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Abstract

Motivated by nonlinear control theory, we introduce the notion of conic distributions

on a smooth manifold. We study topological and smoothness aspects of the set of ac-

cessible points associated to a conic distribution. We introduce the notion of abnormal

paths and we study its relation to boundary points of the accessible set. Among others

we provide sufficient conditions for the accessible set to be a maximal integral of the

smallest integrable vector distribution containing the conic distribution. Under rather

strong conditions, we are able to prove that the accessible set has the structure of a

‘manifold with corners’.
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1 Introduction, basic definitions and motivation

The main goal of this paper is to consider topological and smoothness properties of accessible
sets associated to a family of vector fields. The concept of an accessible set of a family
of vector fields has been studied, amongst others, in [1, 4, 15]. We retrieve some known
results in particular on the topology of accessible sets (see [4]) and we develop new techniques
for studying smoothness properties of accessible sets. For instance, we are able to provide
accessible sets with a smooth structure (a manifold with corners) for a ‘simple polyhedral conic
distribution’ satisfying additional integrability conditions. Other approaches to the study of
the structure of accessible sets in control systems can be found in [2, 3] (and references therein).
Throughout this paper we consider families of smooth (local) vector fields. We will not adopt
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the common assumption that controls are measurable functions. However, we hope that the
relevance and generality of the framework presented becomes apparent by observing the rather
wild singularities encountered in accessible sets with respect to the topological and smooth
structure, even for families of smooth vector fields (see the examples below).

In this section we start with the general concept of a conic distribution and give the
elementary definitions associated to such structures. The main objective of this section is to
show that conic distributions are closely related to nonlinear control theory, being a major
research topic in engineering sciences. Some familiarity with geometric control theory will be
helpful for a better understanding of the concepts that we associate to a conic distribution,
for instance the definition of abnormal paths, controllability and accessibility. Throughout
this paper N is always assumed to be a smooth n-dimensional manifold (Hausdorff, second
countable, C∞) and smooth always means of class C∞. In this paper we study families of vector
fields on N and, without further mentioning, a vector field is always assumed to be smooth
(possibly only locally defined and not necessarily complete). We refer the reader to [6, 14] for
more details regarding definitions on compositions of (local) flows of members of such a family
and to [9] for general aspects of convex cones in a linear space.

A family F of vector fields on N is said to be everywhere defined if, given any point x ∈ N ,
there exists an element X ∈ F such that x is contained in the domain of X. Following [6], we
say that the flow of an ordered family of ℓ vector fields X = (Xℓ, . . . , X1) is given by the map

(T, x) 7→ XT (x) = φℓ
tℓ
◦ · · · ◦ φ1

t1
(x),

where {φi
t} denotes the (local) flow of Xi. This map is defined for all pairs (x, T ), with x ∈ N

and T = (tℓ, . . . , t1) ∈ R
ℓ, for which the composition on the right-hand side is defined. It is

implicitly assumed that the composition of (local) diffeomorphisms φi
ti

is such that, for a given
T ∈ R

ℓ, the domain of the composition XT is a non-empty open subset of N . However, for
notational convenience, we allow the domain to be the empty set (see [6, p. 387] for further
details). For each appropriate T , the map XT is a diffeomorphism from an open subset of N
to another open subset of N . It is not hard to see that, if x is in the domain of all Xi, then the
map T 7→ XT (x) is smooth and is defined on an open neighbourhood of 0 ∈ R

ℓ. The subset
R

ℓ
+ of R

ℓ is assumed to be the set of all (tℓ, . . . , t1) with ti > 0.

Before introducing conic distributions, we now recall some definitions from [6] concerning
ordinary linear (generalised) distributions. These definitions are then generalised in a straight-
forward way to ‘conic distributions’.

Definition 1.1.

1. A distribution on a manifold N is a subset D of TN such that for all x ∈ N the set
Dx = D ∩ TxN has the structure of a linear subspace of TxN .

2. A distribution is differentiable if for any v ∈ Dx, there exists a (local) vector field X such
that X(x) = v and X(y) ∈ Dy for all y in the domain of X (vector fields satisfying this
condition are called ‘vector fields in D’).
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3. The differentiable distribution D(F) generated by an everywhere defined family of vector
fields F on N is defined by

Dx(F) =

{

ℓ
∑

i=1

λiXi(x) | ℓ ∈ N, (λℓ, . . . , λ1) ∈ R
ℓ, Xi ∈ F , i = 1, . . . , ℓ

}

.

4. The orbit Lx(F) through x of the everywhere defined family of (local) vector fields F is
the subset of N defined by

Lx(F) = {XT (x) | ℓ ∈ N,X = (Xℓ, · · · , X1), Xi ∈ F , i = 1, . . . , ℓ, T ∈ R
ℓ}.

The results in [12, 13, 14] on integrability of generalised distributions state, among others,
that the orbit Lx(F) can be characterised as the leaf through x of the foliation determined
by the smallest integrable distribution containing D(F). In particular, this result implies that
the orbits through x of two families of vector fields F and F ′ are identical if D(F) = D(F ′).
Furthermore, the smallest integrable distribution I(F) containingD(F) was proven to be equal
to

Ix(F) = span{(XT )∗(Y )(x) | x ∈ N, ℓ ∈ N,X = (Xℓ, . . . , X1), T ∈ R
ℓ, Y ∈ F}.

Note that I(F) contains the closure of D(F) under the Lie bracket operation, i.e. it contains
all possible finite iterations of Lie brackets of vector fields in D(F) (see [14] for further details).
The above definition is now repeated but replacing the linear subspaces of TnN everywhere by
convex cones.

Definition 1.2.

1. A conic distribution on a manifold N is a subset C of TN such that for all x ∈ N the
set Cx = C ∩ TxN has the structure of a convex cone in TxN .

2. A conic distribution is differentiable if for any v ∈ Cx, there exists a (local) vector field X
such that X(x) = v and X(y) ∈ Cy for all y in the domain of X (vector fields satisfying
this condition are called ‘vector fields in C’).

3. The differentiable conic distribution C(F) generated by an everywhere defined family of
vector fields F is defined as

Cx(F) =

{

ℓ
∑

i=1

λiXi(x) | ℓ ∈ N, (λℓ, . . . , λ1) ∈ R
ℓ
+, Xi ∈ F , i = 1, . . . , ℓ

}

.

4. The accessible set Accx(F) from x of the everywhere defined family of (local) vector fields
F is the subset of N defined by

Accx(F) = {XT (x) | ℓ ∈ N,X = (Xℓ, · · · , X1), Xi ∈ F , i = 1, . . . , ℓ, T ∈ R
ℓ
+}.
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Keeping these definitions in mind, we first show how a geometric control problem gives rise
to a family of vector fields on its configuration space. The accessible set of such a family is
proven to be closely related to the concept of accessibility from control theory. Throughout
this paper we always assume that the conic distributions are differentiable without further
mentioning.

1.1 Nonlinear control theory as a motivating example to study

conic distributions

In control theory one is interested in studying dynamical systems that admit an external (read:
human) influence. To make this more precise, assume that the state space of the system whose
behaviour we wish to study is represented by an n-dimensional manifold N . In standard
dynamical systems theory, the ‘law of motion’ determining the behaviour of the system is
expressed in terms of a vector field X on N . The motions x(t) of the system are solutions of
the system of ODE’s (in a local coordinate chart (U, xi) of N):

ẋi(t) = X i(x(t)), i = 1, . . . , n,

where X i are the local components of X. In control theory one assumes in addition that
the vector field, determining the allowable motions, depends on some additional variables
u = (u1, . . . , uk) ∈ V ⊂ R

k, called control variables; V is called the control domain and is an
arbitrary subset of R

k. These control variables can be modified (discontinuously) at all time:
they represent the external input to the system. Typically, the control function t 7→ u(t) is
allowed to be a measurable function of time [10]. Summarising, we have that the motions of
the control system are solutions of the system of ODE’s that, for a given (measurable) control
t 7→ u(t) ∈ V , takes the form

ẋi(t) = X i(x(t), u(t)), i = 1, . . . , n. (1)

The accessible set from x ∈ N is then defined as the set of points y ∈ N for which there
exists a control u : [a, b] → V such that x(b) = y, where x(t) solves (1). For our purposes
however, it is not necessary to consider measurable controls. In the following we will assume
that a control u(t) is a smooth function, admitting a finite number of discontinuous jumps, i.e.
there exits ℓ increasing instants in time ti ∈ [a, b], i = 1, . . . , ℓ such that u is discontinuous
at ti, but smooth elsewhere and such that u restricted to ]ti, ti+1[ admits a smooth extension
to [ti, ti+1], for all i = 0, . . . , ℓ − 1. The existence of jumps in the control is essential from
the engineering point of view. Furthermore we assume that the control domain V is an open
subset of R

k (it should be noted however that the following arguments equally apply to the
case where V is an arbitrary manifold with or without boundary).

