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Abstract

Special conformal Killing tensors have appeared recently in several
differential geometric contexts. In this article solutions of the special
conformal Killing tensor equation on a pseudo-Riemannian manifold
are studied from Wolf’s structural equations approach. As a result
it follows that the solutions of the special conformal Killing tensor
equation are determined by the second order jet. It is shown that the
space of solutions is of maximal dimension if and only the metric is
of constant curvature. By means of taking a trace the special confor-
mal Killing tensor equation is solved in complete generality for spaces
of non-zero constant curvature. Finally the case of two-dimensional
spaces is considered in which the special conformal Killing tensor equa-
tion is equivalent to the usual Killing tensor equation of valence two.
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1 Introduction

This paper is concerned with symmetric valence 2 tensors Lij on a Rie-
mannian or pseudo-Riemannian manifold which satisfy the equations

Lij|k = 1
2(gjkλi + gikλj),

where λi is a covariant vector, which is determined by the equations: in fact
λi = λ|i where λ = (gjkLjk)|i is the trace of Lij . For any such tensor

Lij|k + Ljk|i + Lki|j = gijλk + gjkλk + gkiλj ,

so these tensors are conformal Killing tensors, and since λi is a gradient,
conformal Killing tensors of gradient type; since not all conformal Killing
tensors (even those of gradient type) are of this form, they may be called
special conformal Killing tensors.

Special conformal Killing tensors have some very interesting properties, es-
pecially when the metric is Riemannian, as we temporarily assume. In the
first place, the Nijenhuis torsion of any special conformal Killing tensor van-
ishes, as it is easy to show by a direct calculation (properly speaking, we
should refer here to the type (1, 1) tensor obtained by raising an index with
the metric, but we leave this to be understood). Since by assumption a
special conformal Killing tensor is symmetric it has real eigenvalues, and
the eigenvectors may be taken to be pairwise orthogonal; if the eigenvalues
are everywhere simple, coordinates may be found with respect to which the
metric is orthogonal and the special conformal Killing tensor is diagonal.
Conversely, a conformal Killing tensor of valence 2 whose Nijenhuis tor-
sion vanishes and which has simple eigenvalues must be a special conformal
Killing tensor (see [7, 10]).

Furthermore, the cofactor tensor of a special conformal Killing tensor is al-
ways a Killing tensor. The special conformal Killing tensor equations above
are linear, and evidently have the solution Lij = kgij for any constant k; so
if Lij is a special conformal Killing tensor, so is Lij + kgij . By taking the
coefficients of powers of k in the cofactor tensor of this special conformal
Killing tensor, we obtain n valence 2 Killing tensors, simultaneously diag-
onal with Lij , one of which is the metric itself (here n is the dimension of
the underlying manifold). These Killing tensors may be shown to have pair-
wise vanishing Schouten brackets, and when the special conformal Killing
tensor has simple eigenvalues they are independent; thus in this case the
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geodesic flow of the metric is completely integrable in the sense of Liouville;
furthermore, Eisenhart’s theorem holds and the Hamilton-Jacobi equation
is separable in the orthogonal coordinates with respect to which the special
conformal Killing tensor is diagonal. Special conformal Killing tensors which
have simple eigenvalues are sometimes called Benenti tensors, after Benenti
who first studied them in the context of the Hamilton-Jacobi separability
problem (see for example [1, 2]). Though not all separable Riemannian
manifolds admit Benenti tensors (for example, the Liouville spaces do not
in general), those that do form an important subclass of separable systems,
and have been studied by a number of authors in addition to Benenti himself
(see for example [3, 7, 10, 14]). In particular, it has been pointed out re-
cently [4] that the Hamiltonian dynamical systems associated with Benenti
tensors in spaces of constant curvature are maximally superintegrable.

