Adjoint symmetries in non-holonomic
mechanics

W. Sarlet*

Department of Mathematical Physics and Astronomy
Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium

ABSTRACT. The type of non-holonomic mechanical systems we have in
mind is quite general: the system can be time-dependent and the non-
holonomic constraints need not be linear or affine. The constraints are
simply modelled by a given subbundle C' of the first-jet bundle J'7 of
some evolution space 7 : E — R, and the dynamical system is consid-
ered to be a second-order differential equation field I', living directly on
C. We discuss how the fact that this I' comes from non-holonomic me-
chanics in the sense of the d’Alembert-Chetaev principle, is essentially
encoded in the availability of a projection operator P, which maps ar-
bitrary vector fields along the projection 7o : C' — E onto those having
the property that their vertical lift is tangent to C'. The geometri-
cal benefit coming from P is that it gives rise to an inherited vertical
endomorphism-type tensor field on the constraint submanifold C', which
in turn leads to a natural construction of a non-linear connection, as-
sociated to the dynamics I'. The main purpose of the talk is to show
how the theory of adjoint symmetries can be developed in this fairly
general set-up, with the aid of the basic tools referred to above. We
shall discuss the general mechanism by which all first integrals of the
system can be obtained, in principle, through an algorithmic search for
adjoint symmetries.

*This contribution is based on joint work with David Saunders and Frans Cantrijn



1 Non-holonomic systems: a few recent mod-
els

It is not my intention to give a review here of the many different (though related)
differential geometric models which have been developed to describe mechanical
systems with non-holonomic constraints; for some general references on the subject,
see the books by Bloch [1] and Cortés [2]. Instead, I wish to refer to just a few of
these, with the purpose of explaining the motivation and the sources of inspiration
which have led to this work.

The first contribution I want to bring into focus is one by Giachetta [3]. In fact,
Giachetta’s paper is primarily devoted to a method for generating first integrals of
non-holonomic systems and my purpose here is to advocate what I believe to be a
better way of doing this. But before getting there, I need to make a digression on
the essential geometric tools I need to develop my approach in all generality.

The basic data in Giachetta’s model are: (i) a configuration space, which is a fibred
manifold 7 : E — R, and its 1st-jet extension 7 : J'7 — E; (ii) a fibre metric g on 7,
which has a natural lift to a fibre metric on 7; (iii) an ‘unconstrained’ second-order
differential equation field (SODE) T on J'7; (iv) a constraint submanifold C' C J'7,
which is a subbundle, not necessarily affine. A number of further constructions
follow from these data. The SODE T, for a start, gives rise to a canonically defined
Ehresmann connection on 7, which in turn is used by Giachetta to construct a 2-
form Q on J'7 whose kernel is spanned by T'. The fibre metric g on « further induces
a fibre metric g on m¢ : C — E by restriction, and ¢ is used to construct an essential
tool in the whole approach, namely a projection from vertical vectors at points of C'
to vertical vectors tangent to C, i.e. P : Vr|c — Vme, which is defined as follows:

J(PX,)Y)=g(X,)Y), VXeV,r, YeV,mc.

Finally, P and €2 play a role in the construction of a reduced dynamics I', which is
a SODE living on C.

A few remarks are in order at this point. I am unaware of other papers in which a
projector of exactly this nature is playing a central role, but there is always some
kind of projector in the model and a point I wish to make is that the P we are
talking about here then is always available. For example, the original fibre metric g
in Giachetta’s approach can easily be allowed to depend on all coordinates of J'r,
meaning that it becomes a metric along the projection 7; now, almost all authors
start from a given (unconstrained) Lagrangian L on J'7, and then the corresponding
Poincaré-Cartan 2-form wy, in fact is completely determined by such a metric g along
7 (the Hessian of L); the above construction of P then carries over to this slightly
more general situation. An exception to this rule would seem to be the approach
presented by Krupkovd [4]. There, a general unconstrained dynamics is taken as the