Now, in a differential geometric context the system of ODE’s in (1) can be interpreted as
being equivalent to a family of (time-dependent) vector fields on N , parameterised by the set of
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all allowable controls u(t). Then, admissible motions of the control system are concatenations
of (segments of) integral curves of members of this family of vector fields (see e.g. [10, 16]). In
some cases the controlled curves can be realised as concatenations of integral curves of vector
fields that have no time-dependence. This is the case if all solutions x(t) to (1) are immersed in
N (see below). We will constrain ourselves to control systems that are determined by a family
of vector fields whose members do not dependent on time. (Note that this is not an essential
restriction, since any time dependent vector field induces a non-vanishing vector field on the
manifold R ×N). A possible differential geometric framework for studying control systems is
given by anchored bundles [11].

Definition 1.3. An anchored bundle (U, ρ) consists of a vector bundle ν : U → N with typical
fibre V , and a a smooth bundle mapping ρ : U → TN which is fibred over the identity on N .

The structure of an anchored bundle allows for the definition of ρ-admissible curve, being
the analogue for a control. Assume that we have fixed an anchored bundle (U, ρ) on N .

Definition 1.4. Let c : [a, b] → U denote a smooth curve in U , and let c̃ = ν ◦ c denote the
projected curve in N , called the base curve of c. Then, c is called a smooth ρ-admissible curve
if c̃ is an immersion and ρ ◦ c = ˙̃c.

Local coordinates on N will be denoted by (xi) and corresponding bundle adapted coordi-
nates on U by (xi, ua), with i = 1, . . . , n and a = 1, . . . , k (k being the dimension of the typical
fibre V of U). The coordinate expression of the bundle map ρ reads

ρ(x, u) = γi(x, u)
∂

∂xi
. (2)

A smooth ρ-admissible curve c(t) = (xi(t), ua(t)) locally satisfies a system of ODE’s of the
form (1):

ẋi(t) = γi(xj(t), ua(t)).

The typical fibre of the bundle U → N is to be interpreted as the domain of the control
variables V .

The structure of an anchored bundle is encountered in many area’s of differential geometry:

• A Poisson structure Λ on a manifold P determines a mapping ♯Λ : T ∗P → TP such that
the image is precisely the generalised integrable distribution whose leafs are symplectic
submanifolds of P . The pair (T ∗N, ♯Λ) is an example of an anchored bundle.

• A Lie algebroid is, by definition, an anchored bundle with the additional property that
the module of sections of U → N is equipped with a real Lie algebra, which satisfies a
Leibniz condition with respect to multiplication by functions on N .
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• Any regular distribution D on N is a subbundle of TN . The natural injection of this
subbundle into TN makes D into an anchored bundle, whose admissible curves are
precisely the set of curves tangent to the distribution.

• A sub-Riemannian structure on a manifold N is a regular distribution i : D →֒ TN which
is equipped with a Riemannian bundle metric, say h. The mapping g : T ∗N → TN ,
defined by g = i ◦ ♯h ◦ i

∗ makes T ∗N into an anchored bundle.

Similar to control curves, the class of ρ-admissible curves should be further extended to
curves admitting (a finite number of) discontinuities in the form of certain ‘jumps’ in the
fibres of U , such that the corresponding base curve is piecewise smooth. In order to define
these “piecewise” ρ-admissible curves we first consider the composition of smooth ρ-admissible
curves.

The concatenation of a finite number of, say ℓ, smooth ρ-admissible curves ci : [ai−1, ai] → U
for i = 1, . . . , ℓ, satisfying the conditions c̃i(ai) = c̃i+1(ai) for i = 1, . . . , ℓ − 1, is the map
cℓ ⋄ · · · ⋄ c1 : [a0, aℓ] → U defined by

(cℓ ⋄ · · · ⋄ c1)(t) =











c1(t) t ∈ [a0, a1],
...

cℓ(t) t ∈ ]aℓ−1, aℓ].

(3)

Note that the base curve of cℓ ⋄ · · · ⋄ c1 is a piecewise smooth curve. However, in general
cℓ ⋄ · · · ⋄ c1 is discontinuous at t = ai, for i = 1, . . . , ℓ− 1. The composition c = cℓ ⋄ · · · ⋄ c1 is
called a piecewise ρ-admissible curve, or simply a ρ-admissible curve.

We now arrive to the important notion of accessibility in control theory. Given an anchored
bundle (U, ρ), the accessible set Accx(ρ) from a point x ∈ N , is the set of points in N that can
be reached by following the base curve of a ρ-admissible curve starting in x, i.e. y ∈ Accx(ρ) if
there exists a ρ-admissible curve c : [a, b] → U such that c̃(a) = x and c̃(b) = y (this corresponds
to the notion of accessible set of the control system ẋ = γ(x, u) as mentioned in the beginning
of this section). Now, consider the family of vector fields F(ρ) = {ρ ◦ σ | σ ∈ Γ(ν)} on
N , associated to an anchored bundle (U, ρ) (where Γ(ν) denotes the module of sections of
ν : U → N). We prove that Accx(ρ) = Accx(F(ρ)). This equality says that the notion of
accessibility in geometric control theory is related to the notion of accessibility of families of
vector fields.

We first show that any integral curve of a vector field in the family F(ρ) is the base curve
of smooth ρ-admissible curve. Note that the integral curve of any vector field of the form
ρ ◦ σ, with σ a section of ν, is the base curve of a (smooth) ρ-admissible curve. Indeed, if
c̃ : [a, b] → N is an integral curve of ρ ◦ σ, then σ ◦ c̃ : [a, b] → U is a ρ-admissible curve
with base c̃. Assume that we fix X = (ρ ◦ σℓ, . . . , ρ ◦ σ1), with σi ∈ Γ(ν). Using the above
correspondence, it is not hard to see that XT (x) ∈ Accx(ρ) for arbitrary T ∈ R

ℓ
+ in the domain

of X . Indeed, this follows from the fact that XT (x) can be reached by concatenating ℓ smooth
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base curves of ρ-admissible curves, namely the integral curves of the members of X . More
explicitly, these ℓ integral curves can be defined inductively as follows, for i = 1, . . . , ℓ

c̃i(t) := φi
(

t−
∑i−1

s=1
ts

)

(

c̃i−1

(

i−1
∑

s=1

ts

))

for t ∈

[

i−1
∑

s=1

ts,
i
∑

s=1

ts

]

. (4)

The concatenation of these c̃i’s is defined similarly as in (3). It is essential that T ∈ R
ℓ
+.

Indeed, if ti < 0 for some i = 1, . . . , ℓ, then the above definition would fail. One might alter
the definition by allowing this situation, i.e. if ti < 0 then follow the integral curve of −ρ ◦ σi

during time −ti. However, an integral curve of a vector field in −F(ρ) is not necessarily the
base curve of a ρ-admissible curve (this might occur if ρ is a non-linear bundle map). This
remark should justify Definition 1.2. Thus we have that Accx(F(ρ)) ⊂ Accx(ρ). To prove the
reverse inclusion, remark that the base curve of any smooth ρ-admissible curve is locally an
integral curve of an element of F(ρ) (this follows from the immersion condition), and therefore
the base curve can be written as a concatenation of integral curves of vector fields in F(ρ).

1.2 Outline of the paper

The structure of the paper is as follows. In Section 2 we provide some examples of conic
distributions, revealing the general structure of an accessible set of a conic distribution. We
make several basic observations concerning the accessible set of a family of vector fields. Sec-
tion 3, which is rather technical, contains the main theorems of the paper. In that section we
construct a new convex cone at a point in the accessible set, having the property that it is our
best ‘approximation’ to what could be regarded as the tangent space to the accessible set. In
Section 4 we introduce the concept of abnormal paths and, using the theorems from Section 3,
we prove some topological and smoothness properties of the accessible set. To conclude the
paper we prove in Section 5, under rather restrictive conditions on the conic distribution, that
the accessible set admits the structure of a ‘manifold with corners’.