Special conformal Killing tensors also occur in other contexts. One example
is the study of projectively equivalent metrics. It may be shown that if gij

and hij are projectively equivalent (so that they have the same geodesics up
to reparametrization) then the tensor

Lij =
(

deth
det g

)1/(n+1)

gikgjlh
kl,

where hikhjk = δi
j , is a special conformal Killing tensor of gij ; and conversely,

given any non-singular special conformal Killing tensor of a metric gij , the
tensor hij defined by

hij = (detL)−1gikgjlL̄
kl,

where L̄ikLjk = δi
j , defines a metric projectively equivalent to the first. For

more information on this topic see for example [5, 8, 16] (the title of the
first of these papers notwithstanding, in this case it is not necessary for the
eigenvalues of Lij to be simple to obtain interesting results).

As a third example of the interest of special conformal Killing tensors we cite
a class of nonconservative Lagrangian systems studied in [9, 15, 17]. Each
such system is based on a kinetic energy, and has first integrals quadratic
in velocities formed from special conformal Killing tensors of the metric
defining the kinetic energy. When there are two independent first integrals
of this form the system is completely integrable.

Though special conformal Killing tensors of pseudo-Riemannian metrics
have not been studied to the same extent as those of Riemannian metrics,
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it is clear that a number of these results will carry over, perhaps with some
modifications.

Since special conformal Killing tensors have these interesting applications,
it seems important to establish the basic properties of the solutions of the
special conformal Killing tensor equations. In particular, since the equations
are linear the solution space is a vector space over the reals, which we denote
by V . It is known that in n-dimensional Euclidean space the dimension
of V is 1

2(n + 1)(n + 2) [7, 10, 15]. The main purpose of this note is to
show that this is the maximal dimension that V can have, and that if the
maximum is achieved then the space is a space of constant curvature. In [4]
the authors, having stated that spaces of constant curvature are maximally
superintegrable, say that ‘it seems plausible that they are multiseparable
too’. We show here exactly the extent to which this is the case.

Our method is to derive a system of structural equations, in the sense of
Hauser and Malhiot [12, 13] and Wolf [19], for special conformal Killing ten-
sors. That is to say, we find a set of tensorial quantities FA which satisfy
a system of equations of the form FA|i = ΓB

AiFB (sum over B intended),
among which are to be found the special conformal Killing tensor equations.
The equations of this extended set are the structural equations. The FA

consist of the symmetric tensor Lij and tensors constructed from it and its
covariant derivatives; the coefficients ΓB

Ai are tensorial quantities which are
independent of the FA and in fact are built out of the metric, and the curva-
ture and its covariant derivatives. The structural equations are equivalent
to the original special conformal Killing tensor equations, in the sense that
given any solution Lij of the special conformal Killing tensor equations, the
corresponding FA satisfy the structural equations, and conversely given any
solution of the structural equations the Lij component of FA satisfies the
special conformal Killing tensor equations.

The advantage of expressing the problem of finding special conformal Killing
tensors in the form of solving the structural equations derives from the
distinctive nature of these equations: each covariant derivative FA|i is a linear
combination of the FA. It follows that given any point x of the underlying
manifold, the linear map sending a solution Lij of the special conformal
Killing tensor equations to FA(x) is injective, so that the largest value the
dimension of V can have is the number of variables FA in the structural
equations. Moreover, the integrability conditions of the structural equations
are easily found by covariantly differentiating the equations, using the Ricci
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identities to eliminate second covariant derivatives, and substituting for the
first derivatives introduced by using the original equations. The resulting
conditions are

(ΓB
Ai|j − ΓB

Aj|i + ΓC
AiΓ

B
Cj − ΓC

AjΓ
B
Ci −RB

Aij)FB = 0,

where the RB
Aij are appropriate combinations of components of the curva-

ture tensor. When V has maximal dimension the values of the FA may be
chosen arbitrarily at each point of the underlying manifold, so

ΓB
Ai|j − ΓB

Aj|i + ΓC
AiΓ

B
Cj − ΓC

AjΓ
B
Ci −RB

Aij

must vanish everywhere, and this gives algebraic conditions on the curvature
and its covariant derivatives from which the properties of the spaces for
which V has maximal dimension can be determined.

The relevant features of structural equations, including those described
above, seem to be treated as common knowledge rather than derived in
the literature; we give a brief discussion with proofs in an appendix.

