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Abstract. We discuss a general mechanism by which first integrals of
mechanical systems, in particular systems that satisfy non-holonomic
constraints, can be obtained from a systematic search for adjoint sym-
metries. Such an approach has already been used in our earlier work
and is re-advocated here in the context of a recent analysis by Gia-
chetta, in which first integrals are generated by vector fields which are
not symmetries. Further advantages of our approach are: the fact that
an essential projection operator associated to the constraints need not
be related to some given fibre metric on the full evolution space; and
the specific selection of a connection, which is naturally associated to
this projection and the second-order dynamics on the constraint sub-
manifold. The computational aspects of the method are illustrated by
some simple examples.

1 Introduction

Over the past thirty years, a variety of differential geometric models has been
developed for the description and study of non-holonomic systems: for a detailed
bibliography, we refer to two recent books on the subject [2, 6]. Naturally, one
of the issues which has attracted attention in these studies is that of symmetry
and reduction (see e.g. [1, 3, 5, 8]). But if a related unconstrained system has
an easily identifiable symmetry group, such symmetries could well be destroyed by
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the constraint equations. Moreover, symmetries of a non-holonomic system need
not give rise to a reduction of the system, nor to an induced conservation law.
The situation is somewhat reminiscent of the case of non-conservative Lagrangian
systems, where a generalization of Noether’s theorem exists, establishing a one-to-
one correspondence between first integrals and a class of vector fields which are
not symmetries (see [4]) and which were later called pseudo-symmetries in [12].

The immediate source of inspiration for the present paper is a contribution by Gia-
chetta [7], who shows that the idea of pseudo-symmetries can indeed be translated
to the situation of non-holonomic systems, leading again to a one-to-one corre-
spondence between first integrals and certain vector fields which are generally not
symmetries. The point we wish to make, though, is that the idea of generating first
integrals through pseudo-symmetries for non-conservative systems was abandoned
in the work [12] cited above, in favour of a dual concept of adjoint symmetries .

Roughly speaking, the advantage of an algorithm which generates first integrals
through the construction of adjoint symmetries is that it is universal: it remains
unaltered when passing from classical conservative mechanical systems to non-
conservative, or indeed non-holonomic, systems. Nevertheless, the computational
complexity of such an algorithm is the same as that of one for constructing Noether
symmetries or pseudo-symmetries. The adjoint symmetries obtained in this way are
essentially invariant 1-forms, and they generate first integrals whenever they are,
in an appropriate sense, exact. An additional benefit is that one can occasionally
obtain a surprise result in searching for adjoint symmetries, namely that one can
obtain a Lagrangian for a given dynamical system which was not previously known
to have one. This covers the well known situation that a so-called non-Noether
symmetry of a Lagrangian system gives rise to an alternative Lagrangian (which
may, however, be trivial or degenerate).

Our study of non-holonomic systems in [13] and [14] has already established a the-
orem which is the analogue of the one on adjoint symmetries known from previous
work. Our claim now is that such a theorem must contain all the information
obtained by Giachetta when he extended the theory of pseudo-symmetries, and
establishing this claim is the main objective of the present paper. Both his paper
[7] and ours [14] rely on the existence of a projection operator, from vertical vectors
on the full evolution space to vertical vectors tangent to the constraint submani-
fold. But the projection mechanism in Giachetta’s paper is entirely different from
ours: we shall demonstrate here that the ideas underlying our results on adjoint
symmetries are independent of the method of projection which is being used. An-
other point of difference is the general formalism which we use, which is based
on an adapted calculus along the projection πC from the constraint manifold C
onto the configuration space: the advantage of such an approach is that it provides
the most economic way of modelling the underlying analytical calculations in a
coordinate-free way.
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The structure of this paper is as follows. First, we briefly review the classical
concept of an adjoint symmetry and take the opportunity to sketch in more detail
the general merits of our specific calculus. The geometrical foundations of our
approach in the present context of non-holonomic mechanics are explained in Sec-
tion 3, and in Section 4 we introduce a particular connection which will simplify
the calculation of adjoint symmetries. The theory of symmetries and adjoint sym-
metries is developed in Section 5. The main result about the relationship between
a subclass of adjoint symmetries and first integrals follows in Section 6. In the final
section we illustrate the theory with some elementary examples.

2 Adjoint symmetries versus pseudo-symmetries

In this section we summarise the relationship between pseudo-symmetries and ad-
joint symmetries, as established in [12] in the context of an autonomous Lagrangian
system without constraints; a similar description can be given when the Lagrangian
has explicit time dependence (see [15]).

Suppose L is a given regular Lagrangian on TM and the corresponding second-
order field Γ is determined by

iΓd(S∗(dL)) = −dEL, (1)

where S denotes the canonical vertical endomorphism on TM , S∗ is the notation
for its dual action on 1-forms, and EL is the energy function associated to L. Let
Y be a vector field on TM and put iY d(S∗(dL)) = α. Then i[Γ,Y ]dS∗(dL) = LΓα,
so that Y is a symmetry of Γ if and only if, trivially, α is an invariant 1-form.
Noether symmetries are a subclass of the symmetries of Γ characterized by the
property that LY (S∗(dL)) = df for some function f , and it is well known that all
(time-independent) first integrals of a Lagrangian system can be associated to such
symmetries. For practical applications, one can search for Noether symmetries Y
in a certain algorithmic way, but the point to be observed here is that one can
equally well conduct a search for invariant 1-forms α directly.

