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Abstract. The Lagrange-d’Alembert equations of a non-holonomic system with
symmetry can be reduced to the Lagrange-d’Alembert-Poincaré equations. In a
previous contribution we have shown that both sets of equations fall in the category
of so-called ‘Lagrangian systems on a subbundle of a Lie algebroid’. In this paper, we
investigate the special case when the reduced system is again invariant under a new
symmetry group (and so forth). Via Lie algebroid theory, we develop a geometric
context in which successive reduction can be performed in an intrinsic way. We
prove that, at each stage of the reduction, the reduced systems are part of the above
mentioned category, and that the Lie algebroid structure in each new step is the
quotient Lie algebroid of the previous step. We further show that that reduction
in two stages is equivalent with direct reduction.

PACS numbers: 02.40.-k, 45.20.Jj

1. Introduction

In this paper, we study the Lagrangian description of non-holonomic systems (with
linear constraints) which are invariant under the action of a Lie group. It is well-known
that the Lagrange-d’Alembert equationsi of such systems project onto a new set of
equations, the Lagrange-d’Alembert-Poincaré equations. In turn, also these reduced
equations could be invariant under some action and could therefore be subjected to a
second reduction. In this paper we will present a geometrical framework in which such
successive reduction can be investigated. As such, we provide an answer to a problem
which has been put forward in [2, 3].

A main source of inspiration is work by Cendra et al. [2], where it has been shown
for unconstrained or holonomically constrained systems that repetitive reduction can be
performed within the category of systems on so-called Lagrange-Poincaré bundles. This
category is indeed ‘stable’ under reduction by ‘Lagrange-Poincaré actions’ in the sense
that the reduced system lives on some kind of quotient Lagrange-Poincaré bundle.

I We use the terminology of [2] and [3].
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It is not difficult to see that a Lagrange-Poincaré bundle is in fact an example of a
transitive Lie algebroid and that therefore all the systems of interest fall in the category
of Weinstein’s ‘Lagrangian systems on Lie algebroids’ [13] (see also [11]). The Lagrange-
Poincaré equations, for example, which are obtained from a G-invariant Lagrangian can
be regarded as Lagrange equations on the so-called Atiyah algebroid TM/G. Based
on a geometric framework of Martinez [8], it has been shown in [5] that the map that
projects the original equations to the reduced ones can be regarded as a Lie algebroid
morphism between the Lie algebroid structures on so-called ‘prolongation bundles’ of
TM and TM/G.

In [2] it has been remarked that further exploration of the link between Lagrange-
Poincaré bundles and Lie algebroids would be useful. With the results of [5] in mind,
when looking at successive reduction, it makes perfect sense to extend the category
of systems of interest to those on arbitrary Lie algebroids, which by itself can offer
an alternative view on the results of [2]. We will go even one step further, however,
as we will deal straight away with the larger category of non-holonomic systems with
symmetry. For that we can rely on [12], where we have developed a framework for
studying Lagrangian systems on a subbundle p of a Lie algebroid 7 (see also [4]). In
summary, the main purpose of this paper is to show that the category of Lagrangian-
type systems on a subbundle of a Lie algebroid is stable under reduction. A geometric
description of successive reduction of non-holonomic systems (as was asked for e.g. in
[3]) then follows automatically, and unconstrained systems are of course included in
such an approach, when one takes the ‘constrained bundle’ i to be simply the whole
Lie algebroid 7.

The paper is organized as follows. After some basic concepts and results, we
introduce Lie algebroid actions and quotient Lie algebroids. Next, we recall the
definition of a Lagrangian system on a subbundle of a Lie algebroid and show how
these equations for a reducible Lagrangian project on those for the reduced Lagrangian.
Finally, we show that reduction in two stages is equivalent with direct reduction. From
this, symmetry reduction of the Lagrange-d’Alembert equations of a non-holonomic
system in an arbitrary number of steps can be derived. We end the paper with coordinate
expressions and some illustrative examples.

2. Quotient Lie algebroids

Some of the next definitions and results can be found in [2, 5, 6, 7]. Let @™ : M — M =
M /G be a principal fibre bundle with structure group G and (proper and free) action
YM G X M — M;(g,m)+— gm. Let 7 : V — M be a vector bundle.

Definition 1 An action ¢¥ : G x V — V such that for each g € G the map
Yy Vi — Vg 1 v > gv is an isomorphism (over 1%”) and such that T is equivariant
(meaning that T o1y =)' o 1) is called a vector bundle action.

The quotient V = V/G can be given the structure of a vector bundle over M by imposing
that the map 7@ : V — V is a morphism of vector bundles (over 7). The projection
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7:V — M, given by 7(|v]) = [r(v)], is a surjective submersion. We will use, in many
different situations, the same notation [.] for equivalence classes; the meaning will always
be clear from the context. It can further be shown that, for each m € M, the restriction
T Vo — V[m] is a linear isomorphism and has the property 7, =, o ¢y.

Y
vy =
g . W;m
S
NI A
M

SAlk 7|3
7 X
M M - M

A section r of 7 is said to be invariant if r(gm) = gr(m). The set of all invariant
sections is denoted by Sec’(7). Invariant sections in Sec(7) are in 1-1 correspondence
with the sections of the quotient bundle 7. If ¥ € Sec(7), then ¥ will denote the
corresponding invariant section of 7. The diagram shows that it can in fact be defined

by
v'(m) = (7y,) "' (7([m])). (1)

Conversely, given an invariant section r € Sec’(7), r; will stand for its associated section
on T, i.e.

rr([m]) = [r(m)]. (2)

Likewise, invariant functions on M (satisfying f(gm) = f(m)) are in 1-1 correspondence
with functions on M. In particular, if f € C=(M), then fo7" is an invariant function.
Suppose now that, in addition, 7 : V. — M is a Lie algebroid. Then Sec(r) is
equipped with a Lie algebra bracket [-, -] : Sec(7) x Sec(7) — Sec(7) which is compatible
with the Lie bracket of vector fields on M through a linear map p : V. — T'M over

the identity, called the anchor map. More precisely, this compatibility means that
Vs,r € Sec(1) and f € C~(M)

[57 fl’] = f[S, I’] + p(S)(f) r (3)
and, as a consequence, also p([r,s]) = [p(r), p(s)]. Notice that we will never make a
notational distinction between p : V. — TM and its extension p : Sec(r) — X (M).
In the context of vector bundles and Lie algebroids, k-forms on Sec(7) (from now
on also called elements of \"(7)) are skew-symmetric, C>(M)-multi-linear maps w :
Sec(r) x - -- x Sec(r) — C=(M) (with k arguments). Let w € A"(7), then its exterior
derivative is the (k + 1)-form dw, defined by

k1

do(sy,. .. spp1) = Z(—l)i_lp(si)<w(sl, NS ,sk+1)>

=1
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+ Z 1) w([8i,55], 515+ -+ Sy - -1 Sjy - v vy Skt1)
1<i<j<k+1
In particular, on functions df(r) = p(r)f, and on 1-forms df(r,s) = p(r)(6(s)) —
p(s)(0(r)) — 0([r,s]). d is a derivation of degree 1 and satisfies d* = 0.

