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Abstract

In this paper we recall the concept of generalised connections and show how these
connections are encountered in the theory of non-holonomic systems with symmetry.
Using results from a recent paper in which the definition of holonomy for generalised
connections was introduced, we show amongst others that these holonomy elements
are encountered in the reconstruction process for reduced non-holonomic systems
with symmetry. This is illustrated with the well-known snakeboard example.

1 Introduction

The study of non-holonomic mechanical systems has experienced a growing interest
during the last decades . There are many approaches to non-holonomic systems, and
it is not our intention to give an overview of these different geometric formulations.
Instead, for a detailed overview of the literature, we refer to two recent books [1, 5].
The purpose of this paper is to show that the theory of generalised connections,
introduced in [3], is useful in the study of non-holonomic systems, especially for
those non-holonomic systems which exhibit some symmetry. The main result in
this direction states that the well-known property from the reconstruction theory
in mechanical systems with symmetry, saying that geometric phases are holonomy
elements of an appropriately chosen connection [13], has its analogue in the non-
holonomic case. In particular, the non-holonomic geometric phases will appear as
holonomy elements of a specific generalised connections which is involved in the
reduction process.

The structure of this paper is as follows. In Section 2 we introduce the notion
of a generalised connection and of an associated covariant derivative cf. [3]. Next
we recall the concept of holonomy for generalised connections, and we state some

*Postdoctoral Fellow of the Fund For Scientific Research - Flanders (Belgium).



results proven in [10], which are generalisations of theorems in standard connection
theory [8]. Next, in Section 3 we apply the theory of generalised connections to simple
non-holonomic mechanical control systems. By ‘simple’ we mean systems for which
the Lagrangian equals kinetic minus potential energy and where the generalised
forces are determined by some control inputs. The main point in this section is
that a unique generalised connection is associated with a non-holonomic dynamical
system and that the ‘geodesic spray’ of this generalised connection is used to give a
geometric description of the equations of motion. We then study the reduction of
non-holonomic system with symmetry, again using a specific generalised connection.
It should be mentioned that these results were partly discussed in a previous paper
[9]. We conclude the paper by showing that elements in the holonomy group are
encountered as specific motions (also called gaits) of the mechanical systems under
consideration and by showing the applicability of these results by applying it to the
snakeboard example.

Throughout this paper we assume that the reader is familiar with all natural
concepts associated to a connection on a principal fibre bundle. All manifolds are
smooth, finite dimensional and without boundary. By smooth we will always mean
of class C>.

2 Generalised connections and holonomy groups

The concept of a generalised connection finds its origin in the work of R.L. Fernandes
[6, 7] involving the study of the so-called contravariant connection on a Poisson
manifold P. Roughly speaking, the key point in the definition of a contravariant
connection, is that one no longer defines ‘parallel transport’ along an arbitrary curve
in P, but rather along curves belonging to a specific subclass, determined by an
admissibility condition. In the case of contravariant connections, this admissibility
condition implies that the curve entirely lies in a symplectic leaf of the foliation
induced by the Poisson structure.

An appropriate mathematical formulation for this admissibility condition follows
from the definition of an anchored bundle (cf. [3, 14]) namely: an anchored bundle
over a manifold M is defined by a linear bundle v : N — M and a linear bundle map
p: N — TM, fibred over the identity. An admissible curve in this setting is a curve
c: I =[tg,t1] — N such that d/dt(v(c(t))) = p(c(t)).

There are many systems in differential geometry that have the underlying struc-
ture of an anchored bundle. We only mention the most important examples:

e A Poisson structure A on a manifold P defines a mapping #5 : T*P — TP such
that the image is precisely the generalised integrable distribution whose leafs
are symplectic submanifolds of P.

e A Lie algebroid is, by definition, an anchored bundle with the additional prop-
erty that the module of sections of N — M is equipped with a real Lie algebra,
which satisfies a Leibniz condition with respect to multiplication by functions
on M.

e Any regular distribution D on M is a subbundle of TM. The natural injec-
tion into T'M makes D into an anchored bundle, whose admissible curves are
precisely the set of curves tangent to the distribution

e A sub-Riemannian structure on a manifold M is a regular distribution ¢ : D —
T M which is equipped with a Riemannian bundle metric, say h. The mapping



g:T*M — TM, defined by g = iof 0i* makes T* M into an anchored bundle.

