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Introduction

In a nutshell, this thesis deals with the inclusion of nonholonomic constraints into clas-

sical field theories and their discretization. Even though these themes might appear to

be quite unrelated at first, they have at least one important property in common: all

three are naturally described using the language of differential geometry, which more-

over, in each case, leads to new insights, and substantial advances in the development

of the theory.

Before outlining the specific accomplishments of this thesis, we will therefore start with

a brief summary of the use and advantages of differential geometry in these areas.

Classical field theory

Classical fields are, in most cases, easily modeled as sections of a fibre bundle. A few

examples are given below:

• In electromagnetism, the four-potential Aµ can be interpreted as a one-form Aµdxµ

on space-time.

• In general relativity on a manifold X, the relevant field is the metric g, a section of

the bundle of symmetric nondegenerate (0, 2)-tensors with appropriate signature.

• A scalar field on a manifold X is just a section of the trivial bundle π : X×R→ X.

More examples may be found throughout the literature, e.g. in [11,22,48,73].

Classical field theory can be described very elegantly in terms of the geometry of the

underlying fibre bundle and its associated first jet bundle J1π. The latter is a natural

bundle associated to a given fibre bundle π : Y → X. Whereas the tangent bundle of

a manifold has fibre coordinates that represent “velocities”, a jet bundle is equipped

with fibre coordinates that can be interpreted as “generalized velocities”, being the

derivatives of the coordinates of Y with respect to those of X.

The Poincaré-Cartan form. According to a well-known paradigm in physics, the

dynamics of a classical field is fully specified by giving a Lagrangian, which is (roughly

speaking) just a function on the jet bundle. The specification of a Lagrangian induces

a number of interesting geometric objects on the jet bundle, the most important of

which is the Poincaré-Cartan (n + 2)-form ΩL (where n + 1 = dimX). This form,
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which is the exterior derivative of an (n + 1)-form ΘL, called the Cartan form, is the

generalization to classical field theory of the symplectic form used in the description of

classical mechanics.

Using the Poincaré-Cartan form, one can reformulate the Euler-Lagrange equations (as

well as various extensions) in an intrinsic way. The Poincaré-Cartan form was discovered

in its current inception independently by Garćıa [46], Goldschmidt and Sternberg [47],

and Kijowski [58], but goes back to the work of Poincaré, Cartan, Weyl, Caratheodory,

and many others, at the beginning of the twentieth century.

The Poincaré-Cartan form ΩL can be derived in a number of different, but equivalent

ways. For our purposes, it is interesting to know that ΩL is intimately related with the

variational derivation of the field equations. Let S be the action functional, defined as

S(φ) =

∫
X

L

(
xµ, φa(x),

∂φa

∂xµ

)
dn+1x.

The Euler-Lagrange equations are derived by looking for extremals of this action. In

[80] and subsequent works, Marsden et al. point out that by broadening the class of

variations, additional terms arise, including the Cartan form. Indeed, let δya be an

arbitrary “vertical” variation of a field φ. By varying S with respect to δya, we obtain

the following expression:

δS =

∫
U

(
∂L

∂ya
− d

dxµ
∂L

∂yaµ

)
δya dV +

∫
∂U

∂L

∂yaµ
δya nµdA, (1)

where U is an open subset of X and nµ is the normal to the submanifold ∂U in X.

Here, the first term on the right-hand side yields the Euler-Lagrange equations, and the

second one is just the contraction of the variation written in coordinates as δya with

the Cartan form ΘL. The formula (1) was used in [94] to characterize the Cartan form,

and a similar, but more involved formula holds when vertical variations are replaced by

arbitrary variations (eq. 74 in [70]). We therefore see that the Poincaré-Cartan form

arises naturally in the variational context. Moreover, (1) can be used to derive the

Poincaré-Cartan form for situations where it was previously unknown, such as higher-

order field theories (see [61]) or discrete mechanics and discrete field theory (see [80]).

Nonholonomic constraints

Let us now leave classical field theories for a while, and focus on classical mechanics.

