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Abstract. We generalize the construction of a class of type (1, 1) tensor fields R

on a tangent bundle which was introduced in a preceding paper. The generalization
comes from the fact that, apart from a given Lagrangian, the further data consist of
a type (1, 1) tensor J along the tangent bundle projection τ : TQ → Q, rather than
a tensor on Q. The main features under investigation are two kinds of recursion
properties of R, namely its potential invariance under the flow of the given dynamics
and the property of having vanishing Nijenhuis torsion. The theory is applied, in
particular, to the case of second-order dynamics coming from a Finsler metric.

1 Introduction

The term recursion operator is used in the literature in a number of different contexts,
and thus can have quite different meanings. Most often, however, one will use this term
when referring to a type (1, 1) tensor field, R say, with either (or both) of the following
properties: (i) its Nijenhuis torsion NR is zero, which is a necessary requirement for
example when constructing a Poisson-Nijenhuis structure (see e.g. [12]); (ii) it is invariant
under the flow of some given dynamics Γ, i.e. LΓR = 0, in which case the focus can be
on a tensor which maps symmetries of Γ into symmetries. In this paper we shall pay
attention to both of these properties.

A major source for many of the ideas to be discussed below is [6], in which the two possible
properties of a recursion operator were both found to be relevant in the context of the dy-
namics of kinetic energy Hamiltonians on the cotangent bundle of a (pseudo-)Riemannian
manifold. More precisely, [6] was about (gauged) bi-differential calculi and the natural
role they play in the study of bi-Hamiltonian structures. For specific applications, R was
taken to be J̃ , the complete lift to the cotangent bundle T ∗Q of a type (1, 1) tensor field
J on Q. The two cases of special interest were the case in which J̃ is invariant under the
flow of a kinetic energy Hamiltonian system and the case in which J is a so-called special
conformal Killing tensor or Benenti tensor with respect to a given metric tensor on Q,
which plays an important role in the study of Hamiltonian systems of mechanical type
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which are separable in the sense of Hamilton-Jacobi theory. In both cases the Nijenhuis
property NR = 0 came for free.

The matters discussed in [6] are of course limited in that they deal only with systems
which are as one might say quadratic in velocities. There are many situations in which
one would like to be able to use similar techniques, but which are not subject to that
limitation: for example, separable systems in which there are first integrals quartic (say)
in velocities; or systems in which the quadratic restriction is replaced by that of being
homogeneous of degree two, that is, Finsler structures. The work described in the present
paper is part of a programme whose overall objective is adapting [6] to cover more general
dynamical systems, which might include such examples. This is far from being trivial,
however – the Nijenhuis property NR = 0 will no longer readily come for free, for example.
We shall therefore limit ourselves here, so far as [6] is concerned, to studying tensor fields
R which are invariant under the given dynamics, leaving the generalization of the situation
which in [6] led to so-called special conformal Killing tensors to a later contribution.

In [17], the first instalment of this programme, we reviewed [6] from a certain kind of
tangent bundle perspective, with the purpose of setting the stage for the type of gener-
alization we have in mind. Briefly, if S denotes the canonical almost tangent structure
on TQ and J c the complete lift of J to TQ, it was observed that J cS provides a kind
of alternative almost tangent structure. Thus for any given regular Lagrangian L on TQ
it makes sense to consider, in addition to the corresponding symplectic form ddSL, the
2-form ddJcSL; these two forms give rise in a natural way to a type (1, 1) tensor field R
on TQ, defined by

iR(ξ)ddSL = iξddJcSL, ∀ ξ ∈ X (TQ) (1)

(we denote the module of vector fields on a manifold M by X (M)). That this tensor on
TQ has an important role to play is suggested by the fact that it is the pullback under
the Legendre transform of L of the lift J̃ of J to T ∗Q. The special case in which L is
the kinetic energy of a Riemannian metric, or more generally a Lagrangian of mechanical
type, then leads to a tangent bundle version of the results in [6], which contains a number
of interesting new features.

With a generalization to Finsler spaces, for example, in mind it will obviously not be
sufficient simply to replace a Riemannian metric by a Finsler one, say, while keeping J
to be a basic tensor field, i.e. a tensor field on Q: it will be necessary to take J to be
velocity dependent also, that is, to take it to be a tensor field along the tangent bundle
projection. So the main objective of this paper is to generalize the constructions in [17] to
the case where J is a tensor field along the tangent bundle projection. When we consider
the special case of a Lagrangian coming from a Finsler metric, it will be natural to assume
that J is homogeneous of degree zero in the velocities; but we shall not make such an
assumption initially. In particular, we shall be concerned with generalizing the definition
of R in (1) when J is a tensor field along the tangent bundle projection. For want of a
better term we shall call a tensor R defined as in (1) or its generalization an R-tensor.

It is a major component of our approach that we concentrate, certainly so far as intrinsic
definitions and coordinate-free calculations are concerned, on the tangent bundle rather
than the cotangent bundle. One of the main reasons for this is that the calculus of forms
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along the tangent bundle projection has been fully developed (and proven to be successful
in a number of applications), which is much less the case for a calculus along the cotangent
bundle projection. But we have seen in [17] that coordinate calculations tend to be easier
on the cotangent bundle side, so we shall try to use the best of both worlds in what
follows.

The scheme of the rest of the paper is as follows. As was already mentioned in the final
section of [17], the first question to address is whether there are natural generalizations
of the complete lift constructions. We therefore begin Section 2 with a discussion of
generalizations of the complete lifts J c and J̃ to the case in which J is a tensor along the
tangent bundle or cotangent bundle projection. The constructions on the tangent bundle
side relate to a given dynamics Γ. We show how to generalize the definition (1) of a tensor
R associated to J and a given Lagrangian L and investigate its structure and immediate
properties. Section 3 is about the conditions for such R to be invariant under the flow of
Γ and recalls a number of applications in which such recursion tensors play a distinctive
role. The conditions for R to have vanishing Nijenhuis torsion are studied in Section 4.
The theory is applied to the particular case of a Finsler Lagrangian in Section 5, and is
illustrated on some simple systems in Section 6.

Before closing this introduction, we briefly recall the basics of what one might call Sode-
calculus. Sode is an abbreviation for second-order ordinary differential equation. We
shall be dealing with systems of second-order ordinary differential equations which can
be represented by vector fields Γ on TQ given in terms of base coordinates qi and corre-
sponding fibre coordinates (velocities) ui by

Γ = ui ∂

∂qi
+ f i ∂

∂ui

for some functions f i = f i(qj, uj); when we refer below to a dynamical system on a tangent
bundle we shall always mean a system of second-order ordinary differential equations of
this type, or more often the Sode vector field representing them.

Each Sode defines on TQ a horizontal distribution, or non-linear Ehresmann connection,
with connection coefficients Γi

j = −1
2
∂f i/∂uj. We shall denote by X (τ) the C∞(TQ)-

module of vector fields along the tangent bundle projection τ : TQ → Q, that is, sections
of the pullback bundle τ ∗TQ → TQ. Each X ∈ X (τ) determines two vector fields on TQ,
its horizontal lift XH where

XH = X i

(
∂

∂qi
− Γj

i

∂

∂uj

)
= X iHi,

and its vertical lift XV given by

XV = X i ∂

∂ui
= X iVi.

We can also define horizontal and vertical lifts of a type (1, 1) tensor field J along τ by

JH(XV ) = J(X)V , JH(XH) = J(X)H, (2)

JV (XV ) = 0, JV (XH) = J(X)V . (3)
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The curvature R of the non-linear connection is the vector valued 2-form along τ given
by

R = 1
2
Ri

jk dqj ∧ dqk ⊗ ∂

∂qi
, Ri

jk := Hk(Γ
i
j)−Hj(Γ

i
k). (4)

Corresponding to the non-linear connection there is a linearized connection, said to be of
Berwald type, which can best be interpreted (see e.g. [2]) as a connection on τ ∗TQ → TQ.
The main operators associated to this linear connection are a vertical and horizontal
covariant derivative, acting on tensor fields along τ , which are determined, for each X ∈
X (τ), by DH

XF = XH(F ), DV
XF = XV (F ) for their action on functions F ∈ C∞(TQ), by

DH

X

∂

∂qi
= XjΓk

ji

∂

∂qk
, DV

X

∂

∂qi
= 0, where Γk

ji =
∂Γk

j

∂ui

for the action on X (τ), and by duality rules for the action on 1-forms along τ . For a full
account of the resulting calculus one can consult [14, 15]. For our present needs, however,
a number of key relations will generally be sufficient, as was the case for example in the
application [16] and in [17]. Most frequently used are bracket relations for vertical and
horizontal lifts of vector fields along τ , which read:

[XV , Y V ] =
(
DV

XY −DV

Y X
)V

, (5)

[XH, Y V ] = (DH

XY )V − (DV

Y X)H, (6)

[XH, Y H] =
(
DH

XY −DH

Y X
)H

+R(X, Y )V . (7)

It will be convenient to set

DV

XY −DV

Y X = [X,Y ]
V
, DH

XY −DH

Y X = [X, Y ]
H
.