In tensor calculations we follow the sign conventions of Eisenhart [11], so
that the Ricci identities are (for example) Ki|jk −Ki|kj = Rl

ijkKl, and the
Ricci tensor is given by Rij = Rk

ijk. The Einstein summation convention is
in force almost throughout.

2 The structural equations

For any symmetric tensor Lij we set λi = (gjkLjk)|i and µ = gijλi|j ; λi is a
covariant vector and µ a scalar.

Theorem The equations

Lij|k = 1
2(gjkλi + gikλj)

λi|j =
1
n

(
2Rk

jLik − 2gklRm
ijkLlm + gijµ

)
µ|i =

2
n− 1

(
gjl(2Rk

i|l −Rk
l|i)Ljk + (n+ 1)Rj

iλj

)
are structural equations for special conformal Killing tensors (with FA =
{Lij , λi, µ}).
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Proof Suppose first that Lij is a special conformal Killing tensor, so that

Lij|k = 1
2(gjkλi + gikλj).

By differentiating again and using the Ricci identity we obtain

1
2(gjkλi|l + gikλj|l − gjlλi|k − gilλj|k) = Rm

iklLmj +Rm
jklLim.

It follows, by multiplying by gil (say), summing, and renaming indices, that

λi|j =
1
n

(
2Rk

jLik − 2gklRm
ijkLlm + gijµ

)
.

Then

n(λi|jk − λi|kj) = nRl
ijkλl

= 2
(
(Rl

j|k −Rl
k|j)Lil − glmRn

ijk|lLmn

)
+
(
gikR

l
j − gijR

l
k − 3Rl

ijk

)
λl + gijµ|k − gikµ|j ,

where we have substituted for Lij|k from the special conformal Killing tensor
equations, and used the cyclic and Bianchi identities and the symmetry of
the Ricci tensor to simplify various terms. Thus

gijµ|k − gikµ|j = 2
(
glmRn

ijk|lLmn − (Rl
j|k −Rl

k|j)Lil

)
+
(
(n+ 3)Rl

ijk − (gikR
l
j − gijR

l
k)
)
λl.

If one multiplies by gij , sums, and renames indices, one obtains the stated
equation for µ|i.

Conversely, suppose that the given equations are satisfied for some tensor
Lij , covariant vector λi and scalar µ. Then Lij is evidently a special con-
formal Killing tensor; it follows from the special conformal Killing tensor
equations that λi = (gjkLjk)|i; and on multiplying the equation for λi|j by
gij we find that µ = gijλi|j .

Finally, the given equations have the form required for them to be structural
equations. They are thus structural equations for special conformal Killing
tensors.

Corollary 1 The dimension of the space of solutions of the special con-
formal Killing tensor equations is at most 1

2(n+ 1)(n+ 2).

6



We now prove that for n ≥ 3 the maximal dimension is attained if and only if
the space is a space of constant curvature. Rather than proceeding exactly as
described in the introduction by deriving the integrability conditions of the
structural equations in all generality, which involves somewhat complicated
calculations, we first show that it is a necessary condition that the space
has constant curvature, and then show that the integrability conditions are
satisfied for a space of constant curvature.

Corollary 2 For n ≥ 3, the dimension of the space of solutions of the
special conformal Killing tensor equations is 1

2(n + 1)(n + 2) if and only if
the space has constant curvature.

Proof In the course of the proof of the theorem we showed that

nRl
ijkλl = 2

(
(Rl

j|k −Rl
k|j)Lil − glmRn

ijk|lLmn

)
+
(
gikR

l
j − gijR

l
k − 3Rl

ijk

)
λl + gijµ|k − gikµ|j ,

where
µ|i =

2
n− 1

(
gjl(2Rk

i|l −Rk
l|i)Ljk + (n+ 1)Rj

iλj

)
;

when µ|i from the second of these sets of equations is substituted in the
first we obtain the integrability conditions for the λi|j equations. When the
solution space has the maximum dimension the integrability conditions of
the structural equations must be satisfied, at each point of the underlying
manifold, with arbitrary choices of the values of Lij , λi and µ. In particular
we can choose to take Lij = 0 at the point, so that we must have