Consider a convex rigid body, for example a coin, or a homogeneous sphere, rolling

without sliding on a fixed horizontal plane. Anyone can readily picture such a motion,

and yet even this simple example already exhibits a very striking type of behaviour. For

example, cyclic coordinates occur in the Lagrangian of the rolling disc, but the asso-

ciated momenta are not conserved. More sophisticated examples include the so-called
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rattleback, whose non-intuitive spinning behaviour has continued to arouse interest for

over a century. We refer to [14] for an overview of the literature.

For our purposes, it is first and foremost the geometric formulation of systems with non-

holonomic constraints which is of interest. In mechanics, most classes of nonholonomic

constraints are linear in the velocities and hence can be represented by a distribution

D on the configuration space. In order to maintain the constraint, the system is sub-

jected to additional reaction forces which are specified by the principle of d’Alembert.

In modern terminology, this principle asserts that the reaction forces are co-vectors on

TQ which annihilate the vertically lifted distribution Dv (see [37]). The equations of

motion for a nonholonomic system then become

iΓωL − dEL ∈ (Dv)◦ and Im Γ ⊂ Dc, (2)

along D, where Dc is the complete lift of the distribution D. Under suitable regularity

conditions, there exists a complement to TD in T (TQ) (defined along D). In [37],

the authors prove that in that case, any solution Γ of the free problem (i.e. where no

constraints are present) yields a solution Γ′ of (2) by composing Γ with the projection

of T (TQ) onto TD.

The nonholonomic equations of motion can also be derived by varying the action func-

tional with respect to admissible variations, where the admissibility of variations is

dictated by the principle of d’Alembert. This formulation is especially useful for dis-

crete nonholonomic systems.

Classical field theories with nonholonomic constraints. Mechanical systems

with nonholonomic constraints are ubiquitous in nature, and are best described us-

ing concepts of differential geometry. Given the fact that classical field theories also

have a very geometric description, it is natural to ask oneself whether it makes sense

to study nonholonomic constraints for classical field theories as well.

This question can be approached from two different ways. One is the purely geomet-

rical approach, where one tries to use the intrinsic geometry of the jet bundle to find

analogues of the constructions outlined in the previous section for mechanics. This is

done in chapter 6. Even though this procedure is mathematically rather attractive, it

leaves open the question of physical relevance of such theories. Chapter 9 is therefore

devoted to a first example of a physically sound nonholonomic field theory.

Discrete mechanics and discrete field theory

Most mechanical systems have equations of motion that cannot be integrated analy-

tically. It is therefore natural to turn to computer methods to help us integrate the

Euler-Lagrange equations. In the past, most approaches to numerical analysis consisted
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of finding general purpose algorithms which could be applied to as large a class of dif-

ferential equations as possible. However, the Euler-Lagrange or Hamilton equations

are characterized by a number of geometric properties, such as conservation of phase

space volume (or more generally, symplecticity). Over the past decades, it has become

clear that numerical preservation (i.e. up to rounding errors) of these properties yields

qualitatively better algorithms: this is called geometric integration.

Discrete mechanics. In this thesis, we do not pretend to make a significant contri-

bution to the construction of geometric integration algorithms. Rather, we will focus

on the related area of discrete mechanics, and discrete field theory. While discrete me-

chanics can be used as a starting point for the development of geometric integrators

(as in [79]), it is also an interesting area in its own right, with many diverse applica-

tions such as integrability (see [85]), and links with other areas of geometry such as Lie

groupoid theory (see [75,110]).

In particular the approach of Moser and Veselov [85] deserves attention here. They

discretized the tangent bundle TQ by replacing it by the product Q×Q, the underlying

idea being that a tangent vector on Q can be approximated in some sense by a pair

of points (q0, q1). Secondly, they discretize the variational principle by considering a

discrete Lagrangian and the associated action sum (rather than an action integral as in

continuous mechanics) and deriving the discrete equations of motion by varying that

discrete action sum. The advantage of this approach is that the resulting discrete

system shares many properties with the continuous system. In particular, given a

discrete Lagrangian L, there exists a symplectic form ΩL on Q×Q and one can show

that the discrete flow preserves that form. This is essentially a consequence of the

discrete variational principle.