It is further worthwhile observing that one can introduce a kind of classical tensor calculus
notation for the horizontal covariant derivative: taking as example a 2-covariant tensor K
along τ , with components Kij, we can put

Kij|l :=
(
DH

∂/∂qlK
)

ij
= Hl(Kij)−KisΓ

s
lj −KsjΓ

s
li.

We shall occasionally use such a notation.

There is a canonical vector field along τ , the total derivative T = ui∂/∂qi. Its importance
is clear from the fact that TV is the Liouville vector field on TQ, so that homogeneity
properties in the fibre coordinates will be characterized intrinsically by the DV

T operator.
Furthermore, TH is the horizontal part of the Sode Γ (and will coincide with it in the case
of a spray). Thus the following bracket relations, important for calculating Lie derivatives
with respect to Γ, are in a way particular cases of the preceding ones:

[Γ, XV ] = −XH + (∇X)V , [Γ, XH] = (∇X)H + Φ(X)V . (8)

Here Φ, a type (1, 1) tensor along τ , is called the Jacobi endomorphism and completely
determines the curvature (it is equal to iTR in the case of a spray), and∇ is the dynamical
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covariant derivative, which on functions acts like Γ and further satisfies ∇(∂/∂qi) =
Γj

i∂/∂qj.

One can also introduce vertical and horizontal exterior derivations on scalar and vector-
valued forms. Essentially, they are determined by the following action on functions F ∈
C∞(TQ) and (scalar or vector-valued) 1-forms such as J :

dVF (X) := DV

XF, dVJ(X,Y ) := DV

XJ(Y )−DV

Y J(X), (9)

with again similar defining relations for dH.

More results related to the calculus along τ will be recalled when needed.

We also take the opportunity here to recall a few general facts about Lagrangian systems.
The Poincaré-Cartan 2-form ωL = ddSL of a Lagrangian L on TQ is entirely determined
by a metric tensor field g along τ , where g = DV DV L is the Hessian of L. Then ωL is the
so-called Kähler lift gK of g ; ωL vanishes on two vertical or two horizontal vector fields,
while

ωL(XV , Y H) = g(X, Y ). (10)

For later use, here are the specific properties of g (cf. [15]), known as the Helmholtz
conditions, which are (apart from g being symmetric and non-singular) the necessary and
sufficient conditions to guarantee that it is indeed the Hessian of a Lagrangian whose
Euler-Lagrange equations are equivalent to the given Γ:

∇g = 0, DV

Xg(Y, Z) = DV

Zg(Y, X), g(ΦX,Y ) = g(X, ΦY ). (11)

In view of the commutator property [∇, DV
X ] = DV

∇X −DH
X , they further imply that also

DH

Xg(Y, Z) = DH

Zg(Y,X). (12)

The Poincaré-Cartan 1-form θL = dSL by the way, being a semi-basic form, can be viewed
as a 1-form along τ as well and can then be written as θL = dVL, so that θL(XV ) = 0 and
θL(XH) = DV

XL.

2 R-tensors

In this section we shall propose a generalization of Equation (1), iR(ξ)ddSL = iξddJcSL,
to the case in which J is a general type (1, 1) tensor field along τ ; that is to say, we shall
define the R-tensor associated with such a tensor field (for a given Lagrangian L). The
basic problem is to know what to replace J c with on the right-hand side, and we discuss
this point first. It turns out that it is not necessary to have a Lagrangian for this purpose:
a dynamical vector field is enough.

When J is a type (1, 1) tensor field along τ and Γ is a given dynamics, there is a natural
lift of J to a tensor field JΓJ on TQ, which was extensively discussed in [14]. One of its
properties is that it reduces to a complete lift J c when J happens to be basic; so this is
the natural candidate for attempting to generalize the definition of an R-tensor field.
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Before proceeding to the discussion of R-tensors we examine some properties of JΓJ .
One may wonder in the first place to what extent JΓJ ◦ S could again provide a kind of
alternative almost tangent structure, as J c ◦S does. Now JΓJ can be expressed explicitly
as follows:

JΓJ = JH + (∇J)V ;

since the image of (∇J)V is vertical, only the horizontal part plays a role when composing
with S, so this is really a question about JHS. Moreover, it is clear from the defining
relations (2), (3), that actually JHS = SJH = JV . Obviously (JV )2 = 0, and the
image of JV coincides with its kernel provided J is non-singular. So JΓJ ◦ S = JV is
indeed an almost tangent structure. In fact since JV vanishes on vertical vectors, despite
appearances its definition doesn’t depend on a choice of horizontal distribution (unlike
that of JH).

The canonical almost tangent structure S is integrable, which is to say that its Nijenhuis
torsion vanishes. The Nijenhuis torsion of JV is not always zero, however, as the following
result indicates.

Proposition 1. NJV = 0 if and only if DV
JXJ(Y )−DV

JY J(X) = 0.

Proof. It is easy to see that NJV gives zero when evaluated on two vertical vector fields
or on a horizontal and a vertical one. We further have

NJV (XH, Y H) = [(JX)V , (JY )V ]− JV
(
[(JX)V , Y H] + [XH, (JY )V ]

)

=
(
DV

JX(JY )−DV

JY (JX)
)V − JV

(
(DV

JXY )H − (DV

JY X)H
)

= (DV

JXJ(Y )−DV

JY J(X))V ,

from which the result follows.

A related question is whether the derivations dS and dJV commute, for which the condition
is that the Nijenhuis bracket [JV , S] vanishes.

Proposition 2. [JV , S] = 0 if and only if DV
XJ(Y )−DV

Y J(X) = 0.

Proof. The proof is a simple computation, completely similar to the one above.

It is useful at this point to introduce certain tensor fields along the projection τ related
to Nijenhuis torsion, which will become important in what follows (and played a relevant
role already in the study of decoupling of second-order equations [16]). For a general type
(1, 1) tensor J along τ we put

NV

J (X, Y ) = DV

JXJ(Y )− (JDV

XJ)(Y ), and N V

J (X, Y ) = NV

J (X,Y )−NV

J (Y, X); (13)

we define NH
J and NH

J likewise. It is a simple computation to verify that

DV

JXJ(Y )−DV

JY J(X) = N V

J (X, Y ) + J(dVJ(X,Y )),

so that the following corollary can be drawn from Propositions 1 and 2.
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Corollary 1. The derivations dS and dJV constitute a bi-differential calculus if and only
if N V

J = 0 and dVJ = 0.

Proof. We know that dS
2 = 0 and the requirements dJV

2 = 0 and [dS, dJV ] = 0 are
equivalent to the conditions of the two preceding propositions. The result then readily
follows.

We return to the consideration of R-tensors. We now take Γ to be a (regular) Lagrangian
system. We therefore have a symplectic form ωL = ddSL at our disposal, and the sugges-
tion coming from the analysis in [17] is that, using ω1 = ddJV L as a second closed 2-form,
the more interesting type (1, 1) tensor field R on TQ to look at is defined by

iR(ξ)ddSL = iξddJV L, ∀ ξ ∈ X (TQ). (14)

This is the definition we shall adopt; however, since for general J we don’t have N V
J = 0,

for example, we cannot expect the generalized R-tensor to have the same nice properties
as the one for a basic J .

We now set out to characterize R through its action on horizontal and vertical lifts.

We pointed out in the Introduction that the Poincaré-Cartan 1-form θL = dSL can be
written as θL = dVL. Similarly, we have that dJV L = JV (dL) = JHθL is semi-basic, so
that the same 1-form, regarded as a form along τ , can equally be written as JθL.

Lemma 1. The closed 2-form ω1 = ddJV L is characterized by ω1(X
V , Y V ) = 0, and

ω1(X
V , Y H) = DV

X(JθL)(Y ),

ω1(X
H, Y H) = dH(JθL)(X,Y ).

Proof. We have

ω1(X
H, Y H) = LXH

(
θL((JY )H)

)
− LY H

(
θL((JX)H)

)
− θL (JH([XH, Y H]))

= DH

X(JθL(Y ))−DH

Y (JθL(X))− θL (J(DH

XY −DH

Y X))

= DH

X(JθL)(Y )−DH

Y (JθL)(X),

ω1(X
V , Y H) = LXV

(
θL((JY )H)

)
− θL (JH([XV , Y H]))

= DV

X(JθL(Y ))− θL (J(DV

XY ))

= DV

X(JθL)(Y ),

which gives the desired result.

Using the generalized metric tensor g, we define the transpose of an arbitrary (1, 1) tensor
K along τ as follows.

