual of Dido’s problem. Using the results from Chapter IV
we can easily show that no abnormal extremals can occur for this particular
problem. For λ = −1, the Hamiltonian system in the maximum principle
can be reformulated such that the solution (x(t), y(t), z(t)) has to satisfy the
following system of differential equations:

ṗx = −1
2 ẏpz, ẋ = px − 1

2ypz,
ṗy = 1

2 ẋpz, ẏ = py + 1
2xpz,

ṗz = 0, ż = 1
2(xẏ − yẋ),

for some p(t) = (px(t), py(t), pz(t)). From this it follows that ẍ = −ẏω and
that ÿ = ẋω, with pz = ω constant. The general solution for (x(t), y(t))
through the origin is of the form:

x(t) = A sin(ωt) + B
(
cos(ωt) − 1

)
,

y(t) = A(1 − cos(ωt)) + B sin(ωt),

for t ∈ [0, 1] and with A and B constants. Let R be the positive constant
defined by R2 = A2 + B2. There exists an α ∈ [0, 2π[ such that A = R cos α
and B = R sinα and we obtain:

x(t) = R
(
sin(ωt + α) − sin(α)

)
,

y(t) = R
(
cos(α) − cos(ωt + α)

)
,

for t ∈ [0, 1]. The shape of the above curve is the circle segment with centre
at the point (−R sin(α), R cos(α)) and with radius R. The constants R, α, ω
follow from the condition that the circle passes through a fixed endpoint
(x1, y1) with x1 = 0 and that z(1) = S, where z(t) is given by:

z(t) =
R2

2

(
ωt + sin(ωt)

)
.

In Chapter III we prove that, in case the endpoint is a variable point on
L, then the constants R, α, ω are determined by the conditions py(1) = 0,
x(1) = 0 and z(1) = S. In particular, this implies that α = 0 and ω = π, i.e.
the solution curve is a half circle, with centre at a point of L. The condition
z(1) = S then precisely expresses that S = 1

2πR2.
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Notations and conventions

We only consider real, Hausdorff, second countable smooth manifolds, and
by smooth we will always mean C∞. The set of (real valued) smooth func-
tions on a manifold M will be denoted by C∞(M), the set of smooth vector
fields by X(M) and the set of smooth one-forms by X∗(M). Given a fibre
bundle π : E → M , then the set of all smooth sections defined on an open
neighbourhood of a point x ∈ M will be denoted by Γx(π), and we further
put Γ(π) = ∪x∈MΓx(π) (sometimes we also write Γ(E)). Note, in particu-
lar, that any global section of π, if it exists, belongs to Γx(π) for all x. The
fibre of π over a point x ∈ M will be indicated by Ex. Given a smooth map
f : N1 → N2 between two manifolds, we will denote the tangent map of f
by Tf : TN1 → TN2.

Let V be a real vector space, and W a subspace, then the annihilator space
of W is given by

W 0 = {β ∈ V ∗ | 〈β, w〉 = 0 ∀w ∈ W}.

If E is a vector bundle over a manifold M and F any vector subbundle, then
the annihilator bundle F 0 of F is the subbundle of the dual bundle E∗ of
E over M whose fibre over a point x ∈ M is the annihilator space of the
subspace Fx of Ex. The domain of a curve will usually be taken to be a
closed (compact) interval in IR. If a group G′ is a subgroup of a group G,
then we write G′ < G.

Parts of the work presented in this thesis have been published in the following
papers [5, 27, 28, 29, 30, 31].
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I

Anchored bundles

In this chapter we describe the basic structure on which our study of gener-
alised connections relies, namely that of an anchored bundle. Let M denote
an arbitrary n-dimensional manifold with tangent bundle τM : TM → M .
The conceptual idea of an anchored bundle is that one considers a bundle
over M which is related to TM , in such a way that, for further develop-
ments, the bundle can be taken as an alternative to the tangent bundle of
M . The notion of an anchored bundle already appears, for instance, in the
work of P. Popescu [48], who also uses the denomination “relative tangent
space”.

Definition 0.1. An anchored bundle on M is a pair (ν, ρ) where, ν : N → M
denotes a fibre bundle over M , and ρ : N → TM is a bundle map, fibred
over the identity on M . We call ρ the anchor map of the anchored bundle.

The following diagram is commutative:

N TM

M

-

R ª
ν τM

ρ

We say that an anchored bundle (ν, ρ) is linear, if ν is a vector bundle and
ρ is a linear bundle morphism.

Consider two anchored bundles (ν ′, ρ′) and (ν, ρ) with base manifolds re-
spectively M ′ and M . An anchored bundle morphism (f, f) from (ν ′, ρ′) to
(ν, ρ) consists of a smooth mapping f : M ′ → M and a bundle morphism
f : N ′ → N fibred over f , in such a way that the following equality holds:

Tf ◦ ρ′ = ρ ◦ f.

We say that (f, f) is an anchored bundle isomorphism if f is a bundle iso-

morphism (see e.g. [49]) and if, in addition, (f−1, f
−1

) is also an anchored
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bundle morphism. In this case we can write ρ′ = T (f)−1 ◦ ρ ◦ f and, con-
versely, ρ = Tf ◦ ρ′ ◦ f−1. Next, if f is an injective immersion, then we
say that (ν ′, ρ′) is an anchored subbundle of (ν, ρ). Note that, although we
made no assumption on the restriction of f to the fibres of ν ′, the anchor ρ′

is completely determined by ρ′ = T (f)−1 ◦ ρ ◦ f , which is well defined since
f is an immersion. Assume that both anchored bundles are linear. Then,
we say that f is a linear homomorphism if f : N ′ → N is a linear bundle
map. The following commutative diagram represents an anchored bundle
morphism:

^

N ′ -

/

M ′

TM ′

ν ′ τM ′

ρ′

1
f

1
-ρ

/
M

τM

^

ν

f Tf
1 TMN

For brevity, we will often refer to the bundle morphism f : N ′ → N as an
anchored bundle morphism, with the base mapping f then being understood.

1 The foliation on anchored bundles

In this section we need some elements from the theory of integrability of
distributions, developed by H.J. Sussmann [52] (see also [37]). We first
briefly recall the basic definitions and some key results on distributions,
before applying them to anchored bundles. We also use this section to fix
some notations regarding composite flows and concatenations of integral
curves of vector fields.

Consider a manifold M and assume that F is a differentiable distribution
on M , i.e. F is a subset of TM such that, for any point x ∈ M , the fibre
Fx = F ∩TxM is a linear subspace of TxM and such that Fx is spanned by a
finite number, say k, of (local) independent vector fields on M evaluated at
x and such that these vector fields satisfy Xi(y) ∈ Fy for all y in the domain
of Xi (i = 1, . . . , k). The number k is called the rank of the distribution
F at x: it is the dimension of Fx. Note that, in the above definition, a
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distribution need not have constant rank in general. If F has constant rank,
we say that F is a regular distribution .

A distribution is said to be completely integrable if there exists, for every
x ∈ M , an immersed connected submanifold i : L ↪→ M containing x
and such that TyL = Fy, for each y ∈ L. A submanifold L satisfying the
above conditions is called a leaf of the distribution if it is maximal in the
sense that, given any other immersed submanifold L′ verifying the above
conditions and containing L, then L′ = L. It can be proven that these
leaves are unique and form a partition of M which is called the foliation
induced by the completely integrable distribution. Note that, by definition,
the distribution F has constant rank on the points of each leaf.

Let F be a family of vector fields on M , each defined on an open subset of
M . We say that F is everywhere defined if, given any x ∈ M , there exists an
element X of F containing x in its domain. An everywhere defined family
of vector fields F generates a distribution F in the following way. Put

Fx = span{X(x) | X ∈ F , x ∈ dom X},

then it is readily seen that F is a differentiable distribution. On the other
hand, it easily follows from the definition that any differentiable distribution
is generated by an everywhere defined family of vector fields. H.J. Sussmann
[52] has shown that one can always construct the smallest completely inte-
grable distribution F̃ containing the distribution F . In order to describe
this construction, we first need the notion of a composite flow.

Assume that we have fixed an ordered `-tuple X = (X`, . . . , X1) of (not
necessarily different) vector fields on M , and let us represent the flow of Xi

by {φi
t}. With a view on later constructions, we have chosen the ordering

of the vector fields in X with indices decreasing from left to right.

The composite flow of X is the map

Φ : V ⊂ IR` × M → M : ((t`, . . . , t1), x) 7→ φ`
t`
◦ · · · ◦ φ1

t1
(x),

defined on some open subset V of IR` × M . For brevity we shall write
Φ((t`, . . . , t1), x) = ΦT (x), where T = (t`, . . . , t1). We shall sometimes refer
to T as the composite flow parameter. For each fixed T , ΦT determines a
diffeomorphism from an open subset of M (which may be empty) to another
open subset of M . It can also be proven that, if we fix a point x ∈ M , then
the map T ′ 7→ ΦT ′(x) is smooth and is defined on an open neighbourhood
of T . For further details about the domain of composite flows, we refer the
reader to [37].
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Assume that we are given two composite flows: Φ of X = (X`, . . . , X1) and
Ψ of Y = (Y`′ , . . . , Y1). The composition of Φ and Ψ is the composite flow,
denoted by Ψ?Φ, of the (`′+`)-tuple (Y`′ , . . . , Y1, X`, . . . , X1). One can verify
that the composition of composite flows is associative. Using these notations,
it is easily seen that, for instance, Φ equals φ` ? · · · ? φ1. If T is a composite
flow parameter for Φ and T ′ for Ψ, then we put T ′ ? T = (T ′, T ) ∈ IR`′+`,
which is a composite flow parameter for Ψ ? Φ.

The composite flow Φ of X = (X`, . . . , X1) is said to be generated by an
everywhere defined family of vector fields F if X is an ordered `-tuple of
elements of F . Using all composite flows generated by F , we can define an

equivalence relation on the points of M , denoted by · F←→ ·.

Definition 1.1. Assume that x, y ∈ M . Then x
F←→ y if there exists a

composite flow Φ generated by F and a composite flow parameter T such
that ΦT (x) = y.

In the sequel, when no confusion can arise, we will also simply write x ↔ y,
dropping the explicit reference to F . It is easily seen that the relation
↔ is transitive (see the above definition of the composition of compos-
ite flows) and reflexive (take T = (0, . . . , 0)). If Φ is a composite flow
of X = (X`, . . . , X1) and ΦT (x) = y for some T = (t`, . . . , t1), then the
composite flow Φ̃ of X̃ = (X1, . . . , X`) and the composite flow parameter
T̃ = (−t1, . . . ,−t`) satisfy Φ̃

T̃
(y) = x. Since Φ̃ is also generated by F , this

makes the relation symmetric. In the following we always assume that the
distribution F is the one generated by a given family F . The following
theorem is due to H.J. Sussmann and can be found in [37, 52].

Theorem 1.1. The smallest completely integrable distribution F̃ containing
F is the distribution generated by the everywhere defined family F̃ containing
all vector fields of the form Φ∗

T Y , where Y ∈ F and Φ is a composite flow
generated by F . Moreover, the equivalence relations associated with F and
F ′ are equal and the leaves of the distribution F̃ are the equivalence classes

of
F←→.

Consider the distribution F̃ and let [X, Y ] denote the Lie bracket of two
vector fields in F . It is easily seen that [X, Y ] is a vector field in F̃ . Indeed,
let {φt} be the flow of X and observe that φ∗

t Y is in F̃ . Then, for each
x ∈ M , the curve t 7→ (φ∗

t Y )(x) is entirely contained in the linear space F̃x,
and so is its tangent vector:

d

dt

∣∣∣∣
0

(
φ∗

t Y
)
(x) = [X, Y ](x).
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This reasoning can be easily extended to any finite number of iterated Lie
brackets of vector fields in F . In fact, this observation is rather important
since it leads to an alternative proof of the Chow’s Theorem (see [52]), which
says that if the distribution generated by the family F and the family of all
iterated Lie brackets of vector fields in F , equals TM , then any two points
in a connected component of M can be connected by a curve whose tangent
vector is everywhere contained in F .

Assume that X = (X`, . . . , X1) is an arbitrary ordered `-tuple of vector
fields, with composite flow Φ. Fix a value (t`, . . . , t1) of the composite flow
parameter T . A concatenation of integral curves of X trough x ∈ M is a
piecewise smooth curve γ : [a, a + |t1| + · · · + |t`|] → M defined as follows,

γ(t) =





φ1
sgn(t1)(t−a)(x) for t ∈ [a, a1],

φ2
sgn(t2)(t−a1)(φ

1
t1

(x)) for t ∈ ]a1, a2],
...
φ`

sgn(t`)(t−a`−1)
(· · · (φ1

t1
(x)) · · · ) for t ∈ ]a`−1, a`],

where ai = a +
∑i

j=1 |tj |, sgn(ti) = ti/|ti| for ti 6= 0 and sgn(0) = 0. Note
that if t ∈]ai−1, ai[ then γ̇(t) = sgn(ti)Xi(γ(t)) and, hence, the restriction of
γ to ]ai−1, ai[ is an integral curve of Xi if ti > 0 (or of −Xi if ti < 0). Note
that γ(a`) = ΦT (x), i.e. the endpoint of γ coincides with the image of x
under the composite flow ΦT . It is easily seen that in the specific case where
X is generated by a given everywhere defined family F of vector fields, the
concatenation of integral curves of X through x ∈ M is entirely contained
in the leaf Lx through x of the associated completely integrable distribution
F̃ .

Let us now proceed towards the construction of an everywhere defined family
of vector fields on M , given an anchored bundle (ν, ρ) on M . Consider an
arbitrary (local) section σ of ν, i.e. σ : M → N is a smooth map with
(ν ◦ σ)(x) = x. We can associate to the section σ of ν, the vector field
ρ ◦ σ on M . Let D denote the set of all vector fields of the form ρ ◦ σ
for some section σ of ν. Clearly, D is everywhere defined and using the
notations introduced above, the manifold M is equipped with a distribution
D generated by D (with D = im ρ if (ν, ρ) is linear) and we can consider the
smallest completely integrable distribution D̃ containing D. The leaf of the
foliation determined by D̃ through x is denoted by Lx.

Consider the immersion i : Lx ↪→ M , and let ν ′ : N ′ = Lx ×M N → Lx

denote the pull-back bundle of ν under i, i.e. (y, s) ∈ N ′ if i(y) = ν(s). Since
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i is an immersion, we can define an anchor map ρ′ : N ′ → TLx as follows:
Tyi(ρ

′(y, s)) = ρ(s), given any (y, s) ∈ N ′. The projection π2 : N ′ → N of
N ′ onto the second factor, determines an anchored bundle morphism, fibred
over the immersion i, i.e. (ν ′, ρ′) is an anchored subbundle of (ν, ρ). We
shall call (ν ′, ρ′) the pull-back anchored bundle under i.

Before passing to the next section, we first give two examples of anchored
bundles and the distribution they induce. The first example is taken from
[45], where it was used in the context of sub-Riemannian geometry to con-
struct length-minimising strictly abnormal extremals (see the Introduction
and Chapter IV). The other example is taken from [37] and provides a
non-trivial completely integrable distribution on IR2.

Example 1.2. Take M = IR3 and ν : N = M × IR2 → M a trivial bundle
over M (we use cylindrical coordinates (r, θ, z) on M). Consider the follow-
ing two vector fields on M : X1 = ∂/∂r and X2 = ∂/∂θ − p(r)∂/∂z, where
p(r) is a function on IR with a single non degenerate maximum at r = 1:

d

dr
p(r)

∣∣∣∣
r=1

= 0 and
d2

dr2
p(r)

∣∣∣∣
r=1

< 0.

Such a function always exists (take, for instance, p(r) = 1
2r2 − 1

4r4). Let
ρ : N → TM denote the map defined by ρ(x, u1, u2) = u1X1(x) + u2X2(x),
with x = (r, θ, z) ∈ M . Note that the vector fields in the family D associated
with this anchored bundle are of the form x 7→ ρ(σ(x)) = σ1(x)X1(x) +
σ2(x)X2(x) with σ(x) = (x, σ1(x), σ2(x)) a section of ν (where σ1, σ2 ∈
C∞(M)). It is easily seen that (ν, ρ) is a linear anchored bundle. The flows
of X1, X2 are denoted by {φt}, {ψt}, respectively. In particular, we have
φt(r, θ, z) = (t+r, θ, z), ψt(r, θ, z) = (r, θ+t, z−p(r)t). The foliation induced
by D = im ρ is trivial. Indeed, all iterated Lie brackets of the two vector
fields X1 and X2 span the total tangent space at each point of M , implying
that D̃ = TM and M itself is the only leaf.

Example 1.3. Let M = IR2 and let N = M × IR2, with ρ(x, y, u1, u2) =
u1X(x, y) + u2Y (x, y), where X = ∂/∂x and Y = y∂/∂y. The distribution
F on M defined by F = im ρ satisfies F = F̃ , since [X, Y ] = 0, i.e. F
is completely integrable. The two 2-dimensional submanifolds {y < 0},
{y > 0} and the 1-dimensional submanifold {y = 0} are the leaves of the
foliation on M . We will use this example to show that Lemma 2.1 in the
following section is non-trivial. We shall construct a curve, which is tangent
to F , i.e. has tangent vector everywhere contained in F , but, such that the
curve itself is not entirely contained in a single leaf. Indeed, consider c̃ : IR →
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M : t 7→ (t, t3). It is readily seen that ˙̃c(t) = X(c̃(t)) + 3t−1Y (c̃(t)) ∈ Fc̃(t)

for t 6= 0 and ˙̃c(0) = X(0, 0) ∈ Fx. However c̃ passes through the three
leaves of F .

2 ρ-admissible curves

We introduce here the notion of a ρ-admissible curve. By a smooth curve
in a manifold M we will always mean a C∞ map c : I → M , where I ⊆ IR
may be either an open or a closed (compact) interval. In the latter case,
the denominations “path”or “arc”are also frequently used in the literature
but, for simplicity, we will make no distinction in terminology between both
cases. For a curve defined on a closed interval, say [a, b], it is tacitly assumed
that it admits a smooth extension to an open interval containing [a, b]. Fix
an anchored bundle (ν, ρ) on M .

Definition 2.1. Let c : [a, b] → N denote a smooth curve in N , and let
c̃ = ν ◦ c denote the projected curve in M , called the base curve of c. Then
c is called a smooth ρ-admissible curve if ρ ◦ c = ˙̃c.

Local coordinates on M will be denoted by (qi) and corresponding bundle
adapted coordinates on N by (qi, ua), with i = 1, . . . , n and a = 1, . . . , k,
where k is the dimension of the typical fibre of N . If we write the anchor
map ρ locally as

ρ(qi, ua) = γj(qi, ua)
∂

∂qj
, (2.1)

then a smooth ρ-admissible curve c(t) = (qi(t), ua(t)) locally satisfies the
equation γj(qi(t), ua(t)) = q̇j(t). In order to introduce a suitable concept of
“control curves” (see Chapter III) or of “leafwise holonomy” in the frame-
work of ρ-lifts, it turns out that the class of ρ-admissible curves in N should
be further extended to curves admitting (a finite number of) discontinuities
in the form of certain ‘jumps’ in the fibres of N , such that the corresponding
base curve is piecewise smooth. For a more precise definition of a “piecewise”
ρ-admissible curve we first consider the composition of smooth ρ-admissible
curves.

The composition of a finite number of, say `, smooth ρ-admissible curves
ci : [ai−1, ai] → N for i = 1, . . . , `, whose base curves satisfy the boundary
conditions c̃i(ai) = c̃i+1(ai) for i = 1, . . . , ` − 1, is the map c` · . . . · c1 :
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[a0, a`] → N defined by

c` · . . . · c1(t) =





c1(t) t ∈ [a0, a1],
c2(t) t ∈]a1, a2],
...
c`(t) t ∈ ]a`−1, a`].

(2.2)

Note that the base curve of c`·. . .·c1 is a piecewise smooth curve. However, in
general c` ·. . .·c1 is discontinuous at t = ai, i = 1, . . . , `−1. The composition
c = c`·. . .·c1 is called a piecewise ρ-admissible curve, or simply a ρ-admissible
curve. We now proceed towards the following important result, which tells
us that the base curve of a ρ-admissible curve is always entirely contained
in a leaf of the foliation on M , induced by the everywhere defined family of
vector fields D on M (see the previous section).

Lemma 2.1. The base curve c̃ of a ρ-admissible curve c : [a, b] → N is
entirely contained in the leaf Lx, with x = c̃(a).

Proof. It is sufficient to prove this result for c smooth. For any point
x ∈ M , consider a coordinate neighbourhood U centred at x with coordi-
nates (q1, . . . , qn) adapted to the foliation induced by D, such that: (1) if
qp+1(y) = · · · = qn(y) = 0, then y ∈ Lx, and (2) the coordinate functions
q1, . . . , qp determine coordinates on the leaf Lx (this is always possible since
Lx is an immersed submanifold). Upon restricting U to a smaller subset,
if necessary, we may always assume, in addition, that the fibre bundle ν
is trivial over U and we denote the adapted bundle coordinates on N by
(qi, ua) for i = 1, . . . , n and a = 1, . . . , k. In the following we only consider
such coordinate charts. Recall the definition of the pull-back anchored bun-
dle (ν ′, ρ′) under i : Ly ↪→ M . Note that (q1, . . . , qp, u1, . . . , uk) is a bundle
adapted coordinate chart on N ′.

Fix a suitable coordinate chart on M (in the sense specified above) contain-
ing the point x = c̃(a) and assume that c is written in the adapted bundle
coordinates as (c̃i(t), ua(t)). Let d̃ denote the solution curve in Lx of the
following system of differential equations:

˙̃
d

i

(t) = ρ′i(d̃1(t), . . . , d̃p(t), u1(t), . . . , uk(t)), i = 1, . . . , p,

with initial condition d̃(a) = x. From standard arguments we know that d̃
is defined on an interval containing [a, a + ε[ for some ε > 0.
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Consider the curve d̃′ = i ◦ d̃ : [a, a + ε[→ M in M . Then we have, by
uniqueness of solutions of differential equations, that d̃′ = c̃|[a,a+ε[, since

the curves d̃′(t) and c̃(t) both satisfy the system of differential equations
q̇i = ρi(q, u(t)), i = 1, . . . , n. Indeed, for c̃ this is trivial and for d̃′ we have

˙̃
d′(t) = Ti(ρ′(d̃(t), c(t))) = ρ(d̃i(t), 0, ua(t)).

Therefore, we conclude that c̃|[a,a+ε[ is contained in the leaf Lx, since by
making use of the coordinate system, we have c̃i(t) = 0 for t ∈ [a, a + ε[ and
i = p + 1, . . . , n. Taking the limit from the left at t = a + ε, we obtain that
c̃i(a + ε) = 0 for i = p + 1, . . . , n, i.e. c̃(a + ε) ∈ Lx. We can repeat the
above reasoning for the curve c|[a+ε,b], i.e. starting from the point c̃(a + ε)
instead of the point x. We thus obtain that c̃(t) ∈ Lx for all t ∈ [a, a+ ε+ ε′]
for some ε′ > 0. Continuing this way, we eventually obtain that the entire
curve c̃ is contained in Lx, which concludes the proof.

It can be seen that the curve c̃ constructed in Example 1.3 does not contra-
dict the previous lemma, although c̃ is a curve tangent to the distribution
im ρ. Indeed, c̃ can not be written as the base curve of a ρ-admissible curve
since it has a singularity at t = 0.

Consider two anchored bundles (ν ′, ρ′) and (ν, ρ), and an anchored bundle
morphism f between them, i.e. f : N ′ → N fibred over f : M ′ → M . Let
c′ denote a ρ′-admissible curve. Consider the curve c = f ◦ c′ in N , and let
c̃, resp. c̃′, denote the base curve of c, resp. c′. Then, we have that c is
ρ-admissible, since

ρ ◦ c = ρ ◦ f ◦ c′ = Tf ◦ ρ′ ◦ c′ = Tf ◦ ˙̃c
′
= ˙̃c.

Let c : [a, b] → N denote a ρ-admissible curve. If x = c̃(a) and y = c̃(b),
then we say that c takes x to y, and we write x

c→ y (or, shortly x → y if
there is no need to mention the ρ-admissible curve explicitly). The relation
→ on M is transitive, and is preserved by an anchored bundle morphism
(f, f), i.e. if x′ → y′, for x′, y′ ∈ M ′, then f(x′) → f(y′). The set of points
y ∈ M such that x → y for some fixed x is denoted by Rx and is called the
set of reachable points from x. Above we have proven that the base curve
of a ρ-admissible curve is contained in a leaf Lx of the foliation on M , i.e.
Rx ⊂ Lx. It is interesting to ask the question if every point in Lx can be
reached from x following a ρ-admissible curve. In general this is not the
case. However, if we consider the composition of ρ- and (−ρ)-admissible
curves, then every point in Lx can indeed be reached from x.
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Note: here and in the following, a minus sign in front of an element of
a vector bundle or of a mapping with values in a vector bundle obviously
applies to the fibre component.

Definition 2.2. Given an anchored bundle (ν, ρ). The inverse anchored
bundle is defined by (ν,−ρ), where −ρ : N → TM : s 7→ −ρ(s).

An anchored bundle (ν, ρ) is related to its inverse in the following way.
Assume that c : [a, b] → N is a ρ-admissible curve taking x to y, i.e. x

c→ y.
Then the curve c∗ : [a, b] → N : t 7→ c((b − t) + a) is (−ρ)-admissible and
takes y to x. We shall call this curve the (−ρ)-admissible curve associated
with c, or simply the reverse of c. Note that, using these notations, (c∗)∗ = c.
If we write the relation on M induced by the inverse anchored bundle as
→∗, we have the following equivalence:

x
c→ y iff y

c∗→∗ x.

Note that the family of vector fields on M associated to the inverse anchored
bundle structure equals −D = {−ρ ◦ σ | σ ∈ Γ(ν)} and, therefore, produces
the same distribution D and the same foliation as D. The set of reachable
points from x induced by the inverse anchored bundle (ν,−ρ) is denoted by
R−1

x , i.e. y ∈ R−1
x if x →∗ y. We now consider the composition of ρ- and

(−ρ)-admissible curves. Thus, assume that we have ` curves ci : [ai−1, ai] →
N for i = 1, . . . , ` such that c̃i−1(ai−1) = c̃i(ai−1) and such that ci is either
ρ-admissible or (−ρ)-admissible. The composition c = c` · . . . · c1 of the
curves ci, defined as in Equation 2.2, is called a ±ρ-admissible curve.

The projection c̃ of a ±ρ-admissible curve c onto M is a piecewise smooth
curve which is called the base curve of the ±ρ-admissible curve. If c̃(a0) = x
and c̃(a`) = y we say that the ±ρ-admissible curve takes x to y. Note that,
in this case, the ±ρ-admissible curve c∗ defined by c∗ = (c1)

∗ · . . . ·(c`)
∗ takes

y to x.

We thus obtain an alternative characterisation of the leaves of the foliation
of M generated by the anchored bundle structure (ν, ρ).

Theorem 2.2. We have that x ↔ y, or y ∈ Lx, iff there exists a ±ρ-
admissible curve taking x to y.

Proof. The ‘if’-part of the proof follows straightforwardly from Lemma 2.1.
The ‘only if’-part is proven by the following argument. Assume that y ∈ Lx

and consider a composite flow Φ of X = (X`, . . . , X1), with Xi = ρ ◦ σi
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and σi ∈ Γ(ν) (Φ is generated by D) such that ΦT (x) = y. Consider the
following curves:

ci : [ai−1, ai] → N : t 7→ σi ◦ γ|[ai−1,ai], i = 1, . . . , `,

where γ is the concatenation of integral curves associated with X and T
through x (where we have used the notations from the preceding section).
It is easily seen that ci is ρ-admissible if sgn(ti) > 0, and (−ρ)-admissible
if sgn(ti) < 0. If we put c = c` · . . . · c1, then c takes x to y and is ±ρ-
admissible.

The proof of the following theorem is a straightforward consequence of The-
orem 2.2. Note that any anchored bundle morphism f between (ν ′, ρ′) and
(ν, ρ), which is fibred over f : M ′ → M , is also a morphism of the corre-
sponding inverse anchored bundles, i.e. f : (ν ′,−ρ′) → (ν,−ρ). This implies
that, if x′ →∗ y′ then f(x′) →∗ f(y′), for x′, y′ ∈ M ′.

Theorem 2.3. Let f denote a morphism between (ν ′, ρ′) and (ν, ρ), fibred
over f : M ′ → M . Then f(Lx′) ⊂ Lf(x′). If (ν ′, ρ′) is the pull-back bundle

along i : Lx ↪→ M and f = π2, then i(Lx) = Li(x).

It is interesting to consider the special case of linear anchored bundles.

Theorem 2.4. Let (ν, ρ) denote a linear anchored bundle on M and take
any x, y ∈ M . Then y ∈ Lx or x ↔ y iff there exists a ρ-admissible curve
that takes x to y, i.e. we have Rx = Lx.

Proof. This theorem follows from the fact that, given a linear anchored
bundle, then x → y iff y → x. Indeed, assume that c : [a, b] → N is a
ρ-admissible curve taking x to y. Then the curve c−1 : [a, b] → N : t 7→
−c((b − t) + a) is also ρ-admissible and takes y to x. Note that c−1 = −c∗.
The curve c−1 is called the inverse of c. In particular, the base curve of
a ±ρ-admissible curve is the base curve of a ρ-admissible curve on a linear
anchored bundle, which proves the above theorem.

Let (ν, ρ) denote a linear anchored bundle and let c : [a, b] → N denote
a smooth ρ-admissible curve, with base curve c̃. We now prove that any
“reparametrisation” of c̃ is again the base curve of a ρ-admissible curve.
Assume that φ : [a, b] → [a′, b′] is a diffeomorphism satisfying φ(a) = a′

and φ(b) = b′. Consider the following curve c′ : [a′, b′] → N defined by
c′(s) = φ′−1(s)c(φ−1(s)), with φ′(s) = dφ/ds(s) ∈ IR. From elementary
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calculations it is easily seen that c′ is ρ-admissible, and that its base curve
equals c̃(φ−1(s)), i.e. a reparametrisation of c̃. From now on we agree on
saying that every ρ-admissible curve in a linear anchored bundle is defined
on the interval [0, 1].

3 ±ρ-admissible loops

Consider a point x ∈ M and let C(x, N) denote the set of all ±ρ-admissible
curves taking x to itself. Elements of C(x, N) are called, with some abuse
of terminology, ±ρ-admissible loops with base point x. Indeed, in general a
±ρ-admissible loop need not be continuous, nor closed.

Let π1(x, M) denote the fundamental group of M with reference point x
and consider the map C(x, N) → π1(x, M), associating to the base curve
of a ±ρ-admissible loop c, its homotopy class in π1(x, M), i.e. if c̃ is the
base curve of c = c` · . . . · c1 ∈ C(x, N), then c is mapped onto [c̃]. It is
easily seen that the image of C(x, N) determines a subgroup of π1(x, M),
which is denoted by πN

1 (x, M). Indeed, assume that c = c` · . . . · c1 and
d = d`′ · . . . · d1 are elements of C(x, N), with first homotopy classes [c̃] and
[d̃], respectively. Then, the product [c̃] · [d̃] in π1(x, M) is the homotopy
class of the base curve of c` · . . . · c1 · d`′ · . . . · d1. On the other hand, if
c = c` · . . . · c1 is a ±ρ-admissible loop with base point x, then the curve
c∗ = (c1)

∗ · . . . · (c`)
∗ is also contained in C(x, N), and the homotopy class

of the base curve of c∗ is precisely the inverse [c̃]−1 of [c̃]. Therefore, the
±ρ-admissible loops generate a subgroup of π1(x, M) which is denoted by
πN

1 (x, M). Note that, if (ν, ρ) is linear, then πN
1 (x, M) is generated by the

set of ρ-admissible loops with base point x, i.e. ρ-admissible curves taking
x to itself. From Theorem 2.4, we know that any two points in Lx can be
connected by the base curve of a ±ρ-admissible curve. This implies, using
standard arguments, that we can omit the reference point: we sometimes
write πN

1 (Lx, M) instead of πN
1 (y, M) for any y ∈ Lx.

We now elaborate on how the above defined structures on anchored bundles
behave under homomorphisms. From Section 2, we already know that ±ρ-
admissible curves are mapped into ±ρ-admissible curves by an anchored
bundle morphism f : (ν ′, ρ′) → (ν, ρ). In particular, ±ρ-admissible loops
are preserved by such morphisms which, therefore, induce a group morphism
between the corresponding subgroups of the first fundamental group of the
base manifolds. More precisely, assume that f denotes a homomorphism
between two anchored bundles (ν ′, ρ′) and (ν, ρ), fibred over f . Then, if [f ]
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denotes the corresponding group morphism from π1(x
′, M ′) to π1(f(x′), M),

we have that [f ] can be restricted to a morphism from πN ′

1 (Lx′ , M ′) to
πN

1 (Lf(x′), M).

Consider the pull-back setting under i : Lx ↪→ M , and let π2 : N ′ =
i∗N → N denote the associated anchored bundle morphism. From the
above, we know that [i] maps the subgroup πN ′

1 (y, Lx) of π1(Lx) to the sub-
group πN

1 (y, M) of π1(y, M) (note that Lx is connected, allowing us to omit
the reference point in the first homotopy group of Lx). We now prove that
[i] : πN ′

1 (y, Lx) → πN
1 (y, M) is onto. Consider an arbitrary element [c̃] of

πN
1 (y, M) associated with some c ∈ C(y, N). From Lemma 2.1 we know

that c̃ is contained in the leaf Ly = Lx, which in turn implies that there
exists a ±ρ-admissible loop c′ ∈ C(y, N ′) such that π2 ◦ c′ = c. In par-
ticular, we have that [i]([c̃′]) = [c̃], and, hence, [i] is onto, when restricted
to πN ′

1 (y, Lx). Finally, again using the fact that any two points in Lx can
be connected using a ±ρ-admissible curve, we use the shorthand notation
πN ′

1 (Lx) for πN ′

1 (y, Lx).



14 Anchored bundles



II

Generalised connections

The theory of connections undoubtedly constitutes one of the most beautiful
and most important chapters of differential geometry, which has been widely
explored in the literature (see e.g. [19, 22, 24, 39], and references therein).
Besides its purely mathematical interest, connection theory has also become
an indispensable tool in various branches of theoretical and mathematical
physics.

Consider an arbitrary linear bundle π : E → M , with total space E and
base space M , and let V π denote the canonical vertical distribution, i.e.
the subbundle of TE consisting of all vectors tangent to the fibres of π. A
connection on π (or E) is then given by a smooth distribution Hπ on E,
called a horizontal distribution, which is complementary to V π and projects
onto TM and which is invariant under the flow of the dilation vector field
on E. This leads to a direct sum decomposition of TE, i.e. TE = Hπ⊕V π.
Note that there exist other ways of characterising a connection. For instance,
a connection on π is sometimes defined as a global section of the first jet
bundle J1π over E, or also as a splitting of the short exact sequence

0 −→ V π
i−→ TE

π̃−→ π∗TM −→ 0,

i.e. a smooth map h : π∗TM → TE such that π̃ ◦ h is the identity map on
the pull-back bundle π∗TM , where i denotes the natural injection and π̃
the projection of TE onto π∗TM(cf. [19, 39, 49]). The main consequence
of considering a connection on E is that, given any curve connecting two
points in M , a parallel transport operator can be defined which determines a
“connection” between the elements of the fibres of E over these base points.

In the literature one can find several generalisations of the concept of connec-
tion introduced above, obtained by relaxing the conditions on Hπ. First of
all, we are thinking here of the so-called partial connections, where the hor-
izontal distribution Hπ does not determine a full complement of V π. More
precisely, Hπ has zero intersection with V π, but projects onto a subbundle
of TM , rather than onto the full tangent bundle (see e.g. [21]). Of special
interest are partial connections projecting onto an integrable subbundle of
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TM , which play an important role in the study of the geometry of regular
foliations.

Secondly, there also exists a notion of pseudo-connection, introduced under
the name of quasi-connection in a paper by Y.C. Wong [59]. A fundamental
role in the definition of a pseudo-connection on a manifold M is played by
a type (1, 1)-tensor field on M which simply becomes the unit tensor field
in case of an ordinary connection. Pseudo-connections, and generalisations
of it, have been studied by many authors (see [12] for a coordinate free
definition of a pseudo-connection on a fibre bundle, and for more references
to the subject).

The inspiration for the generalisation presented in this chapter mainly stems
from some recent work by R.L. Fernandes on a notion of ‘contravariant
connection’ in the framework of Poisson geometry (cf. [14]). Given a Poisson
manifold (M, Λ), with Poisson tensor Λ, not necessarily of constant rank,
and a principal G-bundle π : P → M , a contravariant connection on π is
defined as a G-invariant bundle map h : π∗(T ∗M) → TP over the natural
vector bundle morphism ]Λ : T ∗M → TM induced by the Poisson tensor.
This concept of connection significantly deviates from the standard one, in
that the ‘horizontal’ distribution im(h) may have nonzero intersection with
the vertical subbundle V π and, as for partial connections, projects onto
a distribution of TM , namely ]Λ(T ∗M). It is demonstrated in [14] that
this definition of connection leads to familiar concepts such as parallelism,
holonomy, curvature, etc..., and, therefore, plays an important role in the
study of global aspects of Poisson manifolds. In a subsequent paper [15],
Fernandes has extended this theory by replacing the cotangent bundle of a
Poisson manifold by a Lie algebroid over an arbitrary manifold, and the ]Λ-
map of the Poisson tensor by the anchor map of the Lie algebroid structure.
This resulted into a notion of Lie algebroid connection which, in particular,
turns out to be appropriate for studying the geometry of singular foliations.

In this chapter we generalise the notion of connection by altering its defi-
nition as a horizontal lift. Roughly speaking, a generalised connection lifts
elements of a anchored bundle on M towards vectors tangent to a bundle
E over M . This agrees with our previous policy of considering an anchored
bundle as an alternative to TM . In the first section we give a formal defi-
nition of a generalised connection, where we distinguish the case where the
anchored bundle is not linear from the case where it is linear. In the former
we will talk about a lift over an anchor map and in the latter about a con-
nection over an anchor map. In subsequent sections, we examine the basic
properties of these generalised connections and some additional structures
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that can be defined. In particular we show how the standard connections,
as well as the notions of pseudo-connection, partial connection and Lie al-
gebroid connection, fit into the general scheme presented below.

1 Lifts over an anchor map

Consider an anchored bundle (ν, ρ), with ν : N → M and ρ : N → TM .
Let π : E → M be a vector bundle over M , with `-dimensional fibres and
with local bundle coordinates denoted by (qi, yA), where i = 1, . . . , n and
A = 1, . . . , `. We can then consider the pull-back bundle π∗N = {(e, s) ∈
E × N |π(e) = ν(s)} which can be regarded as being fibred over E as well
as over N , with natural projections given in coordinates by, respectively,

π̃1 : π∗N −→ E, (qi, yA, ua) 7−→ (qi, yA)

and

π̃2 : π∗N −→ N, (qi, yA, ua) 7−→ (qi, ua).

In particular, for each point e ∈ E, the fibre (π̃1)
−1(e) can be identified with

the typical fibre Nπ(e) = ν−1(π(e)). Next, since E is assumed to be linear,
one can consider the dilation vector field ∆ on E, which locally reads

∆ = yA ∂

∂yA
.

The flow of ∆ is denoted by {λt}. Finally, let D denote the family of vector
fields on M associated with the given anchored bundle (ν, ρ) (cf. Chapter
I). We now have all ingredients at hand to introduce the main concept of
the present chapter.

Definition 1.1. A lift on π defined over the anchor map ρ, shortly a ρ-lift
on π, is a smooth bundle map h : π∗N → TE from π̃1 to τE over the identity
on E such that, in addition, the following two conditions hold:

1. Tπ ◦ h = ρ ◦ π̃2,

2. Tλt(h(e, s)) = h(λt(e), s), for all (e, s) ∈ π∗N and for all t.

From the definition of a ρ-lift, we have that the following two diagrams are
commutative:
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π∗N TE

E

-

R ª

π̃1 τE

h

N - TM
?

TE-π∗N

?

ρ

h

π∗
π̃2

In the case where (ν, ρ) is a linear anchored bundle, the bundle π̃1 : π∗N → E
inherits a linear structure. This leads us to the following definition.

Definition 1.2. A lift h over ρ on the bundle π is called a connection on π
over ρ, shortly a ρ-connection on π if the map h is a linear bundle map from
π̃1 to τE , i.e. conditions 1 and 2 from Definition 1.1 hold and, in addition,

3. h(e, λs + λ′s′) = λh(e, s) + λ′h(e, s′), for λ, λ′ ∈ IR and s, s′ ∈ Nπ(e).

Remark 1.1. It should be noted, for the sake of completeness, that one can
also define a lift over ρ in the case where E is not necessarily a vector bundle.
The definition should then be modified by leaving out condition 2. Since we do
not use this generalisation in the remaining chapters, we refer to [5] for further
details. However, we shall consider the specific case where E is a principal fibre
bundle, since these structures are important when defining leafwise holonomy.

Let us now proceed with the case where h is a ρ-lift on a linear bundle π.
In the remainder of this section, we first consider coordinate expressions
of ρ-lifts and ρ-connections, and study how they behave under coordinate
transformations. Next, we continue with defining additional structures as-
sociated with ρ-lifts.

In terms of the bundle coordinates introduced above, and taking into account
the local form of ρ from Equation 2.1 in Chapter I, we can write h as

h(qi, yA, ua) = (qi, yA, γi(q, ua), ΓA
B(q, u)yB). (1.1)

Note that the linearity in yB of the functions ΓA
B follows from Condition

2 in Definition 1.1. The functions ΓA
B play the role similar to “connection

coefficients”, and will be called the lift coefficients of the ρ-lift h. Note that
in the particular case where h is a ρ-connection, these functions are linear
in ua and can be written as

ΓA
B(q, u) = ΓA

aB(q)ua.

In order to see how these functions behave under natural coordinate trans-
formations, take any point (e, s) ∈ π∗N , with π(e) = ν(s) = x, and consider
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a change of coordinates (qi, yA, ua) → (q̄i, ȳA, ūa) in a neighbourhood of
(e, s), compatible with the underlying bundle structures:

q̄i = q̄i(q), ȳA = ΞA
B(q)yB , ūa = ūa(q, u).

Note, first of all, that with respect to the bundle coordinates (q̄i, ūa) on N ,
the map ρ can be written as (q̄i, ūa) 7→ (q̄i, γ̄i(q̄, ūa)), with

γ̄i(q̄(q), ū(q, u)) =
∂q̄i

∂qj
(q)γj(q, u).

Next, representing the lift h(e, s) over ρ in both coordinate systems by
(qi, yA, γi(q, u), ΓA

B(q, u)yB) and (q̄i, ȳA, γ̄i(q̄, ū), Γ̄A
B(x̄, ū)ȳB), respectively,

and taking into account the natural coordinate transformation on TE, in-
duced by the transformation (qi, yA) → (q̄i, ȳA) on E, one finds after a
tedious, but straightforward computation, the following transformation law
for the lift coefficients associated to a general ρ-lift:

Γ̄A
B(q̄(q), ū(q, u)) =

(
∂ΞA

D

∂qj
(q)γj(q, u) + ΞA

C(q)ΓC
D(q, u)

)
(Ξ−1)D

B .

In the specific case of a ρ-connection, the transformation rules become with
ūa(q, u) = Λa

b (q)u
b,

Γ̄A
aB(q̄(q)) =

(
∂ΞA

D

∂qj
(q)γj

b (q) + ΞA
C(q)ΓC

bD(q)

)
(Ξ−1)D

B (Λ−1)b
a .

Let us now return to the general case and let h denote a ρ-lift. It is easily
seen from the definition of h that (π̃1, h) determines an anchored bundle
and that the bundle morphism π̃2 : π∗N → N , which is fibred over π :
E → M , determines an anchored bundle morphism between (π̃1, h) and
(ν, ρ). Moreover, if h is a ρ-connection, we have that (π̃1, h) is a linear
anchored bundle and that π̃2 is a linear anchored bundle morphism. This is
represented in the following diagram:

^

π∗N -

/

E

TE

π̃1 τE

h

1
π

1 -ρ

/
M

τM

^

ν

π̃2 Tπ
1 TMN
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We will now apply the tools from Chapter I to the study of ρ-lifts. We first
fix some notations. The everywhere defined family of vector fields generated
by (π̃1, h) on E is denoted by Q, and correspondingly, the distribution on
E generated by Q is denoted by Q. We refrain from calling Q a horizontal
distribution, even in the case of a ρ-connection, since for arbitrary e ∈ E it
may be that Qe has non-zero intersection with Veπ. Moreover, in general
Qe + Veπ 6= TeE, i.e. Qe and Veπ do not necessarily span the full tangent
space TeE. The smallest integrable distribution containing Q is, as usual,
denoted by Q̃. The leaf of Q̃ through an arbitrary point e ∈ E is written as
H(e). The ρ-lift h can be used to lift several kinds of objects living on the
anchored bundle (ν, ρ) to the anchored bundle (π̃1, h). For instance, given
any (local) section σ of ν, we can define a mapping σh : E → TE by

σh(e) = h(e, σ(π(e))). (1.4)

It is seen that, by construction, σh is smooth and verifies τE(σh(e)) = e, i.e.
σh is a (local) vector field on E, called the lift of the section σ with respect
to h, or simply the lift of σ if no confusion can arise. Let us denote the
everywhere defined family of lifts of (local) sections of ν by Dh.

Theorem 1.2. Given any ρ-lift h, then the following properties hold:

1. the family Dh generates the distribution Q, and, hence, also the inte-
grable distribution Q̃;

2. any h-admissible curve is mapped by π̃2 onto a ρ-admissible curve;

3. given any ρ-admissible curve c taking x to y and a point e ∈ Ex, then
there exists a unique h-admissible curve through e, projecting onto c
by π̃2.

Proof. Property 1 follows easily from the following observation. Take any
element w = h(e, s) and fix a section σ ∈ Γ(ν), such that σ(π(e)) = s. The
lift σh of σ, is a vector field in Q, satisfying σh(e) = w. According to the
definitions in Chapter I, this implies that Dh generates Q since Q is spanned
by tangent vectors of the form w = h(e, s).

We now prove 2. Let c′ = (c̃′, c) denote a h-admissible curve in π∗N , with
base curve c̃′ in E. From Chapter I (page 9) we know that π̃2 ◦ c′ = c is a
ρ-admissible curve, with base π ◦ c̃′.

The proof of Property 3 requires some more effort. Let c : [a, b] → N denote
a ρ-admissible curve, with base curve c̃ taking x = c̃(a) to y = c̃(b). First,
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consider a coordinate neighbourhood U ⊂ M which is locally trivialising
with respect to both vector bundle structures ν and π. Coordinates on
ν−1(U) and on π−1(U) are denoted by (qi, ua) and (qi, yA), respectively.
Assume now that the image of the given ρ-admissible curve c is contained
in ν−1(U), with c(a) = x = (qi

0, u
a
0). Then, putting c(t) = (qi(t), ua(t)),

the ρ-admissibility of c is expressed by the relation q̇i(t) = γi(qj(t), ua(t))
for all t ∈ [a, b]. Next, take any point e0 = (qi

0, y
A
0 ) ∈ Ex and consider

the following system of linear first-order ordinary differential equations with
time-dependent coefficients:

ẏA = ΓA
B(qj(t), ua(t))yB,

It follows from the theory of linear differential equations that this system
admits a unique solution yA(t) with yA(a) = yA

0 and which, moreover, is
defined for all t ∈ [a, b]. The curve c′(t) = (qi(t), yA(t), ua(t)) then clearly
satisfies all the requirements of the proposition.

The proof for the more general case, with im c not necessarily contained in a
single bundle chart, follows by taking a partition a = t0 < t1 < · · · < tn = b
of [a, b] in such a way that the previous construction can be applied to
the restriction of c to each subinterval [ti, ti+1], and then gluing the results
together.

Let c denote a ρ-admissible curve and let c′ denote the unique h-admissible
curve through e ∈ π−1(c̃(a)) constructed in the above theorem. The base
curve c̃′ in E of c′ is called the lift of c through e with respect to h, and is
denoted by ch

e . The induced map ch from π−1(c̃(a)) to π−1(c̃(b)) is called
the h-displacement along c and is defined by ch(e) = ch

e (b). It is easily seen
that ch is linear on the fibres of E.

We now consider the inverse anchored bundles (ν,−ρ) and (π̃1,−h). It is
straightforward to check that (−h) is a (−ρ)-lift, which allows us to apply the
results obtained above to the (−ρ)-lift −h. Assume that x, y ∈ M and that
x

c→ y, with c : [a, b] → N a ρ-admissible curve. Then, from elementary
calculations we find that (c∗)−h(t) = (ch)∗(t), which in turn implies that
(c∗)−h(ch(e)) = e. Thus, the h-displacement is an isomorphism on the fibres
of E. Using the above theorem on h and −h, we have that any ±h-admissible
curve is projected onto a ±ρ-admissible curve, and that any ±ρ-admissible
curve is the projection of a ±h-admissible curve. The following corollary is
then straightforward.

Corollary 1.3. π(H(u)) = Lπ(u).
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For the sake of completeness, we mention some trivial properties of ρ-lifts
of sections of the anchored bundle ν : N → M .

Proposition 1.4. Given a ρ-lift h on π, we have for any σ ∈ Γ(ν) that:

1. π∗ ◦σh = (ρ ◦σ) ◦π, i.e. the vector fields σh ∈ X(E) and ρ ◦σ ∈ X(M)
are π-related;

2. [∆, σh] = 0;

3. if ν is a linear anchored bundle and if h is a ρ-connection then (fσ)h =
(π∗f)σh and (σ1+σ2)

h = σh
1 +σh

2 for all σ1, σ2 ∈ Γ(ν) and f ∈ C∞(M).

We now continue with further definitions.

Regarding TE as a bundle over TM , with projection Tπ, we can define the
pull-back bundle ρ∗TE = {(s, w) ∈ N × TE | ρ(s) = Tπ(w)}. Clearly, if
(s, w) ∈ ρ∗TE, with τE(w) = e, then (e, s) ∈ π∗N and, given a ρ-lift h on
π, one easily verifies that

Tπ(w − h(e, s)) = 0.

Hence, one can define a mapping V : ρ∗TE → V π by

V (s, w) = w − h(e, s) with e = τE(w). (1.5)

Since π : E → M is a vector bundle, it is well-known that there exists a
canonical isomorphism between V π and the fibred product E×M E (∼= π∗E).
Denote by p2 : V π ∼= E ×M E → E the projection onto the second factor,
i.e. in coordinates: p2(q

i, yA, 0, wA) = (qi, wA). Given a ρ-lift h on π, we
can define a mapping K : ρ∗TE → E by

K(s, w) = (p2 ◦ V )(s, w) for all (s, w) ∈ ρ∗TE. (1.6)

In coordinates this reads

K(qi, ua, yA, wA) = (qi, wA − ΓA
B(q, u)yB). (1.7)

The mapping K will be called the connection map (associated to the given
ρ-lift), in analogy with the connection map associated to an ordinary con-
nection on a vector bundle (see e.g. [57]).