Apart from working with discrete mechanical systems on Q × Q, Moser and Veselov

also studied an example where the velocity space is a Lie group G. These two somewhat

disconnected examples can be subsumed into one general framework using the theory

of Lie groupoids ; this was done by Weinstein [110]. Briefly speaking, a groupoid is a

set G resembling a group, but equipped with a “partial” multiplication, in the sense

that only specific pairs of elements can be multiplied. Any group is a groupoid; in that

case, the multiplication is defined for all pairs of elements. Another example is the pair

manifold Q×Q: two elements (x, y) and (u, z) can be multiplied only if y = u, and in

that case we have

(x, y) · (y, z) = (x, z).

A Lie groupoid is a groupoid equipped with a smooth structure. Associated to any

Lie groupoid G is a certain vector bundle called the Lie algebroid AG of G: this is

similar to the fact that any Lie group gives rise to a Lie algebra. For example: the

Lie algebroid of Q × Q is the tangent bundle TQ. As can be expected from these few
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examples, the geometry of Lie groupoids is very rich, and in particular, can be used in

discrete mechanics in much the same way as was done by Moser and Veselov.

Discrete field theory. Inspired by these powerful and elegant methods, a number of

people set out to develop a similar geometric approach to classical field theories. Bridges

[17] introduced a concept of “multisymplecticity” for Hamiltonian partial differential

equations and later Bridges and Reich [19] studied numerical integrators that conserve a

discretized version of this invariant. Independently, Marsden, Patrick, and Shkoller [80]

extended the work of Veselov in order to deal with Lagrangian field theories.

Over the years, many people have constructed geometric integrators for field theories

which preserve multisymplecticity. An overview of these methods can be found in [18].

A theoretical study of discrete field theories and related aspects (such as symmetry

reduction, for example) is provided in this thesis.

Outline of this dissertation

The first two chapters of this thesis provide an introduction to Lagrangian field theory

and variational integrators, respectively. Most of the material in these chapters is

standard and therefore no proofs have been given, except in the case where only partial

results were needed, or simpler proofs could be given. After the introductory chapters,

the main body of this text contains two different themes, that of discrete field theories,

and of nonholonomic field theories, respectively.

Discrete field theories. In the introductory chapter 2, the current state of affairs in

the area of discrete mechanics and field theory is summarized; this treatment is based

mainly on the foundational work of Marsden et al. [80] and Bridges and Reich [19].

The work of these authors was developed with a view towards practical applications

(i.e. the construction of robust geometric integration schemes), but also serves as a

source of inspiration for progress on the theoretical front.

As a first step in this direction, we introduce in chapter 3 the concept of discrete

fields taking values in a given Lie groupoid G. The use of Lie groupoid techniques

for the study of discrete mechanical systems was pioneered by Marrero et al. [75],

and our treatment of discrete field theory is a generalisation of their work. Besides

providing a clearer insight into the geometry of discrete mechanics and field theory,

Lie groupoids also allow us to treat specific problems that cannot be addressed in the

standard framework. An important example is found in discrete reduction theory, where

discrete fields taking values in a Lie group naturally arise.

A central element in our treatment is the set Gk of “k-gons” in G, whose elements

are k-tuples of composable elements of G, such that the cyclic multiplication of these
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elements yields a unit element. Schematically:

(g1, g2, . . . , gk) ∈ Gk if (gi, gi+1) ∈ G2 (for i = 1, . . . , k) and g1 ·g2 · · · gk = eα(g1),

where G2 is the set of composable elements in G. The set Gk closely resembles the Lie

groupoid G (there is a well-defined way of inverting elements of Gk and Gk is equipped

with k anchor mappings generalizing the usual source and target map), except for

the fact that there is no obvious multiplication of elements of Gk. Nevertheless, the

remaining properties of Gk still allow us to construct a geometric theory of Lie groupoid

field theories.