It was established in [4] that, for non-conservative systems, first integrals can still
be put into direct correspondence with vector fields Y , but in general these are no
longer symmetries. For this reason they were called pseudo-symmetries in [12], and
can be defined as follows. A system with Lagrangian L and extra non-conservative
forces with generalized components Qi, has the property that there is a 1-form φ
satisfying the relation

LΓ(S∗(φ)) = φ ; (2)

in fact, φ = dL + Qi(q, v)dqi is such a form. A vector field Y ∈ X(TM) is then
said to be a pseudo-symmetry (with respect to φ) if

i[Y,Γ]dS∗(φ) = iY dφ. (3)
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It is called a pseudo-symmetry of Noether type if both LY (S∗(φ)) = df for some f ,
and also iY (φ−di∆φ) = 0 (where ∆ is the dilation field on TM); indeed (3) follows
from these conditions. But as observed in [12], if we now put α = iY dS∗(φ), the
requirement (3) simply expresses the fact that LΓα = 0, as before. Hence, from the
dual point of view, nothing has changed: we are just looking for invariant 1-forms
all the time.

The justification for the term adjoint symmetry is that the second-order pdes which
have to be solved for the determination of adjoint symmetries do indeed constitute
the adjoint equations, in the sense in which this is understood in the theory of
partial differential equations, of the equations for symmetries of Γ. Observe in
addition that these sets of pdes are, roughly speaking, equations for only half of
the components of the corresponding 1-form or vector field on TM , the other com-
ponents then being determined automatically. The coordinate-free interpretation
of this feature is that we are thus looking at conditions for the determination of
1-forms or vector fields along the tangent bundle projection, rather than on TM
itself. For this reason, our more recent intrinsic studies of adjoint symmetries have
placed the theory directly in the context of derivations of (scalar and vector-valued)
forms either along this projection, or along an appropriate generalization. Such
an approach uses a connection, so that the naturally available vertical lift may be
complemented by a horizontal lifting procedure, and so that horizontal and verti-
cal exterior derivatives may be used. All theoretical results can be derived in such
a reduced set-up; an appropriate lift of an adjoint symmetry, regarded as 1-form
along a map, will then give rise to an invariant 1-form on the full space.

We repeat that the main advantage of the adopted formalism is that it gives in-
trinsic equations which directly model the pdes which will have to be solved in
applications; the corresponding lifted objects, although equally important geomet-
rically, provide in a sense a double set of equations, half of which relate to redundant
components. For a full account of the theory of derivations along the tangent bun-
dle projection, we refer to [10, 11]. Elements of such a calculus, suitably adapted
to the case where non-holonomic constraints are involved, have already been used
in [13, 14]. We begin, in the next section, by setting up the structures which are
needed to approach the specific situation studied by Giachetta from this point of
view.

3 A geometric structure for non-holonomic me-

chanics

From now on we consider the time-dependent case, and take an (n+1)-dimensional
configuration manifold E and a fibration τ : E → R. We shall consider dynamical
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systems defined, not on the whole of the first jet space J1τ of τ , but rather on some
closed submanifold C ⊂ J1τ where dim J1τ = 2n + 1, dim C = n + m + 1: so C
is the constraint manifold of the system. If we let π : J1τ → E be the induced jet
projection then we may put πC : C → E for the restriction of π; we shall consider
only those systems where πC is a sub-bundle (not necessarily affine). In general C
will not be the jet space of a submanifold of E, and then the constraints will be
non-holonomic.

Let (t, qi, q̇i) be coordinates on J1τ and (t, qi, za) coordinates on C (where a =
1, 2, . . . ,m), so that za are coordinates on the fibres of πC . C can locally be
described as the level set φµ = 0 of some functions φµ (where µ = 1, 2, . . . , n−m)
satisfying the non-degeneracy condition that the rank of the matrix ∂φµ/∂q̇i should
be maximal at points of C. Alternatively, we shall let ψi(t, q, z) be the coordinate
representation of the inclusion mapping ι : C → J1τ , so that ψi = q̇i ◦ ι. We then
have the identities

∂ψi

∂za

∂φµ

∂q̇i
= 0, (4)

valid at points of C. We shall write θ̂i = ι∗θi for the pull-backs of the contact
forms on J1τ , so that θ̂i = dqi − ψidt.

The construction given by Giachetta in [7] starts from the assumption that we
have a fibre metric g, defined on vertical vectors on J1τ . This is an assumption
made by many authors, and the fibre metric usually comes from the Lagrangian
of a given unconstrained system. Given such a fibre metric g, and its restriction ĝ
to vertical vectors tangent to C, Giachetta defines a projection P by

ĝ(P (ξ), η) = g(ξ, η)

for all ξ, η which are vertical vectors at the same point of C, with η tangent to C.
In coordinates, such a projection is of the form

P

(
∂

∂q̇i

)
= P a

i

∂

∂za
with P a

i = gab ∂ψj

∂zb
gij. (5)

Here, gij, gab are the components of g and ĝ respectively, and gacgcb = δa
b .

The reason why vertical vectors tangent to C are important is that they represent
the vertical lifts of admissible virtual displacements in the sense of the Chetaev-
d’Alembert principle. The metric g, and the derived projection P , play a further
role in Giachetta’s construction of a reduced or constrained dynamics as a certain
second-order equation field on C, and in the definition of an associated connection.
But there are other ways in which a projector such as P may occur and a repre-
sentation of the dynamics on C may be obtained. In our previous work [13, 14],
for example, we have used a connection on an auxiliary bundle E → M in order
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to define the constraint manifold, and this construction also produces a projection
P . In [9] a more general almost product structure on the jet manifold is used, and
its restriction to vertical vectors is a projection of the same kind.