We will show next that, for appropriate vector bundle actions on a Lie algebroid 7,
the quotient bundle 7 can also be given a Lie algebroid structure. First, we need to say
a few words about Lie algebroid morphisms. Let 7 : V — M and 7 : V' — M’ be two
Lie algebroids and ® : V — V' a linear bundle map over ¢ : M — M’ (i.e. a morphism
of vector bundles). Then, for all ' € A"('), ®*¢' given by

O*0' (m)(vi,...,vk) = 0'(¢(m))(D(v1), ... P(vy)), Vi € Vp, (4)
defines a k-form on Sec(7). ® is called a Lie algebroid morphism if
d(®*¢') = &*(d'0) (5)

for all @ € A\(7’). In fact, by the derivation property, it suffices that the above relation
is satisfied for functions and 1-forms. A map & satisfying (5) only for functions is said
to be admissible. Equivalently, admissible maps can be characterized by the condition

Topop=yp od.

When @ is fibrewise surjective, the condition (5) on 1-forms can be recast in the following
form: if r; and r, are ®-related sections of, respectively 7 and 7/, then also [ry, ry] is -
related with [r}, r5] (see [6]). When in addition ¢ : M — M’ is a diffeomorphism, there
is a more direct way to characterize the preservation of the Lie algebroid structure.
Indeed, now ®,(r) € Sec(7’) can be defined by

. (r)(m') = (r(¢~"(m)))

(for r € Sec(7)) and the requirement (5) for functions and 1-forms becomes

P(Du(r) =¢u(p(r))  and  Du([r;s]) = [Du(r), Du(s)], (6)
where ¢, X stands for the push-forward of the vector field X on M. So, if we want to
check that an admissible ® is a Lie algebroid morphism, we only need to check that
®, is a Lie algebra morphism between the (real) Lie algebras Sec(7) and Sec(7'). An

important case is when M = M’ and ¢ = id. In such case, we will simply write ®(r) for
D, (r).

Definition 2 A vector bundle action ¢" is a Lie algebroid action if ¢y is a Lie algebroid
isomorphism over ¢, for all g € G.

In what follows we will always assume that the action " is a Lie algebroid action.
As a consequence, for each fixed g,

(W)« (Irss]) = [(Ug)«(r), (¥g)(s)]-
An invariant section r € Sec’ (1) satisfies (1y)«(r) = r and is thus always, for each g € G,

Yy related to itself. As a result, the set of invariant sections forms a Lie subalgebra (of
the (real) Lie algebra of sections), and since invariant sections can be identified with
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sections of the quotient bundle 7 : V. — M, this quotient bundle inherits a Lie algebroid
structure. Indeed, for a start, the Lie bracket of two sections ¥ and 5 of 7 can be defined
by

[7.5] = ([F".5']) - (7)
Next, an appropriate anchor map can be defined as follows: since the anchor map p is
equivariant by assumption, i.e. p o ¢y = T, o p, the map p : V — TM, given by the

relation

plv] =TT (p(v)) (8)
is well-defined. At the level of sections it has the property

(BEVF) o7 = p(F)(f o7"), Vf € C=(M). (9)

and can therefore be used as anchor map for the quotient Lie algebroid. Indeed, it is
easy to see that (fr)! = (f o@)¢ and therefore
(7.8 = ([(f o7 )F,5]); = ((F o 7[5, — (") (f o 7)),

= [7,5 = () f) o @'7)1 = [[F.5] = (BE) )T,
which shows that p is compatible with the Lie bracket. To conclude:

Lemma 1 For a Lie algebroid action 1)V, Sec! () is a Lie subalgebra and the reduction
by the group G yields a Lie algebroid structure on the quotient T with bracket (7) and
anchor (8).

W \M
=T

With this Lie algebroid structure on 7, the projection @ : V — V is a Lie algebroid
morphism. Indeed, (8) is in fact saying that 7 is admissible. Secondly, for sections
F,5 € Sec(T) (that are T-related to ¥’ and §'), the definition of the bracket (7) shows
that [f,5] is TV-related to [F/,5!]. Finally, we would like to remark that it is now also
obvious that the sets Sec’(7) and Sec(7) are isomorphic as Lie algebras.

The most simple example of a Lie algebroid is the tangent bundle with its natural
bracket of vector fields and trivial anchor map. Each action ¥* on M induces a ‘tangent’
action on V.= TM, given by 7" : TM — TM,(m,v) — (gm,gv = T, (v)).
From this definition, it is immediately clear that 7 is admissible (w.r.t. the anchor
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map p = id). Further, a standard property implies that, if X; and Y; are ¢;-related
vector fields, then also the vector fields [ X7, X5 and [Y7, Y3] must be. So, " is a Lie
algebroid action. The bracket on sections of the quotient Lie algebroid structure on
TM/G — M/G (called the Atiyah algebroid) can be obtained from the Lie subalgebra
of invariant vector fields, while the anchor map 5 : TM/G — T(M/G) is simply

p([v]) = T7" (v).
In other terms, this relation shows that for invariant vector fields X = Viex (M) and
invariant functions f = f o7 € C=(M),

X(f) = V() o 7. (10)
3. Prolongation bundles and non-holonomic systems on Lie algebroids

First, we very briefly recall the definition of a prolongation bundle u” : T?"W — W. Let
7 :V — M be a vector bundle with anchor map p : V — T'M (at this stage 7 need
not necessarily be a Lie algebroid) and suppose that p : W — M is a second vector
bundle. Then the elements of the manifold T°W are pairs (v, X,,) € V,, x T,W for
which p(v) = T'u(Xy) (and therefore also 7(v) = pu(w) = m). The projection u is then
nothing but p”(v, X,,) = w.

T™W
p/’l’
Tp
TPW lup W

TM
/X
V >

|

If 7 is a Lie algebroid, then so is p”: its anchor map is simply

Pl TPW — TW, (v, X)) — X,

I
M

while its bracket can most conveniently be defined on the subset Sec” () of projectable
sections. These are sections of u” that project on a section of 7, i.e. they are of the
form Z = (r, X) € Sec” (u”), where r € Sec(7), regarded as subset of Sec(y*7). Let now
Z; = (r;, X;) € Sec”(11”), then the bracket of two projectable sections is defined as

(21, Z5] = ([r1, ra], [ X1, X2]). (11)

Since projectable sections generate (over C>(W)) all sections of Sec(u”), the bracket of
two arbitrary sections can be obtained by extending the definition (11) by means of a
Leibniz-type property (3) for the anchor map p# (for more details on prolongation Lie
algebroids, see [5, 10]).
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There exists in this context a generalization of the concept tangent map. Let
® : V! — V2 be an admissible map over ¢ : M' — M? (between two Lie algebroids
7 V' — M') and suppose that ¥ : W! — W? is a bundle map over ¢ (between two
arbitrary vector bundles p* : W¢ — M?*). Then, the relation

TP, XL) = (D(v'), TU(X})) (12)

defines a linear bundle map 72U : T7'W! — TPW?2 over U. T®U is admissible
w.r.t. the anchors (p')* and (p?)**: indeed, (pZ)“Q(CID(vl),T\IJ(XV{Il)) = TU(X)) =
TU((p")" (v, X1,)). Tt is further easy to see that if two maps ® : VI — V! are
admissible, then so is ®? o ! : V! — V3 and

TV (P2 o0y = TP 0 T 0, (13)

Proposition 1 7%V is a Lie algebroid morphism (w.r.t. the prolonged Lie algebroid
structures) if and only if ® is a Lie algebroid morphism.

