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1 Introduction

Consider a mechanical system on a manifold Q whose Lagrangian l is invariant under an action
of a Lie group G, i.e. l(gvq) = l(vq). l gives rise to a Lagrangian function l on TQ/G, defined
by means of l([vq]) = l(vq) and the Euler-Lagrange equations of the system can be reduced to
the so-called Lagrange-Poincaré equations1 for the reduced Lagrangian (see e.g. [5]). For any
principal connection A on πG : Q → M = Q/G, it is possible to construct an isomorphism αA

between the spaces TQ/G and TM ⊕ g̃, where g̃ is the total manifold of the adjoint bundle
τ : g̃ = (Q × g)/G → M . The reduced Lagrangian can then be regarded as a function L on
TM ⊕ g̃, defined by L(ẋ, v) = l(αA

−1(ẋ, v)). The Lagrange-Poincaré equations take then the
form











d

dt

∂L

∂va
= −

∂L

∂vb

(

Cb
adv

d − Γb
jaẋ

j
)

,

d

dt

∂L

∂ẋi
−

∂L

∂xi
= −

∂L

∂vb

(

Γb
icv

c − ωb
ij ẋ

j
)

.

(1)

where Cc
ab are the structure constants of the Lie algebra g, ωa

ij are the curvature coefficients of

A and Γb
ia are the connection coefficients of the associated connection (for more details, see the

next section).

One of the advantages of a description of the Lagrange-Poincaré equations on TM⊕ g̃ is that they
can be seen to fall apart into two distinguished sets of equations. Indeed, the above separation of
(1) does not depend on the choice of the coordinates and the vertical and horizontal equations are,
respectively, the first and second equations. In [5], Cendra et al. gave an intrinsic formulation of

1We will use the terminology of e.g. [3, 4, 5].
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these two equations. However, in the explicit expression of the horizontal and vertical equations,
an additional linear connection ∇M on M needed to be invoked, even though the equations are
in fact independent of the choice of such a connection. In this paper, we will present a new
intrinsic description of the horizontal and the vertical Lagrange-Poincaré equations for which no
extra connection ∇M on M is required.

The framework in which we will situate the Lagrange-Poincaré equations will be different from
the one in [5]. Both TQ/G and TM ⊕ g̃ can be given the structure of vector bundles over
M with projections τQ/G and π, respectively. This paper aims to fully exploit the observation
that the bundles τQ/G and π carry also a Lie algebroid structure. The idea that the carrying
space of Lagrangian systems with symmetry is a Lie algebroid is not new. Weinstein showed
(Corollary 4.6 in [15]) that the reduced equations fall in the category of so-called Lagrange
equations on a Lie algebroid (see also Theorem 9.7 in [6]). In general, if π : V → M is a Lie
algebroid with structure functions ρi

α and Dγ
αβ and if L(x, y) ∈ C∞(V ), then a dynamical system

of the form










ẋi = ρi
α(x)yα,

d

dt

(

∂L

∂yα

)

= ρi
α

∂L

∂xi
− Dγ

αβyβ ∂L

∂yγ
.

(2)

is called a Lagrangian system on the Lie algebroid π. Due to Mart́ınez [10], we know that it is
convenient to extend the Lie algebroid structure to a certain prolongation bundle and to look at
Lagrangian systems as sections of the prolongation bundle.

The Lie algebroid structure on τQ/G : TQ/G → M (or on π : TM⊕ g̃ → M) which turns (2) into
(1) is the so-called Atiyah algebroid. We will show that the horizontal and vertical equations
appear, within the framework of [10], due to a natural decomposition of the Lie algebroid
structure on π. At the end of the paper, we will investigate the Hamiltonian counterpart of the
above method. In [4], Hamilton-Poincaré equations have been introduced. We will show that
also horizontal and vertical equations can be identified.

2 Natural constructions on principal fibre bundles

In this section we recall some basic facts about Atiyah algebroids. For proofs and detailed
calculations we refer to [1, 5, 9].

Definition 1. A Lie algebroid is a vector bundle π : V → M , which comes equipped with a
bracket operation [·, ·] : Sec(π) × Sec(π) → Sec(π) and a linear bundle map ρ : V → TM (and
its extension ρ : Sec(π) → X (M)), which are related in such a way that (i) [·, ·] is a real Lie
algebra bracket on the vector space Sec(π); (ii) ρ satisfies for all s, r ∈ Sec(π), f ∈ C∞(M):

[s, fr] = f [s, r] + ρ(s)(f) r.

Locally, if {eα} is a basis for Sec(π) with adapted coordinates (xi, yα) ∈ V , then the structure
functions ρi

α are the coefficients of the anchor map ρ. The structure functions Dγ
αβ are given by

[eα, eβ ] = Dγ
αβeγ .