In particular, the Lie algebroid AG of G induces a prolongation bundle P kG over Gk,

which can be endowed in turn with the structure of a Lie algebroid. In chapter 3, we

prove that the Poincaré-Cartan forms are sections of the dual of this bundle, and we

introduce a certain kind of Legendre transformations from this bundle to a prolongation

of AG, on which a natural symplectic section exists. Pullback of this section along the

Legendre maps then yields the original Poincaré-Cartan sections. Furthermore, we

derive the discrete field equations and show that the solutions to these equations are

“multisymplectic” in the sense of [80] and [19].

Finally, we construct a reduction procedure for discrete field theories with symmetry. In

chapter 4, we first consider the general case of “symmetry with respect to a morphism”.

We derive a reduction theorem which allows to “factor out” effects of symmetry, and

to reformulate the symmetric discrete field theory on a new, reduced groupoid. This

reduced field theory shares many features with the original one: it is multisymplectic

precisely when the original field theory is multisymplectic, and the Poincaré-Cartan

forms of the reduced theory are in a straightforward correspondence with those of the

original field theory.

In the second part of that chapter (section 2), as well as in chapter 5, we treat the

important special case where a symmetry group acts on the target space of the field

theory. As one might expect from the “Noether paradigm” (which says that for each

continuous symmetry, there exists a conservation law, and vice versa) the existence

of such a symmetry action implies a (discrete) conservation law. In the case where

the discrete field theory takes values in a Lie group G, which is at the same time the

symmetry group of the theory, we show that these conservation laws are equivalent

to the equations of motion, the discrete Euler-Poincaré equations. We analyse these

equations using some concepts from discrete differential geometry: we show that discrete

reduced fields can be considered as discrete G-connections, and that the obstruction to

reconstruction is precisely the discrete curvature of such a field. We end chapter 5 by

showing how the discrete Euler-Poincaré equations may be used to construct a discrete

counterpart to the theory of harmonic mappings from R2 into a semi-simple Lie group.
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Nonholonomic field theories. A natural question is whether the geometric methods

that proved to be so successful in nonholonomic mechanics, can be extended to the

context of classical field theories. A partial answer is provided in chapter 6, where we

construct a distribution D along the constraint submanifold C such that (under some

regularity conditions) T (J1π) can be written as the direct sum TC ⊕D. Composition

with the projector P : T (J1π) → TC then provides us with a natural way of turning

solutions of the free problem into constrained solutions.

Chapter 7 is devoted to the inclusion of symmetry in this framework. One of the

cornerstones of mechanics is the Noether theorem. However, this theorem does not

always hold if nonholonomic constraints are present, and is replaced by a particular

equation which describes the evolution of the associated “conserved currents”. This

equation was derived in [13] for mechanical systems and is extended here to the case

of field theories.

In both of these chapters, nonholonomic field theories are also studied from a different

point of view, using the so-called Cauchy formalism for classical field theories. In par-

ticular, we show that nonholonomic field theories give rise to nonholonomic mechanical

systems (in the classical sense) on a certain infinite-dimensional manifold, and that

the momentum equation derived in chapter 7 induces the corresponding equation for

mechanical systems.

The remainder of the thesis is then devoted to the study of certain classes of constraints.

In chapter 8 we point out that for field theories with a canonical direction of time, the

distinction between holonomic and nonholonomic constraints is not as straightforward

as the analogy with mechanics would make us believe. The well-known constraint

of inextensibility in fluid dynamics, for example, is traditionally never treated as a

nonholonomic constraint, and yet, when we apply the formalism of chapter 6, we still

obtain the correct field equations. However, for other nonintegrable constraints, the

nonholonomic equations seem to give wrong results.