e Sub-Finsler geometry is a generalisation of sub-Riemannian geometry in that
the constraint distribution D is equipped with a Finsler metric, rather than a
Riemannian bundle metric.

e Linear control systems are typically modeled by a system of differential equa-
tions of the form @' = fi(x)u®, where x € R" represents the configuration of
the system and u € R” represents the external (typically human) input to the
system, steering the system in the direction given by fi(x)u®d/dz". Tt is not
difficult to see that, in a local coordinate chart, the admissible curves associ-
ated with an anchored bundle p : N — T'M are precisely pairs (z(t), u(t)) such
that () = fi(x(t))u®(t), where f! is the local expression for the anchor map
p. In this sense, the structure of an anchored bundle has been put forward as
a differential geometric setting for studying control theory (see also [15]).

Assume in the following that an anchored bundle v : N — M with anchor map
p: N — TM is kept fixed. As mentioned in the introduction, the definition of a
generalised connection on a principal fibre bundle w : P — M with structure group
G has to involve the definition of the lift of an admissible curve to a curve in P.
Such a ‘lifting procedure’ is provided by means of a mapping h : P xpy N — TP,
fibred over the identity on P and such that the following three conditions hold for
all (p,n) € P xp N:

1. TRy(h(p,n)) = h(pg,n) for all g € G, ;
2. Tr(h(p,n)) = p(n);
3. h is linear in its second argument, i.e. h(p,n + n') = h(p,n) + h(p,n’).

Such a mapping h is called a generalised connection on P. The lift of an ad-
missible curve is then defined as follows. Assume that ¢ : I = [tg,t;] — N is an
admissible curve, with base curve ¢ in M and ¢(t;) = m; for ¢ = 0,1. The lift of
¢ through a point py in ™ *(mg) is defined as the unique curve ¢ in P such that
e (t) = h(c"(t),c(t)) and c"(ty) = po. It is proven in [3] that there always exists a
solution to this differential equation, defined over the entire time interval I. The lift
of an admissible curve ¢ projects under 7 onto the base curve ¢. It is straightforward
to see that the map h also induces a lifting of sections of v to vector fields on P, i.e.
for n € T'(v), then n" € X(P) is defined by n"(p) = h(p,n(x(p))), for p € P.

It is well-known in standard connection theory that any connection on a principal
fibre bundle, induces a connection (i.e. a covariant derivative operator) on every
bundle associated with P. This property carries over to generalised connections.
Let € : E — M denote a linear bundle associated with P. It can be proven that
the generalised connection h defines a ‘covariant derivative’ V such that for any
admissible curve ¢, the operator V. acts on sections of € along the base curve of c.
A detailed construction of V can be found in [3]. The derivative operator satisfies
the following properties, where f, f' : I — IR are smooth functions, o, 0’ are sections
of € along ¢, and where ¢’ is an admissible curve with ¢ = ¢":

1. V(o4 0')(t) = Veo(t) + Vo' (t);

2 Vigerpreno(t) = F(OVeo () + /(0)Veo(t)

3. Vefo(t) = f(t)o(t) + Veo(t).

From the above properties, it follows that V.o (t) only depends on the value of

¢ at t. We say that a section o is parallel transported along ¢ if V.o (t) = 0 for all
tel.



It should be noted that any covariant derivative with the above properties is
induced by a unique generalised connection, say A’ on the principle fibre bundle
of linear frames of ¢ : E — M. The parallel transport operator associated to the
derivative operator and to the generalised connection h¥ are related as follows: a
curve {0y (t),...,0qimm)(t)} in the frame bundle is the lift by h¥ of an admissible
curve iff every element of the frame o;(t) satisfies the equation V.o;(t) = 0.

In this paragraph we consider some coordinate expressions. Consider a coordinate
chart adapted to both fibrations v and e simultaneously, with coordinate functions
(2%,u®) on N and (z¢,&4) on E. The fibre coordinates are assumed to be linear, i.e.
they are determined by a local basis for the sections of v and ¢, say e, on N and ey4
on FE, respectively. The covariant derivative operator is completely defined by the
set of local functions I'Z, on M such that

(Vea eA)B = 1_‘aBAv

which are called the connection coefficients. Let us now consider local expressions
for ¢ and o, namely c(t) = (2%(t),u®(t)) and o = (2%(t),£4(¢)), then the following
expression holds:

Vea(t) = (€4(t) + Tap(x(0)u (DE7 (1) Jea(@(t)).