nRl
ijkλl =

(
gikR

l
j − gijR

l
k − 3Rl

ijk

)
λl + gijµ|k − gikµ|j ,

where
µ|i =

2(n+ 1)
n− 1

Rj
iλj ,

and this for any λi. That is to say,

(n+ 3)Rl
ijk = −

(
gijR

l
k − gikR

l
j

)
+

2(n+ 1)
n− 1

(
gijR

l
k − gikR

l
j

)
=

n+ 3
n− 1

(
gijR

l
k − gikR

l
j

)
,

which is to say that

Rl
ijk =

1
n− 1

(
gijR

l
k − gikR

l
j

)
.
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Then by taking a trace we obtain

Rij =
1
n
gijR,

where R is the curvature scalar, so that

Rl
ijk =

R

n(n− 1)

(
gijδ

l
k − gikδ

l
j

)
.

Thus the curvature tensor takes the constant curvature form pointwise,
whence the result by Schur’s Theorem ([11], Chapter II, Section 26) (we
require n ≥ 3 for Schur’s Theorem to hold).

We now have to show that there are no further conditions on the space com-
ing from the remaining integrability conditions for the structural equations;
this we do by showing that these conditions are all satisfied for a space of
constant curvature. We write the curvature as

Rl
ijk = B

(
gijδ

l
k − gikδ

l
j

)
, B =

R

n(n− 1)
;

B is of course the constant (sectional) curvature, and Rij = (n − 1)Bgij .
The Ricci identity for a tensor Ai1...ip takes the simple form

Ai1...ip|jk −Ai1...ip|kj = B
p∑

r=1

(
girjAi1...k...ip − girkAi1...j...ip

)
.

In a space of constant curvature

λi|j = 2BLij +
1
n
gij(µ− 2Bλ), λ = gklLkl

µ|i = 2(n+ 1)Bλi, λi = λ|i.

From the first equations we see that λi|j is symmetric (as indeed it is in gen-
eral); but µ|ij = 2(n+ 1)Bλi|j , and therefore µ|ji = µ|ij , so the integrability
conditions for the µ|i equations are satisfied. For the integrability conditions
of the first equations we have

λi|jk − λi|kj

= 2B(Lij|k − Lik|j) +
1
n

(
gij(µ|k − 2Bλk)− gik(µ|j − 2Bλj)

)
= −B(gijλk − gikλj) + 2B(gijλk − gikλj)
= B(gijλk − gikλj) = Rl

ijkλl,
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so these integrability conditions are satisfied. Finally, we have to consider the
integrability conditions for the special conformal Killing tensor equations,
which are

1
2(gjkλi|l + gikλj|l − gjlλi|k − gilλj|k) = Rm

iklLmj +Rm
jklLim,

with λi|j as above. The terms involving λ and µ in λi|j make no contribution
to the left-hand side; the integrability conditions are

B(gjkLil + gikLjl − gjlLik − gilLjk) = Rm
iklLmj +Rm

jklLim,

and these are also satisfied.

Thus in any space of constant curvature the integrability conditions of the
structural equations are satisfied, the equations are completely integrable,
and there is a solution with specified values of Lij , λi and µ at any given
point. The tensor Lij is a special conformal Killing tensor, and so the linear
map from V to the values of Lij , λi and µ at the point is surjective; it is
therefore an isomorphism, and so the dimension of V in a space of constant
curvature is 1

2(n+ 1)(n+ 2).

The following consequence of the structural equations, while it is not re-
quired in the rest of the paper, is included because it is potentially useful
for the determination of the special conformal Killing tensors of any partic-
ular metric.

Corollary 3 A special conformal Killing tensor Lij satisfies

Rk
i Ljk = Rk

jLik.

Proof From the structural equation

λi|j =
1
n

(
2Rk

jLik − 2gklRm
ijkLlm + gijµ

)
we obtain

λi|j − λi|j =
2
n

(
Rk

jLik −Rk
i Ljk − gkl(Rm

ijk −Rm
jik)Llm

)
.