2 Examples and elementary observations

Throughout this section we assume that a family F is fixed on N . From the definition of
Accx(F) one can deduce that the point x itself in general is not contained in Accx(F). Fur-
thermore, the accessible sets induce a partial order relation <F on N : we say that x <F y if
y ∈ Accx(F). The transitivity condition follows from the following straightforward property:
if y ∈ Accx(F), then Accy(F) ⊂ Accx(F). We now use the construction in (4) to define an
admissible path.

Definition 2.1. Fix an ordered family X = (Xℓ, . . . , X1) with Xi ∈ F for i = 1, . . . , ℓ and
an element T = (tℓ, . . . , t1) ∈ R

ℓ
+. The piecewise smooth curve in N obtained from XT by
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concatenating the integral curves of X1, . . . , Xℓ, for times t1, . . . , tℓ, respectively, is called an
admissible path through x associated to XT and is denoted by (X , T )x(t). More explicitly, the
smooth pieces of the path are defined inductively, for i = 1, . . . , ℓ, by:

c̃i(t) := φi
(

t−
∑i−1

s=1
ts

)

(

c̃i−1

(

i−1
∑

s=1

ts

))

for t ∈

[

i−1
∑

s=1

ts,
i
∑

s=1

ts

]

,

with {φi
t} the flow of Xi. Using the notations from the preceding section, we may write

(X , T )x(t) := (c̃ℓ ⋄ · · · ⋄ c̃1)(t).

The endpoint of the path associated to XT is simply XT (x). Thus, with this notation, any
point in Accx(F) is obtained by following an admissible path starting at x.

Definition 2.2.

1. A conic distribution C is open (resp. closed) if, for all x ∈ N , the set Cx is an open
(resp. closed) subset of spanCx with respect to the subset topology induced by TxN ,
where spanCx denotes the linear subspace of TxN generated by Cx.

2. The rank rkCx of a conic distribution C at a point x is defined as rkCx = dim(spanCx).
A conic distribution is said to be of constant rank if rkCx = rkCy for all x, y ∈ N .

3. A conic distribution C is called polyhedral if there exists a locally finite family F such
that C = C(F).

4. With a conic distribution we can consider the family of all vector fields C in C, i.e. X ∈ C
iff X(x) ∈ Cx for all x in the domain of X. The accessible set Accx(C) of the family C of
vector fields in C is also denoted by Accx(C).

We now make some elementary observations. Let C denote the family of vector fields in
the conic distribution C(F). It should be clear that, since F is contained in C, the accessible
sets satisfy Accx(F) ⊂ Accx(C). In Section 4 we study the reverse of this inclusion.

From the definition of the orbit of a family of vector fields in the introduction, it follows that
Accx(F) is a subset of the leaf Lx(F) through x of the foliation determined by the integrable
distribution I(F). It is easily seen that, under the additional assumption that F = −F (i.e. if
the family is invariant under multiplication by −1), then for all x we have Accx(F) = Lx(F)
(note that the point x can be accessed by a nontrivial path). For instance, if we return to the
anchored bundle setting, it is clear that F(ρ) = −F(ρ) if ρ is a linear bundle mapping. In
this case, the accessible set from x of the linear control system is precisely the orbit through
x of the family F(ρ). This set is a smooth submanifold of N , i.e. it is a maximal integral
submanifold of the distribution I(F(ρ)).
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Assume that we fix some x ∈ N and that we wish to study Accx(F). In view of the
above remarks, we only need to consider the case where N is connected and the family of
vector fields F is such that the entire manifold N is the leaf of the corresponding integrable
distribution I(F). Throughout the remaining of this paper we therefore assume that N =
Lx(F). Summarising we then have that

Accx(F) ⊂ Accx(C) ⊂ N = Lx(F).

Before giving examples, we first mention some topological issues. Let R
ℓ

+ denote the closure
of R

ℓ
+ in R

ℓ. Consider the finest topology on the set Accx(F) such that all maps of the form

R
ℓ

+ \ {0} → Accx(F) : T 7→ XT (x),

with ℓ ∈ N and X an arbitrary path of ℓ vector fields in F , are continuous. This topology is
called the topology on Accx(F) generated by F . It is in general finer then the subset topology
of Accx(F) w.r.t. the topology of N = Lx(F) (note that here the topology on N coincides
with the topology of N as a leaf of I(F)).

We now consider some examples of conic distributions and their accessible sets. The exam-
ples given below should give some insight in the special structure that an accessible set may
have. We conclude with an example of an accessible set where the topology generated by a
family of vector fields is finer than the subset topology, see Example 2.2.

Example 2.1. The first four examples are constructed on the plane: N = R
2.

1. This example shows that an accessible set need not be of constant dimension. Consider
on R

2 the family F consisting of the vector fields ∂/∂x, defined on the whole of R
2, and

∂/∂y restricted to the right half plane, i.e. on V+ = {(x, y) ∈ R
2 | x > 0}. The picture

shows Acc(x,y)(F) for some (x, y) ∈ R
2 \ V+. It is not hard to see that any point in the

shaded area can be accessed by concatenating the flows of these two vector fields.

2. Consider the polyhedral conic distribution defined by ∂/∂x with domain R
2 and ∂/∂y

restricted to V− = {(x, y) ∈ R
2 | x < 0}. The accessible sets are drawn in the picture for

a point with x < 0 and for x > 0.

3. Here we consider the conic distribution generated by ∂/∂x and ∂/∂x + x∂/∂y, both
defined on R

2. This example is to show that the boundary of Acc(x,y)(F) need not be a
smooth submanifold. The conic distribution C(F) is full rank, except at points on the
axis x = 0, where the conic distribution has rank 1. It is precisely at these points that
the boundary is not smooth. For instance, the upper boundary of Acc(x,y)(F), where
(x, y) is a point in V−, consists of the concatenation of the following integral curves:
t 7→ (t+ x, y) and t 7→ (t+ x, 1

2
(t+ x)2 + y), respectively. The boundary is the piecewise

smooth curve (recall that x < 0 on V−)

t 7→

{

(t+ x, y) for t ∈ [0,−x]
(t+ x, 1

2
(t+ x)2 + y) for t ∈ [−x,+∞[.
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It determines a C1 submanifold of R
2.

4. Another example on the plane is given by the family consisting of the vector fields
∂/∂x + x∂/∂y and ∂/∂x − x∂/∂y. The accessible set through a point (x, 0) ∈ V− is
drawn in figure (4). Again boundaries are C1 submanifolds.

5. Consider on R
3 the family of vector fields

F = {Xθ = ∂/∂z + cos θ∂/∂x+ sin θ∂/∂y | θ ∈ [0, 2π[}.

The accessible set from the origin is drawn in figure (5).

6. Let (N, g) be a Lorentz manifold (i.e. g is a metric with signature (+ −−−)) and such
that N is equipped with a global time direction. The subset C of TN consisting of all
time-like future oriented tangent vectors v such that g(v, v) > 0 defines an open conic
distribution on N . The points in the accessible set through x of this conic distribution
are precisely the points that can be reached by following a (non-singular) worldline (i.e.
a curve with tangent vector 0 6= γ̇ ∈ C) respecting the time direction.

(x, y)
(1) (2) (3)

(4) (5) (7)

7. Consider a finite family of globally defined vector fields F = {X1, . . . , Xℓ}. Figure (7)
gives an example in N = R

3, and where ℓ = 4 and all Xi are constant. Note that
polyhedral conic distributions are closed.