Our analysis in this paper will, therefore, start from two geometrical objects
which are ultimately present in all models for non-holonomic systems (adopting
the Chetaev-d’Alembert point of view), without regard to the way they arise: a
second-order differential equation field (Sode) Γ on C and a certain projector P
onto vertical vectors tangent to C. Further specific features of our approach are
that we shall construct a connection associated naturally to Γ and P which differs
from the one used, for example, in [7]; and that for reasons explained in the pre-
ceding section, we shall do most of our intrinsic calculations with vector fields and
forms along the projection πC : C → E. The relationship of such fields and forms
to the corresponding objects on the manifold C will be an important part of our
story.

So we start with a Sode Γ ∈ X(C) with the properties 〈Γ, dt〉 = 1, 〈Γ, θ̂i〉 = 0. In
coordinates,

Γ =
∂

∂t
+ ψi ∂

∂qi
+ fa ∂

∂za
(6)

for some functions fa defined on C.

Now let Γa
i , Γa

0 be the connection coefficients of an arbitrary non-linear connection
on the bundle πC , so that

Hi :=

(
∂

∂qi

)H

=
∂

∂qi
− Γa

i

∂

∂za
, H0 :=

(
∂

∂t

)H

=
∂

∂t
− Γa

0

∂

∂za
, (7)

and a basis for X(C) is given by {H0, Hi, Va} where Va = ∂/∂za. By linearity over
functions on C, the horizontal lift operation extends to a map from X(πC), the
space of vector fields along πC , to X(C). It applies in particular to

TC =
∂

∂t
+ ψi ∂

∂qi
, (8)

which is the restriction to C of the canonical total-time derivative operator T.
Much of our subsequent analysis can be carried out for any choice of a connection
which is compatible with the Sode Γ in the sense of the following definition.

Definition 1. A connection on πC is said to be compatible with a given Sode Γ
on C, if TC

H = Γ.

This compatibility simply means that

Γa
0 = −(fa + ψiΓa

i ). (9)

Now every vector field Z along πC has a unique decomposition Z = 〈Z, dt〉TC + Z
where Z has no ∂/∂t component, and in the same way every vector field X on C
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has a unique decomposition X = 〈X, dt〉Γ + Z
H

+ V where V is a vertical vector
field; we may therefore write

X(πC) = 〈TC〉 ⊕ X(πC),

X(C) = 〈Γ〉 ⊕ X(C)⊕ V(C),

and the compatibility further means that the connection is completely determined
by a horizontal lift from X(πC) to X(C). In [13, 14] we have described a particular
connection satisfying this property, and details of this for the present setting will
be given again in Section 4 below.

We now turn to the projection P . In the framework of vector fields along πC , such
a projection P needs the identification of a submodule of X(πC) as follows.

Definition 2. The space of virtual displacements is the submodule XC ⊂ X(πC)
of vector fields along πC , whose canonical vertical lift to J1τ yields an element of
X(C).

So now the second piece of information we assume to be given is a projection
P : X(πC) → XC , which may be considered as a tensor field along πC . We denote

the complement to XC under the projection P by X̃C , so that

X(πC) = XC ⊕ X̃C

and we let Q be the complementary projection X(πC) → X̃C . We shall sometimes
also be explicit in our use of the corresponding inclusion maps I : XC → X(πC),

J : X̃C → X(πC).

Dually, denoting by X∗(πC) the space of 1-forms along πC (which we can identify
with the space of semi-basic 1-forms on C), we have

X∗(πC) = 〈dt〉 ⊕ C(πC)

where C(πC) can be identified with the space of contact forms on C, spanned by

θ̂i. The dual of the decomposition of X(πC) is then

C(πC) = CC ⊕ C̃C

where 〈XC , C̃C〉 = 〈X̃C ,CC〉 = 0. The dual maps of the inclusions I, J are pro-

jections I∗ : C(πC) → CC and J∗ : C(πC) → C̃C , whereas corresponding inclusion

maps are P ∗ : CC → C(πC) and Q∗ : C̃C → C(πC).

In coordinates, a local basis for the space XC is given by the vector fields

Za =
∂ψi

∂za

∂

∂qi
(10)
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because Za
V = Va. The projection P may then be determined by some functions

P a
j (not necessarily the functions (5)), for which

P

(
∂

∂qj

)
= P a

j Za, with
∂ψi

∂zb
P a

i = δa
b . (11)

It follows that we can take
θa = P a

i θ̂i. (12)

to be the basis of CC dual to the basis Za. A local basis for the space C̃C is also
easy to construct, starting with the functions φµ defining C ⊂ J1τ . Indeed, putting
ηµ = ι∗S∗(dφµ), where S is the vertical endomorphism on J1τ , so that

ηµ =
∂φµ

∂q̇j
θ̂j, (13)

we have 〈Za, η
µ〉 = 0, in view of (4). The non-degeneracy condition on the functions

φµ ensures that these forms are linearly independent, and hence constitute a basis
of C̃C . By dimension, we know that the contact forms θ̂i are spanned by the θa

and ηµ. Since 〈Zb, θ̂
i〉 = ∂ψi/∂zb, putting

θ̂i =
∂ψi

∂za
θa + Zi

µη
µ (14)

for some functions Zi
µ on C, it follows from (12) and (13) that

P a
i Zi

µ = 0,
∂φν

∂q̇i
Zi

µ = δν
µ, δi

j =
∂ψi

∂za
P a

j + Zi
µ

∂φµ

∂q̇j
. (15)