This enigma is resolved by taking a closer look at the kind of field theories where this

behaviour occurs. It turns out that these field theories are characterised by having a

base space which can be written as the product of time and space. In that case, one

can reformulate the dynamics as an ODE on the (infinite-dimensional) space of fields (a

particular application of Cauchy analysis), and it turns out that constraints that only

involve spatial derivatives (such as the incompressibility constraint) become integrable

in this framework. By contrast, constraints involving time derivatives are genuinely

nonholonomic.

In chapter 9, we construct a physical example of such a nonholonomic system. The basic

model is that of a Cosserat rod, a special kind of continuum theory. This rod moves in

a horizontal plane which is supposed to be sufficiently rough, so that it rolls without

sliding. In this way, we obtain what could reasonably be called a continuum version of
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the vertically rolling disc. This model can be analysed using the techniques developed

in chapter 6. Furthermore, we prove the conservation of energy, and we investigate the

nonconservation of momentum using the momentum lemma of chapter 7.

Eventually, to obtain a quantitative insight into the dynamics of the nonholonomic

Cosserat rod, we have to resort to computer models. At the end of chapter 9, we con-

struct a second-order geometric integration scheme which exactly preserves the nonholo-

nomic constraint. This scheme is based on a suitable discrete version of d’Alembert’s

principle (as in [28]), and is again a testimony to the effectiveness of differential geom-

etry in classical field theory.

References. Some parts of this thesis have already appeared in print, or are submitted

for publication. The dynamics of discrete field theories on Lie groupoids was treated

in [108], while aspects of the theory of symmetry in this context were established in

[105]. The theoretical framework for nonholonomic field theories was studied in [102],

while the momentum lemma was derived in [103]. The results on linear nonholonomic

and holonomic constraints were published in [104, 107]. Finally, the example of the

nonholonomic Cosserat rod, as well as its numeric treatment, forms the subject of [106].



Notations

In this thesis, we will work in the category of smooth maps and smooth manifolds. All

manifolds are finite dimensional, except where indicated otherwise.

The tangent functor is denoted by T : the tangent bundle of a smooth manifold Q is

denoted by TQ, and the tangent map of a smooth map f by Tf . The tangent bundle

projection will be denoted by τ : TQ → Q, and the space of sections of τ , or vector

fields on Q, by X(Q). The cotangent bundle of Q is denoted by T ∗Q, and the cotangent

bundle projection by π : T ∗Q→ Q. The k-fold exterior product of T ∗Q with itself will

be denoted by
∧k(T ∗Q). The space of sections of

∧k(T ∗Q) is the module of k-forms,

denoted by Ωk(Q). The Lie derivative with respect to a vector field X will be denoted

by LX . The contraction of a vector field X with a differential form α will be denoted

both by iXα as well by X α, and the same convention applies to the contraction of a

vector-valued form with a differential form (see appendix A).

A fibre bundle is a triple (Y, π,X), consisting of a base space X, a total space Y and a

submersion π : Y → X which is locally trivial. Usually, we will denote a fibre bundle

simply by its projection π : Y → X. If π : Y → X is a fibre bundle, the vertical bundle

is the subbundle of TY denoted by V π consisting of those vectors which project onto

zero under π. The space of sections of π will be denoted by Γ(π), or, if no confusion is

possible, by Γ(Y ).

Bundle maps between two fibre bundles π and π′ are denoted by pairs (Φ,Φ), or simply

by Φ, where Φ : X → X ′ is the base space map and Φ : Y → Y ′ the total space map.

When no confusion can arise, we will omit the base space map and refer to Φ as the

bundle map.

A special role in this thesis is played by vector fields and forms along a map. Let

f : M → N be a smooth map, then a vector field along f is a map X : M → TN

such that X(m) ∈ Tf(m)N . In other words, X is a section of the pullback bundle

f ∗TN . Forms along f can be defined similarly as maps α : M →
∧k(T ∗N) such that

α(m) ∈
∧k(T ∗f(m)N); they are sections of f ∗

∧k(T ∗N).

xiii





Chapter 1

Lagrangian field theories

As mentioned in the introduction, classical field theory can be quite naturally studied

by using the geometry of fibre bundles. In this introductory chapter we intend to give

an overview of jet bundle theory in particular, and of the geometric formulation of

classical field theory.

