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Abstract. Connections are among the most important tools to study qualitative features of dynami-
cal systems. In this paper, we discuss generalized connections on affine bundles and show how they
appear in the context of Lagrangian systems on affine Lie algebroids.
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1. INTRODUCTION

Let 71: E — M be an affine bundle, modelled on a vector burmdi€e — M. Coordinates
onM will be denoted by(x'); adapted coordinates @by (X,y?). Suppose that also an
affine mapp : E — TM (with corresponding linear mgp: E — T M) is given. We will
refer top as the anchor map and ugl andp;, for its coordinate functions. This paper
concerns the geometric study of dynamical systemB ohthe form

X = pa (XY +pg(x),
ye = fa(x7y)_

Lagrangian systems on so-called ‘affine’ Lie algebroids motivate our interest in such
systems, as we will explain in the next section (see also [6, 7]). Dynamical systems of
the form (1) are called ‘pseudBoDES’, whereSODE stands for ‘second-order ordinary
differential equations’. In the special case where the base mamfasdfibred overR,

E = JM is its first jet extension(i',y?) = (t,x,x)) andp is the canonical injection

JIM — TM, pseudoSoDEs become indeed a system of second-order differential equa-
tions onM

1)

% = fl(t,x,X). 2)

In the following we will often refer to this situation as the ‘time-dependsmbE-case’.
Two important tools are extensively used in the geometrical analysis of (time-dependent)
SODEs (see [2, 4, 5]):

1. Every SODE gives rise to anon-linear connectioon 13, : J*M — M.

2. This non-linear connection can be linearized to a linear connection, the so-called
Berwald-type connection

This contribution is centred around the following questiGan we generalize the above
mentioned tools in such a way that they can be used to study similar questions for the



dynamical systems (1) the time-dependerBopEe-case E = J'M andp the canonical
injection) the newly found tools should of course correspond to the known situation.

In the next section we discuss pseuslobEes of Lagrangian type on affine Lie alge-
broids. In Section 3 we relate to any pseustobE a section of a prolonged Lie algebroid
and we generalize the notion of a connection in such a way that it becomes compatible
with the affine anchor map. We further show how any pseu®®DE on an affine
Lie algebroid can generate such a generalized connection. In the last section we discuss
affine generalized connections and, finally, we define generalized Berwald-type connec-
tions. This article is an overview of joint work with W. Sarlet and E. Martinez. Proofs
and detailed calculations have been omitted, they can be found in [9, 11, 13, 14, 15] and
the references therein.

2. GENERALIZATIONS OF LAGRANGIAN SYSTEMS

We will first investigate the special subclass of pse@&mEs of the form

X = po+pay”,

dsoLy 0L B By OL
a<ﬁ> = paﬁ—i_(COa +Cyay )W» (3)
2L

wherelL € C*(E) and the matrix F is supposed to have maximal rank. Ob-

ayB
viously, in the time-dependerSODE-cgse, (3) corresponds to the equations of La-
grangian mechanics. Also here, there is a variational problem at work. Consider curves
y: [to,t1] — E,t — (X(t),y(t)) whose projection oM have fixed endpoints and which
satisfy the constraink' = p, + pyy® (i.e. ‘admissible’ curves). Making use of ad-
missible variations, the equations (3) can be derived from extremizing the functional

J(y) = ttlL(y(t))dt, provided the functiongy, ), C{fa andcga satisfy the following

. 0
relations

9Pp ., 9p% %P5 90 _
ox ox ox ox

These equations are closely related to some of the structure equations of a ‘Lie alge-
broid’. A Lie algebroid is a vector bundie: V — Q, which comes equipped with a real

Lie bracket on the set of its sections and a linear bundle inay — T Q (and its exten-

sionA : Sedrt) — 27(Q)). Moreover, the bracket and the mapshould satisfy, for alll

s,r € SedT), f € C*(Q), the Leibnitz rules, fr] = f[s,r] + A (s)(f)r.

To understand better the structure (4), we have to extend the notion of a Lie algebroid
to affine bundles. Although there are several ways to do so, we will mention here only
one. LetE, be a fibre of the affine bundle. It is an affine space, modelled on a vector
spaceEm. We will denote byE! = Aff (Em, R) the space of affine functions froB, to
R. This is a vector space, so we can look at its dergl= (E)* which is again a vector
space, called the bi-dual &f,. The collection of all bi-duals gives rise to a vector bundle

[ PpH =Chgpy and  ph—— —pj CopPa- (4)



fi: E — M, called bi-dual bundle ofr. For example, iM — R andrris 13, : JIM — M,
then7tis the tangent bundlg, : TM — M.