A basis for X̃C and representation for the projection Q finally is given by

Zµ = Zj
µ

∂

∂qj
, Q

(
∂

∂qj

)
=

∂φµ

∂q̇j
Zµ. (16)

The various identities which we have obtained in this discussion will frequently be
used in the calculations which follow, as will the decomposition for ∂/∂qi, regarded
as a vector field along πC , namely

∂

∂qi
= P a

i Za +
∂φµ

∂q̇i
Zµ . (17)

We emphasize that these decompositions do not make any a priori assumptions
about the relationships between the connection, the projections and the dynamical
vector field, beyond the single compatibility condition Γ = TC

H.
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4 A natural connection for non-holonomic me-

chanics

We shall now make a specific choice of connection associated to each pair (Γ, P ).

This choice uses the vertical endomorphism Ŝ on C induced by the projection P .

Definition 3. For each X ∈ X(C), we let Ŝ(X) be the vector field on C defined
by

Ŝ(X) = (P (TπC ◦X))V .

Here P is interpreted in an extended sense as projection 〈TC〉⊕X(πC) → XC , with
P (TC) = 0. In coordinates, therefore,

Ŝ = P a
i Va ⊗ θ̂i = Va ⊗ θa. (18)

We now use the tensor LΓŜ to define our non-linear connection in a way similar to
the construction in [13, 14].

Theorem 1. The tensor field PH on C, determined by

PH = 1
2
(id− LΓŜ + Γ⊗ dt + N), (19)

where
N = id− (LΓŜ)2 − Γ⊗ dt, (20)

is the horizontal projector of a uniquely defined non-linear connection on πC .

Proof: In coordinates we have

LΓŜ = Va ⊗ (Γ(P a
i )θ̂i + P a

i (dψi − Γ(ψi)dt))−
(

∂ψi

∂za

∂

∂qi
+

∂f b

∂za

∂

∂zb

)
⊗ θa .

Now, if
Γ = TC

H, Xa = Za
H, Xµ = Zµ

H, Va = Za
V

is a basis of vector fields on C adapted to the connection we are about to fix, with
dual basis of 1-forms

dt, θa, ηµ, ηa = dza + Γa
i

(
∂ψi

∂zb
θb + Zi

µη
µ

)
− fadt,

one can verify that the coordinate expression for PH can be written in the form

PH = Γ⊗ dt + Xa ⊗ θa + Xµ ⊗ ηµ

− Zj
µ(Ra

j − Γa
j )Va ⊗ ηµ − 1

2

∂ψj

∂zb
(Ra

j − 2Γa
j )Va ⊗ θb,
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with

Ra
i = Γ(P a

i ) + P a
j

∂ψj

∂qi
− P b

i

∂fa

∂zb
. (21)

For this to have the required properties of a horizontal projector, its image must
be the space spanned by Γ, Xa and Xµ, so that we must have

∂ψj

∂zb
Γa

j = 1
2

∂ψj

∂zb
Ra

j , (22)

Zj
µΓa

j = Zj
µR

a
j . (23)

It turns out, making use of the third of the identities (15) that these conditions
imply that

Γa
i = Ra

i − 1
2
P b

i

∂ψj

∂zb
Ra

j . (24)

Conversely, one can verify that this expression for Γa
i is compatible with both

requirements (22,23), in view of the first of the identities (15) and (11).

We remark that it is always the case that Γ and Va are eigenvectors of LΓŜ with
eigenvalues 0 and 1 respectively; our choice of connection coefficients means also
that Xa are eigenvectors with eigenvalue −1, and that Xµ are eigenvectors with
eigenvalue 0.

5 Symmetries and adjoint symmetries

Dynamical symmetries of Γ are vector fields X on C whose Lie derivative with
respect to Γ is in the span of Γ. Two such symmetries are equivalent if they differ
by a multiple of Γ, and the simplest representative in each class, therefore, has no
Γ-component and is strictly invariant under the flow of Γ. Any such X ∈ X(C)
can be written in the form

X = Z
H

+ Z̃H + Y
V
, (25)

with Z, Y ∈ XC and Z̃ ∈ X̃C : from now on, a vector field written with a bar (such
as Z) will always be an element of XC rather than, more generally, of X(πC) =

XC ⊕ X̃C , and a vector field written with a tilde (such as Z̃) will always be an

element of the complement X̃C . The idea, for such a vector field X, is to compute
the decomposition of the LΓ-derivative of each part. Once we obtain the equation
for symmetries in this format, the corresponding equation for adjoint symmetries
will be computed by applying the usual procedure for passing to adjoint equations,
and is bound to be an equation for a 1-form along πC . We shall then verify that
the equation thus obtained is conceptually the right one by proving that there is
indeed an associated 1-form on C, which is invariant under the flow of Γ.
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So our programme starts by the computation of LΓZa
H,LΓZµ

H and LΓZa
V . In fact,

since Za and Zµ originate as projections of ∂/∂qi, we shall first compute LΓHi. A
direct computation leads to

LΓHi = −Hi(ψ
j)Hj + Φ̂a

i Va, (26)

where
Φ̂a

i = Hi(Γ
a
0) + ψjHi(Γ

a
j )− Γ(Γa

i ). (27)

The appropriate way to interpret (26) is to write it as

LΓ

(
∂

∂qi

H
)

=

(
∇ ∂

∂qi

)H

+

(
Φ̂(

∂

∂qi
)

)V

. (28)

The vertical part defines a tensorial object Φ̂ : X(πC) → XC , whereas the horizontal
part gives rise to a derivation ∇ of degree zero on X(πC), defined as follows.

