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Abstract. The Lagrange-d’Alembert equations of a non-holonomic system with
symmetry can be reduced to the Lagrange-d’Alembert-Poincaré equations. In a
previous contribution we have shown that both sets of equations fall in the category
of so-called ‘Lagrangian systems on a subbundle of a Lie algebroid’. In this paper, we
investigate the special case when the reduced system is again invariant under a new
symmetry group (and so forth). Via Lie algebroid theory, we develop a geometric
context in which successive reduction can be performed in an intrinsic way. We
prove that, at each stage of the reduction, the reduced systems are part of the above
mentioned category, and that the Lie algebroid structure in each new step is the
quotient Lie algebroid of the previous step. We further show that that reduction
in two stages is equivalent with direct reduction.
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1. Introduction

In this paper, we study the Lagrangian description of non-holonomic systems (with

linear constraints) which are invariant under the action of a Lie group. It is well-known

that the Lagrange-d’Alembert equations‡ of such systems project onto a new set of

equations, the Lagrange-d’Alembert-Poincaré equations. In turn, also these reduced

equations could be invariant under some action and could therefore be subjected to a

second reduction. In this paper we will present a geometrical framework in which such

successive reduction can be investigated. As such, we provide an answer to a problem

which has been put forward in [2, 3].

A main source of inspiration is work by Cendra et al. [2], where it has been shown

for unconstrained or holonomically constrained systems that repetitive reduction can be

performed within the category of systems on so-called Lagrange-Poincaré bundles. This

category is indeed ‘stable’ under reduction by ‘Lagrange-Poincaré actions’ in the sense

that the reduced system lives on some kind of quotient Lagrange-Poincaré bundle.

‡ We use the terminology of [2] and [3].
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It is not difficult to see that a Lagrange-Poincaré bundle is in fact an example of a

transitive Lie algebroid and that therefore all the systems of interest fall in the category

of Weinstein’s ‘Lagrangian systems on Lie algebroids’ [13] (see also [11]). The Lagrange-

Poincaré equations, for example, which are obtained from a G-invariant Lagrangian can

be regarded as Lagrange equations on the so-called Atiyah algebroid TM/G. Based

on a geometric framework of Mart́ınez [8], it has been shown in [5] that the map that

projects the original equations to the reduced ones can be regarded as a Lie algebroid

morphism between the Lie algebroid structures on so-called ‘prolongation bundles’ of

TM and TM/G.

In [2] it has been remarked that further exploration of the link between Lagrange-

Poincaré bundles and Lie algebroids would be useful. With the results of [5] in mind,

when looking at successive reduction, it makes perfect sense to extend the category

of systems of interest to those on arbitrary Lie algebroids, which by itself can offer

an alternative view on the results of [2]. We will go even one step further, however,

as we will deal straight away with the larger category of non-holonomic systems with

symmetry. For that we can rely on [12], where we have developed a framework for

studying Lagrangian systems on a subbundle µ of a Lie algebroid τ (see also [4]). In

summary, the main purpose of this paper is to show that the category of Lagrangian-

type systems on a subbundle of a Lie algebroid is stable under reduction. A geometric

description of successive reduction of non-holonomic systems (as was asked for e.g. in

[3]) then follows automatically, and unconstrained systems are of course included in

such an approach, when one takes the ‘constrained bundle’ µ to be simply the whole

Lie algebroid τ .

The paper is organized as follows. After some basic concepts and results, we

introduce Lie algebroid actions and quotient Lie algebroids. Next, we recall the

definition of a Lagrangian system on a subbundle of a Lie algebroid and show how

these equations for a reducible Lagrangian project on those for the reduced Lagrangian.

Finally, we show that reduction in two stages is equivalent with direct reduction. From

this, symmetry reduction of the Lagrange-d’Alembert equations of a non-holonomic

system in an arbitrary number of steps can be derived. We end the paper with coordinate

expressions and some illustrative examples.

2. Quotient Lie algebroids

Some of the next definitions and results can be found in [2, 5, 6, 7]. Let πM : M → M =

M/G be a principal fibre bundle with structure group G and (proper and free) action

ψM : G×M → M ; (g, m) 7→ gm. Let τ : V → M be a vector bundle.

Definition 1 An action ψV : G × V → V such that for each g ∈ G the map

ψV
g : Vm → Vgm : v 7→ gv is an isomorphism (over ψM

g ) and such that τ is equivariant

(meaning that τ ◦ ψV
g = ψM

g ◦ τ) is called a vector bundle action.

The quotient V = V/G can be given the structure of a vector bundle over M by imposing

that the map πV : V → V is a morphism of vector bundles (over πM). The projection
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τ : V → M , given by τ([v]) = [τ(v)], is a surjective submersion. We will use, in many

different situations, the same notation [.] for equivalence classes; the meaning will always

be clear from the context. It can further be shown that, for each m ∈ M , the restriction

πV
m : Vm → V[m] is a linear isomorphism and has the property πV

m = πV
gm ◦ ψV

g .
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A section r of τ is said to be invariant if r(gm) = gr(m). The set of all invariant

sections is denoted by SecI(τ). Invariant sections in Sec(τ) are in 1-1 correspondence

with the sections of the quotient bundle τ . If r ∈ Sec(τ), then rI will denote the

corresponding invariant section of τ . The diagram shows that it can in fact be defined

by

rI(m) = (πV

m)−1(r([m])). (1)

Conversely, given an invariant section r ∈ SecI(τ), rI will stand for its associated section

on τ , i.e.

rI([m]) = [r(m)]. (2)

Likewise, invariant functions on M (satisfying f(gm) = f(m)) are in 1-1 correspondence

with functions on M . In particular, if f ∈ C∞(M), then f ◦πM is an invariant function.

Suppose now that, in addition, τ : V → M is a Lie algebroid. Then Sec(τ) is

equipped with a Lie algebra bracket [·, ·] : Sec(τ)×Sec(τ) → Sec(τ) which is compatible

with the Lie bracket of vector fields on M through a linear map ρ : V → TM over

the identity, called the anchor map. More precisely, this compatibility means that

∀s, r ∈ Sec(τ) and f ∈ C∞(M)

[s, f r] = f [s, r] + ρ(s)(f) r, (3)

and, as a consequence, also ρ([r, s]) = [ρ(r), ρ(s)]. Notice that we will never make a

notational distinction between ρ : V → TM and its extension ρ : Sec(τ) → X (M).

In the context of vector bundles and Lie algebroids, k-forms on Sec(τ) (from now

on also called elements of
∧k(τ)) are skew-symmetric, C∞(M)-multi-linear maps ω :

Sec(τ) × · · · × Sec(τ) → C∞(M) (with k arguments). Let ω ∈ ∧k(τ), then its exterior

derivative is the (k + 1)-form dω, defined by

dω(s1, . . . , sk+1) =
k+1∑
i=1

(−1)i−1ρ(si)
(
ω(s1, . . . , ŝi, . . . , sk+1)

)
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+
∑

1≤i<j≤k+1

(−1)i+jω([si, sj], s1, . . . , ŝi, . . . , ŝj, . . . , sk+1).

In particular, on functions df(r) = ρ(r)f , and on 1-forms dθ(r, s) = ρ(r)(θ(s)) −
ρ(s)(θ(r))− θ([r, s]). d is a derivation of degree 1 and satisfies d2 = 0.

We will show next that, for appropriate vector bundle actions on a Lie algebroid τ ,

the quotient bundle τ can also be given a Lie algebroid structure. First, we need to say

a few words about Lie algebroid morphisms. Let τ : V → M and τ ′ : V′ → M ′ be two

Lie algebroids and Φ : V → V′ a linear bundle map over φ : M → M ′ (i.e. a morphism

of vector bundles). Then, for all θ′ ∈ ∧k(τ ′), Φ∗θ′ given by

Φ∗θ′(m)(v1, . . . , vk) = θ′(φ(m))(Φ(v1), . . . Φ(vk)), vi ∈ Vm, (4)

defines a k-form on Sec(τ). Φ is called a Lie algebroid morphism if

d(Φ∗θ′) = Φ∗(d′θ′) (5)

for all θ′ ∈ ∧
(τ ′). In fact, by the derivation property, it suffices that the above relation

is satisfied for functions and 1-forms. A map Φ satisfying (5) only for functions is said

to be admissible. Equivalently, admissible maps can be characterized by the condition

Tφ ◦ ρ = ρ′ ◦ Φ.

When Φ is fibrewise surjective, the condition (5) on 1-forms can be recast in the following

form: if ri and r′i are Φ-related sections of, respectively τ and τ ′, then also [r1, r2] is Φ-

related with [r′1, r
′
2] (see [6]). When in addition φ : M → M ′ is a diffeomorphism, there

is a more direct way to characterize the preservation of the Lie algebroid structure.