Now
Rm

ijk −Rm
jik = Rm

ijk +Rm
jki = −Rm

kij ,

and gklRm
kijLlm = gklgmnRnkijLlm = 0 since Rnkij is skew in its first two

indices. But since λi is a gradient λi|j is symmetric, whence the result.
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3 Special conformal Killing tensors in spaces of
non-zero constant curvature

We now obtain explicit formulae for the special conformal Killing tensors in
a space of constant curvature. Those in a flat space are easily derived —
they are given in Cartesian coordinates by

Lij = αxixj + (βixj + βjxi) + γij

where α, βi and γij are constants, with γji = γij , and we have written xi for
ηijx

j where ηij is the (constant) metric — so we confine our attention here
to spaces of non-zero constant curvature.

The structural equations can be used to advantage here also. We write them
in terms of λ = gklLkl: they are

Lij|k = 1
2(gjkλ|i + gikλ|j)

λ|ij = 2BLij +
1
n
gij(µ− 2Bλ)

µ|i = 2(n+ 1)Bλ|i,

with B 6= 0 by assumption. By the third of these, µ − 2(n + 1)Bλ is a
constant, say 2nBk for convenience; then from the second

Lij =
1

2B
λ|ij − gij(λ+ k).

From the first we find that λ must satisfy the third-order differential equa-
tions

λ|ijk = B(gjkλ|i + gikλ|j + 2gijλ|k).

Theorem In a space of non-zero constant curvature B, the map Lij →
gijLij = λ determines an isomorphism between the space of special confor-
mal Killing tensors and the space of solutions of the equations

λ|ijk = B(gjkλ|i + gikλ|j + 2gijλ|k)

for the scalar λ.

Proof We have already shown that if Lij is a special conformal Killing ten-
sor then λ = gijLij satisfies the differential equations. Suppose conversely
that λ satisfies these differential equations. Note first that if µ = gijλ|ij
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then from the equations µ|k = 2(n+1)Bλ|k, so µ−2(n+1)Bλ is a constant,
which we write as 2nBk as before. Set

Lij =
1

2B
λ|ij − gij(λ+ k).

Then

Lij|k =
1

2B
λ|ijk − gijλ|k

= 1
2(gjkλ|i + gikλ|j + 2gijλ|k)− gijλ|k,

so Lij is a special conformal Killing tensor; and

gijLij =
1

2B
µ− n(λ+ k) = λ.

Note in passing that this result shows that the dimension of the solution
space of the third-order equations is again 1

2(n+ 1)(n+ 2). This fact could
equally well have been established by noticing that the equations are struc-
tural equations — or more precisely, if we take variables λ, λi and λij with
the latter symmetric, the equations

λ|i = λi

λi|j = λij

λij|k = B(gjkλi + gikλj + 2gijλk)

constitute a structural system for the third-order equations.

We could therefore approach the problem of finding the special conformal
Killing tensors in a space of non-zero constant curvature by attempting
to solve the third-order equations. As it happens, we may find sufficient
solutions indirectly, due to the following convenient fact: the traces of valence
2 Killing tensors (Killing 2-tensors) in a space of constant curvature satisfy
the same equations, and all such Killing tensors are explicitly known. We
next derive this result about Killing tensors.

Theorem The trace κ of any Killing 2-tensor Kij in a space of constant
curvature B satisfies

κ|ijk = B(gjkκ|i + gikκ|j + 2gijκ|k).

11



Proof The Killing tensor condition gives κ|i = −2gjkKij|k. We differentiate
this twice covariantly, and use the Ricci identity to reorder indices. First,

κ|ij = −2glmKil|mj

= −2glm
(
Kil|jm +B(gimKjl + glmKij − gijKml − gljKim)

)
= −2

(
glmKil|jm +B(nKij − gijκ)

)
.

Likewise, κ|ji = −2(glmKjl|im +B(nKij − gij)κ); but κ|ji = κ|ij , so

κ|ij = −glm(Kil|jm +Kjl|im)− 2B(nKij − gijκ)

= glmKij|lm − 2B(nKij − gijκ).

Thus
κ|ijk = glmKij|lmk − 2B(nKij|k − gijκ|k).