Let πG : Q → M be a principal fibre bundle with structure group G. Elements of the manifold
(TQ)/G are equivalent classes under the induced action of G on TQ. The map τQ/G : TQ/G →
M, [vq] 7→ [q] gives TQ/G the structure of a vector bundle, where, for vq, uq ∈ TqQ and a ∈ IR,

a[vq] = [avq] and [vq] + [uq] = [vq + uq]. (3)
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We will show next that TQ/G → M carries in fact a Lie algebroid structure. The anchor map
ρ : TQ/G → TM of this Lie algebroid is given by ρ([vq]) = TπG(vq). We will follow here the
approach of [5] to define the bracket (for slightly different approaches see e.g. [1, 9, 15]). Let’s
look at the projection Π : TQ → TQ/G over πG. Expression (3) is essentially saying that the
restriction Πq : τ−1

Q (q) → (τQ/G)−1([q]) is a linear isomorphism for each q ∈ Q (with inverse
Π−1

q ). Therefore

Π∗(σ)(q) = Π−1
q (σ(πG(q))), σ ∈ Sec(τQ/G)

defines an invariant vector field (i.e. X ∈ X I(Q) if X(gq) = gX(q), for the tangent lift of the
action of G on Q). In fact, Π∗ : Sec(τQ/G) → X I(Q), is a linear isomorphism. It is even possible
to define the Lie algebroid bracket for sections σi on τQ/G : TQ/G → M as the pullback, under
the isomorphism Π∗, of the natural bracket of vector fields on Q, i.e.

[σ1, σ2] = (Π∗)−1[Π∗(σ1), Π
∗(σ2)] (4)

The above Lie algebroid structure is the Atiyah algebroid.

The adjoint action of G on g leads to an induced action of G on Q × g, so it makes sense to
speak of the equivalence class [q · ξ] of a (q, ξ) ∈ Q× g. The projection τ : g̃ = (Q× g)/G → M ,
given by τ([q · ξ]) = πG(q) defines a surjective submersion which gives τ the structure of a vector
bundle: let [q · ξ1] and [q · ξ2] be elements of the same fibre τ−1([q]), then we define

a[q · ξ1] = [q · aξ1] and [q · ξ1] + [q · ξ2] = [q · ξ1 + ξ2].

The bundle τ is often called the adjoint bundle. It can be given the structure of a Lie algebra
bundle (for a definition of a Lie algebra bundle, see [9]). The Lie algebra structure on a fibre g̃x

is given by
[[q · ξ1], [q · ξ2]] = [q · [ξ1, ξ2]] πG(q) = x.

In particular, a Lie algebra bundle is a Lie algebroid with zero anchor map.

In the introduction we mentioned an isomorphism between TQ/G and TM ⊕ g̃. Let A : TQ → g

be a principal connection (for a definition see e.g. [7]). The map αA : TQ/G → TM ⊕ g̃ given
by

αA([vq]) = TπG(vq) ⊕ [q · A(vq)]

is a well defined vector bundle isomorphism (see e.g. [5, 9]). This observation is the key ingredient
in the approach of [5]. Any available principal connection can now be used to transform the
Lie algebroid (4) on τQ/G into a Lie algebroid on the vector bundle π : TM ⊕ g̃ → M : the new
bracket is given by

[s1, s2] = αA

(

[α−1
A (s1), α

−1
A (s2)]

)

, s1, s2 ∈ Sec(π) (5)

and the anchor map is the projection ρ : TM ⊕ g̃ → TM . It is possible to give an explicit
expression for the bracket (5).

Locally πG is of the form X × G → X, with X ⊂ IRn open. Choose maps ea : X → g, such
that for each x, {ea(x)} is a basis for g and let A( ∂

∂xi |(x,e)) = Aa
i (x)ea(x). τ : g̃ → M is locally

X × g → X. Then, the sections ea defined by ea(x) = [(x, e) · ea(x)] = (x, ea(x)) form a local
basis of Sec(τ). In this basis, the coefficients of the Lie algebra bundle are exactly the coefficients
Cc

ab of the Lie algebra g. We further define a g̃-valued two-form ω on M

ω(
∂

∂xi
,

∂

∂xj
)(x) = ωa

ijea(x) with ωa
ij =

∂Aa
j

∂xi
−

∂Aa
i

∂xj
+ Ca

bcA
b
jA

c
i ,
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which is clearly related to the curvature of A. Finally, the so-called associated linear connection
∇ on τ can be defined locally by

∇ ∂

∂xi
ea = Γb

iaeb = Cb
adA

d
i eb. (6)

Intrinsic definitions of the above objects can be found in e.g. [5, 9]. On π : TM⊕ g̃ → M , sections
are of the form s = X ⊕ s, with X ∈ X (M) and s ∈ Sec(τ). We can now state Theorem 5.2.4.
of [5].

Proposition 1. An explicit expression of the bracket (5) is

[X1 ⊕ s1, X2 ⊕ s2] = [X1, X2] ⊕
(

∇X1
s2 −∇X2

s1 − ω(X1, X2) + [s1, s2]
)

, (7)

(for Xi ∈ X (M) and si ∈ Sec(τ)).