PrOOF.  The admissibility condition on the anchor maps has already been verified.
We show now that the bracket of two 7 ®W-projectable sections is also 7®W-projectable.
Sections Z2, = (s2,,X2,) in Sec”((1?)”") that are T®W-related to sections Z!, =
(Sap> Xap) in Sec ((/ﬂ)pl) satisfy this condition, if and only if [s?,s?] is ®-related to
sl,st], or, equivalently, if and only if ® is a Lie algebroid morphism. Observe now
that 7®W-projectable sections in Sec”((12)”) finitely generate (over C>(W?)) the set
of all sections in Sec((u2)?") that can be T®W-related to some section in Sec((u')?"):
if f2 € C=(W?) and if 22 € Sec”((1?)”") is T®W-related to Z} € Sec”((u)?"), then
222 is T®W-related to (f? o ¥)Z!. We therefore only need to show (of course under
the assumption that ® is a Lie algebroid morphism) that, for such sections, also the
brackets [Z2, f2Z2] and [Z], (f? o W) Z]] are T®V-related. From the Leibniz-identity of
the bracket it follows that
2

(22, PP Z(T(wh)) = F2((w)) (22, Z1 (T (wh)) + ((0°)" (23).) (T (W) 25 (T (w)).(14)
On the one hand Z2(¥(w')) = (s2(¢(m'), X2(¥(w')))), while, due to the supposed
T®U-projectability, also Z2(¥(w')) = T*U(ZH(w!)) = ( (sl(m)), T¥(X}(w'))). So,
X2 = (p*)*(22) € X(W?) is TW-related to X! = (p")* (Z1) € X(W"). Applying this
property to functions 2 € C*(W?), we get that ((p?)* (Z22)f2)oW = (p")* (Z1)(f2o D).
Relation (14) becomes now
22 2w = T (2 0 )2 2]+ () (B 0 1) 2} ) (W)
=T([2,, (f* 0 V) Z;])(w'),

which concludes the proof.

A different proof for the above property can be found in [9], Proposition 1.

We will recall now in a nutshell our definition of a Lagrangian system on a (vector)

sub-bundle p : W — M of a Lie algebroid 7 : V. — M (see [12]). Denote the injection
W — V by ¢ and put

A= poi. (15)
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Both the prolongations 77 : T?V — V and p” : T?"W — W are Lie algebroids. In fact,
via the injection

T TPW — T*V, (v, Xy) — (v, Ti(Xy))

it can be proved that u” is a Lie subalgebroid of 7°. Although u is not a Lie
(sub)algebroid, A will play the role of its ‘anchor’. The vector bundle p* : T*W — W is
a subbundle of ” whose injection is given by

Thid : TW — TPW, (wy, Xy, ) = (i(wp), Xoy)- (16)

Note that 7%id is well-defined because (15) can be interpreted as saying that i is
admissible w.r.t. the anchors p and \. In [12], T%d and 7T were denoted respectively
by I and T”i. Their composition is the injection 7%, which can be used to interpret p*
also as a subbundle of 7°.

We need to define some canonical objects on 7°. The vertical liftV : 7*V — TPV is
given by (a,v) € 7"V — (0, X,) € T*V, where, on a function f € C=(V),

Xaf) = farn)| a7)
t=0

We will also use the so-called vertical endomorphism ST =V o j : Sec(1”) — Sec(71”).
Here j stands for the projection (vo, X,,) € T°V +— (v1,v2) € 7°V. Next, the Liouville
section C™ € Sec(7”) can be defined as the map v € V — (v,v)" € T*V. Finally, we will
need the exterior derivative d : A"(u?) — A" (u?) of the Lie algebroid p? to define an
operator

6= (Thid) od: \* () — N\ (). (18)
Let L € C=(V) be a Lagrangian, 0, = S™(dL) € \'(7?) and E;, = p"(C")L — L €

C>=(V). Then, we can define the Poincaré-Cartan 1-form 6, as a 1-form on Sec(u”)
by means of 0, = (7T')*@,. The function E; € C>(W) is the restriction of E to
W. From now on, we will only consider regular Lagrangians, i.e. those for which the
two-form 86, € A*(1*) is non-degenerate.

Definition 3 [12] If T is the section of the prolongation bundle u*, determined by
ird0, = —0F,, (19)

the vector field \*(I') € X (W) is said to define the Lagrangian system on the subbundle
1 of the Lie algebroid T, associated to the given Lagrangian L on V.

An other way of writing (19) is the following.

Proposition 2 Let d : A"(r?) — AN'(*) be the exterior derivative of the Lie
algebroid " and put

A= (T od: N — A, (20)
then the Lagrangian section I' is a solution of

irA0;, = —AFEy. (21)
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PROOF.  Since 7% is a Lie algebroid morphism, d o (7%4)* = (T"%)* o d. It follows
that 60, = (T"d)* o do (T43)*0;, = (Thd)* o (T')* o dfy = (T%)* odf, = Afy. A
similar reasoning shows that SE; = AE;.

Coordinate expressions for such dynamical systems can be found in [12], where we
have also shown that, in case the Lie algebroid is the standard one, i.e. V.= T'M, and the
subbundle p is a distribution W C T'M, the above equations are exactly the Lagrange-
d’Alembert equations for systems subject to (non-holonomic) linear constraints (see e.g.
[1] p. 217 for some coordinate expressions). It is further well-known that, when the
Lagrangian is invariant under the action of a Lie group G, and when the distribution
satisfies some additional requirements, the Lagrange-d’Alembert equations can be
reduced to the so-called Lagrange-d’Alembert-Poincaré equations (see e.g. [3], or p.
269 in [1]). We have shown in [12] that also this type of Lagrangian equations fit in our
current framework, simply by considering the reduced Lagrangian on the the Atiyah
algebroid 7 : TM/G — M/G and by assuming that the subbundle p is the quotient
W/G — M/G of the distribution.

Equation (21) (or (19)) can be simplified in the case that we are dealing with
‘unconstrained’ systems. Indeed, in such case the subbundle u is the whole Lie algebroid
7 and the operators 6 and A both equal the exterior derivative d on 7. The equation
for Lagrangian systems on a Lie algebroid is then simply (see [8])

ird0; = —dEry. (22)

In the case of the standard Lie algebroid V = T'M, (22) defines the standard Euler-
Lagrange equations. In the case of an (unconstrained) system with symmetry with
reduced Lagrangian L € C=(V = TM/G), local expressions for equation (22) of a
Lagrangian system on the Atiyah algebroid T'M /G are the so-called Lagrange-Poincaré
equations (see also [11]). In [5] it has been proved that one can go from the system on
T'M to the one of TM/G by means of a Lie algebroid morphism.