E contains both a copy & andE. Indeed, there exists a canonical injectiofE — E,
given byim(e) (@) = ¢(e) (e € Em, ¢ € Aff(Em,R)). 1 is an affine map and we will use
T:E — E for its underlying linear map. The above observations lead to a decomposition
of elements irEy; For a fixedey € En, and for an arbitrarg € E, there exist € R and
€€ Ep such that = rim(ep) +Tm(€). This property can be used to extend the maps
andp to a linear magd : E — TM: Pm(ri (ag) +T(2)) = rpm(ao) + Pm(d). If (0,{Ea})
is a frame forSed ), then{ey = 1(0),e4 =T(€y)} is a basis foSed 7). In coordinates,

~ 7}
pis the map(x,y",¥") — (Po(X)y” + pa (9y”) o+

There is no need to define structuigectly on the affine bundlet, since we can
conveniently make use of the vector bundle structur.of

Definition 1 An affine Lie algebroid onr is a Lie algebroid on the vector bundle
iT: E — M with anchor magp : E — TM and with a bracket such that{,n € Seqn),

[1(2),1(n)] € ImT.

Locally, the bracket must be of the form
eo.€0] =0 [en,65] =Clzey  [ea.€] =Cypey.

{€,e%} will denote the basis, dual tdey,eq}. It is easy to see tha” (given by
€9({%y + %q) = {9 is in fact a globally defined 1-form oBed 7). On any Lie
algebroid, one can define an exterior derivative (see [8]). It is completely determined
by its action on functions and 1-forms. For an affine Lie algebroid, one finds that

dX = ppe’+ppe”,  de=0 and deé" =-Ce’ref - %ngeﬁ Ne.

Proposition 1 A Lie algebroid onit with anchorp is affine if and only itl€’ = 0.

3. PSEUDO-SODES AND GENERALIZED CONNECTIONS

We will show next that a Lie algebroid can be ‘lifted’ to a Lie algebroid structure
on a ‘prolonged’ bundlet! : TPE — E and that it is more convenient to look at (not
necessarily Lagrangian) pseu@oDEs as sections of this bundle, rather than as vector
fields onE. As announced in the introduction we will generalize the concept of a
‘connection’ to the current set-up.

The bundlertt has been visualized in the diagram. It is a vector bundle whose total
manifold is the pullback bundI@*TE (i.e. (§Xe) is an element ofTPE if p(&) =
Tr(Xe)), but whose bundle projection is given Iogt(& Xe) = Te(Xe) = €. Further,
maps the elemeri& Xc) € TPE ontoé € E, while p* projects the same elementDfE
ontoXe. Finally, there is also a canonical mapTPE — 1T°E, (& Xe) — (e, €). A frame
(0,{eq}) for Sed ) induces a basi§ 2o, Zu, Y4 } for Sed ), where (withA = 0, a)

0 d)
)

20 = (e, ph0 7| ) and  Ta(e) = (o(me). 50




FIGURE 1. The prolonged bundla?.

Remark thap®({° 20+ {9 Za +2°4) = (pr°+p'aZ“>% +Z“§-

It is well-known that a connection on a vector bundleV — M selects a (horizontal)
distribution which is complementary to the set of vertical elementsvinFor the bundle
1 too, we can identify a set of ‘vertical’ vectors: they are those elemerit§ Bfwhose
projection onE (by means of®) vanishes. The set of all such verticals is denoted by
Ver(m). A sectionZ € Sed ) is vertical if its image lies iver(rt), or, locally, if it
lies in the span of the sectiors,. The required extension of the concept ‘connection’
will generate a direct complement g&r(7t) within TPE. As usual, the definition can

be cast in terms of a horizontal lift.
Definition 2 A (generalized)p-connection ot is a map" : m'E — TPE for which
jo" =id.g holds. ThermPE = Im" @ Ver(rt).

In what follows we will usually refer to @-connection in terms of its associated map
h:=plo": m'E — TE. Locally, a generalized connection is completely determined
by a set of connection coefficierifﬁ,l'g € C*(E). If X = X%+ X%y € Sed 1),
thenX" = X0+ X% % € Sed ) with 24 = e = 20— I’g”I/B and. 7 = e, =

A
Let us now come back to the dynamical systems (1). To any psBad& we can
associate a sectidn of 1t with the property that?o " = 1. Indeed, such sections are

locally of the formll = 25+ Yy* 24 + 974 and can thus represent pseUslobEs in
this framework. Remark that!(I") is then exactly the vector field whose integral curves
are solutions of (1).