The coefficients of the anchor map ρ are thus ρi
j = δi

j and ρi
a = 0. The bracket (7) is locally

given by
[ei, ej ] = −ωc

ijec, [ei, ea] = Γc
iaec, [ea, eb] = Cc

abec. (8)

From these expressions it is clear that the system (1) is a Lagrangian system (2) on the Lie
algebroid (7).

3 Almost-Lie algebroids

In what follows, we will use geometric structures that are a little more general than Lie alge-
broids.

Definition 2. An almost-Lie algebroid on π : V → M has all the properties of a Lie algebroid,
except that the Jacobiator

J(s, t, r) = [s, [t, r]] + [t, [r, s]] + [r, [s, t]], s, r, t ∈ Sec(π),

is C∞(M)-linear, but not necessarily zero.

The linearity of the Jacobiator J is equivalent with the property that the anchor map ρ is
a Lie algebra homomorphism. A k-form on Sec(π) is a skew-symmetric, C∞(M)-linear map
θ : Sec(π)× · · · × Sec(π) → C∞(M) (with k-arguments). A k-form ω on π is locally of the form

ω = ωα1...αk
eα1 ∧ . . . ∧ eαk ∈

k
∧

(π)

({eα} being the dual basis of {eα}). For any k-form, the expression

dθ(s1, . . . , sk+1) =

k+1
∑

i=1

(−1)i−1ρ(si)
(

θ(s1, . . . , ŝi, . . . , sk+1)
)

+
∑

1≤i<j≤k+1

(−1)i+jθ([si, sj ], s1, . . . , ŝi, . . . , ŝj , . . . , sk+1) (9)

defines a (k + 1)-form. The operator d will be called the exterior derivative. d is completely
determined by its action on functions and 1-forms. It is easy to see that

dxi = ρi
αeα, deγ = −

1

2
Dγ

αβeα ∧ eβ .
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Remark that d2 = 0 is valid only for functions. The property that d2 = 0 for 1-forms (and
by induction then also for forms of arbitrary order) is equivalent with the vanishing of the
Jacobiator J of the bracket, and therefore π is a Lie algebroid iff d2 = 0.

Let’s now come back to the Lie algebroid (7). It is easy to see that the bracket can be decomposed
in three almost-Lie algebroid brackets (with the same anchor map ρ)

[X1 ⊕ s1, X2 ⊕ s2] = [X1 ⊕ s1, X2 ⊕ s2]
1 + [X1 ⊕ s1, X2 ⊕ s2]

2 − [X1 ⊕ s1, X2 ⊕ s2]
3

where

[X1 ⊕ s1, X2 ⊕ s2]
1 = [X1, X2] ⊕

(

∇X1
s2 −∇X2

s1 + [s1, s2]
)

,

[X1 ⊕ s1, X2 ⊕ s2]
2 = [X1, X2] ⊕

(

∇X1
s2 −∇X2

s1 − ω(X1, X2)
)

,

[X1 ⊕ s1, X2 ⊕ s2]
3 = [X1, X2] ⊕

(

∇X1
s2 −∇X2

s1

)

.

Although [., .] is a Lie algebroid, it is not true that also the brackets [., .]i are Lie algebroids:
their Jacobiator fails to vanish. Let R∇ and d∇ be, respectively, the curvature and the covariant
exterior derivative of ∇ (see [8]). Let the adjoint operator of the Lie algebra bundle τ be given
by ad(r)s = [r, s].

Proposition 2. [., .]3 is a Lie algebroid iff the connection ∇ is flat, i.e. R∇ = 0. [., .]1 is a Lie
algebroid iff ∇ is flat and ad is parallel, i.e. ∇ad = 0. [., .]2 is a Lie algebroid iff ∇ is flat and ω
is ∇-closed, i.e. d∇ω = 0. If [., .] is a Lie algebroid and moreover iωad = 0, then all brackets are
Lie algebroids. Conversely, if [., .]1, [., .]2 and [., .]3 are Lie algebroids and iωad = 0, then also
[., .] is a Lie algebroid.

In local coordinates, the brackets take the form

[ei, ej ]
1 = 0, [ei, ea]

1 = Γc
iaec, [ea, eb]

1 = Cc
abec,

[ei, ej ]
2 = −ωc

ijec, [ei, ea]
2 = Γc

iaec, [ea, eb]
2 = 0,

[ei, ej ]
3 = 0, [ei, ea]

3 = Γc
iaec, [ea, eb]

3 = 0.

Of course, each of the above almost-Lie algebroids induces its own exterior derivative.

Proposition 3. For every form θ on π : TM ⊕ g̃ → M , we can write

dθ = d1θ + d2θ − d3θ,

where di stands for the exterior derivative of the almost-Lie algebroid [., .]i.