The main purpose of this paper is to extend the results of [5] in two ways, first
by allowing constraints, and secondly by taking Lagrangian systems on an arbitrary
Lie algebroid as the starting point for a symmetry reduction, rather than the standard
Lagrangian systems. Then, a framework for repetitive reduction will follow almost
automatically. Indeed, in the second step of the reduction, for example, the system on
TM/G is reduced to a system on a quotient (7'M /G)/H. Within our approach, this
will be interpreted as a reduction from a Lie algebroid to its quotient Lie algebroid. Of
course, a lot of the proofs in the next sections are inspired by those in [5].

4. Quotients of prolongation bundles

Definition 4 A constrained Lie algebroid action is a vector bundle action " : GXW —
W (over ¥™) on a subbundle p of a Lie algebroid T which is the restriction of a Lie
algebroid action ¥ : G x V — V (also over ™) to W.

Then, ¢! 0 i = i o1, from which it follows that the map i : W — V, [w]  [i(w)] is a
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well-defined injection, and therefore 77 : W — M is a vector subbundle of 7 : V — M
An other way of writing the definition of 7 is
iom =7 oi. (23)

We can now define also a G-action on the prolongation p”. It is given by
G xT’W — T*W : (g, (v, Xu)) — (gv,9Xw).

The action in the second argument is ¥»™", the tangent lift of the action on the manifold
W. Remark that (gv,gX,) is indeed an element of TPW since p(gv) = gp(v) =
9Tu(Xw) = Tu(gXw) (p by the assumption that ¥v is a Lie algebroid action, and
T by the property ;" o i = p o ey, are equivariant under the appropriate actions).
In fact, for a fixed g € G, the above action can be rewritten as 7° zﬁ},’d};v‘ Since any 1y is
supposed to be a Lie algebroid morphism, also 7° vy by must be a Lie algebroid morphism
(for the Lie algebroid structure on the prolongation bundle). The action on T?W is thus
a Lie algebroid action and the invariant sections of u” form a Lie subalgebra which can
be reduced to a quotient Lie algebroid structure on u? : TPW = TPW/G — W = W/G.
In this set-up, the reduced anchor map, defined as in (8), is

PV, Xu] =TT (P (v, X)) = TT(Xw). (24)

We will show now that we can in fact identify ©? : T°"W — W with a prolongation
bundle, namely the prolongation bundle 7? : TPW — W, formed by the quotient Lie
algebroid 7 : V. — M (with anchor map p, as defined in (8) and bracket (7)) and the
quotient subbundle 7 : W — M.
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Proposition 3 The quotient prolongation Lie algebroid P : TPW — W and the
prolongation Lie algebroid @ : TPW — W are isomorphic as Lie algebroids. Moreover,
Sec(uP), Sec(@i?) and Sec’ (uP) are isomorphic as Lie algebras.

PROOF.  Expression (12) for 77 @ : TPW — TPW is

T, Xo) = (7(4), TT(X0)) € Ty, W.

We will show that, for each [w] € W, the map
Y © [V, Xu] € TPWp) — T 7(v, X,,) € T, W

[w]

is a Lie algebroid isomorphism. First, we prove that the two spaces are isomorphic as
vector spaces. From the considerations in Section 2 about quotient bundles we know
that, for each w € W, (Trow)5! @ [v, Xu] — (v, X,,) is an isomorphism (it selects the
unique representative of the class [v, X,,] in the fibre at w). Since ¥, is in fact the
oL, we only need to show that, for each w € W, the map
TT7Y . TPW — T[a}W is a linear isomorphism. The linearity is obvious. Since ¥ and
Y™ = Ty" are supposed to be vector bundle actions, W,,, ~ W[m] and T, W ~ T[W]W.
Therefore, clearly the dimensions of 79W and Tﬁv ]W will be the same. It remains to show
that 77 7" is injective. Suppose that 7.7 7" (v, X,,) = 0, then, on the one hand, [v] = 0,
meaning that v = 0 and thus also T'(X,,) = 0. On the other hand, 77"(X,,) = 0 which
means that there exist a £ € g = T.G such that X,, = T.0W (&) (YW : G — W, g — gw).
As aresult, 0 = Tu(Xw) = Tp(Teyy(§)) = T(po ) (§) = Ty (&) (where m = p(w)).
Since ) is an injective immersion, it follows that £ = 0 and therefore also X,, = 0.

oy =V _, —
composition 777 7 o (Trew)

To prove now that ¥ is a Lie algebroid morphism (over the identity W — W),
we first check the admissibility condition Tid o p# = pF o T 7%, When applied to an
element [v, X,,], the left-hand side gives T7"(Xy) (by using (24)). This is in agreement
with the right-hand side, because also p*(7¥(v), T7V(X,)) = T7"(X,). It remains to
check the condition on the bracket, which, in this case, is equivalent with establishing a
Lie algebra (iso)morphism X, between Sec(u?) and Sec ().

Sec (ji7) —— Sec(77?)
I (T™'7"),
Sec! ()

From our conclusions in Section 2, the projection Tpow : TPW — TPW is a Lie
algebroid morphism and it generates a Lie algebra isomorphism (.)! between Sec(u?)
and the set of invariant sections Sec’ (). Secondly, 7° T can be extended to a map
(T™'7Y), : Sec! (i) — Sec(@P) by means of

(T™7)(2) (W) = T 7 (Z((7) (W), (25)

m
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It can easily be checked that, due to the supposed invariance of Z, m can be any element

of [m] = 7([w]) in this definition. (7™ 7"), has an inverse (77 @) : Sec(i?) —
Sec! (u?), given by
(TT7) @) (w) = (T7 7). Z(w), (26)

and is thus an isomorphism. (25) shows in fact that (77 7).(Z) is the unique
section that is 77 m"-related to an invariant Z. Moreover, since 7¥ is a Lie
algebroid morphism, also 77 7 is. The bracket [Z, 2] is thus 77 7¥-related
to [(T7 @), (21), (T™ 7).(2,)]. Since also (T7 7). ([21, Z2]) is T™ 7-related to
[Z1, 2], these two brackets must coincide, which proves that (77 7), is a Lie algebra
isomorphism.

In conclusion, the composition of the maps () and (77 7"), is exactly the sought
Lie algebra morphism X, : Sec(u?) — Sec(fi”) we were looking for.

The observation that Tf_vﬁw is a Lie algebroid morphism means that, for the exterior
derivatives d on A(p?) and d on A\ (7°),

do (T™ 7" = (T 7)* od, (27)

where (77 7)* : N"(@?) — AF(p*) is defined as in (4). We can, of course prove a
similar result for 77 7.

Corollary 1 If d is the exterior derivative on \(7°) and d on N\(77), then T™ 7 is a
Lie algebroid morphism over 7V, i.e.

do (T™7) = (T™ 7)* od. (28)
The quotient prolongation Lie algebroid 77 : TPN — V and the prolongation Lie algebroid
77 . TPN — V are isomorphic as Lie algebroids. Moreover, Sec(7?), Sec(7?) and Sec’ (1°)
are isomorphic as Lie algebras.

Much of what has just been said also applies to the prolongation bundle p* : TAW —
W even though it does not carry a Lie algebroid structure. The maps i and p induce a
map A = poi: W — TM. The quotient projection 7 is admissible for the ‘anchors’
A and ), in the sense that 77" o A = Ao @ (because of (8) and (23)). Therefore, it is
easy to see that the map 7 W TAW — TAW s still well defined and admissible with
respect to A* and A

TRV o M = N o T7 7%,

Lemma 2 The diagram

Tiid Tid;
T MW TPW TPV
Tij
T W T 7w T 7
T
T W TPW - TPV
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s completely commutative.