starting point and it is represented by a so-called dynamical form, which is a 2-form
of the following type: E = (Aa(t,q,q) + Bag(t, q,4)d”)dg® A dt. But the matrix Bag
then in fact can be thought of as component matrix of a type (0,2) tensor field along
the projection 7, not necessarily symmetric, and provided it is non-degenerate, the
construction of a projection P still carries over to that situation. Having realized
that tensor fields along 7 are at the heart of constructions which perhaps, for most
authors, take place on the full jet space J'7, yet another observation leaps to the
eye: vertical vectors on J'7 can be identified with vectors along 7 and with this
identification, P can be thought of as projecting vector fields along w¢ to the subset
of those whose vertical lift is tangent to C'. It is in this sense that I will make use of
a P further on.

Let me show now that such a P in fact is also present, in a very natural way, in
the quite different model for non-holonomic systems which was described in [6]. An
additional reason for picking out this paper as second example is that it is the source
of inspiration for the adapted connection I shall use later on.

Jir oC
I
p*Jim Jo
Jip & E i M
JT 70
R —u f;

It is generally assumed that, as a kind of regularity requirement, the non-holonomic
constraint equations can (at least locally) be solved for some of the velocity com-
ponents; if we consider the case of affine constraints, for simplicity, this means that
C C J'7 is defined by equations of the form

¢ =" = (By¢" + B") = 0.

The starting point for the model in [6] was the observation that this strongly suggests
assuming that the ¢* and ¢* belong to two different sets of coordinates on F, meaning
geometrically that E has an extra fibration p : E — M (with ¢* as coordinates for



the fibres), where M then is still fibred over R, say M ™ R. With this assumption,
C becomes simply the image of a section o of the bundle J'7 — p*J'7ry, and the
additional elegance of this model is that the functions B*, BY then transform exactly
as connection coefficients for a connection on the bundle p. In other words, giving a
section o of J'T — p*J'7y is the same as giving a connection & on p : E — M. The
situation is summarised in the diagram above.

What is the projector P in this picture? Observe first that a local basis for the set
of vector fields on E which are vertical for 7 is now dictated by the connection &,
i.e. we can put

0 0 0
Zuzaiq“’ Za:ai(]("+Bgai(]tL"
where the Z, span (part of) the horizontal distribution for the connection 6. Let
me introduce the notations X¢ = (Z,) and X¢ = (Z,,), for the modules over C*(C)
which these vector fields span. Then, if 7o denotes the projection C' — E as before,
and X(m¢) is the notation for the C*°(C')-module of vector fields along ¢, we have
the decomposition

X(re) = (To) @ X @ X,

where 9 5 5
— 2 0 (BPG® 1 BMY
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is a canonically defined element of X(mx). Observe now that Z," (¢*) = 0, meaning
that the vertical fields Z," on J'7 are tangent to C. Then, it becomes obvious that

P : X(m¢) — X¢ is simply the horizontal projector of & in this scheme.

Tc

A further element of relevance in this model is the fact that there is a vertical
endomorphism on C. Indeed,

Szaiqa®(dq —(q dt),

which is essentially the canonical vertical endomorphism on J'7g, carries over to the
pullback bundle p*J'7y, and thus also to C = Im . Let then I' be some constrained
SODE on C, its construction out of some original unconstrained dynamics being
irrelevant for our present purposes. Putting

N =1—(LrS)?-T ®dt,
it was shown in [6] that
Py =11 —£LrS+T®dt+N)

is the horizontal projector of a connection on the bundle n¢ : C' — E. This connec-
tion in turn was a key element in developing the theory of symmetries and adjoint



symmetries of I', as a theory about certain vector fields and 1-forms along the pro-
jection mc.