The key idea underlying generalised connections is well represented in the above
equation. In standard connection theory, the connection coefficients are contracted
with the velocities of the base curve, i.e. T/ (t)¢5(¢). For generalised connections,
however, these coefficients are contracted with the fibre components of the admissible
curve. More intuitively, one could say that these fibre components, when thinking in
terms of admissible curves, carry ‘more information’ in comparison with the velocities
#%(t) and should therefore be contracted with the connection coefficients.

Let us now pass to the definition of holonomy. For that purpose we return to
the definition of generalised connections on a principal fibre bundle 7 : P — M. An
admissible loop is an admissible curve for which the base curve is a loop curve in
the usual sense, i.e. ¢ : [tg,t;] = I — N is an admissible loop iff ¢ is a loop in M
with base point ¢(tg) = mg = ¢(t1). Similar to the standard definition of holonomy
elements, we note that the lift of an admissible loop defines an automorphism of
the fibre 7=1(mg) (a bijective map is called an automorphism if it commutes with
the right action). The set of all automorphisms associated with admissible loops is
a subgroup of the automorphism group denoted by ®(mg). Assume that a point
po € m Y(myg) is given, then every such automorphism can be evaluated at py. The
image corresponds to a unique element in the structure group G, and the collection
of all these elements is a Lie subgroup ®(pg) of G, called the holonomy group at
po- It can be proven that a generalised version of the Reduction Theorem holds for
generalised connections. For a more detailed treatment, we refer to [10]. It is our
goal to show that these holonomy elements are encountered in the reconstruction of
reduced non-holonomic mechanical systems with symmetry.

3 Generalised connections in non-holonomic mech-
anical systems

In this section we wish to describe how generalised connections naturally appear
in non-holonomic mechanics. Assume in the following that M is the configuration



manifold of a mechanical system, described by a Lagrangian function L on TM. We
assume that it L of the type L = T — 75,V, where V is a function on M repres-
enting the potential function of the conservative forces acting on the system and
where T'(v) = 4g(v,v) is the kinetic energy, determined by a Riemannian metric
g on M. We assume, in addition, that the solution curves have to satisfy some
linear non-holonomic constraints, characterised by a regular (non-integrable) con-
straint distribution D on T'M. The generalised forces @ € X*(M) depend on some
parameters that represent certain external control functions, i.e. they represent the
steering of the motion by external influences changing the generalised forces. These
control functions are denoted by u?, i = 1,...,¢ (see also [11]), i.e. for simplicity we
assume that Q : R* — X*(M). From d’Alembert’s principle, a motion of the system
is a curve x : I — M tangent to D and satisfying

d (0L OL )
<dt <axz) - 9t - QZ(“G))) dx' € Dg(t) YVt € 1, (1)

with D the annihilator of D. The control input u(t) is assumed to be given explicitly
and therefore determines a time dependent force Q.

If we apply the map f, to the one form in the above condition then, after some
straightforward calculations, we can show that the above condition is equivalent to
saying that:

™ (V‘Zi‘(t)) = 7TD( —grad V + ﬁg(Qu(t)))(‘r(t))v

where mp is the orthogonal projection onto D w.r.t the metric g and where V9 is
the Levi-Civita connection associated with g.

Consider the anchored bundle ¢ : D < T'M, and define the following generalised
connection on the bundle D by means of its ‘covariant derivative’ V™" by:

VIhY (t) = mp (VY (1)),

where & is an admissible curve in ¢ : D — T'M with base curve z (i.e. x is tangent to
D) and where Y is a vector field along z lying in D. The derivative V" determines
a unique generalised connection, which we call the non-holonomic connection: see
[9]. In that paper we proved that this connection only depends on the projection
map mp and on the restriction of the metric g to the subbundle D. Using these new
notations, (1) can now be equivalently expressed by

Vili(t) = mp (= grad V + g (Que)) ((1)). (2)

In the remaining of this section we describe how the above equation can be
‘reduced’ if the system is invariant under symmetry. The main ideas behind this
reduction process have been published in [9], where only free non-holonomic systems
where studied (i.e. V =0 and @ = 0). For further details, we refer the reader to
that paper.