Definition 1. The transpose K of K with respect to g is determined by g(KX, Y ) =
g(X, KY ), for all X,Y ∈ X (τ).
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Proposition 3. For a given type (1, 1) tensor field J along τ , let K and U be defined by

g(KX, Y ) = DV

Y (JθL)(X), (15)

g(UX, Y ) = dH(JθL)(X,Y ). (16)

Then the type (1, 1) tensor field R on TQ defined by (14) is characterized by

R(XV ) = (KX)
V
, (17)

R(XH) = (KX)H + (UX)V . (18)

Proof. Observe that ωL(R(XV ), Y V ) = 0, while in view of the definition of K,U and
K, and the defining relation (14), and using the results of the above lemma, we can write

ωL(R(XV ), Y H) = g(KX,Y ),

ωL(R(XH), Y V ) = −g(KX, Y ),

ωL(R(XH), Y H) = g(UX, Y ).

The result now follows from the characterizing properties of ωL such as (10).

Note that it follows from the skew-symmetry of the right-hand side in (16) that U = −U .

We will need properties of covariant derivatives of K and U . These will follow directly
from their defining relations by making use of the following general commutator relations
(see e.g. [15]), which can be seen as defining curvature components of the Berwald-type
connection on the pullback bundle τ ∗TQ → TQ (see e.g. [2]). For arbitrary X,Y ∈ X (τ),

[DV

X , DV

Y ] = DV

[X,Y ]V
, (19)

[DV

X , DH

Y ] = DH

DV
XY −DV

DH
Y X + µB(X,Y ), (20)

[DH

X , DH

Y ] = DH

[X,Y ]H
+ DV

R(X,Y ) + µRie(X,Y ). (21)

Here B and Rie are type (1, 3) tensor fields along τ or, as they appear here, covariant
2-tensors taking values in the module of (1, 1)-tensors. For a general (1, 1) tensor T , µT

is a derivation of the tensor algebra along τ of degree zero, whose action on functions is
zero, while µT (Z) = TZ on vector fields Z and µT (α) = −Tα on 1-forms α. To specify
now the curvature tensors under consideration, we have for the so-called mixed curvature
tensor B that B(X,Y )Z is symmetric in all three arguments and has components Bi

jkl =
Γi

jkl = VkVl(Γ
i
j); the tensor Rie on the other hand (which is the Riemann curvature tensor

in Riemannian geometry) is defined in general by

Rie(X, Y )Z = −DV

ZR(X, Y ). (22)

Proposition 4. We have, for arbitrary X, Y, Z ∈ X (τ),

g(DV

ZK(X), Y )− g(DV

Y K(X), Z) = 0, (23)

DV

Zg(UX, Y ) + g(DV

ZU(X), Y ) =

DH

Zg(KY, X)−DH

Zg(KX, Y ) + g(dHK(X,Y ), Z), (24)
∑

X,Y,Z

(
DH

Xg(UY,Z) + g(DH

XU(Y ), Z)
)

=
∑

X,Y,Z

g(KZ,R(X, Y )), (25)
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where
∑

X,Y,Z refers to a cyclic sum over the indicated arguments. Furthermore,

K = K ⇔ dV(JθL) = 0. (26)

Proof. The first property follows immediately from taking a vertical derivative of the
defining relation (15) and making use of the ‘vertical Helmholtz property’ in (11) and the
commutator identity (19). For the next two properties, the computations start similarly
from the defining relation (16) of U . Taking a DV derivative, one has to use the com-
mutator relation (20) in the right-hand side: the terms involving the tensor B cancel out
in view of its full symmetry and (24) readily follows. For the DH derivative of (16), the
computation is somewhat more involved: one has to apply the commutator (21) a second
time after exploiting the skew-symmetry of U , in such a way that a cyclic sum combi-
nation appears. On doing so the terms involving Rie cancel out in view of the Bianchi
identity

∑
Rie(X, Y )Z = 0 and (25) follows. Finally, the characterization of symmetry of

K follows directly from the defining relation.

There are a couple of further consequences which are worth mentioning: one will tell us
what the obstruction is for K to be symmetric with respect to DH

Xg; the other shows
under what circumstances a property like (23) also holds for the horizontal derivatives of
K.

Corollary 2. For all X, Y, Z ∈ X (τ), we have

DH

Xg(KY, Z)−DH

Xg(KZ, Y ) =

g(DV

ZU(X), Y )− g(DV

Y U(X), Z) + g(dHK(X,Z), Y )− g(dHK(X,Y ), Z), (27)

g(DH

ZK(X), Y )− g(DH

Y K(X), Z) = g(DV

Z∇K(X), Y )− g(DV

Y∇K(X), Z). (28)

Proof. If we take (24), interchange Y and Z and subtract, the vertical derivatives of
g cancel out in view of their Helmholtz property and (27) follows. On the other hand,
acting with ∇ on (24), using ∇g = 0 and the by now familiar commutator of ∇ and DV

easily gives (28).

In coordinates, using the local basis {Hi, Vi} of vector fields and its dual {dqi, ηi =
dui + Γi

kdqk}, we have

R = Ki
j Hi ⊗ dqj + K

i
j Vi ⊗ ηj + U i

j Vi ⊗ dqj, (29)

where, denoting Vi(L) for shorthand by pi,

K i
j = gikVk(J

l
jpl), (30)

U i
j = gik[Hj(J

l
kpl)−Hk(J

l
jpl)]. (31)

It is evident that K and U do not determine J uniquely, or in other words that different
Js may give the same R. We shall have occasion to take advantage of this freedom in the
choice of J later in the paper.
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One could choose to use the momenta pj as coordinates on TQ rather than the velocities
ui. Then gikVk = ∂/∂pi, and the expression for K becomes

Ki
j =

∂

∂pi

(
J l

jpl

)
. (32)

It is apparent from this equation that K i
j = J i

j when J i
j is independent of the fibre

coordinates.

Symmetry properties with respect to g of course refer to the type (0, 2) rather than the
type (1, 1) representation of the tensor under consideration; that is to say, if we put
Kij = gilK

l
j, then

Kij =
∂

∂ui
(J l

jpl), (33)

and the condition (26) for symmetry of K is self-evident. Equally evident then is the
property

∂Kij

∂ul
=

∂Klj

∂ui
, (34)

which is a coordinate form of (23).

The role of J l
jpl in the full expression for R has by now become prominent, and this

suggests that we should seek to generalize also the notion of complete lift to the cotangent
bundle T ∗Q of a type (1, 1) tensor field J along the cotangent bundle projection π : T ∗Q →
Q. Such a J can act on semi-basic 1-forms on T ∗Q, regarded as 1-forms along π, and the
canonical 1-form θ = pidqi is one of those: then Jθ = J l

jpldqj.

Definition 2. Let J be a type (1, 1) tensor field along π : T ∗Q → Q, then the complete
lift J̃ is the (1, 1) tensor on T ∗Q defined by

i
J̃(ξ)

dθ = iξd(Jθ), ∀ ξ ∈ X (T ∗Q). (35)

Remark: just as with the standard lifting procedures from Q to T ∗Q, one can also define
the vertical lift of a J along π, as being the vector field

Jv = J i
jpi

∂

∂pj

∈ X (T ∗Q). (36)

The right-hand side in the defining relation (35) can then be written also as iξLJvdθ =
iξdiJvdθ (cf. the definition of complete lift in [4]).

The fact that on TQ the R-tensor of J is a more interesting tensor field to look at than
either the generalized complete lift JΓJ or the horizontal lift JH is now underscored by
the following generalization of Proposition 6 in [17].

Proposition 5. Let Leg : TQ → T ∗Q denote the Legendre transform defined by the given
regular Lagrangian L, then Leg∗R = J̃ .
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Proof. As a preliminary remark, starting from a J along τ , we are using the same
notation for the corresponding J along π, which is in effect Leg∗J and is obtained by
simply expressing the components J i

j(q, u) in terms of the cotangent bundle coordinates
(q, p). Now, as observed before, the 2-form ω1 in the right-hand side of (14), if we identify
semi-basic forms with forms along τ , can be written with a slight abuse of notation as
d(JθL), and it is clear then that its image under Leg∗ is just d(Jθ). The statement now
immediately follows.

From the coordinate expression (29) of R and the comment (32) about K, one can in fact
immediately surmise that J̃ must have the form

J̃ =
∂

∂pi

(
J l

jpl

) (
Xi ⊗ dqj +

∂

∂pj

⊗ πi

)
+

(
Xk(J

l
jpl)−Xj(J

l
kpl)

) ∂

∂pj

⊗ dqk, (37)

where Xk = Leg∗Hk and Leg∗η
j = gjkπk. For completeness, one can verify that

Xk =
∂

∂qk
− Γ̃lk

∂

∂pl

, with Γ̃lk = glj

(
Γj

k +
∂2H

∂pj∂qk

)
,

where H of course is the Hamiltonian corresponding to L. Correspondingly, πk = dpk +
Γ̃kldql. It is worthwhile observing that Γ̃lk = Γ̃kl. In fact, one can easily compute from
the definition of the connection coefficients Γi

j that a tangent bundle expression for the

Γ̃lk can be written

Γ̃lk =
1

2

(
Γ(glk)− ∂2L

∂uk∂ql
− ∂2L

∂ul∂qk

)
,

which is manifestly symmetric.