The purpose here is to extend this theory to the context of general non-holonomic
systems. The idea is to take a SODE I' on C' and a projection P : X(r¢) — X¢
as basic data, irrespective of the model which has generated them. The further
claim is that generating first integrals of a non-holonomic system I' through adjoint
symmetries, is more transparent and efficient then following the procedure suggested
by Giachetta, who worked with generating vector fields which are, however, generally
not symmetries of I' (they were called pseudo-symmetries in some of our previous
work, see [5], [7]). The details for most of what follows can be found in [8].

2 General framework and basic constructions

Let me repeat now the basic setup for our current approach, together with the
minimal ingredients which are needed for developing a consistent theory of sym-
metries and adjoint symmetries. We have a fibre bundle 7 : £ — R and a sub-
bundle C of J'r. With 7 denoting the projection J'7 — E, and m¢c = 7|c, let
X(m¢) :={X : C — TE} denote the C*(C)-module of vector fields along m¢, and
let T be its canonical element: roughly T is the total time derivative along C.

Definition: X¢ C X(7¢), called the set of virtual displacements, consists of all
Z € X(n¢), for which ZV belongs to X(C).

Assume that a projector P : X(r¢) — X¢ is given, with P(T¢) = 0. Then, there
exists a complement X¢, such that

X(re) = (Te) @ X @ Xe, (1)

and we let ) denote the projector on %C. Dually, the set of 1-forms along 7o will
have a corresponding decomposition

X*(re) = (dt) @ Cc & €, (2)

whereby Cod E:C consists of all contact forms on C (i.e. pullbacks of contact forms
on J'7 under the injection ¢ : C' < J7), regarded as 1-forms along 7¢.

Assume finally that I" is a given SODE on C.

Before proceeding, I shall introduce appropriate coordinate representations for these
ingredients. With (¢, ") denoting the coordinates on E, and (¢,q’, %) induced co-
ordinates on J17, let (¢,q%, 2%) be coordinates on C' C J'7 and denote the injection
t:C — Jr by ¢ = ¥i(t,q,2). C can alternatively be defined by some constraint
equations ¢H(t, q,q) = 0, so that ¢*(t,q,9(t,q,z)) =0, from which it follows that

oy 9gh _
020 9¢t —

(3)
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It is clear from these identities that the
oYt 0
a — a i (4)
02% Oq

constitute a local basis for X, because their vertical lifts Z," = 0/0z" are tangent
to C. Hence, the projector P will be represented by relations of the form

a a : awl a a
Denote a local basis for f%c by
.o,
— i
Zy =7 ag (6)

Then, one easily verifies that 9/9q’, regarded as vector field along 7¢, decomposes
as

0 Ot
— =P'Z, + ==Z,.
aqz ? + aqz M (7)
X(m¢) is further spanned by
0 -0
To=— t—,
=5 Vo (8)

Dually, for the contact forms g = 40 = dq* — ¢'dt, we have

~ oYt
0" = 0z%

0 + Z,m", (9)

where 6¢ = Pf@ and the n* span the so-called Chetaev bundle and are defined by

= 1*S*(dgt) = 9915 (10)
a¢l
S denoting the canonical vertical endomorphism on J!7:

S = (921' 67, (11)

Finally, the given SODE I' on C' is of the form

o .9
ag o

9
FZ&‘Hﬁ (12)

The given data will now be used in the first place to construct an associated con-

nection on 7o : C — E. Let S on C be defined by

0
0z%

VX € X(C): S(X)=(P(TrcoX)), ~ S=-——c06" (13)



So, the availability of a projector P on virtual displacements suffices to have a
reduced vertical endomorphism on C'. In the second model discussed in the previous
section, this would simply be the canonical S coming from the additional fibration
of E. Hence, one may expect in the present more general scheme that there will
again exist a natural connection determined by the pair (I', P).

Theorem: With N =1 — (£p§)2 —-I'®dt,
Py=3(I—-LrS+T®dt+ N) (14)

is the horizontal projector of an Ehresmann connection on o : C — E.