Definition 4. The dynamical covariant derivative associated to the given Sode
Γ is the derivation ∇ of the C∞(C)-module X(πC), determined by

∇F = Γ(F ) for F ∈ C∞(C), ∇ ∂

∂qi
= −Hi(ψ

j)
∂

∂qj
, ∇TC = 0. (29)

Its action on the dual module X∗(πC) is defined by standard duality rules.

In view of the defining relations of Za and Zµ, it now follows that

LΓZa
H = (∇Za)

H + (ΦZa)
V , (30)

LΓZµ
H = (∇Zµ)H + (ΛZµ)V , (31)

where we have introduced the tensor fields Φ : XC → XC and Λ : X̃C → XC , locally
given by

Φ = Φa
b θb ⊗ Za, Φa

b =
∂ψi

∂zb
Φ̂a

i , (32)

Λ = Λa
µ ηµ ⊗ Za, Λa

µ = Zi
µΦ̂a

i . (33)

The particular choice of connection which was proposed in the previous section
leads to a significant simplification in the expressions for ∇Za and ∇Zµ, as we
shall now see.

Proposition 1. ∇ has the properties ∇X̃C ⊂ X̃C and ∇XC ⊂ XC ⊕ X̃C , whereby
P∇ is a derivation of the module XC , whereas Ψ := Q∇|

XC
is a tensorial map

from XC into X̃C .

Proof: The proof is a matter of a direct computation, of which we leave the details
to the reader. One starts from (29) and the decomposition (17); using the identities
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(15), together with the functions Ra
i as defined by (21), the first statement follows

from the property (23) (the other property (22) of our connection simplifies the XC-
component of ∇Za, but does not cancel it out). The results of these computations,
which we need for applications, in fact read

∇Zµ =
∂φν

∂q̇i

(
Γ(Zi

µ)− Zj
µHj(ψ

i)
)

Zν = −Zi
µ

(
Γ

(
∂φν

∂q̇i

)
+

∂φν

∂q̇j
Hi(ψ

j)

)
Zν , (34)

∇Za = −
(

∂ψj

∂za
Γb

j +
∂f b

∂za

)
Zb + Ψµ

aZµ, (35)

where we have put

Ψµ
a =

∂φµ

∂q̇i

(
Γ

(
∂ψi

∂za

)
− ∂ψj

∂za
Hj(ψ

i)

)
= −∂ψj

∂za

(
Γ

(
∂φµ

∂q̇j

)
+ Hj(ψ

i)
∂φµ

∂q̇i

)
. (36)

It follows from (35), taking the derivation property of ∇ into account, that the Ψµ
a

are actually components of a tensor field along πC , of the form

Ψ = Ψµ
a θa ⊗ Zµ, (37)

from which the last statement follows.

We finally come to the computation of the Lie derivative of Za
V for which, in view

of (35), we obtain
LΓZa

V = −Za
H + (P∇Za)

V . (38)

More generally, for Z ∈ XC and Z̃ ∈ X̃C , it immediately follows that

LΓZ
H

= (∇Z)
H

+ (ΦZ)
V
, (39)

LΓZ̃H = (∇Z̃)
H

+ (ΛZ̃)
V

, (40)

LΓZ
V

= −Z
H

+ (P∇Z)
V
. (41)

Proposition 2. Let X be a general vector field on C, of the form (25). Then

LΓX = 0 ⇔
{
∇Z +∇Z̃ − Y = 0

ΦZ + ΛZ̃ + P∇Y = 0
(42)

⇔ P∇(P∇Z) +∇Z̃ + ΦZ + ΛZ̃ + ΨZ = 0. (43)

Proof: The first equivalence follows immediately from the preceding calculations,
by separating the horizontal and vertical parts. Observe next that the second of
the conditions (42) lives entirely on XC , whereas the first splits further into two
parts by projecting under P and Q. We thus have

Y = P∇Z, (44)
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which simply fixes the vertical part of a symmetry vector field, and consequently

∇Z̃ + ΨZ = 0, (45)

ΦZ + ΛZ̃ + P∇(P∇Z) = 0. (46)

In conclusion, the determining equations which have to be solved for constructing
symmetries of Γ, after the redundant part Y has been eliminated, are the partial
differential equations (45) and (46). Since they live on complementary spaces, they
can formally be added together to the single condition (43), to which we will refer
as the symmetry condition.

The procedure for constructing the adjoint equation now follows the standard pat-
tern. We contract the left-hand side of (43) with a 1-form along πC of the form

α + α̃, with α ∈ CC , α̃ ∈ C̃C ; tensor fields are transferred from left to right by
taking adjoints; and the operator ∇ is carried over to the form side by using the
duality rule

〈∇·, ·〉 = ∇〈·, ·〉 − 〈·,∇·〉,
and ignoring the first term on the right (which gives rise to a boundary term in
the context of the calculus of variations).