Before embarking on the two aspects of recursion now, let us state for later use a few
more properties of R with respect to the tangent bundle structure on TQ (as encoded by
the tensor S).

Proposition 6. RS = SR ⇔ K = K.

Proof. This is a trivial observation from the structure of R.

Concerning the Nijenhuis bracket of R and S, one can verify easily that [R,S](XV , Y V ) =
0, while

[R,S](XV , Y H) = −
(
DV

Y K(X) + DV

XK(Y )
)V

,

[R, S](XH, Y H) = (dVK(X, Y ))H + ((dVU − dHK)(X,Y ))V .

It looks as though it would be much too strong a condition to expect that [R, S] could be
zero, but the following weaker requirement will be useful further on and follows immedi-
ately from these relations.

Proposition 7. [R,S] is a vertical-vector-valued 2-form if and only if dVK = 0.
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3 Invariant R-tensors

We now turn to the issue of R being a recursion tensor in the sense of being a symmetry
generator for Γ.

Theorem 1. LΓR = 0 ⇔ K = K, U = ∇K = 0 and ΦK = KΦ.

Proof. Using the characterization (17,18) of R and the bracket relations (8), it is
straightforward to verify that

LΓR(XV ) = (K −K)(X)
H

+ (∇K + U)(X)
V
, (38)

LΓR(XH) = (∇K − U)(X)H + (ΦK −KΦ +∇U)(X)
V
. (39)

Expressing that the horizontal and vertical parts must vanish separately, the result now
immediately follows.

It is rather remarkable that the only change here with respect to the result for basic J in
[17] is that J is replaced by K. Notice also that since U must be zero, invariant R-tensors
are of the form R = KH, where K is symmetric, is parallel with respect to the dynamical
covariant derivative and commutes with the Jacobi endomorphism Φ.

It is known (see [8]) that an invariant type (1, 1) tensor field R on TQ, which is symmetric
with respect to ωL and commutes with S, will give rise to an alternative Lagrangian for
Γ, provided that the 2-form iRωL is closed. We shall see that this theory fits entirely
within our present framework. To begin with, we prove an economical version of the way
alternative Lagrangians arise in the context of R-tensors.

Proposition 8. For a given regular Lagrangian L and given type (1, 1) tensor J along τ ,
consider the tensor K defined by (15). Assume K is symmetric, commutes with Φ and
satisfies ∇K = 0, and put g′ = K g. Then g′ satisfies the Helmholtz conditions (11) and
hence, provided that K is non-singular, defines an alternative Lagrangian for Γ.

Proof. Symmetry of K means the same as saying that g′ is symmetric, while the
commutativity of K and Φ then implies that also Φ g′ is symmetric. ∇g′ = 0 trivially
follows from ∇g = 0 and ∇K = 0. The vertical Helmholtz property of g, together with
(23), finally implies that g′ will have the same property.

It may look a bit odd that there is no mention of U in the above argument. Let us put
the point more clearly as follows. Starting from a tensor J along τ , the corresponding R
with components K and U is uniquely determined. If K satisfies the above requirements,
we have an alternative Lagrangian L′, even though the R we started from need not be
invariant since U need not be zero. The point is, however, that there is a different tensor
then, related to the same K, which is invariant, namely R′ = KH. It is the tensor obtained
by replacing the ω1 we first thought of in the definition (14) by ωL′ .

It is worth explaining that R′ is also an R-tensor in more detail by the following two
arguments: (i) with K as the starting point, we discuss what is needed to have that K
is derived from a J in such a way that the corresponding U is zero; (ii) we show how an
alternative L′ gives rise to such a K.

12



Suppose that the tensor K is symmetric with respect to g and satisfies (23). The latter
means (see e.g. (34)) that the covariant form of K comes from some 1-form β, in the sense
that K = DV β. The symmetry of K further implies that β = DV F for some function F ,
so that K is a Hessian. Having fixed a β, we can clearly find a tensor J , indeed many
tensors J , such that Js

i ps = βi, but the corresponding U does not depend on the freedom
in J . The 1-form β itself is determined in the first stage to within an arbitrary 1-form β0

on the base manifold Q. Assume next that ∇K = 0. Then the property (28) says that
Kij|l = Klj|i, where Kij = Vi(βj) = Vj(βi), or explicitly

Hl(Vj(βi))− Γs
ljVs(βi) = Hi(Vj(βl))− Γs

ijVs(βl).

Interchanging the horizontal and vertical derivatives, it follows that Vj(Hl(βi)−Hi(βl)) =
0. Hence Hl(βi) −Hi(βl) are the components of a basic 2-form and thus the freedom of
selecting a basic β0 can be used to cancel them by dHβ0 = dβ0, which means that the
corresponding U then is zero in view of (31). In conclusion, starting from a tensor K, the
property (23) ensures that K comes from some J , and if K is symmetric and ∇-parallel,
it can always be arranged that the corresponding U is zero. Concerning point (ii) now,
if g′ is the metric tensor along τ determined by the alternative Lagrangian L′ (assumed
regular), and we define K by g′ = K g, then K is symmetric and satisfies (23) and
∇K = 0, as a result of the Helmholtz conditions satisfied by both g and g′. Hence, it
comes from a J with U = 0 and KH is an R-tensor.

Concerning the other recursion aspect now, the computation of NR in all generality, i.e.
without linking it to invariance properties of R, is quite tedious and will be addressed in
the next section. But for the subclass of horizontal lifts of an arbitrary (1, 1) tensor K
along τ , which is the situation we encounter here, things are a lot simpler, so we may
discuss them already now. Indeed, as was mentioned in [16], we have

NKH (XV , Y V ) = N V

K(X, Y )V , (40)

NKH (XH, Y V ) = NH

K(X,Y )V −NV

K(Y, X)H, (41)

NKH (XH, Y H) = NH

K (X, Y )H +RK(X,Y )V , (42)

where the Nijenhuis type tensors along τ were introduced in the previous section and the
term related to the curvature R is defined by

RK(X,Y ) = R(KX, KY )−K (R(KX,Y ) +R(X, KY )) + K2(R(X,Y )).

So vanishing of NKH reduces to three conditions (not five as one might expect), namely

NV

K = 0, NH

K = 0, RK = 0.

If KH is actually the invariant tensor R of Theorem 1, there is a further reduction.

Proposition 9. Under the conditions of Theorem 1, we have NR = 0 if and only if
NV

K = 0.

Proof. It was shown in [16] that in all generality, ∇NV
K = NV

K,∇K −NH
K . We don’t need

the precise meaning of NV
K,∇K right now, because we know that ∇K = 0 in this situation,
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and it follows that NV
K,∇K = 0. Thus NV

K = 0 will imply NH
K = 0. Also derived in [16]

is an identity which expresses RK as a sum of terms, each of which involves either NV
K

or ΦK −KΦ. Hence, under the present assumptions, RK will automatically be zero as
well.

There is an interesting application of such tensors to the characterization of separable
Lagrangian equations. Indeed, type (1, 1) tensors on TQ which have all the properties
encountered in the preceding proposition are getting close to the kind of tensors discussed
in [5, 7, 8]. Such tensors must be algebraically diagonalizable and have eigenvalues with
even degeneracy (constant degeneracy is understood as being part of the meaning of
diagonalizability here). The latter is obvious for our tensors R, since they are of the form
KH, so that single eigenvalues of K are double eigenvalues of R. Separability of the given
Lagrangian system means that there exists a coordinate transformation on Q such that the
system decouples into a number of lower dimensional subsystems in those coordinates. A
key role in the discussion of results on separability for second-order differential equations
is played by the eigenspaces of the Jacobi endomorphism Φ (see [16]). For the present
context, we can state the following result.

Proposition 10. Suppose that LΓR = 0 and that K further has the properties NV
K = 0

and dVK = 0. Then, if K is diagonalizable, the given system Γ is separable.

Proof. We know that R is invariant, has vanishing Nijenhuis torsion and has doubly
degenerate eigenvalues. Moreover, since K is symmetric R commutes with S and since
dVK = 0 the Nijenhuis bracket of R and S takes vertical values (see Proposition 7). These
are exactly the conditions which are required for the theorem about separability in [7], or
better, for the slightly corrected version of this theorem as given in [16].