Indeed, now Φ∗(r) ∈ Sec(τ ′) can be defined by

Φ∗(r)(m′) = Φ(r(φ−1(m)))

(for r ∈ Sec(τ)) and the requirement (5) for functions and 1-forms becomes

ρ′(Φ∗(r)) = φ∗(ρ(r)) and Φ∗([r, s]) = [Φ∗(r), Φ∗(s)], (6)

where φ∗X stands for the push-forward of the vector field X on M . So, if we want to

check that an admissible Φ is a Lie algebroid morphism, we only need to check that

Φ∗ is a Lie algebra morphism between the (real) Lie algebras Sec(τ) and Sec(τ ′). An

important case is when M = M ′ and φ = id. In such case, we will simply write Φ(r) for

Φ∗(r).

Definition 2 A vector bundle action ψV is a Lie algebroid action if ψV
g is a Lie algebroid

isomorphism over ψM
g for all g ∈ G.

In what follows we will always assume that the action ψV is a Lie algebroid action.

As a consequence, for each fixed g,

(ψV

g)∗([r, s]) = [(ψV

g)∗(r), (ψ
V

g)∗(s)].

An invariant section r ∈ SecI(τ) satisfies (ψV
g)∗(r) = r and is thus always, for each g ∈ G,

ψV
g related to itself. As a result, the set of invariant sections forms a Lie subalgebra (of

the (real) Lie algebra of sections), and since invariant sections can be identified with
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sections of the quotient bundle τ : V → M , this quotient bundle inherits a Lie algebroid

structure. Indeed, for a start, the Lie bracket of two sections r and s of τ can be defined

by

[r, s] = ([rI , sI ])I . (7)

Next, an appropriate anchor map can be defined as follows: since the anchor map ρ is

equivariant by assumption, i.e. ρ ◦ ψV
g = TψM

g ◦ ρ, the map ρ : V → TM , given by the

relation

ρ[v] = TπM(ρ(v)) (8)

is well-defined. At the level of sections it has the property

(ρ(r)f) ◦ πM = ρ(rI)(f ◦ πM), ∀f ∈ C∞(M). (9)

and can therefore be used as anchor map for the quotient Lie algebroid. Indeed, it is

easy to see that (f r)I = (f ◦ πM)rI and therefore

[f r, s] = ([(f ◦ πM)rI , sI ])I = ((f ◦ πM)[rI , sI ])I − (ρ(sI)(f ◦ πM)rI)I

= f [r, s]− ((ρ(s)f) ◦ πMrI)I = f [r, s]− (ρ(s)f)r,

which shows that ρ is compatible with the Lie bracket. To conclude:

Lemma 1 For a Lie algebroid action ψV, SecI(τ) is a Lie subalgebra and the reduction

by the group G yields a Lie algebroid structure on the quotient τ with bracket (7) and

anchor (8).
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With this Lie algebroid structure on τ , the projection πV : V → V is a Lie algebroid

morphism. Indeed, (8) is in fact saying that πV is admissible. Secondly, for sections

r, s ∈ Sec(τ) (that are πV-related to rI and sI), the definition of the bracket (7) shows

that [r, s] is πV-related to [rI , sI ]. Finally, we would like to remark that it is now also

obvious that the sets SecI(τ) and Sec(τ) are isomorphic as Lie algebras.

The most simple example of a Lie algebroid is the tangent bundle with its natural

bracket of vector fields and trivial anchor map. Each action ψM on M induces a ‘tangent’

action on V = TM , given by ψTM
g : TM → TM, (m, v) 7→ (gm, gv = TmψM

g (v)).

From this definition, it is immediately clear that ψTM
g is admissible (w.r.t. the anchor
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map ρ = id). Further, a standard property implies that, if Xi and Yi are ψV
g -related

vector fields, then also the vector fields [X1, X2] and [Y1, Y2] must be. So, ψTM is a Lie

algebroid action. The bracket on sections of the quotient Lie algebroid structure on

TM/G → M/G (called the Atiyah algebroid) can be obtained from the Lie subalgebra

of invariant vector fields, while the anchor map ρ : TM/G → T (M/G) is simply

ρ([v]) = TπM(v).

In other terms, this relation shows that for invariant vector fields X = Y
I ∈ X (M) and

invariant functions f = f ◦ πM ∈ C∞(M),

X(f) = Y (f) ◦ πM . (10)

3. Prolongation bundles and non-holonomic systems on Lie algebroids

First, we very briefly recall the definition of a prolongation bundle µρ : T ρW → W. Let

τ : V → M be a vector bundle with anchor map ρ : V → TM (at this stage τ need

not necessarily be a Lie algebroid) and suppose that µ : W → M is a second vector

bundle. Then the elements of the manifold T ρW are pairs (v, Xw) ∈ Vm × TwW for

which ρ(v) = Tµ(Xw) (and therefore also τ(v) = µ(w) = m). The projection µρ is then

nothing but µρ(v, Xw) = w.
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If τ is a Lie algebroid, then so is µρ: its anchor map is simply

ρµ : T ρW → TW, (v, Xw) 7→ Xw,

while its bracket can most conveniently be defined on the subset SecP (µρ) of projectable

sections. These are sections of µρ that project on a section of τ , i.e. they are of the

form Z = (r, X) ∈ SecP (µρ), where r ∈ Sec(τ), regarded as subset of Sec(µ∗τ). Let now

Zi = (ri, Xi) ∈ SecP (µρ), then the bracket of two projectable sections is defined as

[Z1,Z2] = ([r1, r2], [X1, X2]). (11)

Since projectable sections generate (over C∞(W)) all sections of Sec(µρ), the bracket of

two arbitrary sections can be obtained by extending the definition (11) by means of a

Leibniz-type property (3) for the anchor map ρµ (for more details on prolongation Lie

algebroids, see [5, 10]).
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There exists in this context a generalization of the concept tangent map. Let

Φ : V1 → V2 be an admissible map over φ : M1 → M2 (between two Lie algebroids

τ i : Vi → M i) and suppose that Ψ : W1 → W2 is a bundle map over φ (between two

arbitrary vector bundles µi : Wi → M i). Then, the relation

T ΦΨ(v1, X1
w1) = (Φ(v1), TΨ(X1

w1)) (12)

defines a linear bundle map T ΦΨ : T ρ1
W1 → T ρ2

W2 over Ψ. T ΦΨ is admissible

w.r.t. the anchors (ρ1)µ1
and (ρ2)µ2

: indeed, (ρ2)µ2
(Φ(v1), TΨ(X1

w1)) = TΨ(X1
w1) =

TΨ((ρ1)µ1
(v1, X1

w1)). It is further easy to see that if two maps Φi : Vi → Vi+1 are

admissible, then so is Φ2 ◦ Φ1 : V1 → V3 and

T Φ2◦Φ1

(Ψ2 ◦Ψ1) = T Φ2

Ψ2 ◦ T Φ1

Ψ1. (13)

Proposition 1 T ΦΨ is a Lie algebroid morphism (w.r.t. the prolonged Lie algebroid

structures) if and only if Φ is a Lie algebroid morphism.

Proof. The admissibility condition on the anchor maps has already been verified.

We show now that the bracket of two T ΦΨ-projectable sections is also T ΦΨ-projectable.

Sections Z2
a,b = (s2a,b, X

2
a,b) in SecP ((µ2)ρ2

) that are T ΦΨ-related to sections Z1
a,b =

(s1a,b, X
1
a,b) in SecP ((µ1)ρ1

) satisfy this condition, if and only if [s2a, s
2
b ] is Φ-related to

[s1a, s
1
b ], or, equivalently, if and only if Φ is a Lie algebroid morphism. Observe now

that T ΦΨ-projectable sections in SecP ((µ2)ρ2
) finitely generate (over C∞(W2)) the set

of all sections in Sec((µ2)ρ2
) that can be T ΦΨ-related to some section in Sec((µ1)ρ1

):

if f 2 ∈ C∞(W2) and if Z2
b ∈ SecP ((µ2)ρ2

) is T ΦΨ-related to Z1
b ∈ SecP ((µ1)ρ1

), then

f 2Z2
b is T ΦΨ-related to (f 2 ◦ Ψ)Z1

b . We therefore only need to show (of course under

the assumption that Φ is a Lie algebroid morphism) that, for such sections, also the

brackets [Z2
a , f 2Z2

b ] and [Z1
a , (f 2 ◦Ψ)Z1

b ] are T ΦΨ-related. From the Leibniz-identity of

the bracket it follows that

[Z2
a , f 2Z2

b ](Ψ(w1)) = f 2(Ψ(w1))[Z2
a ,Z2

b ](Ψ(w1))+((ρ2)µ2

(Z2
a)f 2)(Ψ(w1))Z2

b (Ψ(w1)).(14)

On the one hand Z2
a(Ψ(w1)) = (s2a(φ(m1), X2

a(Ψ(w1)))), while, due to the supposed

T ΦΨ-projectability, also Z2
a(Ψ(w1)) = T ΦΨ(Z1

a(w1)) = (Φ(s1a(m
1)), TΨ(X1

a(w1))). So,

X2
a = (ρ2)µ2

(Z2
a) ∈ X (W2) is TΨ-related to X1

a = (ρ1)µ1
(Z1

a) ∈ X (W1). Applying this

property to functions f 2 ∈ C∞(W2), we get that ((ρ2)µ2
(Z2

a)f 2)◦Ψ = (ρ1)µ1
(Z1

a)(f 2◦Ψ).