Example 2.2. To conclude we give an example where the subset topologyand the topology
generated by the family of vector fields do not coincide. Consider the following polyhedral
family F of four vector fields: X0 = ∂x, defined on R

2; X1 = ∂y, defined on ]0,∞[×R;
X2 = −∂x on R×]0,∞[ and X3 = −y∂y on R

2. The accessible set from (x, 0), with x < 0, is
the union of the upper half plane R×]0,∞[ and the half straightline I = {(r, 0) | x < r ∈ R}.
The points in I can only be accessed by following the flow of X0, while the points in upper
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half plane are accessible by combinations of integral curves of X0, X1, X2 and X3. The main
issue here is that the entire plane is a leaf of the foliation induced by this family and that the
topology on Acc(x,0)(F) induced by the family is finer then the subset topology. Indeed, in
the topology generated by F , the set {(r, 0) | |r − x′| < δ, δ > 0} is a neighbourhood of (x′, 0)
in Acc(x,0)(F), with x < x′ < 0, whereas in the subset topology, any neighbourhood of (x′, 0)
should contain a half-circle with centre at (x′, 0).

x x′

3 The variational cone and smooth submanifolds of the

accessible set

Similar to the theory of generalised distributions, a naive guess for the characterisation of the
infinitesimal structure of the orbit space Lx(F) would be the subspace of TN determined by
the distribution D(F). Indeed, any tangent vector in Dx(F) is a tangent vector to a curve in
Lx(F) through x. However, in order to find the entire set of tangent vectors to curves in the
orbit through x, one has to extend the set Dx(F) to Ix(F). Recall that the latter is the linear
subspace defined by (cf. the introduction):

span{(XT )∗(Y )(x) | ℓ ∈ N,X = (Xℓ, . . . , X1), T ∈ R
ℓ, Y ∈ F}.

In this section we will try to extend this idea to the accessible set Accx(F) of a given family F .
Let y ∈ Accx(F). We start by showing that any element in Cy(F) is a tangent vector to a curve
through y contained in Accx(F). Subsequently we will introduce the variational cone at any
point y ∈ Accx(F). This cone also consists of vectors tangent to curves in Accx(F), however
it contains C(F) as a subcone. Its definition is inspired on the notion of approximating or
variational cones encountered in [5, 10, 16]. These cones were introduced as sets of tangent
vectors to variations to the curves under investigation. However, below we follow a slightly
different approach, which will be more convenient for further discussions.

Recall that throughout this paper we have assumed that a connected manifold N and a
family of vector fields F are given such that the integrable distribution I(F) generated by F
equals TN , i.e. for any point x ∈ N , we have Lx(F) = N . As noted in the previous section,
this is not an essential restriction.

We first show that any element of Cy(F) is a tangent vector to a curve in Accx(F) ∋ y. Fix
an element v in Cy(F). By definition of C(F), we know that there exists a finite, say ℓ ∈ N,
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number of vector fields X1, . . . , Xℓ in F , such that v can be written as v =
∑

i λiXi(y), with
Λ = (λℓ, . . . , λ1) ∈ R

ℓ
+. Of course, all these vector fields are assumed to have the point y in

their domain. Fix an ordering of these vector fields, say X = (Xℓ, . . . , X1), and consider the
curve in Accx(F) given by ǫ 7→ XǫΛ(y) with ǫ ≥ 0. It is not hard to see that for sufficiently
small ǫ, the map XǫΛ contains the point y in its domain. The tangent vector at ǫ = 0 to this
curve is precisely v, what we wanted to prove.

We now arrive at the point where we introduce the notion of variational cone to a point
y ∈ Accx(F).

Fix a family X of ℓ vector fields in F such that y = XT (x) for some T = (tℓ, . . . , t1) ∈ R
ℓ
+.

The flows of the vector fields Xi, i = 1, . . . , ℓ, constituting X are denoted by {φi
t}. Next,

consider the following family of vector fields, each member being defined on a neighbourhood
of y:

VX ,T =
{

(XT ′

i
)∗(Y ) | 1 ≤ i ≤ ℓ, 0 ≤ t′i < ti,

Y ∈ C ∪ {−Xi}, T
′
i = (tℓ, . . . , ti+1, t

′
i, 0, . . . , 0)

}

.

Recall that the maps XT ′

i
are local diffeomorphisms. We used the notation VX ,T to emphasise

that this family depends on the admissible path through x associated to XT starting at x and
with endpoint y. Take any element in VX ,T , say (XT ′

i
)∗(Y ), consider its flow {XT ′

i
◦ ψs ◦ X

−1
T ′

i
}

with {ψs} the flow of Y , and evaluate it at y = XT (x). Then, we have that

XT ′

i
◦ ψs ◦ X

−1
T ′

i
(y) = φℓ

tℓ
◦ · · · ◦ φi

t′i
◦ ψs ◦ φ

i
ti−t′i

◦ · · · ◦ φ1
t1
(x).

From the above expression it follows that s 7→ XT ′

i
◦ψs◦X

−1
T ′

i
(y) is entirely contained in Accx(F)

for all s ≥ 0 such that ψs(X
−1
T ′

i
(y)) is in the domain of XT ′

i
. The tangent vector at s = 0 then

equals (XT ′

i
)∗(Y )y. In fact, we can show that any element in the convex cone Cy(VX ,T ) in

TyN can be regarded as the tangent vector to a curve in Accx(F). In view of this property,
which we are now going to prove, the convex cone Cy(VX ,T ) is called the variational cone at
y associated to the admissible path (X , T )x. The variational cone determines an extension of
Cy(F), in the sense that it contains more vectors tangent to curves in Accx(F).

So, consider an arbitrary element v of Cy(VX ,T ). We wish to construct a curve in Accx(F)
through y whose tangent at y is precisely v. By definition of Cy(VX ,T ), the tangent vector v
can be written as a finite linear combination of say p elements in VX ,T

(XT ′

iα
)∗(Yα) with Tiα = (tℓ, . . . , tiα+1, t

′
iα
, 0, . . . , 0),

for α = 1, . . . , p, with strictly positive coefficients, say Λ = (λp, . . . , λ1). We now consider a
time-ordering of these p vector fields, i.e. we assume that the vector fields have been rearranged
such that i1 ≤ i2 ≤ · · · ≤ ip and if for some α, iα = iα+1, then we chose t′iα+1

≤ t′iα . Such an
arrangement is always possible. Assuming that this ordering is carried out, we now consider
the flow of the following time-ordered family of vector fields

X ′ = ((XT ′

ip
)∗(Yp), . . . , (XT ′

i1
)∗(Y1)).

12



The composite flow {X ′
S} is well-defined on a neighbourhood of y = XT (x). It takes a tedious

but straightforward analysis to see that the time-ordering guarantees that the points X ′
S(XT (x))

all belong to Accx(F) provided S ∈ U ⊂ R
p

+, with U a sufficiently small neighbourhood of

0 ∈ R
p

+. Now consider the curve ǫ 7→ (ǫλp, . . . , ǫλ1) ∈ R
p

+ for ǫ ≥ 0 small enough such that
(ǫλp, . . . , ǫλ1) is in the domain of {X ′

S}. Then the tangent vector to the curve ǫ 7→ X ′
(ǫλp,...,ǫλ1)(y)

is precisely the tangent vector

λp(XT ′

ip
)∗(Yp)y + · · · + λ1(XT ′

i1
)∗(Y1)y.

Therefore, we conclude that Cy(VX ,T ) can indeed be regarded as a variational cone or an
approximating cone to the accessible set from x at y. Under the condition that the variational
cone has maximal rank, the following important property plays a fundamental role in a proof
of the maximum principle (see [5]).

Lemma 3.1. Assume that Cy(VX ,T ) has maximal rank, i.e. the cone has a non-empty interior
w.r.t. the topology of TyN . Then, given any curve γ : [0, 1] → N whose tangent vector at
t = 0 is in the interior of Cy(VX ,T ), there exists an ǫ > 0 such that γ(t) ∈ Accx(F) for all
t ∈ [0, ǫ[. Moreover, for any t ∈]0, ǫ[ there exists an admissible path taking x to γ(t) such that
the associated variational cone at γ(t) equals the entire tangent space Tγ(t)N .

Proof. Consider the tangent vector v = γ̇(0). Since v is in the interior of Cy(VX ,T ) by as-
sumption, there exist n independent elements in Cy(VX ,T ) such that v is in the interior of the
polyhedral cone generated by these n elements. In general, each of these n vectors can be
written as a finite linear combination of elements in VX ,T (y) with strictly positive coefficients.
We first consider the specific case where v =

∑

i λiỸi(y) with λi > 0 and Ỹi ∈ V(X ,T ), for

i = 1, . . . , n. Consider a time-ordering Y of these n vector fields Ỹi. The diffeomorphism
S ∈ R

n 7→ YS(y) is well defined on a neighbourhood of 0 in R
n, and therefore determines a

coordinate chart on a neighbourhood of y. Using similar arguments as before, the flow of the
time-ordered family Y satisfies the condition that YS(y) ∈ Accx(F), for S in R

n

+. Moreover, it
is not hard to see that the image of the natural basis of R

n under the tangent to S 7→ YS(y) at
0 ∈ R

n is precisely the basis formed by Ỹi(y). Thus, since all components of γ̇(0) are strictly
positive in this induced coordinate chart, they will remain so for sufficiently small t. Therefore,
there exists a curve t 7→ S(t) in R

n
+ such that γ(t) = YS(t)(y) ∈ Accx(F) for 0 < t < ǫ, with ǫ

sufficiently small.