Observe that Corollary 1 implies that under the conditions of this separability statement,
the derivations dS and dKV on TQ constitute a bi-differential calculus. But we will not
pursue this matter further. Instead, let us briefly review the more commonly known
application of invariant tensors to the generation of first integrals. In that field also, a
bi-differential calculus can play a relevant role, and it is worth trying to understand in
detail what the distinctive role in this application is of invariance of R on the one hand
and zero torsion on the other.

The equation LΓR = 0, or essentially ∇K = 0, is a Lax-type equation. It follows
that the trace of R (and of all its powers) is a first integral of Γ. In the context of
alternative Lagrangians, this geometric set-up explains what is often referred to as the
Hojman-Harleston theorem [10]. For a somewhat more general geometric approach to
Lax equations, see [1]. The Nijenhuis condition is not required for having first integrals,
but it enters the scene when one wishes such integrals to be in involution, i.e. when the
issue of complete integrability is at stake. In fact, it was shown in [5], still in the context
of alternative Lagrangians but translated to our present set-up, that if NR = 0 and K has
distinct eigenfunctions at each point then these eigenfunctions are in involution. A related
issue is the bi-Hamiltonian description, which arises from a Poisson-Nijenhuis structure.
There is a somewhat hidden assumption here. Indeed, in order to have a second Poisson
structure, originating from the symplectic form ωL and the tensor R, the so-called Magri-
Moroso concomitant must vanish in the first place (see [13, 12]); the Nijenhuis condition
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then makes the two Poisson structures compatible. Now vanishing of the Magri-Moroso
concomitant is equivalent to the 2-form ω1 on the right-hand side of (14) being closed
(see e.g. [6]), and that is automatically satisfied in our present set-up. Another equivalent
characterization of this condition was derived in [6] and it implies that, in particular, we
will have

iLΓRωL = −2 ddREL. (43)

This brings us to the subject of bi-differential calculus. Whenever NR = 0, the derivations
d and dR constitute a bi-differential calculus and this is a useful tool for generating
functions (not even first integrals, necessarily) which are in involution, i.e. have vanishing
Poisson brackets, with respect to both Poisson structures. The algorithmic process by
which such functions are generated (at least locally) requires an initial function f which
satisfies ddRf = 0. Obviously, when R is invariant, we have such an initial function since
(43) shows that ddREL = 0, and the hierarchy of functions in involution will be first
integrals.

As we indicated before, we have also other classes of R-tensors in mind for future studies,
so it is certainly worthwhile to investigate the vanishing torsion condition in its own right;
this will be the subject of the next section.

4 The Nijenhuis torsion of J̃ and R

We shall approach the computation of the conditions for vanishing Nijenhuis torsion of R
in quite a general way.

Let ω be a symplectic 2-form on an even dimensional manifold, and ω1 any 2-form; define
the (1, 1)-tensor R as before by iR(ξ)ω = iξω1. We shall derive an expression for the
Nijenhuis torsion of R in terms of ω and R, under the assumption that ω1 is closed. The
exterior derivative dω1 can also be expressed in terms of ω and R; the two expressions
have an unexpected affinity. Finally, it will be shown that the condition for the vanishing
of the Nijenhuis torsion of R, when ω1 is closed, can be written dRω1 = 0.

In order to derive the last result we shall need to employ Frölicher-Nijenhuis calculus, and
we start by listing some relevant generalities concerning that calculus [9].

It follows from the definition of R that ω(Rξ, η) = ω(ξ, Rη), and therefore that iRω = 2ω1.
Observe, however, that this relation cannot be used to define R directly, because one needs
to know that R is symmetric with respect to ω before the left-hand side fixes R in view
of the non-degeneracy of ω. But it easily further follows now that

iRiRω = 2 iR2ω = 2 iRω1.

Assume next that dω1 = 0 (as well as dω = 0). Then obviously diRω = 0, from which it
follows that also dRω = iRdω − diRω = 0, and that dR2ω = −diR2ω = −diRω1 = dRω1.

In the Frölicher-Nijenhuis classification of i∗ and d∗ derivations, the commutator of two
d∗ derivations defines the Nijenhuis bracket of arbitrary vector-valued forms L and M as
follows:

[dL, dM ] = d[L,M ],
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and the relation with the Nijenhuis torsion of a type (1, 1) tensor field R is that

[R, R] = 2NR.

Finally, the general commutator relation for [iL, dM ], when applied to the special case
that L and M both equal a (1, 1)-tensor R, yields

[iR, dR] := iRdR − dRiR = −i[R,R] + dR2 .

It then follows from what precedes that

2 dRω1 = dRiRω = 2 iNR
ω − dR2ω,

or finally
2 iNR

ω = 3 dRω1. (44)

It is clear that NR = 0 will imply dRω1 = 0, but the fact that these conditions are actually
equivalent needs a stronger result, because

iNR
ω(ξ, η, ζ) =

∑

ξ,η,ζ

ω(NR(ξ, η), ζ),

Thus (44) does not determine NR, unless we know, what we will show now, that the three
terms in the cyclic sum on the right are actually equal.

Proposition 11. If R is defined by iR(ξ)ω = iξω1, where ω is a symplectic 2-form and ω1

any 2-form, then

dω1(ξ, η, ζ) =
∑

ξ,η,ζ

ζ(ω(Rξ, η))− ∑

ξ,η,ζ

ω(R([ξ, η]), ζ). (45)

If in addition dω1 = 0 then

ω(NR(ξ, η), ζ) = − ∑

ξ,η,ζ

ζ(ω(Rξ, Rη)) +
∑

ξ,η,ζ

ω(R([ξ, η]), Rζ). (46)

It follows that when dω1 = 0, NR = 0 if and only if dRω1 = 0.

Proof. The first result follows simply from the identity dω1(ξ, η, ζ) =
∑

ξ(ω1(η, ζ)) −∑
ω1([ξ, η], ζ) and the defining relation for R. To obtain the second result one uses the

identity dω(ξ, η, ζ) =
∑

ξ(ω(η, ζ)) − ∑
ω([ξ, η], ζ) to express in particular the fact that

dω(ξ, Rη, Rζ) = 0. There are two terms on the right-hand side involving derivatives by
R(·). Their arguments may be expressed in terms of ω1, and the closure of ω1 used to
replace each of these terms by five others, none of which involves a derivative by R(·).
When the resulting expression is simplified, (46) follows. In particular, (46) implies that
the left-hand side ω(NR(ξ, η), ζ) is invariant for cyclic permutations. The final statement
now immediately follows from (44).

The similarity between the expression for dω1(ξ, η, ζ) and the expression for ω(NR(ξ, η), ζ)
when dω1 = 0 is evident.
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We now obtain explicit expressions for the conditions for the vanishing of the Nijenhuis
torsions of J̃ and R, starting with the former.

Now J̃ is determined by a given J along π and the canonical 1-form θ only, i.e. it does not
depend on a given dynamics of Lagrangian or Hamiltonian type. For this reason, there is
no advantage to be gained from working in any local frame other than a natural coordinate
frame. It is clear from the expression (37), or in fact from a direct interpretation of the
definition (35), that in natural bundle coordinates J̃ will be of the form

J̃ = Ki
j

(
∂

∂qi
⊗ dqj +

∂

∂pj

⊗ dpi

)
+ Mkj

∂

∂pj

⊗ dqk, (47)

where

Ki
j =

∂

∂pi

(Js
j ps), Mkj =

∂

∂qk
(Js

j ps)− ∂

∂qj
(Js

kps). (48)

The following immediate properties of the coefficients of J̃ will be used below:

∂K l
k

∂pj

=
∂Kj

k

∂pl

,
∂Mjk

∂pl

=
∂K l

k

∂qj
− ∂K l

j

∂qk
,

∑

i,j,k

∂Mjk

∂qi
= 0, (49)

where
∑

i,j,k again refers to a cyclic sum over the indicated indices. In fact, these properties

merely express the fact that the 2-form d(Jθ) in the defining relation of J̃ is closed; that is,
they are the coordinate expressions of the first result of the proposition above in this case.
They are also directly related to the three properties of Proposition 4 via the Legendre
transform.

Theorem 2. The Nijenhuis tensor of J̃ vanishes if and only if

Aij
k := K i

l

∂Kj
k

∂pl

−Kj
l

∂Ki
k

∂pl

= 0, (50)

Bi
kj := K l

k

∂K i
j

∂ql
−K l

j

∂K i
k

∂ql
+ Mkl

∂Ki
j

∂pl

−Mjl
∂Ki

k

∂pl

+ K i
l

∂Mjk

∂pl

= 0, (51)

∑

i,j,k

Cijk :=
∑

i,j,k

(
K l

i

∂Mjk

∂ql
+ Mil

∂Mjk

∂pl

)
= 0. (52)

Proof. This can be obtained from Proposition 11; alternatively, it can be established by
a simple coordinate calculation in which attention must be paid to making appropriate
use of the properties (49) for recombining the various coefficients in the right format. One
obtains

N
J̃

(
∂

∂pi

,
∂

∂pj

)
= Aij

k

∂

∂pk

,

N
J̃

(
∂

∂pi

,
∂

∂qj

)
= Aik

j

∂

∂qk
+ Bi

kj

∂

∂pk

,

N
J̃

(
∂

∂qi
,

∂

∂qj

)
= Bk

ij

∂

∂qk
+

∑

i,j,k

Cijk
∂

∂pk

,
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which implies the stated result.