Relation (14) becomes now

[Z2
a , f 2Z2

b ](Ψ(w1)) = T ΦΨ
(
(f 2 ◦Ψ)[Z1

a ,Z1
b ] + (ρ1)µ1

(Z1
a)(f 2 ◦Ψ))Z1

b

)
(w1)

= T ΦΨ([Z1
a , (f 2 ◦Ψ)Z1

b ])(w1),

which concludes the proof.

A different proof for the above property can be found in [9], Proposition 1.

We will recall now in a nutshell our definition of a Lagrangian system on a (vector)

sub-bundle µ : W → M of a Lie algebroid τ : V → M (see [12]). Denote the injection

W → V by i and put

λ = ρ ◦ i. (15)



Lagrangian reduction by stages for non-holonomic systems 8

Both the prolongations τ ρ : T ρV → V and µρ : T ρW → W are Lie algebroids. In fact,

via the injection

T idi : T ρW → T ρV, (v, Xw) 7→ (v, T i(Xw))

it can be proved that µρ is a Lie subalgebroid of τ ρ. Although µ is not a Lie

(sub)algebroid, λ will play the role of its ‘anchor’. The vector bundle µλ : T λW → W is

a subbundle of µρ whose injection is given by

T iid : T λW → T ρW, (w1, Xw2) 7→ (i(w1), Xw2). (16)

Note that T iid is well-defined because (15) can be interpreted as saying that i is

admissible w.r.t. the anchors ρ and λ. In [12], T iid and T idi were denoted respectively

by I and T ρi. Their composition is the injection T ii, which can be used to interpret µλ

also as a subbundle of τ ρ.

We need to define some canonical objects on τ ρ. The vertical lift V : τ ∗V → T ρV is

given by (a, v) ∈ τ ∗V 7→ (0, Xa) ∈ T ρV, where, on a function f ∈ C∞(V),

Xa(f) =
d

dt
f(a + tv)

∣∣∣∣
t=0

. (17)

We will also use the so-called vertical endomorphism Sτ = V ◦ j : Sec(τ ρ) → Sec(τ ρ).

Here j stands for the projection (v2, Xv1) ∈ T ρV 7→ (v1, v2) ∈ τ ∗V. Next, the Liouville

section Cτ ∈ Sec(τ ρ) can be defined as the map v ∈ V 7→ (v, v)V ∈ T ρV. Finally, we will

need the exterior derivative d̃ :
∧k(µρ) → ∧k+1(µρ) of the Lie algebroid µρ to define an

operator

δ = (T iid)∗ ◦ d̃ :
∧

k(µρ) →
∧

k+1(µλ). (18)

Let L ∈ C∞(V) be a Lagrangian, θL = Sτ (dL) ∈ ∧1(τ ρ) and EL = ρτ (Cτ )L − L ∈
C∞(V). Then, we can define the Poincaré-Cartan 1-form θ̃L as a 1-form on Sec(µρ)

by means of θ̃L = (T idi)∗θL. The function ẼL ∈ C∞(W) is the restriction of EL to

W. From now on, we will only consider regular Lagrangians, i.e. those for which the

two-form δθ̃L ∈
∧2(µλ) is non-degenerate.

Definition 3 [12] If Γ is the section of the prolongation bundle µλ, determined by

iΓδθ̃L = −δẼL, (19)

the vector field λµ(Γ) ∈ X (W) is said to define the Lagrangian system on the subbundle

µ of the Lie algebroid τ , associated to the given Lagrangian L on V.

An other way of writing (19) is the following.

Proposition 2 Let d :
∧k(τ ρ) → ∧k+1(τ ρ) be the exterior derivative of the Lie

algebroid τ ρ and put

∆ = (T ii)∗ ◦ d :
∧

(τ ρ) →
∧

(µλ), (20)

then the Lagrangian section Γ is a solution of

iΓ∆θL = −∆EL. (21)



Lagrangian reduction by stages for non-holonomic systems 9

Proof. Since T idi is a Lie algebroid morphism, d̃ ◦ (T idi)∗ = (T idi)∗ ◦ d. It follows

that δθ̃L = (T iid)∗ ◦ d̃ ◦ (T idi)∗θL = (T iid)∗ ◦ (T idi)∗ ◦ dθL = (T ii)∗ ◦ dθL = ∆θL. A

similar reasoning shows that δẼL = ∆EL.

Coordinate expressions for such dynamical systems can be found in [12], where we

have also shown that, in case the Lie algebroid is the standard one, i.e. V = TM , and the

subbundle µ is a distribution W ⊂ TM , the above equations are exactly the Lagrange-

d’Alembert equations for systems subject to (non-holonomic) linear constraints (see e.g.

[1] p. 217 for some coordinate expressions). It is further well-known that, when the

Lagrangian is invariant under the action of a Lie group G, and when the distribution

satisfies some additional requirements, the Lagrange-d’Alembert equations can be

reduced to the so-called Lagrange-d’Alembert-Poincaré equations (see e.g. [3], or p.

269 in [1]). We have shown in [12] that also this type of Lagrangian equations fit in our

current framework, simply by considering the reduced Lagrangian on the the Atiyah

algebroid τ : TM/G → M/G and by assuming that the subbundle µ is the quotient

W/G → M/G of the distribution.

Equation (21) (or (19)) can be simplified in the case that we are dealing with

‘unconstrained’ systems. Indeed, in such case the subbundle µ is the whole Lie algebroid

τ and the operators δ and ∆ both equal the exterior derivative d on τ ρ. The equation

for Lagrangian systems on a Lie algebroid is then simply (see [8])

iΓdθL = −dEL. (22)

In the case of the standard Lie algebroid V = TM , (22) defines the standard Euler-

Lagrange equations. In the case of an (unconstrained) system with symmetry with

reduced Lagrangian L ∈ C∞(V = TM/G), local expressions for equation (22) of a

Lagrangian system on the Atiyah algebroid TM/G are the so-called Lagrange-Poincaré

equations (see also [11]). In [5] it has been proved that one can go from the system on

TM to the one of TM/G by means of a Lie algebroid morphism.

The main purpose of this paper is to extend the results of [5] in two ways, first

by allowing constraints, and secondly by taking Lagrangian systems on an arbitrary

Lie algebroid as the starting point for a symmetry reduction, rather than the standard

Lagrangian systems. Then, a framework for repetitive reduction will follow almost

automatically. Indeed, in the second step of the reduction, for example, the system on

TM/G is reduced to a system on a quotient (TM/G)/H. Within our approach, this

will be interpreted as a reduction from a Lie algebroid to its quotient Lie algebroid. Of

course, a lot of the proofs in the next sections are inspired by those in [5].

4. Quotients of prolongation bundles

Definition 4 A constrained Lie algebroid action is a vector bundle action ψW : G×W →
W (over ψM) on a subbundle µ of a Lie algebroid τ which is the restriction of a Lie

algebroid action ψV : G× V → V (also over ψM) to W.

Then, ψV
g ◦ i = i ◦ ψW

g , from which it follows that the map i : W → V, [w] 7→ [i(w)] is a
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well-defined injection, and therefore µ : W → M is a vector subbundle of τ : V → M .

An other way of writing the definition of i is

i ◦ πW = πV ◦ i. (23)

-

-

-

? ?

¡
¡

¡¡µ

¡
¡

¡¡µ£
£

£
£

£
£

£
£

£
£°

£
£

£
£

£
£

£
£

£
£°

W

W

πW
gm

V

πV
gm

V

VW

i

i

i

πV
mπW

m

ψW
g ψV

g

We can now define also a G-action on the prolongation µρ. It is given by

G× T ρW → T ρW : (g, (v, Xw)) 7→ (gv, gXw).

The action in the second argument is ψTW, the tangent lift of the action on the manifold

W. Remark that (gv, gXw) is indeed an element of T ρW since ρ(gv) = gρ(v) =

gTµ(Xw) = Tµ(gXw) (ρ by the assumption that ψV is a Lie algebroid action, and

Tµ by the property ψM
g ◦ µ = µ ◦ ψW

g , are equivariant under the appropriate actions).