For clarity, let us list the domains and ranges of the adjoint or dual operators
involved. We have the injections P ∗ : CC → X∗(πC), Q∗ : C̃C → X∗(πC), and

the projection operators I∗ : X∗(πC) → CC , J∗ : X∗(πC) → C̃C . Furthermore,

Φ∗ : CC → CC , Λ∗ : CC → C̃C , Ψ∗ : C̃C → CC . Finally, the results of Proposition 1
dualize to

∇CC ⊂ CC , ∇C̃C ⊂ CC ⊕ C̃C . (47)

Proposition 3. The adjoint symmetry condition reads

∇2α− J∗∇α̃ + Λ∗α + Φ∗α + Ψ∗α̃ = 0, (48)

or equivalently

∇2α + Φ∗α + Ψ∗α̃ = 0, (49)

J∗∇α̃− Λ∗α = 0. (50)

Proof: Taking all properties about domain and range into account, the dualiza-
tion procedure leads to the expression 〈Z,∇2α + Φ∗α + Ψ∗α̃〉 − 〈Z̃, J∗∇α̃−Λ∗α〉.
Setting the terms in Z and Z̃ separately equal to zero then implies that (49) and
(50) must hold and these can formally be added together to produce (equivalently)
the single condition (48).

As announced at the beginning of this section, there should now be a way to
associate an adjoint symmetry, i.e. a 1-form α + α̃ along πC , satisfying (48), with
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an invariant 1-form on C. The procedure for lifting 1-forms is derived from the
lift of vector fields: that is to say, for the horizontal and vertical lift of a 1-form
α ∈ X∗(πC), the rule generally is that for all Z ∈ X(πC),

〈ZH, αH〉 = 〈ZV , αV 〉 = 〈Z, α〉, 〈ZV , αH〉 = 〈ZH, αV 〉 = 0.

This means (remembering that we make no notational distinction between forms
along πC and their interpretation as semi-basic forms on C) that we have

dtH = dt, (θa)H = θa, (ηµ)H = ηµ, (θa)V = ηa.

Proposition 4. α + α̃ ∈ X∗(πC) is an adjoint symmetry if and only if the 1-form
η on C, given by

η = αV + α̃H − (∇α)H, (51)

is invariant under Γ.

Proof: Part of the proof concerns the determination of the last term in (51), so

let us write η = αV + α̃H−β
H

for the time being. For LΓη to be zero, it is necessary
and sufficient that its contractions with an arbitrary Z

V
, Z

H
and Z̃H are all zero.

Essentially, we are going to express this by making use of the formulas (39-41). We
have, for example,

〈ZV
,LΓαV 〉 = LΓ〈Z, α〉 − 〈LΓZ

V
, αV 〉

= ∇〈Z, α〉 − 〈P∇Z, α〉
= 〈Z,∇α〉.

In exactly the same way, we find 〈ZV
,LΓα̃H〉 = −〈Z, α̃〉 = 0 and −〈ZV

,LΓβ
H〉 =

−〈Z, β〉. Adding this up, we conclude that 〈ZV
,LΓη〉 = 0 requires that β = ∇α.

In exactly the same way, one can verify that 〈Z̃H,LΓη〉 = 0 requires that (50) must

hold, and 〈ZH
,LΓη〉 = 0 imposes the condition (49).

For later use, we list the dynamical covariant derivatives of the local basis of 1-forms
along πC . First of all, it follows from (29) by duality that

∇θ̂i = Hj(ψ
i)θ̂j, ∇dt = 0. (52)

Substituting for θ̂i the decomposition (14) and projecting the resulting expression
under P and Q, we obtain, in view of the simplifications brought by the choice of
our connection and in agreement with the properties (47),

∇θb =

(
∂ψj

∂za
Γb

j +
∂f b

∂za

)
θa, (53)

∇ην = −Ψν
aθ

a − ∂φν

∂q̇i

(
Γ(Zi

µ)− Zj
µHj(ψ

i)
)

ηµ. (54)
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6 A special class of adjoint symmetries

Based on our experience in [13] and [14], we expect that interesting classes of adjoint
symmetries could be constructed from horizontal and vertical exterior derivatives
of functions on C. So we start by defining such operations on forms along πC

for the situation at hand. We shall not pursue the development of the theory of
derivations of forms along πC in any detail here; instead we limit ourselves to the
bare essentials for doing calculations. For F ∈ C∞(C), we define

dV F = Va(F )θa, (55)

dHF = Γ(F )dt + Hi(F )θ̂i

= Γ(F )dt + Xa(F )θa + Xµ(F )ηµ. (56)

One easily verifies in coordinates that

dF = (dV F )V + (dHF )H. (57)

When an adjoint symmetry α = α + α̃ ∈ X∗(πC) is generated by a function F ,
it is clear that α is likely to be of the form dV F , whereas α̃ should arise from
dHF (explicitly, α̃ = J∗dHF ). So, to verify under which circumstances such an α
satisfies the adjoint symmetry condition, we need information about the way the
dynamical covariant derivative ∇ commutes with the exterior derivatives. The fol-
lowing commutator relations follow from a straightforward coordinate calculation,
making use of the bracket formulas (30), (31), (38) and the covariant derivatives
(53-54):

∇dV F − dV∇F = −I∗dHF, (58)

∇(J∗dHF )− J∗dH∇F = Λ∗dV F −Ψ∗J∗dHF, (59)

∇(I∗dHF )− I∗dH∇F = Φ∗dV F + Ψ∗J∗dHF. (60)

It is of some interest to compare these results with the very similar formulas in
[14], but we will not pursue this here. It further follows from (59) that

J∗(∇J∗dHF )− J∗dH∇F = Λ∗dV F. (61)

Theorem 2. A 1-form along πC of the form α = dV F + J∗dHF is an adjoint
symmetry of Γ, if and only if the function L = ∇F = Γ(F ) satisfies the equations

J∗dHL = 0, I∗dHL = ∇dV L. (62)

Proof: Inserting the assumptions for α and α̃ into the condition (50) and making
use of (61) immediately produces J∗dHL = 0. From (58) it follows that ∇α =
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dV∇F − I∗dHF . Applying ∇ again and using (58) and (60), we obtain the second
of the conditions (62) from (49).