Remark 1.5. T. Mestdag et al. in [42, 43] recognised that a ρ-connection can
be defined alternatively as a splitting of the following short exact sequence of
bundles over E:

0 −→ VρE −→ ρ∗TE −→ π∗N −→ 0,

where VρE is the subbundle of ρ∗TE containing all (s, w) ∈ ρ∗TP with s = 0.
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2 Principal ρ-lifts

Consider the specific case where π : P → M is a principal fibre bundle,
with structure group G. Let us denote the right action of G onto P by
Rg : P → P with g ∈ G. The definition of a principal lift h over the anchor
ρ is then given in the following way: condition 2 in Definition 1.1 should be
replaced by TRg(h(u, s)) = h(ug, s), for all (u, s) ∈ π∗N .

Definition 2.1. A principal lift on π defined over the anchor map ρ, shortly
a principal ρ-lift on π, is a smooth bundle map h : π∗N → TP from π̃1 to τP

over the identity on P such that, in addition, the following two conditions
hold:

1. Tπ ◦ h = ρ ◦ π̃2,

2. TRg(h(u, s)) = h(ug, s), for all (u, s) ∈ π∗P and g ∈ G.

Similarly as in Definition 1.2, a principal ρ-lift h is called a principal ρ-
connection if (ν, ρ) is a linear anchored bundle and if h is a linear bundle
map from π̃1 to τP . In this section we will prove that any ρ-lift on a linear
bundle determines a principal ρ-lift and vice-versa. This is a well known
property from standard connection theory which can be extended to ρ-lifts.
In view of these observations, we mainly focus on principal ρ-lifts. However,
for making this work more accessible to the reader who is interested in the
forthcoming chapters, we shall elaborate in this section on ρ-lifts in such a
way that this section and Sections 3 and 4, dealing with the general theory
on principal ρ-lifts, can be skipped.

Next, we recall some definitions and results on principal fibre bundles and
principal connections from [22], since they will be used extensively in the
following sections. Let π : P → M denote a principle fibre bundle with
structure group G. The Lie algebra of G is denoted by g.

Consider for each u ∈ P the smooth map σu : G → P defined by σu(g) = ug.
Then we have Teσu : g → Vuπ and TRg ◦ Teσu = Teσug ◦ Adg−1 , where
Adh : g → g denotes the adjoint action of G on its Lie algebra. Given any
A ∈ g, let σ(A) denote the fundamental vector field on P corresponding
to A, defined by σ(A)(u) = Teσu(A). It is easily seen that (Rg)∗σ(A) =
σ(Adg−1A).

A standard principal connection on P is defined by a connection form ω
on P , i.e. ω is a g-valued one-form on P satisfying the following two
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conditions: (1) for any A ∈ g, ω(σ(A)) = A, and (2) for any g ∈ G,
R∗

gω = Adg−1 · ω. It is well known that ω is equivalently defined by a
horizontal lift hω : P ×M TM → TP , where hω and ω are related in
the following way: hω(u, X) = X̃ − Teσu(ω(X̃)) for any X̃ ∈ TuP sat-
isfying Tπ(X̃) = X. From (2) it follows that hω is right invariant, i.e.
TRg(h

ω(u, X)) = hω(ug, X) for X ∈ Tπ(u)M and g ∈ G arbitrary. For the
sake of completeness we mention that, equivalently, a principal connection
can be defined by the right invariant distribution spanned by the image of
hω, determining a direct sum decomposition of TP , i.e. putting imhω = Hπ,
then TP = Hπ ⊕ V π.

Before starting our study of principal ρ-lifts, we state the following lemma
(see [22, p 69]).

Lemma 2.1. Let G be a Lie group and g its Lie algebra. Let Y (t), for
a ≤ t ≤ b, define a continuous curve in g. Then there exists a unique curve
g(t) of class C1 in G such that g(a) = e and ġ(t)g(t)−1 = Y (t) for a ≤ t ≤ b.

Let us now return to the general treatment of principal ρ-lifts. Let (ν, ρ)
denote an anchored bundle on M and let P denote a principal fibre bundle
on M with structure group G.

Fix a standard principal connection ω on P . In the following we will use
the connection form ω in order to obtain an alternative description for a
principal ρ-lift h. This alternative description will allow us to derive easily
some properties of lifts of ρ-admissible curves with respect to h (see below)
using the theory of standard connections. Thus, let h be a given principal ρ-
lift and consider the map χ : π∗N → g defined by χ(u, s) = ω(h(u, s)) for any
(u, s) ∈ π∗N . Note that the following relation holds χ(ug, s) = Adg−1 ·χ(u, s)
and that h(u, s) = Teσu(χ(u, s))+hω(u, ρ(s)). We shall sometimes refer to χ
as the coefficient of h with respect to ω. The pair (ω, χ) uniquely determines
the principal ρ-lift h in the following way. Given any connection form ω on
P and a map χ : π∗N → g, such that χ transforms under the right action in
the following way: χ(ug, s) = Adg−1 · χ(u, s), then the map h : π∗N → TP ,
defined by h(u, s) = hω(u, s) + Teσu(χ(u, s)), determines a principal ρ-lift.
Note that the coefficient of h with respect to ω is precisely χ. We are now
able to prove Theorem 1.2 in the case of principal fibre bundles.

Theorem 2.2. Given any principal ρ-lift h, then the following properties
hold:

1. the family Dh generates the distribution Q, and, hence, also the inte-
grable distribution Q̃;
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2. any h-admissible curve is mapped by π̃2 onto a ρ-admissible curve;

3. given any ρ-admissible curve c taking x to y and a point u ∈ Px, then
there exists a unique h-admissible curve projecting onto c by π̃2 and
such that its base curve in P passes through u.

Proof. Properties 1 and 2 are trivial. In order to prove 3, we fix a principal
connection ω and consider the coefficient χ of h with respect to ω.

We prove that, given any smooth ρ-admissible curve c : [a, b] → N with
base curve c̃, then there always exists a h-admissible curve whose base curve
passes through u ∈ Pc̃(a) at t = a. We start by considering the horizontal lift

d̃ω of c̃ with respect to the principal connection ω, i.e. d̃ω(t) is the unique
curve in P , projecting onto c̃, satisfying ḋω(t) = hω(dω(t), ˙̃c(t)) and dω(a) =
u. Let g(t) denote the curve in G satisfying the equation TRg(t)−1 ġ(t) =
χ(dω(t), c(t)) and g(a) = e, with e the unit element of G. From Lemma 2.1
we know that the curve g(t) always exists and is unique. We now prove that
the curve (d(t), c(t)) in π∗N with d(t) = dω(t)g(t), is a h-admissible curve.
Indeed, we find that:

ḋ(t) = TRg(t)(ḋ
ω(t)) + Teσdω(t)(ġ(t)),

= TRg(t)

(
hω

(
dω(t), ˙̃c(t)

))
+ Teσd(t)

(
TLg−1(t) · ġ(t)

)
,

= hω
(
d(t), ˙̃c(t)

)
+ Teσd(t)

(
Adg−1(t) · χ(dω(t), c(t))

)
.

From the definition of χ, it follows that the right hand side equals the desired
vector h(d(t), c(t)). Clearly (d(t), c(t)) projects onto c(t) and its base curve
d(t) in P passes through u at t = a. It is easily seen that this results also
holds for a piecewise ρ-admissible curve.

It easily follows that d(t) is uniquely determined by these conditions, since it
satisfies a first order differential equation, i.e. ḋ(t) = h(d(t), c(t)), with given
initial condition d(a) = u. It is also clear that the curve d(t), constructed
above, is independent of the choice of ω.

2.1 h-Displacement and holonomy

Using the notations from the above theorem, we have that the component
d(t) of the h-admissible curve is uniquely determined by the ρ-admissible
curve c and a point u in the fibre Pc̃(a). The curve d(t) is called the lift of
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the ρ-admissible curve c through u with respect to h and from now on we
write ch

u(t) to denote d(t). Similar to standard connection theory, we call
the map

ch : π−1(c̃(a)) → π−1(c̃(b)) : u 7→ ch
u(b),

the h-displacement along c. It is easily seen that ch commutes with Rg for
g ∈ G arbitrary, i.e. ch(ug) = ch(u)g. Therefore, ch determines a morphism
on the fibres of P . The lift of a composition of ρ-admissible curves, in the
sense of Chapter I, equals the composition of the corresponding h-admissible
curves. Following the constructions described in the previous section, we can
also consider the inverse anchored bundles (ν,−ρ) and (π̃1,−h) of (ν, ρ) and
(π̃1, h), respectively. We have that (c∗)(−h) = (ch)−1, i.e. ch is invertible,
that any ±h-admissible curve projects onto a ±ρ-admissible curve and that
any ±ρ-admissible curve is the projection of a ±h-admissible curve. Hence,
similar to Corollary 1.3, we obtain π(H(u)) = Lπ(u). This result is of great
importance for the development of a notion of leafwise holonomy for princi-
pal ρ-lifts.

Definition 2.2. The set of all g ∈ G such that ug ∈ H(u), is called the
holonomy group with reference point u and is denoted by Φ(u).

The fact that Φ(u) is a subgroup follows from the following lemma. First,
note that, given any g ∈ Φ(u), there exists a ±h-admissible curve taking u
to v = ug, since v ∈ H(u). This ±h-admissible curve projects onto a ±ρ-
admissible loop with base point π(u) = π(v) = x. This implies that v can
be reached from u by composing h-admissible curves and (−h)-admissible
curves. Since a h-admissible curve is a lift of a ρ-admissible curve and a
(−h)-admissible curve is a lift of a (−ρ)-admissible curve, we obtain that
g is determined by composing a finite number of h-displacements along ρ-
admissible curves and (−h)-displacements along (−ρ)-admissible curves. In
particular, using the notations from Chapter I (page 12) we can define a map
from the loop space C(x, N) to Φ(u), which is onto. These observations are
used in the proof of the following lemma.

Lemma 2.3. Φ(u) is a subgroup of G.

Proof. Given any two elements g, g′ ∈ Φ(u) and let ug = ((c`)±h ◦ · · · ◦
(c1)±h)(u), and ug′ = ((c`+`′)±h ◦ · · · ◦ (c`+1)±h)(u), for some ±ρ-admissible
curves ci, i = 1, . . . , ` + `′, and where (ci)±h stands for the h-displacement
(ci)h along ci if ci is ρ-admissible or for the (−h)-displacement (ci)(−h) along
ci if ci is (−ρ)-admissible.
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Then g′g−1 ∈ Φ(u) since

ug′g−1 =
(
(c`+`′)±h ◦ · · · ◦ (c`+1)±h ◦ ((c∗)1)±h ◦ · · · ◦ ((c∗)`)±h

)
(u),

and, hence, ug′g−1 belongs to H(u).

In the above proof, we used the fact that with any ±ρ-admissible loop c =
c` · . . . ·c1 with base point x ∈ M , we can associate a map of the fibre π−1(x)
onto itself, namely (c`)±h◦· · ·◦(c1)±h, which commutes with the right action
of G (i.e. such a map is called an automorphism of π−1(x)). Indeed, for
u ∈ π−1(x) and g ∈ G arbitrary, we have

(c`)±h ◦ · · · ◦ (c1)±h(ug) =
(
(c`)±h ◦ · · · ◦ (c1)±h(u)

)
g.

Using similar arguments as in the above proof, the set of all such auto-
morphisms of the fibre π−1(x) forms a group, which is called the holonomy
group with reference point x and denoted by Φ(x). We thus have the follow-
ing commutative diagram:

Φ(x) Φ(u),

C(x, N)

À
-

U

where the map Φ(x) → Φ(u) is defined as (c`)±h ◦ · · · ◦ (c1)±h is mapped
onto the unique g ∈ G such that

(
(c`)±h ◦ · · · ◦ (c1)±h(u)

)
= ug.

Remark 2.4. In the specific case where h is a principal ρ-connection, the
situation becomes more simple. In order to define the concept of holonomy
groups it is sufficient to consider only ρ-admissible loops. Indeed, if c is (−ρ)-
admissible, then −c is ρ-admissible, and c−h = (−c)h. Moreover, we can con-
sider reparametrisations of ρ-admissible curves and the notion of h-displacement
does not depend on the parametrisation of c, in the following sense. Assume
that φ : [a, b] → [a′, b′] is a diffeomorphism with φ(a) = a′ and φ(b) = b′, then
the curve c′ : [a′, b′] → N , defined by

c′(s) =
dφ−1

ds
(s)c(φ−1(s)),
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is ρ-admissible and, from elementary calculations, it follows that the h-displace-
ments along c and c′ are the same. Recall the definition of the inverse c−1 = −c∗

of a ρ-admissible curve c. The following identity holds (c−1)h = (ch)−1.

The following properties which are well-known from the standard theory of
holonomy, immediately carry over to the present framework.

Proposition 2.5. (i) Given any v ∈ H(u), then Φ(u) = Φ(v). (ii) Given
any g ∈ G, then Φ(ug) = Ig−1(Φ(u)), where, I denotes the inner automor-
phism on G (i.e. for h ∈ G, Ih : G → G : h′ 7→ hh′h−1).

Proof. By definition of H(u), we have that H(ug) = Rg(H(u)). Indeed,
H(u) is the leaf of a foliation of a distribution generated by right invariant
vector fields (cf. Theorem 2.2). Thus, if h ∈ Φ(u), then h−1 ∈ Φ(u) and
uh−1 ∈ H(u), or H(uh−1) = H(u) = H(v). Acting on the right by h, we
obtain H(u) = H(vh). And since H(u) = H(v), we have h ∈ Φ(v), proving
(i). Since H(ug) = H(u)g, we have that, for any h ∈ Φ(u), H(uhg) =
H(ug). Thus g−1hg ∈ Φ(ug), proving (ii).

2.2 Local lift functions

In this section we study ρ-lifts in terms of local coordinate expressions.
Choose an open covering {Uα} of M such that each π−1(Uα) is provided
with a local trivialisation ψα, i.e.

ψα : π−1(Uα) → Uα × G : u 7→ (π(u), φα(u))

is a diffeomorphism satisfying ψα(ug) = (π(u), φα(u)g) for all g ∈ G. Con-
sider the canonically defined flat principal connection θα on Uα ×G, i.e. θα

is the pull-back by φα of the canonical left-invariant g-valued one-form θ on
G (see [22]). Consider the lift coefficient χα of h with respect to θα, then,
with σα : Uα → π−1(Uα) : x → ψ−1

α (x, e), we define the local lift coefficients
χ∗

α : Uα ×Uα N → g by:

χ∗
α(x, s) = χα(σα(x), s).

Assume that x ∈ Uα ∩ Uβ 6= ∅ and let ψαβ : Uα ∩ Uβ → G denote the
transition functions, defined by (x, ψαβ(x)) = ψα(ψ−1

β (x, e)). The pull-back
of θ by ψαβ and ρ, respectively, is denoted by θαβ and equals θαβ(x, s) =
(ψ∗

αβθ)(x)(ρ(s)), for arbitrary s ∈ Nx. Note that ψ−1
αβ (x) is a shorthand

notation for (ψαβ(x))−1.
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Lemma 2.6. The following relation holds:

χ∗
β(x, s) = Adψ−1

αβ
(x) · χ∗

α(x, s) − θαβ(x, s).

Proof. Let us denote the left multiplication in G by Lg : G → G, with
g ∈ G and let u denote an arbitrary point in π−1(Uα ∩ Uβ). Then, from
φβ(u) = Lψ−1

αβ
(π(u))φα(u), we derive that:

Tuφβ = TLψ−1
αβ

(π(u)) ◦ Tuφα + TRφα(u) ◦ Tπ(u)ψ
−1
αβ ◦ Tuπ.

Using the above identity, we now derive the required equality. Assume in
the following that u = σβ(x) and u′ = σα(x). Taking into account that, by
definition, θβ = φ∗

βθ, we obtain:

χ∗
β(x, s) = θβ(u)

(
h(u, s)

)

= θ(e)
(
Tuφβ

(
h(u, s)

))

= θ
(
ψαβ(x)

)(
Tuφα

(
h(u, s)

))

+ θ(e)
(
TRφα(u) ◦ Txψ−1

αβ

(
ρ(s)

))

= θα(u′ψαβ(x))
(
TRψαβ(x)(h(u′, s))

)

− θ(ψαβ(x)) (Txψαβ(ρ(s))) ,

where we used the fact that u = u′ψαβ(x), φα(u) = ψαβ(x) and, from
ψ−1

αβ (x)ψαβ(x) = e:

TLψ−1
αβ

(x) ◦ Txψαβ = −TRψαβ(x) ◦ Txψ−1
αβ .

The computations in the proof of Lemma 2.6 can be used in order to prove
that any family of g-valued functions χ∗

α transforming in the above way,
determine a principal ρ-lift h. This result will be of importance in the
following section, where we will relate ρ-lifts and principal ρ-lifts.

2.3 Associated bundles

First, we recall the definition of the notion of an associated bundle of a
principle bundle P . Let V be a manifold on which the structure group G of



30 Generalised connections

P acts on the left: (g, ξ) 7→ gξ ∈ V (not necessarily free and proper). The
bundle πE : E → M associated with P and V is defined as the quotient space
of P ×V under the right action of G defined by (g, (u, ξ)) 7→ (ug, g−1ξ). The
elements of E are denoted by uξ, where uξ represents the orbit of (u, ξ) ∈
P × V . The projection πE(uξ) = π(u) is thus well defined. The bundle
E is given a differentiable structure using the local trivialisations of P (see
[22]). The natural projection from P×V onto E is denoted by pE and equals
pE(u, ξ) = uξ. Every element u ∈ P induces a bijective map from V to Eπ(u)

which is also denoted by u, i.e. ξ ∈ V 7→ uξ. Therefore, if V has an algebraic
structure which is preserved by the action of G, then the fibres of E inherit
this structure by demanding that u : V → E is an isomorphism with respect
to this algebraic structure. The following relation (ug)ξ = u(gξ) holds for
any g ∈ G. The map taking a fibre Ex to another fibre Ey defined by
v ◦ u−1 is an isomorphism, where u ∈ π−1(x) and v ∈ π−1(y). In particular,
we have that, if x = y, the isomorphisms of the form u ◦ g ◦ u−1, with u
an arbitrary fixed point in π−1(x), are automorphisms with respect to the
induced algebraic structure. In this way, we can consider G as a group of
automorphisms of Ex.

As an example, we consider an arbitrary `-dimensional linear bundle πE :
E → M , and let GL(`; IR) denote the general linear group consisting of
all non-singular ` × ` real matrices. Consider any point x ∈ M , then u =
(e1, . . . , e`), with eA ∈ Ex, is said to be a frame of E at x if it determines
a basis of Ex. It can be proven that the set FR(E) of all frames of E is
a principal fibre bundle with structure group GL(`; IR), called the frame
bundle. The right action of GL(`; IR) on FR(E) is then defined as follows:
given u = (e1, . . . , e`) and S ∈ GL(`; IR) arbitrary, then uS = (e′1, . . . , e

′
`)

with e′B = SA
BeA. Moreover, the initial linear bundle E can be retrieved as

the bundle associated with FR(E) and IR`, where the action of GL(`; IR) on
IR` is the standard left action. The natural projection pE : FR(E) → E then
reads, for u = (e1, . . . , e`) ∈ FR(E) and ξ = (λ1, . . . , λ`) ∈ IR` arbitrary,
pE(u, ξ) = eAλA ∈ Eπ(u).

From now on, we assume that πE : E → M denotes a bundle associated with
a principal G-bundle P and the vector space V = IR`. The action of G on
V is assumed linear, i.e. it determines a representation ρ : G → GL(`, IR)
of G into GL(`, IR). This implies that E can be given the structure of a
linear bundle (see above): every map u : V → Eπ(u) : ξ 7→ uξ is a linear
isomorphism.

Assume that we have fixed a principal ρ-lift h on P . We shall now construct
a ρ-lift hE on the bundle E associated with the principal ρ-lift h.
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Given any ξ ∈ V , then the map f ξ : P → E defined by f ξ(u) = uξ induces
a map fξ from π∗N to π∗

EN as follows: (u, s) ∈ π∗N 7→ (uξ, s) ∈ π∗
EN . The

ρ-lift hE can now be defined as the unique anchor map from π∗
EN to TE,

such that, for all ξ, fξ is a anchored bundle morphism between the anchored
bundles (π∗N → E, h) and (π∗

EN → E, hE). More specifically, let uξ denote
an arbitrary element of E. Then put hE(uξ, s) = Tf ξ(h(u, s)). It is easily
seen that hE is independent of the choice of u and ξ representing the point
uξ and that fξ satisfies the proposed property of being an anchored bundle
morphism (see also the following section, were we consider mappings between
generalised connections). Moreover, given any λ ∈ IR, then fλξ = λfξ,
implying that hE is a ρ-lift. We can apply the theory from Chapter I:
any h-admissible curve (ch

u(t), c(t)) is mapped onto the hE admissible curve
(ch

u(t)ξ, c(t)). It is readily seen that ch
u(t)ξ = chE

uξ (t). On the other hand,

assume that (chE

uξ (t), c(t)) is hE-admissible. Consider the lift of c through u

with respect to h, then f ξ(c
h
u(t)) = chE

uξ (t). This is also valid for the inverted

anchored bundles, implying that f ξ(H(u)) = H(uξ).

The above procedure describes how to construct out of a principal ρ-lift, a
ρ-lift on associated linear bundles. We now study the converse, i.e. starting
from a ρ-lift hE on a linear bundle E, we shall define a principal ρ-lift on
the bundle of frames of E. Assume that we have fixed a ρ-lift hE on E.
Using the local coordinate expressions from Section 1 we know that, on
each adapted coordinate system (qi, ua) of ν, the ρ-lift hE on E determines
a set of `2 functions ΓA

B, transforming in a specific way under coordinate
transformations. Using these local functions, we shall define a local gl(`, IR)-
valued function, that satisfies the transformation rules, expressed in Lemma
2.6. This family of gl(`, IR)-valued functions then determines a principal
ρ-lift on FR(E), what we wanted to proof. We start with fixing some
notations.

The Lie algebra gl(`, IR) of GL(`, IR) is the set of all real ` × ` matrices.
Consider the so-called Weyl basis (EB

A ) of gl(`, IR), i.e. EB
A is the matrix

such that the entry on the A-th row and B-th column is 1 and all other
entries equal 0. The natural coordinate functions on GL(`, IR) are denoted
by sA

B and let tAB be the coordinate representation of the inverse map on
GL(`, IR). The canonical one-form θ on GL(`, IR) then equals:

θ =
∑

A,B,C

tABdsB
CEC

A .

Next, assume that {Vα} denotes an open covering of π∗
EN , such that every Vα

is equipped with a bundle adapted coordinate system (the projection of Vα
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on M is denoted by Uα). Assume that Vα∩Vβ 6= ∅ and denote the coordinate
functions on Vα and Vβ by (qi, ua, yA) and (qi, ua, yA), respectively. Recall
the notations from Section 1, i.e. we have yA = ΞA

B(q)yB . The transition
function ψαβ, defined on Uα∩Uβ and taking values in GL(`, IR), then equals
(Ξ−1)B

A(q) when expressed in the natural coordinates on GL(`, IR).

The pull-back of θ by ψαβ is now easily computed and equals:

ψ∗
αβθ = ΞA

Bd
(
(Ξ−1)B

C

)
EC

A

= ΞA
B

∂(Ξ−1)B
C

∂qi
dqiEC

A

= −(Ξ−1)B
C

∂ΞA
B

∂qi
dqiEC

A .

Substituting this in the definition of θαβ : ν−1(Uα ∩ Uβ) → gl(`, IR), we
obtain:

θαβ(qi, s) = −(Ξ−1)B
C(qi)

∂ΞA
B

∂qj
(qi)γj(qi, s)EC

A ,

where s is in the fibre of N over the point with coordinates qi. We define
the gl(`, IR)-valued functions χ∗

α on ν−1(Uα) and χ∗
β on ν−1(Uβ) by:

χ∗
α(qi, s) = ΓB

A(qi, s)EA
B and χ∗

β(qi, s) = Γ
B
A(qi, s)EA

B ,

respectively. Using the above definitions and the local expression for θαβ ,
the right hand side of the transformation rule from Lemma 2.6 becomes,
with a slight abuse of notations:

(
ΞA

C(Ξ−1)D
BΓC

D + (Ξ−1)C
B

∂ΞA
C

∂qi
γi

)
EB

A .

In Section 1, we have proven that the above expression precisely equals

Γ
A
BEB

A , where Γ
A
B is the lift coefficient of hE on the coordinate chart Vβ .

We now show that the above obtained principal ρ-lift h generates the ρ-
lift hE . If we express f ξ locally as (qi, sA

B) 7→ (qi, yA = sA
BλB), where

sA
B represent the fibre coordinates on the frame bundle, then the image of

(qi, sA
B, Xi, XA

B ) under Tf ξ equals (qi, sA
BλB, Xi, XA

BλB). In this coordinate
system, the principal ρ-lift h equals:

(qi, sA
B, ua) 7→ (qi, sA

B, γi(q, u), ΓA
C(qi, ua)sC

B)
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Therefore, using the above expressions, we see that Tf ξ(h(u, s)) = hE(uξ, s),
for (u, s) ∈ π∗N .

Using the above correspondence, we can define the notion of holonomy for ρ-
lifts. Let hE be a ρ-lift on the linear bundle E. The holonomy group Φ(x) of
h on FR(E) can be identified with a subgroup of the linear automorphisms
of the fibre Ex. In fact, any automorphism of the fibre FR(E)x determines
a linear automorphism of Ex and vice versa. Indeed, let Λ : FR(E)x →
FR(E)x be such that Λ(ug) = Λ(u)g, then Λ : Ex → Ex defined by Λ(uξ) :=
Λ(u)ξ is well defined and Λ is linear. On the other hand, any automorphism
Λ of Ex determines an automorphism of the linear frames of Ex. Indeed, let
u = (e1, . . . , e`) ∈ FR(E), then

Λ(u) := (Λ(e1), . . . ,Λ(e`)) ∈ FR(E)

and if S ∈ GL(`, IR), then Λ(eASA
B) = Λ(eA)SA

B , implying that Λ(RSu) =
RSΛ(u).

3 Mappings between generalised connections

We first fix some notations. Let (ν′, ρ′) and (ν, ρ) denote anchored bundles
with base manifolds M ′ and M , respectively, and consider an anchored
bundle morphism f : N ′ → N between (ν ′, ρ′) and (ν, ρ), which is fibred
over f : M ′ → M . Assume that π′ : P ′ → M ′ and π : P → M are principal
fibre bundles with structure groups G′ and G, respectively. Furthermore,
we assume that a principal fibre bundle morphism (F, F ) between P ′ and
P is given, i.e. F : P ′ → P is a bundle map and F : G′ → G is a group
morphism between G′ and G such that for all u′ ∈ P ′ and g′ ∈ G′, we have
F (u′g′) = F (u′)F (g′). We assume in the following that the map F is also
fibred over f : M ′ → M .

The principal fibre bundle morphism F is called a morphism between the
principal ρ′-lift h′ and the principal ρ-lift h if the map (F, f), defined by
(F, f) : (π′)∗N ′ → π∗N : (u′, s′) 7→ (F (u′), f(s′)), is an anchored bundle
morphism between (π̃′

1, h
′) and (π̃1, h). More precisely, we should have that:

TF
(
h′(u′, s′)

)
= h(F (u′), f(s′)).

In the remainder of this section we are only concerned with principal lifts.
However, for the sake of completeness, we will mention here a similar defini-
tion for ρ-lifts defined on linear bundles. Assume that E′ is a linear bundle
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over M ′ and that E is a linear bundle over M , and let h′ denote a ρ′-lift
on E′ and h a ρ-lift on E. If F : E′ → E is a linear bundle morphism,
then we say that it determines a map from the ρ′-lift h′ to the ρ-lift h if
(F, f) : (π′)∗N ′ → π∗N : (e′, s′) 7→ (F (e′), f(s′)) is an anchored bundle
morphism between (π̃′

1, h
′) and (π̃1, h). This definition will be used later in

Section 6.

Let us now continue with the principal lifts.

Theorem 3.1. Assume that f : N ′ → N is an anchored bundle isomor-
phism, fibred over the diffeomorphism f : M ′ → M , and that F is a principal
fibre bundle morphism from P ′ to P , also fibred over f . Let h′ be a principal
ρ′-lift on P ′. Then, there exists a unique principal ρ-lift h such that F is a
morphism between h′ and h. The holonomy group Φ(u′) corresponding to h′

is mapped by F onto the holonomy group Φ(F (u′)) corresponding to h.

Proof. Let u denote an arbitrary point of P , with π(u) = x. Then fix an
element u′ in P ′

f
−1

(x)
and an element g in G such that F (u′) = ug. Define

h(u, s) ∈ TuP , for any s ∈ N
f
−1

(x)
, by

h(u, s) = TRg−1

(
Tu′F (h′(u′, f−1(s)))

)
.

This tangent vector in TuP is well defined, in the sense that it does not
depend on the choice of u′, since for any other element v′ = u′g′, we have
that F (v′) = F (u′)F (g′) = uh, with h = gF (g′). This implies that

h(u, s) = TRh−1

(
Tv′F (h′(v′, f−1(s)))

)

= TRh−1

(
Tv′F (TRg′h

′(u′, f−1(s)))
)

= TRg−1TRF (g′−1)TRF (g′)

(
Tu′F (u′, f−1(s))

)

= TRg−1

(
Tu′F (h′(u′, f−1(s)))

)
.

In this way, we have constructed a mapping h : π∗N → TP , which is clearly
right invariant and, by definition, it follows that (F, f) is an anchored bundle
morphism between (π̃′

1, h
′) and (π̃1, h). From the fact that f−1 maps any

±ρ-admissible curve onto a ±ρ′-admissible curve, we have that H(u′) is
mapped by F onto H(F (u′)), which concludes the proof.

In the specific case when P ′ is a reduced subbundle of P , i.e. F is an injective
immersion and F is a monomorphism, we say that h is reducible to a principal
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ρ-lift on P ′. This is important for our treatment of holonomy, where we will
prove a generalisation of the Reduction Theorem, which, roughly speaking,
says that the leaf H(u) in P is a reduced subbundle of P with structure
group the holonomy group Φ(u) and that h is reducible to H(u).

For the following theorem we take for (ν ′, ρ′) the pull-back anchored bundle
of (ν, ρ) under i : Lx ↪→ M , with Lx the leaf of the integrable distribution
D̃ generated by D through some x ∈ M . Let P ′ = i∗P → Lx denote the
pull-back principal bundle of P along i and let F : P ′ → P : (y, u) 7→ u
denote the projection onto the second factor. Note that, by definition, the
structure group of P ′ equals G and that F is an injective immersion.

Theorem 3.2. There exists a unique principal ρ′-lift h′ on P ′ such that
F is a morphism between h′ and h. Moreover, F (H(u′)) = H(F (u′)) and,
therefore Φ(u′) = Φ(F (u′)).

Proof. Since F is an injective immersion, we know from Chapter I that
a unique anchor map h′ on P ′ can be defined such that F is an anchored
bundle morphism between (π̃′

1, h
′) and (π̃1, h). It is trivial to check that h′

satisfies the “right invariance” condition making it into a principal ρ-lift.

The fact that the foliations on P ′ and P induced by the ρ′-lift h′ and the
ρ-lift h, respectively, are F -related, follows from the fact that ±ρ-admissible
curves are in one-to-one correspondence with ±ρ′-admissible curves.

In the following section we prove that the holonomy group Φ(u) of a principal
ρ-lift is a Lie subgroup of G. In view of the above theorem, we will assume,
without loss of generality in view of the result we wish to obtain, that we are
working with the ρ′-lift h′ on the pull-back bundle i∗P , with i : Lx ↪→ M .

4 Leafwise Holonomy of a principal ρ-lift

In view of the above comment, we restrict ourselves to the case where the
anchored bundle (ν, ρ) on M satisfies the additional conditions that M is a
connected manifold and that D̃ = TM (this situation occurs when we are
working on the pull-back anchored bundle). The main consequence of these
assumptions is that one can prove that the distribution Q̃ generated by a
principal ρ-lift h on a principal bundle P is regular, i.e. has constant rank.
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Theorem 4.1. If D̃ = M and if M is a connected manifold, then Q̃ is a
regular integrable distribution.

Proof. We have to show that, given two arbitrary points u, v in P , then
dim Q̃u = dim Q̃v. Let x = π(u) and y = π(v). Then, since the foliation
of D̃ on M is trivial, there exists a composite flow Φ associated with an
ordered set of vector fields (ρ ◦ σ`, . . . , ρ ◦ σ1) on P , belonging to D and
a composite flow parameter T such that ΦT (x) = y (cf. Theorem 1.1).
Consider the vector fields (σi)h in Q. The flow of (σi)h and the flow of
ρ ◦ σi are π-related by definition and, therefore, if Φh is the composite flow
of ((σ`)h, . . . , (σ1)h), we have π(Φh

T (u)) = y. Hence, there exists a g ∈ G

such that Φh
T (u)g = v. By definition of Q̃ we have TΦh

T (Q̃u) = Q̃Φh
T

(u).

On the other hand since Dh consists of right invariant vector fields and
generates Q̃, we have TRh(Q̃w) = Q̃wh for any w ∈ P and h ∈ G. Thus, we
obtain that TRg ◦TΦh

T is an isomorphism from Q̃u to Q̃v and, in particular,

dim Q̃u = dim Q̃v.

For an arbitrary point u ∈ P and consider the linear subspace g(u) of g
defined by Teσu(g(u)) = Vuπ ∩ Q̃u.

Proposition 4.2. Let g denote an arbitrary element in G. We have: (i)
g(u) = g(v) for any v ∈ H(u), (ii) Adg−1(g(u)) = g(ug) and (iii) g(u) is a
Lie subalgebra of g.

Proof. (i) follows from the fact that V π and Q̃ are both invariant under the
tangent map of a composite flow induced by vector fields in Dh. (ii) follows
from TRg ◦ Teσu = Teσug ◦ Adg−1 , TRg(Vuπ) = Vugπ and TRg(Q̃u) = Q̃ug.
(iii) follows from [σ(A), σ(B)] = σ([A, B]), for A, B ∈ g and the fact that
Q̃ is involutive (since it is integrable, by definition).

These properties allow us to consider the connected Lie group Φ0(u) gener-
ated by the Lie algebra g(u), which is called the restricted holonomy group.
From the preceding proposition, we have that Φ0(u) = Φ0(v) for v ∈ H(u)
and Φ0(ug) = Ig−1(Φ0(u)).

We prove that Φ0(u) is a normal subgroup of Φ(u) and that Φ(u)/Φ0(u)
is countable, implying that Φ(u) is a Lie subgroup of G whose identity
component is precisely Φ0(u), see [22, p 73]. We first prove that Φ0(u) is a
normal subgroup of Φ(u).
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Lemma 4.3. Φ0(u) is a normal subgroup of Φ(u) and Φ(u)/Φ0(u) is a
countable set.

Proof. We start with proving that Φ0(u) is a normal subgroup of Φ(u).
Let h ∈ Φ0(u). By construction of the Lie subgroup Φ0(u) (i.e. it is defined
as the leaf through e of the left invariant distribution on G generated by
g(u)), h can be reached from e by a composite flow associated with an
ordered set of left invariant vector fields in g(u). Note that if at denotes
the integral curve through e of the left invariant vector field corresponding
to A ∈ g(u), then uat ∈ H(u), since σ(A) determines a vector field tangent
to H(u), and hence at ∈ Φ(u). We therefore have Φ0(u) is a subgroup of
Φ(u). Since Φ0(ug) = Ig−1(Φ0(u)) and Φ0(u) = Φ0(ug) for any g ∈ Φ(u)
(i.e. g(u) = g(ug)), we may conclude that Φ0(u) is a normal subgroup of
Φ(u).

Next, following a similar reasoning as in [22, p 73], we now prove that
Φ(u)/Φ0(u) is countable by constructing a group morphism from πN

1 (M) to
Φ(u)/Φ0(u) which is onto. Since πN

1 (M) < π1(M) and π1(M) is at most
countable, we obtain that the quotient is also countable.

Let us first make the following basic observation. In order to prove that
the map from C(x, N) to Φ(u) reduces to a well defined morphism from
πN

1 (M) to Φ(u)/Φ0(u), we must prove that two ±ρ-admissible loops with
homotopic base curves, correspond to elements in Φ(u) that differ by a mul-
tiplication with an element in Φ0(u). This is achieved by using some results
from standard connection theory. Once we have obtained this morphism
πN

1 (M) → Φ(u)/Φ0(u) it is easily seen to be onto, which then concludes the
proof.

Consider a connection ω on P , such that imhω is a subspace of Q̃. This is
always possible since Q̃ is regular and Tπ(Q̃) = TM . Consider the coefficient
χ of h with respect to ω (see Section 2). Note that Teσu(χ(u, s)) = h(u, s)−
hω(u, ρ(s)) is contained in Q̃ ∩ V π for any (u, s) ∈ π∗N . This implies that
χ(u, s) ∈ g(u), for all s ∈ Nπ(u). On the other hand, the holonomy group
with reference point u of the standard connection ω is a subgroup of Φ(u)
and the restricted holonomy group of ω is a subgroup of Φ0(u), since the
smallest integrable distribution spanned by imhω must be contained in Q̃
(see [22]).

In Section 2 (page 25) we have proven that the h-lift ch
u(t) of a ρ-admissible

curve through u ∈ π−1(x) equals ch
u(t) = dω(t)g(t), where g(t) is a curve

in G with g(a) = e and Rg(t)−1 ġ(t) = χ(dω(t), c(t)), and where ḋω(t) =
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hω(dω(t), ˙̃c(t)), with dω(a) = u. In particular we have g(t) ∈ Φ0(u) (since
the image of χ is contained in g(u)). This is also valid for the inverted
anchored bundles. Thus we can conclude that any element belonging to
Φ(u) can be written as a product of elements belonging to the holonomy
group of ω at u and of elements belonging to Φ0(u). Moreover, if the base of
a ±ρ-admissible curve is homotopic to zero, then the corresponding product
of elements is entirely contained in Φ0(u), since the restricted holonomy
group of ω is a subgroup of Φ0(u). In view of the above remarks, this
completes the proof.

From the above we immediately derive the following result (see [22, p 73] for
the analogous result in the case of holonomy groups of principal connections).

Proposition 4.4. The holonomy group Φ(u) is a Lie subgroup of the struc-
ture group G, with Lie algebra g(u).

We are now able to state a generalisation of the Reduction Theorem for
principal h-lifts.

Theorem 4.5. H(u) is a reduced subbundle of P with structure group Φ(u)
and h reduces to a principal ρ-lift on H(u).

Proof. We have to show that H(u) → M is a principal fibre bundle, with
structure group Φ(u). For that purpose, it is sufficient to prove that, given
a point y ∈ M , there exists a neighbourhood U 3 y and a section ψ of π
defined on U such that ψ(U) ⊂ H(u). The existence of such a cross-section
follows by using a result from [22, p 84] with respect to a connection ω with
horizontal distribution contained in the regular integrable distribution Q̃.

We now prove that the principal ρ-lift h induces a principal ρ-lift on the
principle bundle H(u), i.e. that h is reducible. Since H(u) is the leaf of
the foliation induced by Q, we can consider the pull-back anchor map of
h. Using the fact that H(u) is a principal fibre bundle over M and using
Theorem 3.1, it is easily seen that h is reducible to the pull-back of h.

Assume that dim M ≥ 2. Then, since H(u) is connected, there exists a
standard principal connection ω on H(u) whose holonomy group is precisely
the structure group Φ(u) (see [22, p 90]). Using Theorem 3.1, ω can then
be extended to a connection on P .
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Corollary 4.6. If dimM ≥ 2, then there exists a connection ω on P such
that the holonomy groups of ω coincide with the holonomy groups of the
principal ρ-lift h.

5 The associated derivative operator

We now return to the case where π : E → M is a linear bundle. It is well
known from standard connection theory that a horizontal lift on a linear
bundle π determines a covariant derivative operator on the sections of π
and vice versa. In this section we derive a similar result for ρ-lifts.

Consider a ρ-lift h on a vector bundle π : E → M , with associated connection
map K (see Equation 1.6). Take σ ∈ Γ(ν) and ψ ∈ Γ(π). For any x ∈
Dom(σ) ∩ Dom(ψ) one readily verifies that (σ(x), Tψ(ρ(σ(x)))) determines
an element of the bundle ρ∗TE. We then define ∇σψ ∈ Γ(π) by

∇σψ(x) = K
(
σ(x), Tψ

(
ρ(σ(x))

))
. (5.8)

Let U ⊂ Dom(σ) ∩ Dom(ψ) be a trivialising coordinate neighbourhood for
both ν and π, with coordinates qi on U and corresponding local bundle co-
ordinates (qi, ua) and (qi, yA) on N and E, respectively (see also Section 1).
Putting ψ(q) = (qi, ψA(q)), we then find, using Equation (1.7):

∇σψ(q) =

(
qi,

∂ψA

∂qj
(q)γj(q, σ(q)) − ΓA

B(q, σ(q))ψB(q)

)
. (5.9)

In terms of the vector field X = ρ ◦ σ ∈ X(M), we can still rewrite the
components of ∇σψ as

(∇σψ)A(q) = Xj(q)
∂ψA

∂qj
(q) − ΓA

B(q, σ(q))ψB(q) .

It is readily seen that this equation, in the case where h is a ρ-connection,
takes the following form, with σ(q) = (qi, σa(q)):

(∇σψ)A(q) =
∂ψA

∂qj
(q)γj

a(q)σ
a(q) − ΓA

aB(q)σa(q)ψB(q) .

The following theorem gives a full characterisation of the operator ∇. It is
tacitly assumed that its action is restricted to those pairs (σ, ψ) ∈ Γ(ν)×Γ(π)
for which Dom(σ) and Dom(ψ) have nonempty intersection.
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Theorem 5.1. Let h be a ρ-lift on E. The operator ∇ : Γ(ν)×Γ(π) → Γ(π),
defined by Equation (5.8), satisfies the following properties: if σ ∈ Γ(ν)
(i) ∇σ : Γ(π) → Γ(π) is IR-linear;
(ii) for all ψ ∈ Γ(π) and f ∈ C∞(M) we have:

∇σ(fψ) = f∇σψ + (ρ ◦ σ)(f)ψ ,

(iii) ∇σψ(x) only depends on the value of σ at x.

Moreover, ∇ is uniquely determined by the given ρ-lift h. If (ν, ρ) is linear
and h a ρ-connection, then ∇ is, in addition, tensorial in the first argument
Γ(ν), i.e. (iv) ∇fσψ = f∇σψ and ∇ψ : Γ(ν) → Γ(π) is IR-linear.

Proof. The proofs of the properties (i), (ii) and (iv) follow by straightfor-
ward computation. Property (iii) follows from the definition of the derivative
operator. The fact that ∇ is uniquely determined by h can be easily deduced
from Equation (5.8) and the definition of the connection map K. Indeed,
different ρ-lifts necessarily induce different maps V (see Equation (1.5)) and,
hence, different connection maps K (see Equation (1.6)). Note that, if h is
a ρ-connection, then property (iv) induces (iii).

We will call the operator ∇ the derivative operator associated to the ρ-lift h.
In case N = TM and ρ is the identity map on TM , we recover the classical
notion of covariant derivative operator of a connection on a vector bundle
over M . In his treatment of Lie algebroid connections on a vector bundle,
where N = A is a Lie algebroid over M with anchor map ρ, Fernandes refers
to the ∇-operator as the A-derivative: see [15].

From the definition of ∇ it follows that for a given ψ, (∇σψ)(x) only depends
on the value of σ in x ∈ M , and not on the behaviour of σ in a neighbourhood
of x. This allows us to define for each s ∈ N , with x = ν(s), an operator

∇s : Γx(π) −→ Ex, ψ 7−→ ∇sψ := ∇σψ(x), (5.10)

where σ may be any (local) section of ν for which σ(x) = s. Alternatively,
we could have defined the operator ∇s directly according to the prescrip-
tion ∇sψ = K(s, Txψ(ρ(s)). The properties of ∇s immediately follow from
Theorem 5.1, i.e. ∇s is IR-linear and for any f ∈ C∞(M) and ψ ∈ Γx(π),
we have that

∇s(fψ) = f(x)∇sψ + ρ(s)(f)ψ(x).
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Next, let c : I → N be a smooth ρ-admissible curve in N , with corresponding
base curve c̃ = ν ◦ c. Consider a map ψ̃ : I → E, i.e. a smooth curve
in E, satisfying π ◦ ψ̃ = c̃. It is now readily seen that, for each t ∈ I,

(c(t),
˙̃
ψ(t)) ∈ ρ∗TE and we may then define

∇cψ̃(t) := K(c(t),
˙̃
ψ(t)) ,

which we will call the derivative of ψ̃ along the admissible curve c. In coor-
dinates, putting c(t) = (c̃i(t), ca(t)) and ψ̃(t) = (c̃i(t), ψ̃A(t)), we obtain

(∇cψ̃(t))A =
dψ̃A

dt
(t) − ΓA

B(c(t))ψ̃B(t) .

In the specific case where h is a ρ-connection, this equation becomes

(∇cψ̃(t))A =
dψ̃A

dt
(t) − ΓA

aB(c̃(t))ca(t)ψ̃B(t) .

Assume one can find a (local) section ψ ∈ Γ(π) such that ψ(c̃(t)) = ψ̃(t)
for all t ∈ I. This will be the case, for instance, if the base curve c̃ is an
injective immersion. A straightforward computation then shows that

(∇c(t)ψ)A =
∂ψA

∂qj

(
c̃(t)

)
˙̃c
j
(t) − ΓA

B(c(t))ψB(c̃(t))

=
dψ̃A

dt
(t) − ΓA

B(c(t))ψ̃B(t) ,

where, for the second equality, we have used the fact that ψA(c̃(t)) ≡ ψ̃A(t).
We may therefore conclude that the derivative of ψ̃ along c verifies

∇cψ̃(t) = ∇c(t)ψ,

for any ψ ∈ Γ(π) such that ψ(c̃(t)) ≡ ψ̃(t), if such a section ψ exists.
The following theorem is interesting since it gives an interpretation of the
derivation of ψ̃ along c : [a, b] → N in the sense that ∇cψ̃ “measures”
the extent by which ψ̃ deviates from being a h-admissible curve. We first
introduce a specific notation. Let t ≤ t′ ∈ [a, b] and let (ch)t′

t denote the
h-displacement along the restriction of c to [t, t′]. Thus we have: (ch)t′

t :
Ec̃(t) → Ec̃(t′). If t′ ≤ t, then we define (ch)t′

t = ((ch)t
t′)

−1.

Theorem 5.2. The following equation holds:

∇cψ̃(t) =
d

ds

∣∣∣∣
s=0

(
(ch)t

t+s(ψ̃(t + s))
)

.
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Proof. The right-hand side of the above equation is well defined, since it is
the tangent vector to a curve contained in the linear space Ec̃(t). The proof

follows from (ch)t′

t (e) = ch
e (t′) for e ∈ Ec̃(t) and e = ((ch)t

a)
−1(e), implying

that

d

dt′

∣∣∣∣
t′=t

(ch)t′

t (e) = h(e, c(t)).

To simplify notations, we define e(s) = (ch)t
t+s(ψ̃(t + s)), which can be

regarded as a curve in Ec̃(t). Using the above, we obtain that the derivative

at s = 0 of the composed curve s 7→ (ch)t+s
t (e(s)) ≡ ψ̃(t + s) equals

h(e(0), c(t)) + ė(0) =
˙̃
ψ(t),

where we have used the Leibniz rule. The proof is completed using the
definition of the connection map K and the following equality:

p2(ė(0)) =
d

ds

∣∣∣∣
s=0

(
(ch)t

t+s(ψ̃(t + s))
)

.

Remark 5.3. A special situation occurs, for instance, when ρ is linear and has
a nontrivial kernel containing the image of an admissible curve c. In particular,
we then know that c(t) necessarily belongs to a fixed fibre of ν and the base curve
c̃ reduces to a point in M , say c̃(t) = ν(c(t)) = x for all t. We then consider a
map ψ̃ : I = [a, b] → Ex. In coordinates, with x = (qi

0), ψ̃(t) = (qi
0, y

A(t)), we
then find that, with ∇ the derivative operator of a ρ-connection on E:

∇cψ̃(t) =
(
qi
0, ẏ

A(t) − ΓA
aB(q0)c

a(t)yB(t)
)
∈ Ex .

In particular, if we associate to each point e0 = (qi
0, y

A
0 ) ∈ Ex the constant

map ψ̃(t) ≡ (qi
0, y

A
0 ), we obtain a time-dependent linear map on the fibre Ex,

namely e0 7→ ∇ce0(t) = (qi
0,−ΓA

aB(q0)c
a(t)yB

0 ).

Next, it is easy to see how the action of the derivative operator of a ρ-lift on
a vector bundle π : E → M , can be extended to sections of the dual vector
bundle π∗ : E∗ → M . If, by convention, for σ ∈ Γ(ν) and f ∈ C∞(M) we put
∇σf = (ρ ◦ σ)(f), we can immediately define an action of the operator ∇σ

on Γ(π∗) as follows: for any f ∈ Γ(π∗), ∇σf ∈ Γ(π∗) is uniquely determined
by

〈∇σf, ψ〉 = ∇σ〈f, ψ〉 − 〈f,∇σψ〉 ,
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for all ψ ∈ Γ(π), where 〈 , 〉 denotes the canonical pairing between sections
of π and sections of π∗. Herewith, it is then standard to further extend the
action of ∇σ to sections of any tensor bundle constructed out of E and E∗.

In what precedes we have shown that a ρ-lift on a vector bundle π : E → M
gives rise to an operator ∇ verifying the conditions of Theorem 5.1. We now
demonstrate that the converse also holds.

Theorem 5.4. Any operator ∇ : Γ(ν)×Γ(π) → Γ(π), verifying the proper-
ties (i), (ii) and (iii) of Theorem 5.1, is the derivative operator of a unique
ρ-lift on π. If (ν, ρ) is a linear anchored bundle, and if (i), (ii) and (iv) are
satisfied, then the ρ-lift is a ρ-connection.

Proof. Take s ∈ N , with ν(s) = x, and ψ ∈ Γx(π). From (iii) it follows
that the given operator ∇ induces an operator ∇s on Γx(π) such that ∇sψ ∈
Ex. Putting ψ(x) = e, and denoting by ιe : Ex → Veπ the canonical
isomorphism between the vector spaces Ex and Veπ, we may consider the
vector Tψ(ρ(s)) − ιe(∇sψ) ∈ TeE. It is now straightforward to check that
the mapping Γx(π) → TeE : ψ 7→ Tψ(ρ(s))− ιe(∇sψ) is C∞(M)-linear in ψ
and, hence, only depends on the value of ψ in x. From this we deduce that
there exists a well-defined smooth mapping h : π∗N → TE, given by

h(e, s) = Tψ(ρ(s)) − ιe(∇sψ) ,

for any ψ ∈ Γ(π) with ψ(ν(s)) = e. Clearly, Tπ(h(e, s)) = ρ(s), which
already shows that ρ ◦ π̃2 = π∗ ◦ h. We now have to check that h commutes
with {λt}, the flow of the dilation vector field on E. Observe that for any
ψ ∈ Γ(π) we also have λt ◦ ψ ∈ Γ(π) for each t ∈ IR. It is not difficult to
verify that

T (λt)
(
Tψ(ρ(s)) − ιe(∇sψ)

)
= T (λt ◦ ψ)(ρ(s)) − ιλt(e)(∇s(λt ◦ ψ))

= h(λt(e), s) ,

proving that h is indeed a ρ-lift. If ∇ is linear in the first argument, the
linearity of he = h(e, .) : Nπ(e) → TeE is obvious.