In fact, for a fixed g ∈ G, the above action can be rewritten as T ψV
g ψW

g . Since any ψV
g is

supposed to be a Lie algebroid morphism, also T ψV
g ψW

g must be a Lie algebroid morphism

(for the Lie algebroid structure on the prolongation bundle). The action on T ρW is thus

a Lie algebroid action and the invariant sections of µρ form a Lie subalgebra which can

be reduced to a quotient Lie algebroid structure on µρ : T ρW = T ρW/G → W = W/G.

In this set-up, the reduced anchor map, defined as in (8), is

ρµ[v, Xw] = TπW(ρµ(v, Xw)) = TπW(Xw). (24)

We will show now that we can in fact identify µρ : T ρW → W with a prolongation

bundle, namely the prolongation bundle µρ : T ρW → W, formed by the quotient Lie

algebroid τ : V → M (with anchor map ρ, as defined in (8) and bracket (7)) and the

quotient subbundle µ : W → M .

-

-

-

-

?

?

?

?

¡
¡

¡µ

¡
¡

¡µ
¡

¡
¡µ

¡
¡

¡µ
TW

V

TM

V

TM

TW

T ρ WT ρW

TπW

T πV

πW

πV

TπM
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Proposition 3 The quotient prolongation Lie algebroid µρ : T ρW → W and the

prolongation Lie algebroid µρ : T ρW → W are isomorphic as Lie algebroids. Moreover,

Sec(µρ), Sec(µρ) and SecI(µρ) are isomorphic as Lie algebras.

Proof. Expression (12) for T πV
πW : T ρW → T ρW is

T πV

πW(v, Xw) = (πV(v), TπW(Xw)) ∈ T ρ

πW(w)
W.

We will show that, for each [w] ∈ W, the map

Σ[w] : [v, Xw] ∈ T ρW[w] 7→ T πV

w πW(v, Xw) ∈ T ρ
[w]W

is a Lie algebroid isomorphism. First, we prove that the two spaces are isomorphic as

vector spaces. From the considerations in Section 2 about quotient bundles we know

that, for each w ∈ W, (πTρW)−1
w : [v, Xw] 7→ (v, Xw) is an isomorphism (it selects the

unique representative of the class [v, Xw] in the fibre at w). Since Σ[w] is in fact the

composition T πV

w πW ◦ (πTρW)−1
w , we only need to show that, for each w ∈ W, the map

T πV

w πW : T ρ
wW → T ρ

[w]W is a linear isomorphism. The linearity is obvious. Since ψW and

ψTW = TψW are supposed to be vector bundle actions, Wm ' W[m] and TwW ' T[w]W.

Therefore, clearly the dimensions of T ρ
wW and T ρ

[w]W will be the same. It remains to show

that T πV

w πW is injective. Suppose that T πV

w πW(v, Xw) = 0, then, on the one hand, [v] = 0,

meaning that v = 0 and thus also Tµ(Xw) = 0. On the other hand, TπW(Xw) = 0 which

means that there exist a ξ ∈ g = TeG such that Xw = Teψ
W
w(ξ) (ψW

w : G → W, g 7→ gw).

As a result, 0 = Tµ(Xw) = Tµ(Teψ
W
w(ξ)) = T (µ ◦ ψW

w)(ξ) = TψM
m(ξ) (where m = µ(w)).

Since ψM
m is an injective immersion, it follows that ξ = 0 and therefore also Xw = 0.

To prove now that Σ is a Lie algebroid morphism (over the identity W → W),

we first check the admissibility condition Tid ◦ ρµ = ρµ ◦ T πV
πW. When applied to an

element [v, Xw], the left-hand side gives TπW(Xw) (by using (24)). This is in agreement

with the right-hand side, because also ρµ(πV(v), TπW(Xv)) = TπW(Xv). It remains to

check the condition on the bracket, which, in this case, is equivalent with establishing a

Lie algebra (iso)morphism Σ∗ between Sec(µρ) and Sec(µρ).

? ¡
¡

¡
¡

¡
¡

¡¡µ

-Sec(µρ) Sec(µρ)

SecI(µρ)

(T πV

πW)∗I

Σ∗

From our conclusions in Section 2, the projection πTρW : T ρW → T ρW is a Lie

algebroid morphism and it generates a Lie algebra isomorphism (.)I between Sec(µρ)

and the set of invariant sections SecI(µρ). Secondly, T πV
πW can be extended to a map

(T πV
πW)∗ : SecI(µρ) → Sec(µρ) by means of

(T πV

πW)∗(Z)([w]) = T πV

πW

(
Z((πW

m)−1([w]))
)
. (25)
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It can easily be checked that, due to the supposed invariance of Z, m can be any element

of [m] = τ([w]) in this definition. (T πV
πW)∗ has an inverse (T πV

πW)−1
∗ : Sec(µρ) →

SecI(µρ), given by

(T πV

πW)−1
∗ (Z)(w) = (T πV

πW)−1
w (Z([w])), (26)

and is thus an isomorphism. (25) shows in fact that (T πV
πW)∗(Z) is the unique

section that is T πV
πW-related to an invariant Z. Moreover, since πV is a Lie

algebroid morphism, also T πV
πW is. The bracket [Z1,Z2] is thus T πV

πW-related

to [(T πV
πW)∗(Z1), (T πV

πW)∗(Z2)]. Since also (T πV
πW)∗([Z1,Z2]) is T πV

πW-related to

[Z1,Z2], these two brackets must coincide, which proves that (T πV
πW)∗ is a Lie algebra

isomorphism.

In conclusion, the composition of the maps (.)I and (T πV
πW)∗ is exactly the sought

Lie algebra morphism Σ∗ : Sec(µρ) → Sec(µρ) we were looking for.

The observation that T πV
πW is a Lie algebroid morphism means that, for the exterior

derivatives d̃ on
∧

(µρ) and d̃ on
∧

(µρ),

d̃ ◦ (T πV

πW)∗ = (T πV

πW)∗ ◦ d̃, (27)

where (T πV
πW)∗ :

∧k(µρ) → ∧k(µρ) is defined as in (4). We can, of course prove a

similar result for T πV
πV.

Corollary 1 If d is the exterior derivative on
∧

(τ ρ) and d on
∧

(τ ρ), then T πV
πV is a

Lie algebroid morphism over πV, i.e.

d ◦ (T πV

πV)∗ = (T πV

πV)∗ ◦ d. (28)

The quotient prolongation Lie algebroid τ ρ : T ρV → V and the prolongation Lie algebroid

τ ρ : T ρV → V are isomorphic as Lie algebroids. Moreover, Sec(τ ρ), Sec(τ ρ) and SecI(τ ρ)

are isomorphic as Lie algebras.

Much of what has just been said also applies to the prolongation bundle µλ : T λW →
W even though it does not carry a Lie algebroid structure. The maps i and ρ induce a

map λ = ρ ◦ i : W → TM . The quotient projection πW is admissible for the ‘anchors’

λ and λ, in the sense that TπM ◦ λ = λ ◦ πW (because of (8) and (23)). Therefore, it is

easy to see that the map T πW
πW : T λW → T λW is still well defined and admissible with

respect to λµ and λ
µ
:

TπW ◦ λµ = λ
µ ◦ T πW

πW.

Lemma 2 The diagram

???

T iid T idi

T iid T idi

T πV

πVT πV

πWT πW

πW

-

-

T ρW

T ρW

T ρV

T ρV

TλW

TλW

-

-
-

-T ii

T ii
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is completely commutative.

Proof. The map id stands for both the identity maps on V and W. T idi is defined,

for the quotient bundles, as in (16). The proof is obvious.

In the case of the prolongations µλ and µλ, the operators δ :
∧

(µρ) → ∧
(µλ),

δ :
∧

(µρ) → ∧
(µλ), ∆ :

∧
(τ ρ) → ∧

(µλ) and ∆ :
∧

(τ ρ) → ∧
(µλ) (defined in (18) and

(20)) have similar properties as the exterior derivatives.

Corollary 2 The bundles µλ : T λW → W and µλ : T λW → W are isomorphic as vector

bundles. Moreover,

δ ◦ (T πV

πW)∗ = (T πW

πW)∗ ◦ δ and ∆ ◦ (T πV

πV)∗ = (T πW

πW)∗ ◦∆.

Proof. The first statement can easily be deduced from the proof of Proposition 3.