PrROOF. The map id stands for both the identity maps on V and W. T] is defined,
for the quotient bundles, as in (16). The proof is obvious.
In the case of the prolongations p* and 7%, the operators & : A(u”) — A(p),

5 N@E) = NEY, A A7) — A(p) and A - A(77) — A(F*) (defined in (18) and

(20)) have similar properties as the exterior derivatives.

Corollary 2 The bundles E - TAW — W and EX . TW — W are 1somorphic as vector
bundles. Moreover,

§o(TWFY) =(T™'7) 00  and  Ao(T"7) =(T" &) oA
Proor.  The first statement can easily be deduced from the proof of Proposition 3.
The identity T%d o T™ @ = T™ 7" o T'id, leads to the identity (77 m)* o (T7id)* =
(T*id)*o(T™ @)* on forms. Then, from property (27) we can deduce that do(77 7V)* =
(Thid)* odo (T™ 7)* = (Thd)* o (T™ @) od = (T™ @)* o (Tlid)*od = (T™ 7")* 04.
The last property follows in a similar way from the identity 7% o T W = TV o T
and property (28).

5. Reduction of Lagrangian systems on a subbundle of a Lie algebroid

Let’s come back to the Lagrangian systems (21) on a subbundle of a Lie algebroid.

Definition 5 A Lagrangian L € C*=(V) is said to be reducible if it is invariant under
the action of the Lie group, i.e. L(gv) = L(v).

The reduced Lagrangian is then the function L € C=(V), satisfying L = L o7, or
L([v]) = L(v). This function has of course its own 1-form #; € A'(7?) and energy
function By € C=(V). We will show now that the equation (21) for L projects on the
Lagrangian equation for L (on the subbundle 7z of the quotient Lie algebroid 7), given

by
ivAfy = —AE7.

Lemma 3 The vertical endomorphisms ST : TPN — T*N and ST : TPN — TPV satisfy
the relation

STo T 7 =T 7 057, (29)
On functions f € C=(M), the action of the Liouville sections is related by
prCT)(fom) = (@ (CT)f)om". (30)

PROOF. By definition of S7, we have STT™ (v, X,)) = GE'(v), T7V(X,))) =
(7V(a), 7(v))" = (0,Y), with

V()= ST@ @)+ )| Ve o).

t=0
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On the other hand, 77 7(S7(v, X,)) = 77 7¥((a,v)") = T 7(0,Y) = (0, T7V(Y)),
where

V()= Sretm| . vf e,

and thus TﬁV(Y_)(?) =Y(fom) = Lf@'(a+tv)) +_g» from which we can conclude
that 77¥(Y) =Y indeed.
_To prove the second property: if pT(CT)(v) = X, then p7(C7) 7_0 T)(v) =
X(fow) = _jt (7 (v +tv))}t o This is, again, exactly (P (CHNH TV (v) =
(P CHF WD) = GFE V) + 7 (V)] -

Lemma 4 The Poincaré-Cartan forms and the energy functions of L and L are related
in such a way that (T™ 7)*0; = 0, and (T™ 7¥)*Ey = E.

PROOF. From L = Lo (or (T 7¥)*L = L) and property (28) it follows that dL =
(T™'7")*d L. Property (29) is equivalent to S™o (77 7)* = (T™ 7)* 0 ST for the action
on 1-forms. Together with the previous observation, it follows that 6, = (77 7*)*6;.
Similarly, an other way of writing (30) is p(C™) o (T™ 7¥)* = (T™ 7)* 0 7" (C7) from
which it follows that E; = (77 7")*E; or E, = Ey o7V,

Theorem 1 Suppose L is a reducible reqular Lagrangian on V. Then, also L is reqular.
Moreover the Lagrangian section I € Sec(u?) is invariant and the solutions of the non-

holonomic equations on L (i.e. the integral curves of M(I')) project to those for the
reduced Lagrangian L (i.e. the integral curves of X' (T)).

PrROOF.  From the previous lemma it is clear that
A = Ao (TT 70 = (T™ 7)* o Aby.
Since each vawﬁw is an isomorphism, this relation ensures that also Zﬁf will be non-
degenerate. Further, also
AEp = (Ao (TV7)")Ep = (T7 7)o A)Er,
from which it follows that
T3 7 (D(w)) = T(7@ (). (31)

It is further obvious that also T7"(\*(T'(w))) = X (T(7"(w))) and therefore \*(T') and
N(T') must be 7"-related. Observe finally that (31) indicates that both I'(w) and T'(gw)
project to the same equivalence class, which can only mean that I'(gw) = gI'(w), or " €
Sec! (11*). With a similar definition as (25), we can thus write that T = (77 7). (T).

6. Lagrangian reduction by stages

In this section we prove that the category of Lagrangians systems on a subbundle of a
Lie algebroid is stable under successive reduction. We start by recalling some known
facts which can be found in [2]. Suppose that 7 : M — M = M /G is a principal fibre
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bundle and that N C G is a normal subgroup of GG. Since the action " of G on M can
be restricted to N, it makes perfect sense to speak of the quotient M=M /N. In fact,
M is also a principal fibre bundle with respect to this restricted action, 7" : M — M.
Moreover, we can define an action of H = G/N on M by means of

[g]n[mly = [gm]n, (32)

which gives M the structure of a principal fibre bundle with structure group H,
AN — M= M /H. Another way of writing (32) is then

wM o AM — AM o w;u (33)

9]~

Further, the map

~

BY M — M, [mlg — [[m]]u (34)
is a diffeomorphism.

Suppose now that 7 : V — M is a vector bundle, equipped with a G-vector bundle
action Y. Again, 1)V can be restricted to an N-vector bundle action on 7. Then, both
7:V— M and 7 :V =V/N — M are vector bundles. We will denote the submersion
V >V by @¥. There is also an induced vector bundle action of H on 7, given by
V=V Wy e (gl = gV, or

Yl odY =qV o, (35)

l9]n g

Therefore, also the quotient 7V = \7/ H — M is a vector bundle. Again, there exists
a well-defined (vector bundle) isomorphism

BV =V, Vg — [vVInln (36)
over BM. In other words,
AV A~
ﬁf’m]G o,y = T ] © s (37)

where 7 is the projection V — V; VIn — [[V]n]w (over N — M m]n — [[m]n]a)-

Next, let L be a (regular) Lagrangian on the Lie algebroid 7 : V. — M and
W — M a subbundle of 7. The three conditions, necessary to perform an reduction
by means of G are: (i) L is a G-invariant Lagrangian; (ii) all ¢, are Lie algebroid
isomorphisms; (iii) the G-action ¢V restricts to W. To explain how successive reduction
works, we will assume from now on that these conditions are satisfied and we will verify
that the induced actions of N and H satisfy similar conditions.