It now remains to be shown that the given ∇ is the derivative operator of
the constructed ρ-lift h. Let K denote the connection map associated to h
(cf. Section 1). Using Equations (1.6) and (1.5), together with the above
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definition of h, we find for any s ∈ N and ψ ∈ Γν(s)(π), putting ψ(ν(s)) = e:

K(s, Tψ(ρ(s))) = p2(Tψ(ρ(s)) − h(e, s))

= p2(ιe(∇sψ))

= ∇sψ .

Since, in view of Equation (5.8), the left-hand side precisely determines the
derivative operator associated to h, which completes the proof.

In view of this result, the derivation on the dual bundle E∗ determines a ρ-
lift on the bundle E∗, which will be denoted by h∗. It is interesting to know
how the transport operator of this “dual ρ-lift” is related to the h-transport
operator on E. Therefore, assume that ∇ is a derivative operator associated
with a ρ-lift h on E. Let c : [a, b] → N denote a ρ-admissible curve, with
base curve c̃. The transport operator (ch)t

t is a linear isomorphism from Ec̃(t)

to Ec̃(t), for any t ≤ t. Let f : [a, b] → E∗ denote the section of E∗ along c̃,

defined by f(t) = ((ch))a
t )

∗(fa), with fa ∈ E∗
c̃(a) arbitrary. We now prove that

f(t) satisfies ∇cf(t) = 0 for all t, which implies that the map ((ch)−1)∗ is the
transport operator ch∗

determined by the derivative operator ∇ acting on
the dual bundle E∗. For that purpose, we fix a t′ ∈ [a, b] and an arbitrary
element et′ in Ec̃(t′), and we consider ψ(t) = (ch)t

t′(et′), for t ∈ [a, b]. In
particular ψ(t) is a section of E along c̃, satisfying ∇cψ(t) = 0. We now
consider the following equation:

〈∇cf(t
′), et′〉 =

d

dt

∣∣∣∣
t′
〈f(t), ψ(t)〉 − 〈f(t′),∇cψ(t′)〉.

Since 〈f(t), ψ(t)〉 = 〈f(t′), et′〉 is constant, we obtain that ∇cf(t
′) = 0 for all

t′ ∈ [a, b].

To close this section we consider the difference between the derivative oper-
ators associated to two ρ-lifts in order to characterise all ρ-lifts on a bundle
E. Thus, suppose ∇ and ∇̄ are the derivative operators corresponding to
two (different) ρ-lifts on the vector bundle π. It follows from Theorem 5.1
that the difference ∇ − ∇̄ is a mapping S : Γ(ν) × Γ(π) → Γ(π) which is
C∞(M)-linear in the second argument and which locally reads

(S(σ, ψ)(x))A = (ΓA
B(σ(x)) − Γ̄A

B(σ(x)))ψB(x) .
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Note that S uniquely determines a section S of the tensor bundle (π∗N)∗ ⊗
π∗N → N , which is well defined since π∗N is a linear bundle over N and
(π∗N)∗ its dual. In the case where ∇ and ∇̄ are derivative operator of ρ-
connections, the map S is also C∞(M)-linear in the first argument and the
above equation then becomes, with x = (qi) and σ(q) = (qi, σa(q)):

(S(σ, ψ)(q))A = (ΓA
aB(q) − Γ̄A

aB(q))σa(q)ψB(q)

In this case S is a section of the tensor product bundle N∗ ⊗E∗ ⊗E → M .

Conversely, given a derivative operator ∇ and an arbitrary section S : N →
(π∗N)∗ ⊗ π∗N , then the operator ∇ + S, with S : Γ(ν) × Γ(π) → Γ(π)
associated to S as above, maps any pair of sections (σ, ψ) onto ∇σψ +
S(σ, ψ) and also defines a derivative operator verifying the assumptions of
Theorem 5.1. Hence, determines a ρ-lift on π.

6 Invariant subbundles

Let (ν, ρ) denote an anchored bundle on M . In this section we study how
a ρ-lift h on a vector bundle π : E → M acts on a vector subbundle ε :
F → M of π, (i.e. Fx is a linear subspace of Ex for any x ∈ M). Let
∇ : Γ(ν) × Γ(π) → Γ(π) denote the derivative operator associated with the
ρ-lift.

Definition 6.1. The vector subbundle ε : F → M is called invariant under
∇ if, for any ψ ∈ Γ(ε) and σ ∈ Γ(ν), we have that (∇σψ) ∈ Γ(ε).

We now prove some elementary properties concerning invariant subbundles.
It is easily seen that the derivation ∇, leaving ε invariant, determines a
derivation on the bundle ε, which will be denoted by ∇. Moreover, it is
easily checked that ∇ satisfies all desired properties to determine a ρ-lift h
on ε (cf. Section 5). Assume that c : [a, b] → N is a ρ-admissible curve
taking x ∈ M to y ∈ M , and let ch denote the displacement along c with
respect to h.

Proposition 6.1. The natural injection i : F → E is a morphism between
the ρ-lifts h and h.

Proof. Recall the construction of a ρ-lift associated to a given derivative
operator (cf. Theorem 5.4). If ψ is a section of ε, then we can consider
the section i ◦ ψ of π. Let K ′ : ρ∗TF → F denote the connection map
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of h and K : ρ∗TE → E the connection map of h. Then, the equation
∇σ(i ◦ ψ) = i ◦ ∇σψ, is equivalent to

i
(
K ′

(
σ(x), Tψ(ρ(σ(x)))

))
= K

(
σ(x), T i

(
Tψ(ρ(σ(x)))

))
,

for all σ ∈ Γ(ν), ψ ∈ Γ(ε). In turn, this equation is equivalent to

Ti
(
Tψ

(
ρ(σ(x))

)
− h

(
σ(x), ψ(x)

))
=

T
(
i ◦ ψ

)(
ρ(σ(x))

)
− h

(
σ(x), i(ψ(x))

)
,

or Ti(h(σ(x), ψ(x))) = h(σ(x), i(ψ(x))), which is precisely the condition for
i to determine a morphism between the ρ-lifts h and h.

As a consequence of the above theorem and the theory on morphisms be-
tween anchored bundles developed in Chapter I, the following property
holds. Let c : [a, b] → N be a ρ-admissible curve with base curve c̃. Then,
given any section ψ of ε along c̃, we have i(∇cψ(t)) = ∇ci(ψ(t)) and, hence,

ch|Fx = ch.

A similar result holds for the derivative operations acting on sections of
ε∗ : F ∗ → M and π∗ : E∗ → M . Consider the action of ∇ and ∇ on
π∗ : E∗ → M and ε∗ : F ∗ → M , respectively. Then, given any f ∈ Γ(π∗), we
have

〈∇σf, ψ〉 = ρ(σ)(〈f, ψ〉) − 〈f,∇σψ〉,

for σ ∈ Γ(ν) and ψ ∈ Γ(π) arbitrary. If we denote the dual of i : F → E
by i∗ : E∗ → F ∗, then the section i∗(∇σf) of ε∗, is obtained by considering
in the previous equation only sections ψ belonging to Γ(ε), which implies
∇σi∗f = i∗(∇σf). Using similar techniques as in the proof of the above
proposition, we obtain that i∗ is a mapping between the lifts h∗ and h

∗
.

Using the theory on morphisms between anchored bundles, we obtain that
the transport operators of h∗ and h

∗
along a ρ-admissible curve c, satisfy:

i∗ ◦ ch∗

= ch
∗

◦ i∗.

7 General properties on ρ-connections and examples

A ρ-connection on a linear bundle π : E → M admits some interesting
properties, which can not be obtained in the general case where (ν, ρ) is not
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linear. Therefore, in the remainder of this chapter we shall only consider
ρ-connections. Recall first of all that any ±ρ-admissible curve can be related
to a ρ-admissible curve which, in turn, implies that the holonomy groups can
be defined without making use of the additional concept of a ±ρ-admissible
curve. In this section we prove some properties on the distribution Q =
im h defined by the ρ-connection h and we consider various situations in
differential geometry where generalised connections over a vector bundle
map may be considered.

As observed above, the distribution Q defined by a ρ-connection h on a
fibre bundle π : E → M , in general may have nonzero intersection with the
vertical subbundle V π of TE. The extent by which Q fails to be a (full)
complement of V π is characterised by the following proposition.

Proposition 7.1. For any x ∈ M and e ∈ Ex we have

Qe ∩ Veπ ∼= ker(ρx)/ ker(he), (7.11)

(where ρx and he are the linear maps induced by the restrictions of ρ and h,
respectively, to the fibre Nx of N), and

Qe + Veπ = TeE ⇐⇒ Dx = TxM. (7.12)

Proof. For w ∈ TeE, with π(e) = x, we immediately have that w ∈ Qe∩Veπ
iff w = h(e, s) = he(s) for some s ∈ Nx, and 0 = Tπ(w) = Tπ(h(e, s)) =
ρx(s). Hence,

w ∈ Qe ∩ Veπ ⇐⇒ w ∈ he(ker(ρx)).

From the definition of h one can deduce that ker(he) ⊂ ker(ρx) and it then
readily follows that he(ker(ρx)) ∼= ker(ρx)/ ker(he), which completes the
proof of (7.11).

Next, assume that Qe + Veπ = TeE, for e ∈ Ex. For any v ∈ TxM one can
always find a w ∈ TeE such that Tπ(w) = v. The given assumption implies
that w can be written as w = he(s) + w̃, for some s ∈ Nx and w̃ ∈ Veπ, and
this, in turn, gives

v = Tπ(w) = Tπ(he(s)) = ρx(s),

i.e. v ∈ im(ρx) = Dx. Since v ∈ TxM was chosen arbitrarily, this proves
that Dx = TxM . Conversely, assume Dx = TxM . For any w ∈ TeE we
then have that Tπ(w) = ρx(s) for some s ∈ Nx, from which it follows that
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Tπ(w−he(s)) = Tπ(w)−ρx(s) = 0, and so w−he(s) ∈ Veπ. This completes
the proof of the equivalence (7.12).

From this proposition one can readily deduce the following result.

Corollary 7.2. The distribution Q defines a genuine (Ehresmann) connec-
tion on π iff im(ρ) = TM and ker(ρx) = ker(he) for all x ∈ M and e ∈ Ex.

Whereas a ρ-connection h determines a (generalised) distribution Q on E
which projects onto D, the converse is certainly not true in general. More-
over, if a distribution Q can be associated to a ρ-connection, the latter need
not be uniquely determined. A sufficient condition for a distribution on E to
correspond to a unique ρ-connection is that it determines a (not necessarily
full) complement of V π.

Proposition 7.3. Let F be a smooth generalised distribution on E such
that (i) Tπ(F ) = D, and (ii) Fe ∩Veπ = {0} for all e ∈ E, then there exists
a unique ρ-connection h such that F = imh = Q.

Proof. For each point e ∈ E, we can construct a map he : Nx → TeE,
where x = π(e), by putting

{he(s)} = Fe ∩
(
(Tπ)|TeE

)−1
(ρx(s)),

for all s ∈ Nx. From the given assumptions (i) and (ii), it follows that this
prescription uniquely determines a point he(s). Furthermore, using some
simple set-theoretic arguments, it is not difficult to verify that the resulting
map he is linear. Next, we can ‘glue’ these linear maps together to a smooth
bundle map h : π∗N → TE with h(e, s) = he(s). It is then straightforward
to see that, by construction, h verifies all properties of a ρ-connection.

Finally, uniqueness of h can be proved as follows. Let h′ : π∗N → TE be
another ρ-connection for which im(h′) = F . Then, for each (e, s) ∈ π∗N ,
with π(e) = ν(s) = x, there exists a s′ ∈ Nx such that h′(e, s) = h(e, s′). The
definition of a ρ-connection then implies that ρ(s) = ρ(s′). Since h(e, s) is
the unique element in Q that projects onto ρ(s) = ρ(s′) and since ker(ρx) =
ker(he) it follows that h′(e, s) = h(e, s′) = h(e, s), which indeed proves
uniqueness of the ρ-connection.

Note that the ρ-connections referred to in Proposition 3.3 are of a special
type in the sense that the corresponding distribution Q is ‘transverse’ to V π,
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i.e. Qe∩Veπ = {0} for all e ∈ E. With a slight abuse of terminology, we will
call such a ρ-connection a partial ρ-connection on π. If the distribution Q
has constant rank it determines indeed a partial connection in the ordinary
sense.

Remark 7.4. The notion of partial connection, as defined above, also cor-
responds to (and reduces to) what Fernandes has called F-connections in his
treatment of contravariant connections on Poisson manifolds and connections
on Lie algebroids [14, 15].

Assume now that ρ has constant rank. Then, D = im(ρ) is a vector sub-
bundle of TM , with canonical injection i : D ↪→ TM .

Proposition 7.5. If ρ has constant rank, then for every ρ-connection h
on a fibre bundle π : E → M there is a i-connection h̄ on π such that
im(h) = im(h̄) iff h is a partial connection.

Proof. If h is a partial connection, we know from the above that ker(ρx) =
ker(he) for all x ∈ M and e ∈ Ex. We can then define a mapping h̄ : π∗D →
TE as follows: for s ∈ Nx and e ∈ Ex, put

h̄(e, ρ(s)) = h(e, s) .

From the fact that h is a partial connection it follows that h̄ is well defined,
and it is straightforward to check that it is a generalised connection over i,
determining the same distribution Q on E as h.

Conversely, assume that there exists a i-connection h̄ on π, having the same
image as a given ρ-connection h. In particular, this implies that for all
(e, s) ∈ π∗N , with ν(s) = π(e) = x, there exists a s′ ∈ Nx such that
h(e, s) = h̄(e, ρ(s′)). Since, obviously, ker(i) = 0, we also have ker(h̄e) = 0,
from which one can readily deduce that ker(he) = ker(ρx) and, hence, h is
a partial connection.

Next, we shall describe several situations where generalised connections over
a vector bundle map may be considered. In particular, we will see how the
various types of connections mentioned in the Introduction can be recovered
as special cases of the general notion of connection put forward in Defini-
tion 1.1.

Some examples
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(i) If we put N = TM , ν = τM and ρ = idTM (the identity map on TM),
Definition 1.1 reduces to that of an ordinary connection (an Ehresmann con-
nection) on π, with h : π∗TM → TE defining a splitting of the short exact
sequence 0 → V π → TE → π∗TM → 0 and im(h) = Hπ the horizontal
distribution of the connection. In particular, for E = TM we recover the
standard notion of connection on a manifold M (see also [57]).

(ii) Let N be a subbundle of TM , ν = (τM )|N , and ρ = iN : N ↪→ TM
the canonical injection. In this case, each ρ-connection h on a fibre bundle
π : E → M is a partial connection. Indeed, since for all x ∈ M we have
ker((iN )x) = {0}, it follows from (7.11) that Qe ∩ Veπ = {0} for all e ∈ E.
Moreover, h is now necessarily injective, implying that Q is a constant rank
distribution and, therefore, we are dealing with a partial connection in the
ordinary sense. Partial connections are considered in particular in those
cases where N defines a regular integrable distribution on M (see e.g. [21]).
The horizontal subspaces Qe then project onto the tangent spaces to the
leaves of the induced foliation. But partial connections also make their
appearance, for instance, in the framework of sub-Riemannian geometry,
where N is a subbundle of TM equipped with a nondegenerate bundle metric
(see e.g. [13]). For that purpose, we shall now give a definition of what
we call a bundle adapted connection. Let ∇ denote a iN -connection on
the bundle T ∗M . Let α ∈ Γ(N0) denote an arbitrary section of N0, the
annihilator bundle of N , and let s ∈ N . Then ∇ is called adapted to the
bundle N , (shortly N -adapted) if ∇sα = isdα. It is easily seen that this
is well defined, and in general ∇sα ∈ T ∗M . However, in the specific case
where D is integrable, the bundle N0 is an invariant subbundle of T ∗M with
respect to ∇. From Section 6, we know that ∇ determines a iN -connection
on N0. It is precisely this partial iN -connection that was used by R. Bott et
al. in [2] to prove that certain Pontryagin cohomology classes of the bundle
N0 are identically zero, provided that D is integrable. Nevertheless, this
mapping naturally pops up in our approach to sub-Riemannian geometry
(cf. Chapter IV), and therefore, we define a mapping δ according to

δ : Γ(N) × Γ(N0) → X∗(M) : (X, η) 7→ δXη = iXdη.

(iii) If ν : N → M is a Lie algebroid over M , with anchor map ρ, we
recover the notion of Lie algebroid connection studied by Fernandes [15]. By
definition of a Lie algebroid, the anchor map induces a Lie algebra morphism
from the Lie algebra of sections of ν into the Lie algebra of vector fields
on M . In this case im(ρ) = D is an integrable generalised distribution,
determining a (possibly singular) foliation of M . Given a ρ-connection h on



7 General properties on ρ-connections and examples 51

a fibre bundle π : E → M , with associated distribution Q, we have that for
each e ∈ E the subspace Qe of TeE projects onto the tangent space at π(e)
to the leaf passing through π(e) of the foliation determined by D. Here,
unlike the case of a partial connection, Q may have a nonzero intersection
with the vertical distribution V π.

A particular instance of a Lie algebroid is obtained when M admits a Pois-
son structure, with Poisson tensor Λ, and N = T ∗M . The anchor map
ρ is then given by the natural vector bundle morphism induced by Λ, i.e.
]Λ : T ∗M → TM, αx 7→ Λx(αx, .). This case was also studied extensively by
Fernandes [14]. Connections over ]Λ were then called contravariant connec-
tions, following I. Vaisman who introduced a notion of contravariant deriva-
tive in the framework of the geometric quantisation of Poisson manifolds
[55].

(iv) Let again N = TM , ν = τM and let ρ be the tangent bundle mor-
phism induced by a type (1, 1)-tensor field A on M . A ρ-connection then
corresponds to what is also known as a pseudo-connection with fundamental
tensor field A (cf. [12, 59]).

Consider the case where A has vanishing Nijenhuis torsion, i.e. NA = 0,
with NA the type (1, 2)-tensor field defined by 1/2NA(X, Y ) = A2([X, Y ])+
[A(X), A(Y )] − A([A(X), Y ]) − A([X, A(Y )]) for arbitrary X, Y ∈ X(M).
The pair (M, A) is sometimes called a Nijenhuis manifold, with Nijenhuis
tensor A. One may then define a new bracket on X(M) according to

[X, Y ]A := [A(X), Y ] + [X, A(Y )] − A([X, Y ]) . (7.13)

Using the fact that NA = 0, it follows after some tedious but straightforward
computations that [ , ]A is again a Lie bracket on X(M) and that, moreover,
A([X, Y ]A) = [A(X), A(Y )] and [X, fY ]A = f [X, Y ]A + A(X)(f)Y for all
X, Y ∈ X(M) and f ∈ C∞(M) (see e.g. [25]). Consequently, TM becomes
a Lie algebroid over M with bracket [ , ]A and anchor map A (regarded as
a bundle map from TM into itself), and a pseudo-connection whose funda-
mental tensor field A is a Nijenhuis tensor, is a Lie algebroid connection.

(v) An immediate extension of the previous case is obtained when con-
sidering an arbitrary vector valued tensor field K ∈ T r

s (M) ⊗ X(M) on M ,
where T r

s (M) denotes the C∞(M)-module of smooth type (r, s)-tensor fields,
i.e. tensor fields of contravariant order r and covariant order s. Putting
N = T s

r (TM), the vector bundle of type (s, r)-tensors on M , and ρ :
T s

r (TM) → TM the natural bundle morphism over M induced by K, i.e.

ρ(v1 ⊗ · · · ⊗ vs ⊗ α1 ⊗ · · · ⊗ αr) = K(v1, . . . , vs; α1, . . . , αr),
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for arbitrary x ∈ M , vi ∈ TxM and αj ∈ T ∗
xM , then one can consider

ρ-connections on a fibre bundle E over M as connections which, in some
sense, are “parameterised”by (s, r)-tensors. Clearly, the pseudo-connections
mentioned above, as well as the contravariant (Poisson) connections, belong
to this category.

8 Curvature and torsion for ρ-connections

Clearly, in the case of arbitrary vector bundles ν : N → M and π : E → M
there is no way, in general, of assigning a notion of torsion or curvature to
a ρ-connection. However, let us assume in what follows that the space of
sections Γ(ν) is equipped with an algebra structure (over IR), with product
denoted by ∗, such that the mapping Γ(ν)×Γ(ν) → Γ(ν), (σ1, σ2) 7→ σ1 ∗σ2

is IR-bilinear and skew-symmetric and, in addition, verifies a Leibniz-type
rule

σ1 ∗ (fσ2) = f(σ1 ∗ σ2) + ρ(σ1)(f)σ2 , (8.14)

for all σ1, σ2 ∈ Γ(ν) and f ∈ C∞(M). Note that we do not require ρ to
induce an algebra morphism between (Γ(ν), ∗) and (X(M), [ , ]).

Whenever the space of sections of the vector bundle ν : N → M is equipped
with a bilinear operation ∗ verifying the above assumptions, we will follow
[17] in saying that N admits the structure of a pre-Lie algebroid . When
dropping the skew-symmetry assumption of the product ∗, we obtain a so-
called pseudo-Lie algebroid (cf. [17]). For a treatment of the differential
calculus on pseudo- and pre-Lie algebroids, we refer to [18], where both
structures are simply called “algebroids”and “skew algebroids”, respectively.
The algebraic counterpart of pre-Lie algebroids, namely differential pre-Lie
algebras, have also been studied in [25].

In analogy with the Poisson structure that exists on the dual bundle of any
Lie algebroid, one can show that on the dual bundle µ : N∗ → M of any
pre-Lie algebroid ν : N → M there exists a distinguished bivector field Λ
which, in particular, induces an ‘almost-Poisson’ bracket { , } on C∞(N∗),
verifying all properties of a Poisson bracket except for the Jacobi identity.
One can show that the Schouten-Nijenhuis bracket of the bivector field Λ
with itself vanishes (and, hence, Λ becomes a Poisson tensor) iff the algebra
(Γ(ν), ∗) is a Lie algebra, i.e. the Jacobi identity holds for the ∗-product. In
that case one can also prove that ρ induces a Lie algebra homomorphism
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between (Γ(ν), ∗) and (X(M), [ , ]), and N then becomes a Lie algebroid
over M (cf. [17]).

Assume N admits a pre-Lie algebroid structure, with product ∗ on Γ(ν),
and consider a ρ-connection on a vector bundle π : E → M , with associated
derivative operator ∇. We may now define a mapping R : Γ(ν) × Γ(ν) ×
Γ(π) → Γ(π) given by

R(σ1, σ2; ψ) := ∇σ1∇σ2ψ −∇σ2∇σ1ψ −∇σ1∗σ2ψ . (8.15)

It easily follows that R is C∞(M)-linear and skew-symmetric in σ1 and σ2,
but fails to be C∞(M)-linear in ψ. Indeed, a straightforward computation
shows that for arbitrary σ1, σ2 ∈ Γ(ν), ψ ∈ Γ(π) and f ∈ C∞(M),

R(σ1, σ2; fψ) = fR(σ1, σ2; ψ) + (ρ(σ1) ◦ ρ(σ2)

− ρ(σ2) ◦ ρ(σ1) − ρ(σ1 ∗ σ2)) (f)ψ .

From this expression it is seen that R will be fully tensorial iff ρ induces an
algebra homomorphism from (Γ(ν), ∗) to (X(M), [ , ]), i.e.

ρ(σ1 ∗ σ2) = [ρ(σ1), ρ(σ2)]. (8.16)

In particular, this implies that for all σ1, σ2, σ3 ∈ Γ(ν) we have

σ1 ∗ (σ2 ∗ σ3) + σ2 ∗ (σ3 ∗ σ1) + σ3 ∗ (σ1 ∗ σ2) ∈ Γ(ν| ker(ρ)) ,

i.e. the ‘Jacobiator’ of the ∗-product should take values in the kernel of the
vector bundle morphism ρ. (The denomination ‘Jacobiator’ is sometimes
used in the literature to indicate, in an algebra with a skew-symmetric prod-
uct, the cyclic sum that vanishes in case the Jacobi identity holds). If (8.16)
holds, we will call the mapping R, defined by (8.15), the curvature of the
given ρ-connection.

Remark 8.1. Another important consequence of (8.16) is that the generalised
distribution D(= im(ρ)) on M is involutive. Note, however, that since ρ need
not be of constant rank, involutivity does not necessarily imply integrability of
D. (For integrability conditions of a generalised distribution, see e.g. [52, 56].)

Consider a local coordinate neighbourhood U in M , with coordinates qi (i =
1, . . . , n), which is also a trivialising neighbourhood for both vector bundles
ν and π. Let σa (a = 1, . . . , k), respectively pA (A = 1, . . . , `), represent a
local basis of sections of ν, respectively π, defined on U . We then have

σa ∗ σa = cd
abσd ,
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for some functions cd
ab ∈ C∞(U). Putting ρ(σa) = γi

a(∂/∂qi), the condition
(8.16) yields the following relation

cd
abγ

i
d = γj

a

∂γi
b

∂qj
− γj

b

∂γi
a

∂qj
,

for all a, b, i. Given a ρ-connection on π, let

∇σapA = ΓB
aApB .

Denoting the components of the curvature R with respect to the chosen local
bases of sections by RB

abA, i.e. R(σa, σb; pA) = RB
abApB, a straightforward

computation reveals that

RB
abA = γi

a

∂ΓB
bA

∂qi
− γi

b

∂ΓB
aA

∂qi
+ ΓB

aCΓC
bA − ΓB

bCΓC
aA − cd

abΓ
B
dA . (8.17)

Always under the assumption that (8.16) is satisfied, we will establish a link
between the curvature of a ρ-connection h on π : E → M and the (lack
of) involutivity of the (generalised) distribution Q = im(h). Recalling that
for any σ ∈ Γ(ν), σh ∈ X(E) denotes its h-lift (cf. Section 1), we have the
following useful property.

Lemma 8.2. For any σ1, σ2 ∈ Γ(ν),

[σh
1 , σh

2 ](e) − (σ1 ∗ σ2)
h(e) ∈ Veπ,

holds for all e ∈ E.

Proof. From the fact that for each σ ∈ Γ(ν), σh and ρ ◦ σ are π-related
vector fields, it follows that [σh

1 , σh
2 ] and [ρ(σ1), ρ(σ2)] are also π-related.

Taking into account (8.16) we then easily find that

Tπ ◦
(
[σh

1 , σh
2 ] − (σ1 ∗ σ2)

h
)

= Tπ ◦ [σh
1 , σh

2 ] − ρ(σ1 ∗ σ2) ◦ π

=
(
[ρ(σ1), ρ(σ2)] − ρ(σ1 ∗ σ2)

)
◦ π

= 0 ,

from which the result follows.

We now come to the following important result which tells us that the cur-
vature R can indeed be seen as a measure for the ‘non-involutivity’ of the
(generalised) distribution Q determined by a ρ-connection. (Recall that ιe
denotes the canonical identification between Eπ(e) and Veπ).
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Theorem 8.3. For any σ1, σ2 ∈ Γ(ν) we have

ι−1
e

(
[σh

1 , σh
2 ](e) − (σ1 ∗ σ2)

h(e)
)

= R(σ1, σ2; ψ)(x) , (8.18)

for each e ∈ E for which the left-hand side is defined, and where x = π(e)
and ψ is any section of π such that ψ(x) = e.

Proof. First of all, note that the left-hand side of (8.18) makes sense in view
of the previous lemma, and that the ‘tensorial character’ of R implies that
the right-hand side does not depend on the choice of the section ψ for which
ψ(x) = e. Secondly, using the properties of the h-lift of sections it is not
difficult to check that [σh

1 , σh
2 ] − (σ1 ∗ σ2)

h is C∞(M)-linear in both σ1 and
σ2. Since we already know that the same is true for R(σ1, σ2; ψ), it suffices
to verify (8.18) on a local basis of sections (σa)a=1,...,k of Γ(ν), defined on
a suitable coordinate neighbourhood U of x = π(e), for some chosen point
e ∈ E. There is no loss of generality by assuming that U is also a trivialising
neighbourhood for π, and denote the corresponding bundle coordinates on
E by (qi, yA). In particular, let the coordinates of the point e be given by
(qi

0, y
A
0 ).

Using the notations introduced above, we find after a rather tedious, but
straightforward computation, that [σh

a , σh
b ](e) − (σa ∗ σb)

h(e) equals

(
γi

a

∂ΓA
bB

∂qi
− γi

b

∂ΓA
aB

∂qi
+ ΓA

bCΓC
aB − ΓA

bCΓC
aB − cd

abΓ
A
dB

)

q0

yB
0

∂

∂yA
|e

.

The result now easily follows when comparing the right-hand side with the
expression (8.17) for the local components of R, and bearing in mind that
ιe maps each (qi

0, y
A
0 , 0, wA) ∈ Veπ onto (qi

0, w
A) ∈ Ex.

Example 8.4. If (N, ν) is a Lie algebroid over M with anchor map ρ, we
recover the notion of curvature defined, for instance, in [15].

Assume again ν : N → M is a pre-Lie algebroid, i.e. that Γ(ν) admits an
algebra structure, with a skew-symmetric product ∗ satisfying (8.14). We
do not require, however, that ρ is an algebra homomorphism. Consider now
a ρ-connection on ν, with associated derivative operator ∇ (i.e. we take
E = N and π = ν). We can then define a mapping T : Γ(ν) × Γ(ν) → Γ(ν)
given by

T (σ1, σ2) = ∇σ1σ2 −∇σ2σ1 − σ1 ∗ σ2 . (8.19)
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It is not difficult to check that T , which may be called the torsion of the
given ρ-connection, is a C∞(M)-bilinear and skew-symmetric mapping. Let
(σa)a=1,...,k represent a local basis of sections of ν such that

∇σaσb = Γd
abσd and σa ∗ σb = cd

abσd .

It then readily follows that

T (σa, σb) = (Γd
ab − Γd

ba − cd
ab)σd .

Example 8.5. Let A be a type (1, 1)-tensor field on M and consider a
pseudo-connection on τM with fundamental tensor field A (cf. Section 7,
Example (iv)). Here we have N = TM , ν = τM and for the product ∗
we may take the bracket [ , ]A on X(M), defined by (7.13). This bracket
satisfies (8.14), but in general will not be a Lie bracket (since A need not be
a Nijenhuis tensor). The notion of torsion, defined by (8.19), corresponds to
the one encountered in treatments of pseudo-connections (see e.g. [12, 59]).

9 The Ambrose-Singer Theorem for connections over a Lie alge-
broid

Assume that (ν, ρ) is a Lie algebroid, with bracket operation on Γ(ν) denoted
as usual by [ , ]. It is well known that the distribution D = im ρ is integrable.
Let π : P → M denote a principal fibre bundle with structure group G and
let h denote a principal ρ-connection. Following the ideas of the preceding
section, the following definition is straightforward:

Definition 9.1. The curvature two-form of h is the map Ω : π∗N⊗π∗N → g
defined as follows. For arbitrary (u, s1), (u, s2) ∈ π∗N :

Tuσ(Ωu(s1, s2)) = [σh
1 , σh

2 ](u) − ([σ1, σ2])
h(u),

where σi ∈ Γ(ν) such that σi

(
(π(u))

)
= si.

It is easily checked that the right hand side is independent of the choice of
σ1 and σ2. Note that Ωug(s1, s2) = Adg−1 · Ωu(s1, s2) for each g ∈ G.

Remark 9.1. Let πE : E → M denote a vector bundle, equipped with a ρ-
connection hE and denote the corresponding principal ρ-connection on FR(E)
by h. The correspondence between the curvature two-form Ω of h and the
curvature tensor R of hE can be seen from Theorem 8.3. Indeed, for arbitrary
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σ ∈ Γ(ν) the vector field σh and σhE are f ξ related, where ξ ∈ IR` is arbitrary.
Therefore,

Tf ξ

(
[σh

1 , σh
2 ](u) − ([σ1, σ2])

h(u)
)

= [σhE

1 , σhE

2 ](uξ) − ([σ1, σ2])
hE (uξ)

holds.

The following theorem is a generalisation of the Ambrose-Singer theorem,
due to Fernandes [15] for principal Lie algebroid ρ-connection.

Theorem 9.2. The Lie algebra g(u) of the holonomy group Φ(u) is spanned
by

{
Ωv(s1, s2)

∣∣ for all v ∈ H(u) and s1, s2 ∈ Nπ(v)

}
,

and by all elements of the form A with Tvσ(A) = h(v, s) with s ∈ ker ρ.

Proof. The element A, associated with s ∈ ker ρ and defined by Tvσ(A) =
h(v, s), for π(v) = ν(s), will be denoted in the following by Υv(s). Without
loss of generality, we assume here that M is a connected manifold and that
the integrable distribution D̃ on M equals TM (cf. Section 3). In view of
these assumptions, it should be noted that the pull-back of (ν, ρ) along i
admits a natural Lie algebroid structure, compatible with [ , ], and that the
curvature two-forms on i∗P and P are mapped onto each other.

Fix a point u ∈ P and let g′(u) denote the subalgebra of g(u) generated
by all Ωv(s1, s2) and Υv(s), with v ∈ H(u) and s1, s2,∈ Nπ(v) and where
s ∈ ker ρπ(v). Since Υvg = Adg−1Υv for any g ∈ G, we obtain, for any
A ∈ g(u), that [A, Υv(s)] ∈ g′(u). A similar result holds for the curvature
two-form (they transform in the same way). Therefore, we have that g′(u)
is an ideal in g(u), and that, for any g ∈ G, Adg−1(g′(u)) = g′(ug).

It is easily seen that the distribution S defined by Su = Qu + Tuσ(g'(u)) is
involutive. The regularity of S follows from the fact that (i) Tπ(S) = TM ,
(ii) Su∩Vuπ = Tuσ(g′(u)), and from the fact that (iii) dimg′(u) = dim g′(v)
for all u, v ∈ P . Properties (i) and (iii) are trivial. By definition we have
that Su ∩Vuπ ⊃ Tuσ(g′(u)). On the other hand, assume that h(u, s) ∈ Vuπ,
then s ∈ ker ρ, or Tuσ(Υu(s)) = h(u, s), or h(u, s) ∈ Tuσ(g′(u)). This proves
(ii).

Since Q is everywhere contained in S, and S is integrable, we have that Q̃
is everywhere contained in S, or g(u) < g′(u). On the other hand, since by
definition g′(u) < g(u), we have that g′(u) = g(u) (and S = Q̃).
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III

Optimal control theory

The results presented in this chapter find their origin in recent work on
sub-Riemannian geometry (cf. Chapter IV), and are also strongly inspired
by some ideas developed in the book by L.S. Pontryagin et al. [47]. The
main purpose is to provide a comprehensive and coordinate-free proof of the
maximum principle and, at the same time, to present a version of this prin-
ciple that may be readily accessible to researchers studying the variational
approach to dynamical systems subjected to nonholonomic constraints, also
called “vakonomic dynamics”. Applications of our results can be found, for
instance, in sub-Riemannian geometry, where the problem of characterising
length-minimising curves (see Chapter IV) can be solved by means of the
maximum principle. Also the construction of a Lagrangian and Hamiltonian
dynamics on Lie-algebroids (see, for instance, [6, 40, 58] and Section 9) can
be solved using the formalism described in the present chapter.

1 A geometric framework for control theory

We now proceed towards the construction of a differential geometric set-
ting for certain control problems. It should be emphasised that, although
our formulation is not the most general one, if only for the rather strong
smoothness conditions we impose, it occurs to us that there is a sufficiently
large and relevant class of control problems that fit within the framework
described below (see for instance [54] for a different approach).

Definition 1.1. A geometric control structure is a triple (τ, ν, ρ) consisting
of (i) a fibre bundle τ : M → IR over the real line, where M is called the
event space, (ii) a fibre bundle ν : U → M , called the control space, and
(iii) a bundle morphism ρ : U → J1τ over the identity on M , such that
τ1,0 ◦ ρ = ν.

In the above, J1τ is the first jet bundle of τ : M → IR, with projections
τ1 : J1τ → IR and τ1,0 : J1τ → M . The typical fibre of M plays the role
of configuration space and will be denoted by Q, whereas the typical fibre
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of the control space U is denoted by C and is called the control domain. It
follows from the definition that we have the commutative diagram:

IR
?

M
?

U - J1τ

=

ρ

τ

ν τ1,0

Let c denote a (local) section of τ ◦ν, i.e. c : I ⊆ IR → U with τ(ν(c(t))) = t.
With c we can associate a section c̃ of τ , called the base section of c and
defined by c̃ = ν ◦ c.

Definition 1.2. A smooth section c ∈ Γ(τ ◦ ν) is said to be a smooth
control if ρ ◦ c = j1c̃, where c̃ denotes the base section of c and j1c̃ its
first jet extension. A smooth section c̃ ∈ Γ(τ) is called a smooth controlled
section if c̃ is the base section of a smooth control c.

Let (t, qi, ua) denote an adapted coordinate system on U (i.e. adapted to
both fibrations τ and ν). The condition for c ∈ Γ(τ ◦ ν) to be a smooth
control is expressed in coordinates as follows: putting c(t) = (t, qj(t), ua(t))
and ρ(t, qi, ua) = (t, qi, γi(t, qj , ua)) we must have that

q̇i(t) = γi(t, qj(t), ua(t)),

for all t. Note that these equations are in agreement with the definition of a
control as given in [47, p 56], where M = IR× IRn and U is an (open) subset
of M × IRk.

We now discuss the connection between the notion of a smooth control and
the notion of an admissible curve (cf. Chapter I). Recall the definition
of the the total time derivative operator T on J1τ , which is a vector field
along τ1,0, i.e. T : J1τ → TM , with τM ◦ T = τ1,0, and which is defined
by T(j1

t c̃) = (Ttc̃)(∂/∂t), for all j1
t c̃ ∈ J1τ . In coordinates the total time

derivative reads, with j1
t c̃ = (t, qi, q̇i):

T(t, qi, q̇i) =
∂

∂t

∣∣∣∣
c̃(t)

+ q̇i ∂

∂qi

∣∣∣∣
c̃(t)

.
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The total time derivative T allows us to define an anchored bundle, namely
(ν,T◦ρ). Indeed, since τM ◦T◦ρ = ν, the map T◦ρ determines an anchor.

Note that any section of τ ◦ ν can be considered as a curve in U . It is
easily seen that a smooth control c : [a, b] → U is a (T ◦ ρ)-admissible curve
(cf. Chapter I), with base curve c̃ = ν ◦ c : [a, b] → M . Indeed, we have
T(ρ(c(t))) = T(j1

t c̃) = ˙̃c(t), by definition of the total time derivative. On the
other hand, any smooth (T ◦ ρ)-admissible curve c : [a, b] → U determines
a smooth control if it satisfies τ(ν(c(t))) = t. This additional condition is
equivalent to saying that c is a section of τ ◦ν. This is in fact no restriction,
since we can always, by considering a simple reparametrisation, transform a
smooth (T◦ρ)-admissible curve into a smooth control. Indeed, consider the
projection of the smooth (T◦ρ)-admissible curve c(t) on IR by τ ◦ν, yielding
the map t(t) from [a, b] to IR. The equation ˙̃c(t) = T(ρ(c(t))) is projected by
Tτ onto ṫ(t) = 1. In particular we have that t(t) = t−d or τ(ν(c(t))) = t−d,
with d a constant determined by d = a − τ(c̃(a)). Thus, if we consider the
following reparametrisation of c: put c′ : [a−d, b−d] → U : t 7→ c(t+d), then
τ(ν(c′(t))) = t. In the remainder of this chapter, we always assume that a
smooth (T ◦ ρ)-admissible curve is parameterised such that it determines a
section of τ ◦ ν.

In Chapter I we defined the composition of smooth admissible curves, which
can be applied in particular, using the above correspondence, to smooth
controls. In general, a finite composition of smooth controls will simply be
called a control. Similarly as for (T ◦ ρ)-admissible curves, we say that a
control c : [a, b] → U takes a point x ∈ M to a point y ∈ M if x = ν(c(a))
and y = ν(c(b)), and we write x

c→ y. The set of reachable points from x is
denoted by Rx, i.e. y ∈ Rx iff x → y. Note that the relation → is an order
relation (i.e. reflexive, transitive and non-symmetric) since, if x → y then
τ(x) ≤ τ(y).

Definition 1.3. A control c is a piecewise (T ◦ ρ)-admissible curve which is
a section of τ ◦ ν.

We use the notation introduced in Chapter I. Let X = (X`, . . . , X1) denote
an ordered family of ` vector fields in D = {T ◦ ρ ◦ σ | σ ∈ Γ(ν)}, with
Xi = T ◦ ρ ◦ σi, and let T = (t`, . . . , t1) ∈ IR` denote a composite flow
parameter. Putting a0 = τ(x) and ai = ai−1 + |ti| for i = 1, . . . , `, then we
know that the concatenation c̃ : [a0, a`] → M of integral curves associated
with X and T through x ∈ M is the base curve of the ±(T ◦ ρ)-admissible
curve c = c` · . . . · c1 where ci = σi ◦ c̃|[ai−1,ai]. The curve c is a control (or a
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(T ◦ ρ)-admissible curve) if T ∈ IR`
+, where we define

IR`
+ = {(t`, . . . , t1) | ti ≥ 0}.

In the remaining of this chapter we will say that a curve c constructed this
way is the control associated with S and T , where S = (σ`, . . . , σ1) is an
ordered family of ` sections of ν and T is in IR`

+. Note that c takes x to
ΦT (x) where Φ is the composite flow of X = (T ◦ ρ ◦ σ`, . . . ,T ◦ ρ ◦ σ1).

In the following, we shall show that, given any control c taking x to y, then
there exists an ordered family S of sections of ν and some T ∈ IR`

+ such
that the control associated with S and T is precisely c. This property is of
crucial importance since our notion of ‘variation of a control’ entirely relies
on it (cf. Section 2).

Thus, let c : I → U be a smooth control with base section c̃ := ν ◦ c.
First, assume that the image c(I) is contained in the domain of an adapted
coordinate chart V of U with coordinates (t, qi, ua). Consider a smooth
extension ĉ of c, defined on an open interval Î containing I, i.e. ĉ : Î → U
is a local section of τ ◦ ν with ĉ(t) = c(t) for all t ∈ I. Upon reducing
Î if necessary, we may always assume that ĉ(Î) ⊂ V , and in terms of the
adapted coordinates on V we can then write ĉ(t) = (t, qi(t), ua(t)). We can
now define a local section σ of ν on the open subset V ′ = ν(V )∩τ−1(Î) of M
as follows: σ(t, qi) = (t, qi, ua(t)), ∀(t, qi) ∈ V ′. The map ρ ◦ σ determines a
section of τ1,0 satisfying ρ◦σ(c̃(t)) = j1c̃(t) for all t ∈ I. This implies that c̃ is
an integral curve of T◦ρ◦σ. In case the image set c(I) is not fully contained
in an adapted coordinate chart, we can always cover the compact set c(I)
with a finite number of adapted coordinate charts and choose a subdivision
of I such that the image of each subinterval is entirely contained in one of
these coordinate charts. The construction above can then be carried out for
the restriction of c to each of these subintervals, and it readily follows that
the thus obtained family of sections and composite flow parameter T ∈ IR`

+,
will induce the control c. As mentioned above, the extension of this proof to
the case of general controls is straightforward. Summarising, we have shown
that the following property holds.

Proposition 1.1. Every control c is associated with a finite ordered family
S of (local) sections of ν and with some T ∈ IR`

+.

Since (ν,T ◦ ρ) is an anchored bundle, we can consider the leaf Lx through
x ∈ M of the foliation induced by the family D = {ρ ◦ σ|σ ∈ Γ(ν)}, and let
Rx denote the set of reachable points from x. We now prove that τ(Rx) =
[τ(x), b[ with b > τ(x) or b = ∞. We have already proven that the projection
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of the image set of any control c, taking x to some element y ∈ M , is
a closed subinterval of IR. This implies that τ(Rx) is an interval in IR.
In order to prove that it is of the form [τ(x), b[, we will make use of the
fact that the family D is everywhere defined. Indeed, consider any vector
field X ∈ D, with x contained in its domain. Then, if {φt} represents
the flow of X, the curve φt−a(x) is the base curve of a control, and is
defined on some interval [a, a + ε], with ε > 0. Therefore b > τ(x). Next,
assume that τ(Rx) is a closed interval, i.e. τ(Rx) = [τ(x), b] and consider
a control c : [τ(x), b] → M taking x to y. Then, fix any vector field X
in D containing y in its domain. Then using similar arguments as above,
we find that there exists a control c′ defined on the interval [a, b + ε] with
c̃′(a) = x, which leads to a contradiction. A straightforward consequence of
this property is that τ(Rx) is a half-open interval. A similar result holds for
the inverse anchored bundle (ν,−(T ◦ ρ)) (which can also be considered as
the anchored bundle determined by the inverse control structure ((−τ), ν, ρ),
where (−τ)(x) = −τ(x)). Using the above reasoning for the inverse control
structure, we have (−τ)(R−1

x ) = [(−τ)(x), b[ or, τ(R−1
x ) =] − b, τ(x)].

2 The cone of variations

In this section, we consider an arbitrary manifold B, equipped with an
everywhere defined family of vector fields F . We introduce a notion of a
variation of a concatenation of integral curves of vector fields in the family
F . Using the fact that the base curve of a control is such a concatenation,
the theory developed in this section will be applicable in control theory. It
should be noted that in this section we associate with F a relation on the
points of B which is, in general, different from the relation ‘→’ associated
with anchored bundles defined in Chapter I. However, for simplicity we
will use the same notation, i.e. →, since in the specific case of a geometric
control structure these relations coincide (this is essentially Property 1.1).

2.1 Variations to composite flows

Thus, given an everywhere defined family of vector fields F on an arbitrary
manifold B one can define a quasi-order relation (i.e. a reflexive and transi-
tive relation) R on B as follows: for x, y ∈ B we put (x, y) ∈ R if there exists
a composite flow Φ, associated with an ordered set (X`, . . . , X1), Xi ∈ F ,
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such that ΦT (x) = y for some T ∈ IR`
+. We then also write x

(Φ,T )−→ y (or
simply x → y). As described in Chapter I, the concatenation of integral
curves through x, determined by Φ and T , is a piecewise smooth curve δ(t)
satisfying δ̇(t) ∈ Fδ(t) for all t where the derivative exists. As in the previous
section, we can then define the set of reachable points from x ∈ B as the
subset Rx = {y ∈ B | x → y}. Note that Rx 6= ∅ for all x ∈ B, since F is
assumed to be everywhere defined.

Let F̃ denote, as usual, the smallest generalised integrable distribution gen-
erated by F , and let us denote the leaf of F̃ through a given point x ∈ B
by Lx. It is a simple exercise to see that Rx ⊂ Lx. If F = −F (i.e.
−X ∈ F for all X ∈ F), then the relation R is symmetric. Indeed, if
ΦT (x) = y, with Φ the composite flow determined by (X`, . . . , X1) and
T = (t`, . . . , t1) ∈ IR`

+, then (ΦT )−1(y) = x and an elementary computation
shows that (ΦT )−1 = ΨT ∗ , where Ψ is the composite flow corresponding
to the ordered set (−X1, . . . ,−X`) (where, by assumption, −Xi ∈ F) and
T ∗ = (t1, . . . , t`), i.e. we also have y → x. In this case R determines an
equivalence relation for which the equivalence classes are precisely the leafs
of the foliation F̃ , i.e. Rx = Lx for any x ∈ B.

Remark 2.1. It should be emphasised here that the everywhere defined fam-
ily of vector fields D associated to a control structure (τ, ν, ρ), can never be
invariant under multiplication by −1 since, by construction, each vector field
belonging to D is of the form T ◦ ρ ◦ σ for some σ ∈ Γ(ν) and, therefore,
projects onto the fixed vector field ∂/∂t on IR.

We will now investigate the local structure of the set of reachable points
Rx for a given x ∈ B. For that purpose we will introduce a special class
of variations of a concatenation of integral curves of vector fields in F ,
connecting x with some y ∈ Rx, such that these variations will lead us from
x to points in a neighbourhood of y that also belong to Rx. The following
description is merely intended to give a general intuitive idea of the kind of
variation we have in mind. We will be more precise later on.

Consider the composite flow Φ corresponding to an ordered set of, say, `
vector fields in F , and let T ∈ IR`

+ be such that ΦT (x) = y. Let γ : [a, b] → B
be the concatenation of integral curves induced by Φ and T , with γ(a) = x
and γ(b) = y. Roughly speaking, a variation of γ consists of a 1-parameter
family of piecewise smooth curves γε : Iε → B, defined on the interval
Iε = [a, b(ε)] (i.e. Iε has a variable endpoint) and where ε is defined over an
open interval containing 0. The following conditions are verified:

1. if ε = 0, then Iε = [a, b] and γε = γ;
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2. for all ε, γε(a) = x;

3. for any ε we have that γε is a concatenation of integral curves of vector
fields in F and if ε ≥ 0 then γε(b(ε)) ∈ Rx holds;

4. the map ε 7→ γε(b(ε)) is a smooth curve through y at ε = 0.

The tangent vector to the curve ε 7→ γε(b(ε)) at ε = 0 is called the tangent
vector to the variation γε. Rather than considering all possible variations
satisfying the above conditions, we will mainly deal with a specific class of
variations, to be determined below, called single variations. It will be shown
that the tangent vectors at y to these single variations generate a convex
cone in the vector space F̃y (where we recall that F̃ refers to the smallest
integrable distribution generated by F) and, moreover, we will prove that
each vector belonging to this cone is in fact a tangent vector to a variation.
If we agree to call dimension of a cone the dimension of the linear space
generated by all vectors belonging to the cone, then the main result of
this section can be summarised as follows: if the dimension of the cone of
tangent vectors at y to single variations equals the dimension of F̃y, say
d, then there exists a coordinate chart V on the leaf Ly, with y ∈ V , and
coordinate functions denoted by (q1, . . . , qd), such that for any point z ∈ V
for which qi(z) ≥ 0 for all i = 1, . . . , d, we have that z ∈ Rx.

Consider again a concatenation of integral curves γ : [a, b] → B associated
with the composite flow Φ : V ⊂ IR` × B → B of an ordered set of ` vector
fields (X`, . . . , X1) in F , and with a given value T ∈ IR`

+ of the corresponding
composite flow parameter, such that γ(a) = x and γ(b) = ΦT (x) = y (cf.
page 5). We now proceed towards the construction of what will be called a
single variation of γ. Let T = (t`, . . . , t1) ∈ IR`

+ and put a0 = a, a` = b and
ai = ai−1 + ti for i = 1, . . . , `. Choose an arbitrary point τ ∈]a0, a`] and let
Y be any vector field on B such that γ(τ) belongs to the domain of Y . To
fix ideas, let us assume that ai−1 < τ ≤ ai. The flow of Y will be denoted
by {ψs} and, as before, {φi

s} denotes the flow of Xi. We can then consider
the composite flow Φ∗ : V ′ ⊂ IR`+2 × B → B, associated with the ordered
set of ` + 2 vector fields (X`, . . . , Xi, Y, Xi, . . . , X1). Next, define

T ∗ : IR → IR`+2 :
ε 7→ T ∗(ε) = (t`, . . . , ti+1, ai − τ, ε, τ − ai−1, ti−1, . . . , t1) .