The identity T iid ◦ T πW
πW = T πV

πW ◦ T iid, leads to the identity (T πW
πW)∗ ◦ (T iid)∗ =

(T iid)∗◦(T πV
πW)∗ on forms. Then, from property (27) we can deduce that δ◦(T πV

πW)∗ =

(T iid)∗ ◦ d̃◦ (T πV
πW)∗ = (T iid)∗ ◦ (T πV

πW)∗ ◦ d̃ = (T πW
πW)∗ ◦ (T iid)∗ ◦d = (T πW

πW)∗ ◦ δ.

The last property follows in a similar way from the identity T ii ◦ T πW
πW = T πV

πV ◦ T ii

and property (28).

5. Reduction of Lagrangian systems on a subbundle of a Lie algebroid

Let’s come back to the Lagrangian systems (21) on a subbundle of a Lie algebroid.

Definition 5 A Lagrangian L ∈ C∞(V) is said to be reducible if it is invariant under

the action of the Lie group, i.e. L(gv) = L(v).

The reduced Lagrangian is then the function L ∈ C∞(V), satisfying L = L ◦ πV, or

L([v]) = L(v). This function has of course its own 1-form θL ∈ ∧1(τ ρ) and energy

function EL ∈ C∞(V). We will show now that the equation (21) for L projects on the

Lagrangian equation for L (on the subbundle µ of the quotient Lie algebroid τ), given

by

iΓ∆θL = −∆EL.

Lemma 3 The vertical endomorphisms Sτ : T ρV → T ρV and Sτ : T ρV → T ρV satisfy

the relation

Sτ ◦ T πV

πV = T πV

πV ◦ Sτ . (29)

On functions f ∈ C∞(M), the action of the Liouville sections is related by

ρτ (Cτ )(f ◦ πV) = (ρτ (Cτ )f) ◦ πV. (30)

Proof. By definition of Sτ , we have Sτ (T πV
πV(v, Xa)) = (j(πV(v), TπV(Xa)))

V =

(πV(a), πV(v))V = (0, Y ), with

Y (f) =
d

dt
f(πV(a) + tπV(v))

∣∣∣∣
t=0

, ∀f ∈ C∞(M).
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On the other hand, T πV
πV(Sτ (v, Xa)) = T πV

πV((a, v)V ) = T πV
πV(0, Y ) = (0, TπV(Y )),

where

Y (f) =
d

dt
f(a + tv)

∣∣∣∣
t=0

, ∀f ∈ C∞(M),

and thus TπV(Y )(f) = Y (f ◦ πV) = d
dt

f(πV(a + tv))
∣∣
t=0

, from which we can conclude

that TπV(Y ) = Y indeed.

To prove the second property: if ρτ (Cτ )(v) = X, then ρτ (Cτ )(f ◦ πV)(v) =

X(f ◦ πV) = d
dt

f(πV(v + tv))
∣∣
t=0

. This is, again, exactly (ρτ (Cτ )f)(πV(v)) =

(ρτ (Cτ )(πV(v)))(f) = d
dt

f(πV(v) + tπV(v))
∣∣
t=0

.

Lemma 4 The Poincaré-Cartan forms and the energy functions of L and L are related

in such a way that (T πV
πV)∗θL = θL and (T πV

πV)∗EL = EL.

Proof. From L = L ◦ πV (or (T πV
πV)∗L = L) and property (28) it follows that dL =

(T πV
πV)∗d L. Property (29) is equivalent to Sτ ◦(T πV

πV)∗ = (T πV
πV)∗◦Sτ for the action

on 1-forms. Together with the previous observation, it follows that θL = (T πV
πV)∗θL.

Similarly, an other way of writing (30) is ρτ (Cτ ) ◦ (T πV
πV)∗ = (T πV

πV)∗ ◦ ρτ (Cτ ) from

which it follows that EL = (T πV
πW)∗EL or EL = EL ◦ πV.

Theorem 1 Suppose L is a reducible regular Lagrangian on V. Then, also L is regular.

Moreover the Lagrangian section Γ ∈ Sec(µλ) is invariant and the solutions of the non-

holonomic equations on L (i.e. the integral curves of λµ(Γ)) project to those for the

reduced Lagrangian L (i.e. the integral curves of λ
µ
(Γ)).

Proof. From the previous lemma it is clear that

∆θL = ∆ ◦ (T πV

πV)∗θL = (T πW

πW)∗ ◦∆θL.

Since each T πW

w πW is an isomorphism, this relation ensures that also ∆θL will be non-

degenerate. Further, also

∆EL = (∆ ◦ (T πV

πV)∗)EL = ((T πW

πW)∗ ◦∆)EL,

from which it follows that

T πW

w πW(Γ(w)) = Γ(πW(w)). (31)

It is further obvious that also TπW(λµ(Γ(w))) = λ
µ
(Γ(πW(w))) and therefore λµ(Γ) and

λ
µ
(Γ) must be πW-related. Observe finally that (31) indicates that both Γ(w) and Γ(gw)

project to the same equivalence class, which can only mean that Γ(gw) = gΓ(w), or Γ ∈
SecI(µλ). With a similar definition as (25), we can thus write that Γ = (T πW

πW)∗(Γ).

6. Lagrangian reduction by stages

In this section we prove that the category of Lagrangians systems on a subbundle of a

Lie algebroid is stable under successive reduction. We start by recalling some known

facts which can be found in [2]. Suppose that πM : M → M = M/G is a principal fibre
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bundle and that N ⊂ G is a normal subgroup of G. Since the action ψM of G on M can

be restricted to N , it makes perfect sense to speak of the quotient M̂ = M/N . In fact,

M is also a principal fibre bundle with respect to this restricted action, π̂M : M → M̂ .

Moreover, we can define an action of H = G/N on M̂ by means of

[g]N [m]N = [gm]N , (32)

which gives M̂ the structure of a principal fibre bundle with structure group H,
ˆ̂π

M

: M̂ → ˆ̂
M = M̂/H. Another way of writing (32) is then

ψM̂

[g]N
◦ π̂M = π̂M ◦ ψM

g . (33)

Further, the map

βM : M → ˆ̂
M, [m]G → [[m]N ]H (34)

is a diffeomorphism.

Suppose now that τ : V → M is a vector bundle, equipped with a G-vector bundle

action ψV. Again, ψV can be restricted to an N -vector bundle action on τ . Then, both

τ : V → M and τ̂ : V̂ = V/N → M̂ are vector bundles. We will denote the submersion

V → V̂ by π̂V. There is also an induced vector bundle action of H on τ̂ , given by

ψV̂

[g]N
: V̂ → V̂ : [v]N 7→ [g]N [v]N = [gv]N , or

ψV̂

[g]N
◦ π̂V = π̂V ◦ ψV

g . (35)

Therefore, also the quotient ˆ̂τ :
ˆ̂
V = V̂/H → ˆ̂

M is a vector bundle. Again, there exists

a well-defined (vector bundle) isomorphism

βV : V → ˆ̂
V, [v]G → [[v]N ]H (36)

over βM . In other words,

βV

[m]G
◦ πV

m = ˆ̂π
V

[m]N
◦ π̂V

m, (37)

where ˆ̂π
V

is the projection V̂ → ˆ̂
V; [v]N 7→ [[v]N ]H (over ˆ̂π

M

: M̂ → ˆ̂
M ; [m]N 7→ [[m]N ]H).

Next, let L be a (regular) Lagrangian on the Lie algebroid τ : V → M and

µ : W → M a subbundle of τ . The three conditions, necessary to perform an reduction

by means of G are: (i) L is a G-invariant Lagrangian; (ii) all ψV
g are Lie algebroid

isomorphisms; (iii) the G-action ψV restricts to W. To explain how successive reduction

works, we will assume from now on that these conditions are satisfied and we will verify

that the induced actions of N and H satisfy similar conditions.

The first stage of the reduction is the reduction by the Lie group N . Since the

Lagrangian is obviously also invariant under the N -action, it gives rise to a Lagrangian

L̂ ∈ C∞(V̂) defined by L̂([v]N) = L(v). We will use e.g. the notation SecI,G(τ) for the

set of the τ -sections that are invariant under the action of G. Although SecI,G(τ) ⊂
SecI,N(τ), also SecI,N(τ) is a Lie subalgebra of Sec(τ), because all ψV

n : V → V (n ∈ N)

are Lie algebroid isomorphisms. Therefore, τ̂ can be given the structure of a Lie

algebroid with a bracket and anchor ρ̂ : V̂ → TM̂ defined as in (7) and (8). From

the third assumption, it follows that the restriction of ψV to N restricts in turn to an
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action of N on W, so we can define the quotient vector bundle µ̂ : Ŵ → M̂ . Therefore,

all conditions to perform a reduction by N are satisfied and the Lagrangian equations

for L ∈ C∞(V) on the subbundle µ of τ will project to reduced equations for L̂ ∈ C∞(M̂)

on the subbundle µ̂ of the quotient Lie algebroid τ̂ : V̂ → M̂ .

