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Abstract. Connections are among the most important tools to study qualitative features of dynami-
cal systems. In this paper, we discuss generalized connections on affine bundles and show how they
appear in the context of Lagrangian systems on affine Lie algebroids.
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1. INTRODUCTION

Let π : E→M be an affine bundle, modelled on a vector bundleπ : E→M. Coordinates
onM will be denoted by(xI); adapted coordinates onE by (xI ,yα). Suppose that also an
affine mapρ : E→ TM (with corresponding linear mapρ : E→ TM) is given. We will
refer toρ as the anchor map and useρ I

α andρ I
0 for its coordinate functions. This paper

concerns the geometric study of dynamical systems onE of the form

ẋI = ρ I
α(x)yα +ρ I

0(x),
ẏα = f α(x,y).

(1)

Lagrangian systems on so-called ‘affine’ Lie algebroids motivate our interest in such
systems, as we will explain in the next section (see also [6, 7]). Dynamical systems of
the form (1) are called ‘pseudo-SODEs’, whereSODE stands for ‘second-order ordinary
differential equations’. In the special case where the base manifoldM is fibred overIR,
E = J1M is its first jet extension ((xI ,yα) = (t,xi , ẋi)) andρ is the canonical injection
J1M → TM, pseudo-SODEs become indeed a system of second-order differential equa-
tions onM

ẍi = f i(t,x, ẋ). (2)

In the following we will often refer to this situation as the ‘time-dependentSODE-case’.
Two important tools are extensively used in the geometrical analysis of (time-dependent)
SODEs (see [2, 4, 5]):

1. EverySODE gives rise to anon-linear connectionon πM : J1M →M.
2. This non-linear connection can be linearized to a linear connection, the so-called

Berwald-type connection.

This contribution is centred around the following question:Can we generalize the above
mentioned tools in such a way that they can be used to study similar questions for the



dynamical systems (1)?In the time-dependentSODE-case (E = J1M andρ the canonical
injection) the newly found tools should of course correspond to the known situation.

In the next section we discuss pseudo-SODEs of Lagrangian type on affine Lie alge-
broids. In Section 3 we relate to any pseudo-SODE a section of a prolonged Lie algebroid
and we generalize the notion of a connection in such a way that it becomes compatible
with the affine anchor mapρ . We further show how any pseudo-SODE on an affine
Lie algebroid can generate such a generalized connection. In the last section we discuss
affine generalized connections and, finally, we define generalized Berwald-type connec-
tions. This article is an overview of joint work with W. Sarlet and E. Martínez. Proofs
and detailed calculations have been omitted, they can be found in [9, 11, 13, 14, 15] and
the references therein.

2. GENERALIZATIONS OF LAGRANGIAN SYSTEMS

We will first investigate the special subclass of pseudo-SODEs of the form

ẋI = ρ I
0 +ρ I

αyα ,

d
dt

( ∂L
∂yα

)
= ρ I

α
∂L
∂xI

+(Cβ
0α +Cβ

γαyγ)
∂L

∂yβ , (3)

whereL ∈ C∞(E) and the matrix

(
∂ 2L

∂yαyβ

)
is supposed to have maximal rank. Ob-

viously, in the time-dependentSODE-case, (3) corresponds to the equations of La-
grangian mechanics. Also here, there is a variational problem at work. Consider curves
γ : [t0, t1]→ E, t 7→ (x(t),y(t)) whose projection onM have fixed endpoints and which
satisfy the constrainṫxI = ρ I

0 + ρ I
αyα (i.e. ‘admissible’ curves). Making use of ad-

missible variations, the equations (3) can be derived from extremizing the functional
J(γ) =

∫ t1
t0

L(γ(t))dt, provided the functionsρ I
α , ρ I

0, Cβ
γα andCβ

0α satisfy the following
relations

ρ I
α

∂ρJ
β

∂xI
−ρ I

β
∂ρJ

α
∂xI

= Cγ
αβ ρJ

γ and ρ I
0

∂ρJ
β

∂xI
−ρ I

β
∂ρJ

0

∂xI
= Cα

0β ρJ
α . (4)

These equations are closely related to some of the structure equations of a ‘Lie alge-
broid’. A Lie algebroid is a vector bundleτ : V→Q, which comes equipped with a real
Lie bracket on the set of its sections and a linear bundle mapλ : V→ TQ (and its exten-
sionλ : Sec(τ)→X (Q)). Moreover, the bracket and the mapλ should satisfy, for all
s, r ∈ Sec(τ), f ∈C∞(Q), the Leibnitz rule[s, f r] = f [s, r]+λ (s)( f ) r.