4 Horizontal and vertical Lagrange-Poincaré equations

The core idea of Mart́ınez’s approach to Lagrangian systems (2) on Lie algebroids is that the
dynamics should be thought of as a section of a certain prolongation bundle. Let π : V → M be
an (almost-) Lie algebroid and µ : W → M an arbitrary fibre bundle. The ρ-prolongation of W is
the bundle µρ : T ρW → W , where T ρW = ρ∗TW , i.e. (v, Xw) ∈ T ρW if v ∈ V and Xw ∈ TwW
are such that Tµ(Xw) = ρ(v). The projection µρ is then given by µρ(v, Xw) = τW (Xw) = w (see
also [12]). In the diagram in Figure 1 also the projections µ2 and ρµ on the composing parts of
T ρP have been drawn.
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Figure 1: The ρ-prolongation of µ.

The following theorem defines the extension of the almost-Lie algebroid π to the prolongation
µρ. A section Z of µρ is said to be projectable if there exists a section s ∈ Sec(π) such that
µ2 ◦ Z = s ◦ µ. Remark that Sec(µρ) is (locally) finitely generated, over the ring C∞(W ), by
projectable sections.

Proposition 4. [12] Let π be an almost-Lie algebroid. The vector bundle µρ inherits an almost-
Lie algebroid structure from the one on V and the standard Lie algebroid structure on TW .
The anchor map is ρµ : T ρW → TW, ρ1(v, Xw) = Xw, and the bracket can be defined in
terms of projectable sections as follows. If Z1, Z2 are two projectable sections of µρ given by
Zk(w) = (sk(m), Xk(w)), k = 1, 2 for some sections sk of τ and Xk of τW , then the bracket
[Z1,Z2] is the section given by

[Z1,Z2](w) = ([s1, s2](m), [X1, X2](w)). (10)

By construction, if π is, in particular, a Lie algebroid, then so is also the prolongation. Let’s use
coordinates (xi, wA) for W . The bases {eα} of Sec(π) and { ∂

∂xi ,
∂

∂wA } of X (W ) induce a basis
{Xα,VA} for Sec(µρ), where

Xα(w) =

(

eα(µ(w)), ρi
α

∂

∂xi

∣

∣

∣

∣

w

)

and VA(w) =

(

0(µ(w)),
∂

∂wA

∣

∣

∣

∣

w

)

. (11)

Sections in the span of {VA} are called vertical sections. The set of all vertical elements of T ρW ,
i.e. those whose projection on V , via µ2, vanishes, will be denoted by VρV . W.r.t. the basis
(11), the anchor map ρµ of the Lie algebroid structure on µρ is given by

ρµ(Xα) = ρi
α

∂

∂xi
, and ρµ(VA) =

∂

∂wA
,

while the extended bracket of the Lie algebroid structure on µρ is of the form

[Xα,Xβ ] = Dγ
αβXγ , [Xα,VA] = 0 and [VA,VB] = 0. (12)

Proposition 5. Consider the Lie algebroid structure (7) on π : V = TM ⊕ g̃ → M and an
arbitrary fibre bundle µ : W → M . The extended Lie algebroid [., .] on µρ : T ρW → W is made
up from the extensions of the almost-Lie algebroids [., .]1,[., .]2 and [., .]3, i.e.

[Z1,Z2] = [Z1,Z2]
1 + [Z1,Z2]

2 − [Z1,Z2]
3

for Zi ∈ Sec(πρ).
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From the expression (11) for the projectable sections, the proof is obvious. For the remaining
part of this section, we will assume that also µ is π : V = TM ⊕ g̃ → M . The elements of the
basis (11) are then {Xi,Xa,Vi,Va}. If {X i,X a,V i,Va} is the dual basis of 1-forms, then local
expressions for the exterior derivative d on

∧

(πρ) (see expression (9)) are given by

dxi = X i, dẋi = V i, dv
a = Va,

dX i = 0, dX a =
1

2
ωijX

i ∧ X j − Γa
ibX

i ∧ X b −
1

2
Ca

bcX
b ∧ X c,

dV i = 0, dVa = 0.

Corollary 1. For every form θ on πρ, we can write

dθ = d1θ + d2θ − d3θ,

where di stands for the exterior derivative of the extended almost-Lie algebroids on πρ.

All di have the same action on functions. For 1-forms,

d1X i = 0, d1X a = −Γa
ibX

i ∧ X b +
1

2
Ca

bcX
b ∧ X c, d1V i = 0, d1Va = 0,

d2X i = 0, d2X a =
1

2
ωijX

i ∧ X j − Γa
ibX

i ∧ X b, d2V i = 0, d2Va = 0.

d3X i = 0, d3X a = −Γa
ibX

i ∧ X b, d3V i = 0, d3Va = 0.