We now consider the case where the given non-holonomic system is invariant
under the action of a symmetry group. This invariance condition means that the
following assumptions hold. We assume that a Lie group G acts on the right on
the configuration manifold M in such a way that, when taking the quotient, the
bundle 7 : M — M = M/G is a principal fibre bundle with structure group G. The
non-holonomic constraint distribution D on M is assumed to be invariant under this
action, i.e. TRy (D,,) = Dpp for h € G and, similarly, the kinetic energy metric,



the potential and the generalised constraint forces are all assumed to be G-invariant,
ie. Rjg=g9, RV =V and RjQ, = Q, forall h € G and u € R*. Our goal is
to construct a reduction for the dynamical system described by (2). It should be
noted that other approaches to reduce non-holonomic systems with symmetry have
been followed (cf. [2, 4]). The main advantage of the approach described below is
the fact that the only assumption we impose on the constraint distribution D, apart
from being invariant, is its regularity.

Since Equation (2) is an equation in the distribution D, it seems natural to
consider the quotient D/G as the space on which the reduced equations of motion
can be described. Note that D/G is a bundle over M, and can be made into an
anchored bundle by defining p : D/G — TM as p([Yn]) = Tn(Y,,), where [-]
stands for the equivalence class of an element Y,,, under the group action T'Ry,. It
is easily seen that p is well-defined. The sections of v : D/G — M are precisely
the right invariant vector fields on M contained in D. Since M is a principal fibre
bundle over M, we can define a generalised connection h : M x4 D/G — TM
by h(m,[Y,n]) = Yo, i.e. the image of (m,[Y;,]) is the unique representative of the
equivalence class [Y,,] in D,,,. The connection V""" over the bundle map i : D — TM
is reducible (by restricting the action to right invariant vector fields) to a connection

W”h on D/G along p: D/G — TM. By assumption we have that the vector fields
mp(grad V) and mp(f,Q.) are right invariant and, therefore, induce sections of v,
denoted by gradV and F',, respectively. The reduced equation then reads

Ve'e(t) = (- gradV + F o) (E(2), (3)

for some p-admissible curve ¢ with base ¢ in M. A straightforward generalisation
of a result in [9] states that the projection onto D/G of any solution of (2) is a
solution of (3). In turn, the lift of h of any solution of (3) is a solution of (2). The
latter operation is also called reconstruction. It is precisely in this reconstruction
procedure that the holonomy elements of i are encountered.

Assume that a p-admissible loop ¢ is a solution of (3). Then, keeping in mind
the definition of the holonomy group ®(my), the endpoint of the reconstructed curve
c" lies in the same fibre as the starting point mg, up to an element of the holonomy
group ®(mg). Therefore, although there is no net movement in the reduced space,
after reconstruction, the motion in the total space can generate a net movement for
the system. This net movement then corresponds to an element in the holonomy
group ®(myg) of h. A necessary condition for such a phenomena is that the lift h has
nontrivial holonomy. These ideas are made precise in the following section, where
we consider the snakeboard example.

4 Holonomy elements as gaits for the snakeboard
example

In this section, we heavily rely on the results described in [12], where the snakeboard
example was analysed in detail. The snakeboard is a variant of the skateboard in
which the passive wheel assemblies can pivot freely about a vertical axis. A peculiar
characteristic of the snakeboard is the fact that the rider can generate a snake-like
locomotion without having to kick off the ground. The picture below sketches a
simplified model. The human torso is simulated by a momentum wheel, rotating



about the vertical axis through the centre of mass. The picture below was taken
from [5].

front wheels

back wheels

The configuration space can be identified with M = SE(2) x S x S, with local
coordinates denoted by (z,vy,6,v,¢). The two copies of S! describe the internal
variables (1, ¢), representing the internal state of the snakeboard, while the Euc-
lidean group SE(2) represents the state of the snakeboard in the plane (centre of
mass (z,y) and orientation in the plane (#)). The requirement that the wheels do
not slip in the direction of their axis imposes two non-holonomic constraints:

—sin(0 + ¢)a + cos(0 + @)y — L cos ¢ 6 = 0;
—sin(f — @)z + cos(6 — ¢)y + L cos ¢ 6 = 0;

which, in turn, determine the distribution D, spanned by:

0 0 0 0 0

%’87;5 and —lcos¢c030%—lcos¢sin98—y +sin¢%. (4)