To understand better the structure (4), we have to extend the notion of a Lie algebroid
to affine bundles. Although there are several ways to do so, we will mention here only
one. LetEm be a fibre of the affine bundleπ. It is an affine space, modelled on a vector
spaceEm. We will denote byE†

m = Aff (Em, IR) the space of affine functions fromEm to
IR. This is a vector space, so we can look at its dualẼm = (E†

m)∗ which is again a vector
space, called the bi-dual ofEm. The collection of all bi-duals gives rise to a vector bundle



π̃ : Ẽ→M, called bi-dual bundle ofπ. For example, ifM → IR andπ is πM : J1M →M,
thenπ̃ is the tangent bundleτM : TM→M.

Ẽ contains both a copy ofE andE. Indeed, there exists a canonical injectionι : E→ Ẽ,
given byιm(e)(φ) = φ(e) (e∈ Em, φ ∈ Aff (Em, IR)). ι is an affine map and we will use
ι : E→ Ẽ for its underlying linear map. The above observations lead to a decomposition
of elements inẼm: For a fixede0 ∈ Em and for an arbitrarỹe∈ Ẽm, there existr ∈ IR and
e∈ Em such thatẽ= rιm(e0)+ ιm(e). This property can be used to extend the mapsρ
andρ to a linear map̃ρ : Ẽ → TM: ρ̃m(rι(a0)+ ι(a)) = rρm(a0)+ ρm(a). If (o,{eα})
is a frame forSec(π), then{e0 = ι(o),eα = ι(eα)} is a basis forSec(π̃). In coordinates,

ρ̃ is the map(xI ,y0,yα) 7→ (
ρ I

0(x)y
0 +ρ I

α(x)yα) ∂
∂xI

.

There is no need to define structuresdirectly on the affine bundleπ, since we can
conveniently make use of the vector bundle structure ofπ̃.

Definition 1 An affine Lie algebroid onπ is a Lie algebroid on the vector bundle
π̃ : Ẽ→M with anchor map̃ρ : Ẽ→ TM and with a bracket such that,∀ζ ,η ∈ Sec(π),
[ι(ζ ), ι(η)] ∈ Im ι .
Locally, the bracket must be of the form

[e0,e0] = 0 [e0,eβ ] = Cγ
0β eγ [eα ,eβ ] = Cγ

αβ eγ .

{e0,eα} will denote the basis, dual to{e0,eα}. It is easy to see thate0 (given by
e0(ζ 0e0 + ζ αeα) = ζ 0) is in fact a globally defined 1-form onSec(π̃). On any Lie
algebroid, one can define an exterior derivative (see [8]). It is completely determined
by its action on functions and 1-forms. For an affine Lie algebroid, one finds that

dxI = ρ I
0e0 +ρ I

αeα , de0 = 0 and deα =−Cα
0β e0∧eβ − 1

2
Cα

βγeβ ∧eγ .

Proposition 1 A Lie algebroid onπ̃ with anchorρ̃ is affine if and only ifde0 = 0.

3. PSEUDO-SODES AND GENERALIZED CONNECTIONS

We will show next that a Lie algebroid can be ‘lifted’ to a Lie algebroid structure
on a ‘prolonged’ bundleπ1 : T ρ̃E → E and that it is more convenient to look at (not
necessarily Lagrangian) pseudo-SODEs as sections of this bundle, rather than as vector
fields on E. As announced in the introduction we will generalize the concept of a
‘connection’ to the current set-up.

The bundleπ1 has been visualized in the diagram. It is a vector bundle whose total
manifold is the pullback bundlẽρ∗TE (i.e. (ẽ,Xe) is an element ofT ρ̃E if ρ̃(ẽ) =
Tπ(Xe)), but whose bundle projection is given byπ1(ẽ,Xe) = τE(Xe) = e. Further,π2

maps the element(ẽ,Xe) ∈ T ρ̃E ontoẽ∈ Ẽ, while ρ̃1 projects the same element ofT ρ̃E
ontoXe. Finally, there is also a canonical mapj : T ρ̃E→ π∗Ẽ,(ẽ,Xe) 7→ (e, ẽ). A frame
(o,{eα}) for Sec(π) induces a basis{X0,Xα ,Vα} for Sec(π1), where (withA = 0,α)

XA(e) =
(

eA(π(e)), ρ I
A(x)

∂
∂xI

∣∣∣∣
e

)
and Vα(e) =

(
o(π(e)),

∂
∂yα

∣∣∣∣
e

)
.
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FIGURE 1. The prolonged bundleπ1.