The second reduction is the one by H = G/N . We can easily verify that the

Lagrangian L̂ is invariant under the H-action. Indeed,

L̂([g]N [v]N) = L̂([gv]N) = L(gv) = L(v) = L̂([v]N).

Therefore, it is possible to reduce L̂ to a Lagrangian
ˆ̂
L ∈ C∞(

ˆ̂
V = V̂/H). Also, the

condition on the constrained action is satisfied. Indeed, since Ŵ → M̂ is a subbundle

of V̂ → M̂ , the reduced action of H on V̂ restricts exactly to the reduced action of H

on Ŵ. We can therefore introduce the vector bundle
ˆ̂
W = Ŵ/H → ˆ̂

M = M̂/H and our

programme further will consist in showing that each ψV̂

[g]N
is a Lie algebroid morphism.

Remark first that the following diagram is commutative.

-

-

-

-

?

?

?

?

¡
¡

¡µ

¡
¡

¡µ

¡
¡

¡µ

¡
¡

¡µ

TM

V̂

TM̂

V̂

TM̂

TM

VV

TψM
g

ψV
g

ψV̂

[g]N

T ψM̂

[g]N

ρ̂ ρ

ρ̂ ρ

Proposition 4 For each [g]N , ψV̂

[g]N
: V̂ → V̂ is a Lie algebroid isomorphism (over

ψM̂

[g]N
).

Proof. The admissibility TψM̂

[g]N
◦ ρ̂ = ρ̂ ◦ ψV̂

[g]N
is clear from the diagram. Indeed,

when applied to [v]N (and taking into account the definition (8) for ρ̂), the left-hand side

is T (ψM̂

[g]N
◦ π̂M)(ρ(v)). In view of (33), this equals the right-hand side T (π̂M ◦ψM̂

g )(ρ(v)).

Further, with every section ŝ in τ̂ , we can identify a N -invariant section ŝI,N of τ

(see (1)), by means of

ŝI,N(m) = (π̂V

m)−1(ŝ([m]N)).

Now, if ŝ1 is ψV̂

[g]N
-related to ŝ2 (for a specific [g]N), then ŝI,N

1 will be ψV
g -related to ŝI,N

2

(for any g ∈ [g]N). Indeed, we have

ŝI,N
1 (gm) = (π̂V

gm)−1(ŝ1([g]N [m]N)) = (π̂V

gm)−1([g]N ŝ1([m]N)) = g(π̂V

m)−1(̂s2([m]N))

= g ŝI,N
2 (m),
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where we have used the fact that π̂V
gm = ψV̂

[g]N
◦ π̂V

m ◦ ψV

g−1 and therefore (π̂V
gm)−1 =

ψV
g ◦ (π̂V

m)−1 ◦ ψV̂

[g]−1
N

. Also the converse is true: if two N -invariant sections ŝI,N
1 and ŝI,N

2

of τ are ψV
g -related, then ŝ1 and ŝ2 are ψV̂

[g]N
-related.

Suppose now that also r̂1 is ψV̂

[g]N
-related to a certain r̂2. Then, by the definition

(7), [̂r1, ŝ1]
I,N = [̂rI,N

1 , ŝI,N
1 ]. Moreover, since by assumption each ψV

g is a Lie algebroid

isomorphism this last bracket is ψV
g -related to the N -invariant bracket [̂rI,N

2 , ŝI,N
2 ] =

[̂r2, ŝ2]
I,N . It follows that [̂r1, ŝ1] and [̂r2, ŝ2] are ψV̂

[g]N
-related and thus we may conclude

that for each [g]N , ψV̂

[g]N
is a Lie algebroid isomorphism.

The reduction process can now be continued: the quotient Lie algebroid τ̂ : V̂ → M̂

induces a quotient Lie algebroid structure on ˆ̂τ :
ˆ̂
V → ˆ̂

M (with anchor ˆ̂ρ :
ˆ̂
V → ˆ̂

M). The

equations (19) for the Lagrangian L on the subbundle µ of the Lie algebroid τ , reduce

therefore, in two stages (first N , then H), to similar equations for the Lagrangian
ˆ̂
L on

the subbundle ˆ̂µ of the Lie algebroid ˆ̂τ . We will show that this reduction is equivalent

with the direct reduction under the action of G.

Recall first that βV (see (36)) is a (vector bundle) isomorphism. With a similar

definition for βW,

βW

[m]G
◦ πW

m = ˆ̂π
W

[m]N
◦ π̂W

m, (38)

also µ and ˆ̂µ are isomorphic as vector bundles. Moreover if L ∈ C∞(V) is the Lagrangian,

obtained after a reduction by the action of G, then

L([v]G) =
ˆ̂
L(βV([v]G)) = L(v).

We will show now that also the Lie algebroid structures on τ and ˆ̂τ are isomorphic.

Proposition 5 βV is a Lie algebroid isomorphism (over βM). SecI,G(τ), Sec(τ),

SecI,H(τ̂) and Sec(ˆ̂τ) are all isomorphic as Lie algebras.

Proof. We begin by checking the admissibility property, or TβM ◦ ρ([v]G) =
ˆ̂ρ ◦ βV([v]G). The left side is T (βM ◦ πM)(ρ(v)), the right side is T (ˆ̂π

M ◦ π̂M)(ρ(v)).

The identity βM ◦ πM = ˆ̂π
M ◦ π̂M is nothing but (34).

Suppose next that ˆ̂s ∈ Sec(ˆ̂τ) is βV-related to s ∈ Sec(τ), i.e. ˆ̂s([[m]N ]H) =

βV

[m]G
(s([m]G)). Then it is easy to see that ˆ̂s

I,H ∈ SecI,H(τ̂) will be π̂V-related to

sI,G ∈ SecI,G(τ). Indeed,

ˆ̂s
I,H

([m]N) = (ˆ̂π
V

[m]N
)−1(ˆ̂s([[m]N ]H)) = ((ˆ̂π

V

[m]N
)−1 ◦ βV

[m]G
)(s([m]G))

= (π̂V

m ◦ (πV

m)−1)(s([m]G)) = [sI,G(m)]N , (39)

where we made use of (37). The converse is also true: if a H-invariant section of τ̂ and

a G-invariant section of τ are π̂V-related, then their projections on ˆ̂τ and τ , respectively,

will be βV-related. With a similar reasoning as in the proof of Proposition 4, we can

conclude from the fact that π̂V is a Lie algebroid morphism that also βV must be a Lie

algebroid (iso)morphism.
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Observe finally that relation (39) is independent of the choice of m and defines a

Lie algebra isomorphism (π̂V)∗ between SecI,G(τ) and SecI,H(τ̂). Therefore, it is also

clear that SecI,G(τ), Sec(τ), SecI,H(τ̂) and Sec(ˆ̂τ) are all isomorphic as Lie algebras.

-

??

-SecI,G(τ) SecI,H(τ̂)

Sec(τ) Sec(ˆ̂τ)

I,G I,H

(π̂V)∗

(βV)∗

Theorem 2 The dynamics obtained by an iterative reduction (by N and then by H) is

equivalent with the one obtained from a reduction by G directly.

Proof. A similar reasoning as in the proof of the previous proposition shows that βW

is admissible w.r.t. the anchors λ and
ˆ̂
λ. Thus, T βW

βW : T λW → T
ˆ̂
λ ˆ̂
W is a well-defined

isomorphism of vector bundles. The reduction of the dynamics by G gives rise to a

section Γ ∈ Sec(µλ), related to the original dynamics Γ ∈ Sec(µλ) by means of (31).

Applying T βW
βW on both sides of this relation, and using (13) and the relation (38), we

find that

T ˆ̂π
W◦π̂W

(ˆ̂π
W ◦ π̂W)(Γ(w)) = T βW

βW(Γ(πW(w))).

Using the relations between Γ and Γ̂ on the one hand and between Γ̂ and
ˆ̂
Γ on the other,

it is easy to see that also

T ˆ̂π
W◦π̂W

(ˆ̂π
W ◦ π̂W)(Γ(w)) =

ˆ̂
Γ(ˆ̂π

W

(π̂W(w))),

and thus

T βW

βW(Γ([w]G) =
ˆ̂
Γ(βW([w]G)),

or, for the related vector fields X = λ
µ
(Γ) and

ˆ̂
X = (

ˆ̂
λ)

ˆ̂µ(
ˆ̂
Γ) on W and

ˆ̂
W respectively,

TβW(X([w]G)) =
ˆ̂
X(βW([w]G)),

and thus
ˆ̂
X = βW

∗ (X).

Remark that T βW
βW is the restriction to T λW of T βV

βV. So, for unconstrained

systems, i.e. the case where µ = τ , the projection Γ 7→ ˆ̂
Γ is really induced by a Lie

algebroid isomorphism T βV
βV.