The structure of the conditions for the vanishing of N
J̃

is apparent: they are of the same

form as the identities (49) satisfied by the coefficients of J̃ , but with the coordinate vector
fields replaced by their images under J̃ . To be precise, they can be cast in the form

J̃

(
∂

∂pi

)
(Kj

k)− J̃

(
∂

∂pj

)
(Ki

k) = 0,

J̃

(
∂

∂pi

)
(Mjk) = J̃

(
∂

∂qj

)
(K i

k)− J̃

(
∂

∂qk

)
(Ki

j),

∑

i,j,k

J̃

(
∂

∂qi

)
(Mjk) = 0.

The general observation made after Proposition 11 provides the background explanation
for this feature.

We now come back to the situation on the tangent bundle, where we have the tools to
approach the question in an intrinsic way. So, take ω now to be the closed 2-form ωL = gK

on TQ and ω1 = d(JθL). In principle one should evaluate NR on all combinations of
horizontal and vertical lifts and identify each time the horizontal and vertical component
of the result; but the cyclic sum invariance of ω(NR(ξ, η), ζ) means that, for example,
ω(NR(XH, Y V ), ZV ) will follow from ω(NR(Y V , ZV ), XH); furthermore, it is easy to see
from the expression in Proposition 11 that ω(NR(XV , Y V ), ZV ) = 0. Thus in the end only
three components need to be computed, which is in agreement with the coordinate results
in Theorem 2.

Theorem 3. Let R be defined by iR(ξ)ωL = iξd(JθL) and thus be characterized as in
Proposition 3. Then, the necessary and sufficient conditions for NR to vanish are:

DV

KX
K(Y )−K(DV

XK(Y )) = 0, or equivalently N V

K
= 0, (53)

NH

K (X, Y ) + DV

UXK(Y )−DV

UY K(X) = 0, (54)
∑

X,Y,Z

(
g(dHK(UY, Z), X) + g(dHK(Y, UZ), X) + g(dHK(Y, Z), UX)

)

− ∑

X,Y,Z

(
g(DV

Y U(UZ), X)− g(DV

ZU(UY ), X) + g(dHU(Y, Z), KX)
)

=
∑

X,Y,Z

g(R(Y, Z), K2X). (55)

Proof. In agreement with what was said above, we need to compute only, for example,

ωL(NR(XV , Y V ), ZH), ωL(NR(XH, Y V ), ZH), ωL(NR(XH, Y H), ZH).

Considering the relation (46) with ξ = XV , η = Y V , ζ = ZH, making use of the defining re-
lations (17,18) of R and (10), the first sum on the right readily reduces to−DV

X(g(Y, K2Z))+
DV

Y (g(X,K2Z)). In evaluating such expressions, there is no need to take account of terms
which involve derivatives of vector field arguments: we know that these will always cancel
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out in the end since we are computing a tensorial quantity. In fact, the terms of the
second cyclic sum in (46) will exactly take care of these cancellations in this case. Terms
involving derivatives of g cancel out in view of one of the Helmholtz properties (11), there
remains:

g(X, DV

Y K2(Z))− g(Y, DV

XK2(Z)) = 0.

One can easily eliminate g from this expression by making appropriate use of (23) after
expanding the derivatives of K2; what follows is the first of the conditions (53). It does
not look very obvious that this is actually equivalent to

N V

K
(X, Y ) := DV

KX
K(Y )− (KDV

XK)(Y )−DV

KY
K(X) + (KDV

Y K)(X) = 0.

To see that, one has to lower an index by g again, use (23) to arrive at an expression like
g(Z, DV

KX
K(Y ))−g(X, DV

KZ
K(Y )), then take the derivatives outside g to enable switching

from K to K, and continue making use of the vertical Helmholtz condition and property
(23) until all terms are expressed in terms of K. We leave the details to the reader. It
is important, however, to be aware of this rather surprising equivalence in (53), because
N V

K
= 0 is the condition one would arrive at if the line of computation which led to (40)

would be generalized.

The computation of ωL(NR(XH, Y V ), ZH) runs in a very similar way. Again, the second
cyclic sum in the right-hand side of (46) takes care of the necessary cancellations to
arrive at a tensorial expression. Elimination of derivatives of g requires making use of the
horizontal Helmholtz condition (12) this time and of the property (24). The condition
(54) then quite easily follows.

Consider finally ωL(NR(XH, Y H), ZH). The first cyclic sum in (46) becomes

∑

X,Y,Z

DH

X(g(UZ, KY )− g(UY,KZ)).

The terms involving derivatives of g can be written in the form

∑

X,Y,Z

(
DH

Zg(UY, KX)−DH

Xg(UY, KZ)
)

=
∑

X,Y,Z

(
DH

UY g(Z, KX)−DH

UY g(X,KZ)
)
,

in view of the Helmholtz property, after which they can be replaced by algebraic terms
through (24) (or better its consequence (27)). It is then easy to see that, together with the
remaining terms of the first cyclic sum, they make up the first two lines in the expression
for (55). The right-hand side in this expression directly comes from what remains to be
considered in the second cyclic sum of (46).

It is quite easy to see that (53) and (54) have the following meaning in terms of components
with respect to the basis {Hi, Vi}:

K
s
tVs(K

j
k)−Kj

sVt(K
s
k) = 0, (56)

K l
kHl(K

i
j)−K l

jHl(K
i
k) + K i

l

(
Hj(K

l
k)−Hk(K

l
j)

)
+ U l

kVl(K
i
j)− U l

jVl(K
i
k) = 0, (57)

and that these correspond to the first two cotangent bundle expressions we obtained
in Theorem 2. A corresponding version of the third condition, derived directly from
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Equation (55) with the aid of (27), can be written

∑

i,j,k

(
Hk(U

l
iKlj − U l

jKli)−Rl
ijKlmKm

k

)
= 0. (58)

Finally we remark that one can manipulate (55) further to eliminate g from it as well (i.e.
to raise an index, so to speak). One will need the property (25) in this process; but this
is a quite tedious exercise and results in an expression which is not very transparent.

5 Application: the Finsler case

We are now in a position to generalize interesting results of [6] and [17] from the pseudo-
Riemannian to the Finsler case. So, without changing notations, it will from now on be
understood that the tangent bundle TQ has its zero section removed. For our present
purposes there is no need to enter into much detail of Finsler geometry; it will be sufficient
that we assume that the given non-degenerate Lagrangian is homogeneous of degree two in
the fibre coordinates. Since this implies that the Lagrangian is equal to its corresponding
energy function (and therefore is a first integral), we shall call it E. The corresponding
generalized metric g = DV DV E is homogeneous of degree zero and the second order vector
field Γ is a spray. In such a context, the natural thing to do is to assume then that J ,
the type (1, 1) tensor field along τ we start from, also is homogeneous of degree zero.
Indeed, we then immediately recover the Riemannian situation when ‘homogeneous of
degree zero’ is specialized to ‘independent of the velocities’.

As said in the introduction, the operator which characterizes homogeneity of tensor fields
along τ is DV

T. For a good overview and later use, let us list a number of interesting
relations and properties which (not always exclusively) apply in the Finsler case.

Lemma 2. When the Lagrangian E is homogeneous of degree 2, we have (X and Y being
arbitrary vector fields along τ)

∇T = 0, DV

XT = X, DH

XT = 0, (59)

∇g = 0, DV

Tg = 0, DV

Xg(T, Y ) = 0, DH

Xg(T, Y ) = 0, (60)

Γ(E) = dHE = 0, θE = T g, ∇θE = 0, DV

XθE = X g, DH

XθE = 0. (61)

Proof. Concerning equations (59), ∇T = 0 is the homogeneity property which indicates
that we have a spray. The second equality in (59) is always true and the third then follows
from the commutator [∇, DV

X ] = DV
∇X − DH

X . For (60), ∇g = 0 is one of the general
Helmholtz properties (11), the second expresses that g is homogeneous of degree zero,
and the other two then are a direct consequence of (11,12). Finally, Γ(E) = ∇E = 0,
since E is a first integral; DH

XE = 0 or equivalently dHE = 0 then follows from the
same commutator relation; g(X,T) = DV

XDV
TE − DV

DV
XT

E = 2DV
XE − DV

XE = θE(X), i.e.