Remark that̃ρ1(ζ 0X0 +ζ αXα +ZαVα) = (ρ I
0ζ 0 +ρ I

αζ α)
∂

∂xI
+Zα ∂

∂yα .

It is well-known that a connection on a vector bundleτ : V→M selects a (horizontal)
distribution which is complementary to the set of vertical elements inTV. For the bundle
π1 too, we can identify a set of ‘vertical’ vectors: they are those elements ofT ρ̃E whose
projection onẼ (by means ofπ2) vanishes. The set of all such verticals is denoted by
Ver(π1). A sectionZ ∈ Sec(π1) is vertical if its image lies inVer(π1), or, locally, if it
lies in the span of the sectionsVα . The required extension of the concept ‘connection’
will generate a direct complement ofVer(π1) within T ρ̃E. As usual, the definition can
be cast in terms of a horizontal lift.

Definition 2 A (generalized)ρ̃-connection onπ is a mapH : π∗Ẽ → T ρ̃E for which
j ◦ H = idπ∗Ẽ holds. ThenT ρ̃E = ImH ⊕Ver(π1).

In what follows we will usually refer to ãρ-connection in terms of its associated map
h := ρ̃1 ◦ H : π∗Ẽ → TE. Locally, a generalized connection is completely determined
by a set of connection coefficientsΓβ

0 ,Γβ
α ∈C∞(E). If X̃ = X0e0 +Xαeα ∈ Sec(π∗π̃),

thenX̃H = X0H0 +XαHα ∈ Sec(π1) with H0 = e0
H = X0−Γβ

0Vβ andHα = eα
H =

Xα −Γβ
αVβ .

Let us now come back to the dynamical systems (1). To any pseudo-SODE we can
associate a sectionΓ of π1 with the property thatπ2 ◦Γ = ι . Indeed, such sections are
locally of the formΓ = X0 + yαXα + f αVα and can thus represent pseudo-SODEs in
this framework. Remark that̃ρ1(Γ) is then exactly the vector field whose integral curves
are solutions of (1).

Proposition 2 Every pseudo-SODE Γ = X0 +yαXα + f αVα on a affine Lie algebroid
gives rise to aρ̃-connection with connection coefficients

Γα
β =−1

2

(∂ f α

∂yβ +yγCα
γβ +Cα

0β

)
and Γα

0 =− f α −yβ Γα
β .



The above theorem generalizes the well-known non-linear connection of aSODE which
has been mentioned in the introduction (see e.g. [3]). We can also give a more intrinsic
formulation of this proposition. Let{X 0,X α ,V α} be the basis ofSec((π1)∗) which
is dual to{X0,Xα ,Vα}. Then,X 0 is a global 1-form onSec(π1) and S= (X α −
yαX 0)⊗Vα , the vertical endomorphism, a globally defined vector-valued 1-form on
Sec(π1). Moreover, it is possible to prolong the Lie algebroid structure ofπ to the bundle
π1.

Proposition 3 An (affine) Lie algebroid oñπ with anchor ρ̃ can be extended to an
(affine) Lie algebroid onπ1 with anchor ρ̃1 and Lie bracket[Xα ,Xβ ] = Cγ

αβ Xγ ,

[X0,Xβ ] = Cγ
0β Xγ , [Vα ,Xβ ] = 0, [X0,Vβ ] = 0 and[Vα ,Vβ ] = 0.

If d is the exterior derivative of this extended Lie algebroid (which acts on forms of
Sec(π1)), thendΓ = [iΓ,d] is a degree zero derivation, which extends to vector-valued
forms in the usual way. The horizontal part of aZ ∈ Sec(π1) for the connection in

Prop. 2 is then given by12

(
I −dΓS+X 0⊗Γ

)
(Z ).

Remark thatΓ ∈ Sec(π1) is a pseudo-SODE if and only if S(Γ) = 0 and〈Γ,X 0〉= 1.
In particular, ifd is again the exterior derivative of the lifted Lie algebroid, we can define
for a functionL ∈C∞(E) a 1-formθL = S(dL)+LX 0 on Sec(π1). The pseudo-SODE,
associated to the Lagrangian system (3), is then a solution of the equationiΓdθL = 0.