The results above can be applied, for example, to the Lagrange-d’Alembert

equations of a non-holonomic system that is invariant under the action of a Lie group

G with a nested normal subgroup structure

{e} ⊂ ... ⊂ N2 ⊂ N1 ⊂ G

(with Ni+1 ⊂ Ni normal subgroups). We have already mentioned that, for each

action ψM , the tangent action ψTM is a Lie algebroid action. Thus, for a G-invariant
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Lagrangian L ∈ C∞(TM) and an appropriate constraint distribution W ⊂ TM , we can

perform without further assumptions a successive reduction process. All steps can be

interpreted as reducing a Lagrangian system on a subbundle of a Lie algebroid to a

system on its quotient. The diagram shows the situation for {e} ⊂ N2 ⊂ N1 ⊂ G, with

H01 = G/N1, H02 = G/N2 and H12 = N1/N2. All vertical arrows are Lie algebra

isomorphisms, all horizontal arrows are injections. At each stage in the reduction

process, the dynamics is defined on a subbundle of the Lie algebroid at the end of

the line.

-

?

?

?

-

-

- -

-

? ?

?

SecI,G(τ) SecI,N1(τ) SecI,N2(τ) Sec(τ)

SecI,H02(τ/N2) SecI,H12(τ/N2) Sec(τ/N2)

SecI,H01(τ/N1) '
SecI,H01((τ/N2)/H12)

Sec(τ/N1) '
Sec((τ/N2)/H12)

Sec(τ/G) ' Sec
(
(τ/N2)/H02

) ' Sec((τ/N1)/H01) ' Sec
(
((τ/N2)/H12)/H01

)

7. Coordinate expressions and examples

Before we describe some examples in detail, it may be instructive to provide a local

version of what preceded. Assume that a local coordinate chart (U, (xi)) of M is given

and that {ea} and {fA} are bases of, respectively, Sec(τ) and Sec(µ). Fibre coordinates

on V and W, with respect to these bases, will be denoted by va and wA and iaA for the

components of the injection i : W → V. The structure functions of the Lie algebroid

structure on τ are given by ρi
a and Cc

ab, say, and finally λi
A = iaAρi

a.

Let L be a regular Lagrangian on V. The dynamics is represented by a section Γ

of the prolongation bundle µλ. Recall that projectable sections Z of the prolongation

bundle µλ consist of a pair (r, X), with r ∈ Sec(τ) and X ∈ X (W). A natural choice for

a basis for Sec(µλ) is {XA,VA}, with

XA(w) =

(
fA(m), λi

A

∂

∂xi

∣∣∣∣
w

)
and VA(w) =

(
0(m),

∂

∂wA

∣∣∣∣
w

)
, (40)

where w ∈ W and m = µ(w). The solution Γ of (21) is of the form

Γ = wAXA + fA(xi, wB)VA, (41)

for certain coefficients fA ∈ C∞(W). According to Definition 3, the Lagrangian

equations under consideration are then the differential equations for the integral curves
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of the corresponding vector field

λµ(Γ) = wAλi
A

∂

∂xi
+ fA ∂

∂wA
∈ X (W).

In [12] (equation (4)), we have shown that these equations can be written in the form:



ẋi = ρi
a(x)va,

va = iaA(x)wA,

iaA

(
d

dt

(
∂L

∂va

))
= iaA

(
ρi

a

∂L

∂xi
− Cc

abv
b ∂L

∂vc

)
.

(42)

Let G now be a Lie group acting on the Lie algebroid τ and assume that our

Lagrangian is G-reducible. Let X×G (X ⊂ IRn, n = dimM) be a local trivialization of

the principal fibre bundle πM : M → M . If xk are coordinates on X, then πM is locally

xi = (xk, gl) 7→ xk. In this set of coordinates, ψM is simply (h, (x, g)) → (x, hg).

In order to give an idea of how reduction works in coordinates, we choose a basis

{ea} of Sec(τ) which is made up of invariant sections. In such a coordinate system

ψV : G × V → V takes the form (h, vaea(x, g)) → vaea(x, hg). Moreover, the invariant

basis {ea} projects to a basis of the quotient Lie algebroid τ . It will be convenient to

denote also this new basis by {ea}. The only difference between ea as a section of τ

on the one hand and as a section of τ on the other is that, in the first case, it can

be evaluated at a point of M , while, in the second, it should be interpreted as acting

on elements of M . Taking this identification into account, the projection πV is simply

vaea(x, g) → vaea(x).

Theorem 1 showed that the reduced system can be identified with a section Γ of

the prolongation bundle µλ. A coordinate expression for this system, similar to (42) is

(the meaning of the notations being obvious)




ẋ
k

= ρk
a(x)va,

va = i
a

A(x)wA,

i
a

A

(
d

dt

(
∂L

∂va

))
= i

a

A

(
ρk

a

∂L

∂xk
− C

c

abv
b ∂L

∂vc

)
.

(43)

Since the invariant sections form a Lie sub-algebra, it is clear that the structure functions

Cc
ab(x, g) w.r.t. {ea} are invariant functions, and thus are independent of the coordinates

gl. From (7), we can moreover conclude that C
c

ab(x) = Cc
ab(x, g). Likewise (in the

above identification), the quotient anchor map is ρ : vaea(x) 7→ ρk
a

∂
∂xk (x), where

ρk
a(x) = ρk

a(x, g) is the first set of the components of ρ. If we further take {fA} to

be a G-invariant basis of Sec(µ) (and if we identify again these sections with their

projections on Sec(µ)), then, due to (23), the induced injection i : W → V is simply

wAfA 7→ i
a

AwAeA, where i
a

A(x) = iaA(x, g). To ease the notations, we will from now

on remove all the bars from the structure functions on τ and µ, in accordance with

earlier made identifications. Finally, the invariance of the Lagrangian can be expressed

as L(xk, (hg)l, va) = L(xk, (g)l, va),∀h ∈ G, which means that
∂L

∂gl
= 0. In particular,
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in the first term of the right-hand side of the last of equations (42) only derivatives of

the form
∂L

∂xk
will remain. From all this, it is obvious that (42) projects on (43).

We can define also a basis {XA,VA} for Sec(µλ), similar to the basis (40) of Sec(µλ).

However, by the conventions we adopted for denoting coordinates, bases and structure

functions, these sections can formally be identified with the sections {XA,VA} and we

will again make no notationial distinction. With this identification in mind, the reduced

dynamics Γ ∈ Sec(µλ) looks formally the same as expression (41) for Γ ∈ Sec(µλ). The

corresponding vector field is, however,

λ
µ
(Γ) = wAλk

A

∂

∂xk
+ fA ∂

∂wA
∈ X (W).

Next, we discuss some examples where an iterative reduction process applies.

7.1. The non-holonomically constrained particle

In this example M = IR3 and V = TM (with its standard Lie algebroid structure).

The system has a Lagrangian L(x, y, z, ẋ, ẏ, ż) = 1
2
(ẋ2 + ẏ2 + ż2) and is subjected to

a constraint, characterized by a distribution W ⊂ TM with equation ż = yẋ (see

also [1]). The injection i is then given by (x, y, z, ẋ, ẏ) 7→ (x, y, z, ẋ, ẏ, yẋ), or, for the

corresponding basis {f1, f2} of Sec(µ), i(f1) = X1 = ∂
∂x

+ y ∂
∂z

and i(f2) = X2 = ∂
∂y

. The

basis (40) is here given by the sections X1 = (f1, X1), X2 = (f2, X2), V1 = (0, ∂
∂ẋ

) and

V2 = (0, ∂
∂ẏ

). An easy calculation (based on e.g. the coordinate expressions (42)) shows

that the dynamics Γ ∈ Sec(µλ) of this example is given by

Γ = ẋX1 + ẏX2 − y

1 + y2
ẋẏV1, (44)

or by the corresponding vector field

λµ(Γ) = ẋ
∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− y

1 + y2
ẋẏ

∂

∂ẋ
∈ X (W).

Consider now first the action of G = IR2 on M = IR3, given by

ψV : ((r, s); (x, y, z, ẋ, ẏ, ż)) 7→ (x + r, y, z + s, ẋ, ẏ, ż).