As was shown in [8], writing the local basis of horizontal vector fields as

0 0 0 0
Hy=—-T§{— H=—-T¢ 15
07 ot 09z YT og o (15)
the connection coefficients (I'§, I'?) for this connection are given by
. oI
Lo =—(f*+¢'T}), T7=R—3P 55k, (16)
where auxiliary functions R{ have been introduced, defined as
J a
R? =T(P?) 4 P¢ o p9f (17)

I fg i 9Lb

It may be worth saying that this is not the same connection as the one used in
[3]. We dare claim that ours is more canonical, in a sense, and this would seem
to be illustrated by the fact that it gives rise to significant simplifications in the
calculations which will be explained in the next section.

To finish this section, the local basis for vector fields and 1-forms along 7¢, which
was dictated by the projectors P and (), can now be used to produce local frames
and co-frames on C by the usual procedure of horizontal and vertical lifts. Let us
put

0
I'= TC’Ha Xo = aHa Xu = Z,LLH7 Vo = Zav = @7 (18)
and observe that the dual frame is given by
dt, 6% n*, n*=dz*+T¢ oyt 0" + ZinH adt 19
) ) n, n=az + 7 azb + ;1,77 - f ) ( )

where no notational distinction is made for forms which are well defined, both as
elements of X*(7¢) and as elements of X™(C).



3 Symmetries and adjoint symmetries

The basic ideas underlying the concepts of symmetries and adjoint symmetries of
some dynamical system I' are very simple: they are essentially vector fields and
1-forms which are invariant under the flow of I'. In practical applications, one will
often encounter the somewhat more general concept of ‘dynamical symmetry’, but
dynamical symmetries are equivalent modulo multiples of I' and each equivalence
class contains a representative with zero time-component, which is a symmetry in
the above strict sense. For our purposes, there is no loss of generality if we work
exclusively with this representative. So, in the present context: X € X(C), which
can be taken to satisfy (X,dt) = 0 without loss of generality, is a symmetry of
[if LrX = 0. Likewise, w € X*(C), with (I',w) = 0, is an adjoint symmetry
of T' if Lrw = 0. The adjective ‘adjoint’ comes from the property (LrX,w) =
—(X, Lrw) + Lr(X,w) (see later for more details).

To understand the motivation for our approach to the more practical issues of this
subject, let us go back for a moment to the case of unconstrained second-order
dynamics. Think, for example, of the determination of point symmetries of second-
order equations; the so-called determining equations for such symmetries, the way
they arise e.g. within Lie’s original method, are second-order partial differential
equations. The link with a condition such as £rX = 0, which in coordinates is
a set of first-order pdes, is the following: half of the components of X are fully
determined by the other half, and it is the elimination of the ‘redundant’ components
which gives rise to second-order conditions for the remaining ones. Our objective
in such a situation is to obtain a coordinate free description of these determining
equations. This can be achieved in a very natural way by making use of the available
connection, which gives rise to a canonical splitting of every vector field (and 1-form)
into a horizontal and vertical part.

I shall now sketch how this all works out in the present context of general non-
holonomic systems, once we have arrived at the identification of a reduced dynamics
I' on C and have the projector P at our disposal (together with the natural connec-
tion associated to the pair (I, P)). The splitting of a vector field by means of the
connection identifies the horizontal and vertical lift of some vector fields along 7¢,
as usual, but here the horizontal part will split again in view of the decomposition
induced by the projectors P and Q. Explicitly, every X € X(C), with zero time
component, has a representation of the form

X=2"4+7"+Y", ZYeZXc ZeXc. (20)

When computing Lr X, every term coming from this decomposition will have its own
decomposition into three parts and all of these are lifts of certain elements of Xc
and X¢. Hence, studying the decomposition of EF7H, LrZ® and LrY" necessarily
must bring out all intrinsic operations of interest on the set of vector fields along



mc. The same must be true for the dual picture of adjoint symmetries, and having
identified all interesting geometrical tools, the final stage in our programme will be
to use these tools in studying the subclass of adjoint symmetries which produce first
integrals of the constrained dynamics I'.