4. AFFINE ρ̃-CONNECTIONS AND BERWALD-TYPE
CONNECTIONS

A special subclass of̃ρ-connections on an affine bundle is formed by those for which
the connection coefficients are affine functions, i.e.Γα

0 (x,y) = Γα
00(x)+Γα

0β (x)yβ and

Γα
µ (x,y) = Γα

µ0(x)+Γα
µβ (x)yβ . Before we can characterize such connections, we need

to say a few words about ‘linear’ generalized connections (see also [1]).
It is not difficult to introduce also ‘generalized’ connections for the vector bundleπ

on whichπ is modelled. Indeed, by replacing the affine bundleπ with the vector bundle
π in the diagram, we arrive at a new prolonged vector bundleπ1 : T ρ̃E → E. Using the
correspondingj : T ρ̃E → π∗Ẽ, it is easy to give a well-defined meaning to the concept
of a ρ̃-connectionh : π∗Ẽ → TE on π. When in addition the connection coefficients
are linear functions, we will call the connection ‘linear’. PuttingΣ(e1,e2) = e1 +e2, for
e1,e2∈Em, a more intrinsic formulation of this property is the following: aρ̃-connection
h on π is linear if and only if

h(e1 +e2, ẽ) = T(e1,e2)Σ
(
h(e1, ẽ),h(e2, ẽ)

)
,

It is easy to find an equivalent characterization in terms of a covariant derivative operator.
One can check that the existence of a linearh is equivalent with the existence of an
operator∇ : Sec(π̃)×Sec(π) → Sec(π) : (ζ̃ ,η) 7→ ∇ζ̃ η which is IR-linear in both its
arguments and satisfies

∇ f ζ̃ η = f ∇ζ̃ η and ∇ζ̃ ( f η) = f ∇ζ̃ η + ρ̃(ζ̃ )( f )η , ( f ∈C∞(M)).



Generalized connections onπ with affine coefficients have properties which are
similar to those of linear connections. LetΣ(e,e) = e+e, for e∈ Em ande∈ Em.

Proposition 4 A ρ̃-connectionh onπ is affine, if there exists a linear̃ρ-connectionh on
π, which is related toh in such a way that

h(e+e, ẽ) = T(e,e)Σ
(
h(e, ẽ),h(e, ẽ)

)
.

Equivalently, aρ̃-connection onπ is affine if there exists an operator∇ : Sec(π̃)×
Sec(π) → Sec(π) : (ζ̃ ,η) 7→ ∇ζ̃ η which is IR-linear in its first argument, satisfies

∇ f ζ̃ σ = f ∇ζ̃ σ and is related to a covariant derivative operator∇ of a linear ρ̃-
connection onπ by means of

∇ζ̃ (σ + f η) = ∇ζ̃ σ + f ∇ζ̃ η + ρ̃(ζ̃ )( f )η .

It is possible to give an explicit relation between the horizontal lifth and the opera-
tor ∇. First, we need to define the vertical lift: it is the mapv : Sec(π∗π̃) → X (E)
given byv(X0e0 +Xαeα) = (Xα −yαX0) ∂

∂yα . There is also an inverse map for vertical

vector fields:
(
Yα ∂

∂yα

)
v
= Yαeα ∈ Sec(π∗π̃). It is not difficult to see that the brackets

[h(ζ̃ ),v(σ)] and[h(ζ̃ ),v(σ)] of vector fields onE are vertical.ζ̃ ∈ Sec(π̃), σ ∈ Sec(π)
andσ ∈ Sec(π) have here been identified with ‘basic’ sections ofSec(π∗π̃). A section
X̃ of π∗π̃ is basic if it is of the forme 7→ (e, ζ̃ ) for a certainζ̃ ∈Sec(π̃). If the connection
is affine, then also[hζ̃ ,v(σ)]v and[hζ̃ ,v(σ)]v are basic sections and one can prove that

∇ζ̃ σ = [hζ̃ ,v(σ)]v and ∇ζ̃ σ = [hζ̃ ,v(σ)]v. (5)

The connection coefficients of the connectionh in Prop. 4 can be found in the linear
part of those ofh, i.e. Γα

0 (x,w) = Γα
0β (x)wβ andΓα

µ (x,w) = Γα
µβ (x)wβ . An other asso-

ciated connection is the one whose coefficients areΓ̃α
0 (x,y0,y) = Γα

00(x)y
0 +Γα

0β (x)yβ

andΓ̃α
µ (x,y0,y) = Γα

µ0(x)y
0 +Γα

µβ (x)yβ . This linearρ̃-connection oñπ is related toh as
follows:

Proposition 5 h is affine, if there exists a linear̃ρ-connectioñh : π̃∗Ẽ→ TẼ on π̃ : Ẽ→
M such that,

h̃◦ ι = Tι ◦h.