The first stage of the reduction is the reduction by the Lie group N. Since the
Lagrangian is obviously also invariant under the N-action, it gives rise to a Lagrangian
L € C=(V) defined by L([v]y) = L(v). We will use e.g. the notation Sec’"®(7) for the
set of the 7-sections that are invariant under the action of G. Although Sec’“(r) C
Sec"M (1), also Sec’™¥(7) is a Lie subalgebra of Sec(7), because all 1Y : V — V (n € N)
are Lie algebroid isomorphisms. Therefore, 7 can be given the structure of a Lie
algebroid with a bracket and anchor p : V. — TM defined as in (7) and (8). From
the third assumption, it follows that the restriction of ¥ to N restricts in turn to an
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action of N on W, so we can define the quotient vector bundle /i : W — M. Therefore,
all conditions to perform a reduction by N are satisfied and the Lagrangian equations
for L € C*=(V) on the subbundle p of 7 will project to reduced equations for L € €= (M)
on the subbundle /i of the quotient Lie algebroid 7 : V — M.

The second reduction is the one by H = G/N. We can easily verify that the
Lagrangian L is invariant under the H-action. Indeed,

L(lglv ) = L([gvln) = L(gv) = L(v) = L([v]w).

Therefore, it is possible to reduce L to a Lagrangian L € C’°°(\7 = \7/H) Also, the
condition on the constrained action is satisfied. Indeed, since W — M is a subbundle
of V.o M , the reduced action of H on V restricts exactly to the reduced action of H
on W. We can therefore introduce the vector bundle W = W/H — M = M /H and our
programme further will consist in showing that each ¢EQ]N is a Lie algebroid morphism.
Remark first that the following diagram is commutative.

d)M
—TM
. Vi .
l9ln TN
i p
~ wilgiN

Vv

Proposition 4 For each [g]|n, @DEL]N .V — V is a Lie algebroid isomorphism (over

Vgl /-

ProoF.  The admissibility Tw[]g]N op=po wf’g]N is clear from the diagram. Indeed,

when applied to [v]x (and taking into account the definition (8) for p), the left-hand side

is T(@/J[Q]N ) (p(v)). In view of (33), this equals the right-hand side T'(7" o )}") (p(v)).
Further, with every section § in 7, we can identify a N-invariant section s"V of 7

(see (1)), by means of

§"(m) = (73,) " (3([m]n))-
Now, if §; is wi’q]N—related to 8, (for a specific [g]x), then §1" will be Y,-related to shN
(for any g € [g]n). Indeed, we have

8 (gm) = (i)~ Gallglnlmln) = (7y,,) " (glwsi([mln) = g(@,) " (a(Im]w))

= g5, (m),
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where we have used the fact that 7y = wf’g]N oy o @D;Cl and therefore (7¥,,)"" =

am
. ) ; o . .IN LN
Yy o ()7 w[ 1 Also the converse is true: if two N-invariant sections §;”" and §

of T are ¢ -related, then $; and s, are @/}E;]N—related.
Suppose now that also r; is wﬁq]N—related to a certain fy. Then, by the definition
(7), [F1,8])0N = [?{N sh N]. Moreover, since by assumption each 1y is a Lie algebroid

isomorphism this last bracket is ¢ -related to the N-invariant bracket [rgN §£ N]

[F2, 8o]1N. Tt follows that [f1,8;] and [fo, 8o are wﬁq}N-related and thus we may conclude
that for each [g]y, wf’g]N is a Lie algebroid isomorphism.

The reduction process can now be continued: the quotient Lie algebroid 7 : V — M

induces a quotient Lie algebroid structure on 7 : V — M (with anchor P V— M ). The
equations (19) for the Lagrangian L on the subbundle p of the Lie algebroid 7, reduce

therefore, in two stages (first N, then H), to similar equations for the Lagrangian L on
the subbundle ,& of the Lie algebroid 7. We will show that this reduction is equivalent
with the direct reduction under the action of G.

Recall first that 5V (see (36)) is a (vector bundle) isomorphism. With a similar
definition for 5%,

Bt © T = Ty © T, (38)

also 1z and ﬁ are isomorphic as vector bundles. Moreover if L € C>(V) is the Lagrangian,
obtained after a reduction by the action of G, then

Z(Ve) = L(A(Ve)) = Lv).

We will show now that also the Lie algebroid structures on 7 and 7 are isomorphic.

Proposition 5 ¥ is a Lie algebroid isomorphism (over ™). Sec"%(7), Sec(7),
Sec!(#) and Sec(7) are all isomorphic as Lie algebras.

PROOF. We begin by checking the admissibility property, or TﬁM p(lvlg) =
po 3'(V]g). The left side is T(ﬁM o )(p(v)), the right side is T(7" o #)(p(v)).
The identity g o 7" = 7TM o @™ is nothing but (34).
Suppose next that § € Sec(7) is [Y-related to 5 € Sec(7), ie. s([mln]y) =
B G([mle)).  Then it is easy to see that = Sec"#(#) will be #V-related to
§1¢ ¢ Sec”Y(7). Indeed,
~I,H AV N \

S (M) = ()" GUMIN ) = ()™ © Biue) G(Imla))
= (T 0 () (E([m]e)) = 5" (m)]w, (39)
where we made use of (37). The converse is also true: if a H-invariant section of 7 and
a G-invariant section of 7 are 7¥-related, then their projections on 7 and T, respectively,
will be 3Y-related. With a similar reasoning as in the proof of Proposition 4, we can
conclude from the fact that 7 is a Lie algebroid morphism that also #Y must be a Lie
algebroid (iso)morphism.
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Observe finally that relation (39) is independent of the choice of m and defines a
Lie algebra isomorphism (7¥)* between Sec”“(7) and Sec’# (7). Therefore, it is also
clear that Sec”“(7), Sec(F), Sec’*(#) and Sec(7) are all isomorphic as Lie algebras.

SGCI’G(T) —_— SecI’H(%)

(8")

Sec(T) ———~+—— Sec(;)

Theorem 2 The dynamics obtained by an iterative reduction (by N and then by H) is
equivalent with the one obtained from a reduction by G directly.

PROOF. A similar reasoning as in the proof of the previous proposition shows that 5"
is admissible wr.t. the anchors X and ). Thus, 773" : TAW — T*W is a well-defined
isomorphism of vector bundles. The reduction of the dynamics by G gives rise to a
section T € Sec(*), related to the original dynamics I' € Sec(z*) by means of (31).
Applying 77" 3% on both sides of this relation, and using (13) and the relation (38), we
find that

w

TH (G o #)(D(w)) = T7 BY(T(7" ().

Using the relations between I" and I on the one hand and between I" and I on the other,
it is easy to see that also

AW

T (3" 0 ) (D(w)) = T(&" (7 (w))).
and thus
T7 3% (T([wle) = T(8*([wla)),
or, for the related vector fields X = Xﬁ(f) and X = (A\)(I") on W and W respectively,

TBY(X ([Wla)) = X(3*([wle)),

and thus X = g¥(X).

Remark that 77" 3% is the restriction to T*W of 7T [ivﬁv. So, for unconstrained
systems, i.e. the case where ;1 = 7, the projection I' — [ is really induced by a Lie
algebroid isomorphism 77" 3".