The plan of the chapter is as follows: section 1 is devoted to the study of jet bundles

and the geometric objects associated with them, including an overview of connection

theory in section 1.3. In section 2 we then make the link with Lagrangian field theories

on jet bundles. In section 3, a radically different picture of classical field theory is

sketched: we break covariance and reformulate the dynamics of the field on an infinite-

dimensional space. This is the so-called Cauchy formalism. Finally, with section 4

we close this chapter by providing a detailed treatment of nonrelativistic elasticity, a

particular example of a Lagrangian field theory.

As most of the material in this chapter is fairly standard, all proofs have been omitted,

with the exception of proofs of new results.

1. Jet bundles

The overview of jet bundle theory in this section is based on the book [94] by D. J.

Saunders.

For the sake of definiteness, from now on π : Y → X will be a fibre bundle of rank

m (i.e. with m-dimensional fibres), whose base space X is assumed to be an oriented

manifold of dimension n+ 1, equipped with a fixed volume form η.

Throughout, we assume that (xµ), µ = 1, . . . , n + 1, is a coordinate system on X

compatible with the volume form η, i.e. such that

η ≡ dn+1x := dx1 ∧ · · · ∧ dxn+1,

and that a system of adapted bundle coordinates (xµ, ya) is given on Y , with a =

1, . . . ,m.

A section of the fibre bundle π is a map φ : X → Y such that π ◦ φ = idX , where idX
is the identity map on X. In bundle coordinates, a section φ can locally be written as

φ(x) = (xi, φa(x)), for some local functions φa.
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1.1. First-order jets. We define an equivalence relation on the set of sections of π

by saying that two sections φ and ψ, defined on an open neighbourhood U of a point

x ∈ X, are 1-equivalent if φ(x) = ψ(x) and Txφ = Txψ. In other words, φ and ψ are

1-equivalent if their Taylor expansions at x agree up to first order. The equivalence

class of a local section φ at x is denoted by j1
xφ.

Definition 1.1. The first jet manifold J1π of π is the set of all such equivalence classes:

J1π := {j1
xφ where x ∈M and φ ∈ Γx(π)},

where Γx(π) is the set of sections of π defined in an open neighbourhood of x ∈M .

It can be shown that J1π can be given the structure of a smooth manifold, but more

can be said: the first jet manifold J1π is equipped with two submersions π1 : J1π → X

and π1,0 : J1π → Y , defined as

π1(j1
xφ) = x and π1,0(j1

xφ) = φ(x),

and π1,0 : J1π → Y is an affine bundle modelled over the vector bundle π∗T ∗X⊗V π →
Y , where V π is the bundle of π-vertical vectors over Y .

The system of bundle coordinates on the fibre bundle π induces a coordinate system

(xµ, ya; yaµ) on J1π, where yaµ is defined by

yaµ(j1
xφ) =

∂φa

∂xµ
(x).

This coordinate expression also shows that J1π has dimension n+ 1 +m+ (n+ 1)m.

This system of natural bundle coordinates is also useful in uncovering the affine struc-

ture of the bundle π1,0 : J1π → Y : let j1
xφ be an element of J1π and consider an element

u of V π ⊗ π∗T ∗X in the fibre over φ(x). In coordinates, u can be written as

u = uaµdxµ ⊗ ∂

∂ya
.

The jet j1
xφ+ u is then the element of π−1

1,0(φ(x)) with fibre coordinates yaµ(j1
xφ) + uaµ.

The following alternative interpretation of jets will also be useful: a jet j1
xφ can be

interpreted as a injective linear map from TxX to TyY , where y = φ(x). Indeed, there

is an obvious correspondence j1
xφ↔ Txφ, which is easily seen to be well defined.