Our main interest here is in a mechanism which is capable, in principle, of gen-
erating all first integrals of the system. Obviously, it follows from the above con-
siderations that for every first integral F of Γ, the 1-form α = dV F + J∗dHF will
be an adjoint symmetry. But the converse need not be true, as not every adjoint
symmetry will arise from a first integral. So a practical implementation goes as
follows. One first solves the determining equations for adjoint symmetries, with a
certain ansatz about the polynomial dependence on the fibre coordinates za. Hav-
ing found an adjoint symmetry α, one checks whether α can be written as dV F for
some F . If this is the case, one verifies whether α̃ also has the appropriate form,
while making use of the additional freedom of adding basic functions f to this F .
Experience shows that, in most cases, the functions F + f thus obtained will be
first integrals of Γ. But what if they are not?

In coordinates, the relations (62) express that the function L = Γ(F ) will satisfy:

Xµ(L) = 0, (63)

Γ

(
∂L

∂za

)
= Xa(L)− ∂L

∂zb

(
∂f b

∂za
+

∂ψj

∂za
Γb

j

)
. (64)

These equations are very similar to the ones obtained in [13]. In the framework of
that paper, it was clear what it meant for a non-holonomic system to be of ‘La-
grangian type’, and the functions L originating from the adjoint symmetry theory
turned out to correspond to a subclass of such Lagrangian systems, the Lagrangian
being independent of the fibre coordinates of the extra fibration. It will be an in-
teresting topic for future studies to explore what ‘variationality’ means in the more
general present context of a given pair (Γ, P ) for the constraint submanifold. The
conjecture is that, again, functions L = Γ(F ) satisfying (63-64) will constitute a
subclass of such Lagrangian systems, provided they have a non-degenerate Hessian
with respect to the za.

7 Some examples

As a preliminary to looking at particular examples, we shall first write down the de-
termining equations for adjoint symmetries in coordinates. Putting α = αaθ

a, α̃ =
αµη

µ, and making use of the covariant derivative expressions (53, 54), equation (49)
becomes

Γ2(αa) + 2Γ(αb)

(
∂ψj

∂za
Γb

j +
∂f b

∂za

)
+ αb Γ

(
∂ψj

∂za
Γb

j +
∂f b

∂za

)

+ αb

(
∂ψj

∂zc
Γb

j +
∂f b

∂zc

)(
∂ψi

∂za
Γc

i +
∂f c

∂za

)
+ Φb

aαb + Ψµ
aαµ = 0, (65)
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and (50) reads

Γ(αµ)− αν
∂φν

∂q̇i

(
Γ(Zi

µ)− Zj
µHj(ψ

i)
)− Λa

µαa = 0. (66)

Needless to say, these are quite complicated equations, but the point is that they
are of the same complexity as those which will have to be solved using, for example,
Giachetta’s procedure to search for (non-symmetry) vector fields which generate
first integrals [7]. In fact our equations become quite simple in practice, once
an ansatz is made about the polynomial structure of the unknown functions with
respect to the fibre coordinates. But the calculations then can still be quite tedious,
so that one will be led to call in assistance of one’s favourite computer algebra
package.

Our first example will be one we have considered in previous work [16], namely a
sled which is constrained to move so that its velocity is always in the direction of its
orientation. If the coordinates on the configuration manifold E = R×(R2×S1) are
(t, x, y, ϕ), where x, y represent the position of the centre of mass and ϕ represents
orientation, then the constraint may be written in the form

φ1 = ẏ − ẋ tan ϕ = 0

for most values of ϕ. The unconstrained equations of motion, which are of no
direct relevance for our purposes however, are generated by a Lagrangian

L = 1
2
(ẋ2 + ẏ2 + ϕ̇2)

(where we have, for simplicity, set the mass and the moment of inertia equal to 1).
What matters is the dynamical vector field Γ on the constraint manifold C; taking
fibre coordinates z1 = u = ẋ ◦ ι, z2 = v = ϕ̇ ◦ ι, it is given by

Γ =
∂

∂t
+ u

∂

∂x
+ u tan ϕ

∂

∂y
+ v

∂

∂ϕ
− uv tan ϕ

∂

∂u
,

which exhibits also what the ψi are in this case. For a projection P we take (with
a = 1, 2 and i = 1, 2, 3)

(P a
i ) =

(
cos2ϕ cos ϕ sin ϕ 0

0 0 1

)
.

The local basis {Za} follows directly from (10) while, with our choice for φ1, it
follows from (16) that the single element {Zµ} here is given by Q(∂/∂y) = (id −
P )(∂/∂y). The result is that

{
∂

∂x
+ tan ϕ

∂

∂y
,

∂

∂ϕ

}
∈ XC and

{
cos2ϕ

∂

∂y
− sin ϕ cos ϕ

∂

∂x

}
∈ X̃C ,
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and it is a safeguard to verify that the identities (15) are satisfied. The final basic
ingredient of our approach, namely the connection as defined by (19) and leading
to the connection coefficients (24), here gives

(Γa
i ) =

( −v sin ϕ cos ϕ v cos2ϕ u tan ϕ
0 0 0

)
.