(2.1)

It is easily seen that there exists an open neighbourhood Ĩ ⊂ IR of 0, such
that x is contained in the domain of the map Φ∗

T ∗(ε) for all ε ∈ Ĩ. For
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each ε ∈ Ĩ, let γε denote the concatenation of integral curves through x
corresponding to Φ∗ and T ∗(ε) (note that γε is defined on Iε = [a, b + |ε| =
b(ε)]). The following sketch visualises the situation for τ ∈]a1, a2]:

x1 = φ1
t1

(x)
φ2

t2
(φ1

t1
(x))

φ1
t φ2

t

φ3
t

x . . .

x2

φ2
t

φ3
tψs

x = ψε(x2)

where x2 = φ2
τ−a1

(x1). The tangent vector to the smooth curve ε 7→
γε(b(ε)) = Φ∗

T ∗(ε)(x) at ε = 0 is then given by

∂

∂ε

∣∣∣∣
0

Φ∗
T ∗(ε)(x) = TΦa`

τ

(
Y

(
γ(τ)

))
∈ TyB ,

where, in order to simplify the notations, we have introduced the mapping
TΦa`

τ : Tγ(τ)B → TyB, given by

TΦa`
τ (v) = Tφ`

t`
◦ Tφ`−1

t`−1
◦ · · · ◦ Tφi

ai−τ (v) , ∀v ∈ Tγ(τ)B .

Assume now that Y ∈ F . Then one can see that the 1-parameter family
of piecewise smooth curves γε satisfies the conditions proposed above for a
variation of γ.

Next, suppose we take Y = −Xi and τ ∈]ai−1, ai] for some i ∈ {1, . . . , `},
then for ε > 0 (but sufficiently small) and for any t ∈]τ, τ + ε], the tangent
vector γ̇ε(t) to the concatenation of integral curves through x, induced by
Φ∗ and T ∗(ε), in general will not belong to Fγε(t) since −Xi does not have
to belong to F . Consequently, if −Xi 6∈ F , the γε resulting from the choice
Y = −Xi is, strictly speaking, not a variation in the sense put forward
above. However, we can easily remedy the situation by constructing a re-
duced composite flow as follows. Putting T̂ (ε) = (t`, . . . , ti − ε, . . . , t1) ∈ IR`,
we see that for ε sufficiently small, Φ

T̂ (ε)
is well-defined in a neighbour-

hood of x and, moreover, since φi
ai−τ ◦ φi

−ε ◦ φi
τ−ai−1

= φi
ti−ε, it follows that

Φ∗
T ∗(ε) = Φ

T̂ (ε)
. The concatenation of integral curves determined by Φ and
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T̂ (ε) does verify the conditions for a variation of γ. The tangent vector at
ε = 0 to this reduced variation equals

∂

∂ε

∣∣∣∣
0

Φ∗
T ∗(ε)(x) =

∂

∂ε

∣∣∣∣
0

Φ
T̂ (ε)

(x) = −TΦa`
τ

(
Xi

(
γ(τ)

))
.

We have thus shown that if τ ∈]ai−1, ai], a variation of the given γ is also
determined by the ordered set (X`, . . . , Xi,−Xi, Xi, . . . , X1).

To conclude, if we are given a piecewise smooth curve γ : [a, b] → B, with
γ(a) = x, consisting of a concatenation of integral curves determined by the
composite flow Φ and composite flow parameter T = (t`, . . . , t1) ∈ IR`

+ of
an ordered set of vector fields (X`, . . . , X1) in F , we introduce the following
definition.

Definition 2.1. A single variation of γ is a 1-parameter family of piecewise
smooth curves γε : [a, b(ε)] → B, passing through x, with γ0 = γ, and such
that for each ε the corresponding γε is the piecewise smooth curve determined
by the composite flow Φ∗ and composite flow parameter T ∗(ε) associated to
an ordered set of vector fields of the form (X`, . . . , Xi, Y, Xi, . . . , X1) for
some i ∈ {1, . . . , `}, with Y ∈ F ∪ {−Xi} and where T ∗(ε) is given by (2.1).
(We will also briefly refer to γε as ‘the single variation determined by Φ∗

and T ∗(ε)’.)

For later use we introduce the shorthand notation: F−X := F ∪ {−Xi | i =
1, . . . , `}. Whenever we consider a single variation determined by an or-
dered set (X`, . . . , Xi, Y, Xi, . . . , X1) for some Y ∈ F−X , it will always be
understood that Y = −Xj can only occur if i = j.

Given a single variation γε of γ, determined by a composite flow Φ∗ and
composite flow parameter T ∗(ε), one can always obtain a ‘new’ variation by
considering a suitable reparametrisation ε(ε′). More precisely, let ε′ 7→ ε(ε′)
denote a smooth map satisfying ε(0) = 0 and δ = dε/dε′(0) > 0. Then it is
not difficult to verify that Φ∗ and T ∗(ε(ε′)) also determine a variation since
δ > 0 implies that, in a neighbourhood of 0, sgn(ε) = sgn(ε′). The tangent
vector to the curve ε′ 7→ Φ∗

T ∗(ε(ε′))(x) at ε′ = 0 equals δ TΦa`
τ (Y (γ(τ))).

From this one can easily derive that any positive multiple of a tangent
vector to a single variation is again a tangent vector to a (not necessarily
single) variation. Note that if δY ∈ F−X , then δ TΦa`

τ (Y (γ(τ))) is again a
tangent vector to a single variation. In general, however, if Y ∈ F−X , the
vector field δY need not be contained in F−X . All this naturally leads to
the following definition.
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Definition 2.2. Let y ∈ Rx and fix a composite flow Φ, corresponding to
an ordered set (X`, . . . , X1) of vector fields in F , such that ΦT (x) = y for
some T ∈ IR`

+. The variational cone at y associated to Φ and T , is the cone

CyRx(Φ, T ) in F̃y ⊂ TyB consisting of all finite linear combinations, with
nonnegative coefficients, of tangent vectors to single variations, i.e.

CyRx(Φ, T ) =

{
s∑

i=1

δiTΦa`

τ i(Yi(γ(τ i)))
∣∣∣ Yi ∈ F−X , δi ≥ 0,

τ i ∈]a0, a`], s ∈ IN

}
.

Clearly, CyRx(Φ, T ) is a cone since for any v ∈ CyRx(Φ, T ), the half-ray λv,
for λ ≥ 0, also belongs to it. It then follows that CyRx(Φ, T ) is a convex
set. Indeed if v, w ∈ CyRx, then (1 − t)v + tw ∈ CyRx, for any t ∈ [0, 1]. If
no confusion can arise, we will often drop the explicit reference to Φ and T
and simply denote the variational cone by CyRx. It is easily seen that CyRx

is a convex set. As a consequence of the next lemma it will be seen that any
element of CyRx(Φ, T ) can be regarded as a tangent vector to a variation of
the piecewise smooth curve through x associated with Φ and T .

The proof of the following result is quite technical. As before, we start from
a given piecewise smooth curve γ : [a0, a`] → B, with γ(a0) = x, associated
to the composite flow of an ordered set of ` vector fields (X`, . . . , X1) in F ,
and a fixed value T of the composite flow parameter.

Lemma 2.2. Consider any finite number of (say, s) tangent vectors vi

to single variations of γ, namely vi = TΦa`

τ i(Yi(γ(τ i))), with Yi ∈ F−X and
τ i ∈]a0, a`] for i = 1, . . . , s. Then, there exists a composite flow Φ∗ associated
to an ordered set of `+2s vector fields formed by the Xi’s and the Yj’s, and
a smooth mapping T ∗ : IRs → IR`+2s , (ε1, . . . , εs) 7→ T ∗(ε1, . . . , εs) such that:

1. Φ∗
T ∗(0) = ΦT ;

2. x belongs to the domain of Φ∗
T ∗(ε1,...,εs) for all (ε1, . . . , εs) in some open

neighbourhood I(s) of (0, . . . , 0) ∈ IRs;

3. for each fixed (ε1, . . . , εs) ∈ I(s), with εi > 0 for all i, the tangent
vector to the concatenation of integral curves through x determined
by Φ∗ and T ∗(ε1, . . . , εs) is everywhere contained in F (possibly af-
ter a ‘reduction’ of Φ∗ in the sense described above) such that, in
particular,Φ∗

T ∗(ε1,...,εs)(x) ∈ Rx;
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4. the tangent vector at ε = 0 to the curve ε 7→ Φ∗
T ∗(εδ1,...,εδs)(x) equals

δivi, for all δi ∈ IR (and where the curve is defined on a sufficiently
small interval such that (εδ1, . . . , εδs) ∈ I(s)).

Proof. Without loss of generality, we may assume that the instants τ i are
ordered in such a way that τ1 ≤ τ2 ≤ · · · ≤ τ s. Moreover, whenever some
of the successive τ i coincide, the ordering should be such that from the
corresponding vector fields Yi, those that do not belong to F always precede
those that do belong to F . More precisely, assume τ i = · · · = τ j with
1 ≤ i < j ≤ s, and let τ i ∈]ar−1, ar] for some r ∈ {1, . . . , `}. Then we require
that if Yk = −Xr for some k ∈ {i, . . . , j}, and −Xr 6∈ F , we have k < k′ for
all those k′ ∈ {i, . . . , j} for which Yk′ ∈ F . Such an arrangement can always
be achieved by simply taking a suitable permutation of the ordered set
(Yi, . . . , Yj), if necessary. Henceforth, we will always assume, for simplicity,
that the Yi’s already appear in the correct ordering.

For j = 1, . . . , `, let sj denote the maximum of the set {i | τ i ∈]aj−1, aj ]}
and put sj = sj−1 if {i | τ i ∈]aj−1, aj ]} = ∅ and s0 = 0. The number of
τ i’s belonging to the j-th subinterval is then given by nj = sj − sj−1. Let

{ψi
s} denote the flow of Yi (and, as before, {φj

s} refers to the flow of Xj).
Using the ‘star’ notation introduced in Chapter I (page 4) to denote the
composition of composite flows, we now consider for each j ∈ {1, . . . , `}, the
composite flow Φ∗

j : IR1+2nj × B → B defined by

Φ∗
j =

{
φj ? ψsj ? φj ? ψsj−1 ? · · · ? φj ? ψsj−1+1 ? φj if nj > 0,
φj if nj = 0,

and a mapping T ∗
j : IRnj 7→ IR1+2nj (where it is understood that if nj = 0,

then T ∗
j ∈ IR), defined by

T ∗
j (εsj−1+1, . . . , εsj ) =





(aj − τ sj , εsj , τ sj − τ sj−1, εsj−1, . . . ,
τ sj−1+2 − τ sj−1+1, εsj−1+1, τ sj−1+1 − aj−1)

if nj > 0,
(aj − aj−1) if nj = 0.

Next, by Φ∗ we denote the ‘composition’ of all the composite flows Φ∗
j , i.e.

Φ∗ = Φ∗
` ?· · ·?Φ∗

1. Then, Φ∗ itself is a composite flow which can be evaluated
at points of IR`+2s ×B. If we consider the mapping T ∗ : IRs → IR`+2s given
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by

T ∗(ε1, . . . , εs) = T ∗
` (εs`−1+1, . . . , εs`) ? · · · ? T ∗

1 (ε1, . . . , εs1),

=
(
T ∗

` (εs`−1+1, . . . , εs`), . . . , T ∗
1 (ε1, . . . , εs1)

)
,

then it is easily seen that (T ∗(0, . . . , 0), x) ∈ dom(Φ∗) and y = Φ∗
T ∗(0,...,0)(x).

This implies, in particular, that there exists an open neighbourhood I(s)

of (0, . . . , 0) ∈ IRs for which the map (ε1, . . . , εs) 7→ Φ∗
T ∗(ε1,...,εs)(x) is well

defined and, hence, (2) holds. Note that Φ∗
T ∗(ε1,...,εs)(x) can still be written

as:

Φ∗
T ∗(ε1,...,εs)(x) =

(
(Φ∗

` )T ∗

`
(εs`−1+1

,...,εs` ) ◦ · · · ◦ (Φ∗
1)T ∗

1 (ε1,...,εs1 )

)
(x).

For s = 1 the definitions of Φ∗ and T ∗ coincide with those encountered
in the construction of a single variation. For any (δ1, . . . , δs) ∈ IRs and ε
varying over a sufficiently small interval centred at 0, such that the image
of the map ε 7→ (εδ1, . . . , εδs) is contained in I(s), a straightforward, but
rather tedious, computation shows that the tangent vector to the curve
ε 7→ Φ∗

T ∗(εδ1,...,εδs)(x), at ε = 0, equals δivi, proving (4). It is also easily seen

that when putting εi = 0 for all i, we obtain Φ∗
T ∗(0) = ΦT , proving (1).

The proof of (3) we will be provided for a particular, simplified case from
which the idea for the general proof can then be easily deduced. Recall that
we have chosen the ordering of the τ i in such a way that, whenever we have
a sequence τ i, . . . , τ j , (i < j) with τ i = τ i+1 = · · · = τ j , those vector fields
Yk which belong to the set {−X1, . . . ,−X`} and which are not contained in
F , always appear before all the Yk′ ∈ F in the sequence Yi, . . . , Yj . Consider
now the particular case where a0 < τ1 = τ2 = τ3 < a1 < τ4, Y1 = −X1(6∈ F)
and Y2, Y3 ∈ F . Then,

(Φ∗
1)T ∗

1 (ε1,ε2,ε3) = φ1
a1−τ1 ◦ ψ3

ε3 ◦ ψ2
ε2 ◦ φ1

−ε1 ◦ φ1
τ1−a0

= φ1
a1−τ1 ◦ ψ3

ε3 ◦ ψ2
ε2 ◦ φ1

τ1−a0−ε1 .

Therefore, we can define a new composite flow, associated with vector fields
in F , by putting Φ̂1 = φ1 ? ψ3 ? ψ2 ? φ1, and a new composite flow pa-
rameter T̂1(ε

1, ε2, ε3) = (a1 − τ3, ε3, ε2, τ1 − a0 − ε1). Then (Φ1)
∗
T ∗

1 (ε1,ε2,ε3) =

(Φ̂1)T̂1(ε1,ε2,ε3)
and, for ε1 sufficiently small, the components of T̂1(ε

1, ε2, ε3)

are positive, from which (3) readily follows for the ‘reduced’ composite flow
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Φ̂1 and the reduced composite flow parameter T̂1. A similar reasoning can
be applied to the general case, which completes the proof of the lemma.

The previous lemma implies, among other things, that any v in the varia-
tional cone CyRx(Φ, T ) can be regarded as a tangent vector to a variation
of the piecewise smooth curve γ through x, determined by Φ and T . Indeed,
by definition of the cone CyRx(Φ, T ) we can always write v (in a non-unique
way) as v =

∑s
i=1 δivi for a finite number of tangent vectors to single vari-

ations vi = TΦa`

τ iYi(γ(τ i)), with δi > 0. We can then associate to these vi a
composite flow Φ∗, and a composite flow parameter T ∗(ε1, . . . , εs), as in the
above lemma. Then Φ∗ and ε 7→ T ∗(εδ1, . . . , εδs) determine a one-parameter
family of piecewise smooth curves satisfying the conditions for a variation
of γ. Moreover, from the above lemma it follows that the tangent vector to
the curve ε 7→ Φ∗

T ∗(εδ1,...,εδs)(x) at ε = 0 precisely equals v, which we wanted
to demonstrate.

Note that CyRx(= CyRx(Φ, T )) is entirely contained in F̃y. If the dimension

of the cone CyRx equals d = dim F̃y, then this is equivalent to saying that
the the interior of the convex cone CyRx, with respect to the standard

vector space topology on F̃y, is not empty. Indeed, if we have d independent

vectors v1, . . . , vd ∈ CyRx, then the interior of the simplex in F̃y, determined
by the ordered set (0, v1, . . . , vd), is contained in CyRx. The converse is an
immediate consequence of the fact that any (nonempty) open ball in a vector
space spans the full space.

2.2 Basic results on the variational cone

The following proposition, says that the variational cones satisfy an “inclu-
sion” property. The proof is a straightforward consequence of the definition
of the variational cone.

Proposition 2.3. Let Φ1, Φ2 denote the composite flows of two ordered
families of vector fields in F , such that Φ1

T 1(x) = y and Φ2
T 2(y) = z, for

some x, y, z ∈ B, and where T 1, T 2 represent composite flow parameters for
Φ1 and Φ2, respectively. Then,

TΦ2
T 2

(
CyRx(Φ1, T 1)

)
⊂ CzRx

(
Φ2 ? Φ1, T 2 ? T 1

)
and

CzRy(Φ
2, T 2) ⊂ CzRx

(
Φ2 ? Φ1, T 2 ? T 1

)
.
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Before stating the main result of this section, we recall that Ly denotes

the leaf of F̃ passing through y (and, of course for y ∈ Rx we have that
Ly = Lx). From the theory of integrable distributions, we know that Ly is

an immersed submanifold of B whose dimension equals the rank of F̃ at y.

Theorem 2.4. Assume that the dimension of the cone CyRx equals the

dimension d of F̃y. Then there exists a coordinate chart V on the leaf Ly,
with y ∈ V and coordinate functions denoted by (q1, . . . , qd), such that for
any point z ∈ V for which qi(z) ≥ 0 for all i = 1, . . . , d, we have that z ∈ Rx.

Proof. By assumption, the linear space spanned by all elements of CyRx

equals F̃y. We can therefore select a basis {v1, . . . , vd} of the linear space

F̃y, with vi ∈ CyRx for all i. By definition of CyRx, each vi can then be
written as a finite linear combination of tangent vectors to single variations,
i.e.

vi =

si∑

j=1

δj

(i)v
(i)
j , i = 1, . . . , d, (2.2)

for some δj

(i) ∈ IR+, and where each v
(i)
j is of the form

v
(i)
j = TΦa`

τ
j

(i)

Y
(i)
j (γ(τ j

(i)))

for some Y
(i)
j ∈ F−X , τ j

(i) ∈]a0, a`]. Although these decompositions are not
uniquely determined, for the remainder of the proof we assume that for each
of the given basis vectors vi one particular decomposition has been singled

out, i.e. we make a fixed choice for the v
(i)
j and for the positive real numbers

δj

(i) appearing in (2.2). In total we thus have s = s1 + · · · + sd tangent

vectors to single variations v
(i)
j which, however, need not all be different

and/or linearly independent. For convenience, we introduce the following

ordering: (v
(1)
1 , . . . , v

(1)
s1 , v

(2)
1 , . . . , v

(d)
sd

) and we denote an arbitrary element

of this ordered set by wα, with α = 1, . . . , s and such that wα = v
(1)
α for

α = 1, . . . , s1, wα = v
(2)
α−s1

for α = s1 + 1, . . . , s1 + s2, etc. ... . According to
Lemma 2.2 we can associate to the s tangent vectors wα to single variations,
a composite flow Φ∗ and a map T ∗ : IRs → IR`+2s such that

1. Φ∗
T ∗(0) = ΦT ,
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2. Φ∗
T ∗(ε1,...,εs)(x) ∈ Rx if all εi ≥ 0 and sufficiently small: more precisely

(ε1, . . . , εs) ∈ I(s)),

3. for any fixed (δ1, . . . , δs) ∈ IRs, the tangent vector to the curve ε 7→
Φ∗

T ∗(εδ1,...,εδs)(x) at ε = 0 equals δαwα.

With the convention that s0 := 0, we have for any v ∈ F̃y that

v = livi =

d∑

i=1

si∑

j=1

liδj

(i)ws0+···+si−1+j ∈ F̃y .

Putting

(δ1, . . . , δs) := (l1δ1
(1), . . . , l

1δs1

(1), l
2δ1

(2), . . . , l
dδsd

(d)) ,

we can still write v as

v =
s∑

α=1

δαwα .

Since the δj

(i) in (2.2) have been fixed, it follows that all the coefficients
δα, appearing in this decomposition of v, are determined unambiguously.
Therefore, the following mapping is well-defined:

T̃ : F̃y → IR`+2s, v 7→ T̃ (v) = T ∗(δ1, . . . , δs) ,

and, clearly, T̃ is smooth.

From the properties of Φ∗ and T ∗, one can further deduce that, on a suf-
ficiently small open neighbourhood W of the origin in the linear space F̃y,
the mapping given by

f : W (⊂ F̃y) → B, v 7→ Φ∗
T̃ (v)

(x)

is well-defined and smooth. Moreover, by definition of Φ∗, we have that
f(0) = y and im f ⊂ Ly. Let j : Ly ↪→ B denote the natural inclusion

and let us write f̃ for f , regarded as a mapping from W into Ly, such that

the following relation holds: j ◦ f̃ = f . Since j is an immersion and f is
smooth, it follows that f̃ : W (⊂ F̃y) → Ly is smooth. In view of the natural

identification T0F̃y
∼= F̃y, it is easily proven, using property (3) of Φ∗ and

T ∗, that the tangent map of f at 0 satisfies, for any v = δαwα ∈ F̃y,

T0f(v) =
d

dε

∣∣∣∣
0

f(εv) =
d

dε

∣∣∣∣
0

Φ∗
T ∗(εδ1,...,εδs)(x) = δαwα = v .
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This, in turn, implies that T0f̃ : F̃y → Ty(Ly) ≡ F̃y is the identity map and,

hence, f̃ induces a diffeomorphism from an open neighbourhood W̃ ⊂ W of
0 ∈ F̃y onto an open neighbourhood V of y in Ly. Consequently, to each

point z ∈ V there corresponds a unique v ∈ W̃ , with f̃(v) = z and, with
respect to the basis {vi : i = 1, . . . , d} of F̃y chosen above, we can write
v = livi. The open set V then becomes the domain of a local coordinate
chart on Ly, with coordinate functions qi (i = 1, . . . , d) defined by putting
qi(z) = li. Finally, from property (2) of Φ∗ and T ∗ it follows that for those

vectors v = livi ∈ W̃ for which all li ≥ 0, we have z = f(v) ∈ Rx since, in
this case, all the coefficients δa appearing in the decomposition v = δαwα

are also non-negative. This completes the proof of the theorem.

Observe that the coordinate vector fields on Ly corresponding to the special
chart constructed in the previous theorem are such that (using the notations
from the proof of the previous theorem) ∂/∂qi

∣∣
y

= T0f̃(vi) = vi. This
observation will be used when we prove the following result, which is a
straightforward consequence of Theorem 2.4.

Corollary 2.5. Assume that CyRx has a non empty interior (denoted by

int(CyRx)) with respect to the topology of F̃y. Then, for any curve θ :
[0, 1] → (Lx =)Ly with θ(0) = y and 0 6= θ̇(0) ∈ int(CyRx) there exists an
ε > 0 such that θ(t) ∈ Rx for 0 ≤ t ≤ ε.

Proof. As pointed out before, the fact that CyRx has nonempty interior

implies that the ‘dimension’ of the cone equals that of F̃y and so the previous

theorem applies. One can always fix a basis {v1, . . . , vd} in F̃y, with vi ∈
CyRx, such that the θ̇(0) is contained in the interior of the simplex spanned
by (0, v1, . . . , vd). In particular, this means that θ̇(0) = kivi with ki ∈]0, 1[
for i = 1, . . . , d. Consider the coordinate chart (q1, . . . , qd) on Ly, in a
neighbourhood of y, associated with the basis v1, . . . , vd as constructed in
Theorem 2.4. Note, in passing, that qi(y) = 0 for all i. Now, since ∂/∂qi

∣∣
y

=

vi for i = 1, . . . , d, and putting θi = qi ◦ θ, we find that

d

dt

∣∣∣∣
0

θi(t) = ki, for i = 1, . . . , d.

This implies that for all i = 1, . . . , d, θ̇i(0) > 0 and hence, since θi(0) =
0, θi(t) > 0 for 0 ≤ t ≤ ε and ε sufficiently small, i.e. qi(θ(t)) > 0 for
i = 1, . . . , d. According to Theorem 2.4 this implies that θ(t) ∈ Rx for all
0 ≤ t ≤ ε.
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The following picture sketches the situation described in the above corollary
for d = 3.

1

3

-

CyRx

θ(t)

y

v3

v1

v2

θ̇(0)

:

Recall the four conditions we have put forward for the characterisation of
a variation γε of a concatenation γ of integral curves (cf. Section 2.1 page
64). It will be necessary to enlarge this class of variations when considering
“optimal control problems with variable endpoints” (see Section 7). The
theorems in the following subsection are proven with similar techniques as
the above results.

2.3 Additional theorems for systems with variable initial point

Assume that i : P ↪→ B is an immersed submanifold of B. Let us denote
by RP the set of all points y ∈ B such that x → y for some x ∈ P . Note
that Corollary 2.5 expresses in some sense how the variational cone CyRx is
an approximation of the set of reachable points Rx at y ∈ Rx. Similarly, we
prove in the next proposition how the set of reachable points RP at a point
y ∈ RP can be approximated using (in an indirect way) the variational cone
CyRx. To simplify the notations, we shall always identify i(x) with x, for
arbitrary x ∈ P .

Let C and C ′ denote two convex cones in a (finite dimensional) linear space
V. The convex cone C ∗ C ′, which is called the cone generated by C and
C ′, is defined as the cone containing all finite linear combinations, with
nonnegative coefficients, of vectors in C and C ′. The support plane of an
arbitrary cone C is the subspace of V spanned by all vectors in C. Assume
that V is equipped with a topological structure, then we can consider the
interior of C with respect to the induced topology on the support plane.
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Let us fix a composite flow Φ associated with vector fields in F and a com-
posite flow parameter T , such that ΦT (x) = y for some x ∈ P .

Proposition 2.6. Consider the cone Ky = TΦT (TxP ) ∗CyRx. Let j : L ↪→
B denote an immersed submanifold in B, such that y ∈ L, and, in addition,

span(Ky) + TyL = TyB
dim

(
span(Ky) ∩ TyL

)
≥ 1.

Let int(Ky) denote the set of interior points of Ky, with respect to its support
plane span(Ky). Then, for any v ∈ int (Ky) ∩ TyL, there exists a curve
θ : [0, 1] → L, with θ(0) = y and v = θ̇(0), such that j

(
θ(t)

)
∈ RP for

0 ≤ t ≤ ε. (Note that in general int (Ky) ∩ TyL may be empty.)

Proof. First of all, consider a finite number of, say s, tangent vectors vi ∈
CyRx to single variations and s′ tangent vectors wi in TxP . Then, as proven
above, with the vectors vi one can associate a composite flow Φ∗ and a
composite flow parameter T ∗(ε1, . . . , εs), verifying the properties stated in
Lemma 2.2. Now, for every tangent vector wi ∈ TxP we fix a vector field
Wi ∈ X(P ), with flow {ψi

t}, such that Wi(x) = wi. The composite flow
ψs′ ? · · · ? ψ1 associated with the ordered set (Ws′ , . . . , W1) is denoted by Ψ.
Consider the following map F : IRs′+s → B defined by

(ε1, . . . , εs+s′) 7→ ΦT (εs,...,ε1)

(
Ψ(εs+s′ ,...,εs+1)(x)

)
.

Since (εs+s′ , . . . , εs+1) is an element of IRs′ , it can be taken as a composite
flow parameter of Ψ. It is also easily seen that this map is well defined
on some open interval, say I(s′+s), containing 0 ∈ IRs′+s. The following
properties hold: (i) if all εi ≥ 0, i = 1, . . . , s then F (ε1, . . . , εs′+s) ∈ RP , (ii)
F (0) = y and (iii) the tangent vector to the curve ε 7→ F (εδ1, . . . , εδs+s′)
equals

s∑

i=1

(δivi) +
s′∑

i=1

(δs+iwi),

for arbitrary δi ∈ IR.

Assume that v ∈ int (Ky) ∩ TyL is kept fixed. Denote the dimension of the
support plane of Ky by p, i.e. dim(span(Ky)) = p, and denote the dimension
of the manifold L by `. There exists a basis {ṽ1, . . . , ṽp} of span(Ky) such
that every ṽi is contained in Ky and v is a linear combination of ṽi with
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strictly positive coefficients (this is always possible using similar arguments
as in the proof of Corollary 2.5). It is readily seen from the definition of Ky,
that every ṽi can be written as

ṽi = TΦT (wi) +

si∑

j=1

δj

(i)v
(i)
j ,

with all v
(i)
j tangent vectors to single variations, δj

(i) ≥ 0 and wi ∈ TxP . In
total, we thus have s = s1 + · · · + sp tangent vectors to a single variation
and s′ = p tangent vectors wi in TxP . With these tangent vectors we can
associate a mapping F : IRs+s′ → B (see the previous paragraph) satisfying
the properties (i), (ii) and (iii) formulated above.

By assumption, any element v′ ∈ span(Ky) can be written as a unique linear
combination of the basis vectors ṽi: v′ = liṽi. Using this decomposition, we
can associate with v′ an element (δ1, . . . , δs+s′) in IRs+s′ , as follows,

(δ1, . . . , δs+s′) = (l1δ1
(1), . . . , l

1δs1

(1), l
2δ1

(2), . . . , l
pδ

sp

(p), l
1, . . . , lp)

We thus obtain the following map:

f : W ⊂ IRp ∼= span(Ky) → B : v 7→ F (δ1, . . . , δs+s′),

defined on some open interval W containing 0 ∈ IR` ∼= span(Ky). It is
easily seen that T0f equals the identity map on span(Ky), implying that f
is locally an embedding if p < n = dimB) or a diffeomorphism if p = n.
This implies that we can fix a coordinate chart on a neighbourhood of y ∈ B,
such that, if (q1, . . . , qn) are the coordinate functions, then qi(f(liṽi)) = li,
for i = 1, . . . , p, and, if z ∈ B satisfies qi(z) = 0 for i = p + 1, . . . , n, then
z ∈ im f . In, particular, these coordinates also satisfy: if qi(z) ≥ 0 for all
i = 1, . . . , p and qi(z) = 0 for i = p + 1, . . . , n, then, using (i) from above,
we have z ∈ RP .

We now use Lemma 2.7 below, which guarantees that, upon replacing L by
a neighbourhood of y in L such that L can be regarded as an embedding, the
intersection of im f and L is an embedded submanifold which has dimension
` + p − n ≥ 1 and for which the tangent space at y equals Ty(im f) ∩ TyL.
The lemma is proven in the following paragraph. Thus assume that θ(t) is
a curve in the submanifold im f ∩ j(L), with θ(0) = y and with v = θ̇(0).
Recall that we assumed that v =

∑p
i kiṽi with ki > 0. By construction of

the coordinates we have that ṽi = ∂/∂qi|y. This implies that

qi(θ(t)) ≥ 0, i = 1, . . . , p, and qi(θ(t)) = 0, i = p + 1, . . . , n,
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for t small enough, say t ∈ [0, ε]. Indeed this follows from d/dt|0qi(θ(t)) =
ki > 0. Therefore, θ(t) ∈ RP for t ∈ [0, ε], concluding the proof.

In the proof of the above proposition we have used the following general
result.

Lemma 2.7. Let g1 : L1 ↪→ B and g2 : L2 ↪→ B denote two embedded
submanifolds in a n-dimensional manifold B, with dimension r1 and r2,
respectively. Assume that there exists a point x ∈ g1(L1)∩ g2(L2) such that,
in addition, the submanifolds are transversal at x, i.e. TxB = Tg1(TxL1) +
Tg2(TxL2). Then, in a neighbourhood of x, the intersection of L1 and L2 is
an embedded submanifold of B of dimension r1 + r2 − n.

Proof. Let (q1, . . . , qn) denote coordinates on B, defined on U ⊂ B and
centred at x (i.e. the coordinates of x are all zero), such that L1 is a slice,
i.e. if qi(y) = 0 for i = r1 + 1, . . . , n, then y ∈ L1. Let (Q1, . . . , Qr2)
denote coordinates on the embedded submanifold L2, centred at x and let
qi = gi

2(Q
1, . . . , Qr2) denote the coordinate representation of g2. Then, since

g2 is an embedding, we have that the tangent vectors

∂gi
2

∂Qa
(0)

∂

∂qi

∣∣∣∣
x

, a = 1, . . . , r2,

are linearly independent. Moreover, we know that

span

{
∂

∂q1

∣∣∣∣
x

, . . . ,
∂

∂qr1

∣∣∣∣
x

,
∂gi

2

∂Q1
(0)

∂

∂qi

∣∣∣∣
x

, . . . ,
∂gi

2

∂Qr2
(0)

∂

∂qi

∣∣∣∣
x

}
= TxB,

with r1 + r2 ≥ n. Fix n− r1 tangent vectors ∂gi
2/∂Qa(0)∂/∂qi|x, such that,

together with ∂/∂qi|x (i = 1, . . . , r1), they form a basis for TxB. Upon a
renumbering of the coordinates we may always take a = 1, . . . , n− r1. Now,
it is easily seen that the n − r1 tangent vectors

n−r1∑

b=1

∂gr1+b
2

∂Qa
(0)

∂

∂qr1+b

∣∣∣∣
x

, a = 1, . . . , n − r1

are linearly independent. Indeed, if there exists a (n − r1)-tuple λ =
(λ1, . . . , λn−r1) ∈ IR(n−r1), with λ 6= 0 and such that

λa
n−r1∑

b=1

∂gr1+b
2

∂Qa
(0)

∂

∂qr1+b

∣∣∣∣
x

= 0,
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then

n∑

i=1

λa

(
∂gi

2

∂Qa
(0)

∂

∂qi

∣∣∣∣
x

)
−

r1∑

i=1

(
λa ∂gi

2

∂Qa
(0)

)
∂

∂qi

∣∣∣∣
x

= 0,

which is impossible, in view of the assumption that

{
∂gi

2

∂Q1

∂

∂qi

∣∣∣∣
x

, . . . ,
∂gi

2

∂Qn−r1

∂

∂qi

∣∣∣∣
x

,
∂

∂q1

∣∣∣∣
x

, . . . ,
∂

∂qr1

∣∣∣∣
x

}

forms a basis of TxB. We thus obtain that the matrix
(

∂gr1+b
2

∂Qa
(0)

)

a,b=1,...,n−r1

is non-singular. Therefore, applying the implicit function theorem, we have
that

qr1+a − gr1+a
2 (Q1, . . . , Qn−r1 , Qn−r1+1, . . . , Qr2) = 0, iff

Qa = ĝa
2(qr1+a, . . . , qn, Q(n−r1)+1, . . . , Qr2), for a = 1, . . . , n − r1.

(2.3)

for some smooth functions ĝa
2 and where, if necessary, we assume that the

we restrict the domains of the gi
2 and of the coordinate functions qi, to some

smaller subsets. Consider now the following coordinate transformation in
L2:

(Q1, . . . , Qr2) 7→ (gr1+1
2 (Q), . . . , gn

2 (Q), Q(n−r1)+1, . . . , Qr2),

which is a smooth map from IRr2 to IRr2 , whose inverse is given by

(Q′1, . . . , Q′r2) 7→ (ĝ1
2(Q

′), . . . , ĝn−r1
2 (Q′), Q′(n−r1)+1

, . . . , Q′r2).

We now calculate the coordinate expressions for the map g2 in this new
coordinate system:

g′2
i(Q′) = gi

2(ĝ
1
2(Q

′), . . . , ĝn−r1
2 (Q′), Q′(n−r1)+1, . . . , Q′r2)

In particular, for i = r1 + 1, . . . , n, then (using 2.3)

g′2
i
(Q′) = Q′i−r1 .

So, if for some point of L2 we have Q′1, . . . , Q′(n−r1) = 0, then we know that
the image by g2 of such a point is contained in L1, implying that, the r2+r1−
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n coordinate functions (Q′(n−r1)+1, . . . , Q′r2) determine a coordinate system
on the intersection of L1 and L2. Indeed, assume that q = (q1, . . . , qn) is
contained in U ∩ (L1 ∩ L2), then, necessarily, qr1+1 = · · · = qn = 0 and

q = g′2(Q
′) for some Q′ ∈ IRr2 , implying that Q′1 = · · · = Q′(n−r1) = 0. The

fact that U ∩ (L1 ∩ L2) is an embedding easily follows from the properties
of g2. Indeed, the composition of the map

IRr1+r2−n → IRr2 : (Q′r1−n+1
, · · · , Q′r2)

7→ (0, . . . , 0, Q′r1−n+1
, . . . , Q′r2)

with the local representation of g2 in the Q′-coordinates is easily seen to be
an embedding. If n = r1 + r2, the intersection reduces to the point x (where
we assumed that, if necessary, the coordinate neighbourhood U is restricted
to a smaller open subset).

A picture representing the above situation, in the case where B = IR3 and
r1 = 2 and r2 = 2, may look as follows

6

x

L1

q1

q2

q3

L2

-

ª

To close this section, we return to the framework of a geometric control
structure.

2.4 The vertical variational cone in a geometric control structure

Let (τ, ν, ρ) denote an arbitrary geometric control structure. It is easily seen
that the previous definitions and results can be applied, in particular, to the
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everywhere defined family of vector fields D = {T ◦ ρ ◦ σ | σ ∈ Γ(ν)} on M .
Consider a pair (x, y) ∈ M ×M and a control c taking x to y, i.e. x

c→ y. In
the remainder of this chapter, we shall always assume that we have fixed a
finite ordered family S = (σ`, . . . , σ1) of sections of ν and a composite flow
parameter T , inducing the control c in the sense of Proposition 1.1. The
composite flow Φ associated with

X = (T ◦ ρ)(S) = (T ◦ ρ ◦ σ`, . . . ,T ◦ ρ ◦ σ1)

allows us to consider the variational cone CyRx(Φ, T ).

Since M is fibred over the real line, the kernel of the tangent map Tτ defines
a sub-bundle V τ = ker Tτ of TM , called the vertical bundle to τ . We will
now define a ‘sub-cone’ of CyRx which is vertical in the sense that it is
contained in Vyτ . The attention we pay to this “vertical variational cone”
will be justified in Section 6, where we prove that it generates the complete
variational cone CyRx.

Definition 2.3. The vertical variational cone at y, associated to Φ and T ,
is given by:

VyRx(Φ, T ) =
{ s∑

i=1

δiTΦa`

τ i(Yi(c̃(τ
i)) − ˙̃c(τ i))

| δi ≥ 0, τ i ∈]a0, a`], Yi ∈ D, i = 1, . . . , s
}

As for the variational cone, we shall sometimes simply write VyRx if there
can be no confusion regarding the related Φ and T . The fact that VyRx is
contained in Vyτ follows from the fact that any vector field in D is τ -related
to the vector field ∂/∂t on IR, or, that their flows commute with respect to
τ . Note that, in the above definition any tangent vector of the form Y (c̃(τ)),
for τ ∈]a, b], and for some Y = T ◦ ρ ◦ σ ∈ D, with σ ∈ Γ(ν), can be written
as T(ρ(s)) where s = σ(c̃(τ)) ∈ Uc̃(τ).

To fix the ideas we shall now describe an “algorithm” for constructing the
vertical variational cone VyRx. Let c denote a control. Recall the construc-
tion in Section 1 (page 62) of an ordered family of sections S = (σ`, . . . , σ1)
of ν and of T = (t`, . . . , t1) ∈ IR`

+, such that S and T induce the control c, i.e.
c = c` · . . . ·c1 with ci = σi(c̃(t)) for t ∈ [ai−1, ai] and ai−ai−1 = ti. In partic-
ular, the sections were defined on local adapted coordinate neighbourhoods,
covering c(I), i.e. σj(t, q

i) = (t, qi, ua(t)), where c(t) = (t, qi(t), ua(t)). Let
Φ = φ` ? · · · ? φ1 denote the composite flow of (T ◦ ρ ◦ σ`, . . . ,T ◦ ρ ◦ σ1),
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where {φi} denotes the flow of Xi = T(ρ(σi)), i.e. locally we have to solve
for the integral curves of the vector field

Xj =
∂

∂t
+ γi(qi, ua(t))

∂

∂qi
,

which can be regarded as a (local) time dependent vector field on the typical
fibre Q of τ (cf. Remark 2.8). The vertical variational cone VyRx(Φ, T ) can
then be determined. It is easily seen that the most involved part of this
process consists of computing the flows of Xi (i.e. integrating the differential
equations: q̇i(t) = γi(t, qi(t), ua(t)).) As we will see in Section 8, in some
specific cases (linear autonomous geometric control structures) the vertical
variational cone is a linear subspace of V τ , which allows us to “approximate”
VyRx by iterated lie brackets of time dependent vector fields, which are much
easier to compute.

We shall now pay some attention to the case where τ : M → IR is a trivial
bundle, i.e. M = IR×Q and τ is the projection onto the first factor. In the
following remark we first briefly recall some properties of a time dependent
vector field. For further details we refer to [37, p 354].

Remark 2.8. Let B denote an arbitrary manifold. A time dependent vector
field X̃ on B is defined as a smooth map from an open subset Ω of IR × B
into TB, such that X̃(t, x) ∈ TxB, for any (t, x) in the domain of X̃. We
shall sometimes write X̃t(x) for X̃(t, x). An integral curve γ of X̃, is a smooth
map from an interval I of IR into M , such that for any t0 ∈ I, (t0, γ(t0)) is
in the domain of X̃, and such that γ̇(t) = X̃(t, γ(t)), for all t ∈ I. Any time
dependent vector field on B, determines a vector field on IR × B, which we
denote here by X and which is defined by X = ∂/∂t+X̃. If we denote the flow
of X by {φs}, then, for fixed t0, we can consider the following map ψt0 , defined
on some open subset of IR×Ω and determined by (t, ψt

t0
(x)) = φt−t0(t0, x), for

any (t0, x) ∈ Ω. This map satisfies the condition that, given any (t0, x) ∈ Ω,
the curve t 7→ ψt

t0
(x) is an integral curve of X̃. By using the standard properties

of the flow {φs}, we obtain the following properties of {ψt
t0
}:

ψt2
t1
◦ ψt1

t0
= ψt2

t0
,

(ψt1
t0

)−1 = ψt0
t1

.

Let Y : IR×B → TB denote a time dependent vector field on B and consider
the map Yt : B → TB : x 7→ Y (t, x) for any t. Then t 7→ ((ψt

t0
)∗Yt)(x) is

a curve in TxB, for which the tangent vector at t = t1 is determined by the
following relation, where we use the notation Ẏt to denote the derivative of the
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time dependent vector field Yt with respect to the variable t, while the other
variable x ∈ B is kept fixed, i.e. Ẏt(x) = ∂Y

∂t
(t, x).

d

dt

∣∣∣∣
t=t1

(
(ψt

t0
)∗Yt

)
(x) = (ψt1

t0
)∗

(
Ẏt1 + [X̃t1 , Yt1 ]

)
(x).

Similar to the notion of composite flow associated to an ordered family of
ordinary (time-independent) vector fields, we can consider the composite flow
of an ordered family of time dependent vector field, say (X̃`, . . . , X̃1) with X̃i a
time dependent vector field on B. Let {(ψi)t

t0
} denote the flow of X̃i, then we

can consider, given any T = (t`, . . . , t1) ∈ IR`, the following map ΨT , defined
on some open subset of B:

ΨT = (ψ`)a`
a`−1

◦ · · · ◦ (ψ1)a1
a0

, with ai =
i∑

j=0

tj .

The composite flow Ψ is related to the composite flow Φ of (X`, . . . , X1) on
IR × B, where Xi = ∂/∂t + X̃i, by the following equality:

(t0 + · · · + t`, ΨT (x)) = ΦT (t0, x).

Returning to the case of a control structure (τ, ν, ρ), with τ : M = IR×Q →
IR a trivial bundle, every vector field X in D is of the form X = ∂/∂t + X̃,
where X̃ is a time dependent vector field on Q. In particular, the flow
{φs} of X and the ‘flow’ {ψt

t0
} of X̃, satisfy: Tψt

t0
(v) = Tφt−t0(v), given

any v ∈ TqQ (where we used the identification of TqQ, with V(t,q)τ for any
q ∈ Q and t ∈ IR). Let VyRx(Φ, T ) denote the vertical variational cone
associated to the composite flow Φ of an ordered set (X`, . . . , X1), for some
Xi = ∂/∂t + X̃i ∈ D and a composite flow parameter T ∈ IR`, where Φ
and T induce a control c : [a, b] → U . Let Ψ denote the composite flow
of (X̃`, . . . , X̃1). Then, using the above observations, we can alternatively
define the vertical variational cone VyRx(Φ, T ) as the cone in Tq′Q spanned
by all tangent vectors of the form:

TΨb
t

(
T

(
ρ(s)

)
− T

(
ρ(c(t))

))
,

where c : [a, b] → U denotes the given control and s is an arbitrary element
in the fibre of ν : U → M at c̃(t).
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3 Optimal control theory

In this section we give a straightforward application of Corollary 2.5 leading
to necessary conditions to be satisfied by an optimal control. We first specify
how the notion of optimality of a control can be formulated within the
present geometric framework.

Let (τ, ν, ρ) be an arbitrary geometric control structure (with τ : M → IR,
ν : U → M , ρ : U → J1τ , as in Definition 2.1) and let L ∈ C∞(U) denote a
smooth function on the control bundle U . If c : I = [a, b] → U is a control,
then the cost of c with respect to L is defined by

J (c) =

∫ b

a

L(c(t))dt.

If we put x = ν(c(a)) and y = ν(c(b)), we have, with the notations from
Section 1, that x

c→ y and, in particular, y ∈ Rx.

Definition 3.1. We say that the control c is optimal if J (c) ≤ J (c′) for

any other control c′ such that x
c′→ y.

We now specify what we mean by optimal control theory with variable end-
points. Assume that Pi, Pf are two immersed submanifold of M , where,
again for notational convenience, we identify points in Pi, Pf with their im-
ages in M . Assume that y ∈ RPi

∩ Pf , i.e. there exists a point x ∈ Pi and
a control c taking x to y.

Definition 3.2. We say that the control c is (Pi, Pf )-optimal if J (c) ≤ J (c′)
for any other control c′ taking x to y for some x ∈ Pi and y ∈ Pf .

For the further discussion, it will be helpful to introduce the following no-
tation:

J (t1,t2)
c =

∫ t2

t1

L(c(t))dt,

where t1, t2 ∈ [a, b], with t1 ≤ t2. Note that, in this notation, J (c) = J (a,b)
c .

The function L is sometimes referred to as the cost function.

Definition 3.3. A geometric optimal control structure (τ, ν, ρ, L) consists
of a geometric control structure (τ, ν, ρ) and a cost function L.

We will now show that to every geometric optimal control structure, say
(τ, ρ, ν, L), one can associate an extended geometric control structure, de-
noted by (τ , ν, ρ), in which the cost function is incorporated into the bundle
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map ρ. For that purpose, we first introduce the product space M := M×IR,
the points of which will be denoted by (x, J). For reasons to become clear
later on, J will be called the cost coordinate. The fibration τ of M over
IR induces the fibration τ : M → IR , (x, J) 7→ τ(x, J) = τ(x). Next, for
the extended control bundle we take U = U × IR, with projection onto
M given by ν(s, J) = (ν(s), J). Finally, we can define a bundle map
ρ : U → J1τ as follows: ρ(s, J) = (ρ(s), J, L(s)), where we have used
the canonical identification J1τ ∼= J1τ × IR2, obtained as follows: given
any section c̃(t) = (c̃(t), J(t)) of τ , we map j1

t c̃ onto (j1
t c̃, J(t), J̇(t)). Note

that τ1,0(ρ(u, J)) = ν(u, J) and, therefore, (τ , ν, ρ) is indeed a well-defined
geometric control structure. Let us denote the projection of U onto U by
pU and the projection of M onto M by pM . It is an easy computation to
see that pU is fibred over pM and determines an anchored bundle morphism
between (ν,T ◦ ρ) and (ν,T ◦ ρ) (for notational convenience we denote the
total time derivative operators on J1τ and J1τ by the same symbol).

Next, we shall prove that any control defined on a geometric optimal control
structure (τ, ν, ρ, L) induces a control on the extended structure (τ , ν, ρ), and
vice versa. In one direction the proof easily follows from the fact that, by
definition, a control c : [a, b] → U in the extended setting is a T◦ρ-admissible
curve and since pU is an anchored bundle morphism, the projection c = pU ◦c
is a T ◦ ρ-admissible curve. Note that, if c takes (x, Jx) to (y, Jy), then
J (pU ◦ c) = Jy − Jx. This follows from the assumption that c is a control:
J̇(t) = L(pU (c(t))) is satisfied and, in turn, implies

J(b) − J(a) = Jy − Jx =

∫ b

a

L(pU (c(t)))dt = J (pU ◦ c).

Conversely, let c : I = [a, b] → U be a control in the geometric optimal
control structure (τ, ν, ρ, L), with ν(c(a)) = x and ν(c(b)) = y. We shall
construct a control c in the associated structure (τ , ν, ρ) such that for any

J ∈ IR we have (x, J)
c→ (y, J + J (a,b)

c ). More precisely, define the map
c : I → U by putting

c(t) = (c(t), J + J (a,t)
c ).

It is easily seen that ν(c) is piecewise smooth. Furthermore, c is T ◦ ρ-
admissible. Indeed, the first jet extension of ν ◦ c equals

j1
t (ν ◦ c) = j1

t (ν ◦ c, J + J (a,t)
c ) = (j1

t (ν ◦ c), J + J (a,t)
c , L(c(t)))

and c being a control, we find that j1
t c = ρ(c(t)). On the other hand, the

projections of c(a) and c(b) onto M are given by (x, J) and (y, J + J (c)),
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respectively. It follows that (x, J)
c→ (y, J+J (c)) for the extended geometric

control problem (and for arbitrary J ∈ IR).

Summarising the preceding discussion, we have proven the following result.

Proposition 3.1. Let (τ, ν, ρ, L) denote a geometric optimal control struc-
ture and (τ , ν, ρ) the associated extended geometric control structure. Then
for any x, y ∈ M and Jx, Jy ∈ IR, we have that

x
c→ y and J (c) = Jy − Jx iff (x, Jx)

(c,J)→ (y, Jy) in (τ , ν, ρ),

where J : [a, b] → IR is given by J(t) = Jx + J (a,t)
c .

The core idea in the book of Pontryagin et al. [47] is to use the (local versions
of) Corollary 2.5 and Proposition 2.6 in the extended geometric control
structure, in order to obtain necessary conditions for optimal controls that
are formulated in the extended setting. These conditions can be rewritten
in the initial geometric control structure and turn out to be precisely the
conditions of the maximum principle. We are now ready to carry out the
first step of this procedure, i.e. we obtain the necessary conditions in the
extended geometric control structure. To complete the second step we will
use the concept of lifts over a bundle map, which will be treated in Sections
4 and 6.