θE = T g, from which the remaining three equations immediately follow by taking the
appropriate derivative (DV

XθE = X g in fact always holds).
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Note in passing that ∇T = 0 implies that ∇ ≡ DH
T and that Φ = iTR.

The next thing to analyse is the effect of assuming that the J we start from is homogeneous
of degree zero, i.e. DV

TJ = 0.

Proposition 12. If g and J are homogeneous of degree 0, then K is homogeneous of
degree 0 and U is homogeneous of degree 1. Moreover, we have KθE = JθE and the
defining relation of U simplifies to

g(UX, Y ) = g(T, dHJ(X,Y )) = g(T, dHK(X, Y )). (62)

Proof. From the defining relation g(KX,Y ) = DV
Y (JθE)(X) and the fact that DV

Tg =
DV

TJ = 0, it follows that

g(DV

TK(X), Y ) = DV

TDV

Y (JθE)(X)−DV

DV
TY (JθE)(X)

= DV

Y DV

T(JθE)(X)−DV

DV
Y T(JθE)(X) = 0,

since JθE is homogeneous of degree 1 and DV
Y T = Y . That DV

TU = U follows in the same
way from taking the DV

T derivative of (16) and using the appropriate commutation prop-
erty for DV

T and DH
X . But in fact, it is also obvious from the coordinate expression (31) or

directly from the intrinsic definition, if we observe first that horizontal derivatives preserve
the order of homogeneity (and vertical ones of course reduce the order by one). Taking
Y = T in the defining relation of K, we immediately have that g(KX,T) = g(JX,T) or
KθE = JθE. Finally, the simplification in the defining relation for U immediately follows
from the fact that DH

XθE = 0, so that dH(JθE)(X, Y ) = θE(dHJ(X, Y )).

Commutation relations such as (20, 21) are interesting tools in obtaining further properties
of interest. Consider for example the important property DH

XθE = 0 of a Finsler system
as starting point. By taking a further vertical and horizontal covariant derivative, it then
easily follows from (20, 21) and DV

XθE = X g that

g(T, B(X,Y )Z) = DH

Xg(Y, Z), (63)

g(T, Rie(X,Y )Z) = g(R(X, Y ), Z). (64)

We now come back to the two aspects of recursion under study and investigate what the
homogeneity properties of the Finsler case can do to simplify the conditions for vanishing
LΓR or NR.

Theorem 4. Assume that g and J are homogeneous of degree 0. Then, if K is symmetric
and ∇K = 0, we have automatically that U = 0 and ΦK = KΦ. In other words, the
necessary and sufficient conditions for having LΓR = 0 (see Theorem 1) reduce to K = K
and ∇K = 0.

Proof. We know from Proposition 4 and the homogeneity that K = K implies dV(JθE) =
dV(KθE) = 0. Since [∇, dV] = −dH, it then follows from the assumption ∇K = 0 and the
property ∇θE = 0 that also dH(KθE) = dH(JθE) = 0, whence U = 0.
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Showing that Φ will commute with K can be done by a kind of integrability analysis,
similar to the procedure which was followed for the Riemannian case in Appendix A of
[17]. A much simpler proof, however, goes as follows. The property (33), which roughly
expresses that K comes from a J , plus (34), ensure for a symmetric K that Kij is a
Hessian of some function, and we can actually determine such a function in the Finsler
case. Indeed, from the symmetry of K and the homogeneity, we have that

∂(J l
jplu

j)

∂uk
= J l

kpl + uj ∂J l
jpl

∂uk
= J l

kpl + uj ∂J l
kpl

∂uj
= 2J l

kpl,

so that Kij is the Hessian of the function

k := 1
2
J l

jplu
j = 1

2
K l

jplu
j or in intrinsic terms k = 1

2
(KθE)(T). (65)

It follows from ∇T = 0, ∇θE = 0 and ∇K = 0 that k is a first integral. Moreover, the
above computation expresses that dVk = KθE and thus

0 = ∇dVk = dV∇k − dHk = −dHk.

But in the case of a spray, as was already shown by Klein [11], dHk = 0 is a necessary
and sufficient for k to be a Lagrangian for the system. Hence its Hessian K will commute
with Φ.

The conditions for vanishing Nijenhuis torsion also simplify in the Finsler case.

Theorem 5. If g and J are homogeneous of degree 0, we have NR = 0 if and only if the
coefficients Aij

k and Bi
kj (see (50) and (51)) vanish, or equivalently (53) and (54) hold

true.

Proof. We go back to the equivalent calculation of N
J̃

on T ∗Q, knowing that by
homogeneity: J l

jpl = K l
jpl and pi∂K i

j/∂pk = 0. Multiplying condition (51) by pi, we thus
get:

K l
k

∂(K i
jpi)

∂ql
−K l

j

∂(Ki
kpi)

∂ql
+ Ki

l pi
∂Mjk

∂pl

= 0.

Taking a further derivative with respect to qm, it follows that

∂K l
k

∂qm

∂(Ki
jpi)

∂ql
− ∂K l

j

∂qm

∂(K i
kpi)

∂ql
+

∂(Ki
l pi)

∂qm

∂Mjk

∂pl

K l
k

∂2(K i
jpi)

∂ql∂qm
−K l

j

∂2(Ki
kpi)

∂ql∂qm
+ Ki

l pi
∂2Mjk

∂pl∂qm
= 0.

Taking now a cyclic sum over j, k, m, the last term disappears in view of (49), while the
first and second line then can be recast exactly in the form of, respectively, the second
and first term in (52). Hence, the third condition in Theorem 2, in the Finsler case, is
automatically satisfied in view of the second.
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6 Illustrative examples and conclusions

We have introduced a class of type (1, 1) tensor fields R on a tangent bundle TQ which are
constructed out of a given Lagrangian system and a (1, 1) tensor J along the projection
τ : TQ → Q. One of the interesting points is that such R-tensors arise from the pullback
under the Legendre transform of the complete lift J̃ of a tensor along the cotangent
bundle projection π : T ∗Q → Q. Our main achievement is that we have unraveled in a
precise way the different requirements which have to be met for R to be invariant under
the given dynamics, or to have vanishing Nijenhuis torsion, or to have both properties.
By way of direct application, we have seen how such conditions reduce or simplify in
the particular case of Lagrangian equations, coming from the energy function of a Finsler
metric. This is a generalization of the more common kinetic energy Lagrangians associated
to a Riemannian or pseudo-Riemannian metric. But we would like to emphasize here that
our present general results are also relevant for the Riemannian situation. Indeed, it is
quite common to look in the Riemannian case only at recursion tensors which are natural
lifts of tensors on the base manifold, and the point is that this is often too restrictive:
i.e. even in that situation, there can be features which require the introduction of tensors
whose components depend non-linearly on the fibre coordinates of TQ or T ∗Q.

In order to illustrate the practical applicability of the various conditions we identified,
we choose to show how one can make constructive use of them in constructing recursion-
type tensors related to some simple dynamics. Naturally, the simple classical system par
excellence for testing new developments is the harmonic oscillator. So consider first the
Lagrangian

L = 1
2
(u2

1 + u2
2)− 1

2
(q2

1 + q2
2).

The metric is the Euclidian one and Φ = −1, so that any choice for K will commute with
it. Most of the relevant conditions we have met are conditions on K rather than on J ,
but it is the property (34) which will ensure that K comes from some J . We wish to
construct some invariant R-tensors here which will give rise to alternative Lagrangians.

Let us first make K symmetric by choosing simply K12 = 0. Then (34) further requires
that K11 is independent of u2 and K22 independent of u1, and imposing ∇K = 0 requires
that they must be first integrals. We can take, for example

K11 = u2
1 + q2

1, K22 = u2
2 + q2

2.

According to Proposition 8, KH will be an invariant tensor and will give rise to an alter-
native Lagrangian, which is easily found to be

L′ = 1
12

(u4
1 + u4

2) + 1
2
(q2

1u
2
1 + q2

2u
2
2)− 1

4
(q4

1 + q4
2).

This is perhaps nothing very surprising, but observe that even for such a quite trivial
example, we need a theory in which the tensor J as well as K are tensor fields along τ .
A tensor J which gives rise to the above K in the sense of (33) is given by, for example,
J i

i = (q2
i + 1

3
u2

i ) (J i
j = 0 for i 6= j), and the corresponding U as defined by (16) is easily

seen to be zero. Moreover, NV
K = 0, so that KH has vanishing Nijenhuis torsion as well.
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Another symmetric K, which has all the properties of the preceding one, is given by

K11 = K22 = u1u2 + q1q2, K12 = K21 = 1
2
(u2

1 + u2
2 + q2

1 + q2
2).

So again, R = KH satisfies LΓR = 0 and NR = 0, and the corresponding Lagrangian is
found to be

L′ = 1
2
u1u2

(
1
3
(u2

1 + u2
2) + q2

1 + q2
2

)
+ 1

2
q1q2(u

2
1 + u2

2 − q2
1 − q2

2).