There is, of course, also a corresponding derivative operator∇̃ : Sec(π̃)×Sec(π̃) →
Sec(π̃).

Proposition 6 A linear ρ̃-connection oñπ is associated with an affinẽρ-connection on
π if and only ife0 is parallel w.r.t.∇̃.

We are now ready to define Berwald-type connections. In the time-dependentSODE-
case, they are linearized versions of an originally non-linear connection onπM. The
price to pay is that the bundle on which they live is a little bit more complicated:



usually Berwald-type connections are defined on the (pull-back) vector bundleπ∗MτM as
a covariant derivative operator. However, it can already be noticed in the time-dependent
case that this operator is in fact of the type∇̃ and thus associated to an affine connection
∇ on the affine bundleπ∗MπM. In the general set-up, Berwald-type connections will
therefore be affinẽρ1-connections on the affine bundleπ∗π : π∗E→ E. We will explain
below that the affine bundle does not need to have the structure of an affine Lie algebroid
for this purpose.

We briefly explain two ways to define them. First, it is easy to see that an affine
connectionD : Sec(π1)×Sec(π∗π)→ Sec(π∗π) is completely determined by its action
on horizontal and vertical lifts ofbasicsections in its first argument and its action on
basicsections in its second argument. In the particular case that theρ̃-connection one
starts from is already affine, the Berwald-type connections should essentially reproduce
a copy of themselves. Therefore, we can find inspiration in the relations (5) and put

Dζ̃ H σ = [hζ̃ ,vσ ]v, Dζ̃ H σ = [hζ̃ ,vσ ]v, DηV σ = DηV σ = 0.

One can easily check that this definition is consistent with the module structure over
C∞(M) and that the above operator can be extended to arbitrary sections in the obvious
way.

The second method uses the fact that the connection is completely determined by
specifying the rule of parallel transport along two specific classes of admissible curves
in T ρ̃E. A detailed analysis in [13] revealed that, for the subclass of vertical curves, there
are in fact two ‘natural’ ways to fix such a rule, leading thus to two different Berwald-
type connections. We will not go deeper into this matter here; we will only give the
defining relations for this second Berwald-type connectionD̂.

D̂ζ̃ H σ = [hζ̃ ,vσ ]v, D̂ζ̃ H σ = [hζ̃ ,vσ ]v, D̂ηV σ =−η , D̂ηV σ = 0.

A similar behaviour was detected before in the time-dependentSODE-case: the first
connection corresponds with the one in [4], while the second one is given in [12] and
is basically the same one as in [10]. We now list the coordinate expression (for the
associated operator̃D). Both connections share the expressions (withA = 0,α),

D̃HAe0 =

(
Γγ

A−yβ ∂Γγ
A

∂yβ

)
eγ , D̃HAeβ =

∂Γγ
A

∂yβ eγ , D̃Vα eβ = 0.

while for the first D̃Vα e0 = 0 and for the second̃̂DVα e0 =−eα . Unlike in the time-
dependentSODE-case, there are no direct defining formulas for the covariant derivatives.
Such formulas become available, however, when the affine bundleπ : E → M has
the structure of an affine Lie algebroid. Remark that it is clear from the coordinate
expressions that such an additional structure is not required to define Berwald-type
connections.

Some final comments: Berwald-type connections have been successfully applied in
a number of applications concerning qualitative feature ofSODEs. A few examples of



such problems are mentioned below (see also [2, 4, 5]):

• Does a coordinate transformationxi = xi(t,x) exist, such that the system (2) be-
comes linear (i.e. of the form̈x j = A j

k(t) xk +B j
k(t) ẋk +C j(t))?

• Can we construct a Lagrangian for this system?
• What are the conditions for the existence of a coordinate transformation in which

(2) completely decouples?

It is our belief that the above ‘generalized’ Berwald-type connections will prove to be
equally useful to answer similar questions for pseudo-SODEs.
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