Remark 3.2. Before proceeding, we first recall some properties and terminol-
ogy regarding linear spaces and convex cones in a linear space. Let V be an
arbitrary (finite dimensional) linear space. Recall the definition of the annihila-
tor W0 of a linear subspace W of V. A hyperplane in V (i.e. a linear subspace
of co-dimension one) can always be defined as the set of all vectors v ∈ V
satisfying 〈η, v〉 = 0 for some (non-zero) co-vector η ∈ V∗. Such a hyperplane
divides V into two ‘half-spaces’ which are given by the set of all v satisfying
〈η, v〉 ≤ 0, resp. 〈η, v〉 ≥ 0, and which are called the ‘negative’ half-space and
the ‘positive’ half-space, respectively. Let C denote a convex cone in V (we
always assume that the vertex of C is taken in the origin of V). The set of all
η for which 〈η, v〉 ≤ 0, ∀v ∈ C, is called the dual cone of C and is denoted by
C∗. It is readily seen that C∗ is again a convex cone. Indeed, let η, η′ ∈ C∗

and λ, λ′ ≥ 0, then 〈λη + λ′η, v〉 ≤ 0 for all v ∈ C. Intuitively, the cone
C∗ can be regarded as the set of all hyperplanes with respect to which C is
entirely contained in the negative half-space. Note that, if span(C) 6= V, then
(span(C))0 ⊂ C∗. Indeed, let η ∈ (span(C))0, then 〈η, v〉 = 0 for all v ∈ C,
and therefore, by definition of C∗, the co-vector η is contained in C∗. In the
specific case where C is a linear subspace, i.e. span(C) = C, then C∗ = C0.
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This follows from the fact that, for all v ∈ C, −v also belongs to C and, hence,
for any η ∈ C∗ we both have 〈η, v〉 ≤ 0 and 〈η,−v〉 ≤ 0, which implies that
〈η, v〉 = 0 for all v ∈ C, i.e. η ∈ C0.

Assume that C ′ is another convex cone in V. Recall the definition of C ∗ C ′,
i.e. C ∗ C ′ is the convex cone generated by all vectors in C and C ′. It is easily
proven that (C ∗C ′)∗ = C∗∩(C ′)∗. We say that C and C ′ are separable if there
exists some η ∈ C∗ such that 〈η, w〉 ≥ 0 for all w ∈ C ′, i.e. the hyperplane
in V determined by η “separates” the cone C from C ′, in the sense that C
is in the negative half space determined by η, whilst C ′ is in the positive half
space. The following result, which we will use later on, is taken from [47, p 90].
The necessary and sufficient condition for the cones C and C ′ to be separable is
that one of the two following conditions holds: (i) both cones are contained in a
hyperplane; (ii) there exists no point which is simultaneously an interior point of
C and C ′, with respect to the subspace topology of the support plane span(C),
resp. span(C ′). Let us now denote the closure of a cone C by cl(C). Then the
following properties hold: C∗ = (cl(C))∗ and (C∗)∗ = cl(C) (see e.g. [26]).
Finally, for any v ∈ V, the half-ray determined by v, i.e. {w | w = rv,∀r ≥ 0},
is called the (degenerate) cone generated by v and is denoted by C(v).

So assume that c is an optimal control, taking x to y. Let c denote the
control in the extended control structure, taking (x, Jx) to (y, Jy), and let
C(y,Jy)R(x,Jx) denote the variational cone in the extended setting (i.e. we
have fixed a finite ordered family of sections of ν inducing c and with as-
sociated composite flow Φ). With the notation introduced in the previous
remark we also put C(−∂/∂J |(y,Jy)) the half-ray in T(y,Jy)M through the
tangent vector −∂/∂J |(y,Jy). The proof of the following proposition relies
on Corollary 2.5.

Proposition 3.3. The cones C(y,Jy)R(x,Jx) and C(−∂/∂J |(y,Jy)) are sepa-
rable.

Proof. We consider two cases. First, assume that int(C(y,Jy)R(x,Jx)) = ∅.
This is equivalent to saying that span(C(y,Jy)R(x,Jx)) 6= T(y,Jy)M and, in
view of the above remark, this implies that (span(C(y,Jy)R(x,Jx)))

0 6= ∅.
So, take any element η in the annihilator of span(C(y,Jy)R(x,Jx)). Then, ei-
ther 〈η,−∂/∂J〉 ≥ 0 or 〈η,−∂/∂J〉 < 0 holds. In the first case, we have
that η separates both cones. In the latter, it suffices to take −η instead
of η. Next, we assume that int(C(y,Jy)R(x,Jx)) 6= ∅. From the above re-
mark, we know that the separability of the cones is equivalent to saying
that (−∂/∂J)|(y,Jy) /∈ int(C(y,Jy)R(x,Jx)). We use an indirect proof. Assume
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that

(−∂/∂J)|(y,Jy) ∈ int(C(y,Jy)R(x,Jx)).

Consider the ‘vertical’ curve θ(t) = (y, Jy − t) in M , defined for t ∈ [0, 1],
whose tangent vector at t = 0 precisely equals (−∂/∂J)|(y,Jy). From Corol-
lary 2.5 it then follows that there exists an ε > 0, sufficiently small, such
that θ(t) ∈ R(x,Jx) for t ∈ [0, ε]. From this, one can deduce that there exists

a control c′ for which (x, Jx)
c′→ (y, Jy − ε). In view of previous considera-

tions, this further implies that there exists a control c′ on (τ, ν, ρ, L) such

that x
c′→ y, with cost J (c′) = J (c) − ε and, hence, J (c′) < J (c). Since c

was assumed to be optimal, this clearly leads to a contradiction.

We now prove a generalisation of Proposition 3.3, in the case where c is a
(Pi, Pf )-optimal control taking x ∈ Pi to y ∈ Pf . Let c denote the corre-
sponding control in the extended setting taking (x, Jx) to (y, Jy) and con-
sider the immersed submanifolds P i, P f in M , defined by P i = Pi × {Jx}
and P f = Pf × {Jy}.
Proposition 3.4. If the control c is (Pi, Pf )-optimal, then the cones K =
TΦT (T(x,Jx)P i) ∗ C(y,Jy)R(x,Jx) and

K ′ = C(−(∂/∂J)|(y,Jy)) ∗ T(y,Jy)P f

in T(y,Jy)M are separable.

Proof. Assume that the cones K and K ′ are not separable. Using Remark
3.2, we know that this is equivalent to saying that span(K) + span(K ′) =
T(y,Jy)M and that there exists a tangent vector v in the interior of K, with
respect to subspace topology of span(K), which is also contained in the
interior of K ′. The latter implies that vJ < 0, where vJ is the ∂/∂J-
component of v. Now, consider the immersed submanifold g : L ↪→ M , with
L = Pf × IR. It is then easily seen that span(K ′) = T(y,Jy)L. We thus have

that span(K)+T(y,Jy)L = T(y,Jy)M , and dim(span(K)∩T(y,Jy)L) ≥ 1, since
v, and any positive multiple of it, is contained in K ∩ K ′. From Corollary
2.6, we may conclude that there exists a curve θ(t) = (θ(t), θJ(t)) in L,

for t ∈ [0, 1], such that θ(0) = (y, Jy), θ̇(0) = v and, for some ε > 0, θ(t) is
contained in RP i

for all t ∈ [0, ε]. Now, since θ̇J(0) < 0, we have that θJ(t) <

θJ(0) = Jy for t sufficiently small, say 0 < t ≤ ε′. Let ε′′ = min{ε, ε′}, then,
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since θ(t) ∈ RP i
, there exists a control taking a point x′ ∈ Pi to θ(ε′′) ∈ Pf ,

with cost θJ(ε′′) − Jx < Jy − Jx = J (c). This contradicts the fact that c is
assumed to be (Pi, Pf )-optimal.

In order to relate the previous result to a more familiar formulation of the
necessary conditions for an optimal control, in terms of solutions of differ-
ential equations, we will use the theory of lifts over anchor maps, developed
in Chapter II.

4 The control lift

Let (τ, ν, ρ) denote a geometric control structure. Consider the first-order jet
bundle J1ν of the bundle ν : U → M , with associated projections ν1 : J1ν →
M , ν1,0 : J1ν → U . Recall that for any two local sections σ and σ′ of ν,
defined on a neighbourhood of a point x ∈ M , we have that j1

xσ = j1
xσ′ ∈ J1ν

iff σ(x) = σ′(x) and Txσ = Txσ′ (as linear maps from TxM into Tσ(x)U).
Bearing this in mind, it is easily seen that the following mapping is well-
defined:

ρ1 : J1ν → TU, j1
xσ 7→ ρ1(j1

xσ) = Txσ
((

T ◦ ρ
)(

σ(x)
))

. (4.5)

Moreover, ρ1 is a bundle map over the identity on U . In terms of appropriate
bundle coordinates (t, qi, ua) on U and (t, qi, ua, ua

0, u
a
i ) on J1ν, ρ1 reads

ρ1(t, qi, ua, ua
0, u

a
i ) =

(
t, qi, ua, 1, γj(t, qi, ua), ub

0 + γj(t, qi, ua)ub
j

)
.

Clearly τU ◦ ρ1 = ν1,0 and, therefore, (ν1,0, ρ
1) is an anchored bundle. From

the fact that Tν ◦ρ1 = T◦ρ◦ν1,0, we can regard ν1,0 as an anchored bundle
morphism between (ν1,0, ρ

1) and (ν,T ◦ ρ). Thus any ρ1-admissible curve
projects onto a T◦ρ-admissible curve, i.e. a control. The converse is not true
in general. However, if we suitably extend the class of ρ1-admissible curves,
we can prove that any control in (τ, ν, ρ) is the projection of a “piecewise” ρ1-
admissible curve. Therefore, in the sequel, we always assume that a piecewise
ρ1-admissible curve s is the composition of a finite number of smooth ρ1-
admissible curve, si : [ai−1, ai] with i = 1, . . . , ` such that if c̃i = ν1 ◦ si,
then c̃i(ai) = c̃i+1(ai) for all i (see Equation I-2.2). Roughly speaking, the
extension we introduced, consists in allowing ρ1-admissible curves that may
have discontinuities in its base curve c in U . However, the projection onto
M is required to be a piecewise smooth curve (which is precisely what we
need for c to determine a control).
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Lemma 4.1. The projection onto U of any piecewise ρ1-admissible curve
in J1ν is a control, and any control in U can be obtained as the projection
of a piecewise ρ1-admissible curve.

Proof. The first statement has already been proven above. Conversely,
assume that c : [a0, a`] → U is a control, with base curve c̃ = ν ◦ c.
From Section 1 we know that any control is induced by a finite ordered
family S = (σ`, . . . , σ1) of sections of ν and a composite flow parameter
T = (t`, . . . , t1) ∈ IR`

+. In particular, the control c then equals the com-
position c` · . . . · c1, with ci = σi(c̃(t)) for t ∈ [ai−1, ai] and ai − ai−1 = ti.
Next, consider the ordered family S1 = (j1σ`, . . . , j

1σ1) of prolongations of
sections of ν and define si(t) = j1σi(c̃(t)) for t ∈ [ai−1, ai]. Then, every si is
a smooth ρ1-admissible curve, since ρ1(si(t)) = Tc̃(t)σi(˙̃c(t)) = ċi(t). There-
fore, the composed curve s = s` · . . . · s1 determines the desired piecewise
ρ1-admissible curve.

Let σ denote a section of ν. Then the smooth ρ1-admissible curve j1σ(c̃(t)),
with c̃(t) an integral curve of T◦ρ◦σ, will be called basic. The construction
in the proof of the previous lemma leads us to the following property.

Proposition 4.2. Every piecewise ρ1-admissible curve can be written as the
composition of a finite number of smooth basic ρ1-admissible curves.

Proof. In order to prove that any (piecewise) ρ1-admissible curve can be
written as a concatenation of smooth basic ρ1-admissible curve, we shall
prove that any smooth ρ1-admissible curve s whose image is entirely con-
tained in a coordinate chart, is of that form. The general result then follows
by a similar argument as the one applied in Section 1 (page 62) when prov-
ing that the base curve of any control is a concatenation of integral curves
of vector fields in D. So, assume s can be written in bundle adapted coor-
dinates as s(t) = (t, qi(t), ua(t), ua

0(t), u
a
i (t)) for all t ∈ I = [a, b]. Since s is

ρ1-admissible, we then have that

u̇a(t) = ua
0(t) + ua

i (t)q̇
i(t) and q̇i(t) = γi(t, qi(t), ua(t)).

Consider now a smooth extension ŝ(t) = (t, q̂i(t), ûa(t), ûa
0(t), û

a
i (t)) of s,

defined on an open interval Î containing I, such that im ŝ is still contained
in the same coordinate chart, with ŝ(t) = s(t) for all t ∈ I. Next, we can
construct a local section σ of ν, defined on τ−1(Ĩ), as follows: σ(t, q) =
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(t, q, σa(t, q)), with σa(t, q) = ûa(t) + ûa
i (t)(q

i − q̂i(t)). For each fixed t ∈ I
we then find that

σa(t, qi(t)) = ua(t)

∂σa

∂t
(t, qi(t)) = u̇a(t) − ua

i (t)q̇
i(t) = ua

0(t),

∂σa

∂qi
(t, qi(t)) = ua

i (t),

and, hence, we have that j1σ(t, q(t)) = s(t) for all t ∈ I, which is precisely
what we wanted to prove.

The properties developed above on ρ1-admissible curves provide us with a
complete understanding of how they are related to controls. We now define a
natural ρ1-lift on the bundle ν∗TM → U . In the following we shall frequently
make use of the natural identification T (ν∗TM) ∼= TU ×TM TTM , without
mentioning it explicitly. We further denote by s : TTM → TTM the
canonical involution on TTM . The latter is characterised by the relations
TτM ◦ s = τTM and τTM ◦ s = TτM .

Remark 4.3. Recall that, given an arbitrary manifold B with local coordinates
(qi), and denoting the natural bundle coordinates on TB and TTB by (qi, vi)
and (qi, vi, q̇i, v̇i), respectively, then the canonical involution s on TTB reads
s (qi, vi, q̇i, v̇i) = (qi, q̇i, vi, v̇i).

Finally, we denote the projections onto the first and second factor of the
pull-back bundle ν∗TM = U ×M TM by:

p1 : ν∗TM → U, and p2 : ν∗TM → TM,

respectively. Given a geometric control structure (τ, ν, ρ), consider the as-
sociated anchored bundle (ν1,0, ρ

1) with anchor map ρ1 given by (4.5).

Proposition 4.4. The map hc : p∗1J
1ν → T (ν∗TM), defined by

hc
(
(σ(x), v), j1

xσ
)

=
(
ρ1(j1

xσ), s
(
T (T ◦ ρ)(Txσ(v))

))
,

for any x ∈ M , σ ∈ Γ(ν) and v ∈ TxM , is a lift over ρ1.

Proof. We first calculate the local coordinate expression of hc. For that
purpose, consider bundle adapted coordinates (t, qi, ua) and (t, qi, v0, vj) on
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U and TM , respectively. Take x = (t, qi) ∈ M , v = (t, qi, v0, vj) ∈ TxM and
σ ∈ Γ(ν) such that j1

xσ = (t, qi, ua, ua
0, u

a
i ), then:

s
(
T

(
T ◦ ρ

)(
Txσ(v)

))
=

∂

∂t

∣∣∣∣
v

+ γi(t, qj , ua)
∂

∂qi

∣∣∣∣
v

+

(
v0 ∂γk

∂t
(t, qj , ua) + vi ∂γk

∂qi
(t, qj , ua) + (v0ub

0 + viub
i)

∂γk

∂ub
(t, qj , ua)

)
∂

∂vk

∣∣∣∣
v

.

Next, using the properties of the canonical involution operator s, and taking
into account (4.5), it is easily seen that

Tν
(
ρ1(j1

xσ)
)

= TτM

(
s
(
T (T ◦ ρ)(Txσ(v))

))
∈ TxM

which proves indeed that imhc ⊂ T (ν∗TM).

From its definition it readily follows that hc is a bundle map fibred over the
identity on ν∗TM , and we have that

Tp1

(
hc(j1

xσ, (σ(x), v))
)

= ρ1(j1
xσ),

with p1 : ν∗TM → U . This already guaranties that p̂2 : p∗1J
1ν → J1ν, which

is fibred over p1, determines an anchored bundle morphism between (p̂1, h
c)

and (ν1,0, ρ
1), with p̂1 : p∗1J

1ν → ν∗TM . It now remains to check that the
local lift functions of hc are linear in (v0, vi). This follows straightforwardly
from the above coordinate expression (where v0, vi represent the bundle
coordinates of p1). The local lift coefficients take the following form:

Γk
i (t, q

i, ua, ua
i ) =

∂γk

∂qi
(t, qj , ua) + ub

i

∂γk

∂ub
(t, qj , ua),

Γ0
i (t, q

i, ua, ua
i ) = 0,

Γ0
0(t, q

i, ua, ua
i ) = 0,

Γk
0(t, q

i, ua, ua
0) =

∂γk

∂t
(t, qj , ua) + ub

0

∂γk

∂ub
(t, qj , ua).

This shows, in particular, that hc is a ρ1-lift.

The above defined ρ1-lift hc is called the control lift associated to the ge-
ometric control structure (τ, ν, ρ). Note that the coefficients Γk

i of hc do
not depend on the coordinates ua

0 of J1ν. In Remark 5.5 at the end of this
section we will return to this point in more detail.
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Let us denote the derivative operator associated to hc by ∇ and let X(ν) de-
note the set of vector fields along ν, i.e. X(ν) = {Z : U → TM | τM (Z(u)) =
ν(u)}. Note that, in view of the relation ν ◦ p1 = τM ◦ p2, we have
X(ν) ∼= Γ(p1).

Proposition 4.5. Given any j1
xσ ∈ J1ν,

∇j1
xσZ = [T ◦ ρ ◦ σ, Z ◦ σ](x), for Z ∈ X(ν)(∼= Γ(p1))

(where the square brackets on the right-hand side denote the ordinary Lie
bracket of vector fields on M).

Proof. Recalling the coordinate expression for the ρ1-derivative associated
with the ρ1-lift hc (cf. Section II-5), we obtain, with a slight abuse of
notation,

(
∇j1

xσZ
)i

=

(
∂Zi

∂t
+ γj ∂Zi

∂qj
+ (ua

0 + γjua
j )

∂Zi

∂ua
− Γi

jZ
j − Γi

0Z
0

)
(x).

The result then easily follows upon substituting ua
j = ∂σa

∂qj and ua
0 = ∂σa

∂t
in

the right-hand side, and comparing this with the coordinate expression of
the Lie bracket [T ◦ ρ ◦ σ, Z ◦ σ](x).

In the above, we have introduced a ρ1-lift hc and considered its associated
derivative. In the following we determine the hc-transport operator. Ac-
cording to the theory developed in Chapter II, the derivative operator ∇
acts on sections X of TM along the projected curve c̃ = ν ◦ c of the base
curve c of a ρ1-admissible curve s. Indeed, given such an X, then (c, X)
is a section of ν∗TM → U along c. For notational convenience, we shall
write ∇sX instead of ∇s(c, X). Similarly, we will consider the hc-transport
operator as a map on the fibres of TM , instead of a map on the fibres of
ν∗TM . We first consider the case where s is a basic ρ1-admissible curve, i.e.
s takes on the special form s(t) = j1σ(c̃(t)) for some section σ ∈ Γ(ν) and
with c̃ : [a, b] → M an integral curve of T ◦ ρ ◦ σ.

Lemma 4.6. Let s : [a, b] → J1ν, t 7→ s(t) = j1σ(c̃(t)) be a basic ρ1-
admissible curve, and let {φs} denote the flow of T ◦ ρ ◦ σ. Then the hc-
transport operator sba : Tc̃(a)M → Tc̃(b)M along s is given by sba = Tφb−a.

Proof. Take va ∈ Tc̃(a)M and let X(t) denote the section of TM along c̃(t)
which is uniquely determined by the conditions ∇sX(t) = 0 and X(a) = va.
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This is still equivalent to

d

dt

∣∣∣∣
t

X(t) = s
(
T (T ◦ ρ)

(
Tc̃(t)σ(X(t))

))
. (4.6)

Now s (T (T◦ρ)Tc̃(t)σ(X(t))) = (T◦ρ◦σ)c(X(t)), where (T◦ρ◦σ)c denotes
the complete lift of the vector field T ◦ ρ ◦ σ to TM . Taking this into
account, Equation (4.6) tells us that X(t) is an integral curve of (T◦ρ◦σ)c,
passing through va. By construction of the complete lift of a vector field, the
flow of (T ◦ ρ ◦ σ)c is given by {Tφs} and, therefore, X(t) = Tφt−a(X(a)).
The result then follows immediately from the definition of the hc-transport
operator along s.

Next, we consider the case where s : [a, b] → J1ν is a piecewise ρ1-admissible
curve whose projection c̃ = ν1 ◦ s onto M is piecewise smooth. Recall, in
particular, that c(t) := ν1,0(s(t)) is a control (see Lemma 4.1). Let X :
[a, b] → V τ be a piecewise smooth curve projecting onto the base curve
c̃(t) of s. Thus, assume that s = s` · . . . · s1, with si : [ai−1, ai] → J1ν
smooth ρ1-admissible curves. Since the derivative operator ∇s is not defined
if c = ν1,0 ◦ s is a discontinuous curve, we now extend the definition simply
by putting ∇sX(t) = ∇

s(t)X, given any piecewise smooth section X of TM
along c̃. This generalisation is only possible because we are working on the
pull-back bundle ν∗TM and because c̃ is assumed to be piecewise smooth.
Now, the equation ∇sX(t) = 0 for t ∈ [a, b] also admits a unique solution,
provided an initial point va = X(a) is given and X is assumed continuous.
The notion of a hc-transport operator is then well-defined, and it is an easy
exercise to see that sba = (s`)

b
a`−1

◦ · · · ◦ (s1)
a1
a and, more generally, that

st
t

= (sj)
t
aj−1

◦ · · · ◦ (si)
ai

t
, where we assumed that t ≤ t with t ∈ [aj−1, aj ]

and t ∈ [ai−1, ai].

Using the above lemma and the fact that every piecewise ρ1-admissible curve
s is the composition of a finite number of basic ρ1-admissible curves (cf.
Proposition 4.2), we can solve the hc-transport operated explicitly once we
have fixed a finite number of basic ρ1-admissible curves. Indeed, assume that
si = j1σi(c̃(t)), for σi ∈ Γ(ν) and t ∈ [ai−1, ai], with c̃|[ai−1,ai] an integral
curve of T ◦ ρ ◦ σi, and such that s = s` · . . . · s1, then

sba(X(a)) := (s`)
b
a`−1

◦ · · · ◦ (s1)
a1
a (X(a))

= Tφ`
a`−a`−1

◦ · · · ◦ Tφ1
a1−a(X(a))

= TΦb
a(X(a)) = X(b),
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where {φi
t} denotes the flow of T ◦ ρ ◦ σi and where we use the shorthand

notation introduced in Section 2.

Returning to the given geometric control structure (τ, ρ, ν), we shall now
explain the role of the hc-transport operator in determining the variational
cone.

Consider an arbitrary control c : [a, b] → U , taking x to y and with base
curve c̃ = ν ◦ c. In Section 2 we have seen that c is induced by some or-
dered set S = (σ`, . . . , σ1) of sections of ν and a composite flow parameter
T = (t`, . . . , t1) ∈ IR`

+, i.e. c = c`·. . .·c1, with ci(t) = σi(c̃(t)) for t ∈ [ai−1, ai]
and ai = ai−1 + ti. If Φ represents the composite flow of the ordered set
X = (T◦ρ◦σ`, . . . ,T◦ρ◦σ1), then the variational cone CyRx(Φ, T ) was de-
fined as the cone generated by all tangent vectors of the form: TΦb

τ (Y (c̃(τ))),
where τ ∈ [a, b] and Y ∈ D. Using the above definitions, it is easily seen
that TΦb

τ = sbτ , with s the piecewise ρ1-admissible curve defined as the com-
position of the basic ρ1-admissible curves si(t) = j1σi(c̃(t)) for t ∈ [ai−1, ai]
and i = 1, . . . , `. This implies that the variational cone CyRx(Φ, T ) only
depends on the piecewise ρ1-admissible curve s. Roughly speaking, one can
say that the (piecewise) ρ1-admissible curve s with base curve the control c,
contains sufficient information regarding the sections σi in order to deter-
mine the variational cone CyRx. Therefore, we say that the variational cone
is associated with s and we write CyRx(s), if we want to emphasise that the
variational cone can be generated by the hc-transport operator along the
(piecewise) ρ1-admissible curve s.

5 Properties of variational cones in control theory

In this section, we investigate some properties of the control lift hc with
respect to the variational cone. We first prove that the associated derivative
operator ∇ leaves the subbundle ν∗V τ of ν∗TM invariant. Take an arbitrary
point s = j1

xσ in J1ν. Then, by definition, ∇s acts on the set X(ν). Consider
the set V(ν) of τ -vertical vector fields along ν, i.e.

V(ν) = {Z : U → V τ | τM (Z(s)) = ν(s), for all s ∈ U},

which is a subset of X(ν). It is easily seen that V(ν) ∼= Γ(p̃1), with p̃1 :
ν∗V τ → U , the projection onto the first factor. Fix any Z ∈ V(ν). We
now prove that ∇sZ ∈ Vxτ , which implies that ∇ leaves the subbundle
ν∗V τ → U of ν∗TM → U invariant (cf. Section II-6), and, in turn, this
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implies that the restriction of the derivative ∇ to ν∗V τ → U determines a
ρ1-lift on the bundle ν∗V τ .

Proof. Recall that ∇sZ = [T◦ρ◦σ, Z ◦σ](x) where σ is an arbitrary section
of ν such that j1

xσ = s. Since the vector field T ◦ ρ ◦ σ is τ -related to the
vector field ∂/∂t on IR, we obtain that the flows of T ◦ ρ ◦ σ and ∂/∂t are
τ -related. Therefore Tτ([T ◦ ρ ◦ σ, Z ◦ σ](x)) = 0, or ∇sZ ∈ Vxτ holds.

For notational convenience, we denote the ρ1-lift on ν∗V τ → U , determined
by the control lift hc on ν∗TM → U , and its derivative by the same symbols:
hc and ∇, respectively. The following lemma relates the corresponding ‘dual’
derivative operators on ν∗V ∗τ and ν∗T ∗M (where V ∗τ is the dual bundle of
V τ). For that purpose, we introduce the following section ζ of the fibration
ν∗T ∗M → ν∗V ∗τ . Take s ∈ Ux, θx ∈ V ∗

x τ and put ζ(s, θx) = (s, αx), where
αx ∈ T ∗

xM is uniquely determined by the conditions 〈αx,T(ρ(s))〉 = 0 and
αx projects onto θx. The mapping ζ is smooth, as can be easily seen from the
following coordinate expression: putting s = (t, qi, ua) and θx = (t, qi, pi), a
straightforward computation gives

ζ(t, qi, ua, pi) =
(
t, qi, ua,−γi(t, qi, ua)pi, pi

)
,

i.e. ζ(s, θx) = −γi(t, qi, ua)pi dt + pi dqi
|x.

Lemma 5.1. Let (c(t), α(t)) denote a section of ν∗T ∗M → U along a control
c : [a, b] → U , with c̃ the base curve of c, such that α(t) is piecewise smooth.
Let θ(t) denote the projection of α(t) onto V ∗τ (i.e. (c(t), θ(t)) is a section
of ν∗V ∗τ → U) and assume that ζ(c(t), θ(t)) is piecewise smooth. Fix a
piecewise ρ1-admissible curve s(t) with base curve the control c. The follow-
ing equivalence holds: ∇sα(t) = 0 and 〈α(a),T(ρ(c(a)))〉 = 0 iff ∇sθ(t) = 0
and ζ(c(t), θ(t)) = α(t) for all t ∈ [a, b].

Proof. The condition, saying that ζ(c(t), θ(t)) is piecewise smooth, is non-
trivial since c(t) may have discontinuous points. In coordinates ∇sα(t) = 0
takes the form, with α(t) = (t, qi(t), p0(t), pi(t)):

ṗ0(t) = −Γj
0(t, q

i(t), ua(t), ua
i (t))pj(t)

ṗi(t) = −Γj
i (t, q

i(t), ua(t), ua
0(t))pj(t).

Then, it is easily seen that the projection θ(t) = (t, qi(t), pi(t)) of α(t) onto
V ∗τ satisfies ∇sθ(t) = 0. Recall the expression for the coefficients of ∇, as
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determined in Proposition 4.4. Consider the function

f(t) = −pj(t)γ
j(t, qi(t), ua(t)).

This function is piecewise smooth since ζ(c(t), θ(t)) was assumed piecewise
smooth. Using the fact that q̇j(t) = γj(t, qi(t), ua(t)) and

u̇a(t) = ua
0(t) + γi(t, qi(t), ua(t))ua

i (t),

we obtain, with a slight abuse of notation:

ḟ = −ṗjγ
j − pj

∂γj

∂t
+

∂γj

∂qi
q̇i +

∂γj

∂ua
u̇a,

= −Γk
j pkγ

j − pjΓ
j
kγ

k − pjΓ
j
0,

= −pjΓ
j
0.

Hence, ṗ0(t) = ḟ(t) for all t, i.e. p0(t) equals f(t) up to a constant, and the
latter is determined by the condition that

〈
α(a),T(ρ(c(a)))

〉
= 0,

or, equivalently, p0(a) = f(a). This, in turn, shows that α(t) = ζ(c(t), θ(t)).
The converse follows by reversing the above arguments.

The following proposition shows that the dual cones (cf. Remark 3.2) of
the variational cone CyRx(s) and the vertical variational cone VyRx(s) are
related by the map ζ (where s is a piecewise ρ1-admissible curve whose base
curve is a given control c : [a, b] → U taking x to y).

Proposition 5.2.

ζ(c(b), ·) : (VyRx)∗ → (CyRx)∗ is a one-to-one mapping.

Proof. We first make the following remark. Assume that αy ∈ (CyRx)∗,
then

〈
αy, s

b
t

(
T(ρ(c(t)))

)〉
= 0. Indeed, this follows from the definition of

the dual of a cone (cf. Remark 3.2 page 86) and from the fact that the
tangent vectors sbt(T(ρ(c(t)))) and −sbt(T(ρ(c(t)))) are both contained in
CyRx. Therefore, if θy denotes the restriction of αy to V ∗

y τ , then

〈
θy, s

b
t

(
T(ρ(s)) − T(ρ(c(t)))

)〉
=

〈
αy, s

b
t

(
T(ρ(s)) − T(ρ(c(t)))

)〉

=
〈
αy, s

b
t

(
T(ρ(s))

)〉
≤ 0



98 Optimal control theory

holds for all s ∈ Uc̃(t). By definition, we have θy ∈ (VyRx)∗. We have that
(CyRx)∗ is contained in the image of ζ(c(b), ·) when restricted to (VyRx)∗.

We now prove that any element θy ∈ (VyRx)∗ is mapped by ζ(c(b), ·) onto
an element of (CyRx)∗. Assume that θy ∈ (VyRx)∗, i.e. 〈θy, v〉 ≤ 0, given
any v ∈ VyRx. Consider the piecewise smooth section θ(t) of V ∗τ along c̃,
the base curve of c, such that ∇sθ(t) = 0 and θ(b) = θy. More specifically,
θ(t) = (sbt)

∗(θy).

We now prove that ζ(c(t), θ(t)) is continuous (and therefore it is piecewise
smooth). Fix a time t0 ∈]a, b[ at which c is discontinuous and consider a
bundle adapted coordinate system containing the point c(t0). We have to
prove that the local function −γi(t, qi(t), ua(t))pi(t) is continuous at t = t0.
Since, by definition of θ(t),

〈
θ(b), sbt

(
T(ρ(s)) − T(ρ(c(t)))

)〉
=〈

θ(t),T(ρ(s)) − T(ρ(c(t)))
〉

≤ 0

for all s ∈ Uc̃(t), we have, locally

pi(t)γ
i(t, qi(t), ua) ≤ pi(t)γ

i(t, qi(t), ua(t)) for all ua ∈ IRk.

In the above inequality we substitute for ua the coordinates ua
+(t0) of the

limit from the right of the control c(t) for t approaching t0, i.e. ua
+(t0) =

limt→t+0
ua(t). Then, the above inequality becomes, when t approaches t0

from the left:

pi(t0)γ
i(t0, q

i(t0), u
a
+(t0)) ≤ pi(t0)γ

i(t0, q
i(t0), u

a(t0)).

(Note that c is left continuous by definition). On the other hand, if we
substitute for ua the coordinates of c(t0) and consider the inequality when
t approaches t0 from the right, we obtain:

pi(t0)γ
i(t0, q

i(t0), u
a(t0)) ≤ pi(t0)γ

i(t0, q
i(t0), u

a
+(t0)).

We conclude that pi(t0)γ
i(t0, q

i(t0), u
a
+(t0)) = pi(t0)γ

i(t0, q
i(t0), u

a(t0)) or
that ζ(c(t), θ(t)) is continuous at all t. This result allows us to apply Lemma
5.1. Putting α(t) = ζ(c(t), θ(t)), then ∇sα(t) = 0 for all t ∈ [a, b] holds.

We now prove that α(b) ∈ (CyRx)∗. For that purpose it is sufficient to prove
that

〈
α(b), sbt(v)

〉
≤ 0, for any v = T(ρ(s)) with s ∈ Uc̃(t). By definition of

α(t), we know that
〈
α(t),T

(
ρ(c(t))

)〉
= 0 and, since α(t) = (sbt)

∗(α(b)), this
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is equivalent to
〈
α(b), sbt

(
T(ρ(c(t)))

)〉
= 0. Now, assume that v = T(ρ(s)),

with s ∈ Uc̃(t). Then

〈α(b), sbt(v)〉 = 〈α(t), v〉
=

〈
α(t), v − T

(
ρ(c(t))

)〉

=
〈
θ(t), v − T

(
ρ(c(t))

)〉

=
〈
θy, s

b
t

(
v − T

(
ρ(c(t))

))〉
≤ 0,

since ζ is a section of ν∗T ∗M → ν∗V ∗τ . We conclude that any element
of (VyRx)∗ is mapped onto an element in (CyRx)∗ by ζ(c(b), ·), for which
the inverse is just the restriction of the projection ν∗T ∗M → ν∗V ∗τ to
(CyRx)∗.

In the next proposition, we derive an equivalent characterisation of the dual
cone of the vertical variational cone, showing that the dual of VyRx(s) in
fact only depends on the control c : [a, b] → U , i.e. on the base curve of s.
Assume that θ(t) is a section of V ∗τ along c̃, the base curve of the control
c. Given a time t0 ∈ [a, b], let ζθ(t0) : Uc̃(t0) → IR denote the function defined
by ζθ(t0)(s) =

〈
ζ(c(t0), θ(t0)),T

(
ρ(s)

)〉
.

Proposition 5.3. The following equivalence holds:

∇sθ(t) = 0 and,
ζθ(t0)(s) ≤ ζθ(t0)(c(t0)) = 0

for all t0 ∈ [a, b] and all s ∈ Uc̃(t)



 ⇐⇒ θ(b) ∈ (VyRx)∗.

Proof. Assume that θy ∈ (VyRx)∗ and consider the solution θ(t) of ∇sθ(t) =
0, with θ(b) = θy. We now prove that the maximum condition ζθ(t0)(s) ≤ 0
holds for this section θ(t).

Let s ∈ Uc̃(t0) arbitrary, for some fixed t0 ∈]a, b]. Then sbt0

(
T

(
ρ(s)

)
−

T
(
ρ(c(t0))

))
∈ VyRx, implying that

〈
θ(t0),T

(
ρ(s)

)
− T

(
ρ
(
c(t0)

))〉
≤ 0,

which is precisely the maximum condition, if we recognise that the left hand
side of this inequality equals

〈
ζ
(
c(t0), θ(t0)

)
,T

(
ρ(s)

)〉
−

〈
ζ
(
c(t0), θ(t0)

)
,T

(
ρ
(
c(t0)

))〉
.
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It now remains to check that this inequality is valid for t0 = a. This is
done by choosing an adapted coordinate system, in a neighbourhood of
c(a). Then, the above inequality becomes, for any t0 sufficiently close to a
such that c|[a,t0] is smooth:

−γi(t0, q
i(t0), u

a(t0))pi(t0) + γi(t0, q
i(t0), u

a)pi(t0) ≤ 0,

where ua is taken arbitrary and where θ(t0) = (qi(t0), pi(t0)). By taking
t0 as a parameter and considering the limit from the right for t0 → a, we
obtain that

−γi(a, qi(a), ua(a))pi(a) + γi(a, qi(a), ua)pi(a) ≤ 0.

This inequality is still valid for any ua, and therefore, the maximum condi-
tion also holds for t0 = a.

On the other hand, assume that the maximum condition holds for a section
θ(t) of V ∗τ along c̃ is given, such that ∇sθ(t) = 0. Then, by reversing the
above arguments, we obtain that

〈
θ(b), sbt0

(
T

(
ρ(s)

)
− T

(
ρ(c(t0))

))〉
≤ 0,

for any s ∈ Uc̃(t0) and for t0 ∈ [a, b]. Now, since any element of VyRx is a
finite linear combination, with positive coefficients of tangent vectors of the

form sbt0

(
T

(
ρ(s)

)
− T

(
ρ(c(t0))

))
, the inequality 〈θ(b), v〉 ≤ 0 holds for any

v ∈ VyRx. This implies, by definition, that θ(b) ∈ (VyRx)∗.

Recall the expression for the coefficients of the derivative operator ∇ acting
on V ∗τ . Then, locally, the equations ∇sθ(t) read (using the notations from
Lemma 5.1):

ṗi(t) = −Γj
i (c(t))pj(t) = −

(
∂γj

∂qi
(c(t)) +

∂γj

∂ua
(c(t))ua

i (t)

)
pj(t)

If θ(t) = (qi(t), pi(t)) satisfies the conditions from the above proposition,
then the maximum condition implies that:

pi(t)
∂γi

∂ua
(c(t)) = 0.

If we insert this equality in the differential equations for pi(t), we obtain
that the components pi(t) of θ(t) have to satisfy:

ṗi(t) = −
(

∂γi

∂qj
(c(t))

)
pj(t).
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Therefore, if θ(t) satisfies the conditions of the above theorem (i.e. ∇sθ(t) =
0 and the maximum condition), then it satisfies a system of differential
equations which only depend on the control c and no longer on the first jet
coordinates of s. This observation is captured by the following corollary,
where ω0 is the pull-back of the canonical symplectic form on T ∗M to ν∗V τ
along p∗2 ◦ζ, with p∗2 : ν∗T ∗M → T ∗M the projection onto the second factor.

Corollary 5.4. Let θy ∈ V ∗
c̃(b)τ . Then θy ∈ (VyRx)∗ iff there exists a piece-

wise smooth section θ(t) of V ∗τ , passing through θy at t = b, such that the
curve (c(t), θ(t)) is a solution of the implicit Hamiltonian differential equa-
tion i(ċ(t),θ̇(t))ω0 = 0, and such that ζθ(t0) : Uc̃(t0) → IR, defined above, attains

a maximum at c(t0) for any fixed t0 ∈ [a, b].

Proof. We first note that the implicit Hamiltonian equation is only consid-
ered for every smooth part of c(t), since c(t) is allowed to be discontinuous
at a finite number of points. Using Proposition 5.3, it will be sufficient
to prove that ∇sθ(t) = 0 is equivalent to the above implicit Hamiltonian
system, provided that the maximum condition holds for θ(t). This follows
straightforwardly if we use the above coordinate expression for ∇sθ(t) = 0
and compare it with the local expression for the implicit Hamiltonian sys-
tem. After some tedious calculations, we find that these implicit equations
read, with h0(c(t), θ(t)) = pjγ

j(t, qi, ua):

q̇i(t) =
∂h0

∂pi
(c(t), θ(t)) = γi(c(t)),

0 =
∂h0

∂ua
(c(t), θ(t)) =

∂γi

∂ua
(c(t))pi(t),

ṗi(t) = −∂h0

∂qi
(c(t), θ(t)) = −∂γj

∂qi
(c(t))pj(t),

d

dt

∣∣∣∣
t

(h0(c(t), θ(t))) =
∂h0

∂t
(c(t), θ(t)).

The first equation holds since c is assumed to be a control. The second and
third equations are shown above. If we recall the definition of the function
f(t) introduced in Lemma 5.1, then we have that f(t) = h0(t, q

i(t), ua(t)).
It is easily seen that the fourth equation was proven to hold in Lemma 5.1
if ∇sθ(t) = 0.

The dual cone of VyRx(s) will be denoted by V ∗
y Rx(c), in order to indicate

that it does not depend on the first jet coordinates of s. In the following
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remark we briefly explain how some of the basic ideas in the treatment of
the maximum principle in [47] can be related to our work.

Remark 5.5. The discussion of the maximum principle can be developed for
controls that verify the weaker assumption of being measurable and bounded,
instead of (piecewise) smooth (see, for instance, L.S. Pontryagin et al. [47]).
Using local coordinate expressions, we will roughly sketch how the smoothness
conditions we have imposed on the controls can also be relaxed within our
framework. The local expression for the equation ∇sX(t) = 0 reads

Ẋk(t) =

(
∂γk

∂qi
(t, qj(t), ua(t)) + ub

i(t)
∂γk

∂ub
(t, qj(t), ua(t))

)
Xi(t),

where, as usual, s(t) = (t, qi(t), ua(t), ua
0(t), u

a
i (t)). The condition, that the

functions ua(t) and ua
i (t) should be measurable and bounded, suffices to obtain

a solution of the equations and, subsequently, to introduce a suitable notion
of transport operator. This observation can be translated into our geomet-
ric framework as follows. Consider the set V 1ν := ∪x∈M{Txσ|V τ : Vxτ →
Tσ(x)U | σ ∈ Γ(ν)}. It can be proven by standard arguments that V 1ν is an
affine bundle over U , with coordinates (t, qi, ua, ua

i ) (see, for instance, [49]).
Note that there exists a natural projection µ : J1ν → V 1ν, locally expressed
by (t, qi, ua, ua

0, u
a
i ) 7→ (t, qi, ua, ua

i ). From the fact that the coefficients Γk
i of

hc do not depend on the ua
0 (see the proof of Proposition 6.3) it easily follows

that the ρ1-derivative ∇s only depends on µ ◦ s. Now, since s was assumed to
be ρ1-admissible, i.e. ρ1(s) = ċ, the smoothness condition on c could not be
relaxed. However, the curve s′ = µ ◦ s does not have to satisfy this condition,
implying that the smoothness condition can be relaxed without losing the notion
of derivative acting on sections of V τ along c̃. We can therefore conclude that,
in order to define a vertical cone of variations associated with a measurable and
bounded control c, we must fix a curve s′ in V 1ν. If one works in a coordinate
chart, a natural choice for s′ is the curve s′(t) = (t, qi(t), ua(t), ua

i (t)) with
ua

i (t) = 0. The equations of the derivative associated with s′ then reduce to

Ẋk(t) = ∂γk

∂qi (t, qj(t), ua(t))Xi(t). These equations are precisely the “varia-

tional equations” introduced in [47, p79]. By fixing the coordinate chart, one
can fix the section σa(t, q) = ua(t) and the curve s′(t) = (t, qj(t), ua(t), 0), im-
plying that, respectively, a fixed vertical cone of variations and a fixed derivative
associated with s′ can be defined. Moreover, this specific choice of s′ allowed
that the local equations for ∇sθ(t) can be regarded as “Hamiltonian” equations,
where the Hamiltonian function equals the function h0, as can easily be seen
from Corollary 5.4. This essentially establishes the link between our approach
and the one followed by L.S. Pontryagin et al. However, it should be noted
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that the approach in [47] is more general, in the sense that he worked with
measurable and bounded controls.

To conclude this section, we now adapt the above results to the case where
we have an geometric optimal control structure, say (τ, ν, ρ, L). We fix some
notations, before stating the main theorem. As in Section 3, we consider
the extended geometric control structure (τ , ν, ρ). First, assume that c is
a control taking x to y and assume that c is the associated control, in the
extended setting, taking x = (x, Jx) to y = (y, Jy), with Jy − Jx = J (c).
Next, consider the smooth one parameter family of sections ζλ, with λ ∈ IR,
of the fibration ν∗T ∗M → ν∗V ∗τ , defined by ζλ(s, θ) = α, where α is
determined by the conditions 〈α,T(ρ(s))〉+λL(s) = 0 and α projects onto θ.
In a local coordinate system, the section ζλ takes the following form, putting
s = (t, qi, ua) and θ = pi dqi

|x, ζλ(t, qi, ua, pi) = −(piγ
i + λL)dt + pidqi.

Note that, in the case where λ = 0, then ζ0 = ζ with ζ defined at the
beginning of this section. Therefore, the family of sections ζλ can be regarded
as a “deformation” of the previously introduced section ζ. Similarly, let
ωλ be the closed two-form on ν∗V ∗τ , determined by the pull-back under
p∗2 : ν∗T ∗M → T ∗M and ζλ : ν∗V ∗τ → ν∗T ∗M of the canonical symplectic
two-form on T ∗M . For λ = 0, we recover the closed two-form ω0 used in
Corollary 5.4 and so we can consider ωλ as a “deformation” of ω0. Assume
that c : [a, b] → U is a control and that θ is a section of V ∗τ along c̃, then,
with every t0 ∈ [a, b] we define a real valued function ζλ

θ(t0) : Uc̃(t0) → IR by

ζλ
θ(t0)(s) = 〈ζλ(c(t0), θ(t0)),T(ρ(s))〉 + λL(s).

Theorem 5.6. Assume that θy = (θy, λ) ∈ V ∗
y τ . Then θy ∈ V ∗

y Rx(c)
iff there exists a piecewise smooth curve θ(t) passing through θy at t = b
and such that (c(t), θ(t)) is a solution of the implicit Hamiltonian equation
i(ċ(t),θ̇(t))ωλ = 0 through θy at t = b, and such that ζλ

θ(t0) : Uc̃(t0) → IR attains

a maximum at c(t0), for all t0 ∈ [a, b].

Proof. From Corollary 5.4 we know that the condition that a vertical co-
vector θy is contained in V ∗

y Rx, is equivalent to the existence of a section θ(t)

of V ∗τ along the base curve of c passing through θy, such that i
(ċ(t),θ̇(t))

ω0 =

0 and ζθ(t) attains its maximum at c(t). Assume that θ(t) = (θ(t), λ(t)).

Since M is a product manifold, we can write the canonical symplectic two-
form ω on T ∗M as ω = ω + dpJ ∧ dJ . The pull-back of ω under ζ then
becomes: ω0 = −dh0 ∧ dt + dpi ∧ dqi + dpJ ∧ dJ , with h0 = piγ

i + pJL and
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the implicit Hamiltonian system i
(ċ(t),θ̇(t))

ω0 = 0 reads:

q̇i(t) =
∂h0

∂pi
(c(t), θ(t)) = γi(c(t)), J̇(t) = L(c(t)),

0 =
∂h0

∂ua
(c(t), θ(t)) =

∂γi

∂ua
(c(t))pi(t) + pJ(t)

∂L

∂ua
(c(t)),

ṗi(t) = −∂h0

∂qi
(c(t), θ(t)) = −∂γj

∂qi
(c(t))pj(t) − pJ(t)

∂L

∂qi
(c(t)),

ṗJ(t) = −∂h0

∂J
(c(t), θ(t)) = 0,

d

dt

∣∣∣∣
t

(
h1(c(t), θ(t))

)
=

∂h0

∂t
(c(t), θ(t)).

It is easily seen that the ‘cost momentum’ pJ(t) is constant and, since θ(b) =
(θy, λ), pJ(t) = λ. If we substitute this in the above equations we obtain:

q̇i(t) =
∂hλ

∂pi
(c(t), θ(t)) = γi(c(t)),

0 =
∂hλ

∂ua
(c(t), θ(t)) =

∂γi

∂ua
(c(t))pi(t) + λ

∂L

∂ua
(c(t)),

ṗi(t) = −∂hλ

∂qi
(c(t), θ(t)) = −∂γj

∂qi
(c(t))pj(t) − λ

∂L

∂qi
(c(t)),

d

dt

∣∣∣∣
t

(
hλ(c(t), θ(t))

)
=

∂hλ

∂t
(c(t), θ(t)),

with hλ = piγ
i + λL. It is readily seen that these equations are equivalent

to i(ċ(t),θ̇(t))ωλ = 0. Moreover, since pJ(t) = λ is constant, the following are
also easily derived:

ζθ(t0)(s) = ζθ(t0)(s) + λ
(
L(s) − L(c(t0))

)
= ζλ

θ(t0)(s),

for any s ∈ Uc̃(t0) and any fixed t0 ∈ [a, b]. This implies that the maximum
condition holds. The converse is proven by reversing these arguments.

We shall introduce a special denomination for the curves in V ∗τ which satisfy
the implicit Hamiltonian equation of Theorem 5.6.

Definition 5.1. Assume that c : [a, b] → U is a control taking x to y, with
base curve c̃. Then a pair (θ(t), λ), where θ(t) is a section of V ∗τ along c̃
and λ a real number, is called a multiplier of c if
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1. i(ċ(t),θ̇(t))ωλ = 0 for all t ∈ [a, b] where c is smooth, and

2. ζλ
θ(t)(s) ≤ ζλ

θ(t)(c(t)) = 0 for any s ∈ Uc̃(t) and any fixed t ∈ [a, b].

Corollary 5.7. Assume that (θ(t), λ) is a multiplier of the control c :
[a, b] → U . Then: (i) (θ(b), λ) ∈ V ∗

y τ is an element in V ∗
y Rx(c), and (ii) if

λ = 0, then θ(b) ∈ V ∗
y τ determines an element of V ∗

y Rx(c).

Proof. (i) is a straightforward consequence of Theorem 5.6 and the defini-
tion of a multiplier. (ii) follows from the fact that ωλ = ω0 and ζλ

θ(t) = ζθ(t)

for λ = 0.

Note, that, every linear combination with positive coefficients of a finite
number of multipliers, is again a multiplier. In particular, every multiplier
can be “normalised” in the sense that given any multiplier (θ(t), λ) of c with
λ 6= 0 then the pair (|λ|−1θ(t), sgn(λ)) is also a multiplier of c.

6 The maximum principle and extremal controls

We will now derive the maximum principle by combining the tools developed
in Section 5 and the necessary conditions for optimal controls derived in
Section 3. In the next section we will derive necessary conditions for optimal
controls with variable endpoint conditions.

Assume that a geometric optimal control structure (τ, ν, ρ, L) is given.

Theorem 6.1 (The maximum principle). Assume that c is an optimal
control taking x to y. Then there exists a nontrivial multiplier (θ, λ) with
λ ≤ 0.