Note that, if we fix the path through x associated to YS ◦ XT , then the variational cone
Cγ(t)(VY◦X ,(S,T )) equals the entire tangent space. This follows from the fact that the path YS

is generated by n independent vector fields. From the definition of the variational cone as
the convex hull of VY◦X ,(S,T )(γ(t)), it then follows that the variational cone equals the entire
tangent space. In the next lemma we show that this implies that γ(t) is an interior point of
the accessible set from γ(t).
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In the more general case where Ỹi /∈ VX ,T , the vector field Ỹi can be written as a linear
combination (with positive coefficients) of vector fields in VX ,T . The above arguments can be
repeated in this situation with only minor modifications, however, the notation becomes rather
involved. Therefore we only consider a simple specific case to show the changes that may be
necessary. Assume that Ỹ1 = ζ1Z̃1 + ζ2Z̃2 and Ỹi = Z̃i+1 ∈ VX ,T , for i = 2, . . . , n. In order to
apply the above idea, one has to construct a coordinate chart. For that purpose we use the
flow of a time-ordering of the family Z = (Z̃1, Z̃2, Z̃3, . . . , Z̃n+1). By definition this flow takes
its arguments in R

n+1 × N . One obtains a map from a neighbourhood of 0 in R
n to N by

evaluating this flow in y and by assuming that the time-arguments of the flows of Z̃1 and Z̃2

in this time-ordering are identical. It is not hard to see that this map is a diffeomorphism (the
tangent to this map at 0 ∈ R

n is non degenerate and maps the standard basis onto the basis
spanned by Ỹ i(y) in TyN) and satisfies all properties needed to repeat the above arguments.
This should be sufficient to prove the general situation.

Lemma 3.2. If Cy(VX ,T ) = TyN , then y is an interior point of Accx(F) w.r.t. the topology
of N , i.e. y has a neighbourhood in N , entirely contained in Accx(F).

Proof. Fix n independent elements Ỹ i(y) of Cy(VX ,T ) such that (XT )∗X1(y) is in the interior
of the polyhedral cone generated by these vector fields Ỹi(y). (Again we will assume that
Ỹi ∈ VX ,T for notational convenience. All arguments in this proof are easily extended to
the more general situation). Let Y denote the composite flow associated to the time-ordered
composition of these vector fields Ỹi. Again, since all Ỹi are defined on a neighbourhood of y,
the map R

n → N : S 7→ YS(y) is a diffeomorphism on a neighbourhood U of the origin 0 ∈ R
n.

Now, consider the map S 7→ YS(y) defined by YS(y) = (Y−S)−1(y). This map is well defined
for any S in a neighbourhood of the origin 0 ∈ R

n and therefore determines a coordinate chart.
Indeed, {YS} is the flow associated to, what one might call, a reversed time-ordering of the
family of vector fields in the ordered family Y . We will now repeat the arguments used in the
previous lemma on the diffeomorphism given by S 7→ YS(y).

Let T ′ = (tℓ, . . . , t
′
1) ∈ R

n for some 0 ≤ t′1 < t1, and compute the tangent vector to the
curve through y given by ǫ 7→ XT ′ ◦ φ1

−ǫ ◦ X−1
T ′ (y) at ǫ = 0. It is not hard to see that this

vector equals −((XT ′)∗X1)(y) = −((XT )∗X1)(y). Since ((XT )∗X1)(y) is in the interior of the
polyhedral cone generated by Ỹi(y), we may conclude that in the coordinate chart determined
by the diffeomorphism S 7→ YS(y), the components of the tangent vector −((XT ′)∗X1)(y)
are all strictly negative. Using similar argument as in the previous lemma, we have that, for
any ǫ small enough, there exists an S ′ ∈ R

n
+ such that XT ′ ◦ φ1

−ǫ ◦ X−1
T ′ (y) = Y−S′(y). Now,

some elementary manipulations imply that YS′ ◦ XT ′ ◦ φ1
−ǫ ◦ X−1

T ′ (y) = y. By restricting ǫ if
necessary such that the condition 0 < ǫ < t1 − t′1 is fulfilled, we have that the composite
YS ◦XT ′ ◦φ1

−ǫ ◦X
−1
T ′ (y) is in Accx(F) for all S in a neighbourhood U of S ′. From the fact that

S 7→ YS ◦ XT ′ ◦ φ1
−ǫ ◦ X

−1
T ′ (y) is (locally) a diffeomorphism, we thus found a neighbourhood of

y entirely contained in Accx(F).
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Let P denote a submanifold of N containing x and consider the subfamily FP of F con-
sisting of vector fields in F that are everywhere tangent to P . The set Accx(FP ) is a subset of
Accx(F). Applying the previous theorem on the submanifold P , equipped with the family FP ,
we may conclude that if the variational cone at y ∈ P equals TP , then a neighbourhood of y
in P is entirely contained in Accx(F). This fact might allow one to study boundary aspects of
accessible sets. This is left for future work however. Note that this condition, namely that the
variational cone at y ∈ P of the family FP equals TyP , implies that TyP is entirely contained
in Cy(VX ,T ).

Remark 3.3. Intuitively one could define the ‘tangent cone’ CyAccx(F) to the accessible set
Accx(F) at the point y as the following union of variational cones:

CyAccx(F) :=
⋃

X ,T

Cy(VX,T ),

with the union taken over all admissible paths from x to y. At this point, we were not able to
introduce some kind of smooth manifold structure with ‘singular points’ that is broad enough
to allow the ‘tangent space’ at a point to be an arbitrary convex cone. In Section 5 we provide
rather restrictive conditions on the family F such that the accessible set can be given the
structure of a manifold with corners. The tangent cone at a corner point then coincides with
CyAccx(F).

4 Abnormal paths and duality

We use the same assumptions on N and F as in the preceding section. At every point x we
can consider the dual cone to Cx, which is denoted by C∗

x (see [9] for a definition of duality).
Roughly speaking, it contains all ‘hyperplanes’ in TxN such that the cone Cx is entirely con-
tained in one half-space determined by the hyperplane. Since the rank of a conic distribution
is clearly a lower semicontinuous function, the dual cone C∗ ⊂ T ∗N is in general not ‘differen-
tiable’. However, if C is a constant rank conic distribution, C∗ determines what could be called
a ‘Pfaffian conic distribution’. Sections along admissible paths that are contained in C∗ will
play an important role when considering abnormal paths and regularity of the accessible set.
We start with a definition of an abnormal path, which is inspired on the notion of abnormal
extremals as encountered in the study of the maximum principle [5]. This correspondence is
made more precise later on, see Remark 4.3.

Definition 4.1. An admissible path (X , T )x through x and with endpoint y, is called abnormal
if Cy(VX ,T ) 6= TyN .

Note that a point y may be accessed from a given point x both by normal and by abnormal
paths. From Lemma 3.2 we know that points accessible by normal paths are interior points of
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the accessible set (w.r.t. the topology on N). So the endpoints of abnormal paths are possible
candidates for boundary points of the set Accx(F) (the boundary of set A in N is defined as
A \ int(A)).