As said before, details of this programme can be found in [8]. Here is what we get
for the decomposition of the Lie derivatives of the composing parts of X:

crz" = (Vo) +(92)7, (21)
Lz = (v2) +(A2)", (22)
Ly’ = YY"+ (pvy)’. (23)

So, the first operation we detect automatically is the dynamical covariant derivative
V : X(m¢) — X(me); it is a derivation of degree zero on the C>(C)-module X(7¢),
which is completely determined by the following actions:

0

VTo =0, Vg

- _Hi(d’j)a(zj’ V=T onC>(C). (24)

The vertical parts in (21) and (22) depend tensorially on Z and Z, respectively. In
other words, what we further discover is the existence of two type (1,1) tensor fields
along ¢, of the form:

=00 ® Z, Xc — Xo, (25)

A= AZ "R Z,: %C — Xc. (26)

In fact there is a third such tensor field which is a bit hidden in the horizontal part

of (21). Indeed, while PV turns out to be a derivation, QV|§ appears to be a
C

tensor. More precisely, one can prove the following.

Lemma: We have that V.%C C .%c, but Vo € X @%C and QV|§ Xo — :%c
C

is a tensor, ¥ say, locally of the form ¥ = W5 6% ® Z,,.

Remark: it is the sum ® + A+ V¥ : X(7¢) — Xc @%C which is the analogue of what

is called the Jacobi endomorphism in the standard theory of (unconstrained) SODEs
on Jir.

Putting the results (21-23) back together, and knowing that for a vector field to
vanish, its horizontal and vertical part must vanish separately, we get the following
result.

Proposition: For a vector field X on C, of the form X = Z" 4+ zn —I—YV, we have

VZ+VZ-Y =0,

LrX=0 <& — ~ _
®Z +AZ+ PVY =0.



The condition coming from the horizontal part involves terms in EC’ and %C, re-
spectively. Hence, taking the results about the range of V into account (see the
above Lemma), Lr X = 0 is further equivalent to:

Y =PVZ,
VZ+VZ =0, (27)
®Z +AZ + PV(PVZ)=0.

It is at this stage that the ‘redundant components’ of a symmetry show up: to
construct symmetries, we need to find solutions Z and Z of the last two equations
in (27) and then the remaining part coming from Y is determined automatically. So
the true determining equations for symmetries of a non-holonomically constrained
system are a coupled set of first and second-order partial differential equations for
aZ =7+ 7 € X(rc). Since these two conditions in fact live on disjunct spaces,
one can formally take their sum to arrive finally at an equivalent single determining
condition

PV(PVZ)+VZ+ (®+U)Z +AZ =0, (28)
to which we will from now on refer to as the symmetry condition.

Taking the adjoint of a partial differential equation is a process which is well known,
for example, in the context of the calculus of variations. One can formally adopt
this process with respect to any partial differential operator, and I shall do this
here for the dynamical covariant derivative V. The general principle then can be
formulated as follows: think of V as being the total-time derivative in a process
of partial integration, whereby boundary terms are ignored. Then, the adjoint of
an equation for a vector field such as (28) is an equation for a 1-form, obtained as
follows. Hooking (28) with a 1-form «, use the duality rule

to transfer V from vector fields to 1-forms, thereby omitting the first term on the
right; and for the algebraic terms in the equation, which involve type (1,1) tensor
fields such as ®, ¥, A, it is of course the adjoint linear operator which comes into
the picture, according to the rule

(PZ,0) = (Z,P" ).

In the present case, some further care is needed, because (28) also involves projection
operators and in fact injection operators as well. The latter are a bit hidden because
it is not really worth introducing extra notations for regarding elements of X¢ and
X as elements of the bigger module X(7¢). But the situation changes when one
starts taking adjoints. Indeed, the adjoints of the projectors P and () are injections

P Co — X" (re), Q- éc — X*(nc),
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while the adjoint operations of the injections I : X¢ — X(m¢) and J : Xc — X(me)
are projectors B B
I : X*(n¢) — €¢, J* X (me) — €,

and have to be mentioned explicitly for this reason.