Proof. If c is optimal, then, from Proposition 3.3, we know that the cones
VyRx(s) and C(−∂/∂J), in the extended geometric control structure, are
separable, where s is an arbitrary ρ1-admissible curve, with base curve the
control c taking x = (x, Jx) to y = (y, Jy) (with Jy − Jx = J (c)). This
is equivalent to saying that there exists a nontrivial element θy in the dual
vertical variational cone V ∗

y Rx, such that 〈θy,−∂/∂J〉 ≥ 0. If we assume

that θy = (θy, λ), then this inequality is equivalent to λ ≤ 0. From Theorem
5.6, we know that the element θy ∈ V ∗

y Rx determines a multiplier (θ, λ),
with θ(b) = θy.
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It is a common practice in optimal control theory to call a control c an
extremal control, if it admits a multiplier (θ(t), λ) with λ ≤ 0. The maximum
principle says that an optimal control is an extremal control. The converse
is in general not true. If c admits a multiplier (θ(t), λ) with λ = 0, then c is
called an abnormal extremal. If λ < 0, then c is called a normal extremal.
An extremal control is called strictly abnormal if it is abnormal, but not
normal. From the definition of a multiplier, it is easily seen that an abnormal
extremal satisfies conditions independent of the cost function L, although
these conditions are necessary for being an optimal control. For that reason
they are called “abnormal”. It should be noted that R. Montgomery [45]
proved that there exist optimal controls that are strictly abnormal extremals.

The following theorem, gives necessary and sufficient conditions for abnor-
mal and strictly abnormal extremal controls. Recall that the closure of a
cone C in a topological vector space equals (C∗)∗, which implies that, in
the specific case of a geometric control structure, cl(VyRx) = (V ∗

y Rx(c))∗,
implying that the cone cl(VyRx) only depends on the control c.

Theorem 6.2. The following equivalences hold: (i) a control c taking x
to y is an abnormal extremal iff cl(VyRx)(c) 6= Vyτ and (ii) an extremal
control c taking x to y is a strictly abnormal extremal iff −∂/∂J belongs to
the boundary of cl(VyRx)(c).

Proof. The first statement (i) follows from the fact that every element in
the dual cone (cl(VyRx))∗ = V ∗

y Rx corresponds to a multiplier with λ = 0
(see Corollary 5.7).

We now prove statement (ii). If an extremal c : [a, b] → U is strictly ab-
normal then every element θy = (θy, λ) in V ∗

y Rx satisfies λ ≥ 0 (indeed,
otherwise it would be normal). Using the definition of the dual of a cone,
we obtain that −∂/∂J is contained in cl(VyRx), since 〈θy,−∂/∂J〉 ≤ 0 for
any θy ∈ V ∗

y Rx. On the other hand, since c is an extremal we know that
−∂/∂J is not contained in the interior of the cone cl(VyRx). Therefore,
−∂/∂J has to be contained in the boundary of cl(VyRx). The converse
follows by reversing the arguments.

The above characterisation of an abnormal extremal c implies that cl(VyRx)
does not equal the total space of vertical tangent vectors. Since V ∗

y Rx =
(CyRx)∗, this is equivalent to saying that cl(CyRx) does not equal the total
tangent space TyM . This result can be intuitively interpreted as follows. An
optimal control c is called abnormal if the control does not admit enough
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“variations” (cf. Section 2, page 64) in order for the associated variational
cone to equal the total tangent space. In the case where c is strictly abnor-
mal, we can say that the maximum principle fails since Corollary 2.5 (page
74), from which the maximum principle follows, only gives information on
those tangent vectors lying in the interior of a variational cone, and not
on those belonging to the boundary. Note that, since the variational cone
is entirely contained in the integrable distribution D̃, the above theorem
says that, if D̃x 6= TxM , for some x ∈ M , then any extremal through x, is
abnormal. Therefore, it is often assumed that the integrable distribution,
generated by D, spans the entire tangent bundle TM . If this is not the
case, then we always assume that we are working on the pull back anchored
bundle (cf. Chapter I, page 6). This reasoning is no longer valid for optimal
control problems with variable endpoints, since the submanifolds Pi and Pf

are, in general, not contained in a leaf of the foliation induced by D̃.

In order to check whether a control c is abnormal or not, one has to determine
the vertical variational cone. For that purpose, one has to integrate some
set of time dependent vector fields T(ρ(σi)), where σi are a finite number of
sections of ν generating the control c (cf. Lemma 4.1, page 90). Indeed, once
this is done, one can construct the variational cone (cf. Section 2, page 68),
and verify wether or not it equals the whole tangent space. In case one wants
to check if a control is strictly abnormal, the calculations become even more
involved, since one is obliged to compute the flows of a set of time dependent
vector fields in the extended geometric control structure. Moreover, the
condition that −∂/∂J should belong to the boundary of this cone is difficult
to check. In Section 8, where we will consider (linear) autonomous geometric
control structures, we will be able to derive some general properties of this
cone that might make the calculations easier. Among others, we will give a
sufficient condition for the non existence of abnormal extremals, which can
be easily computed.

7 Optimal control problems with variable endpoint conditions

In this section we prove a version of the maximum principle for optimal
control problems with variable endpoint conditions (cf. Section 3). Assume
that a geometric optimal control structure (τ, ν, ρ, L) is given and that Pi

and Pf are two immersed submanifolds of M .

Theorem 7.1 (The maximum principle). Assume that a control c :
[a, b] → U , taking x ∈ Pi to y ∈ Pf , is (Pi, Pf )-optimal. Then there exists
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a multiplier (θ, λ) with (i) λ ≤ 0, (ii) ζλ(c(a), θ(a)) ∈ (TxPi)
0, and (iii)

ζλ(c(b), θ(b)) ∈ (TyPf )0.

Proof. Recall the notations introduced in Section 3. From Proposition 3.4
we know that if c is (Pi, Pf )-optimal, then the cones K and K ′ are separable,
where K = sba(TxP ) ∗ CyRx and K ′ = C(−∂/∂J) ∗ TyQ, for some piecewise
ρ1-admissible curve s with base curve the extended control c taking (x, Jx)
to (y, Jy). From Remark 3.2, we have that the above condition is equivalent
to saying that there exists an element αy = (αy, λ) in the dual cone K∗ such
that

〈αy, v〉 ≥ 0 for all v ∈ K ′. (7.7)

Note that, since K∗ = (sba(T(x,Jx)P ))∗ ∩ (CyRx)∗, the element αy in K∗ is
contained in (CyRx)∗. In particular, from Proposition 5.2, we know that
αy = ζ(c(b), θy), where θy = (θy, λ) is an element of V ∗

y Rx, which is the pro-
jection of αy onto V ∗τ . Since any element in V ∗

y Rx determines a multiplier
of c (cf. Theorem 5.6), we can consider the multiplier (θ(t), λ) for c, with
θ(b) = θy.

Since, C(−∂/∂J) is a subcone of K ′, Equation 7.7 tells us that λ ≤ 0, which
proves (i). On the other hand, since TyP f is also contained in K ′, we have

〈αy, TyP f 〉 = 〈αy, TyPf 〉 ≥ 0.

Since TyPf is a linear subspace, one easily deduces that αy ∈ (TyPf )0,
proving (iii). Condition (ii) follows from a similar argument. Since αy ∈
(sba(TxP i))

∗, we have 〈αy, s
b
a(TxP i)〉 ≤ 0. The left-hand side of this inequality

can be rewritten as:

〈α(a), TxP i〉 = 〈α(a), TxPi〉 ≤ 0.

Note that, if α(t) = (sbt)
∗(αy), then α(t) = ζ(c(t), θ(t)), with θ(t) = (θ(t), λ)

and that ζ(c(t), θ(t)) = (ζλ(c(t), θ(t)), λ) holds (this easily follows if we use a
local coordinate chart). Now, since TxPi is a linear subspace, one necessarily
has that α(a) ∈ (TxPi)

0, which concludes the proof.

8 Autonomous optimal control problems

With an anchored bundle (νA, ρA), where νA : C → Q is a fibre bundle
and ρA : C → TQ is a bundle map fibred over the identity on Q, one can
associate a geometric control structure (τ, ν, ρ), in the following way:
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1. τ : M = IR × Q → IR : (t, q) 7→ τ(t, q) = t,

2. ν : U = IR × C → M : (t, s) 7→ ν(t, s) = (t, νA(s)), and

3. ρ : U → J1τ : (t, s) 7→ (t, ρA(s)), since J1τ ∼= IR × TQ.

The anchored bundle (νA, ρA) is sometimes called an autonomous geometric
control structure, as will be justified in the following paragraph. In this
section we will reformulate the maximum principle in the framework of an
autonomous geometric control structure. It is precisely this version of the
maximum principle that will be extensively used in further developments.
Furthermore, we will reconsider the characterisation of (strictly) abnormal
extremals and study the case where (νA, ρA) is a linear anchored bundle (or
linear autonomous geometric control structure).

We now translate concepts defined in the anchored bundle (νA, ρA) to known
concepts in the associated geometric control structure (τ, ν, ρ). Note first
that, if c is a control in (τ, ν, ρ), then, by definition of ρ, it satisfies the
following autonomous system of differential equations:

q̇j(t) = γj(qi(t), ua(t)),

which justifies the above denomination. We now consider the relation be-
tween controls and ρA-admissible curves. The natural projection of U =
IR×C onto its second factor C, is denoted by pC and, similarly, the projec-
tion of M onto Q is denoted by pQ. It is an easy exercise to see that every ρA-
admissible curve cA : [a, b] → C determines a smooth control c : [a, b] → U
with c(t) = (t, cA(t)). On the other hand, since (pC , pQ) is an anchored bun-
dle morphism between (ν,T ◦ ρ) and (νA, ρA), we have that any control c(t)
takes the form (t, cA(t)) where the curve cA(t) = pC(c(t)) is a ρA-admissible
curve. In particular, this implies that, given any point x = (a, q) ∈ M ,
then the set of reachable points Rx in M , determined with respect to the
anchored bundle (ν,T◦ρ), is mapped by pQ onto Rq in Q, with Rq the set of
reachable points from q with respect to the anchored bundle (νA, ρA). Using
the above correspondence and the fact that τ(R(a,q)) is a half-open interval
[a, b[ (cf. page 63), the subset [a, b[×Rq of M is precisely the set of reachable
points R(a,q) defined with respect to the anchored bundle (ν,T ◦ ρ).

Next, we specify what we mean by optimality in an autonomous geometric
control structure (νA, ρA) and how this notion of optimality is related with
the known notion of optimality in the associated geometric control structure
(τ, ν, ρ). Consider a smooth real-valued function LA on C. Using LA, we
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can define a cost function on U by putting L = p∗CLA. A functional on the
set of ρA-admissible curves is defined by:

J (cA) =

∫ b

a

LA(cA(t))dt,

where we have used the same notation as in the previous section since,
clearly, J (cA) = J (c), with c(t) = (t, cA(t)) the control associated with cA.
A ρA-admissible curve cA : [a, b] → C, taking a point q to q′, is called opti-
mal if, for any ρA-admissible curve cA′ : [a, b] → C taking q to q′, we have
J (cA) ≤ J (cA′). Note that cA is optimal with respect to LA iff the associated
control c(t) = (t, cA(t)) taking (a, q) to (b, q′) is optimal with respect to L.
We say that cA is strong optimal if, given any other control cA′ : [a′, b′] → C
taking q to q′, then J (cA) ≤ J (cA′). Note that the difference between opti-
mality and strong optimality lies within the fact that the interval on which
the control is defined may vary. Consider the following two immersed sub-
manifolds Pi and Pf of M defined by Pi ↪→ IR × {p} and Pf ↪→ IR × {q},
respectively. It is now easily seen that a ρA-admissible curve cA, taking q
to q′ is strong optimal iff the associated control c is (Pi, Pf )-optimal with
respect to p∗CLA. The problem of finding the (strong) optimal ρA-admissible
curves taking q to q′, is called the autonomous (strong) optimal control prob-
lem. The notion of strong optimality is important in time-optimal control
problems, i.e. the function LA is assumed to equal the constant function
1, which implies that, given any ρA-admissible curve cA : [a, b] → C, the
cost functional takes the form: J (cA) = b− a. In this case, a ρA-admissible
curve, taking q to q′, is time-optimal if it connects q with q′ in the least
amount of time. One can also study autonomous optimal control problems
where the endpoints may vary. However, since we will not encounter such
optimal control problems with variable endpoints in the remainder of this
thesis, these problems will not be discussed.

Finally, we shall consider some relations between objects belonging to the au-
tonomous geometric control structure (νA, ρA) and objects belonging to the
associated geometric control structure (τ, ν, ρ). Let ωQ denote the canonical
symplectic form on T ∗Q, and consider the closed two-form ωA

Q on C×QT ∗Q,
which is the pull-back of ωQ under the projection pT ∗Q : C ×Q T ∗Q → T ∗Q.
It is easily seen that the Vxτ can be identified with TqQ, where pQ(x) = q,
and similarly, the fibres of U equal to the fibres of C. In particular, if s ∈ Ux,
then we also regard it as an element of Cq and if θx ∈ V ∗

x τ , then we shall also
write θq for θx, with pQ(x) = q. Without mentioning it always explicitly, we
shall identify ν∗V ∗τ with IR×ν∗T ∗Q. We also agree, using these correspon-
dences, that, given a multiplier (θ(t), λ) of a control c(t) = (t, cA(t)), then
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θ(t) can also be regarded as a one-form along cA. Recall the locally defined
function hλ = γipi + λL on ν∗V ∗τ , which appeared in the closed two-form
ωλ = −dhλ ∧dt+dpi ∧dxi. Since the bundle τ : M = IR×Q → IR is trivial,
this function is globally well defined, and equals hλ(s, θq) = 〈θq, ρ

A(s)〉+λLA.

We can now prove the following version of the maximum principle for au-
tonomous optimal control problems.

Theorem 8.1 (The maximum principle). If a ρA-admissible curve cA :
[a, b] → C is optimal with respect to LA then there exists a piecewise smooth
one-form θ(t) along c̃A(t) = νA(cA(t)) and a real number λ ≤ 0 such that:

1. The following implicit Hamiltonian system is satisfied

i(ċA(t),θ̇(t))ω
A

Q = −dhλ(cA(t), θ(t))

for all t where the ρA-admissible curve cA is smooth,

2. given any fixed t0 ∈ I, the function s 7→ hλ(s, θ(t0)) on Cc̃A(t0) attains
a global maximum for s = cA(t0),

3. hλ(cA(t), θ(t)) = const. for all t and,

4. (θ(t), λ) 6= 0 for all t ∈ I.

If cA is strong optimal then condition 3. should be replaced by the condition
that hλ(cA(t), θ(t)) = 0 for all t.

Proof. We already know that if cA is optimal, then the associated control c
is also optimal in the non-autonomous setting. This correspondence allows
us to apply Theorem 6.1. The remainder of this proof consists of translating
the necessary conditions from the time-dependent setting to the autonomous
setting.

So, assume that (θ, λ) is a multiplier for the optimal control c. By defini-
tion this means that θ(t) is a piecewise smooth one-form along cA and λ a
constant with λ ≤ 0,

1. i(ċ(t),θ̇(t))ωλ = 0 on every smooth part of the curve (c, θ)(t),

2. for all t0 ∈ I, the function ζλ
θ(t0) defined by

s 7→ 〈ζλ(c(t0), θ(t0)),T(ρ(s))〉 + λL(s) on ν−1(c̃(t0))

attains a global maximum for s = c(t0),
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3. (θ(t), λ) 6= 0 for all t ∈ I.

The closed two-form ωλ can be written (with a slight abuse of notation) as
ωA

Q − dhλ ∧ dt. Moreover, one can verify that ζλ
θ(t)(s) = −hλ(cA(t), θ(t)) +

hλ(s, θ(t)), all t ∈ I and s ∈ ν−1(c̃(t)). We conclude that the function
s 7→ hλ(s, θ(t)) on the fibres of C attains a global maximum for s = c(t) or,
using the above identification, for s = cA(t).

Given any tangent vector v = vA + v0∂/∂t ∈ T (U ×M V ∗τ), with vA ∈
T (C ×Q T ∗Q) and v0 ∈ IR, the following equation holds

ivωλ = ivAωA

Q − dhλ(vA)dt + v0dhλ.

If we substitute in the above equation v = (ċ(t), θ̇(t)) then, since v0 = 1 and
vA = (ċA(t), θ̇(t)), we obtain ivAωA

Q = −dhλ(cA(t), θ(t)).

Since (cA(t), θ(t)) solves the implicit Hamiltonian system with Hamiltonian
hλ, the function hλ is constant on every smooth part of the curve (cA(t), θ(t)).
To complete the proof that hλ(cA(t), θ(t)) is constant for all t, we will show
that hλ(cA(t), θ(t)) is continuous, even at those points t here cA is discontin-
uous. This is done using similar arguments as in the proof of Proposition 5.2.
For that purpose, let us assume that the curve cA is discontinuous at t = t0
and consider an adapted coordinate chart of C containing the point cA(t0).
In the coordinates we write cA(t) = (qi(t), ua(t)), θ(t) = (t, qi(t), pi(t)) and
s = (qi(t0), u

a). We then have

hλ(qi(t), ua(t), pi(t)) ≥ hλ(qi(t), ua, pi(t)),

for all possible ua. If we consider this inequality and take successively the
limit from the left and from the right, for t → t0, we find that the function
hλ(qi(t), ua(t), pi(t)) is indeed continuous at t = t0.

It remains to prove, in the case of strong optimality, that hλ is zero along
the curve (cA(t), θ(t)). We now make use of Theorem 7.1. From the fact
that

ζλ(c(a), θ(a)) = −hλ(cA(a), θ(a))dt + pi(a)dqi ∈ (TPi)
0 = V ∗τ,

we obtain hλ(cA(a), θ(a)) = 0 and, hence, in view of Property 3 it follows
that hλ vanishes identically on (cA(t), θ(t)).

A pair (θ, λ), with θ a piecewise smooth one-form along a ρA-admissible
curve cA and with λ ∈ IR, for which the properties mentioned in Theorem
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8.1 hold, is also called a multiplier of cA. By reversing the arguments in
the proof of Theorem 8.1, it is easily seen that (θ, λ) is a multiplier for the
control c. Similar to the non-autonomous case, we say that a ρA-admissible
curve cA is an extremal if there exists a multiplier (θ, λ) with λ ≤ 0. If an
extremal cA admits a multiplier (θ, λ) with λ = 0, then it is called abnormal,
and if it admits a multiplier with λ < 0, then it is called normal. If cA is an
abnormal extremal, which is not normal, then it is called a strictly abnormal
extremal.

The closures of the vertical variational cones cl(VyRx) and cl(VyRx) are
cones in, respectively, Vyτ and Vyτ , where x = (a, q, Jx) and y = (b, q′, Jy),
with Jy − Jx = J (cA). The fibre Vyτ of V τ at y can be identified with Tq′Q
and, therefore, we shall consider the cone VyRx as a cone in Tq′Q. Similarly,
Vyτ can be identified with Tq′Q × IR. Using these identifications, we can
reformulate Theorem 6.2 as follows.

Theorem 8.2. An extremal cA is abnormal iff cl(VyRx) 6= Tq′Q. An ex-
tremal cA is strictly abnormal iff the boundary of the cone cl(VyRx) in
Tq′Q × IR does not contain (0q′ ,−1), where 0q′ denotes the zero vector in
Tq′Q.

In the literature the following denomination is often used. A ρA-admissible
curve cA is called an extremal if there exists a one-form θ along c̃A and a real
number λ such that conditions 1, 3 and 4 from Theorem 8.1 are satisfied.
In particular, the maximality condition 2 is not required to hold. However,
from the implicit Hamiltonian system that (cA, θ(t)) satisfies, one can deduce
that the function hλ attains a local extremum, i.e.

∂hλ

∂ua

(
cA(t), θ(t)

)
= 0, for all a = 1, . . . , k and t ∈ I.

For that reason, a pair (θ, λ) is called a local multiplier of cA, if the condi-
tions 1, 3 and 4 of Theorem 8.1 are satisfied. Similarly we will then talk
about a local extremal and abnormal or normal local extremals. It is an easy
exercise to see that, if (θ1, λ1) and (θ2, λ2) are local multipliers for a given ρA-
admissible curve cA, then the pair (r1θ1 +r2θ2, r1λ1 +r2λ2), with r1, r2 ∈ IR,
is also a local multiplier for cA. Therefore, the set of local multipliers can
be given a linear structure.

In the remainder of this section we shall concentrate on linear autonomous
geometric optimal control structures, i.e. autonomous geometric optimal
control structures satisfying the additional conditions that (νA, ρA) is a linear
anchored bundle, i.e. νA : C → Q is a linear bundle and ρA : C → TQ is a
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linear bundle map. Let us denote the distribution generated by ρA on the
base space Q, by DA, i.e. im ρA = DA (cf. Chapter I). We first study the
necessary conditions encountered in the maximum principle (Theorem 8.1).

Consider the maximality condition from Theorem 8.1. Fix αq ∈ T ∗
q Q. Then,

s 7→ hλ(s, αq), regarded as a function on Cq, attains a local extremum at
s = s0 iff, when putting αq = (qi, pi) and s0 = (qi, ua), we have

∂

∂ua

∣∣∣∣
s0

(
ρAi

au
api + λLA(qi, ua, pi)

)
= 0, (8.8)

or equivalently ρA∗(αx) = −λIFLA(s0), where IFLA : C → C∗ is the so-called
fibre derivative of LA and ρA∗ : T ∗Q → C∗ is the dual of the linear bundle
map ρA.

If cA is an abnormal local extremal (i.e. if there exists a local multiplier (θ, λ)
with λ = 0), then ρA∗(θ(t)) = 0 for any t or, equivalently, θ(t) ∈ D0

c̃A(t)
(the

annihilator space of D at the point c̃A(t)). Moreover, in this specific case,
the function s 7→ h0(s, θ(t)) equals 0 for all s ∈ Cc̃A(t), which implies that
cA is a abnormal extremal. We conclude that for linear autonomous control
problems, the abnormal local extremals are abnormal extremals (i.e. they
satisfy the maximality condition 2 from Theorem 8.1). This observation
further implies that VyRx is a linear subspace.

Theorem 8.3. Let cA : [a, b] = I → C denote a ρA-admissible curve, taking
q to q′, and let c : I → U be the associated control. Then the closure
cl(VyRx) of the vertical variational cone, with x = (a, q) and y = (b, q′) is
a linear subspace of Tq′Q. Moreover, cl(VyRx) = VyRx and the dual cone
V ∗

y Rx equals the annihilator space (VyRx)0 of VyRx.

Proof. In order to prove that cl(VyRx) is a linear subspace, it is sufficient
to prove that V ∗

y Rx is a linear subspace of T ∗
q′Q (see Remark 3.2). In view

of Corollary 5.7 any element in V ∗
y Rx corresponds to a multiplier (θ, λ) with

λ = 0. In view of this correspondence, it is sufficient to prove that the set
of multipliers of c has a linear structure. This in turn follows from the fact
that any local multiplier (θ, λ) with λ = 0, is a multiplier and that the set
of local multipliers is equipped with a linear structure.

Since VyRx is a linear subspace of Tq′Q, curves in VyRx will have their
tangent vector in VyRx. It is precisely this result that we will use to obtain
sufficient conditions for an extremal not to be abnormal. For notational
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convenience, we consider a smooth ρA-admissible curve cA, for which there
exists a section σ of ν with σ(t, c̃A(t)) = (t, cA(t)). Note that Proposition
1.1 precisely says that any ρA-admissible curve is a composition of smooth
ρA-admissible curves of this type. Recall the notations and definitions from
Remark 2.8. Using the section σ we can consider the time dependent vector
field XA : IR×Q → TQ : z 7→ ρA(pC(σ(z))). Then c̃A is an integral curve of

XA, since XA(t, c̃A(t)) = ˙̃c
A

(t) holds.

Consider an arbitrary section σA of νA. We can consider the time dependent

vector fields Y
(i)
t , with i ∈ IN0, recursively defined by Y

(0)
t = ρA ◦ σA,

Y
(1)
t = [XA

t , ρA ◦ σA] and Y
(i)
t = Ẏ

(i−1)
t + [XA

t , Y
(i−1)
t ], for i ≥ 2. Let I(XA)

denote the differentiable distribution on dom(XA) ⊂ M = IR × Q, which is
defined as follows: for any z ∈ dom(XA) the linear space I(XA)z is spanned

by all tangent vectors of the form Y (i)(z), given any Y
(0)
t = ρA ◦ σA with

σA ∈ Γ(νA) and i ∈ IN0. (Note that we used the identification of Vzτ and
TpQ(z)Q.)

Theorem 8.4. The linear space I(XA)(b,q′) is a subspace of VyRx.

Proof. Let {ψt′

t } denote the flow of the time dependent vector field XA.
By definition of VyRx, any tangent vector of the form

Tψb
t

((
ρA ◦ σA

)(
(ψb

t )
−1(q′)

))
, for some σA ∈ Γ(νA) and t ∈]b − ε, b]

is contained in VyRx. Let us fix any σA ∈ Γ(νA), then the above tangent
vector, considered as a function of t, determines a curve v(t) in VyRx through
ρA(σA(q′)) at t = b. The tangent vector through this curve at any t is again
contained in VyRx, implying that, using Remark 2.8,

Tψb
t

([
XA

t , ρA ◦ σA
](

(ψb
t )

−1(q′)
))

= (ψt
b)

∗(Y
(1)
t )(q′) = −v̇(t) ∈ VyRx,

where Y
(i)
t denotes the sequence of time dependent vector fields associated

with σA. If we put t = b, then we obtain that Y
(1)
b (q′) = [XA

b , ρA ◦ σA](q′) ∈
VyRx. Using the formulae, mentioned in Remark 2.8, we have that:

di−1

dti−1

(
(ψt

b)
∗(Y

(1)
t )(q′)

)
=

(
(ψt

b)
∗(Y

(i)
t )(q′)

)
∈ VyRx, for any i ≥ 2.

This concludes the proof.
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Note that, in case XA can be chosen to be time independent (this is possible

if ˙̃c
A

(t) 6= 0), each vector field Y
(i)
t introduced above is time independent

and equals:

Y (i) =
[
XA, [· · · , [XA, ρA ◦ σA] · · · ]

]
︸ ︷︷ ︸

i

.

The distribution I(XA) can the be regarded as a distribution on Q. The
above theorem says that, given any section σA of νA, all iterated Lie brackets
of XA with ρA ◦ σA evaluated at q′, are contained in VyRx. This result
provides us with sufficient conditions for a ρA-admissible curve not to be
abnormal. For the following theorem we assume that cA is a ρA-admissible
curve, for which the control c(t) = (t, cA(t)) is induced by an ordered family
S = (σ`, . . . , σ1) of sections of ν, i.e. c(t) = σi(c̃(t)) for t ∈ [ai−1, ai]. Let
XA

i denote the time dependent vector field defined by ρA ◦ pC ◦ σi.

Theorem 8.5. The ρA-admissible curve cA : [a, b] → C can not be an
abnormal extremal if there exists a t ∈ [ai−1, ai] with i = 1, . . . , `, for which
the following condition holds:

I
(
XA

i

)
(t,c̃A(t))

= Tc̃A(t)Q.

Proof. Recall Property 2.3 (page 71), saying that the variational cones sat-
isfy the inclusion property. Therefore, if the restriction cA|[t0,t1] to some
interval [t0, t1] ⊂ [a, b] is not abnormal (i.e. if V(t1,c̃A(t1))R(t0,c̃A(t0)) equals
T(t1,c̃A(t1))Q), then cA itself can not be abnormal. Using the previous theo-
rem, we know that the ρA-admissible curve cA|[ai−1,t1], for any t1 ∈]ai−1, ai],
is not abnormal if I

(
XA

i

)
(t,c̃A(t))

= Tc̃A(t)Q. Note that z 7→ I(XA

i )z is a

differentiable distribution, and therefore its rank is a lower semicontinuous
function. Thus, if

dim
(
I
(
XA

i

)
(ai−1,c̃A(ai−1))

)
= n,

then it has maximal rank n at all points (t, c̃A(t)) for t ∈]ai−1, ai] sufficiently
close to ai−1. This concludes the proof.

We now continue with studying the normal local extremals. If cA is a normal
local extremal i.e. if there exists a multiplier (θ, λ) with λ = −1, then the
equation ρA∗(θ(t)) = IFLA(cA(t)) holds. Assume that LA is a regular cost,
i.e. if the fibre derivative IFLA : C → C∗ of LA is invertible. Then the
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curve θ(t) in T ∗Q generates cA(t), since cA(t) = (IFLA)−1(ρA∗(θ(t))). In
this case, since θ is piecewise smooth, the curve cA generated by θ is also
continuous. Therefore, a normal local extremal is a piecewise smooth curve
in C. Moreover, from the following proposition it follows that it is in fact a
smooth curve.

Theorem 8.6. Assume that LA denotes a regular cost. Every normal local
extremal cA is generated by an integral curve θ(t) of the Hamiltonian vector
field XG on T ∗Q corresponding to the Hamiltonian

G(αq) = hλ((IFLA)−1(ρA∗(αq), αq),

for αq ∈ T ∗
q Q and with λ = −1. The converse also holds, i.e. every integral

curve of XG generates a normal local extremal.

Proof. We assume that cA is a normal local extremal and fix a local mul-
tiplier (θ, λ) with λ = −1. Consider the function LA : T ∗Q → C ×Q T ∗Q,
defined by:

LA(αq) =
(
(IFLA)−1(ρA∗(αq)), αq

)
.

Note that LA is a section of the bundle pT ∗Q : C ×Q T ∗Q → T ∗Q, with
pT ∗Q the projection onto the second factor. Then it is easily seen that
LA∗hλ = G and that LA∗ωA

Q = ωQ. Recall the implicit Hamiltonian system
(condition 1 in Theorem 8.1): a multiplier has to satisfy: i(ċA(t),θ̇(t))ω

A

Q =

−dhλ(cA(t), θ(t)), and consider the tangent vectors

v =
(
ċA(t), θ̇(t)

)
= TLA

(
θ̇(t)

)
,

and w = TLA(w) ∈ T (C ×Q T ∗Q) for w ∈ T (T ∗Q) arbitrary. Then, the
following equation holds ωA

Q(v, w) = ωQ(θ̇(t), w). By substituting LA∗hλ =
G we obtain that iθ̇(t)ωQ = −dG(θ(t)) for every smooth part of θ. By
uniqueness of solutions to differential equations, it follows that θ is smooth
(and therefore we have that cA is smooth).

On the other hand, assume that iθ̇(t)ωQ = −dG(θ(t)) and consider the

smooth curve cA(t) = (IFLA)−1(ρA∗(θ(t))) in C. Then, by reversing the
above arguments, we obtain that ωA

Q(v, w) = −dhλ(w) with

v = (ċA(t), θ̇(t)) = TLA(θ̇(t))

and w = TLA(w) ∈ T (C ×Q T ∗Q) for w ∈ T (T ∗Q) arbitrary and λ = −1.
It remains to check that this is also valid for arbitrary w ∈ T (C ×Q T ∗Q).
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Since LA is a section of pT ∗Q, any element w in T (C×Q T ∗Q) can be written
as w = TLA(w) + ŵ where w = TpT ∗Q(w) ∈ T (T ∗Q) and ŵ ∈ kerTpT ∗Q.
Since ωA

Q = p∗T ∗QωQ it is easily seen that iŵωA

Q = 0. From this we conclude
that ivω

A

Q = −dhλ(cA(t), θ(t)) for arbitrary t.

9 Some applications of the maximum principle in geometric me-
chanics

As an illustration of the formalism developed above, we discuss in this sec-
tion some applications of optimal control theory to mechanics. We first
deduce that the solutions to the Euler-Lagrange equations of a given La-
grangian L are precisely the extremals of a trivial optimal control problem
with cost L. We then consider the “vakonomic approach” to Lagrangian
systems subjected to (regular) nonholonomic constraints and, subsequently,
we also consider the formulation of Lagrangian systems on (affine) Lie alge-
broids.

9.1 Lagrangian systems

A Lagrangian system (Q, L) is a pair, where Q denotes an n-dimensional
manifold, the configuration space, and where L is a smooth function on
TQ called a Lagrangian (for further details, see e.g. [37]). Let us fix a
Lagrangian system and consider the following (trivial) linear autonomous
geometric control structure (τQ, idTQ), where τQ : TQ → Q and idTQ is the
identity transformation on TQ. The Lagrangian L can be interpreted as a
cost function. The following properties are easily verified. Since the anchor
map idTQ is the identity, for each q ∈ Q the set of reachable points Rq equals
Q (where we assume that Q is connected). Every piecewise smooth curve c
in Q is the base curve of the (idTQ)-admissible curve ċ (we deviate from the
notations used in the previous sections of this chapter). Since im(idTQ) =
TQ, no abnormal extremals can occur (cf. Theorem 8.5). Assume that ċ
is a (normal) extremal. Let (θ(t),−1) denote a multiplier and consider the
local maximum condition (Equation 8.8) from the previous section, with
ρA = idTQ:

θ(t) = IFL(˙̃c(t)).

We now reformulate Theorem 8.1, for the above specific case considered here.
Note that, since an autonomous geometric control structure is an anchored
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bundle, the following reformulation of the maximum principle holds for any
other linear autonomous geometric control structure (νA, ρA) on Q for which
there exists a linear anchored bundle isomorphism between (νA, ρA) and
(τTQ, idTQ). Let ωL denote the closed two-form on TQ, which is defined as
the pull-back of the canonical symplectic two-form ω on T ∗Q under IFL :
TQ → T ∗Q, i.e. ωL = IFL∗ω. Let EL denote the energy function associated
with L, and which is defined by EL = ∆(L) − L, where ∆ denotes the
dilation vector field on the linear bundle τQ (cf. Chapter II).

Theorem 9.1. Let c denote a piecewise smooth curve in Q. Then ċ is an
local extremal iff c satisfies the equation

ic̈(t)ωL = −dEL(ċ(t)),

at all points where c is smooth.

Proof. Assume that ċ is a local extremal, with multiplier (θ,−1). Recall
Theorem 8.1, then θ(t) satisfies, for all t where c is smooth:

i(θ̇(t),c̈(t))ω
A

Q = −dh−1(θ(t), ċ(t)).

Now, consider the map

TQ → TQ ×Q T ∗Q : v 7→ (v, αq) = (v, IFL(v)),

which can be used to pull-back ωA

Q to a closed two-form on TQ. It is easily
seen that this closed two-form is precisely ωL. The pull-back of h−1 under
this map equals: h−1(v, IFL(v)) = 〈IFL(v), v〉 − L(v) = EL(v), for any v ∈
TQ. Therefore, since θ(t) = IFL(ċ(t)), we easily obtain that

i(θ̇(t),c̈(t))ω
A

Q = −dh−1(θ(t), ċ(t))

implies

ic̈(t)ωL = −dEL(ċ(t)).

The converse is proven using the same techniques as in the proof of Theorem
8.6. Let p1 denote the projection of TQ ×Q T ∗Q onto the first factor. It
is sufficient to prove that, if w ∈ T(θ(t),ċ(t))(TQ ×Q T ∗Q), with Tp1(w) = 0,
then iw(i(θ̇,c̈)ω

A

Q) = −w(h−1). This easily follows from local coordinate
expressions.
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Note that in the case where L is a regular Lagrangian (i.e. IFL is invertible),
then ωL is a symplectic two-form. This, in turn, implies that there exists
a unique vector field Γ ∈ X(TQ), such that iΓωL = −dEL. The local
extremals are then precisely the integral curves of Γ (which implies that
they are smooth).

9.2 Vakonomic approach to Lagrangian systems subjected to nonholonomic
constraints

Let (Q, L) again denote a Lagrangian system with dimQ = n, and let C
be a k-dimensional (not necessarily linear) subbundle of TQ, representing
some nonholonomic constraints to which the Lagrangian system is subjected.
Locally, C can be described as the common zero-level set Φα(qi, vi) = 0 of
n − k independent function Φα : TQ → IRn−k. The subbundle condition
entails that rank(∂Φα/∂vj) = n − k. Using the implicit function theorem,
there exist n − k functions such that, v = vi∂/∂qi|q ∈ C or Φα(q, v) = 0 iff
vα = Ψα(qi, va) for a = 1, . . . , k and α = k + 1, . . . , n.

Let i : C ↪→ TQ represent the canonical injection and ν : C → Q the re-
striction of τQ to C. The pair (ν, i) is a (not necessarily linear) anchored

bundle. If we then put L̃ = i∗L ∈ C∞(C) and regard L̃ as a cost function,
we obtain an autonomous geometric control structure. The base curves in
Q of extremals are called the solutions to the Lagrangian system (Q, L) sub-
jected to the nonholonomic constraint bundle C. Note that these solutions
do not necessarily satisfy the equations of the nonholonomic mechanical
system with Lagrangian L (cf. Section IV-4). Let c denote a curve in Q,
such that ċ ∈ C. The equations from Theorem 8.1, characterising a local
normal extremal, correspond to the ones obtained in [10]. Indeed, if we ex-
press the equation i(c̈(t),θ̇(t)ω

A

Q = −dh−1(ċ(t), θ(t)) = 0 in a local coordinate

neighbourhood, we obtain, putting c(t) = (qi(t)) and θ(t) = (qi(t), pi(t))





d

dt

(
∂L̃

∂va

)
− ∂L̃

∂qa
= pα

(
d

dt

(
∂Ψα

∂va

)
− ∂Ψα

∂qa

)
+ ṗα

∂Ψα

∂va
,

ṗα(t) =
∂L̃

∂qα
− pβ

∂Ψβ

∂qα
,

q̇α = Ψα(qi, q̇a),

where we used the local extremum condition: ∂L̃/∂va = pa + pα∂Ψα/∂va,
from which it follows that the k momenta pa can be expressed in terms of
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the n − k momenta pα. This implies that the multiplier θ only depends on
the n− k momenta pα. If we want to recover a more familiar formulation of
these equations, note that they can be rewritten in an equivalent form as





d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= λ̇α

∂Φ̃α

∂vi
+ λα

(
d

dt

(
∂Φ̃α

∂vi

)
− ∂Φ̃α

∂qi

)
,

0 = Φ̃α(qi, q̇a),

with Φ̃α(qi, vi) = Ψα(qi, va) − vα and λα = pα − ∂L/∂vα. The functions
λα are often called Lagrangian multipliers. In view of the above corre-
spondence between the pα and the λα, the denomination “multiplier” for
θ(t) = (qi(t), pi(t)) is justified.

9.3 Regular Lagrangian systems on (affine) Lie algebroids

Assume that ν : C → Q is a Lie algebroid with anchor map ρ : C → TQ.
In particular, (ν, ρ) is a linear anchored bundle. It is a well known fact
that the Lie algebroid structure determines a Poisson structure on the dual
bundle C∗, where we shall denote the bracket on C∞(C∗) by {·, ·}C∗ and
the canonical Poisson bracket on C∞(T ∗Q) will be denoted by {·, ·}. It
is also well-known that both Poisson structures are ρ∗ connected, i.e. if
χ = ρ∗, then, given arbitrary f, g ∈ C∞(C∗) the following equality holds:
{χ∗f, χ∗g} = χ∗{f, g}C∗ . This implies that any Hamiltonian vector field Xf

on C∗ is ρ∗-connected to the Hamiltonian vector field Xχ∗f on T ∗Q.

Let L ∈ C∞(C) be a regular cost and consider the function G on T ∗Q,
introduced in the Section 8 (Theorem 8.6). Define g ∈ C∞(C∗) by g(α) =
〈α, IFL−1(α)〉 − L(IFL−1(α)) with α ∈ C∗. Then, it is easily seen that
χ∗g = G. This guarantees that, given any integral curve θ(t) of XG, then
ρ∗(θ(t)) is an integral curve of Xg and, conversely, any integral curve α(t)
of Xg, through a point in the image of ρ∗, is the projection under ρ∗ of an
integral curve of XG. From this we conclude that, in the case where C∗

is a Lie-algebroid, the integral curves of Xg through a point in the image
of ρ∗ are projections of normal local extremals. In [40], one can find a
detailed treatment of how the above defined “Hamiltonian” system on C∗

can be translated into a “Lagrangian” system on C, using the “Legendre”
transformation IFL : C → C∗. In particular, one has to generalise the
concepts of dilation vector field and vertical endomorphism to the case of
a Lie algebroid, which enables one to consider a Poincaré-Cartan two-form
associated to the function L.
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Here, we shall pay special attention to the case of Lagrangian equations on
affine Lie algebroids, which have been studied recently in [41], with a view of
deriving a time dependent version of Lagrange equations on Lie algebroids.
We follow the discussion of [16, 41]. However, for the sake of simplicity, we
only present a local treatment.

Let (ν, ρ) denote an affine anchored bundle on M , i.e. E is an affine bundle
over M , with anchor map an affine bundle map from E to TM . The linear
bundle, on which E is modeled, is denoted by V . The affine bundle E is
called an affine Lie algebroid if V is equipped with a Lie algebroid structure
(see page 52), with bracket [·, ·], and if there exists an action D of Γ(E) on
Γ(V ) satisfying the following conditions: for all f ∈ C∞(M), σ ∈ Γ(E) and
ζ, ζ1, ζ2 ∈ Γ(V )

1. Dσfζ = ρ(σ)(f)ζ + fDσζ;

2. Dσ(ζ1 + ζ2) = Dσζ1 + Dσζ2;

3. Dσ+ζ1ζ2 = Dσζ2 + [ζ1, ζ2];

4. Dσ[ζ1, ζ2] = [Dσζ1, ζ2] + [ζ1, Dσζ2].

It should be mentioned that there is a certain redundancy in the above
condition, i.e. it is sufficient that the bracket on Γ(V ) is skew-symmetric.
The fact that the bracket on Γ(V ) determines a Lie algebroid structure (IR-
linear, the Jacobi identity and the compatibility property) can be deduced
from 1 to 4. It should also be noted that, upon replacing ζ2 by fζ2 in
4, one obtains that ρ(Dσζ1) = [ρ(σ), ρ(ζ1)], where we make no notational
distinction between the affine map ρ and its linear part, i.e. the linear bundle
map ρ : V → TM , induced by ρ, is also denoted by ρ. Take a bundle adapted
coordinate system (qi, ua) on V and fix one local section of E, say σ0. Then
(qi, ua) determines a coordinate system on E, where (qi, 0) corresponds to
the element σ0(q). A ρ-admissible curve c : [a, b] → E : t 7→ (qi(t), ua(t))
satisfies the relations:

q̇i(t) = γi
0(q(t)) + γi

a(q(t))u
a(t),

The above defined affine Lie algebroid structure is determined by the lo-
cal structure functions Cc

ab of the Lie algebroid structure on Γ(V ) and, in
addition, the local functions Cc

0b that are defined by,

Dσ0ζb(q) = Cc
0b(q)ζc(q).
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Let L ∈ C∞(U) denote a regular cost on U . Then, the Lagrangian equations,
for a given ρ-admissible curve c, derived in [41], can be written as:

q̇i = γi
0 + γi

au
a,

d

dt

(
∂L

∂ua

)
= γi

a

∂L

∂qi
+

(
Cb

0a + Cb
cau

c
) ∂L

∂ub
.

We now prove prove that these equations can also be obtained with our
formalism, from the maximum principle (cf. Theorem 8.1). Indeed, let c be a
normal local extremal. Then: i(ċ(t),θ̇(t))ω

A

M = −dh−1(c(t), θ(t)) holds, where

(θ(t),−1) is a local multiplier. In coordinates, with θ(t) = (qi(t), pi(t)):

q̇i = γi
0 + γi

au
a;

ṗi = −pj

(
∂γj

0

∂qi
+

∂γj
a

∂qi
ua

)
+

∂L

∂qi
;

∂L

∂ua
= piγ

i
a.

Multiplying the second equation with γi
a and summing over i, we obtain:

d

dt

(
piγ

i
a

)
= pi

∂γi
a

∂qj

(
γj

0 + γj
bu

b
)
− pj

(
γi

a

∂γj
0

∂qi
+ γi

a

∂γj
b

∂qi
ub

)
+ γi

a

∂L

∂qi

If we consider the coefficient of pi, and substitute the identities

Cc
abγ

i
c = γj

a

∂γi
b

∂qj
− γj

b

∂γi
a

∂qj
;

Cc
0bγ

i
c = γj

0

∂γi
b

∂qj
− γj

b

∂γi
0

∂qj
,

we obtain, putting ∂L/∂ua = γi
api:

d

dt

(
∂L

∂ua

)
= γi

a

∂L

∂qi
+

(
Cb

0a + Cb
cau

c
) ∂L

∂ub
.

These, together with the relations q̇i = γi
0(q) + γi

a(q)u
a, are precisely the

Lagrangian equations mentioned above. For further developments on the
geometric formulation of Lagrangian mechanics on affine Lie algebroids we
refer to [41].
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9.4 Connection control systems

We now consider the so called affine connection control systems, introduced
by A.D. Lewis in [34, 35]. The number of applications that fit in this geo-
metric formulation seems to be very large, and we will only mention some of
them. For further examples, we refer the reader to the work of A.D. Lewis.
Let us first specify what we mean by an affine connection control system.

Definition 9.1. An affine connection control system consists of a linear
anchored bundle (ν, ρ) on Q, and, in addition, a connection ∇ on Q.

To avoid any confusion, we mention explicitly that ∇ is a standard linear
connection. The above definition is slightly different from the one given in
[35]. Denote the control domain by C and let Γ denote the second order
vector field on TQ, representing the geodesic spray of ∇, i.e. if Γi

jk are the
local connection coefficients of ∇, then

Γ(q, v) = vi ∂

∂qi
+ Γi

jkv
jvk ∂

∂vi
.

We always assume that im ρ is a regular distribution. Consider the au-
tonomous control system (ν ′, ρ′) on TQ, defined by ν ′ : C ′ = τ∗

QC → TQ
and ρ′(vq, s) = Γ(vq) + (ρ(u))V

vq
, where (wq)

V
vq

denotes the vertical lift of
the tangent vector wq ∈ TqQ to TvqTQ, i.e. (wq)

V
vq

= d/dt(vq + twq)|t=0.
Let c′ : I → C ′ denote a ρ′-admissible curve, then by definition, the curve
c′(t) = (v(t), c(t)), with v(t) ∈ TQ and c(t) ∈ C, satisfies:

v̇(t) = Γ(v(t)) + (ρ(c(t)))V

v(t).

First, if we project this equation on Q using TτQ, we obtain that, for

τQ(v(t)) = c̃(t), ˙̃c(t) = v(t). Secondly, since v̇(t) − Γ(v(t)) is vertical to
τQ and since the second term on the right side is also vertical, we can use
the identification of VwqτQ with TqQ and, from the definition of the connec-
tion map K associated with ∇ (cf. Section II-1), we have that

∇ ˙̃c(t)
˙̃c(t) = ρ(c(t)).

Therefore, a curve (v(t), c(t)) is ρ′-admissible iff v(t) = ˙̃c(t) and ∇ ˙̃c(t)
˙̃c(t) =

ρ(c(t)). The above equation is encountered in the study of nonholonomic
mechanical systems, which will be discussed in Chapter V. Examples include
the upright rolling penny, the snakeboard, the rolling racer, ... (see [34]).
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When considering optimal affine connection control problems, the case with
a constant Lagrangian function L ∈ C∞(C ′), i.e. L = 1, is often encoun-
tered. Thus, J (c) = b − a if c is defined on [a, b]. The strong optimal
controls, with starting point v ∈ TqQ and endpoint v′ ∈ Tq′Q, in this au-
tonomous geometric control structure, are often called time-optimal, which
is clearly justified when considering the cost functional. (One could also
consider the problem of finding time-optimal controls for which the veloci-
ties at starting point q and endpoint q′ are variable, i.e. a control which is
(TqQ, Tq′Q)-time-optimal.) The maximum principle, developed in Theorem
8.1, can now be translated in the following form. Let the curvature and
torsion of ∇ be denoted by R and T , respectively. Consider the following
tensors R∗ and T ∗, associated to R and T :

〈R∗(α, v2)(v3), v1〉 = 〈α, R(v1, v2)(v3)〉;
〈T ∗(α, v2), v1〉 = 〈α, T (v1, v2)〉.

In order to write down the equations of a normal local extremal, we need to
draw attention to the following point. Let θ denote a section of the bundle
(im ρ)0, then we define a map Π(θ, ·) : Γ(im ρ) → X∗(Q) according to:

〈Π(θ, X), Y 〉 = 〈θ,∇Y X〉,

for all X ∈ Γ(im ρ) and Y ∈ X(Q). In local coordinates, with θ = (qi, pi),
this map reads:

Π(θ, γi
au

a ∂

∂qi
) = pi

(
ua ∂γi

a

∂qj
− Γi

jkγ
k
aua

)
dqj ,

and is clearly tensorial. We no apply Theorem 8.1. A local extremal, in
the above defined time-optimal control problem, is a curve c : [a, b] → C for
which there exists a piecewise smooth one-form θ along c̃, which is contained
in (im ρ)0, and which satisfies the equation (after a tedious computation):

∇2
˙̃c(t)

θ(t) + R∗
(
θ(t), ˙̃c(t)

)(
˙̃c(t)

)
− T ∗

(
∇ ˙̃c(t)θ(t),

˙̃c(t)
)

= Π
(
θ(t), ρ(u(t))

)
.

(9.9)

In addition, putting η(t) := 1/2T ∗(θ(t), ˙̃c(t))−∇ ˙̃c(t)θ(t), the following prop-
erties should hold:

1. the triple (λ, η(t), θ(t)) 6= 0 for all t ∈ [a, b];

2. 〈η(t), ˙̃c(t)〉 + 〈θ(t), ρ(u(t))〉 + λ = 0 for all t ∈ [a, b];
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3. if c is (TqQ, Tq′Q)-optimal, then θ(a) = θ(b) = 0.

Remark 9.2. A affine connection control system is an autonomous geometric
control structure on TQ, for which multipliers are curves in T ∗TQ. Using the
decomposition of T ∗TQ = T ∗Q ×TQ T ∗Q, determined by the connection ∇,
any multiplier will determine two curves in T ∗Q, both projecting onto c̃. These
curves are precisely θ and η. In coordinates, this decomposition is given by:

T ∗TQ → T ∗Q ×TQ T ∗Q : pidqi|v + Pidvi|v 7→((
pi + 1

2

(
Γj

ik + Γj
ki

)
Pjv

k
)
dqi|q, Pidqi|q

)
,

with v ∈ TqQ.

Another example of an optimal control problem is the case where Q carries
a Riemannian metric g. Let the cost function L ∈ C∞(C) be defined by:

L(u) = 1
2g

(
ρ(u), ρ(u)

)
.

The optimal controls for this cost are called force minimising controls (see
[35]). To obtain the differential equations that a multiplier has to satisfy,
one has to consider the orthogonal projection πD of TQ onto D = im ρ, with
respect to the metric g. The local extremum condition, is then expressed by
πD(]g(θ(t))) = ρ(u). Even more, we can define the (2, 0)-tensor hQ as

hQ(αq, βq) = g(πD(]g(αq), πD(]g(βq))).

The equation a normal extremal has to satisfy becomes:

∇2
˙̃c(t)

θ(t) + R∗
(
θ(t), ˙̃c(t)

)(
˙̃c(t)

)
− T ∗

(
∇ ˙̃c(t)θ(t),

˙̃c(t)
)

= 1
2(∇hQ)(θ(t), θ(t)) + T ∗

(
θ(t), ]hQ

(θ(t))
)
;

(9.10)

The equation for an abnormal multiplier is precisely Equation 9.9.