Proposition 2 Every pseud@®oDE ' = 2o+ Yy* 24 + {974 on a affine Lie algebroid
gives rise to gp-connection with connection coefficients

rC'——}(EJr vca +c“) and g =—f9_yPra
B~ "2\ gy 7Y v T s 0= Y-



The above theorem generalizes the well-known non-linear connectioSaba which

has been mentioned in the introduction (see e.g. [3]). We can also give a more intrinsic
formulation of this proposition. Le{%o, 29 ¥9} be the basis oSec((nl)*) which

is dual to{Z0, Za,7a}. Then, 20 is a global 1-form orSedmt) andS= (29 —

y* 29 ® ¥4, the vertical endomorphism, a globally defined vector-valued 1-form on
Slec(n ). Moreover, itis possible to prolong the Lie algebroid structurg taf the bundle

T

Proposition 3 An (affine) Lie algebroid orit with anchorp can be extended to an
(affine) Lie algebroid onrt' with anchor p* and Lie bracket[2y, 2] :Cgﬁjbry,

(20, 23] = Cog 2y, [V 2] = 0, [ 20, V3] = 0and[¥a, ¥p] = 0.

If dis the exterior derivative of this extended Lie algebroid (which acts on forms of
Sedmt)), thendr = lir,d] is a degree zero derivation, which extends to vector-valued
forms in the usual way. The horizontal part of% ¢ Sedrt') for the connection in

Prop. 2 is then given b%(l —drS+ 2% F) (2).

Remark thaf € Sed ) is a pseuddoDE if and only if () = 0and(l', 2% =1
In particular, ifd is again the exterior derivative of the lifted Lie algebroid, we can define
for a functionL € C*(E) a 1-form 8. = S(dL) +L.2° on Sed ). The pseud®oDE,
associated to the Lagrangian system (3), is then a solution of the eqiatén= 0.

4. AFFINE p-CONNECTIONS AND BERWALD-TYPE
CONNECTIONS

A special subclass gb-connections on an affine bundle is formed by those for which
the connection coefficients are affine functions, L§(x,y) = I'gy(X) + OB( x)y? and

Ffj(x,y) = F o(X) + ruB( x)y?. Before we can characterize such connections, we need
to say a few words about ‘linear’ generalized connections (see also [1]).

It is not difficult to introduce also ‘generalized’ connections for the vector burdle
on whichris modelled. Indeed, by replacing the affine bundheith the vector bundle
7tin the diagram, we arrive at a new prolonged vector bumdleTPE — E. Using the
correspondlng TPE — TF'E, it is easy to give a well-defined meaning to the concept
of a p-connectionh : T'E — TE on 7&. When in addition the connection coefficients
are linear functions, we will call the connection ‘linear’. Putti@e;, &) = & + &, for
€1,8& < En, amore intrinsic formulation of this property is the followingdaconnection
honTtis linear if and only if

h(eL +82.8) = Tie, ) = (N(e1,8), N(e2,9)),

Itis easy to find an equivalent characterization in terms of a covariant derivative operator.
One can check that the existence of a Ianas equivalent with the existence of an
operator] : Sed 1) x SedT) — SedT) : ({,7]) — Ezﬁ which is R-linear in both its
arguments and satisfies

On="f0;1 and Oz(fM) = {00 +B(0)(H)A,  (fC*(M)).



Generalized connections om with affine coefficients have properties which are
similar to those of linear connections. Lgte,€) = e+ ¢, forec E, ande € Ep,.

Proposition 4 A p-connectiorh on tis affine, if there exists a linegi-connectiorh on
71, which is related tdh in such a way that

h(e+e8) =TegZ (h(e,&),h(e,8)).

Equivalently, ap-connection onr is affine if there exists an operatdt : Sed71) x
Sedmn) — SedT) : (Z,r)) — Uzn which is R-linear in its first argument, satisfies
ngaz fDZo and is related to a covariant derivative operat@r of a linear p-
connection ot by means of

O3(0+ 17) = Oz + 10,77+ p(E) (F)7.