When all such aspects are properly taken into account, the formal adjoint equation
of (28) is the following equation for an element a € X" (7¢), of the form o = a + @,

Via — J*Va + (@* + A*)a + ¥*a = 0, (29)

and will be referred to as the adjoint symmetry condition. As in the symmetry
case, (29) involves terms which live in the two disjunct spaces €¢ and €c; it is
therefore equivalent to the following coupled system of first and second-order partial
differential equations:

J*Va — M@ = 0. (30)

{ Via+ d*a + v*a =0,
For the theory to be fully consistent, it should now be possible to establish a cor-
respondence between a 1-form along 7, satisfying the adjoint symmetry condition,
and a 1-form on the constraint submanifold C' which is invariant under I'. The result
in this respect is the following (see [8]).

Theorem: o = a+a € X*(n¢) is an adjoint symmetry if and only if, defining
B € C€cas f=—Va, the 1-form

w=a"+a"+ 8" € X*(0) (31)
s invariant under ', i.e. Lrw = 0.

As expected, this theorem illustrates that part of the components of an invariant
1-form w are determined by the others and the essential equations to be solved
are indeed the equations (29), or equivalently (30). Allow me to repeat here that
introducing the calculus of forms along the projection 7o is the only way to get a
coordinate free handle on the analytical problem which in the end always remains
to be solved.

4 The generation of first integrals

Going back to the basic idea of adjoint symmetries, it is obvious how adjoint sym-
metries can generate first integrals under special circumstances: if Lrw = 0 and
w = dF, then I'(F') = 0 (or at least constant). But it is interesting to investigate
how the potential exactness of the form w on C will manifest itself at the level of
the determining equations, i.e. when searching for 1-forms along m¢, satisfying the
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equations (30). The main advantage of such an approach is that it leads to a system-
atic procedure for the construction of first integrals in stages (see the algorithmic
procedure at the end). Besides, in the case of unconstrained systems, this approach
gives a better insight also in a rather unexpected side result (see e.g. [5] and [7]),
namely the identification of adjoint symmetries which generate a Lagrangian for the
system (which need not be defined as being Lagrangian at the outset). The situation
is of course somewhat more complicated in the constrained case. In fact, it is not
even clear at this moment how one should define a pair (I', P) to be ‘of Lagrangian
type’.

The standard exterior derivative is an operation which is not defined at the level
of the calculus of forms along mo. The only derivation operator which is canoni-
cally available is a vertical exterior derivative d"; one needs a connection to define
a complementary horizontal exterior derivative d”. For a function F' on C, the
decomposition of dF' in the adapted coframe then reads

dF = (d"F)" + (d" F)", (32)

where
d"F = V,(F)6, (33)
d"F = T(F)dt+ X,(F)0* + X, (F)n". (34)

To study how these exterior derivatives interact with adjoint symmetries, i.e. forms
a =a+ a € X*(r¢) which satisfy the adjoint symmetry condition, one needs to
know how they commute with V. We shall limit ourselves here to list the following
results about such commutators, which can be verified by a coordinate calculation.

Vd"F —d"VF = —I*d"F, (35)
V(J*d"F) — J*d"VF = A*d"F — U*J*d"F, (36)
V(I*d"F) — I*d"VF = &*d"F + U*J*d"F. (37)

With these formulae at our disposal, every further calculation can be done in a
coordinate free way again; at the end of the day, the following main result should

pop up.
Theorem: A I-form along wc of the form

a=d"F+ Jd"F (38)

is an adjoint symmetry of T' if and only if the function L = T'(F) satisfies the
equations
J*d"L =0, I'd"L = Vd'L. (39)

Now, what does this result have to do with the generation of first integrals? Clearly,
L = 0 satisfies the conditions (39). Hence, in a systematic search for adjoint sym-
metries of the form (38), one can be sure that all first integrals will be covered. It

12



turns out that, in practice, most of the time also the converse will hold, i.e. if an
adjoint symmetry of such a form can be found, the function I'(F") very likely will be
zero. It is instructive to look at the structure of the corresponding invariant form
on C: from (31) and (38), using (32), it easily follows that

w=dF — (d"L+ Ldt)",

where the second term has the structure of a Poincaré-Cartan 1-form.