IV

Sub-Riemannian geometry

A sub-Riemannian structure on a manifold is a generalisation of a Rieman-
nian structure in that a metric is only defined on a proper vector subbundle
of the tangent bundle to the manifold (i.e. on a regular distribution), rather
than on the whole tangent bundle. As a result, in sub-Riemannian geometry
a notion of length can only be assigned to a certain privileged set of curves,
namely curves that are tangent to the given regular distribution on which
the metric is defined. The problem then arises to find those curves that
minimise length, among all curves connecting two given points. The char-
acterisation of these length minimising curves is one of the main research
topics in sub-Riemannian geometry, which has also interesting links to con-
trol theory and to vakonomic dynamics (for the latter, see for instance J.
Cortés, et al. [10]).

The main goal of this chapter is, on the one hand, to present an application
to the theory of generalised connections (cf. Chapter II) in sub-Riemannian
geometry and, on the other hand, to illustrate the necessary and sufficient
conditions on abnormal and (strictly) abnormal extremals, developed in the
previous chapter. Section 1 contains general definitions concerning sub-
Riemannian geometry. In particular, we will associate to a sub-Riemannian
geometry a geometric optimal control structure, for which the optimal con-
trols are precisely the length minimising curves, tangent to the given dis-
tribution. We recall the notion a normal and an abnormal extremal. In
Section 2, we will consider some aspects of the theory of generalised con-
nections in the framework of sub-Riemannian geometry. Then, normal ex-
tremals will appear as “geodesics” and abnormal extremals as “base curves
of parallel transported sections” in the cotangent bundle with respect to a
suitable generalised connection associated to the sub-Riemannian structure.
Apart from shedding some new light on certain elements of sub-Riemannian
geometry, this formulation also allows us to prove some known results in a
more elegant way.

The main subtlety in studying length minimising curves of a sub-Riemannian
structure lies in the existence of “abnormal minimisers”, i.e. length min-
imising abnormal extremals. R. Montgomery was the first to construct an
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explicit example of such abnormal curves (see [45]). Since then, many other
examples were found, for instance by W. Liu and H.J. Sussmann in [53].
We will deal with this topic in Section 3, where we use the necessary and
sufficient conditions for abnormal extremals from Chapter III. In the fol-
lowing section we explain what is meant by a sub-Riemannian structure on
a manifold Q, and we define an associated autonomous optimal geometric
control structure

1 General definitions

In this section, we first give a brief review of some natural objects associated
to a sub-Riemannian structure in order to reformulate the necessary condi-
tions, derived from the maximum principle, for length minimising curves.

Suppose that Q is a smooth manifold of dimension n, equipped with a regular
distribution D ⊂ TQ (i.e. D is a smooth distribution of constant rank, say
of rank k). In view of the regularity, D can alternatively be regarded as a
vector subbundle of TQ over D. The natural injection i : D ↪→ TQ is then
a linear bundle mapping fibred over the identity. A regular distribution is
also completely characterised by its annihilator, i.e. giving D is equivalent
to specifying the subbundle D0 of the cotangent bundle T ∗Q whose fibre
over q ∈ Q consists of all co-vectors at q which annihilate all vectors in the
subspace Dq of TqQ. Let U be the domain of a coordinate chart in Q. We
will always denote coordinates on U by qi, i = 1, . . . , n. The coordinates on
the corresponding bundle chart of T ∗Q are denoted by (qi, pi), i = 1, . . . , n.

A smooth Riemannian bundle metric h on D is a smooth section of the
tensor bundle D∗ ⊗D∗ → Q such that it is symmetric and positive definite,
i.e. for all q ∈ Q and Xq, Yq ∈ Dq one has that h(q)(Xq, Yq) ∈ IR and

h(q)(Xq, Yq) = h(q)(Yq, Xq),

h(q)(Xq, Xq) ≥ 0, where the equality holds iff Xq = 0.

Moreover, h depends in a smooth way on q. With a Riemannian bundle
metric on D one can associate a smooth linear bundle isomorphism [h :
D → D∗, Xq 7→ h(q)(Xq, .), fibred over the identity on Q, with inverse
denoted by ]h := [−1

h : D∗ → D.

Definition 1.1. A sub-Riemannian structure (Q, D, h) is a triple where
Q is a smooth manifold, D a smooth regular distribution on Q, and h a
Riemannian bundle metric on D.
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Although it is not explicitly mentioned in the definition, it will always be
tacitly assumed, as is customary in sub-Riemannian geometry, that D is
a non-integrable distribution and, therefore, does not induce (directly) a
foliation of Q. It should be mentioned that, in the literature one often
assumes that Q is connected and that D is bracket generating (i.e. the
space spanned by all iterated Lie brackets of vector fields in D equals TQ),
which is a sufficient condition for saying that the leaf Lq through q ∈ Q of

the foliation induced by the smallest integrable D̃ generated by D equals
to be Q, i.e. Lq = Q (see also Chapter I page 4). In the remainder of this

chapter we always assume that Q is connected and that D̃ = TQ, which is a
necessary and sufficient condition for the property that any two points in Q
can be connected by a piecewise smooth curve tangent to D, which in turn
gives sense to the notion of length minimising curves between two points in
a sub-Riemannian structure (see Definition 1.2 later on). Note that, in view
of the theory developed in Chapter I, this is equivalent to saying that we are
working on the pull-back anchored bundle of the anchored bundle (τQ|D, i).
A manifold Q equipped with a sub-Riemannian structure, will be called a
sub-Riemannian manifold.

With a sub-Riemannian structure (Q, D, h) one can associate a smooth map-
ping g : T ∗Q → TQ defined by

g(αq) = i (]h (i∗(αq))) ∈ TQ,

where i∗ : T ∗Q → D∗ is the adjoint mapping of i, i.e. for any αq ∈ T ∗
q Q,

i∗(αq) is determined by 〈i∗(αq), Xq〉 = 〈αq, i(Xq)〉, for all Xq ∈ Dq. Clearly,
g is a linear bundle mapping whose image set is precisely the sub-bundle D
of TQ and whose kernel is the annihilator D0 of D. To simplify notations
we shall often identify an arbitrary vector in D with its image in TQ under
i and smooth sections of D (i.e. elements of Γ(D)) will often be regarded as
vector fields on Q. It is clearly seen that the pair (πQ, g) is a linear anchored
bundle, where πQ : T ∗Q → Q denotes the natural projection.

With g we can further associate a section g of TQ ⊗ TQ → Q according to

g(q)(αq, βq) = 〈g(αq), βq〉

for all q ∈ Q and αq, βq ∈ T ∗
q Q. From

g(q)(αq, βq) :=
〈
g(αq), βq

〉
=

〈
]h(i∗αq), i

∗βq

〉

= h(q)
(
]h(i∗αq), ]h(i∗βq)

)

= h(q)
(
g(αq), g(βq)

)
,
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we conclude that g is symmetric.

Let G be a Riemannian metric on Q. It is easily seen that, given a regu-
lar distribution D on Q, the metric G induces a sub-Riemannian structure
(Q, D, hG) where hG denotes the restriction of G to the subbundle D, i.e.
hG(q)(Xq, Yq) := G(q)(Xq, Yq) for any q ∈ Q and Xq, Yq ∈ Dq. Given a
sub-Riemannian structure (Q, D, h) and a Riemannian metric G on Q, we
say that the Riemannian metric restricts to h if hG ≡ h. Now, every sub-
Riemannian structure can be seen as being determined (in a non-unique
way) by the restriction of a Riemannian metric. Indeed, let h be a Rieman-
nian bundle metric on a vector sub-bundle D of TQ, and let {Uα} be an
open covering of Q such that, on each Uα, there exists an orthogonal basis
{X1, . . . , Xk} of local sections of D with respect to h. Extend this to a basis
of vector fields {X1, . . . , Xn} on Uα and define a Riemannian metric on Uα

by

Gα(q)(Xq, Yq) =
k∑

i,j=1

aibjh(q)(Xi(q), Xj(q)) +
n∑

i=k+1

aibi,

where Xq = aiXi(q) and Yq = biXi(q), with ai, bi ∈ IR. One can then glue
these metrics together, using a partition of unity subordinate to the given
covering {Uα}. This procedure, which is similar to the one adopted for
constructing a Riemannian metric on an arbitrary smooth manifold (see for
instance [3], Proposition 9.4.1), produces a Riemannian metric on Q which,
by construction, restricts to h.

In the sequel we will repeatedly make use of a Riemannian metric G which
restricts to a given sub-Riemannian metric h. For that purpose we now
introduce some further notations and prove some useful relations between
such a G and h. However, it should be stressed that the results on sub-
Riemannian structures we obtain in the forthcoming sections do not depend
on the choice of the specific Riemannian metric G. The natural bundle
isomorphism between TQ and T ∗Q induced by G will be denoted by ]G,
with inverse [G = ]−1

G . Let q ∈ Q and Xq, Yq ∈ Dq, then one has:

〈i∗[G(i(Xq)), Yq〉 = 〈[G(i(Xq)), i(Yq)〉 = 〈[h(Xq), Yq〉 ,

which implies that [h = i∗ ◦ [G ◦ i. Inserting this into g ◦ [G ◦ i and taking
into account the definition of g, we conclude that

g ◦ [G ◦ i = i or g ◦ [G|D = idD ,
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where idD is the identity mapping on D. The projections of TQ = D ⊕D⊥

onto D and onto its G-orthogonal complement D⊥ will be denoted by π
and π⊥, respectively. Likewise, T ∗Q can be written as the direct sum of
(D⊥)0 and D0 and the corresponding projections will be denoted by τ and
τ⊥, respectively. It is easily proven that (D⊥)0 ∼= [G(D) and that

τ⊥ = [G ◦ π⊥ ◦ ]G , τ = [G ◦ π ◦ ]G .

Using the fact that g ◦ [G|D = idD and ker g = D0, we also have: g =
g ◦ τ = π ◦ ]G.

To any regular distribution D on Q one can associate a natural tensor field
acting on D0 ⊗ D ⊗ D. Indeed, let η ∈ Γ(D0), X, Y ∈ Γ(D) and let [X, Y ]
denote the Lie bracket of X and Y , regarded as vector fields on Q. Then it is
easily proven that the expression 〈η, [X, Y ]〉 is C∞(Q)-linear in all three ar-
guments and, therefore, determines a tensorial object. Now, D is involutive
if and only if this tensor is identically zero.

Since im g = D, we consider the map g as a bundle map from T ∗Q to D,
which is a linear anchored bundle morphism between (πQ, g) and (τQ|D, i),
where τQ|D : D → Q denotes the restriction of τQ to the subbundle D.
Therefore, any g-admissible curve is mapped by g onto a i-admissible curve,
i.e. the base curve is tangent to D. The following lemma proves the converse.
To avoid confusion, we shall always denote a g-admissible curve in T ∗Q by
a Greek letter, e.g. α(t), β(t) and a curve in Q is denoted by a Latin letter,
e.g. c(t).

Lemma 1.1. Given a sub-Riemannian structure (Q, D, h) and any piecewise
smooth curve c in Q, tangent to D. Then, there always exists a g-admissible
curve in T ∗Q which projects onto c.

Proof. Take an arbitrary Riemannian metric G which restricts to h on
Q. If c : [a, b] → Q is a smooth curve tangent to D, one can simply put
α(t) = [G(ċ(t)) for all t ∈ [a, b]. Clearly, α then defines a g-admissible
curve in T ∗Q with base curve c. Next, assume c : [a, b] → Q is a piecewise
smooth curve, tangent to D, i.e. c is the concatenation of ` smooth curves
ci : [ai−1, ai] → Q, such that c = c` · . . . · c1. We can then define ` curves αi

in T ∗Q as follows: put αi(t) = [G(ċi(t)) for t ∈ [ai−1, ai]. It is easily seen
that αi is g-admissible, with base curve ci and, hence, α` · . . . · α1 is also
g-admissible with projection c.
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We will now introduce the notion of length of piecewise smooth curves,
tangent to D (i.e. base curves of i-admissible curves).

Definition 1.2. Given a sub-Riemannian structure (Q, D, h), then the
length l(c) of a curve c : [a, b] → M , tangent to D, is given by

l(c) :=

∫ b

a

√
h(c(t))(ċ(t), ċ(t))dt.

Given any g-admissible curve α in T ∗Q with base curve c, and a Riemannian
metric G which restricts to h, then the length of c still equals

l(c) =

∫ b

a

√
g(c(t))(α(t), α(t))dt =

∫ b

a

√
G(c(t))(ċ(t), ċ(t))dt.

These integrals do not depend on the choice of α, resp. G. Using standard
arguments, it is easily seen that the length of c does not depend on a specific
parametrisation. Therefore, we may always assume that c is defined on [0, 1]
(see page 11). We say that c, taking q0 to q1, is length minimising if, given
any other base curve of an i-admissible curve c′ : [0, 1] → Q, with c′(0) = q0

and c′(1) = q1, then l(c) ≤ l(c′). From the fact that i-admissible curves
are precisely curves tangent to D, it is easily seen that the functional l
is a cost functional in the sense of Chapter III, associated with the cost
L(v) =

√
h(v, v), for v ∈ D. To avoid confusion, we shall denote the cost

functional associated with L by J L, i.e. for c a curve tangent to D, we have

J L(ċ) =

∫ 1

0
L(ċ(t))dt.

Using these notations, we have J L(ċ) = l(c). Consider the energy cost
function E ∈ C∞(D), defined by E(v) = 1

2h(v, v). It should be noted that
whereas L is not a regular cost, E is regular. Indeed, the fibre derivative of
E is invertible: IFE = [h : D → D∗ with inverse ]h. We now prove that, if
the base curve c of the i-admissible curve ċ is length minimising, then ċ is
optimal with respect to the cost E, and vice versa.1 We shall make use of
Hölder’s inequality (see [20, p 55]), which says that,

l(c) = J L(ċ) ≤
√

2J E(ċ), (1.1)

when adapted to this particular situation. The above inequality reduces
to an equality if E(ċ(t)) is constant on every smooth part of c. If this is

1The proof of this correspondence is taken from W. Respondek.
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the case we say that c is parameterised by constant arc length. The above
inequality implies that, given a length minimising curve c, parameterised by
constant arc length, then ċ is optimal with respect to the energy E. On the
other hand, assume that ċ is energy optimal and that there exists a curve c′

such that l(c′) ≤ l(c). We may assume that c′ is parameterised by constant
arc length since this doesn’t affect the value of l(c′). Then the inequality√

2J E(ċ′) = l(c′) ≤ l(c) ≤
√

2J E(ċ) holds, leading to a contradiction.
Moreover, it also follows that c is necessarily parameterised by constant arc
length. We conclude that the length minimising problem and the optimal
control problem with respect to the cost E are equivalent. Therefore, we
study ‘energy optimal’ i-admissible curves in the linear autonomous geomet-
ric control structure (τQ|D, i). In view of these remarks we shall consider in
the following abnormal and normal (local) extremals without always men-
tioning explicitly that they are defined with respect to the anchored bundle
(τQ|D, i) with cost function E (cf. Section III-8).

Since E is a regular cost, we can now apply Theorem III-8.6 (page 117),
saying that every normal local extremal ċ(t) is generated by an integral curve
α(t) of the Hamiltonian vector field on T ∗Q determined by the function H
on T ∗Q:

αq 7→ hλ

(
(IFE)−1

(
i∗(αq)

)
, αq

)
=〈

]h

(
i∗(αq)

)
, αq

〉
− 1

2h
(
]h

(
i∗(αq)

)
, ]h

(
i∗(αq)

))
= 1

2g(αq, αq),

where λ = −1 and for any αq ∈ T ∗
q Q. The fact that α(t) generates ċ(t) is

expressed by ]h

(
i∗(α(t))

)
= g(α(t)) = ċ(t), i.e. α(t) is g-admissible.

Let us now consider the equations for an abnormal extremal ċ(t). Let α
denote an arbitrary g-admissible curve with base curve c. If we apply the
condition for ċ to be an abnormal extremal (cf. Theorem III-8.1), then there
exists a piecewise smooth section θ(t) of D0 such that the following (local)
equations are satisfied:

ṗi(t) = −∂gjk

∂qi
(q(t))αj(t)pk(t),

where α(t) = (qi(t), αi(t)), θ(t) = (qi(t), pi(t)). Note that these equations
are derived from the implicit Hamiltonian system in Theorem III-8.1 where
we used the fact that θ(t) ∈ D0 and that ċ(t) = g(α(t)). Let ∇ denote an
arbitrary g-connection on T ∗M adapted to D, i.e. ∇βη = iβdη = δg(β)η, for
η ∈ Γ(D0) (cf. Section II-7). Then, if we express ∇dqiη in coordinates, we
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obtain:

∇dqiη =
(
gik ∂ηj

∂qk
− ∂ηk

∂qj
gik

)
dqj

(
gik ∂ηj

∂qk
+ Γik

j ηk

)
dqj =

(
gik ∂ηj

∂qk
+

∂gik

∂qj
ηk

)
dqj

m

Γik
j ηk =

∂gik

∂qj
ηk

From these local expressions, we conclude that the i-admissible curve ċ(t) =
g(α(t)) is an abnormal extremal iff there exists a piecewise smooth section θ
of D0 such that ∇αθ(t) = 0, given any g-connection adapted to the bundle
D. The following corollary summarises the above obtained results on normal
and abnormal local extremals in sub-Riemannian geometry.

Corollary 1.2. Let c : [0, 1] → Q denote a piecewise smooth curve, tangent
to D. If c is length minimising and parameterised by constant arc length,
then, at least one of the following two conditions is satisfied:

1. there exists an integral curve α(t) of XH , which projects onto c and
for which g(α(t)) = ċ(t);

2. there exists a section θ(t) of D0 along c, such that ∇αθ(t) = 0, where
α is g-admissible with base curve c and where ∇ is a g-connection
adapted to the bundle D.

As the above corollary suggests, it will be natural to study g-connections
and their relation to extremal curves. This is the topic of the following
section. Strictly speaking an extremal ċ refers to a curve in D ⊂ TQ, where
c is a piecewise smooth curve in Q. But, for our convenience, we will call
here, in the sub-Riemannian context, the curve c itself an extremal.

2 Connections in sub-Riemannian geometry

Fix a sub-Riemannian structure (Q, D, h) and consider the associated bun-
dle map g : T ∗Q → TQ. In sub-Riemannian geometry we only consider
generalised connections on T ∗Q over g. Our main goal is the characterisa-
tion of normal and abnormal extremals of the sub-Riemannian structure in
terms of such generalised connections. We first define a notion of “geodesic”
for g-connections.
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Definition 2.1. A g-admissible curve α : I → T ∗Q is said to be an au-
toparallel curve with respect to a g-connection ∇ if it satisfies ∇αα(t) = 0
for all t ∈ I. Its base curve c = πQ ◦ α is then called a geodesic of ∇.

In canonical coordinates on T ∗Q, an autoparallel curve α(t) = (qi(t), pi(t))
satisfies the equations

q̇i(t) = gij(q(t))pj(t) , ṗj(t) = −Γik
j (q(t))pi(t)pk(t),

where gij and Γik
j ∈ C∞(U) are the local components of the contravariant

tensor field g, associated to the sub-Riemannian structure, and the connec-
tion coefficients of ∇, respectively. In fact, given a g-connection ∇ one can
always define a smooth vector field Γ∇ on T ∗Q whose integral curves are
autoparallel curves with respect to ∇. In canonical coordinates, this vector
field (also called the geodesic spray of ∇) reads:

Γ∇(q, p) = gij(q)pj
∂

∂qi
− Γik

j (q)pipk
∂

∂pj
.

(A proof of this property follows by standard arguments, and is left to the
reader.) This implies, in particular, that given any α0 ∈ T ∗Q, there exists
an autoparallel curve α(t) passing through α0. Note that it may happen
that two different autoparallel curves correspond to the same base curve
(i.e. may project onto the same geodesic). We can also define a notion of
Killing vector field for a g-connection ∇.

Definition 2.2. A vector field ξ ∈ X(Q) is called a Killing vector field for
a given g-connection ∇ if, given any autoparallel curve α(t) with base curve
c(t), 〈α(t), ξ(c(t))〉 is constant for all t.

Using standard techniques, it is easily seen that ξ is Killing iff 〈α,∇αξ〉 = 0
for any one-form α ∈ X(Q). Note that, if we define a Killing one-form
κ ∈ X∗(Q) by the requirement that g(κ(c(t)), α(t)) is constant for any au-
toparallel curve α with base curve c, then the vector field g ◦ κ is a Killing
vector field. Therefore, we shall only consider Killing vector fields, which
turns out to be a more general concept then Killing one-forms.

Now, we would like to find a g-connection on a sub-Riemannian manifold
whose geodesics are precisely the normal extremals. Recalling the charac-
terisation of a normal extremal in Corollary 1.2, it follows that we have
to look for a g-connection ∇ for which Γ∇ = XH , where XH denotes the
Hamiltonian vector field corresponding to H(αq) = 1

2g(αq, αq) ∈ C∞(T ∗Q).
A first step in that direction is the construction of a symmetric product
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associated with a given g-connection, which fully characterises the geodesics
of the g-connection under consideration.

Two g-connections ∇ and ∇ have the same autoparallel curves if and only
if the tensor field T : X∗(Q) ⊗ X∗(Q) → X∗(Q), (α, β) 7→ ∇αβ − ∇αβ is
skew-symmetric or, equivalently, T (α, α) ≡ 0 for all α ∈ X∗(Q). In local

coordinates, the components of T are given by T ij
k = Γij

k −Γ
ij
k , where Γij

k and

Γ
ij
k are the connection coefficients of ∇ and ∇, respectively. We immediately

see that T is skew-symmetric iff Γ∇ = Γ∇, proving the previous statement.
Define the symmetric product of a connection ∇ as

〈α : β〉∇ := ∇αβ + ∇βα , for α, β ∈ X∗(Q) .

(Observe that this is not a tensorial quantity, i.e. 〈α : β〉∇ is not C∞(Q)-
linear in its arguments). By replacing α by α + β in T (α, α) the following
lemma is easily proven.

Lemma 2.1. The geodesics of a g-connection ∇ are completely determined
by the symmetric product 〈α : β〉∇ in the sense that, given two g-connections
∇ and ∇, then both have the same geodesics if and only if 〈α : β〉∇ = 〈α :
β〉∇, for all α, β ∈ X∗(Q).

In the following we shall construct a symmetric bracket of one-forms, as-
sociated to a sub-Riemannian structure (Q, D, h), which coincides with the
symmetric product of a g-connection ∇ on T ∗Q iff Γ∇ = XH .

Before proceeding, we first recall that the Levi-Civita connection ∇G associ-
ated to an arbitrary Riemannian metric G is completely determined by the
relation:

2G(∇G
XY, Z) = X(G(Y, Z)) + Y (G(X, Z)) − Z(G(X, Y ))

+G([X, Y ], Z) − G([X, Z], Y ) − G(X, [Y, Z]) ,

for all X, Y, Z ∈ X(Q) (see [3]). This can still be rewritten as

2[G(∇G
XY ) = LX[G(Y ) + LY [G(X) + [G([X, Y ]) − d(G(X, Y )),

and the symmetric product of two vector fields X, Y , defined by 〈X : Y 〉∇G =
∇G

XY + ∇G
Y X, then satisfies

[G(〈X : Y 〉∇G) = LX[G(Y ) + LY [G(X) − d(G(X, Y )).

The right-hand side of this equation now inspires us to propose the follow-
ing definition for a symmetric bracket of one-forms on a sub-Riemannian
manifold.
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Definition 2.3. The symmetric bracket associated to a sub-Riemannian
structure (Q, D, h) is the mapping {·, ·} : X∗(Q) × X∗(Q) → X∗(Q) defined
by:

{α, β} = Lg(α)β + Lg(β)α − d (g(α, β)) .

In the following proposition we list some properties of this bracket, the first
of which justifies the denomination “symmetric bracket”. The proofs of
these properties are straightforward and immediately follow from the above
definition.

Proposition 2.2. The symmetric bracket satisfies the following properties:
for any α, β ∈ X∗(Q)

1. {α, β} = {β, α};

2. the bracket is IR-bilinear;

3. {fα, β} = g(β)(f)α + f{α, β}, with f ∈ C∞(Q),

4. {α, η} = δg(α)η, for any η ∈ Γ(D0), and {α, η} = 0 if both α and η
belong to Γ(D0).

The first three properties justify the following definition.

Definition 2.4. A g-connection ∇ is said to be normal if the associated
symmetric product equals the symmetric bracket, i.e. if 〈α : β〉∇ = {α, β}
holds for all α, β ∈ X∗(Q).

The connection coefficients of a normal g-connection satisfy the relations

Γij
k + Γji

k =
∂gij

∂qk
, for all i, j, k = 1, . . . , n.

Theorem 2.3. Let ∇ be a g-connection, then the following statements are
equivalent:

1. ∇ is a normal g-connection;

2. for all α ∈ X∗(Q) : ∇αα = 1
2{α, α};

3. 〈∇αX, β〉+ 〈∇βX, α〉 = 〈[g(α), X], β〉+ 〈[g(β), X], α〉+X(g(α, β)) for
all α, β ∈ X∗(Q) and X ∈ X(Q);
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4. Γ∇ = XH or, equivalently, every autoparallel curve of ∇ is a normal
multiplier and vice versa;

5. let G be a Riemannian metric restricting to h and let ∇G be the corre-
sponding Levi-Civita connection, then for all α ∈ X∗(Q), ∇ satisfies:

∇αα = ∇G
g(α)τ(α) + δg(α)τ

⊥(α).

(Note that the right-hand side of the third property above agrees with the
definition of the symmetrised covariant derivative considered in [50].)

Proof. The equivalence of (1) and (2) follows directly from the definition
of a normal g-connection, and the equivalence of (1) and (3) follows from
〈∇αβ, X〉 = g(α)(〈β, X〉)−〈β,∇αX〉 after some tedious but straightforward
calculations.

(2) ⇔ (4). Choose an arbitrary α0 ∈ T ∗Q. Let U be a coordinate neigh-
bourhood of q0 = πQ(α0) and put α0 = (qi

0, p
0
j ). Then, ∇αα = 1

2{α, α}
implies, in particular, that the connection coefficients Γij

k of ∇ on U satisfy

Γij
k (q0)p

0
i p

0
j =

1

2

∂gij

∂qk
(q0)p

0
i p

0
j .

The coordinate expression for the Hamiltonian vector field XH at α0 reads:

XH(α0) = gij(q0)p
0
j

∂

∂qi

∣∣∣∣
α0

− 1

2

∂gij

∂qk
p0

i p
0
j

∂

∂pk

∣∣∣∣
α0

.

Recalling the definition of Γ∇ it is easy to see that Γ∇(α0) = XH(α0) for
any α0 ∈ T ∗Q if and only if ∇αα = 1

2{α, α} for each α ∈ X∗(Q).

(2) ⇔ (5). Let G be a Riemannian metric restricting to h. Recall the
following property of the Levi-Civita connection ∇G:

[G(〈X : Y 〉∇G) = LX[G(Y ) + LY [G(X) − d(G(X, Y )).

Putting X = Y = g(α), this equation becomes

[G(∇G
g(α)g(α)) = Lg(α)[G(g(α)) − 1

2d(g(α, α)).

Using the identity [G(g(α)) = τ(α) derived in Section 1 (page 131) of this
chapter, and taking into account that ∇G preserves the metric G, i.e. ∇G ◦
[G = [G ◦ ∇G, we obtain

∇G
g(α)τ(α) = Lg(α)τ(α) − 1

2d(g(α, α)),

= 1
2{α, α} − Lg(α)τ

⊥(α).
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Since τ⊥(α) ∈ Γ(D0) and g(α) ∈ Γ(D), the last term on the right-hand side
reduces to δg(α)τ

⊥(α), which completes the proof.

Theorem 2.3 implies, in particular, that normal g-connections exist. For
instance, the operator ∇ defined by

∇αβ = ∇G
g(α)τ(β) + δg(α)τ

⊥(β)

is a g-connection and it is normal in view of the equivalence of (1) and (5).
Moreover, for β ∈ Γ(D0) we find that ∇αβ = δg(α)β, i.e. the connection
under consideration is also D-adapted. Summarising, we have shown the
following result.

Proposition 2.4. Given a sub-Riemannian structure (Q, D, h), one can
always construct a g-connection which is both normal and D-adapted.

Furthermore, Theorem 2.3 (in particular, the equivalence between (1) and
(5)) provides us with a relation between a normal g-connection, the Levi-
Civita connection ∇G of any Riemannian metric restricting to h, and the
operator δ. This relation will be very useful when we study the relation
between vakonomic dynamics and nonholonomic mechanics (see Section 4).
The following property gives a characterisation of Killing vector fields in
sub-Riemannian geometry:

Proposition 2.5. Let ∇ denote a normal g-connection. A vector field ξ ∈
X(Q) is a Killing vector field for ∇ iff Lξg = 0.

Proof. Let ξ denote an arbitrary vector field, and consider the following
equalities, for arbitrary α ∈ X∗(Q):

−1
2Lξg(α, α) = −1

2ξ
(
g(α, α)

)
+ 〈Lξα, g(α)〉

= 1
2ξ

(
g(α, α)

)
− 〈α, [ξ, g(α)]〉

= 1
2ξ

(
g(α, α)

)
+ 〈α, [g(α), ξ]〉.

Now, since ∇ is normal, i.e. it satisfies (3) from Theorem 2.3, it follows that
the right-hand side of the last equality equals 〈α,∇αξ〉. By definition, this
vanishes if ξ is a Killing vector field and, therefore, Lξg = 0. The proof in
the other direction simply follows by reversing the previous arguments.

To conclude this section we make some further remarks on normal and D-
adapted g-connections. It is well known that the Levi-Civita connection
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∇G, associated with a Riemannian metric G, is uniquely determined by the
properties that it preserves the metric, i.e. ∇GG = 0, and that its torsion
is zero. We would like to consider g-connections ∇ on a sub-Riemannian
manifold which are metric, i.e. ∇g = 0 (where g is the symmetric con-
travariant 2-tensor field defined in Section 1). From above we know that
normal extremals of a sub-Riemannian structure, resp. abnormal extremals,
can be characterised as geodesics of a normal g-connection, resp. as parallel
transported sections of D0 for a D-adapted g-connection (see Theorem 2.3,
resp. Corollary 1.2). Therefore it is natural to look for g-connections that
are simultaneously normal and D-adapted. It has been shown above that
such a g-connection always exists, namely

∇αβ = ∇G
g(α)τ(β) + δg(α)τ

⊥(β),

with G any Riemannian metric restricting to h. We will prove, however,
that no metric g-connection can be found that is also D-adapted, provided
that D is integrable. First we prove an interesting result relating the notion
of partial g-connection (cf. Section II-7) with that of a D-adapted normal
g-connection.

Proposition 2.6. Let ∇ be a normal g-connection. Then ∇ is partial if
and only if ∇ is D-adapted.

Proof. Let ∇ be a normal g-connection, i.e. ∇αβ + ∇βα = {α, β}, for
all α, β ∈ X∗(Q). Suppose ∇ is partial, then for β ∈ Γ(D0) the previous
relation becomes:

∇αβ = {α, β} = Lg(α)β = δg(α)β,

i.e. ∇ is D-adapted. Conversely, suppose ∇ is normal and D-adapted, then
∇αβ = {α, β} − ∇βα. Let α ∈ Γ(D0), then the right hand side of this
equation is zero, and thus ∇αβ = 0 for all α ∈ Γ(D0) and β ∈ X∗(Q). This
proves the proposition.

We will now describe a general method for constructing normal g-connect-
ions.

Let [· , ·] : X∗(Q) × X∗(Q) → X∗(Q) denote a skew-symmetric bracket that
is IR-linear in both arguments and satisfies, for any f ∈ F(Q), [α, fβ] =
g(α)(f)β + f [α, β]. Given such a bracket on X∗(Q), one can define a unique
normal g-connection ∇ for which [α, β] = ∇αβ −∇βα, namely:

∇αβ = 1
2 ([α, β] + {α, β}) .
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Conversely, given a normal g-connection ∇, one can define a skew-symmetric
bracket with the desired properties by putting [α, β] = ∇αβ −∇βα. Hence-
forth, we shall denote the bracket associated with a normal g-connection ∇
by [α, β]∇.

As can be easily verified, for a g-connection ∇ which is both normal and
D-adapted, the skew-symmetric bracket satisfies: [α, η]∇ = δg(α)η, for all
η ∈ Γ(D0) and α ∈ X∗(Q). Therefore, if a Riemannian metric G is chosen,
with projections τ and τ⊥ on [G(D) and D0 respectively, and which restricts
to h, this bracket takes the form:

[α, β]∇ = [τ(α), τ(β)]∇ + δg(α)τ
⊥(β) − δg(β)τ

⊥(α).

We only have to know the value of the bracket acting on sections of [G(D) ∼=
D. For example, for the g-connection defined by

∇αβ = ∇G
g(α)τ(β) + δg(α)τ

⊥(β),

the associated bracket becomes:

[α, β]∇ = [G ([g(α), g(β)]) + δg(α)τ
⊥(β) − δg(β)τ

⊥(α),

where [g(α), g(β)] = Lg(α)g(β) is the usual Lie bracket on vector fields.
Note, however, that there does not seem to exist a ‘natural’ skew-symmetric
bracket on X∗(Q), independent of the chosen Riemannian extension G of
h, which could be used to identify a ‘standard’ g-connection which is both
normal and D-adapted. One might think of imposing a metric condition in
order to completely determine such a ∇, but the following result shows that
this is impossible. Note that we have assumed that D is not integrable.

Proposition 2.7. A D-adapted g-connection can not be metric.

Proof. Let ∇ be D-adapted g-connection. Suppose that ∇ leaves g in-
variant. This can be equivalently expressed by g(∇αβ) = ∇α(g(β)) for all
α, β ∈ X∗(Q). Let η ∈ Γ(D0), then, since ∇ is D-adapted this equation
becomes g(δg(α)η) = 0 for all α ∈ X∗(Q) and η ∈ Γ(D0). However, this is
equivalent to saying that D is involutive. Indeed, from g(δg(α)η) = 0 we
have

0 = 〈β, g(δg(α)η)〉 = 〈δg(α)η, g(β)〉 = −〈η, [g(α), g(β)]〉,

for arbitrary α, β ∈ X∗(Q) and η ∈ Γ(D0), hence [g(α), g(β)] ∈ Γ(D).
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3 Normal and abnormal extremals revisited

In the first part of this section we will make use of Theorem 2.3 to recover
some known results about normal extremals. In the second part we fur-
ther investigate abnormal extremals. Consider a sub-Riemannian structure
(Q, D, h) and let G be an arbitrary Riemannian metric on Q restricting to
h. Theorem 2.3 then says ∇αα(t) = ∇G

ċ τ(α)(t) + δċτ
⊥(α)(t), where α is

a g-admissible curve with base curve c, and ∇ is any normal g-connection.
This immediately leads to the following result.

Proposition 3.1. Let c : I → Q be a curve tangent to D which is geodesic
with respect to a Riemannian metric G on Q restricting to h, then c is a
normal extremal of the sub-Riemannian structure.

Proof. The curve c is a normal extremal if there exists a g-admissible
curve α with base curve c, which is autoparallel with respect to a nor-
mal g-connection ∇. Since c : I → Q is a geodesic with respect to G, i.e.
∇G

ċ ċ(t) = 0 for all t ∈ I, we know from Section 1 that α = [G(c) is a g-
admissible curve with base curve c for which τ(α) = α or τ⊥(α) = 0. It then
follows that ∇αα(t) = 0 since ∇αα(t) = ∇G

ċ τ(α)(t) = [G(∇G
ċ ċ(t)) =0.

We now try to prove the converse of the above proposition. Let c : I =
[a, b] → Q be a normal extremal in a sub-Riemannian structure (Q, D, h).
Then there exists a g-admissible curve α which is autoparallel with respect
to a normal g-connection. Given any t0 ∈ I, then one can always find a one-
form α and a compact subinterval J of I containing t0, such that α(c(t)) =
α(t) for all t ∈ J and c(J) is contained in a coordinate neighbourhood U .
We will now construct a local Riemannian metric G restricting to h on D
such that c|J is a geodesic with respect to this Riemannian metric.

Since g(α) 6= 0, one can construct a local basis of X∗(U), namely {α =
β1, β2, . . . , βn}, such that βk+1, . . . , βn determine a local basis for Γ(D0),
defined on U . Let {X1, . . . , Xn} denote the dual basis. Then the vector
fields Xj , for j = 1, . . . , k, form a local basis for Γ(D), since 〈βi, Xj〉 ≡ 0 for
i = k+1, . . . , n. We can now define a Riemannian metric G on U , restricting
to h, as in Section 1, i.e. for arbitrary vector fields Y and Z on U ,

G(q)(Y, Z) =
k∑

r,s=1

Y rZsh(q)(Xr(q), Xs(q)) +
n∑

r=k+1

Y rZr,
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where we have put Y (q) = Y rXr(q) and Z(q) = ZrXr(q) for some Y r, Zr ∈
IR (r = 1, . . . , n). From the definition of G we can derive that D⊥ is spanned
by {Xk+1, . . . , Xn} such that, in particular, τ⊥(α) = 0. This implies that
τ⊥(α(t)) = 0 and, hence, [G(ċ(t)) = α(t). From ∇αα(t) = 0 and τ⊥(α(t)) =
0 we obtain that ∇G

ċ ċ(t) = 0 holds for any t ∈ J . Herewith, we have shown
that the following result holds.

Proposition 3.2. Let c : I → Q be a normal extremal. Then for any t ∈ I
there exists a compact neighbourhood J ⊂ I of t such that c, when restricted
to J , is a geodesic with respect to some Riemannian metric restricting to h
on D.

As a corollary this proves that a normal extremal is locally length minimis-
ing.

Let c be a normal extremal and let ∇ be a normal and D-adapted g-
connection (recall that such a ∇ always exists). Suppose that c is degenerate
in the following sense: there exist two g-admissible curves α, β with base
curve c, such that ∇αα(t) = ∇ββ(t) = 0. We will now see that c is then also
an abnormal extremal. We have proven before that a normal and D-adapted
connection is partial, i.e. ∇α = ∇β if g(α) = g(β). Therefore one obtains
that ∇α(α − β)(t) = 0. Since g(α(t) − β(t)) = 0, or θ(t) = (α − β)(t) ∈ D0

for all t, θ is a parallel transported section along α, lying entirely in D0 and,
hence, c is an abnormal extremal. Conversely, assume that c is a normal ex-
tremal, i.e. c is the base curve of an autoparallel curve α with respect to ∇,
and that c is also an abnormal extremal. Let θ denote a parallel transported
section along α lying in D0. Then, using the same arguments as before, α+θ
is also an autoparallel curve with base curve c. We can conclude that curves
that are both normal and abnormal are degenerate in the sense that they
admit more than one g-admissible curve that is autoparallel.

Let us now reconsider the equivalent characterisation of an abnormal ex-
tremal as described in Corollary 1.2. Let α : [0, 1] → T ∗Q denote an arbi-
trary g-admissible curve taking q0 to q1, with base curve c. Using the theory
of linear autonomous optimal control problems from Section III-8, we have
the following correspondence: let θ(t) denote a section of D0 along c, then
∇αθ(t) = 0 iff θ(1) ∈ V ∗

(1,q1)R(0,q0). This observation was one of the key

propositions in [28], which is now more general since we also admit curves
c with singular points (i.e. curves for which there exists a t ∈ [0, 1] such
that ċ(t) = 0). The sufficient conditions for c not to be abnormal, obtained
in Theorem III-8.5, can be used in sub-Riemannian geometry without mod-
ification. In the remainder of this section we consider two examples of a
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sub-Riemannian structure on IR3 and use the necessary and sufficient condi-
tions for the existence of (strictly) abnormal extremals to prove that for the
structures under consideration, strictly abnormal extremals do exist. The
first example is the sub-Riemannian structure that was used in [45] to prove
the existence of a strictly abnormal minimiser (see also Example I-1.2 page
6). The second example is taken from [38].

Example 3.3. Take Q = IR3 (we use cylindrical coordinates (r, θ, z) on
IR3), and D = span{X1, X2} with X1 = ∂/∂r and X2 = ∂/∂θ − p(r)∂/∂z,
where p(r) is a function on IR with a single non degenerate maximum at
r = 1, i.e. p satisfies:

d

dr
p(r)

∣∣∣∣
r=1

= 0 and
d2

dr2
p(r)

∣∣∣∣
r=1

< 0.

The distribution thus defined is everywhere of rank two, and is differentiable
by construction. The flows of X1, X2 are denoted by {φs}, {ψs}, respectively.
In particular, we have φt(r, θ, z) = (t+r, θ, z), ψt(r, θ, z) = (r, θ+t, z−p(r)t).
Let c : [0, 1] → Q be an integral curve of X1 through q0 = (r0, θ0, z0) at t = 0,
with endpoint q1. In the following we will prove that the integral curves of
X1 are not abnormal. We use the necessary and sufficient conditions on ab-
normal extremals developed in Theorem III-8.3. Note that these conditions
do not depend on the cost function, i.e. the Riemannian metric on D, which
allows us to say that the results below hold for any metric h on D. The
vertical variational cone equals the subspace of Tq1Q, given by

V ∗
(1,q1)R(0,q0) = span

{
X1(q1), X2(q1),

∂

∂θ

∣∣∣∣
q1

− p(r0 + t)
∂

∂z

∣∣∣∣
q1

∣∣∣∀t ∈ [0, 1]

}
.

This subspace coincides with the whole tangent space, i.e. V ∗
(1,q1)R(0,q0) =

Tq1Q, by observing that for an arbitrary (vr, vθ, vz) ∈ TqQ:

vr
∂

∂r

∣∣∣∣
q1

+ vθ
∂

∂θ

∣∣∣∣
q1

+ vz
∂

∂z

∣∣∣∣
q1

= vrX1(q1) + vθX2(q1)

+
vz + vθp(r0)

p(r0 + t) − p(r0)
(X2 − φ∗

−tX2)(q1),

where t is chosen such that p(r0 + t) 6= p(r0). Consequently, in view of
Theorem III-8.3, one can conclude that an integral curve of X1 is not ab-
normal with respect to any metric on D → Q. Let us obtain the same result
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using the sufficient conditions from Theorem III-8.5. Consider the following
iteration of Lie brackets of X1 and X2:

[X1, X2] = −p′(r)∂/∂z;

[X1, [X1, X2]] = −p′′(r)∂/∂z;

...

By assumption, we know that p′(r) = 0 iff r = 1 and that, for r = 1, p′′(1) <
0 holds. Therefore, the vector fields X1, X2, [X1, X2] and [X1, [X1, X2]] span
the total tangent space at every point in Q. It is clear that the sufficient con-
ditions from Theorem III-8.5 are more easily computed then the necessary
and sufficient conditions from Theorem III-8.3.

We now repeat the above computations for the integral curves of X2. Let
c′ : [0, 1] → Q be an integral curve of X2, with c′(0) = q0 = (r0, θ0, z0) and
endpoint q1. The vertical variational cone now becomes

V ∗
(1,q1)R(0,q0) = span

{
X1(q1), X2(q1),

∂

∂r

∣∣∣∣
q1

+ p′(r0)t
∂

∂z

∣∣∣∣
q1

∣∣∣ ∀t ∈ [0, 1]

}
.

If q0 is a point on the cylinder defined by r = 1, then one easily sees that
V ∗

(1,q1)R(0,q0) 6= Tq1Q since p′(1) = 0. Therefore, every helix c′ : [0, 1] → Q :

t 7→ (1, θ + t, z − p(1)t) is an abnormal extremal, i.e. there exists a section
θ(t) of D0 along the curve c′ through q0 = (1, 0, 0) such that

θ(t) := T ∗ψ−t(p(1) dθ|x + dz|x) = p(1) dθ|(1,t,−p(1)t) + dz|(1,t,−p(1)t) ,

or, equivalently ∇αθ(t) = 0, with ∇ a D-adapted g-connection.

The following step in our treatment consists of proving that c′ is strictly
abnormal. For that purpose, we need to work in the extended setting (i.e.
on Q × IR) and compute the extended vertical cone of variations. It is now
necessary to fix a sub-Riemannian metric h, determining the energy cost E.
In the example constructed by R. Montgomery [45], the metric h on D is
given by h11 = 1, h12 = h21 = 0 and h22 = r2, when expressed with respect
to the basis {X1, X2} of D. It is easily seen with this choice for h, that the
sub-Riemannian length of a curve tangent to D is precisely the length of
its projection on the (x, y)-plane with respect to the standard Riemannian
metric on IR2. In order to compute the extended vertical variational cone,
we first recall the definition of the extended geometric control structure. The
autonomous optimal control structure associated with this sub-Riemannian
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structure equals (τQ|D, i), where i denotes the natural injection of D into
TQ, and with cost the energy E. The anchor map in the extended setting
ρ : (Q × IR) × IR2 → T (Q × IR) is defined by:

ρ
(
(q, J), (u1, u2)

)
= u1 ∂

∂r
+ u2

(
∂

∂θ
− p(r)

∂

∂z

)
+

1

2

(
(u1)2 + (ru2)2

) ∂

∂J
,

where we have used the basis {X1, X2} of D to fix a coordinate system
(u1, u2) on the anchored bundle τQ|D. Note that, as is already explained in
Theorem III-8.2, we have omitted explicit reference to the time coordinate.
The vector field on Q×IR defined by X2(q, J) = ∂/∂θ−p(r)∂/∂z+ 1

2r2∂/∂J ,
with flow {ψt} given by ψt(r, θ, z, J) = (r, θ + t, z− p(r)t, J + 1

2r2t), satisfies
the property that its integral curve through (q0, 0), with q0 = (1, 0, 0), is
precisely the curve t 7→

(
c′(t), (J E

c′ )(0,t)
)
. The extended vertical variational

cone is generated by tangent vectors of the form:

Tψ1−t

(
ρ
(
ψt(q0, 0), (u1, u2)

))
− X2(q1) = u1

(
∂

∂r
+ (1 − t)

∂

∂J

)
+

(u2 − 1)

(
∂

∂θ
− p(1)

∂

∂z

)
+

1

2

(
(u1)2 + (u2)2 − 1

) ∂

∂J
,

where u1, u2 ∈ IR and t ∈]0, 1] are arbitrary. In order to prove that −∂/∂J
is contained in the boundary of extended variational cone, we introduce new
control coordinates (s, φ): u1 = s cos φ and u2 = s sin φ. By replacing u1

and u2 in the above family of tangent vectors by these new coordinates, we
now construct two circles in the extended variational cone. Let t = 1, then
it is easily seen that the circle in Tψ1(q0,0)(Q × IR) with centre at the point

corresponding to the tangent vector −(∂/∂θ − p(1)∂/∂z) and determined
by the tangent vectors parameterised by s = 1 and φ ∈ [0, 2π], is entirely
contained in the extended vertical variational cone. The tangent line to this
circle at the origin is spanned by ∂/∂r. Therefore, both vectors ∂/∂r and
−∂/∂r are contained in the closure of this cone (see Remark 3.4 and the
picture below).

...

0 ∂/∂r
-

−∂/∂θ + p(1)∂/∂z

6
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By taking t = 0, s = 1 and φ = [0, 2π] and repeating the above reasoning,
we obtain that the straight line spanned by −∂/∂r − ∂/∂J is contained in
the closure of the cone. Adding ∂/∂r to this vector, shows that −∂/∂J
is contained in the closure of the extended vertical variational cone, which
proves that c′ is strictly abnormal.

Before proceeding, we first give a physical interpretation of the above system.
A curve c(t) = (r(t), θ(t), z(t)) taking (x0, y0, 0) to (x0, y0, z1) and tangent
to the distribution D, is a curve such that

ż(t) = −p(r)θ̇(t).

Therefore, we have that, using Stokes theorem:

z1 =

∫ 1

0
−p(r(t))θ̇(t)dt = −

∫∫

Ω
B(r)rdrdθ,

with B(r) = (1/r)p′(r), which can be regarded as the strength of a magnetic
field, normal to the (x, y)-plane, with vector potential

(
Ax = −p(r)

r
sin θ, Ay =

p(r)

r
cos θ, Az = 0

)
.

The surface Ω is the oriented surface enclosed by the projection of the curve
c on the (x, y)-plane. The value −z(1) therefore measures the flux of the
magnetic field through Ω. Let us now consider the Hamiltonian H, gener-
ating normal extremals: H = 1

2(p2
r + 1

r2 (p2
θ − pzp(r))2. If one expresses this

function in the momenta with respect to the coordinates (x, y, z), then one
obtains the Hamiltonian for a particle in the plane (x, y) with charge q = pz

in a magnetic field with vector potential (Ax, Ay, 0) orthogonal to the plane
(note that ṗz = 0). The above connection between a normal extremal of the
sub-Riemannian structure under consideration and the motion of a charged
particle in a magnetic field was obtained by R. Montgomery [44, 45].

Remark 3.4. Let C denote a cone in a finite dimensional vector space V, with
vertex at the origin. Let c : [0, 1] → V denote a curve through 0 at t = 0 such
that c([0, 1]) ⊂ C. The tangent vector at 0 is defined by:

ċ(0) = lim
h→0+

1

h
c(h).

Since h > 0 the argument of the above limit is contained in C for any h, which
in turn implies that the limit itself is contained in the closure of C. We thus
conclude that ċ(0) ∈ cl C. A similar argument can be applied if we consider a
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curve c : [−1, 0] → V such that c([−1, 0]) ⊂ C and c(0) = 0. Consider again
the tangent vector at t = 0:

lim
h→0−

1

h
c(h) = − lim

(−h)→0+

1

(−h)
c(h).

We obtain that −ċ ∈ clC.

We consider an example, constructed by W. Liu and H.J. Sussmann in [38],
that contains strictly abnormal extremals that are minimising.