We now work the k to the left in the first term on the right-hand side, using
the Ricci identity, in two stages, obtaining

glmKij|lmk = glmKij|lkm +B
(
(n− 2)Kij|k + 1

2(gjkκ|i + gikκ|j)
)

= glmKij|klm +B
(
(n− 3)Kij|k + gjkκ|i + gikκ|j

)
.

It follows that

κ|ijk = glmKij|klm +B
(
−(n+ 3)Kij|k + gjkκ|i + gikκ|j + 2gijκ|k

)
.

We next take the cyclic sum:

κ|ijk + κ|jki + κ|ikj = 4B(gjkκ|i + gikκ|j + gijκ|k),

using the symmetry of κ|ijk in its first two indices. Finally, we use the Ricci
identity in the second and third terms on the left-hand side:

3κ|ijk +B(gjkκ|i + gikκ|j − 2gijκ|k) = 4B(gjkκ|i + gikκ|j + gijκ|k),

whence the desired result.

We use this result to obtain the special conformal Killing tensors in a space
with metric of arbitrary signature and with non-zero constant curvature.
We take the metric to be

gij =
ηij

F 2
, F = 1 + 1

4Bηklx
kxl,
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where ηij is a constant non-singular symmetric matrix and B a non-zero
constant; such a metric has the same signature as ηij , and constant curvature
B. (The coordinate range must of course be chosen so that F never vanishes
in it.) We consider those Killing 2-tensors which are sums of symmetrized
products of Killing vectors (in fact all Killing 2-tensors in a space of constant
curvature are such [18], though we do not need this fact). The Killing vectors
take the form

ξi = αi
jx

j + 1
2B(ηjkβ

jxk)xi + F̄ βi, F̄ = 1− 1
4Bηklx

kxl

for constants αi
j and βk, where the αi

j are skew-symmetric in the sense that
αk

i ηjk + αk
j ηik = 0. It is not difficult to show that the functions

1,
xixj

F 2
,

F̄ xi

F 2

form a basis for the space of traces of such Killing 2-tensors; by the theorem
they must satisfy the third-order differential equation

κ|ijk = B(gjkκ|i + gikκ|j + 2gijκ|k),

and there are 1
2(n + 1)(n + 2) of them, as required. We can obtain special

conformal Killing tensors from them by using the formula

Lij =
1

2B
λ|ij − gijλ;

this differs from the formula given earlier by the omission of a constant
multiple of gij : this does not change the fact that Lij is a special conformal
Killing tensor, of course (though it does mean that λ is not its trace). The
constant function 1 effectively gives the trivial special conformal Killing
tensor gij . If we take

λ =
aijx

ixj

F 2

for some symmetric constant matrix aij we find (after some calculation) that
(up to an overall constant factor)

Lij = F−4
(
4F 2aij − 2BF (aikxj + ajkxi)xk +B2(aklx

kxl)xixj

)
,

where we have written xi for ηijx
j . When

λ =
F̄ bix

i

F 2

for some constant vector bi we obtain (again, apart from a constant factor)

Lij = F−3
(
2(bixj + bjxi) +B(bkxk)(ηklx

kxlηij − 2xixj)
)
.
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4 Two-dimensional spaces

In this section we shall consider the special conformal Killing tensor equa-
tions in dimension two.

We have still to complete the analysis of the structural equations for n = 2.
We show that the previous conclusion, that the space of solutions of the
special conformal Killing tensor equations has maximal dimension if and
only if the space has constant curvature, holds in dimension two also.

Theorem The dimension of the space of solutions of the special conformal
Killing tensor equations in a two-dimensional manifold is 6 if and only if the
space has constant curvature.

Proof In a two-dimensional manifold the curvature is given by

Rl
ijk = 1

2R
(
gijδ

l
k − gikδ

l
j

)
,

where R is the curvature scalar. When this is substituted into the structural
equations for µ|i we obtain

µ|i = 2gjkR|kLij −R|iλ+ 3Rλi.