The results above can be applied, for example, to the Lagrange-d’Alembert
equations of a non-holonomic system that is invariant under the action of a Lie group
G with a nested normal subgroup structure

{e}Cc..CNyC N, CG

(with N;y;1 C N; normal subgroups). We have already mentioned that, for each
action ¥, the tangent action )™ is a Lie algebroid action. Thus, for a G-invariant
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Lagrangian L € C>~(T'M) and an appropriate constraint distribution W C T'M, we can
perform without further assumptions a successive reduction process. All steps can be
interpreted as reducing a Lagrangian system on a subbundle of a Lie algebroid to a
system on its quotient. The diagram shows the situation for {e} C Ny C N; C G, with
Hyy = G/Ny,Hyps = G/Ny and Hyy = N;/Ny. All vertical arrows are Lie algebra
isomorphisms, all horizontal arrows are injections. At each stage in the reduction
process, the dynamics is defined on a subbundle of the Lie algebroid at the end of
the line.

LG(r) ——  Sec"M(7) ~ Sec! (1) —— Sec(7)

| |

SeCI’HUQ(T/NQ)g' SecI’le(T/Ng)g' Sec(7/N2)

| |

Sec! ot (7 /Ny~ Sec(T/Ny) ~
Sech o1 ((7/Ny) /Hia) Sec((1/N2)/Hiz2)

Sec

Sec(7/G) ~ Sec((1/N2)/Hoz) ~ Sec((t/N1)/Ho1) ~ Sec(((7/N2)/H12)/Ho1)

7. Coordinate expressions and examples

Before we describe some examples in detail, it may be instructive to provide a local
version of what preceded. Assume that a local coordinate chart (U, (z*)) of M is given
and that {e,} and {fa} are bases of, respectively, Sec(7) and Sec(u). Fibre coordinates
on V and W, with respect to these bases, will be denoted by v¢ and w4 and ¢ for the
components of the injection i : W — V. The structure functions of the Lie algebroid
structure on 7 are given by p and C¢,, say, and finally A\, = i%p’.

Let L be a regular Lagrangian on V. The dynamics is represented by a section I'
of the prolongation bundle x*. Recall that projectable sections Z of the prolongation

bundle p* consist of a pair (r, X), with r € Sec(7) and X € X(W). A natural choice for
XA(W) - (fA(m)7 7;4%’\,\’) and VA(W) = <O(7n)7 W

a basis for Sec(p?) is {X4, Va}, with
0 0
). )
where w € W and m = p(w). The solution I' of (21) is of the form
I'=w*Xy + fA(2', wP)Vy, (41)

for certain coefficients f4 € C=(W). According to Definition 3, the Lagrangian
equations under consideration are then the differential equations for the integral curves



Lagrangian reduction by stages for non-holonomic systems 20
of the corresponding vector field

M(T) = wAi 0 +fAi e X(W).

ozt owA
In [12] (equation (4)), we have shown that these equations can be written in the form:
= pl(x)ve,
Va - 7;% (m)WA, (42)

o (4 (LN _ o900 _ e pOL
Al\at\ove ) ) = A\ Paggi T VeV e )

Let G now be a Lie group acting on the Lie algebroid 7 and assume that our
Lagrangian is G-reducible. Let X x G (X C IR", n = dimM) be a local trivialization of
the principal fibre bundle 7 : M — M. If ¥ are coordinates on X, then 7 is locally
7' = (7%, ¢') — T, In this set of coordinates, ¥ is simply (h, (%, g)) — (T, hg).

In order to give an idea of how reduction works in coordinates, we choose a basis
{e.} of Sec(7) which is made up of invariant sections. In such a coordinate system
YY1 G x V — V takes the form (h,v%e,(T,g)) — v®e.(T, hg). Moreover, the invariant
basis {e,} projects to a basis of the quotient Lie algebroid 7. It will be convenient to
denote also this new basis by {e,}. The only difference between e, as a section of 7
on the one hand and as a section of 7 on the other is that, in the first case, it can
be evaluated at a point of M, while, in the second, it should be interpreted as acting
on elements of M. Taking this identification into account, the projection 7" is simply
Vie, (T, g) — vie,(T).

Theorem 1 showed that the reduced system can be identified with a section T’ of
the prolongation bundle ﬁx. A coordinate expression for this system, similar to (42) is
(the meaning of the notations being obvious)

K

r = ﬁl; (E)Vav

v = 5 (T)wA, (43)

o (d (OL s (0L ¢ ,OL

Since the invariant sections form a Lie sub-algebra, it is clear that the structure functions
©(T,g) w.r.t. {e,} are invariant functions, and thus are independent of the coordinates

g'. From (7), we can moreover conclude that C., (%) = C(7,g). Likewise (in the

above identification), the quotient anchor map is p : vie,(T) — ﬁ’;%(f), where
PE(T) = pk(Z,g) is the first set of the components of p. If we further take {f4} to
be a G-invariant basis of Sec(u) (and if we identify again these sections with their
projections on Sec(fi)), then, due to (23), the induced injection i : W — V is simply
wify — iywAey, where i4(T) = i%(T,g). To ease the notations, we will from now
on remove all the bars from the structure functions on 7 and @, in accordance with

earlier made identifications. Finally, the invariance of the Lagrangian can be expressed

oL
as L(z"%, (hg)!,v*) = L(z*, (g)!,v*),Vh € G, which means that py i 0. In particular,
9
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in the first term of the right-hand side of the last of equations (42) only derivatives of

the form P will remain. From all this, it is obvious that (42) projects on (43).

We can define also a basis {X 4, V4} for Sec(72*), similar to the basis (40) of Sec(u*).
However, by the conventions we adopted for denoting coordinates, bases and structure
functions, these sections can formally be identified with the sections {X4,V4} and we
will again make no notationial distinction. With this identification in mind, the reduced
dynamics T € Sec(f*) looks formally the same as expression (41) for I' € Sec(z*). The
corresponding vector field is, however,

= 0 0

X"(r)_wAAAa -+ 5ord c X(W).

Next, we discuss some examples where an iterative reduction process applies.

7.1. The non-holonomically constrained particle

In this example M = R® and V = TM (with its standard Lie algebroid structure).
The system has a Lagrangian L(z,y, z,4,9,2) = 3(i® + §* + %) and is subjected to

a constraint, characterized by a distribution W C T'M with equation Z = yi (see
also [1]). The injection ¢ is then given by (z,y, z,%,9) — (2,v, 2, 2,9, yi), or, for the
corresponding basis {f1,f2} of Sec(n), i(f;) = X1 = & + yZ and z'(fg) X, = £. The
basis (40) is here given by the sections &1 = (fi, X1), &y = (fy, X2), V1 = (0, 53) and
V, = (0, 2 35)- An easy calculation (based on e.g. the coordinate expressions (42)) shows
that the dynamlcs I € Sec(p?) of this example is given by
. . ) ..

I'= xé\,’l + yXQ - 11 y2 xyVl, (44)

or by the corresponding vector field
0 0 0 Y 0
M) =t— +9y— f— — ty— € X(W
() $8x+y8y+y$82 1+y2xy8x (W)

Consider now first the action of G = R? on M = IR?, given by

O ((ry8); (x,y, 2, 8,9,2)) — (e + 1y, 2+ 8,2, 9, 2).