Example 3.5. Let M = IR3 and D spanned by X1 = ∂/∂x, X2 = (1 −
x)∂/∂y + x2∂/∂z, where we use cartesian coordinates (x, y, z). The set
{X1, X2} forms a basis for D and determines a coordinate system (u1, u2)
on the control space. This allows us to define a metric h on D and the cost
function on D then becomes

E((x, y, z), u1, u2) =
1

2

(
(u1)2 + (u2)2

)
,

Let us calculate the iterated brackets of X1 and X2:

[X1, X2] = − ∂

∂y
+ 2x

∂

∂z
,

[X1, [X1, X2]] = 2
∂

∂z
,

from which follows easily that the integral curves of X1 are not abnormal.
It should be noted that this result is independent of the metric h on D. We
investigate the abnormality of the integral curves of X2. The flows {φt} of
X1 and {ψt} of X2 are given by φt(x, y, z) = (x + t, y, z) and ψt(x, y, z) =
(x, (1 − x)t + y, x2t + z). The pull-back of X1 under ψt equals ψ∗

t X1 =
∂/∂x + t∂/∂y − 2xt∂/∂z, and this vector field can be written as a linear
combination of X1, X2 for any value of t and at all points for which x = 0
or x = 2. Indeed, if x = 0, then ψ∗

t X1(0, y, z) = X1(0, y, z) + tX2(0, y, z). If
x = 2, then ψ∗

t X1(2, y, z) = X1(2, y, z) − tX2(2, y, z). Therefore, each curve
defined by c : I → M : t 7→ (x, (1−x)t+y, x2t+z) for any given point (x, y, z)
with x = 0 or x = 2, is an abnormal extremal (i.e. the vertical variational
cone equals D). We now compute that the integral curves of X2 are strictly
abnormal. The anchor map ρ in the extended setting IR4 becomes (we leave
out the time coordinate) in coordinates with q = (x, y, z, J):

ρ(q, u1, u2) = u1 ∂

∂x

∣∣∣∣
q

+ u2

(
(1 − x)

∂

∂y

∣∣∣∣
q

+ x2 ∂

∂z

∣∣∣∣
q

)

+
1

2

(
(u1)2 + (u2)2

) ∂

∂J

∣∣∣∣
q

.
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Consider the vector field X2, defined on IR4:

X2(q) = ρ(q, 0, 1) = (1 − x)
∂

∂y

∣∣∣∣
q

+ x2 ∂

∂z

∣∣∣∣
q

+
1

2

∂

∂J

∣∣∣∣
q

,

with flow {ψt} defined by ψt(x, y, z, J) = (ψt(x, y, z), J + 1
2 t). By definition,

the extended vertical variational cone is generated by tangent vectors of the
form:

Tψb−t

(
ρ(ψt−a(q), u

1, u2)
)
− X2(ψb(q)) = (3.2)

+ u1

(
∂

∂x
− (b − t)

∂

∂y
+ 2(b − t)x

∂

∂z

)

+ (u2 − 1)

(
(1 − x)

∂

∂y
+ x2 ∂

∂z

)
+ 1

2

(
(u1)2 + (u2)2 − 1

) ∂

∂J
,

with u1, u2 ∈ IR and t ∈]a, b]. Consider the following parametrisation: let
u1 = s cos θ and u2 = s sin θ, for s > 0 and θ ∈ [0, 2π[. If we assume that
s = 1, the coefficient of ∂/∂J becomes zero. If θ varies, we obtain a curve
in the cone trough the origin. We know from Remark 3.4 that the tangent
ray at the origin, i.e. the straight line spanned by

∂

∂x
− (b − t)

∂

∂y
+ 2(b − t)x

∂

∂z

lies in the closure of the cone. If we substitute b = t, then we have that
±Y1 = ±∂/∂x is contained in the closure of the cone. If, on the other hand,
b > t, then we obtain that ±Y2 = ±(∂/∂y − 2x∂/∂z) is contained in the
closure of the cone. Now assume that x = 0 or x = 2. It is now easily seen
that, given u1, u2 such that (u1)2 + (u2)2 < 1, then a linear combination
(with positive coefficients) of the tangent vector in (3.2) and ±Y1,±Y2 can
be found which is proportional to −∂/∂J , up to a positive multiple.

4 Vakonomic dynamics and nonholonomic mechanics

As an application of our approach to sub-Riemannian structures in terms
of generalised connections, we will see how to establish coordinate indepen-
dent conditions for the motions of a free mechanical system subjected to
linear nonholonomic constraints to be normal extremals with respect to an
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associated sub-Riemannian structure, and vice versa. We first give a defini-
tion of what is meant here by a free mechanical systems subjected to linear
nonholonomic constraints, shortly called “a free nonholonomic mechanical
system” and its associated sub-Riemannian structure. The definition below
will be more detailed in the next chapter. We would like to emphasise that
the equations of motion are closely related to the control equations for a
control affine connection system (cf. Section III-9). However, the solutions
to the free nonholonomic mechanical system are not in general optimal.

Assume that a manifold Q is equipped with a non-integrable regular dis-
tribution D and a Riemannian metric G. A free mechanical system with
linear nonholonomic constraint D consists of a free particle described by
the Lagrangian L(v) = 1

2G(v, v) ∈ C∞(TQ) and subjected to the constraint
that the integral curves should live in D. (“Free” refers here to the absence
of external forces.) The problem of determining the dynamics of the free
nonholonomic mechanical system then consists in finding the solutions of
the following equation (see [1, 4])

π(∇G
ċ ċ(t)) = 0 and ċ(t) ∈ D ,∀t,

where π is the orthogonal projection of TQ = D ⊕D⊥ onto D with respect
to G and, as before, ∇G is the Levi-Civita connection corresponding to G.
The associated sub-Riemannian structure is then given by (Q, D, hG), with
hG the restriction of G to D.

In Chapter V we will construct a unique generalised connection ∇nh on D
over the linear vector bundle map i : D ↪→ TQ, i.e. the natural inclu-
sion map, namely: ∇nh

X Y = π(∇G
XY ). Here and in the sequel, we identify

X ∈ Γ(D) with i ◦ X ∈ X(Q). The i-connection ∇nh preserves the sub-
Riemannian metric hG on D and satisfies ∇nh

X Y − ∇nh
Y X − π[X, Y ] = 0

for all X, Y ∈ Γ(D). In Chapter V it is proven that ∇nh is completely
determined by these two properties. A motion c of the free nonholonomic
mechanical system is then characterised by the condition that ∇nh

ċ ċ(t) = 0,
for all t.

The vakonomic dynamical problem, associated with the free particle with
linear nonholonomic constraints, consists in finding normal extremals with
respect to the associated sub-Riemannian structure (Q, D, hG). It is interest-
ing to compare the solutions of the nonholonomic mechanical problem with
the solutions of the vakonomic dynamical problem, because the equations
of motion for the mechanical problem are derived by means of (a generali-
sation of) d’Alembert’s principle, whereas the normal extremals are derived
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from a variational principle (see for instance Section III-9). This has been
discussed for more general Lagrangian systems by J. Cortés et al. [10]. For
the free particle case, we shall present here an alternative (coordinate free)
approach.

Given a Riemannian metric G and a regular distribution D on a manifold
Q, we can define the following two tensorial operators:

ΠG : Γ(D) ⊗ Γ(D) → Γ(D⊥), (X, Y ) 7→ π⊥(∇G
XY ),

ΠB : Γ(D) ⊗ Γ(D0) → Γ((D⊥)0), (X, η) 7→ τ(δXη).

It is indeed easily seen that both ΠG and ΠB are C∞(Q)-bilinear in their
arguments and, hence, their action can be defined point-wise, with expres-
sions like ΠG(Xq, Yq) and ΠB(Xq, ηq), for Xq, Yq ∈ Dq and ηq ∈ D0, having
an obvious and unambiguous meaning.

The operator ΠB is related to the ‘curvature’ of the distribution D as follows:
let X, Y ∈ Γ(D), then one has:

〈ΠB(X, η), Y 〉 = 〈δXη, Y 〉 = −〈η, [X, Y ]〉, for any η ∈ Γ(D0).

Thus ΠB ≡ 0 if and only if D is involutive. The following lemma illustrates
the importance of both tensors ΠG and ΠB. First, define a connection ∇̃B

over i : D ↪→ TQ on the bundle D0 by the prescription ∇̃B
Xη = τ⊥(δXη)

with X ∈ Γ(D) and η ∈ Γ(D0).

Lemma 4.1. Consider a Riemannian metric G and a regular distribution
D on a manifold Q. Assume that c : I = [a, b] → Q is a curve tangent
to D and let ∇ be a D-adapted g-connection with respect to the associated
sub-Riemannian structure (Q, D, hG). Then, the following properties hold:

1. Given Ya ∈ Dc(a), denote the parallel transported curves along c, with

initial point Ya, with respect to ∇nh, resp. ∇G, by Ỹ (t), resp. Y (t).
Then Ỹ (t) = Y (t) for all t ∈ I, if and only if ΠG(ċ(t), Ỹ (t)) = 0 for
all t ∈ I.

2. Given ηa ∈ D0
c(a), denote the parallel transported curves along c, with

initial point ηa, with respect to ∇̃B, resp. ∇, by η̃(t), resp. η(t). Then
η̃(t) = η(t) if and only if ΠB(ċ(t), η̃(t)) = 0 for all t ∈ I.

Proof. (1) From the definition of ΠG it follows that, given any section
Z̃(t) of D along c, the following equation holds: ∇nh

ċ Z̃(t) = ∇G
ċ Z̃(t) −
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ΠG(ċ(t), Z̃(t)). Assume that Z̃(t) = Ỹ (t) = Y (t), then we have

ΠG(ċ(t), Ỹ (t)) = 0.

This already proves the statement in one direction. The converse follows
from the fact that parallel transported curves with respect to any connection
are uniquely determined by their initial conditions.

The proof of (2) follows from similar arguments.

Note that property (2) of the previous lemma gives necessary and sufficient
conditions for the existence of curves that are abnormal extremals, i.e.: c is
an abnormal extremal if and only if there exists a parallel transported section
η̃ of D0 along c with respect to ∇̃B such that, in addition, ΠB(ċ(t), η̃(t)) = 0
for all t. We shall now investigate some further properties of the operators
ΠB and ΠG.

For q ∈ Q, let Xq be a non-zero element of Dq and consider the following
subspace of TqQ:

Dq + [Xq, Dq] := span{Y (q) + [X̃, Y ′](q) | Y, Y ′ ∈ Γ(D); (4.3)

X̃ ∈ Γ(D) with X̃(q) = X}. (4.4)

As a side result of the next lemma it will be seen that the space Dq+[Xq, Dq]

is independent of the extension X̃ of Xq used in its definition and, hence
this also justifies the notation.

Lemma 4.2. Let ηq ∈ D0
q and Xq ∈ Dq for some q ∈ Q. The following

equivalence holds:

ΠB(Xq, ηq) = 0 if and only if ηq ∈ (Dq + [Xq, Dq])
0.

Proof. Let ΠB(X, η) = 0. This is equivalent to 〈η, [X̃, Y ′](q)〉 = 0 for
any X̃, Y ′ ∈ Γ(D) with X̃(q) = Xq. Since ηq ∈ D0

q , we may conclude
that ηq ∈ (Dq + [X, Dq])

0. The converse follows by reversing the previous
arguments.

Another useful property is given by the following lemma.
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Lemma 4.3. Let Q be a manifold with a Riemannian metric G and a regular
non-integrable distribution D, and consider the associated sub-Riemannian
structure (Q, D, hG). Let ∇ be a normal g-connection. We then have for
α ∈ X∗(Q) that ∇αα = 0 if and only if

[G(∇nh
g(α)g(α)) = −ΠB(g(α), τ⊥(α)) and

∇̃B
g(α)τ

⊥(α) = −[G(ΠG(g(α), g(α))).

Proof. From Theorem 2.3 one has that ∇αα = 0 if and only if ∇G
g(α)τ(α)+

δg(α)τ
⊥(α) = 0. Using the following relations

τ(α) = [G(g(α)),
∇G ◦ [G = [G ◦ ∇G,
∇G

g(α)g(α) = ∇nh
g(α)g(α) + ΠG(g(α), g(α)),

δg(α)τ
0(α) = ∇̃B

g(α)τ
0(α) + ΠB(g(α), τ0(α)),

together with the fact that T ∗Q = [G(D) ⊕ D0 and D0 ∼= [G(D⊥), the
equivalence is immediately proven.

The previous lemmas can now be used to derive necessary and sufficient
conditions for a motion of a free nonholonomic mechanical system to be
normal extremals (i.e. solution to the corresponding vakonomic problem)
and vice versa. Let Q again be a manifold with a Riemannian metric G and
a regular non-integrable distribution D.

Proposition 4.4. A solution c : [a, b] → Q of the free nonholonomic system
determined by the triple (Q, D, G) is a solution of the corresponding vako-
nomic problem, and vice versa, if and only if there exists a section η of D0

along c such that

∇̃B
ċ η(t) = −[G(ΠG(ċ(t), ċ(t))) (4.5)

and such that, in addition, η(t) ∈ (Dc(t) + [ċ(t), Dc(t)])
0 for all t.

Proof. The condition for any g-admissible curve α(t) = [G(ċ(t)) + η(t)
with base curve c (where η(t) is any section of D0 along c) to be parallel
transported with respect to a normal g-connection is that ∇αα(t) = 0. This
can equivalently be written as:

[G(∇nh
ċ ċ(t)) = −ΠB(ċ(t), η(t)) and

∇̃B
ċ η(t) = −[G(ΠG(ċ(t), ċ(t))).
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Thus ∇nh
ċ ċ(t) = 0 if and only if ΠB(ċ(t), η(t)) = 0, where η(t) is a solution

of ∇̃B
ċ η(t) = −[G(ΠG(ċ(t), ċ(t))).

Remark 4.5. Given any η0 ∈ (Dc(a)+[ċ(a), Dc(a)])
0, then (4.5) always admits

a solution, η(t) with initial condition η(a) = η0. The obstruction for c to be
simultaneously a motion of the nonholonomic mechanical system and a solution
of the vakonomic dynamical problem, lies in the fact that η(t) should belong to
(Dc(t) + [ċ(t), Dc(t)])

0 for all t, and this is not guaranteed by the fact that η(t)
is a solution of (4.5). The search for geometric conditions for solutions η(t)
of equation (4.5) to remain in (Dc(t) + [ċ(t), Dc(t)])

0 for all t, is left for future
work.



V

Nonholonomic Mechanics

In this chapter we present an alternative approach to the treatment of non-
holonomic systems with symmetry from a differential geometric perspective.
Several authors have contributed to the field of nonholonomic mechanics (see
[1, 4, 7, 8, 9, 10] and references therein). This has resulted in several quite
different, but equivalent approaches to the subject. In this chapter we follow
the affine connection approach, i.e. we formulate the equations of motion of
a nonholonomic system using the notion of a (affine) connection [1].

1 General setting

It is well-known that the equations for a nonholonomic mechanical systems
are derived from the Lagrange-d’Alembert principle, saying that the vir-
tual work of the reaction forces should be zero. The geometric framework
in which a nonholonomic system is formulated is basically the same as the
geometric framework introduced in Section III-9.2, i.e. we assume that a
Lagrangian system (Q, L) is given as well as a k-dimensional regular distri-
bution D on Q, which is locally determined by n− k independent functions
Φα : TQ → IR, α = 1, . . . , n − k, called constraint functions. The equations
determining the dynamics of the nonholonomic system, then read

d

dt

(
∂L

∂vi

) (
qi(t), vi(t)

)
− ∂L

∂qi

(
qi(t), vi(t)

)
= λα

∂Φα

∂vi
and Φ(ċ(t)) = 0;

for some real-valued functions λα(t) ∈ IR with α = 1, . . . , n − k and where
we have put Φ = (Φ1, . . . ,Φn−k) and c(t) = (qi(t), vi(t)). Note that these
equations are different from the ones obtained in Section III-9.2. In the
remainder of this chapter we assume that the Lagrangian L takes the form

L(v) = 1
2G(v, v) − V (τQ(v)),

where G is a Riemannian metric on Q and V represents the potential energy
function. Using standard techniques, and with {η1, . . . , ηn−k} representing
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a basis of D0, the equations of motion of the nonholonomic system can be
put in the form:

∇G
ċ ċ(t) = − gradV

(
c(t)

)
+ ]G(λAηA),

together with the constraint condition ċ(t) ∈ D. The gradient is defined
here using the Riemannian metric G as follows: gradV = ]G(dV ). One can
verify (see [1]) that the above equation is equivalent to

π
(
∇G

ċ ċ(t) + gradV
(
c(t)

))
= 0,

where π : TQ → D is the orthogonal projection defined using the metric
G: we have a direct sum decomposition TQ = D ⊕ D⊥, where D⊥ is the
orthogonal complement of D (in this chapter we follow the same notations
as in the previous chapter). The projection of TQ onto D⊥ is denoted by
π⊥. If V = 0 (or if V is constant), i.e. if there are no external forces, then
we say that we are studying the nonholonomic free particle. The equations
of motion then reduce to π(∇G

ċ ċ(t)) = 0, together with the constraint con-
dition ċ(t) ∈ D for all t. Furthermore, one can define a connection ∇̄ on Q
according to ∇̄XY = ∇G

XY + (∇G
XπD⊥)(Y ) for X, Y ∈ X(Q). This connec-

tion leaves D invariant and the equation of motion of the nonholonomic free
particle can be rewritten as ∇̄ċċ(t) = 0, with initial velocity taken in D (see
[4, 33]).

There are many examples of nonholonomic systems that fit into the geomet-
ric framework proposed above. As an example, we consider the Snakeboard,
which is a variant of the skateboard in which the passive wheel assemblies
can pivot freely about a vertical axis (this example is taken from [7, 8, 36]).
A peculiar characteristic of the Snakeboard is the fact that the rider can
generate a snake-like locomotion without having to kick off the ground. The
picture below sketches a simplified model. The human torso is simulated by
a momentum wheel, rotating about the vertical axis through the centre of
mass.

z

± φ

−φ

back wheels

front wheels

l

(x, y)

ψ
θ
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The configuration space can be identified with Q = SE(2) × S1 × S1, with
local coordinates denoted by (x, y, θ, ψ, φ). The requirement that the wheels
do not slip in the direction of their axis imposes the two nonholonomic
constraints:

− sin(θ + φ)ẋ + cos(θ + φ)ẏ − l cos φ θ̇ = 0;

− sin(θ − φ)ẋ + cos(θ − φ)ẏ + l cos φ θ̇ = 0;

determining the distribution D. It follows that D is spanned by:

∂

∂ψ
,

∂

∂φ
and − l cos φ cos θ

∂

∂x
− l cos φ sin θ

∂

∂y
+ sin φ

∂

∂θ
. (1.1)

The kinetic energy Lagrangian determining the motion of the Snakeboard
takes the form

L = 1
2m(ẋ2 + ẏ2) + 1

2(J + Jr + 2Jw)θ̇2 + Jrθ̇ψ̇ + 1
2Jrψ̇

2 + Jwφ̇2,

where m is the mass of the Snakeboard, J is the moment of inertia of the
board, Jw the moment of inertia of the wheels about the vertical axis and
Jr the moment of inertia of the rotor. Following [8] we make the additional
simplifying assumption ml2 = J + Jr + 2Jw, which keeps the inertias on
similar scales. The metric G on Q has components:

Gxx = m Gyy = m
Gθθ = J + Jr + 2Jw Gθψ = Jr = Gψθ

Gψψ = Jr Gφφ = 2Jw;

where all other components are zero.

We now reconsider the nonholonomic free particle from the point of view of
connections over a vector bundle map. It is our goal to define a generalised
connection for which the “geodesic equation” is equivalent to the equations
of motion of the nonholonomic free particle. For that purpose, let i : D →
TQ denote the natural embedding of D into TQ. In the sequel we will again
identify X ∈ Γ(D) with Ti ◦ X, regarded as a vector field on Q. In terms
of the notations used in Chapter II, we consider the following situation:
N = E = D, ν = π = (τQ)|D and ρ = i. We may now define a connection

∇nh : Γ(D) × Γ(D) → Γ(D) over i on the vector bundle π : D → Q by the
prescription

∇nh
X Y = π(∇G

XY ) ,
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where the superscript nh stand for “nonholonomic”. It is easily seen that
this determines indeed a i-connection and that, moreover, ∇nh

X Y = ∇̄XY
for X, Y ∈ Γ(D). Admissible curves in this setting are curves c̃ in D that are
prolongations of curves in Q, i.e. c̃(t) = ċ(t) for some curve c in Q. Note that
for any base curve c, ċ may be regarded here both as an admissible curve
in D and as a section of π defined along c. It follows that the equation of
motion of the given nonholonomic problem can be written as ∇nh

ċ ċ(t) = 0,
with c a curve in Q tangent to D. Admissible curves satisfying this equation
are also called autoparallel curves (see also Chapter IV page 135). We now
continue to investigate some properties of the nonholonomic connection ∇nh.

The restriction of the given Riemannian metric G on Q to sections of D
defines a bundle metric on D which we denote by Go (to avoid notational
confusion with the notion of a lift over an anchor map introduced in the
following section, we use a different notion for the restriction of G to the
distribution D in comparison with the previous section). The i-connection
∇nh considered above now admits the following characterisation.

Proposition 1.1. ∇nh is uniquely determined by the conditions that it is
‘metric’, i.e. for all X, Y, Z ∈ Γ(D) one has

X(Go(Y, Z)) = Go(∇nh
X Y, Z) + Go(Y,∇nh

X Z),

and that it satisfies

∇nh
X Y −∇nh

Y X = π[X, Y ],

for all X, Y ∈ Γ(D).

Proof. First we prove that ∇nh satisfies both conditions. Using the fact
that ∇G is metric for G, and regarding sections of D as vector fields on Q,
we find:

X(Go(Y, Z)) = X(G(Y, Z))

= G(∇G
XY, Z) + G(Y,∇G

XZ)

= Go(∇nh
X Y, Z) + Go(Y,∇nh

X Z),

where the last equality follows from the fact that G(X, Y ) = 0 whenever
X ∈ Γ(D) and Y ∈ Γ(D⊥). The second condition follows from the symmetry
property of ∇G (i.e. ∇G has zero torsion).
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Conversely, let ∇ be an arbitrary i-connection that satisfies both conditions.
One then easily derives that for any chosen X, Y ∈ Γ(D) and for all Z ∈
Γ(D)

2Go(∇XY, Z) = X(G(Y, Z)) + Y (G(X, Z)) − Z(G(X, Y ))
+G(π[X, Y ], Z) − G(π[X, Z], Y ) − G(X, π[Y, Z])
= 2G(∇G

XY, Z) ,

from which one readily deduces that ∇XY = π(∇G
XY ), i.e. ∇ ≡ ∇nh.

It is easily proven that if D is an integrable distribution, it induces a foliation
of Q (i.e. the given constraints are holonomic), then the connection ∇nh

induces the Levi-Civita connection on the leaves of this foliation with respect
to the induced metric.

By definition, the nonholonomic connection ∇nh is metric, i.e. for any
X, Y ∈ Γ(D) we have that

X(Go(X, Y )) = Go(∇nh
X X, Y ) + Go(X,∇nh

X Y )

holds. The second term on the right-hand side can be rewritten as

Go(X,∇nh
X Y ) = Go(X,∇nh

Y X) + G(X, [X, Y ])

= 1
2LY (G(X, X)) + G(X, [X, Y ])

= 1
2(LY G)(X, X) ,

(with L denoting the Lie derivative operator). With any given Y ∈ Γ(D)
one can associate a function JY on D, given by JY (Xq) := Go(Xq, Y (q)),
for all q ∈ Q and Xq ∈ Dq. Using the preceding identities, and considering
a base curve c in Q which is “geodesic” with respect to ∇nh (i.e. a solution
of the nonholonomic equations), one easily derives that

d

dt
(JY (ċ))(t) = 1

2(LY G)(ċ(t), ċ(t)).

This equation implies that the condition that a section Y of D which, re-
garded as a vector field on Q, leaves the metric G invariant (i.e. is a Killing
vector field) is a sufficient condition for the function JY to determine a con-
served quantity for the given nonholonomic system. However, a necessary
and sufficient condition for JY to be conserved is that the restriction of the
tensor (LY G) to D ⊗ D is zero, i.e. (LY G)|D⊗D = 0.
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2 Reduction of the nonholonomic free particle with symmetry.

Consider again a nonholonomic free particle with configuration space Q,
kinetic energy Lagrangian L(v) = 1

2G(v, v), and linear nonholonomic con-
straints represented by a regular distribution D on Q. We now investigate
the role of symmetries in the description of such systems.

Let H be a Lie group defining a free and proper right action on Q, denoted by
Ra : Q → Q, q 7→ Ra(q) = qa, for all a ∈ H, such that we have a principal

fibre bundle Q
µ→ Q̂ := Q/H. Assume this action leaves invariant both

the Riemannian metric G and the constraint distribution D, i.e. R∗
aG =

G and TRa(D) ⊂ D for all a ∈ H. We already know from above that
the equations of motion of the nonholonomic free particle are given by the
“geodesic” equations: ∇nh

ċ ċ(t) = 0. Using the symmetry assumption (i.e.
the H-invariance of G and D), it is easily proven that if c(t) is a solution,
so is c(t)a for all a ∈ H. Therefore, one obtains equivalence classes of
solutions, where two solutions c1 and c2 are called equivalent iff c1 = c2a for
some a ∈ H. In the reduction procedure described below, it is our intention
to construct a reduced connection over a suitable vector bundle map, such
that the corresponding “geodesics” are precisely these equivalence classes.

First of all, we note that the set D/H, the quotient space of D under the
lifted action of H on D, admits a vector bundle structure over Q̂, with
projection τ : D/H → Q̂ defined by τ([Xq]) = µ(q). Here, [Xq] represents
the H-orbit of Xq ∈ D under the lifted right action. Using the fact that
this action on D is fibre linear, and relying on the local triviality of the
principal bundle Q → Q̂, one can verify that τ indeed determines a vector
bundle structure (see e.g. [49, p 29]). Next, we define a map ρ : D/H → TQ̂
according to ρ([Xq]) := Tµ(Xq). Once again one can easily see that this
map is well defined (i.e. does not depend on the chosen representative Xq of
[Xq]) and is fibred over the identity on Q̂. We now first construct a principal
ρ-connection on Q which, subsequently, will be used to define a ρ-connection
on D/H.

Let h : µ∗(D/H) → TQ : (q, [Xq]) → Xq, i.e. we take the image h(q, [Xq])
to be the unique tangent vector at q belonging to the equivalence class [Xq].
Since the action of H is free, it immediately follows that h is well defined
and, moreover, imh = D. We can also verify that h(qa, [Xq]) = TRa(Xq) =
TRa(h(q, [Xq])) and Tµ(h(q, [Xq])) = ρ([Xq]). Consequently, h determines
a principal ρ-connection on Q.

Note that sections of the bundle τ : D/H → Q̂ can be put into one to
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one correspondence with the set of right invariant vector fields on Q taking
values in D (i.e. the right equivariant sections of D → Q). Indeed, for
ψ ∈ Γ(D/H) and q ∈ Q such that µ(q) ∈ dom ψ, put

ψh(q) := h(q, ψ(µ(q))) .

Then ψh is a H-equivariant section of D. On the other hand, let X be a
right invariant vector field on Q with values in D. Then, define an element
Xh of Γ(D/H) by

Xh(q̂) = [Xq],

with q ∈ µ−1(q̂). Clearly, this does not depend on the choice of q in the fibre
over q̂. Thus, by means of h we have established a bijective correspondence
between Γ(D/H) and the set of H-equivariant sections of D → Q. For
the following derivation of a reduced ρ-connection on D/H, we may refer
to F. Cantrijn et al. [4] where, at least for the so-called Chaplygin-case, a
similar construction has been made in terms of ‘ordinary’ connections and,
therefore, we will not enter here into details. For completeness, however,
we recall the following useful properties. First, from the H-invariance of
G one can deduce that the vector field ∇G

XY is right invariant whenever
X, Y ∈ X(Q) are right invariant, and that π : TQ → D commutes with
TRa for any a ∈ H. Secondly, the symmetry assumptions also imply that
the induced bundle metric Go on D is H-invariant and, hence, determines a
reduced bundle metric Ĝo on D/H. Using h we can construct Ĝo as follows:
for any φ, ψ ∈ Γ(D/H) put

Ĝo(q̂)(φ(q̂), ψ(q̂)) := Go(q)(φh(q), ψh(q)),

with q ∈ µ−1(q̂). Let a ∈ H, then

Go(qa)(φh(qa), ψh(qa)) = G(qa)(TRaφ
h(q), TRaψ

h(q))

= Go(q)(φh(q), ψh(q)),

where, again, we have relied on the H-invariance of G. From this we may
conclude that Ĝo is indeed well defined.

Let ∇nh be the nonholonomic connection over i introduced in the previous
section. We now construct a ρ-connection on the bundle D/H, as follows:
for any ψ, φ ∈ Γ(D/H) put

∇̂nh
ψ φ = (∇nh

ψhφh)h .

Again, one may check that this is well defined and verifies the conditions of
a ρ-connection.
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Proposition 2.1. The ρ-connection ∇̂nh is metric with respect to the re-
duced bundle metric Ĝo on D/H, and satisfies the property:

∇̂nh
ψ φ − ∇̂nh

φ ψ − [ψ, φ] = 0,

where, by definition, [ψ, φ] := (π[ψh, φh])h.

Proof. For any ψ ∈ Γ(D/H), we have that ψh is µ-related to ρ◦ψ as vector
fields on Q and Q̂, respectively. Using this, together with the properties of
∇nh, we can prove that ∇̂nh is metric with respect to Ĝo. Indeed, let
ψ, φ, η ∈ Γ(D/H), then

(ρ ◦ ψ)(Ĝo(φ, η)) ◦ µ = ψh(Ĝo(φ, η) ◦ µ)

= ψh(Go(φh, ηh))

= Go(∇nh
ψhφh, ηh) + Go(φh,∇nh

ψhηh)

=
(
Ĝo(∇̂nh

ψ φ, η) + Ĝo(φ, ∇̂nh
ψ η)

)
◦ µ,

from which the result readily follows.

The second property can also be proven in a straightforward manner.

It is also not difficult to verify that ∇̂nh is uniquely determined by the two
properties mentioned in the proposition.

To complete the reduction picture, it can be proved that every solution
of the geodesic equation for ∇nh projects onto a solution of the “geodesic
problem” for the reduced nonholonomic connection ∇̂nh in the following
sense. Assume that c is a solution of the nonholonomic equations, i.e.
∇nh

ċ ċ(t) = 0. Consider the curve ĉ = µ ◦ c in Q̂. Then the section
[ċ](t) = [ċ(t)] of D/H along ĉ is autoparallel with respect to the ρ-connection
∇̂nh, i.e. ∇̂nh

[ċ] [ċ](t) = 0. This follows from the fact that for each q ∈ Q,

h(q, .) : τ−1(µ(q)) → TqQ is injective and that for any base curve c in Q,

h(c(t), ∇̂nh
[ċ] [ċ](t)) = ∇nh

ċ ċ(t), ∀t.

On the other hand, any solution [ċ] of the equation ∇̂nh
[ċ] [ċ](t) = 0 determines

an equivalence class of solutions of the initial nonholonomic problem on
Q. Given any point c0 in µ−1(τ([ċ](0))), a unique curve c in Q can be
constructed which is horizontal with respect to the principal ρ-connection
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h on Q, i.e. c satisfies for all t: ċ(t) = h(c(t), [ċ](t)) with initial condition
c(0) = c0 (note that [ċ(t)] = [ċ](t)). It is easily seen that µ(c) = τ([ċ]) and
from this we can deduce ∇nh

ċ ċ(t) = 0.

We conclude that the set of equivalence classes of solutions of the free non-
holonomic mechanical problem in Q is in a one-to-one correspondence with
the set of solutions of autoparallel admissible curves with respect to the
reduced nonholonomic connection (i.e. using the principal ρ-connection h).

To close this section, we note that much of the preceding discussion can
be easily extended to more general nonholonomic systems with symmetry,
admitting forces derivable from a H-invariant potential energy function.

3 The Snakeboard revisited

Let us reconsider the example of the Snakeboard from the beginning of this
chapter with configuration space Q = SE(2) × S1 × S1. The constraints as
well as the metric G are invariant under the right action of SE(2). Denoting
the elements of SE(2) by g = (a, b, α), this action is given by

Rg(x, y, θ, ψ, φ) = (x cos α−y sinα+a, x sinα+y cos α+b, θ+α, ψ, φ).

Also the action of S1 on Q, defined by Rβ(x, y, θ, ψ, φ) 7→ (x, y, θ, ψ + β, φ)
leaves the constraints and the metric invariant. Putting H = SE(2) × S1,
the direct product of SE(2) and S1, the configuration space Q thus inherits
the structure of a principal fibre bundle with structure group H over the
base space S1. The three vector fields from (1.1) form a basis for D which is
invariant under this action and therefore, since these vector fields correspond
to sections of D/H → S1, they determine a basis for the bundle D/H, which
will be denoted by {e1, e2, e3}.
Since, eventually, we have to find the coordinate expression for the equation
∇̂nh

[ċ] [ċ] = 0, it will be profitable to work with the following basis of TQ
{

X1 =
∂

∂ψ
, X2 =

∂

∂φ
,

X3 = −l cos φ cos θ
∂

∂x
− l cos φ sin θ

∂

∂y
+ sinφ

∂

∂θ
,

X4 = sin θ
∂

∂x
− cos θ

∂

∂y
,

X5 = l sinφ cos θ
∂

∂x
+ l sinφ sin θ

∂

∂y
+ cos φ

ml2

ml2 − Jr

(
∂

∂θ
− ∂

∂ψ

) }
,
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where X4, X5 are a basis for D⊥. Recall the definition of a lift of a section of
D/H → S1 to a vector field on Q, then we can write eh

i = Xi for i = 1, 2, 3.
In order to obtain the local equations for ∇̂nh one might compute the con-
nection coefficients for this connection. These are non-trivial functions and
it would require a long and tedious calculation to derive them. Therefore,
we shall follow a different route. Let [ċ](t) = ωi(t)ei(ψ(t), φ(t)), with φ̇ = ω2

(this is the admissibility condition). We now derive the coordinate expres-
sion of the equation π(∇G

ċ ċ) = 0, where ċ = [ċ]h, i.e. in coordinates:

ċ = ω1X1 + ω2X2 + ω3X3.

Since G has only constant coefficients, we have that

∇G
ċ ċ(t) = ω̇1(t)X1(c(t))+ ω̇2(t)X2(c(t))+ ω̇3(t)X3(c(t))+ω3(t)Ẋ3(t),

where Ẋ3(t) is the tangent vector, defined by:

d

dt
(−l cos φ cos θ)

∂

∂x
− d

dt
(l cos φ sin θ)

∂

∂y
+

d

dt
(sinφ)

∂

∂θ
,

where d/dt represents the time derivation along c(t) at t. The orthogonal
projection of this tangent vector on D, gives us the coefficients of π(∇G

ċ ċ(t))
with respect to the basis {X1, X2, X3} of D and in turn the coefficients of
∇̂nh

[ċ] [ċ] with respect to {e1, e2, e3}, where a = ml2/(ml2 − Jr):

∇̂nh
[ċ] [ċ] =

(
ω̇1 +

a cos φ

a cos2φ + sin2φ
φ̇ω3

)
e1 + ω̇2e2 +

(
ω̇3 +

(1 − a) cos φ sinφ

a cos2φ + sin2φ
φ̇ω3

)
e3.

If we substitute ω2 = φ̇, then the equations for ω(t) = (ω1(t), ω2(t), ω3(t))
to be autoparallel with respect to ∇̂nh are precisely:

ω̇1 = − a cos φ

a cos2φ + sin2φ
ω2ω3;

ω̇2 = 0;

ω̇3 = −(1 − a) cos φ sin φ

a cos2φ + sin2φ
ω2ω3.

It is easily seen that the connection coefficients only depend on the coordi-
nate φ. The third equation is easily integrated, giving

ω3 = K3
(
a cos2φ + sin2φ

)−1
2 ,
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with K3 an integration constant. If we substitute this expression for ω3 into
the differential equation for ω1, we obtain, after integration

ω1 = − sinφ ω3 + K1,

(K1 =constant). Since φ̇ = ω2 = K2 is constant, we have that φ(t) =
K2t + φ0. The expressions for x, y, θ, ψ then follow from reconstruction,
which involves integrating the system of differential equations:

ẋ = −l cos φ cos θω3;
ẏ = −l cos φ sin θω3;

θ̇ = sinφω3;

ψ̇ = ω1,

where on the right hand side ω1, ω2 and φ are given by the expressions de-
termined above. It should be noted that the expression for ω3 is closely
related to the modified “Lagrange-d’Alembert-Poincare” function from [7].
Let us consider the vector field ∂/∂ψ ∈ Γ(D). It is easily seen that it is
a fundamental vertical vector field of the principal fibre bundle Q → S1,
which leaves the metric G invariant (since G is right invariant). Therefore,
the function v 7→ G(v, ∂/∂ψ) on D is conserved along solutions of the non-
holonomic mechanical system. Locally this function reads θ̇ + ψ̇. Using the
above expressions for θ̇ and ψ̇, we immediately obtain that ψ̇ + θ̇ = K1.

4 Some remarks

Our approach to the reduction problem of a nonholonomic free particle with
symmetry, using the notion of generalised connections over a bundle map,
differs from other approaches in that we do not have to make any addi-
tional assumption regarding the constraint distribution D. In treatments
of the so-called Chaplygin case, for instance, the assumption is that D is
the horizontal distribution of a principal H-connection (see e.g. [4, 9, 23]),
i.e. besides being H-invariant D also satisfies TQ = D ⊕ kerTµ. In the
more general case treated e.g. by H. Cendra et al. [7], it is assumed that
TQ = D + kerTµ (but one may have D ∩ kerTµ 6= {0}). In our treatment
we only require H-invariance of D.
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Samenvatting

De resultaten, voorgesteld in deze verhandeling, vinden hun oorsprong in
recent werk van R.L. Fernandes [11, 14, 15] omtrent integrabiliteit van Lie
algebroids en de constructie van nieuwe karakteristieke klassen die kunnen
geassocieerd worden met geometrische structuur van een Lie algebroid. Hier-
toe werd een veralgemening van het concept connectie ingevoerd, waarvan
de essentie kan teruggevonden worden in eerdere werken van o.a. I. Vaisman
[56], Y.C. Wong [59] en F. Kamber en P. Tondeur [21] over, respectievelijk,
contravariante connecties, pseudo-connecties en partiële connecties.

Het belang van het creëren van een algemeen geometrisch model voor een
connectie waartoe de hierboven vermelde verschillende types van connecties
behoren, ligt in het feit dat we hiermee een nieuw licht kunnen werpen op dif-
ferentiaalmeetkundige structuren die tot nu toe niet werden bestudeerd van-
uit het standpunt van connectietheorie. Enkele toepassingsgebieden van de
veralgemeende connectietheorie die we zullen ontwikkelen, zijn o.a. contro-
letheorie (Hoofdstuk III) en daarmee geassocieerd sub-Riemannmeetkunde
(Hoofdstuk IV), en niet-holonome mechanica (Hoofdstuk V).

In Hoofdstuk I bestuderen we de differentiaalmeetkundige structuren waar-
op we, in Hoofdstuk II, het begrip van een veralgemeende connectie zullen
definiëren. Deze structuren worden verankerde bundels genoemd en bestaan
uit een vezelbundel ν : N → M over de basisvariëteit M , ook wel configura-
tieruimte genoemd, en een bundelafbeelding ρ : N → TM , gevezeld over de
identiteit op M . De idee die aan de grondslag ligt om dergelijke structuren
te onderzoeken, is het feit dat de dynamische systemen die voorkomen in
controletheorie, sub-Riemannmeetkunde en niet-holonome mechanica, kun-
nen geformuleerd worden op verankerde bundels. De integraalkrommen van
dergelijke dynamische systemen kunnen geassocieerd worden met speciale
krommen in N die toelaatbare krommen worden genoemd en die als volgt
worden gedefinieerd. Een kromme c : I = [a, b] → N is toelaatbaar als ze
voldoet aan de relatie

d

dt

∣∣∣∣
t

ν(c(t)) = ρ(c(t)).
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De geprojecteerde kromme c̃ = ν ◦ c in de configuratieruimte M wordt de
basiskromme van de toelaatbare kromme c genoemd en we zeggen dat c het
punt x = c̃(a) ∈ M naar het punt y = c̃(b) ∈ M brengt, of nog dat het punt
y bereikbaar is vanuit x onder de toelaatbare kromme c.

In Hoofdstuk I onderzoeken we eigenschappen van deze toelaatbare krom-
men. In het bijzonder zullen we nagaan hoe de verzameling van alle be-
reikbare punten vanuit een gegeven vast punt x in M kan gekarakteriseerd
worden. Het blijkt dat deze verzameling van bereikbare punten vanuit x
bevat is in de maximale integraalvariëteit door x (in het Engels de ‘leaf’
door x genoemd) van de kleinste integreerbare veralgemeende distributie
op M die gegenereerd wordt door alle raakvectoren van de vorm ρ(s), met
s ∈ N . In het bijzondere geval dat de bundel ν de structuur heeft van een
vectorbundel en dat ρ een lineair morfisme is, blijkt dat elk punt in de ‘leaf’
door x bereikbaar is vanuit x. Deze resultaten zijn van essentieel belang om-
dat zij toelaten een notie van holonomie te ontwikkelen voor veralgemeende
connecties. Verder zullen we toelaatbare lussen definiëren en tonen we aan
dat deze krommen een deelgroep bepalen van de eerste fundamentaalgroep
van M .

Voordat we de veralgemeende connecties bespreken, herhalen we eerst bon-
dig wat klassiek onder een connectie wordt verstaan. Er bestaan vele equi-
valente definities van het begrip connectie op een vectorbundel π : E → M .
Eén ervan karakteriseert een connectie op π als een afbeelding h die raak-
vectoren in TM ‘lift’ naar raakvectoren in TE. Meer specifiek is h een
afbeelding van de bundel E ×M TM (het vezelproduct van E en TM) naar
TE die aan de volgende eigenschappen voldoet: τE(h(e, ·)) = e voor alle
e ∈ E, h is linear in zijn tweede argument, en h commuteert met Tπ, i.e.
als (e, v) ∈ E ×M TM , dan is Tπ(h(e, v)) = v. Het beeld van de lift h
bepaalt een distributie Hπ op E, complementair aan de distributie van ver-
ticale raakvectoren V π = ker Tπ (Hπ wordt daarom ook wel de horizontale
distributie genoemd). Een connectie op een vectorbundel π : E → M laat
toe vezels van π over verschillende punten met elkaar in verband te bren-
gen, op voorwaarde dat een kromme in M is gegeven die deze punten met
elkaar verbindt. Wiskundig wordt dit verband uitgedrukt met behulp van
een parallel transportoperator die geassocieerd is aan de gegeven kromme.

Veronderstel nu dat een verankerde bundel ν : N → M gegeven is met
ankerafbeelding ρ : N → TM . De veralgemening van het begrip connectie,
ingevoerd in Hoofdstuk II, bestaat erin dat we nu elementen van N naar
raakvectoren in TE liften. Meer specifiek: een veralgemeende connectie
over de afbeelding ρ wordt gedefinieerd als een afbeelding h van E ×M N
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naar TE, zodat voldaan is aan τE(h(e, s)) = e en Tπ(h(e, s)) = ρ(s) voor
willekeurige (e, s) in E ×M N .

De distributie Q op E, opgespannen door alle raakvectoren van de vorm
h(e, s) met (e, s) ∈ E ×M N , is niet noodzakelijk complementair aan de
distributie V π van verticale raakvectoren. In het algemeen is Q∩V π 6= {0}
en geldt er dat Tπ(Q) niet samenvalt met de volledige raakbundel van M .
Deze eigenschappen zorgen ervoor dat we hier niet kunnen spreken over Q
als een ‘horizontale’ distributie. Omwille van het feit dat de distributie Q
niet complementair is aan V π, is een zinvolle veralgemening van de notie van
kromming van een veralgemeende connectie niet haalbaar. Echter, de noties
van parallel transport en holonomie kunnen wel worden veralgemeend, en
dit is het belangrijkste resultaat uit Hoofdstuk II. We merken op dat de
transportoperator van een veralgemeende connectie niet langer gedefinieerd
is langs een willekeurige kromme in M , maar slechts langs toelaatbare krom-
men in de verankerde bundel ν : N → M . De holonomiegroepen worden
dan gegenereerd door toelaatbare lussen. Omdat de toelaatbare krommen
(of lussen) bevat zijn in de leaves van de foliatie die gëınduceerd wordt door
de ankerafbeelding, zullen we spreken over ‘leafwise holonomy’.

Zoals reeds eerder vermeld, worden in de Hoofdstukken III, IV en V enkele
mogelijke toepassingsgebieden van de veralgemeende connectietheorie die we
nu kort overlopen.

Controletheorie behelst de studie van dynamische systemen die kunnen voor-
gesteld worden met behulp van een stelsel differentiaalvergelijkingen van de
vorm

q̇i(t) = γi(q1(t), . . . , qn(t), u1(t), . . . , uk(t)),

waarbij q(t) = (q1(t), . . . , qn(t)) en u(t) = (u1(t), . . . , uk(t)) krommen zijn
in, respectievelijk, IRn en IRk, en waarbij γ een gladde afbeelding is van
IRn × IRk naar IRn. Dergelijke dynamische systemen kunnen teruggevon-
den worden bij de modellering van fysische systemen die voorkomen bij tal
van technologische toepassingen. De ruimte IRn wordt opgevat als de con-
figuratieruimte van het systeem en de kromme u(t) stelt een externe input
voor in het systeem. De afbeelding γ geeft aan hoe de input u(t) de confi-
guratie van het systeem bëınvloedt. Meer nog, de input (of controle) u(t)
zal de evolutie van het systeem volledig bepalen, op voorwaarde dat een
beginconfiguratie is gegeven (dit volgt uit de uniciteit van oplossingen van
differentiaalvergelijkingen).
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Veronderstel nu dat de afbeelding γ de lokale voorstelling is van de anker-
afbeelding ρ van een verankerde bundel ν : N → M in een aangepast co-
ordinatensysteem (qi, ua) op N . Het is eenvoudig in te zien dat het koppel
(q(t), u(t)) dat voldoet aan q̇i(t) = γi(q(t), u(t)), een toelaatbare kromme
is. Dit legt het verband tussen de theorie omtrent verankerde bundels en
controlesystemen.

We wensen nu te zoeken naar een toelaatbare kromme (q(t), u(t)) die twee
vooropgestelde punten q0 en q1 in IRn met elkaar verbindt, zodanig dat deze
toelaatbare kromme de ‘beste keuze’ is met betrekking tot een vooropge-
stelde grootheid L, die soms ook de kostfunctie wordt genoemd. Hiermee
bedoelen we dat deze toelaatbare kromme optimaal is ten opzichte van an-
dere toelaatbare krommen die de punten q0 en q1 verbinden, in de zin dat
ze een extremum oplevert van de functionaal

∫ t1

t0

L(q(t), u(t))dt.

De kostfunctie kan bijvoorbeeld de ‘tijd’ zijn. Men zoekt dan naar die toe-
laatbare kromme die beide punten met elkaar verbindt in een zo kort mo-
gelijke tijdspanne. Een andere mogelijkheid is de ‘energie’, men wil een
toelaatbare kromme vinden die zo weinig mogelijke ‘energie’ verbruikt. De
zoektocht naar deze optimale toelaatbare kromme werd gedeeltelijk opgelost
door het maximumprincipe. Het maximumprincipe geeft nodige voorwaar-
den opdat een toelaatbare kromme optimaal zou zijn. Toelaatbare krommen
die voldoen aan deze nodige voorwaarden worden extremale krommen ge-
noemd. Onder bepaalde voorwaarden gebeurt het dat een extremale krom-
me onafhankelijk is van de beschouwde kostfunctie. Deze vaststelling leidde
tot het invoeren van de benaming abnormale extremalen. In het verleden
werd het bestaan van deze krommen vaak over het hoofd gezien. R. Mont-
gomery toonde in 1994 aan dat er abnormale extremale krommen bestaan
die optimaal zijn.

In Hoofdstuk III leiden we een differentiaalmeetkundige versie af van het
maximumprincipe. Hiertoe voeren we een notie van variatie van een toe-
laatbare kromme in. De raakvectoren aan dergelijke variaties genereren een
kegel in de raakruimte aan de configuratieruimte in het eindpunt q1 van de
gegeven toelaatbare kromme. We tonen aan dat deze kegel in een omgeving
van het eindpunt de verzameling van bereikbare punten vanuit het begin-
punt q0 genereert. Dit laat toe om nodige voorwaarden op te stellen voor
optimale toelaatbare krommen. Tevens onderzoeken we het geval waarbij de
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eindpunten van een optimale kromme kunnen variëren op een vooropgegeven
begin- en eindoppervlak.

De rol die veralgemeende connecties spelen in deze theorie, bestaat erin dat
de variatiekegel wordt gegenereerd door de transportoperator van een cano-
nisch bepaalde veralgemeende connectie. Nodige en voldoende voorwaarden
opdat een toelaatbare kromme een abnormale extremale kromme is, kunnen
worden geformuleerd in termen van deze variatiekegel. Deze karakterisering
van abnormale krommen kan samengevat worden als volgt: als een toelaat-
bare kromme abnormaal is, dan, en slechts dan, is de variatiekegel niet gelijk
aan de volledige raakruimte in het eindpunt van de kromme. Met andere
woorden: als de te onderzoeken toelaatbare kromme niet voldoende variaties
toelaat opdat alle punten in een open omgeving van het eindpunt bereik-
baar zouden zijn, dan, en slechts dan, is de toelaatbare kromme abnormaal.
Het meetkundig beeld achter deze karakterisering is intüıtief duidelijk. Het
blijkt echter dat analytische berekeningen om deze voorwaarden te verifiëren
meestal bijzonder omslachtig zijn. Daarom hebben we, in het geval dat ρ
een lineaire afbeelding is, nieuwe voldoende voorwaarden geformuleerd voor
abnormale extremale krommen, die veel gemakkelijker hanteerbaar zijn. Op
het einde van Hoofdstuk III passen we de differentiaalmeetkundige versie
van het maximumprincipe die we hebben opgesteld toe op enkele gekende
voorbeelden uit de variatierekening: o.a. Lagrangiaanse systemen (al dan
niet met niet-holonome bindingen) en Lagrangiaanse systemen op (affiene)
Lie algebroids.

In Hoofdstuk IV bestuderen we sub-Riemannmeetkunde. Sub-Riemann-
meetkunde onderscheidt zich van Riemannmeetkunde in het feit dat de me-
triek slechts gedefinieerd is op een deelbundel van de raakbundel van de
onderliggende variëteit. De lengte van een kromme is dan ook enkel gede-
finieerd voor een bepaalde klasse van krommen, namelijk die krommen die
overal raken aan die deelbundel. Het is algemeen bekend dat deze ‘bevoor-
rechte’ krommen kunnen opgevat worden als toelaatbare krommen voor een
geassocieerd controlesysteem. Een lengte-minimaliserende kromme in een
sub-Riemannstructuur komt overeen met een optimale toelaatbare kromme
in het geassocieerd controlesysteem. Dit laat toe om de bekomen resulta-
ten omtrent het maximumprincipe te vertalen naar nodige voorwaarden voor
lengte-minimaliserende krommen van een sub-Riemannstructuur. Het blijkt
dat we deze nodige voorwaarden op een elegante wijze kunnen herformuleren
aan de hand van veralgemeende connecties. De resultaten uit Hoofdstuk III
omtrent de karakterisering van abnormale extremalen worden getoetst aan
de hand van een tweetal concrete voorbeelden.
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We eindigen in Hoofdstuk V met een toepassing van veralgemeende connec-
ties op de reductie van mechanische systemen met niet-holonome bindingen
waarvoor de bewegingsvergelijkingen en de bindingen invariant zijn onder
de actie van een symmetriegroep. Onze behandeling verschilt van andere
behandelingen van dit vraagstuk in het feit dat we geen bijkomende voor-
waarden opleggen aan de niet-holonome bindingen, behalve de voorwaarde
dat ze een reguliere invariante niet-integreerbare distributie induceren op de
configuratieruimte. Om de gedachten te vestigen, illustreren we onze theorie
aan de hand van een concreet voorbeeld, namelijk het ‘Snakeboard’. Dit is
een skateboard waarvan de wielen vrij kunnen roteren om een verticale as.
We veronderstellen dat de wielen rollen zonder glijden. Een interessant feno-
meen hierbij is dat de bestuurder een slangachtige beweging kan genereren
zonder zich van de grond te moeten afduwen.