We now introduce some useful canonical objects that live on T ρV . Let’s look first at the set of
vertical sections. There exists a naturally defined vertical lift V : π∗V → VρV ⊂ T ρV . Indeed, if
(v0, v) ∈ π∗V , then we can define an element (vv0

)v ∈ Tv0
V by means of its action on functions

f ∈ C∞(V ),

(vv0
)v(f) =

d

dt
f(v0 + tv)

∣

∣

∣

∣

t=0

.

The required (v0, v)V ∈ VρV is then (0, (vv0
)v). The definition, of course, extends to the level of

sections. We won’t make a notational difference, between X ∈ X (M) and X⊕0 ∈ Sec(π), so the
meaning of XV as a section of the prolongation bundle πρ should be clear. Then, eV

i = Vi and
eV

a = Va. It is well-known that there exists a canonical section on π∗π, T = vαeα = ẋiei + vaea.
It can be decomposed into two sections TTM = ẋiei and Tg̃ = vaea. Their two vertical lifts,
CTM = ẋiVi and Cg̃ = vaVa, add up to the Liouville section C = vαVα ∈ Sec(πρ).

The fibre linear map j : T ρV → π∗V : (v, Xv0
) 7→ (v0, v) is surjective and its kernel is exactly

the set of vertical elements VρV . The composition of j with the vertical lift gives a second
important concept, that of the vertical endomorphism S = V ◦ j = Xα ⊗ Vα. It is a Sec(πρ)-
valued 1-form on Sec(πρ). The elements jTM(Z) and jg̃(Z) are the projections of j(Z) onto
π∗(TM ⊕{0}) = π∗TM and π∗({0}⊕ g̃) = π∗

g̃, respectively. We then obtain the two composing
parts Sg̃ = V ◦ jg̃ = X a ⊗ Va and STM = V ◦ jTM = X i ⊗ Vi of S.

Next to the vertical lift, there is also a second natural lift on (almost)-Lie algebroids, the complete
lift. We will only give a coordinate expression here (for more details, see [10]). If s = sαeα is a
section of π, then

sC = sαXα + (ρi
βvβ ∂sα

∂xi
− Dα

βδs
βvδ)Vα ∈ Sec(πρ).

We have shown that for π : TM ⊕ g̃ → M , there are four almost-Lie algebroid structures and
therefore we have to choose which one we will use to define the complete lift. In the following,

7



the complete lift will be constructed by means of the easiest bracket, namely [., .]3. Then, the
complete lifts of X ∈ X (M) and r ∈ Sec(τ) are

XC = X iXi +
∂Xi

∂ẋj
ẋjVi − Γa

jbX
j
v
bVa

r
C = r

aXa +
( ∂ra

∂xj
ẋj + Γa

jbr
bẋj

)

Va.

Remark that, if we would have chosen any other bracket, the complete lift would contain (annoy-
ing) additional terms in Cc

ab and ωc
ij . If {ei, ea} is a local basis for Sec(π), then {eC

i = Xi, e
C
a =

Xa, e
V

i = Vi, e
V
a = Va} is a local basis for Sec(πρ).

A special subclass of sections of πρ are the so-called pseudo-Sodes (or just ‘Sode’, second
order differential equation, in [10]). An element Γ of this class is characterized by the property
π2 ◦ Γ = id and it is therefore locally of the form

ẋiXi + v
aXa + f i(x, ẋi, v)V i + fa(x, ẋi, v)Va.

One of the main points in the current set-up is that Lagrangian systems on Lie algebroids are
represented by a pseudo-Sode Γ. The solutions of the dynamical system (2) are then given by
the integral curves of the associated vector field

ρπ(Γ) =
∂

∂xi
+ f i(x, ẋi, v)

∂

∂ẋi
+ fa(x, ẋi, v)

∂

∂va
∈ X (TM ⊕ g̃).

For a Lagrangian L ∈ C∞(TM ⊕ g̃), the Poincaré-Cartan 1-form is θL = S(dL) ∈
∧

(πρ). The
principal energy is a function on TM ⊕ g̃ given by EL = ρπ(C)L − L. We will only consider
regular Lagrangians, i.e. those whose Hessian is at any point non-degenerate. A Lagrangian
system on π is then a pseudo-Sode solution Γ of the equation

iΓdθL = −dEL. (14)

For the algebroid (7), the integral curves of ρπ(Γ) ∈ X (TM⊕g̃) are the solutions of the equations
(1). The operator LP (l) from [5] can, within our approach, be identified with the 1-form
iΓdθL+dEL on πρ. Recall that we have called the first equation, respectively last equation in (1),
the vertical and horizontal Lagrange-Poincaré equations. As was announced in the introduction,
we will show that iΓdθL +dEL can be dexomposed into two forms Hor,Ver ∈

∧1(πρ). First, we
will need to decompose the main objects: Let Eg̃ = ρπ(Cg̃)L and ETM = ρπ(CTM)L − L. Then
EL = ρπ(C)L − L = Eg̃ + ETM . Further let θg̃ = Sg̃(dL) and θTM = STM(dL). Last but not
least, we need to define a 1-form β on Sec(πρ) by means of its action on vertical and complete
lifts:

Definition 3. Let β be the 1-form on Sec(π1) defined by

β(rV ) = dL(rV ), β(rC) = dL(rC), β(XV ) = 0 and β(XC) = 0.