It follows that

µ|ij − µ|ji = 2gkl(R|jlLik −R|ilLjk) + 3(R|jλi −R|iλj),

since λi|j and R|ij are both symmetric. In order for the integrability con-
ditions of the µ|i equations to hold, the right-hand side of this expression
must vanish, and when the dimension of the solution space of the special
conformal Killing tensor equations is maximal this must hold for arbitrary
choices of λi and Ljk, at any point. Thus R must be constant. But we know
that the integrability conditions of the structural equations hold for a space
of constant curvature (of any dimension), so the result is proved.

We now deal with some other aspects of the two-dimensional case.

As we pointed out in the introduction, a special conformal Killing tensor
Lij is a conformal Killing tensor of gradient type. Hence if we put Kij =
Lij − gijλ then Kij is a Killing tensor, that is, it satisfies

Kij|k +Kjk|i +Kki|j = 0.
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Of course in arbitrary dimension not every valence 2 Killing tensor can be
derived in this way. Passage in the opposite direction is guaranteed only for
a symmetric tensor Kij , with trace κ, which satisfies the condition

Kij|k =
1

2(n− 1)
(2gijκ|k − gjkκ|i − gikκ|j);

such a tensor is evidently Killing; and if we set

Lij = Kij −
1

n− 1
gijκ

then Lij is a special conformal Killing tensor.

The Killing tensor Kij = Lij−gijλ is the second of the sequence generated by
the cofactor construction described in the introduction, the metric being the
first; for dimension greater than two there will be others, but in dimension
two the sequence has only the two terms. In dimension two, morever, every
Killing 2-tensor satisfies the identity Kij|k = 1

2(2gijκ|k−gjkκ|i−gikκ|j), and
therefore comes from a special conformal Killing tensor, as we now show.

The Killing 2-tensor equations in dimension two are

K11|1 = 0
K11|2 = −2K12|1

K22|1 = −2K12|2

K22|2 = 0.

The derivatives of the trace are given by

κ|1 = g11K11|1 + 2g12K12|1 + g22K22|1 = 2(g12K12|1 − g22K12|2)

κ|2 = g11K11|2 + 2g12K12|2 + g22K22|2 = 2(−g11K12|1 + g12K12|2);

these may be solved to give

K12|1 = 1
2(g12κ|1 − g11κ|2)

K12|2 = 1
2(−g22κ|1 + g12κ|2).

But the equations Kij|k = 1
2(2gijκ|k − gjkκ|i − gikκ|j) are just

K11|1 = 0
K11|2 = −g12κ|1 + g11κ|2
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K12|1 = 1
2(g12κ|1 − g11κ|2)

K12|2 = 1
2(−g22κ|1 + g12κ|2)

K22|1 = g22κ|1 − g12κ|2

K22|2 = 0,

confirming the claim. It follows that in a two-dimensional manifold every
Killing 2-tensor determines a special conformal Killing tensor, and con-
versely.

Now if there is a non-trivial special conformal Killing tensor in a two-
dimensional space it must have simple eigenvalues almost everywhere, since
otherwise it will be a scalar multiple of gij on an open set, and there are
no special conformal Killing tensors of this form other than constant mul-
tiples of gij . The metric will therefore be separable, and as we show in an
appendix, must therefore take the Liouville form, which (assuming positive-
definiteness) is (s1 + s2)δij , where si is a function of xi alone, i = 1, 2. The
corresponding special conformal Killing tensor Lij and Killing 2-tensor Kij

are given in matrix representation by

L = (s1 + s2)

(
s1 0
0 −s2

)
, K = (s1 + s2)

(
s2 0
0 −s1

)
.

Appendix 1

We derive here the results about structural equations we use in the main
body of the paper. We interpret such equations as follows. We consider a
vector bundle E →M , where M is a pseudo-Riemannian manifold equipped
with the Levi-Civita connection (though for the following considerations it
would be enough to take M to be a manifold with an arbitrary symmetric
affine connection); E is supposed to be the Whitney sum of tensor bundles
over M , so that the connection induces a connection on E. We take fibre
coordinates uA on E, and denote by ΛB

Ai the connection coefficients for the
induced connection with respect to coordinates (xi, uA). We consider the
structural equations FA|i = ΓB

AiFB to be equations for a section of E, given
in coordinates by uA = FA(xi).