Then, clearly the restriction of ψV to W is a constrained Lie algebroid action for this

system. The projections on the quotient manifolds are in this case πM : (x, y, z) 7→ y,

πV : (x, y, z, ẋ, ẏ, ż) 7→ (y, ẋ, ẏ, ż) and πW : (x, y, z, ẋ, ẏ) 7→ (y, ẋ, ẏ), while the quotient

injection i is (y, ẋ, ẏ) 7→ (y, ẋ, ẏ, yẋ). The bases {f1, f2} and { ∂
∂x

, ∂
∂y

, ∂
∂z
} for µ and τ

consist clearly only of invariant sections. As has been said above, the reduced dynamics

Γ ∈ Sec(µλ) looks formally the same as expression (44) for Γ ∈ Sec(µλ). The vector

field λ
µ
(Γ) is, however,

ẏ
∂

∂y
− y

1 + y2
ẋẏ

∂

∂ẋ
∈ X (W). (45)

Instead of making a reduction by the whole G = IR2, we can work also in two

stages: one can look first at the restriction of the action ψV to its (normal) subgroup
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N = IR = IR×{0}. Then, denoting the reduction process now by ,̂ the reduced injection

is î : (y, z, ẋ, ẏ) 7→ (y, z, ẋ, ẏ, yẋ) and, again, Γ̂ ∈ Sec(µ̂λ̂) will take the same form as

Γ (leaving aside the fact that Γ̂ acts on elements (y, z, ẋ, ẏ) ∈ Ŵ). The vector field of

interest is now

λ̂µ̂(Γ̂) = ẏ
∂

∂y
+ yẋ

∂

∂z
− y

1 + y2
ẋẏ

∂

∂ẋ
∈ X (Ŵ).

For the above system the Lagrangian is L̂(z, y, ẋ, ẏ, ż) = 1
2
(ẋ2 + ẏ2 + ż2), while the

constraint is still ż − yẋ = 0. Since both are invariant under the IR-action

ψV̂ : (s; (y, z, ẋ, ẏ, ż)) 7→ (y, z + s, ẋ, ẏ, ż),

a second reduction can be performed to obtain
ˆ̂
Γ ∈ Sec(ˆ̂µ

ˆ̂
λ
). Since, again,

ˆ̂
Γ takes

the same form as Γ and thus also as Γ (under appropriate identifications), it becomes

clear, that reduction by two stages for this non-holonomically constrained particle is

equivalent with direct reduction. Likewise,
ˆ̂
λ

ˆ̂µ

(
ˆ̂
Γ) ∈ X (

ˆ̂
W) can formally be identified

with expression (45) for λ
µ
(Γ).

7.2. The falling rolling disk

In this example we consider a homogeneous disk rolling over a horizontal plane. The

constraint is that the disk rolls without slipping. We will use the same notations as in

[1], p. 21: (x, y) denote the coordinates of the contact point in the plane on which the

disk rolls, and θ, φ and ψ are the angle between the plane and the vertical axis, the

‘heading angle’ of the disk, and the ‘self-rotation’ angle of the disk, respectively. In this

example, M = SE(2)× SO(2)× SO(2), V = TM and the Lagrangian is

L =
m

2

[
(ζ −Rφ̇ sin θ)2 + η2 sin2 θ + (η cos θ + Rθ̇)2

]
(46)

+
1

2

[
J(θ̇2 + φ̇2 cos2 θ) + I(φ̇ sin θ + ψ̇)2

]
−mgR cos θ

with ζ = ẋ cos φ + ẏ sin φ and η = −ẋ sin φ + ẏ cos φ and I and J are inertia constants.

The constraints are given by the equations{
ẋ = −ψ̇R cos φ,

ẏ = −ψ̇R sin φ.
(47)

The falling rolling disk is invariant under the action of the group G = SE(2)×SO(2)

on M

ψM

G : (a, b, α, β)× (x, y, φ, ψ, θ) 7→ (x cos α− y sin α + a, x sin α + y cos α + b,

φ + α, ψ + β, θ)

and its induced tangent action

ψV
G : (a, b, α, β)× (x, y, φ, ψ, θ, ẋ, ẏ, φ̇, ψ̇, θ̇) 7→

(ψM
G (x, y, φ, ψ, θ), ẋ cos α− ẏ sin α, ẋ sin α + ẏ cos α, φ̇, ψ̇, θ̇).
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ψV
G is by construction a Lie algebroid action for the Lie algebroid TM and it restricts to

a constrained Lie algebroid action on the subbundle W. The basis {fθ, fφ, f3} of Sec(µ)

with

i(fθ) =
∂

∂θ
, i(fφ) =

∂

∂φ
, i(f3) =

∂

∂ψ
−R cos φ

∂

∂x
−R sin φ

∂

∂y

is invariant under the restricted action ψW
G. Fibre coordinates on W will be denoted by

(θ̇, φ̇, w3). The natural basis { ∂
∂x

, ∂
∂y

, ∂
∂θ

, ∂
∂φ

, ∂
∂ψ
} on V = TM is, however, not invariant

under ψV
G. An invariant basis {ea} on TM is e.g.

{eζ = cos φ
∂

∂x
+ sin φ

∂

∂y
, eη = − sin φ

∂

∂x
+ cos φ

∂

∂y
, eθ =

∂

∂θ
, eφ =

∂

∂φ
, eψ =

∂

∂ψ
},

and we will use from now on induced coordinates (x, y, θ, φ, ψ; ζ, η, θ̇, φ̇, ψ̇) on TM , where

ζ and η are as above. In the new coordinates the constraints can be written as ζ = −Rψ̇

and η = 0. This means that the only non-vanishing components of the injection are

iθθ = 1, iφφ = 1, iψ3 = 1 and iζ3 = −R. The change of basis has the side-effect that the

structure functions of the Lie algebroid need to be recalculated. Of course, ρ is still the

identity, but, where in the standard basis the structure functions Cc
ab of the standard

Lie algebroid all vanish, there arise non-vanishing brackets for the new basis sections.

In particular, [eζ , eφ] = −eη and [eη, eφ] = eζ , so the non-vanishing structure functions

are Cη
ζφ = −1 and Cζ

ηφ = 1. An explicit expression for the Lagrangian equations follows

now easily from (42). To proceed further, it suffices to know that the section Γ is of the

form

Γ = θ̇Xθ + φ̇Xφ + w3X3 + f θVθ + fφVφ + f 3V3,

and that the associated vector field is

λµ(Γ) = θ̇
∂

∂θ
+ φ̇

∂

∂φ
+ w3

(
∂

∂ψ
−R cos φ

∂

∂x
−R sin φ

∂

∂y

)
+ f θ ∂

∂θ̇
+ fφ ∂

∂φ̇
+ f 3 ∂

∂ẇ3
.

Let’s look at the reduced system now: θ can be regarded as the only coordinate

on M , while, as before, we denote coordinates on V as (θ, ζ, η, θ̇, φ̇, ψ̇). The reduced

Lagrangian looks exactly like (47), only now it should be interpreted as a function in

the variables of V alone. Also the constraints remain simply ζ = −Rψ̇ and η = 0. We

have seen above that, within the earlier discussed identifications, all reduced sections

have the same form as Γ. The G-reduced vector field is here

λ
µ
(Γ) = θ̇

∂

∂θ
+ f θ ∂

∂θ̇
+ fφ ∂

∂φ̇
+ f 3 ∂

∂ẇ3
. (48)

An iterative reduction process now becomes available. In fact, we have a nested

subgroup structure IR2 ⊂ SE(2) ⊂ SE(2) × SO(2), so we can perform reduction in

three steps: the corresponding groups for the diagram at the end of the previous section

are H01 = SO(2), H02 = SO(2) × SO(2) and H12 = SO(2). We will limit ourselves,

however, to a reduction in two steps. The first step will be reduction by the group

N1 = SE(2), whose restricted action on M is

ψM

N1
: (a, b, α)× (x, y, φ, ψ, θ) 7→ (x cos α− y sin α + a, x sin α + y cos α + b,

φ + α, ψ, θ).



Lagrangian reduction by stages for non-holonomic systems 24

The earlier discussed bases are also invariant under the tangent lift of ψM
N1

, but

coordinates on M̂ are now (θ, φ). The Lagrangian L̂ looks formally the same as

the expression (47) again, but is to be interpreted as a function of the variables

(θ, φ, ζ, η, θ̇, φ̇, ψ̇). A similar observation is valid for the reduced constraint. The vector

field of interest after the reduction by N1 is

λ̂µ̂(Γ̂) = θ̇
∂

∂θ
+ φ̇

∂

∂φ
+ f θ ∂

∂θ̇
+ fφ ∂

∂φ̇
+ f 3 ∂

∂ẇ3
.

The symmetry group H1 = G/N1 for the second stage is SO(2). Since both the

Lagrangian L̂ and the reduced constraint are still independent of the coordinate φ, i.e.

invariant under the action

ψM̂

H1
: β × (ψ, θ) 7→ (ψ + β, θ),

a second reduction can be performed. The coordinate of
ˆ̂
M is again θ and also the

corresponding vector field
ˆ̂
λ

ˆ̂µ

(
ˆ̂
Γ) can be identified with expression (48) for λ

µ
(Γ).
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