In coordinates, β = ∂L
∂va (Va + Γa

ibv
bX i).

Proposition 6. The ‘vertical’ Lagrange-Poincaré equation is given by

iΓd1θg̃ = −dEg̃ − β. (15)

The ‘horizontal’ Lagrange-Poincaré equation is given by

iΓ(d1θTM + d2θg̃ − d3θg̃) = −dETM + β. (16)
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Proof. Since d1θTM = d2θTM = d3θTM , it is clear that if Γ satisfies both (15) and (16), it must
also be a solution of the equation (14). We will prove now the converse: if Γ is the pseudo-Sode

solution of (14), it will also satisfy the vertical equation (15) and the horizontal equation (16)
separately.

For any Γ, the 1-form iΓdθL + dEL is semi-basic, so it vanishes identically on vertical sections.
We will show now that also the ‘vertical’ form Ver = iΓd1θg̃ + dEg̃ + β ∈

∧1(πρ) vanishes on
vertical sections. Since all involved objects are tensor fields, we can use in the the proof vertical
(and later complete lifts) of basic sections, i.e. sections in Sec(τ) and X (M) (and not the more
arbitrary sections along π). First of all, we find that

Ver(rV ) = (iΓd1θg̃ + dEg̃ + β)(rV ) = ρ1(Γ)(θg̃(r
V )) − ρ1(rV )(θg̃(Γ)) − θg̃([Γ, rV ]1)

+ρ1(rV )((ρ1Cg̃)L) + β(rV ). (17)

Since θg̃(r
V ) = 0, θg̃(Γ) = dL(Sg̃(Γ)) = ρ1(Cg̃)(L) and θg̃([Γ, rV ]1) = dL(Sg̃([Γ, rV ]1)) = dL(rV ) =

β(rV ), the proposed follows. By interchanging rV for XV in expression (17) it is clear that also
Ver(XV ) = 0, because θg̃(X

V ) = 0, Sg̃([Γ, XV ]) = 0 and β(XV ) = 0. Therefore, also Ver is
semi-basic.

We prove next that Ver also vanishes on complete lifts of the form XC . Since θg̃(X
C) = 0, it is

easy to see that Ver(XC) = −θg̃([Γ, XC ]1). Essentially, what we have to calculate is jg̃[Γ, XC]1

which is the ‘g̃’-part of j[Γ, XC ]1. This vanishes because, for any pseudo-Sode, the bracket
j[Γ, XC ]1 does not have components in ea.

Finally, we show that the two 1-forms iΓdθ+dE and Ver coincide on complete lifts rC . It is easy
to see that iΓ(dθ + dE)(rC) = ρ1(Γ)(θ(rC)) − θ([Γ, rC]) − ρ1(rC)L. On the other hand, because
β(rC) = dL(rC), we can find that Ver(rC) = ρ1(Γ)(θg̃(r

C)) − θg̃([Γ, rC]1) − ρ1(rC)L. We thus
have to prove that θ([Γ, rC]) = θg̃([Γ, rC]1), or j[Γ, rC ] = jg̃[Γ, rC]1 which can easily be verified in
coordinates. We can thus conclude that if iΓdθL + dEL = 0, then also Ver = 0.

We can now conclude the proof. If Γ satisfies iΓdθL + dEL = 0 and the vertical equation (15),
then it automatically also satisfies (16). Remark that both iΓdθ + dE and the ‘horizontal’ form
Hor = iΓ(d1θTM + d2θg̃ − d3θg̃) + dETM − β ∈

∧1(πρ) will agree on sections XC , but Hor will
vanish identically on sections of the form rC .

5 Examples: Wong’s equations

Remark that, so far, we have not used a linear connection ∇M on M . We will recall here an
example of [3, 5] where such a connection is easily available and study it within the present
framework. In this way we will arrive back at the description of [5].

Let g be a Riemannian metric on M and κ a bi-invariant metric on G. The Lagrangian

l(vq) =
1

2
κ(A(vq), A(vq)) +

1

2
g(πG(q))(TπG(vq), TπG(vq))

on Q is G-invariant and if we put k([q · ξ], [q · η]) = κ(ξ, η) then k is a fibre metric on g̃ and the
reduced Lagrangian becomes

L(x, ẋ ⊕ v) =
1

2
k(v, v) +

1

2
gx(ẋ, ẋ) =

1

2
κabv

a
v
b +

1

2
gij(x)ẋiẋj .

9



Remark that bi-invariance of the metric means that

k(r, [s, t]) + k(t, [s, r]) = 0 or κcdC
c
ab = −κcbC

c
da.