For a different example, we start from the Lagrangian L = 1
2
(q2

1u
2
1 + u2

2), which means
that

Γ = u1
∂

∂q1

+ u2
∂

∂q2

− u2
1

q1

∂

∂u1

.

The only non-zero connection coefficient is Γ1
1 = u1/q1 (and Φ = 0 so that no restrictions

can come from the commutation requirement in some of the propositions).

Suppose that this time our priority is to construct a tensor R with vanishing torsion.
Then, it may be advantageous to work with the conditions of Theorem 2 on the cotangent
bundle (which can be regarded also as conditions on TQ, but expressed in the variables
(q, p)), but we will further assume from the outset that K is symmetric. Recall the rather
remarkable fact that for symmetric K, N V

K = 0 (which is the same as Aij
k = 0 in the

variables (q, p) and involves 2 requirements in dimension 2) is actually equivalent to the,
in principle, stronger condition NV

K = 0 (which consists of 6 requirements in dimension
2). From the symmetry of K, it follows that we must have K2

1 = q2
1 K1

2 . Then (32), which
expresses that K comes from some J , implies the existence of some function F such that

Js
1ps =

∂F

∂p1

and q2
1 Js

2ps =
∂F

∂p2

,

and it follows that we will have

K1
1 =

∂2F

∂p2
1

, K1
2 = q−2

1

∂2F

∂p1∂p2

, K2
1 =

∂2F

∂p1∂p2

, K2
2 = q−2

1

∂2F

∂p2
2

.

Using this information it is easy to see that the two independent conditions A12
1 = A12

2 = 0
express that the ratio (K1

1 −K2
2)/K2

1 must be independent of the pi, provided K2
1 is not

zero. So there are two cases to be considered. The case K2
1 = 0 is not very interesting; if we

look for an illustration in the Finsler class, for example, the homogeneity requirement leads
to the conclusion that F must actually be quadratic in the pi, say F = 1

2
(h1p

2
1 + q2

1h2p
2
2)

with arbitrary hi(q). Suppose we then further impose ∇K = 0 again. Then it readily
follows that the hi must be constants and the final conclusion is that L′ = 1

2
(aq2

1u
2
1 + bu2

2)
is a two-parameter family of Lagrangians for the given system. If we take K2

1 6= 0 now,
a subcase is clearly given by K2

2 = K1
1 . This gives a wave-type equation for F , with

general solution F = F1(P1, q) + F2(P2, q), where P1 = p1 − q1p2, P2 = p1 + q1p2. Again,
the homogeneity requirement for a Finsler situation makes it Riemannian and if we then
proceed in the same way by imposing ∇K = 0, we end up with the discovery of a
somewhat less trivial two-parameter family of alternative Lagrangians, namely

L′ = 1
2

(
a(q1u1 − u2)

2 + b(q1u1 + u2)
2
)
.
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In both cases treated so far, the two other conditions of Theorem 2 are satisfied as
well, because the requirement ∇K = 0 has brought us back to the situation covered by
Proposition 9.

We will proceed in the same way now for the general case, which will bring us to a rather
exotic recursion tensor and a corresponding non-trivial Lagrangian. So, in general, from
the condition N V

K = 0 we can put

K1
2 = q−2

1 K2
1 , K2

2 = K1
1 − f(q)K2

1 ,

where the last relation is actually a second-order partial differential equation for F . Im-
posing ∇K = 0 it immediately follows that f(q) must be q−1

1 , that K1
1 must be a first

integral, F1 say, and that K2
1 = q1F2, where F2 also is an as yet undetermined first inte-

gral. In an attempt to circumvent the difficult issue of solving the equation for F , observe
that K2

1 = q1F2 implies that ∂F/∂p2 = q1

∫
F2dp1, wherein we omit additive functions

depending on only one of the pi because these will lead to terms in the solution which
were identified in the first case. If we use this in the expression for K2

2 in terms of F ,
introduce the auxiliary function

ξ =
∫ ∂F2

∂p2

dp1,

and now re-express that K2
2 must be a first integral, it follows that ξ must solve the linear

first-order equation

q1p1
∂ξ

∂q1

+ q3
1p2

∂ξ

∂q2

+ p2
1

∂ξ

∂p1

= p1ξ.

Using the method of characteristics, the general solution of this equation is found to be

ξ = p1η(x1, x2, x3), with x1 = p1/q1, x2 = p2, x3 = q2 − 1
2
(p2/p1)q

3
1,

where η is an arbitrary function of the indicated arguments and these xi all are first
integrals. It follows that K2

2 = q−1
1 ξ = x1η. Since F2 must itself be a first integral (and is

not allowed to depend on time) it must actually be a function of the xi as well, and the
definition of ξ implies that

∂F2

∂p2

=
∂ξ

∂p1

= η + x1ηx1 + 1
2
(x2/x1)ηx3q

2
1.

Acting with Γ on both sides, and intertwining Γ with ∂/∂p2 in the left-hand side, it follows
that (F2)x3 = −x2ηx3 , and thus F2 = −x2η + ζ(x1, x2) for some arbitrary ζ. Returning
with this information to the preceding equation, we get the restriction

ζx2 = 2η + x1ηx1 + x2ηx2 .

Taking a derivative with respect to x3, we get a first-order partial differential equation
for ηx3 which is easy to solve; after integration with respect to x3 one learns that η must
be of the form

η = x−2
2 φ(x2x

−1
1 , x3),

for some as yet arbitrary φ. In fact there is an extra freedom for adding a function of x1

and x2, but that can be absorbed into ζ. Moreover, the preceding equation now implies

25



that ζ cannot depend on x2 and so we omit it (as an additive function of only one of the
pi). We have now come to a stage where we know that F2 = −x2η and

K2
2 = x1η, K2

1 = q1F2, K1
2 = q−1

1 F2, K1
1 = (x1 − x2)η,

with η as described above. To find further specifications about η we re-impose now that
K must satisfy

∂K1
2

∂p2

=
∂K2

2

∂p1

,
∂K1

1

∂p2

=
∂K2

1

∂p1

.

The first condition appears to be satisfied automatically, but the second gives an equation
for φ, with coefficients which can be expressed in terms of x1 and x2, except for a factor q2

1

in the coefficient of φx3 . It then follows, for example from acting with Γ on the equation,
that φ cannot depend on x3, in other words must be a function of x := x2/x1 only, and
the condition reduces to

(x− x2 − x3)φ′ = (2− x)φ.

The solution of this equation is φ(x) = x2(x2 +x−1)−1. We thus have found the following
type (1, 1) tensor

K1
1 = (x1 − x2)y

−1, K2
2 = x1y

−1, K1
2 = −q−1

1 x2y
−1, K2

1 = −q1x2y
−1,

where we have put y = x2
2+x1x2−x2

1 for shorthand; rather surprisingly, K is homogeneous
of degree −1 in the pi. This K by construction satisfies all requirements for having that
R = KH is Γ-invariant and has vanishing Nijenhuis torsion again. It is the Hessian of
a Lagrangian which will be homogeneous of degree 1 and non-degenerate, but we don’t
have an explicit expression for this Lagrangian. Observe finally that one can easily check
that also dVK = 0. This means that we are actually in the situation of Proposition 10, so
that the system is separable. This is not so surprising, of course, since the given system is
given as decoupled equations. But in fact, the conclusion we reach here is not so trivial:
it means that the given system will also separate in entirely different coordinates, namely
coordinates in which K diagonalizes and which are guaranteed to exist by the theory in
[16]. But we will not pursue this issue further.

To conclude now: there are a number of interesting applications in which type (1, 1) tensor
fields can play a distinctive role. In the present paper, we have focused on the question
of invariance of such tensors under a given Lagrangian flow, for its obvious applications
to recursion procedures for symmetries, or the generation of first integrals, and even for
less obvious applications such as the question of decoupling of second-order equations, as
briefly documented in Section 3. Of course, whenever type (1, 1) tensors are part of a
theory, one is bound to study the effect of vanishing Nijenhuis torsion. Not unexpectedly,
as we have seen in Section 4, this is a rather more complicated issue than in the case
of J living on Q, but still there are interesting simplifications occurring in the number
of conditions. This is even more so in the Finslerian case, which we have explored as a
particular case of the general theory, but at the same time for a direct generalization of
the results we discussed for (pseudo-)Riemannian spaces in [17].

We plan to study another subclass of such R-tensors in a forthcoming contribution, with
the purpose of generalizing, again from basic tensor fields to tensor fields along the projec-
tion, the constructions which led to a gauged bi-differential calculus in [6] and were related,

26



for example, to the study of projective equivalence in [3]. The results we obtained here
about Nijenhuis torsion will of course be directly applicable also to this entirely different
problem.
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