Now what happens if L = I'(F') is not zero? The equations (39) for L, in coordinates,
read:

X, (L) = 0, (40)
L\ OL (Of° oy,
r (aza> = Xo(L) = 55 (82“ + azarj>. (41)

As said before, if we were in the context of unconstrained SODEs on J!7, we would
be looking here at equations which express that L (provided its Hessian is non-
degenerate) is a Lagrangian for I'. To what extent we also face a ‘surprise La-
grangian’ in the present context of non-holonomic systems, remains to be investi-
gated. Note in passing that this type of result in fact should not come as a total
surprise: it generalizes for example the well known property that a point symmetry
of a Lagrangian system which is not a Noether symmetry generates an ‘alternative
Lagrangian’.

Let me finally come to a description of an algorithm which will in principle lead to
the generation of all first integrals of practical interest for a general non-holonomic
system, and can efficiently replace the method advocated in [3]. In practical appli-
cations, it is reasonable to expect that the ‘forces’ f® of the reduced SODE (12) will
depend polynomially on the fibre coordinates z®. So, starting with a general 1-form
along w¢o of the form

a = a b + aun”,

the following procedure can be followed step by step:

e make an ‘ansatz’ about some polynomial dependence on the zb of the coeffi-
cients ag, ;3

e solve the determining equations for adjoint symmetries (30) with this ansatz;

o for each solution, test whether a function F' exists such that a, = V,(F') (such
an I is of course only determined to within an arbitrary function on E);

e if yes, verify whether @ is of the form J*dHﬁ, for some F = F + f(t,q);

e check finally whether T'(F") = 0;

13



e change the ansatz, if necessary, to obtain more first integrals.

Needless to say, solving the determining equations is the hardest part. But due
to the polynomial structure of all functions involved, one will generally obtain an
overdetermined system for the coefficients of the polynomials o, and oy, so the
problem will be quite tractable after all. Naturally, one will use ones favourite
computer algebra package to make life easier. For a simple illustration, we take
the paradigm example of non-holonomic systems: the disc which is rolling vertically
without slipping. If 1) determines the position of the plane of the disc, ¢ the position
of the disc in its internal rotation, and (z,y, R) are the coordinates of the centre of
mass, the constraints are:

i = (Rcos1)) ¢, y = (Rsinv) ¢.

d) and 1/1 can be taken as the z-coordinates on C, and the reduced SODE T yields the
trivial equations

$=0,  d=o0.

So, we have f® = 0 and one can verify that the components of the projection P
are: P =0, P = dy. It follows that the R as defined by (17) are zero, hence the
connection coefficients all vanish. I shall not compute the determining equations
(30) in detail, but mainly mention that the simplest ansatz to start the algorithm
here is to take the a, to be independent of the 2°, and the ay, to be linear. Particular
solutions are obtained when one of the «, is zero and the other one is ¥. With the
corresponding particular solutions for the a,, we find two adjoint symmetries which
happen to be of the form (38). They lead to two first integrals, given by

Fy = —Rsin¢ ¢ + z 9, F2:Rcosw¢+y@/}.

Another interesting particular solution (as reported in [6]) is to take both ¢, = 0,
with the a4 equal to ¢ and v, respectively. Again, this corresponds to an adjoint
symmetry of the form (38). But this time, the function F' is not a first integral.
Instead, we have L = I'(F) = (;32 + &2, which can indeed be regarded as being a
Lagrangian for the reduced SODE T'.
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