The Lagrange-Poincaré equations for the above problem are called Wong’s equations (see [5]
and the references therein for applications in physics where such a Lagrangian arises). Next to
the the (associated) linear connection ∇ on τ (with connection coefficients Γb

ia = Cb
adA

d
i , see

expression (6)), there is now a second connection around: the Levi-Civita connection of the
metric g (with coefficients N i

jk), which is a linear connection on M , in what follows denoted by
∇M . We will use this information within our current set-up, that is, that of the prolongation
bundle πρ : T ρV → V .

So-called ρ-connections on π [2, 14] are direct complements HρV of VρV in T ρV . Locally, such a
connection is determined by certain connection coefficients Γ̃α

β ∈ C∞(V ). A section Z ∈ Sec(πρ)
is horizontal if it is of the form

Z = ZαHα = Zα
(

Xα − Γ̃β
αV

β
)

∈ Sec(πρ).

If {eα} is a basis of Sec(π), then the horizontal lift of s = sαeα ∈ Sec(π∗π) is sH = sαHα. Special
cases of such connections are those where the connection coefficients are linear, i.e. Γ̃α

β = Γ̃α
βγyγ .

Then, a ρ-connection can be represented by an operator ∇ρ : Sec(π) × Sec(π) → Sec(π), where

∇ρ
eβ

eγ = Γ̃α
βγeα.

Such an operator has the following properties w.r.t. multiplications of functions f ∈ C∞(M),

∇ρ
fsr = f∇ρ

sr and ∇ρ
sfr = f∇sr + ρ(s)fr, ∀s, r ∈ Sec(π). (18)

In the case of Wong’s equations, the following can immediately be verified.

Proposition 7. The operator ∇ρ, defined by

∇ρ
X⊕ s

Y ⊕ r = ∇M

XY ⊕∇X r,

is a linear ρ-connection on π.

The connection coefficients of this connection are

Γ̃a
i = Γa

ibv
b, Γ̃a

b = 0, Γ̃i
j = N i

jkẋ
k, Γ̃i

b = 0.

and the horizontal space is spanned by {Ha = Xa, Hi = Xi − Γ̃a
i Va − Γ̃j

iVj}. The horizontal lift
of the canonical section T is a pseudo-Sode and will be denoted by Γ̃. In coordinates,

Γ̃ = ẋiX i + v
aX a − Γa

ibẋ
i
v
bVa − N i

jkẋ
j ẋkV i.

From the proof of Proposition 6 it has become clear that the essential part of the vertical equation
is given by its action on rC . Since the difference between rC and rH is a vertical section and
since Ver vanishes on vertical sections, we may as well look at the action of Ver on horizontal
sections rH . It is easy to see that β(rH) = 0. We therefore easily find that

0 = Ver(rH) = ρ1(Γ)(θg̃(r
H)) − θg̃([Γ, rH ]1). (19)
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The 1-form θg̃ on Sec(πρ) is semibasic and therefore leads to a 1-form θk on τ : g̃ → M along
π, given by θk(r) = θg̃(r

H) = k(Tg̃, r). We thus need to know θk(jg̃[Γ, rH ]1), or, essentially, the
‘g̃’-part of j[Γ, rH ]1. The difference between the pseudo-Sode Γ and the pseudo-Sode Γ̃ is a
vertical section W. Since we assume r to be a basic section, all the brackets [W, rH ]i will be
vertical and therefore not contribute to the bracket we want to compute. What is left is therefore
nothing but (j[Γ̃, rH ]1)

g̃
. To express this term, it will be convenient to introduce a new linear

connection D which has the advantage that its action on forms along π (such as θk) makes sense.
D will be a linear ρπ-connection on π∗π, the so-called Berwald-type connection D (see also [13]).
It is an operator D : Sec(πρ)×Sec(π∗π) → Sec(π∗π) with properties that are analogous to those
of (18), but with ρ replaced by ρπ. In this case, we can define this connection by means of its
action on basic sections, that is: let r, s ∈ Sec(τ) and X, Y ∈ X (M), then

DrH s = 0, DXH s = ∇Xs, DrV s = 0, DXV s = 0,

DrH Y = 0, DXH Y = ∇M

XY, DrV Y = 0, DXV s = 0.

On basic sections, DΓ = DΓ̃ + DW = DΓ̃. It can easily be calculated that DΓ̃r = (j[Γ̃, rH ]1)
g̃
−

ravbCc
baec. Taking all this into account (19) is then

0 = ρ1(Γ)(θk(r)) − θk(DΓr) − κcdC
c
bav

d
v
b
r
aec.