Our approach is motivated by the case in which the ΓB
Ai all vanish. Then

a solution of the equations defines a section of E which is covariantly con-
stant; or if we think of the connection as defining and being defined by
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a horizontal distribution on E, a section which is horizontal (that is, an
n-dimensional submanifold of E, transverse to the fibres, to which the hori-
zontal distribution is everywhere tangent). Given any point u ∈ E, if there
is a horizontal section through u it is unique. Now the zero section of any
vector bundle equipped with a linear connection is a horizontal section, and
is the unique horizontal section through any point (xi, 0). Thus if FA|i = 0
and FA(xi) = 0 anywhere then FA(xi) = 0 everywhere, so that the linear
map from solutions of the equations FA|i = 0 to their values at an arbitrary
point of M is injective, and the maximum dimension of the solution space
is the fibre dimension of E. The necessary and sufficient condition for the
equations to be completely integrable, that is for there to be a horizontal
section through every point of E, is that the horizontal distribution should
be integrable (in the sense of Frobenius), or equivalently that the curvature
of the induced connection should vanish.

Theorem Consider a system of structural equations FA|i = ΓB
AiFB, as

interpreted above. Then

1. if, for any x ∈ M , there is a solution with prescribed values FA(x) it
is unique;

2. the space of solutions has maximum dimension equal to the fibre di-
mension of E;

3. the maximum dimension of the solution space is attained if and only
if the equations are completely integrable;

4. the necessary and sufficient conditions for the system to be completely
integrable are that

ΓB
Ai|j − ΓB

Aj|i + ΓC
AiΓ

B
Cj − ΓC

AjΓ
B
Ci = RB

Aij ,

where RB
Aij are the components of the curvature of the induced con-

nection on E.

Proof It is only necessary to note that since the coefficients ΓB
Ai are assumed

to be tensorial, ΛB
Ai − ΓB

Ai determines a new connection on E, with respect
to which the structural equations are equations for covariantly constant
sections. Thus items (1), (2) and (3) follow immediately from the earlier
discussion. It is easy to see that the curvature of the new connection is

RB
Aij −

(
ΓB

Ai|j − ΓB
Aj|i + ΓC

AiΓ
B
Cj − ΓC

AjΓ
B
Ci

)
,
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whence item (4).

Appendix 2

Here we show that in two dimensions every metric which is orthogonally
separable is of the Liouville form. We use the Levi-Civita conditions, which
for a metric in any dimension, in orthogonal coordinates, are

∂2gkk

∂xi∂xj
− gjj

∂gjj

∂xi

∂gkk

∂xj
− gii

∂gii

∂xj

∂gkk

∂xi
= 0,

i, j, k = 1, 2, . . . , n, i 6= j; no sum. In two dimensions, for the metric ds2 =
Edx2 +Gdy2, the Levi-Civita conditions are

∂2(1/E)
∂x∂y

= E
∂(1/E)
∂x

∂(1/E)
∂y

+G
∂(1/G)
∂x

∂(1/E)
∂y

∂2(1/G)
∂x∂y

= E
∂(1/G)
∂x

∂(1/E)
∂y

+G
∂(1/G)
∂x

∂(1/G)
∂y

.

As a consequence,

∂2 logE
∂x∂y

= − ∂

∂x

(
E
∂(1/E)
∂y

)
= − ∂

∂y

(
G
∂(1/G)
∂x

)
=
∂2 logG
∂x∂y

,

so that there are (necessarily non-vanishing) functions f(x, y), φ(x) and ψ(y)
such that E = φf and G = ψf . When the manifold is Riemannian, without
loss of generality we may assume that φ and ψ are positive (so that f is also
positive): then by a change of coordinates u = u(x), v = v(y) we can bring
the metric to the form f(u, v)(du2 +dv2). This new form of the metric must
also satisfy the Levi-Civita conditions, which now both become

∂2(1/f)
∂u∂v

=
2
f

∂(1/f)
∂u

∂(1/f)
∂v

, or
∂2f

∂u∂v
= 0

as required. For an alternative derivation see [6].
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