Throughout the next paragraph we show that a path is abnormal iff there exists a one-form
along that path satisfying a certain system of ODE’s. In order to determine this system of
ODE’s, we first consider the specific case of an integral curve t 7→ φt(x) through x of a vector
field X with flow {φt} and let η(t) denote a section of T ∗N along this integral curve, i.e.
η(t) ∈ T ∗

φt(x)N . We define

LXη(t) =
d

ds

∣

∣

∣

∣

0

T ∗φs(η(t+ s)) ,

where T ∗φs : T ∗
xN → T ∗

φ−s(x)N denotes the dual map to the tangent of φs. We say that η(t) is

Lie transported if LXη(t) = 0 for all t. This is equivalent to saying that η(t) = T ∗φs(η(t+ s))
for all s for which the right-hand side is well defined. The system of differential equations on
the components of η(t) is locally expressed by:

η̇i(t) = −ηj(t)
∂Xj

∂xi
(x(t)) . (5)

From this it should be clear that this Lie derivation along an integral curve of a vector field
essentially depends on the Jacobian of the vector field, i.e. on its first jet prolongation (cf. [5]
where this operator was introduced as a ‘parallel transport operator’ of a generalised connec-
tion). Now, the above definition can be extended to concatenations of integral curves, i.e.
to paths associated to ordered families of vector fields. In particular, let X = (Xℓ, . . . , X1)
denote such an ordered family of vector fields, and fix some T = (tℓ, . . . , t1) ∈ R

ℓ
+. Consider

the path (X , T )x : [0,
∑

i ti] → N through x. Consider an arbitrary element ηi ∈ T ∗
xN and Lie

transport it along the integral curve of X1 through x. The endpoint of this smooth curve in
T ∗N is now taken as the initial point for the Lie transportation along the second part of the
path associated to XT through x, namely the integral curve determined by X2. Continuing
this procedure until we reach the endpoint of the path, yields a piecewise smooth curve η(t) in
T ∗N along the path associated with XT . We say that η(t) is Lie transported along the path XT

through x and we formally denote this by LXη(t) = 0. Next, consider two piecewise smooth
curves T (t) and T ′(t) in R

ℓ with t ∈ [0,
∑ℓ

i=1 ti], defined as follows

if t = t′i + ti−1 + · · · + t1, with 0 < t′i ≤ ti, then T (t) = (0, . . . , 0, t′i, ti−1, . . . , t1)
if t = tℓ + · · · + ti+1 + t′i, with 0 < t′i ≤ ti, then T ′(t) = (tℓ, . . . , ti+1, t

′
i, 0, . . . , 0).

Using these functions, it is easily seen that a piecewise smooth section η(t) of T ∗N is Lie
transported along the path (X , T )x(t) iff we can write: η(t) = T ∗XT ′(t)(η(

∑

i ti)) or η(0) =
T ∗XT (t)(η(t)) for any t.

The following theorem gives a characterisation of abnormal paths in terms of solutions to
Lie transported one-forms. We refer to [9] for a definition of support hyperplanes of a convex
cone.
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Theorem 4.1. A path (X , T )x(t) taking x to y is abnormal iff there exists a non-trivial piece-
wise smooth section η(t) of T ∗N along the path (X , T )x(t), such that,

1. LXη(t) = 0, i.e. η(t) is Lie transported along (X , T )x(t) in the sense described above;

2. η(t) ∈ C∗
(X ,T )x(t) determines a support hyperplane for the tangent to the path at time t of

the cone C(F).

Proof. We first prove that the abnormality of the path implies (1) and (2).

From the definition of abnormality, we know that Cy(VX ,T ) 6= TyN , i.e. there exists a
non-zero element ηf in the dual cone C∗

y (VX ,T ). We consider its Lie transportation along the
path (X , T )x(t), i.e. using the notations from above, we have a non-trivial Lie transported
one-form η(t) = T ∗XT ′(t)(ηf ). It remains to be checked that it satisfies (2). The elements,
generating the variational cone at y take the following form: TXT ′(t)(v) with v = Y (X−1

T ′(t)(y))
for Y ∈ F or v equals the negative of the tangent vector to the path at time t. Therefore,
0 ≥ 〈ηf , TXT ′(t)(v)〉. The right-hand side of this inequality equals

〈T ∗XT ′(t)(ηf ), v〉 = 〈η(t), v〉.

From this, one easily deduces (2). By reversing these arguments, it is not hard to see that (1)
and (2) imply abnormality of the path.

Remark 4.2. Condition (2) can be replaced by

3. η(t) ∈ C∗
(X ,T )x(t)(VX ,Tt

), where (X , Tt) is the path associated to X and Tt = T (t).

Note that (3) implies (2), since C is a subcone of the variational cone and since the variational
cone contains the negative of the vector fields last followed along the path (this implies that
η(t) annihilates this vector field, i.e. η(t) is a support one-form). The other direction follows
from the techniques used to prove that (2) implies (3), but this time applied not on the entire
path, but on the piece (X , Tt)x of the path (X , T )x.

Remark 4.3. If the conic distribution is related to a control system, the second condition is
equivalent to saying that a certain function (usually referred to as the Hamiltonian u 7→ H =
ηiρ

i(x, u)) attains a global maximum at u(t) when letting the control variable vary. Together
with the system of ODE’s in (5) we retrieve the necessary condition for abnormal extremals
provided by the maximum principle, see [10]. This observation should justify Definition 4.1
(typically, paths for which the variational cone is not degenerate are called extremal instead
of abnormal extremal). We refer to [5] where a more detailed characterisation is given for
abnormal extremals from optimal control theory in terms of variational cones. The proof
that there actually exist non-trivial abnormal minimisers can be found in [8]. Below we are
interested in these paths since they are closely related to paths taking us to boundary points
of the accessible set.
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In the remaining part of this section we will use Lemma 3.2 and Theorem 4.1 to show some
general results on the structure of the accessible set.

We can conclude from the above that if any point in Accx(F) can be accessed by a normal
path, then Accx(F) is an open submanifold of N . In particular, this implies that in the more
general case, where the integrable distribution I(F) does not equal TN , the accessible set
Accx(F) through x is a maximal integral submanifold of the distribution I(F) through x. A
sufficient condition for any path to be normal is formulated in the next corollary. A conic
distribution of maximal rank is a conic distribution for which the rank equals the dimension
of N at each point.

Corollary 4.4. A family of vector fields F generating an open conic distribution C(F) of max-
imal rank does not admit abnormal paths. Therefore, its accessible set is an open submanifold
of N .

Proof. This follows easily from the fact that along an abnormal path, the tangent vector at
each point belongs to the boundary of C(F) (i.e. from Theorem 4.1 we know that there exists
a supporting hyperplane for that tangent vector in C(F), i.e. the tangent vector is not in the
interior). This is impossible since C(F) is assumed to be open and of maximal rank.

The subsequent corollary provides information on the boundary points of the accessible
set.

Corollary 4.5. Each path reaching a boundary point of the accessible set Accx(F) from x is
abnormal. Such a path is constructed by concatenating integral curves of vector fields in F that
are in the boundary of C(F) (w.r.t. the topology of TN).

Proof. Assume that y is a boundary point of Accx(F). This implies that every admissible
path from x to y is abnormal, i.e. the variational cones are proper cones in TyN . Fix a
Lie transported one-form η(t) along such an abnormal path satisfying condition (2) from
Theorem 4.1. We know that η(t) determines a supporting hyperplane for the tangent vector
to the path at time t. In particular, this implies that the tangent vector is in the boundary
of C(F). In fact Theorem 4.1 implies that the tangent vector at time t is in the boundary of
C(VX ,Tt

), where Tt = T (t).

In the next theorem we give a partial answer to the question whether the accessible sets of
two different families of vector fields generating the same conic distribution coincide.

Theorem 4.6. Consider a conic distribution C(F) of maximal rank. Then we have that

1. cl(Accx(F)) = cl(Accx(C(F)));

2. int(Accx(F)) = int(Accx(C(F))) = Accx(int C(F)).
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(where the interior and closure are taken w.r.t. the topology of N)

Proof. Note that int C(F) is a smooth conic distribution of maximal rank. For notational
convenience we write C = int C(F). Consider any point y in Accx(C) and fix an admissible
path determined by a family of vector fields in C, taking x to y. The first vector field being
followed is, as usual denoted by X1. Since X1 is in the interior of C(F), we know from
Lemma 3.1 that φ1

t (x) is in the interior of Accx(F) for t sufficiently small. Next, we show
that the entire path is contained in Accx(F). Consider the restriction of X1 to the open
submanifold int (Accx(F)). Assume that φ1

t (x) ∈ int (Accx(F)) for all t < ǫ ≤ t1 and that
z = φ1

ǫ(x) /∈ int Accx(F). Using similar arguments as in Lemma 3.2, we may conclude from
the fact that −X1(z) is in the interior of Cz(−F), there exists a time t < ǫ such that z is in
the interior of the accessible set from φ1

t (x) w.r.t. the family F . This contradicts the previous
assumption. Thus the entire integral curve of X1 starting at x is contained in Accx(F).
Continuing this way with the other vector fields inducing the path from x to y, allows us to
conclude that Accx(C) ⊂ int (Accx(F)).