It is possible to give an explicit relation between the horizontalHitind the opera-
tor 0. First, we need to define the vertical lift: it is the map Sedn*it) — 2 (E)

given byv(X%g+X%,) = (X9 —y“xo)aya There is also an inverse map for vertical
vector fieIds:( 0y"> =YY%, € Sed ). It is not difficult to see that the brackets

[h(f),v(c‘r)] and[h({),v(o)] of vector fields orkE are vertical € Sed71), 0 € Sedqn)
ando € Seqmn) have here been identified with ‘basic’ sectionsSefg 77 77). A section

X of m*fris basic if itis of the forme — (e, Z) for a certain{ € Sed ). If the connection
is affine, then als¢h{,v(o)]y and[h{,v(0o)]y are basic sections and one can prove that

~ ~

O;0=[h¢,v(@)y and 0;0=[h{, V(o). (5)

The connection coefficients of the connectloim Prop. 4 can be found in the linear
part of those oh, i.e. T (x,w) =g (x)w# andT; (x,w) =T (x)w’. An other asso-
ciated connection is the one whose coefficientsiaex,y°,y) = o)y’ + I g5 (X)y”

?r;ldfﬂ(x,yo,y) =Ty’ +T g (X)yP. This linearp-connection orftis related tch as
ollows:

Proposition 5 his affine, if there exists a linegi-connectiorh: 7*'E — TE on fT: E —
M such that, .
hot =Tioh.

There is, of course, also a corresponding derivative opefatoBed 1) x Sed 1) —
Sed ).

Proposition 6 A linear p-connection oritis associated with an affin@-connection on
rtif and only ife? is parallel w.r.t. 0.

We are now ready to define Berwald-type connections. In the time-depeBdert
case, they are linearized versions of an originally non-linear connectiorg,oifhe
price to pay is that the bundle on which they live is a little bit more complicated:



usually Berwald-type connections are defined on the (pull-back) vector bajdleas
a covariant derivative operator. However, it can already be noticed in the time-dependent
case that this operator is in fact of the typand thus associated to an affine connection
O on the affine bundlet, . In the general set-up, Berwald-type connections will
therefore be affing!-connections on the affine bundi&m: mE — E. We will explain
below that the affine bundle does not need to have the structure of an affine Lie algebroid
for this purpose.

We briefly explain two ways to define them. First, it is easy to see that an affine
connectiorD : Sedtt) x Sed 1t 11) — Sed 1 1) is completely determined by its action
on horizontal and vertical lifts dbasicsections in its first argument and its action on
basicsections in its second argument. In the particular case thgi-ttennection one
starts from is already affine, the Berwald-type connections should essentially reproduce
a copy of themselves. Therefore, we can find inspiration in the relations (5) and put

DZH g = [hZ,VO']V, EZHU = [hZ,Vﬁ]V, Drl

va = Bﬁvﬁ =0.

One can easily check that this definition is consistent with the module structure over
C”(M) and that the above operator can be extended to arbitrary sections in the obvious
way.

The second method uses the fact that the connection is completely determined by
specifying the rule of parallel transport along two specific classes of admissible curves
in TPE. A detailed analysis in [13] revealed that, for the subclass of vertical curves, there
are in fact two ‘natural’ ways to fix such a rule, leading thus to two different Berwald-
type connections. We will not go deeper into this matter here; we will only give the
defining relations for this second Berwald-type connecion

Dsuo =[h{,voly, D@ =[h{val, Dvo=-7, Dno=0.

A similar behaviour was detected before in the time-depen8eme-case: the first
connection corresponds with the one in [4], while the second one is given in [12] and
is basically the same one as in [10]. We now list the coordinate expression (for the
associated operat@). Both connections share the expressions (With 0, a),

. y Ok " or} X
Da€=(Ta—Y ay8 e,  Dones= Wey» Dy,e5 =0.

while for the firstDy, ey =0 and for the secon®,, ey = —ey. Unlike in the time-
dependenBoDE-case, there are no direct defining formulas for the covariant derivatives.
Such formulas become available, however, when the affine bumdlE& — M has
the structure of an affine Lie algebroid. Remark that it is clear from the coordinate
expressions that such an additional structure is not required to define Berwald-type
connections.

Some final comments: Berwald-type connections have been successfully applied in
a number of applications concerning qualitative featur&obes. A few examples of



such problems are mentioned below (see also [2, 4, 5]):

- Does a coordinate transformatiah= x (t,) exist, such that the system (2) be-
comes linear (i.e. of the for! = Al (t) X+ B} (t) X+ Cl(1))?
» Can we construct a Lagrangian for this system?

« What are the conditions for the existence of a coordinate transformation in which
(2) completely decouples?

It is our belief that the above ‘generalized’ Berwald-type connections will prove to be
equally useful to answer similar questions for pse SdmES.
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