The kinetic energy Lagrangian determining the motion of the snakeboard takes
the form

L=3m(@® +9) + 3(J + Jp 4+ 2J)0% + J.00 + L1407 + 67,

where m is the mass of the snakeboard, J is the moment of inertia of the board,
Jw the moment of inertia of the wheels about the vertical axis and J, the moment
of inertia of the rotor. Following [5] we make the additional simplifying assumption
mi%? = J + J, + 2J,,, which keeps the inertias on similar scales. The metric g on M
has the following non-trivial components:

Gez = M Gyy = M
goo =J +J +2Jy  goy = Jr = guo
Gy = Jr 9pp = 2Jw;

(all other components are zero). There is no conservative force acting on the system
(i.e. V = 0), however, the rider of the snakeboard is able to control the torque
forces by changing the orientation of his torso (in the direction of ¢) and or feet (in
the direction of ¢). This control force is assumed to take the following simple form
t,Qu = #y(u'dy) + u?do).

The constraints as well as the metric g are invariant under the right action of
SE(2). Denoting the elements of SE(2) by h = (a, b, o), this action is given by

Ry(z,y,0,¢,¢9) = (xcosa —ysina+ a,zsina + ycosa + b,0 + a, ¥, d).



The configuration space M thus inherits the structure of a principal fibre bundle
with structure group SE(2) over the base space S' x S'. The three vector fields
from (4) form a basis for D which is invariant under this action and therefore, since
these vector fields correspond to sections of D/SE(2) — S x S1, they determine a
basis for the sections of the bundle D/SFE(2), which will be denoted by {e1, e2, €3},
where e; corresponds to X; for i =1,2,3.

Since, eventually, we have to find the coordinate expression for the equation

vzhc(t) = Fy(), it will be profitable to work with the following basis of X' (M)

{X1:87 )(2:E

oY op’
X3 = —lcos;ﬁcos@(fz—lcosq’)siné’aay-|—sinq[)§07
X4:sin0% fcosﬂa—y,
X5 = lSin¢COSH% + lsinqﬁsinﬁgy +cos¢m12ml_2jr (889 _ a?ﬁ) }7

where X4, X5 determine a basis for D+, the orthogonal complement of D w.r.t. the
metric g. Recalling the definition of a lift of a section of D/SFE(2) — S! x S! to a
vector field on M, then we can write elh = X, for i = 1,2,3. A local expression for
the anchor map p : D/SE(2) — TM can now be given: p(w'e;) = w'd/0¢+w?d/d¢.

In order to obtain the local equations for ﬁ”h one might compute the connec-
tion coefficients for this connection. These are non-trivial functions and it would
require a long and tedious calculation to derive them. Therefore, we shall follow a
different route. Let c(t) = w'(t)e;(¥(t), ¢(t)) be a p-admissible curve. We now de-

rive the coordinate expression for wp(V?, ¢") (this makes sense since, by definition,
n.

7p(VI.ch) = (vchc)h). Using the right invariant basis {X, Xa, X3} for D, we can
write

éh = lel + w2X2 —+ ngg.

Since g has only constant coefficients (i.e. all connection coefficients are zero), we
have that

V9 () = &N ()X (e(t) + & (8) Xa(c(t)) + & (1) Xa(e(t)) + w (1) X5 (D),

where X3(t) is the tangent vector, defined by:

d 0 d 0 d 0
7 (=lcos¢cosb) Erer (I cos ¢sin6) a + pn (sin @) 20’
where d/dt represents the time derivation along c"(¢) at t. The orthogonal projection
of this tangent vector on D, gives us the coefficients of mp(VY,¢"(t)) with respect

to the basis {X1, X2, X3} of D and, in turn, the coefficients of ?th(t) with respect
to {e1, e2,e3}, where a = mi?/(mi? — J,.):

—nh _ (d)l N a cos ¢

V. ct) ¢qﬁw3) e1 + wley +

acos2¢ + sin?