The inclusions Accx(C) ⊂ int(Accx(F)) ⊂ Accx(F) ⊂ Accx(C(F)) are shown to hold. On
the other hand, one can prove that any point y ∈ Accx(C(F)) which is reached by a path
associated to vector fields in C(F) (i.e. vector fields that might be in the boundary of C(F)),
belongs to the closure of Accx(C). To show this, we consider the case where the path under
consideration is induced by one vector field, say X1 with flow {φ1

t} and y = φ1
t1
(x) for some

t1 > 0. Fix any vector field Y in C whose domain coincides with that of X1 (this is not an
essential restriction), and consider the flow {φs

t} of (1− s)X1 + sY . For s sufficiently small the
point x is in the domain of φs

t1
and the point φs

t1
(x) is contained in Accx(C) since (1−s)X1+sY

is a vector field in the interior of C(F). Therefore lims→0 φ
s
t(x) ∈ cl(Accx(C)). Thus we also

have Accx(C(F)) ⊂ cl(Accx(C)). This proves (1).

We now prove that any point in the interior of Accx(C(F)) is in Accx(C). Let y be an
interior point of Accx(C(F)). Consider n (ordered) independent vector fields in C defined on
a neighbourhood of y. The map T 7→ YT (y) defines a diffeomorphism on a neighbourhood V
of 0 in R

n to N . The intersection of YV ∩R
n
−

(y) with Accx(C) is nonempty, since if this were
the case, the set YV ∩R

n
−

(y), which is an open subset of Accx(C(F)), would not be contained
in the closure of Accx(C), contradicting the previous result. Therefore, fix such a point z =
YS(y) ∈ YV ∩R

n
−

(y)∩Accx(C). We may then write that Y−S(z) = y where −S ∈ R
n
+ and Y is the

composite flow of the vector fields in Y in a reversed order, which shows that y ∈ Accx(C).

The above theorem guaranties that, roughly speaking, families of vector fields generating
the same conic distribution have equal accessible sets (up to boundaries). This can be seen as
an analogue of what is known from [12, 13, 14], namely that two families of vector fields have
equal orbits if their associated distributions are equal. We will come back to the implications
of this result in the discussion at the end of this paper.

We also want to mention here that the above results are proven under the conditions that
C(F) has maximal rank in N , where N equals the orbit of F through some point in N . In
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the more general where N 6= Lx(F), this condition says that the distribution D(F) generated
by the family F is assumed to be integrable.

5 Simple polyhedral conic distributions

The main purpose of this section is to show that the set Accx(F) can be given the structure
of a submanifold with corners if we impose rather strong conditions on the family of vector
fields F . We were not able to give the accessible set a smooth structure in the case of a
general polyhedral conic distribution (it should be clear from Section 3 that more general
structures may appear). We leave this aspect for future work. Below we will introduce some
constraints on the family F that allow us to prove that the variational cone is independent of
the admissible path used to define it. This independence allows us to regard the variational
cone as the tangent space to Accx(F) with respect to some smooth structure. The structure
of the variational cone at a boundary point will allow us to define a notion of “depth” of this
boundary point, i.e. the depth of this point as a corner w.r.t. Accx(F) as a manifold with
corners. We first give a brief description of the notion of manifold with corners, and we refer
to [7] for a more detailed discussion on this matter.

We first fix some notations. Let R
n
k denote the cartesian product of n− k copies of R and

k copies of R+ = [0,∞[, i.e. R
n
k = R

k

+ ×R
n−k. On R

n
k we consider the subset topology relative

to the standard topology on R
n. A function f on an open subset U of R

n
k is called smooth if

there exists an extension of f to a smooth function F on an open subset U ′ of R
n such that

U ′ ∩ R
n
k = U and F |U = f .

Consider two open subsets U1 and U2 of R
n
k1

and R
n
k2

respectively. A map f : U1 → U2 is a
diffeomorphism if there exists open subsets U ′

1 and U ′
2 of R

n with U ′
i ∩ R

n
ki

= Ui, i = 1, 2 and
a diffeomorphism F : U ′

1 → U ′
2 with F |U1

= f . We are now ready to define a manifold with
corners.

Let N be a paracompact Hausdorff topological space. A chart (U, φ) on N is a map
φ : U → R

n
k which is a homeomorphism from an open set U ⊂ N to an open subset of R

n
k .

Two charts (φi, Ui) are said to be compatible if φ2 ◦ φ
−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) is a

diffeomorphism. Similarly to the standard definition of a manifold, an atlas of N is a family
of compatible charts covering N . A smooth structure is a maximal atlas.

The tangent space to a manifold with corners can be defined similarly as in the standard
manifold setting. One distinguishes between inward and outward pointing tangent vectors,
i.e. tangent vector are inward pointing if, in a local coordinate neighbourhood (U, φ), they
are contained in R

n
k ⊃ U . An inward pointing vector field is then defined as a section of the

tangent bundle, whose values at every point are inward pointing. It can be proven that the flow
of such an inward pointing vector field is well-defined on a manifold with corners. It should be
clear from the above definition how the notion of a smooth map between two manifolds with
corners should be defined.
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We are now ready to formulate the conditions referred to in the beginning of this section.
We consider polyhedral conic distributions of full rank defined by a family F of n = dimN
independent global vector fields. We impose, in addition, some ‘integrability’ conditions on
these vector fields in F :

1. for any two vector fields Xi, Xj ∈ F we have that [Xi, Xj] is contained in the cone
C(−Xi, Xj) and

2. for any point y ∈ Accx(F) there exists a ‘maximal’ path (X , T )x to y, in the sense that
given any other path (X ′, T ′)x to y then the family of vector fields in X ′ is contained in
the family of vector fields in X .

Note that (1) in particular implies that the distribution associated with any subset of F is
integrable and that (2) does not imply that a ‘maximal’ path (X , T )x is unique, it is only
determined up to an ordering of X . We then say the conic distribution C(F) is a simple
polyhedral conic distribution.

Theorem 5.1. The accessible set of a simple polyhedral conic distribution C(F) can be given
the structure of a submanifold of N with corners. The topology of Accx(F) as a manifold with
corners is equal to the topology on Accx(F) generated by F .

Proof. The proof of this theorem is based on the ideas developed in the theory of maximal
integral submanifolds of an integrable distribution [6]. It is our goal to prove that through
any point y ∈ Accx(F) there exists a smooth ‘submanifold with corners’ such that its image
set is entirely contained in Accx(F). Given any two such submanifolds with corners, we then
show that they are locally diffeomorphic at points of intersection. This implies that chart of
the different submanifolds are compatible and that they ultimately define a smooth structure
on the accessible set, in the sense that it is a submanifold with corners of N .

We start by constructing a submanifold with corners through a point y ∈ Accx(F). For that
purpose we have to compute the variational cone at y. Denote a maximal path (X , T )x through
x with X = (Xi1 , . . . , Xik) such that y = XT (x) and T ∈ R

k
+. We first show the variational

cone associated to two different maximal paths coincide. From condition (2) it follows that y
is only accessible by following admissible paths constructed by concatenating integral curves of
vector fields in FI = {Xi1 , . . . , Xik} where I = {i1, . . . , ik}. Indeed, assume that the subfamily
FJ with J = {j1, . . . , jℓ} induces another maximal path taking x to y. Then (2) implies that
I = J . Next, we show that the variational cone Cy(VX ,T ) is ‘path independent’ by showing
that, in a specific basis of TyN constructed independently of the ordering of the vector fields
FI , it equals R

n
n−k for some fixed k. Let us make this statement more precise: if we can show

that Cy(F ∪ −FI) = Cy(VX ,T ), then the basis

F = {Xik+1
, . . . , Xin , Xi1 , . . . , Xik}
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which identifies TyN with R
n, will identify the subset Cy(VX ,T ) of TyN with R

n
n−k. We

first show that C∗
y (F ∪ −FI) = C∗

y (VX ,T ). From the definition of the variational cone,
we immediately have that Cy(F ∪ −FI) ⊂ Cy(VX ,T ), implying that C∗

y (VX ,T ) ⊂ C∗
y (F ∪

−FI). Indeed, using the notations from Section 3, we know that −(XTiα
)∗(Xiα) is in VX ,T

for all α = 1, . . . , k by definition of VX ,T . From the integrability conditions on F , it fol-
lows that span(FI) = span{(XTiα