The last term vanishes because of the bi-invariance of the metric and the skew-symmetry of the
Lie algebra bracket. To conclude, the vertical Wong equation is

DΓθk = 0. (20)

Similar as above, one can define a 1-form θg of TM along π by means of θg(X) = θTM(XH) =
g(TTM , X). The essential part of the horizontal Wong equation is

0 = Hor(XH) = ρ1(Γ)(g(TTM , X)) − g(TTM , DΓX)

−θk((j[Γ, XH ]2 − j[Γ, XH ]3)
g̃
) − dL(XH). (21)

A small coordinate calculation shows that the third term is in fact θk(ω(TTM , X)). The last
term is given by

Xi(
∂L

∂xi
−

∂L

∂ẋk
Nk

ij ẋ
j −

∂L

∂vc
Γc

ibv
b). (22)

Using the explicit expression of the Lagrangian and the Levi-Civita connection coefficients, it is
easy to see that the first two terms in (22) cancel out and that the remaining term is κcdX

iΓc
ibv

bvd.
Also this term vanishes, due to the explicit expression of the connection coefficients Γc

ib = Ad
i C

c
db

and due to the assumed bi-invariance of κ and the skew-symmetry of the Lie algebra. Finally,
we will rewrite the first two terms in (21). Remark first that

(DXH g)(Y, Z) = (∇Mg)(X, Y ) = 0 and (D
rhg)(Y, Z) = ρπ(rH)(g(Y, Z)) = 0,

since ρπ(rH) = ρπ
(

raX a
)

= 0. So, in particular for Γ̃ = TH , also DΓ̃g = 0. Moreover, since g is
basic also DσV g = 0 for all σ ∈ Sec(π∗π) and thus also DΓg = DΓ̃ + DWg = 0. In particular,

0 = (DΓg)(TTM , X) = ρ1(Γ)(g(TTM , X)) − g(DΓTTM , X) − g(TTM , DΓX),

so we can rewrite the horizontal Wong equation (21) as

g(DΓTTM , X) + θk(ω(TTM , X)) = 0. (23)

(20) and (23) can also be found in [5] (in a somehow different style).
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6 Hamilton-Poincaré equations

In [4], a Hamiltonian version of the Lagrange-Poincaré equations has been developed. The
corresponding equations, the so-called Hamilton-Poincaré equations can also be seen to fit in
our approach. Let’s come back first to the most general idea of a prolongation in Section 4. In
fact, let µ now be π∗ : V ∗ → M , the dual bundle of a Lie algebroid π : V → M . Then, in [11]
(see also [6]) it has been shown that the Lie algebroid (π∗)ρ : T ρV ∗ → V ∗ is the ideal arena
to host the Hamiltonian formalism on a Lie algebroid. We only need to consider the canonical
1-form θ0 on (π∗)ρ, defined by θ0(w)(v, W ) = w(v) (w ∈ V ∗, (v, W ) ∈ T ρV ∗) and its exterior
derivative. Let H ∈ C∞(V ∗) be a Hamiltonian function. Hamilton’s equations are then given
by the integral curves of ρπ(XH) where XH is a section of (π∗)ρ which satisfies

iXH
dθ0 = −dH. (24)

Locally, if (xi, pα) are coordinates on V ∗, then θ0 = pαX
α and the Hamilton equations on a Lie

algebroid are














ẋi = ρi
α(x)

∂H

∂pα
,

ṗα = −ρi
α

∂H

∂xi
− Dγ

αβpγ
∂H

∂pβ
.

(25)

Coming back to the particular case of systems with symmetry, it is now not difficult to see that
the so-called Hamilton-Poincaré equations from [4] are nothing but the equations (25) for the
extension of the Lie algebroid (7) to T ρ(T ∗M ⊕ g̃

∗). Let {ei, ea} be the basis of Sec(π∗), dual
to the basis {ei, ea} of Sec(π). We will denote {Xi,Xa,P

i,Pa} for the induced basis (11) on
Sec((π∗)ρ). For coordinates (xi, pi, pa) on T ∗M ⊕ g̃

∗, the expressions (25) are in this situation:



































ẋi =
∂H

∂pi
,

ṗi = −
∂H

∂xi
+ ωc

ijpc
∂H

∂pj
− Γc

ibpc
∂H

∂pb
,

ṗa = Γc
japc

∂H

∂pj
− Cc

abpc
∂H

∂pb
.

(26)

The decomposition of the extended Lie algebroid in Proposition 5 will ensure again that the
above set of equations can be decomposed into a ‘horizontal’ and ‘vertical’ set. Look at the
decomposition θ0

g̃
= paX

a and θ0
TM = piX

i of the canonical section and let γ be ∂H
∂pa

(Pa−Γb
iapbX

i).

Proposition 8. The vertical Hamilton-Poincaré equation is

iXH
d1θ0

g̃
= −γ. (27)

The horizontal Hamilton-Poincaré equation is

iXH
(d1θ0

TM + d2θ0
g̃
− d3θ0

g̃
) = −dH + γ. (28)

A coordinate calculation shows that (28) gives the first and second equation in (26), while (27)
is given by the first and third equation.

Acknowledgements. I am indebted to Willy Sarlet for useful discussions.
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