<d)3 + (1—a) cos¢sin¢¢w3) .

acos?¢ + sin¢

8



If we substitute w? = ¢ and calculate 7p(#,(Q.)), then the equations for w(t) =
(wl(t),w?(t),w?(t)) to be a solution of the reduced equations are precisely (up to a
constant rescaling of the control parameters (u,uz)):

ol a cos ¢. _ WP+ me? B acos2¢. Y
acos?¢p + sin“¢ Jr acos?¢ + sin“¢
@2 = ’LLQ(t);
P _(1—a)cos¢.siQn¢w2w3_ sin ¢ S
acos?¢ + sin¢ acos?¢p + sin“¢

It was proven in [12] that, given any curve (1(¢),$(t)) in St x S, there exists a
control (u'(t),u?(t)), such that (¥(t),¢(t)) is the projection of a solution to the
above equations. Thus, there exist loops on the torus S! x S! that are the base
curve of a p-admissible curve that, at the same time, is a solution of the reduced
non-holonomic equation. In particular, curves that are reconstructed from such p-
admissible loops correspond to the gait motions studied in [12]. Therefore, these
gaits are holonomy elements of the lift h.

To conclude this paper, we would like to make the following two remarks. First,
in view of the above, it seems natural to wonder what holonomy elements of h are
encountered as physical motions. It is not in general the case that every admissible
loop is the solution to the non-holonomic equations of motion on D/G and, therefore,
not every holonomy element has to be a gait motion. We leave this for future work.
Secondly, it is well-known that in the standard theory of geometric phases it is
possible, under some additional assumptions, to compute the holonomy elements
by making use of the curvature tensor. This follows, roughly speaking, from the
fact that in standard connection theory the holonomy groups are generated by the
curvature. However, for generalised connections, the concept of a curvature tensor
was only introduced in the case that the anchored bundle has the structure of a Lie
algebroid. It therefore remains an open problem to find a suitable characterisation
of the holonomy elements in terms of the generalised connection involved.

Acknowledgements

I am indebted to F. Cantrijn for useful discussions and the careful reading of this
paper.

References

[1] A.M. Bloch. Nonholonomic mechanics and control. Number 24 in Interdiscip-
linary Applied Mathematics. Springer-Verlag, 2003.

[2] F. Cantrijn, J. Cortés, M. de Léon, and D. Martin de Diego. On the geometry
of generalized Chaplygin system. Math. Proc. Camb. Phil. Soc., 132:323-351,
2002.

[3] F. Cantrijn and B. Langerock. Generalised connections over a vector bundle
map. Diff. Geom. Appl., 18(3):295-317, 2003. (math.DG/0201274).

[4] H. Cendra, J.E. Marsden, and T.S. Ratiu. Geometric mechanics and lagrangian
reduction and nonholonomic mechanics. In B. Enguist and W. Schmid, editors,
Mathematics Unlimited-2001 and Beyond, pages 221-273. Springer-Verlag, New
York, 2000.



[5]

J. Cortés. Geometric, Control and Numerical aspects of Nonholonomic Systems,
volume 1793 of Lecture Notes in Mathematics. Springer, Berlin, 2002.

R.L. Fernandes. Connections in poisson geometry. I: Holonomy and invariants.
J. Diff. Geom., 54:303-366, 2000.

R.L. Fernandes. Lie algebroids, holonomy and characterisitic classes. Adwv.
Math., 170:119-179, 2002.

S. Kobayashi and K. Nomizu. Foundations of differential geometry, volume I
and II. Intersience Publishers, 1963.

B. Langerock. Nonholonomic mechanics and connections over a bundle map. J.
Phys. A: Math. Gen., 34:L.609-L615, 2001.

B. Langerock. Leafwise holonomy of connections over a bundle map. Diff.
Geom. Appl., 20(2):125-143, 2004.

A.D. Lewis. Simple mechanical control systems with constraints. IEEE Trans-
actions on Automatic Control, 45(8):1420-1436, 2000.

A.D. Lewis, J.P. Ostrowski, R.M. Murray, and J.W. Burdick. Nonholonomic
mechanics and locomotion: the snakeboard example. In Proc. IEEE Conf.
Robotics € Automation, pages 2391-2397. San Diego, CA, 1994.

J. Marsden, R. Montgomery, and T. Ratiu. Reduction, Symmetry, and Phases
in Mechanics, volume 88 of Mem. Amer. Math. Soc. 1990.

P. Popescu. On the geometry of relative tangent spaces. Rev. roum. math. pures
appl., 37:727-733, 1992.

A.J. van der Schaft. System theoretic descriptions of physical systems. 1983.
Phd.-dissertation, RUG, The Netherlands.

10