Then, clearly the restriction of /¥ to W is a constrained Lie algebroid action for this
system. The projections on the quotient manifolds are in this case 7™ : (z,y, z) — v,
T (v,y,2,1,7,2) — (y,2,9,%2) and T : (z,y,2,%,9) — (y,%,y), while the quotient
injection i is (y,4,9) — (y,&,9,y&). The bases {f;,f,} and {8%, 5y az} for u and 7
consist clearly only of invariant sections. As has been said above, the reduced dynamics
T e Sgc(ﬁx) looks formally the same as expression (44) for I' € Sec(u”). The vector
field \(T) is, however,

0 y .0 —
— e X(W). 4
dy 1—|—y2xy(9j; € X (W) (45)

Instead of making a reduction by the whole G = R?, we can work also in two

Y

stages: one can look first at the restriction of the action ¥ to its (normal) subgroup
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N =R = R x{0}. Then, denoting the reduction process now by ", the reduced injection
is 1 : (y,2,4,9) — (y,2 4,19, y&) and, again, I e Sec(/l;\) will take the same form as
I' (leaving aside the fact that I' acts on elements (y, z,&,4) € W). The vector field of
interest is now

~

P IR .,
A”(F):ya—erw—Z— Siy—— € X(W).

For the above system the Lagrangian is L(z,y, 4,7, %) = 1(@® 4+ ¢* + 2%), while the
constraint is still 2 — y& = 0. Since both are invariant under the R~action

O (s (y, 2, 8,0, 2) — (Y, 2 + 8,8, 9, 2),

2 <A 2
a second reduction can be performed to obtain I' € Sec(it ). Since, again, I' takes
the same form as I and thus also as I' (under appropriate identifications), it becomes
clear, that reduction by two stages for this non-holonomically constrained particle is

~ ~
~ ~

2
equivalent with direct reduction. Likewise, A (I') € X (W) can formally be identified
with expression (45) for X" (T).

7.2. The falling rolling disk

In this example we consider a homogeneous disk rolling over a horizontal plane. The
constraint is that the disk rolls without slipping. We will use the same notations as in
[1], p. 21: (z,y) denote the coordinates of the contact point in the plane on which the
disk rolls, and #, ¢ and v are the angle between the plane and the vertical axis, the
‘heading angle’ of the disk, and the ‘self-rotation’ angle of the disk, respectively. In this
example, M = SE(2) x SO(2) x SO(2), V=TM and the Lagrangian is

L= % [(g — Résin)? + 2 sin0 + (ncosd + Ré)ﬂ (46)

1 L . .
+ 3 [J(Q2 + ¢? cos? 0) + I(psinf + @D)ﬂ — mgRcost

with ( = 2 cos¢ + ysing and n = —zsing + ycos ¢ and I and J are inertia constants.
The constraints are given by the equations

T = —¢R coS @,
. 47
{ y = —yYRsing. (47)
The falling rolling disk is invariant under the action of the group G = SE(2)x.S0O(2)

on M

M

¢ (ab,a,B) x (z,y,0,1,0) — (rcosa —ysina + a,rsina + ycosa + b,
¢+ a, v+ B,0)
and its induced tangent action
VG (a,0,0,8) % (2,9, 6,9.0,,5,6,,0) —
( gf(:v,y,gb,z/),@),:tcosa—ysina,ﬂbsina+ycosa,qﬁ,¢,9).
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¢ is by construction a Lie algebroid action for the Lie algebroid 7'M and it restricts to
a constrained Lie algebroid action on the subbundle W. The basis {fy, fs,f3} of Sec(u)
with

0 0 0

A Y,

Z( 9) 897 7’( ¢) a¢7 7’( 3) aw
is invariant under the restricted action . Fibre coordinates on W will be denoted by
(0, ¢, w?). The natural basis {a%v a%v %, a%sv aw} on V = TM is, however, not invariant
under ¥y,. An invariant basis {e,} on T'M is e.g.

— Rcos gb— — Rsin gb—

D00y
90" o ot

and we will use from now on induced coordinates (z,y, 0, ¢, ¥; , 7, 0, ¢, 1/1) on T'M , where

0 .0 .0 0
{ec = cos (b% + sin qba—y, e, = —sin (bf)_x + cos (ba—y,ee =

¢ and 7 are as above. In the new coordinates the constraints can be written as { = — R
and 7 = 0. This means that the only non-vanishing components of the injection are
i =1, zi — 1,4y = 1 and i§ = —R. The change of basis has the side-effect that the
structure functions of the Lie algebroid need to be recalculated. Of course, p is still the
identity, but, where in the standard basis the structure functions C¥, of the standard
Lie algebroid all vanish, there arise non-vanishing brackets for the new basis sections.
In particular, [ec,ey] = —e, and [e,,es] = e¢, so the non-vanishing structure functions
are C’g¢ = —1 and Cg s =1 An explicit expression for the Lagrangian equations follows
now easily from (42). To proceed further, it suffices to know that the section I is of the
form

T'= 02Xy + oXy + W X5 + [V + [V + f2Vs,
and that the associated vector field is
0
(T —0——|—¢> ( Rcosqb——Rsmgb >+f9—+f¢——|—f3
(T) 20 "V \ s 99
Let’s look at the reduced system now: 6 can be regarded as the only coordinate
on M, while, as before, we denote coordinates on V as (6,¢, 7,0, ¢,1). The reduced
Lagrangian looks exactly like (47), only now it should be interpreted as a function in

0

the variables of V alone. Also the constraints remain simply ¢ = —Ri) and n=0. We
have seen above that, within the earlier discussed identifications, all reduced sections
have the same form as I'. The G- reduced vector field is here
7 — o, 6
(T 00 gl g 48
@) =bz5+ 15 +1 o5 o (48)

An iterative reduction process now becomes available. In fact, we have a nested
subgroup structure R?> ¢ SE(2) C SE(2) x SO(2), so we can perform reduction in
three steps: the corresponding groups for the diagram at the end of the previous section
are Hy = SO(2), Hpe = SO(2) x SO(2) and Hyo = SO(2). We will limit ourselves,
however, to a reduction in two steps. The first step will be reduction by the group
Ny = SE(2), whose restricted action on M is

Uy, ¢ (a,b,0) x (2,9,6,9,0) — (zcosa — ysina + a, rsina + ycosa + b,
¢+ a,v,0).
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The earlier discussed bases are also invariant under the tangent lift of ¢y , but
coordinates on M are now (0,¢). The Lagrangian L looks formally the same as
the expression (47) again, but is to be interpreted as a function of the variables
0,0,C,m, 9, q5, w) A similar observation is valid for the reduced constraint. The vector
field of interest after the reduction by Nj is

o, . 0 0 0 0
100 R Y B S I T S = S
NY(T) 989+¢8¢+f39+fa¢+faw3'

The symmetry group H; = G/N; for the second stage is SO(2). Since both the
Lagrangian L and the reduced constraint are still independent of the coordinate ¢, i.e.
invariant under the action

Wi Bx (¥,0) — (¥ + 6,0),

a second reduction can be performed. The coordinate of M is again # and also the
N — =
corresponding vector field A (') can be identified with expression (48) for A" (T).
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