)∗(Xiα) | α = 1, . . . , k}. We now prove the reverse inclu-
sion C∗

y (F ∪ −FI) ⊂ C∗
y (VX ,T ). Consider any η ∈ C∗

y (F ∪ −FI). We have to prove that
〈η, (VX ,T )y〉 ≤ 0. Recall that T ′(t) ∈ R

k was defined in Section 4 as the piecewise smooth
curve T ′(t) = (tk, . . . , tα+1, t

′
α, 0, . . . , 0) with t′α = t − (tk + · · · + tα+1) ≤ tα. In order to

show that 〈η, (VX ,T )y〉 ≤ 0 it suffices to prove that 〈η, (XT ′(t))∗(Y )(y)〉 ≤ 0 for any vector field
Y ∈ F \FI (it is easily seen that η annihilates spanFI). Let Y ∈ F \FI and consider the real
function t 7→ f(t) = 〈η, (XT ′(t))∗(Y )(y)〉, with t ∈ [0, tf =

∑k

α=1 tα]. We know that f(0) ≤ 0 by

definition of η and that ḟ(t) = 〈η, (XT ′(t))∗([Xiα , Y ])(y)〉 if Xiα denotes the vector field whose
the path at time t, i.e. T (t) = (tk, . . . , tα+1, t

′
α, 0, . . . , 0). From condition (1) on the family F

we know that [Xiα , Y ] = −CXiα +DY with C,D non-negative functions. In particular, we can
write ḟ(t) = D(t)f(t), with D(t) ≥ 0. In this way we find a trapping region for the function
values of f : if f(0) ≤ 0 then f(t) ≤ 0 for all t ∈ [0, tf ]. This implies that η ∈ C∗

y (VX ,T ).
Since Cy(F ∪−FI) is a closed cone and since Cy(F ∪−FI) ⊂ Cy(VX ,T ), it finally follows that
Cy(F ∪ −FI) = Cy(VX ,T ) (see [9]).

We define a smooth submanifold with corners in N through y = XT (x) ∈ Accx(F) which
is entirely contained in Accx(F). Now, consider the variational cone Cy(VX ,T ). We introduce
the following family of n vector fields Ỹα = (XTiα

)∗(Xiα) for α = 1, . . . , k and the remaining

n − k vector fields Ỹi are precisely F \ FI for i = k + 1, . . . , n (i.e. we have C(VX ,T ) =
C(±Ỹ1, . . . ,±Ỹk, Ỹk+1, . . . , Ỹn)). Considering a time ordering of these n vector fields Ỹi, say
X ′. The flow of X ′ is well-defined on a neighbourhood A of the origin in R

n
n−k:

A ⊂ R
n
n−k → N : S 7→ X ′

S(x).

Note that {X ′
S(y)|S ∈ A} ⊂ Accx(F). The manifold with corners A is thus embedded into N

and has the important property that at every point of A, the cone of inward tangent vectors
defined at a point S of A coincides with the variational cone at X ′

S(y).

Assume that we have two such submanifolds with corners, say A and A′, both having the
property that at each point the cone of inward pointing tangent vectors equals the variational
cone. We now show that at any point of intersection y ∈ A ∩ A′ both sets are locally dif-
feomorphic (in the sense of manifolds with corners). Consider the variational cone at y and
fix a map S 7→ Ψ(S) := X ′

S(y) on a neighbourhood U of 0 in R
n
n−k, as it was constructed

above. Any of the vector fields in X ′ is tangent to both A and A′ and moreover, they are
inward pointing. The restriction of the vector fields in X ′ to A and A′ implies that we can
consider the restriction of Ψ to A and A′: ΨA : U → A and ΨA′ : U → A′ with U chosen
small enough such that Ψ(U) ⊂ A ∩ A′, and that these mappings are diffeomorphisms. It is
clear that, by construction, ΨA ◦ Ψ−1

A′ : ΨA′(U) → ΨA(U) is the identity map, clearly defining
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a local diffeomorphism on a neighbourhood of y in A′ to A. This implies that the charts on
A ∪ A′ induced by the smooth structures of A and A′ are compatible, implying that A ∪ A′

can be given the structure of a submanifold of N with corners such that the set of inward
pointing tangent vectors at a point y is precisely the variational cone at y. The set Accx(F)
thus inherits a smooth structure, if we take the union of all such submanifolds with corners
contained in Accx(F).

It remains to check that the topology on Accx(F) as a manifold with corners is precisely
the topology on Accx(F) generated by F . It suffices to note that a neighbourhood of y as a
submanifold is a neighbourhood of the topology generated by F , since any vector field in F
is inward pointing. The other direction is straightforward from the definition of the smooth
structure on Accx(F).

Example 5.2. Consider the family of vector fields {∂/∂θ, ∂/∂z, ∂/∂r}, where (r, θ, z) denote
cylinder coordinates on R

3/{(0, 0, z)|z ∈ R}. It is clear that the accessible set for a given point
(x, y, z) equals the half space in R

3 determined by the hyperplane orthogonal to ∂/∂z minus
the interior of the half-cylinder through (x, y, z) in the direction of the positive z-axis.

The purpose of this is to provide a non-trivial example where not all paths accessing a
point are maximal (cf. condition (2)). It can be verified that any point of the form (x, y, z+h)
with h > 0 can be accessed by two paths. The integral curve through (x, y, z) of the vector
field ∂/∂z determines a path which is not ‘maximal’. Indeed, if we concatenate to this path
the integral curve of ∂/∂θ through (x, y, z + h), followed during time t = 2π. The endpoint of
this path is (x, y, z + h) and it is a maximal path.

Example 5.3. Consider the family of vector fields {X1 = ∂/∂x,X2 = ∂/∂x + ex∂/∂y,X3 =
∂/∂x+ ex∂/∂z}. It is easily seen that

[X1, X2] = ex∂/∂y ∈ C(−X1, X2),
[X1, X3] = ex∂/∂z ∈ C(−X1, X3),
[X2, X3] = ex(∂/∂z − ∂/∂y) ∈ C(−X2, X3).

By drawing the orbits of the vector fields in the family the maximal path condition is easily
seen to be fulfilled. The accessible sets are manifolds with corners.

Discussion and outlook

Main results

Throughout this paper we provide some first results on convex conic distributions. Our moti-
vation to study these distributions finds its origin in geometric non-linear control theory and
the associated theory on accessible sets. Corollary 4.4 gives sufficient conditions for the ac-
cessible set to be a maximal integral of the smallest integrable distribution associated to the
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family F of control vector fields. The implication of Theorem 4.6 from the point of view of
non-linear control theory can be stated as follows: given a control system such that control
vector fields F(ρ) determine an integrable distribution, then the accessible set of any family
of vector fields F ′, satisfying C(F(ρ)) = C(F ′), equals the accessible set of the control system
(up to boundary points). This results provides an alternative way for computing the accessible
set of a system: it is sufficient to compute the accessible set of any family of vector fields that
generates the same cone as the family of control vector fields. From an engineering point of
view this further raises the following question: given a conic distribution generating a desirable
accessible set, what control laws (i.e. families of vector fields F(ρ) with variable ρ) are possible
so that I recover the desired accessible set. A more profound study of these aspects is left for
future work.

Controllability

The notion of state controllability of a system expresses the idea that, given any point (or
state) x in N , then for any point y in a neighbourhood of x there exists a control that takes
the system from y to x. Within the framework presented above, state controllability at x is
equivalent to saying that x is an interior point of Accx(−F). Indeed, if this is the case there
exists a neighbourhood of x in Accx(F) such that for any point y in this neighbourhood there
exists an ordered family X of vector fields in −F such that XT (x) = y. It is not hard to see
that this is equivalent to saying that x ∈ Accy(F). We also leave for future work to study
the notion of state controllability (and accessibility) within the setting of conic distributions.
In particular, we wish to apply the strong results from [15] within the framework of conic
distributions.

Manifolds with conic singularities

It should be clear that the notion of a smooth manifold admitting conic singularities is needed
in order to study the more general structure that accessible sets may acquire. This is also left
for future work.
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