Concerning the tensorial quantities entering the adjoint symmetry equations (65-
66), one can verify that Λa

µ = 0, while

(Φa
b ) =

(
v2 0
−uv 0

)
, (Ψµ

a) =
1

cos2ϕ

(
v
−u

)
.

Denoting the single component αµ here, for convenience, by β, the adjoint equations
now become

Γ2(α1)− 2v tan ϕ Γ(α1) + βv sec2ϕ = 0,

Γ2(α2)− uvα1 − βu sec2ϕ = 0,

Γ(β) + βv tan ϕ = 0.

An obvious particular solution is the zero solution α1 = α2 = β = 0. It produces an
adjoint symmetry of the form dV F +J∗dHF , with F = x+y tan ϕ. Clearly, such F
cannot be a first integral. Instead, we easily see that L = Γ(F ) = sec2ϕ(u+vy) sat-
isfies the conditions (63-64). Whatever the meaning of such ‘surprise-Lagrangians’
will turn out to be, however, it is clear that we don’t really have a good example
here, because this L is degenerate.

Note that the general solution of the third equation is of the form β = G cos ϕ,
where G is any first integral. This could be used to generate further adjoint sym-
metries, once we start obtaining first integrals. The natural assumption to start
looking for particular solutions of the adjoint equations which are polynomial in
the fibre coordinates is to let the αa be functions of the base variables only and
take β to be linear in u, v. One readily observes that the αa then can be at most
linear in t. Looking first for time-independent solutions, a systematic search, for
which we made use of Maple, leads to six independent particular solutions:

(i) α1 = 0, α2 = 1, β = 0;
(ii) α1 = 1, α2 = y, β = 0;
(iii) α1 = tan ϕ, α2 = −x, β = 0;
(iv) α1 = sec ϕ, α2 = 0, β = −v cos ϕ;
(v) α1 = 2(y − x tan ϕ), α2 = x2 + y2, β = 2u;
(vi) α1 = 0, α2 = ϕ, β = 0.
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The first five of these give rise to first integrals, which read, respectively:

F1 = v, F2 = u + yv, F3 = u tan ϕ− xv,

F4 = u sec ϕ, F5 = 2u(y − x tan ϕ) + v(x2 + y2).

The sixth also is an adjoint symmetry of type dV F + J∗dHF , but L = Γ(F ) = v2

is a ‘degenerate Lagrangian’. Extending the search to time-dependent solutions,
one obtains a further adjoint symmetry, which corresponds to the first integral
F6 = ϕ − vt. Needless to say, this is a very simple example: the differential
equations coming from Γ can in fact be completely integrated; the first integrals
(F1, F2, F3, F4, F6) determine the general solution.

Our second example is taken from [7], and is the fourth example in that paper:
it concerns a non-holonomically constrained free particle. Here, the configuration
manifold is E = R ×R3 with coordinates (t, x, y, z) and the constraint manifold
C is given by ż = yẋ. Taking fibre coordinates u = ẋ ◦ ι, v = ẏ ◦ ι, the dynamical
vector field on C is given by

Γ =
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ yu

∂

∂z
− yuv

1 + y2

∂

∂u
.

We use Giachetta’s choice of a projection here, which comes from the free particle
Lagrangian in the sense of (5):

(P a
i ) =

(
(1 + y2)−1 0 y(1 + y2)−1

0 1 0

)
.

The connection is

(Γa
i ) =

( −yv(1 + y2)−2 yu(1 + y2)−1 v(1 + y2)−2

0 0 0

)
.

A calculation similar to that carried out for the previous example yields the adjoint
equations

Γ2(α1)− 2yv(1 + y2)−1Γ(α1) + 2y2v2(1 + y2)−2α1 + vβ = 0,

Γ2(α2)− uv(1 + y2)−2α1 − uβ = 0,

Γ(β) + yv(1 + y2)−1β − 2yv2(1 + y2)−3α1 = 0.

Looking for time-independent solutions where the αa are functions of the base
variables only and β is linear in u, v we again use Maple to find four solutions
giving rise to independent first integrals:

(i) α1 = 0, α2 = 1, β = 0;
(ii) α1 = −(1 + y2), α2 = z, β = 2v(1 + y2)−1;
(iii) α1 = −(1 + y2)1/2, α2 = 0, β = v(1 + y2)−3/2;
(iv) α1 = −(1 + y2)1/2 arcsinh y, α2 = x,

β = −vy(1 + y2)−1 + (1 + y2)−3/2 arcsinh y.
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The corresponding first integrals are:

F1 = v, F2 = −u(1 + y2) + vz, F3 = −u(1 + y2)1/2,

F4 = −u(1 + y2)1/2 arcsinh y + vx.

Note that only two first integrals were given in [7], namely 1
2
(F 2

1 +F 2
3 ) and −F3. A

fifth, time-dependent first integral, F5 = y− vt, may be found easily by inspection
from the expression for the dynamical vector field, and thus the equations can again
be completely integrated. In the course of the analysis we also find a few adjoint
symmetries which satisfy the assumptions of Theorem 2, but do not produce a first
integral; they lead to degenerate type functions L, and so are not of great interest.

An example of an adjoint symmetry giving rise to a non-degenerate Lagrangian
can be found in [13], for the classical problem of a vertically rolling disc.
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