Remark 1.2. If π : M × S →M is a trivial bundle, then we denote J1π as J1(M,S).

Note that J1(M,S) is fibered over M as well as over S: the projection onto M is just

π1, and the projection onto S is π1,0 composed with the projection pr2 : M × S → S

onto the second factor. �
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1.1.1. The vertical endomorphism S on J1π. The tangent bundle TQ of a manifold

Q is equipped with a canonical (1, 1)-tensor field J , called the vertical endomorphism

(see [30]). Its construction relies essentially on the structure of TQ as a vector bundle.1

In coordinates, J is given by

J = dya ⊗ ∂

∂ẏa
, (1.1)

in a natural bundle coordinate system (ya, ẏa) on TQ. For an intrinsic construction,

see the references mentioned above.

There is a similar object in jet theory. Its construction is somewhat more complicated,

and depends (among other things) on the existence of a volume form on X. We refer to

Saunders [94] for a detailed treatment and note only that its construction is intimately

tied up with the affine structure of the first jet bundle π1,0 : J1π → Y . In terms

of the fixed volume form η on X, the vertical endomorphism is then a vector-valued

(n+1)-form that has the following expression in the coordinate system described above:

Sη = (dya − yaνdxν) ∧ dnxµ ⊗
∂

∂yaµ
, (1.2)

where

dnxµ :=
∂

∂xµ
dn+1x.

Note in passing that we make no notational distinction between the volume form η on

X and its pull-back to Y or to J1π under the respective projections π and π1.

Remark 1.3. From now on, we will use J to denote the vertical endomorphism on a

tangent bundle, and S to denote the vertical endomorphism on a jet bundle. �

1.1.2. Prolongation to J1π of vector fields and bundle maps. Generally speaking, the

prolongation operation j1 takes certain objects (in this case vector fields and bundle

maps) defined on a bundle, and turns them into the corresponding objects on the first

jet bundle.

Consider a bundle map Φ = (Φ,Φ) from π to itself and assume that the base space

map Φ : X → X is a diffeomorphism. Recall that Φ is a bundle map if π ◦ Φ = Φ ◦ π.

The prolongation of Φ to J1π is the bundle map j1Φ : J1π → J1π defined as

j1Φ(j1
xφ) := j1

x(Φ ◦ φ ◦ Φ−1).

Note that the prolongation cannot be defined if Φ is not a diffeomorphism. One can

equally well define prolongations of bundle morphisms from one bundle π to another

one π′, but these will not be needed here.

1Indeed, the vertical endomorphism can be introduced on arbitrary vector bundles without conceptual
complications (see for instance [83]).
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If W is a vertical vector field on Y , then its flow {Φt} consists of bundle maps over

the identity in X. Consequently, the prolongation of W is defined as the vector field

j1W ∈ X(J1π) whose flow is given by the local 1-parameter group {j1Φt}. If W is

given in coordinates by W = W a(x, y) ∂
∂ya

, then j1W is given by

j1W = W a ∂

∂ya
+

dW a

dxµ
∂

∂yaµ
, where

dW a

dxµ
=
∂W a

∂xµ
+
∂W a

∂yb
ybµ.

The intrinsic construction of the prolongation of a non-vertical vector field is somewhat

harder; we refer to [94] for more details. In coordinates, if

W = W µ(x, y)
∂

∂xµ
+W a(x, y)

∂

∂ya
,

then

j1W = W µ ∂

∂xµ
+W a ∂

∂ya
+

(
dW a

dxµ
− yaν

dW ν

dxµ

)
∂

∂yaµ
. (1.3)

1.1.3. Semi-basic and contact forms on J1π. On J1π, there are a number of classes of

distinguished differential forms. These particular types of forms play an important role

in the geometric analysis of the calculus of variations (see [65]). For the developments

in this thesis, however, we only need some introductory definitions.

Definition 1.4. Consider an arbitrary fibre bundle π : Y → X. Let α be a k-form on

Y . Then α is horizontal or semi-basic with respect to the projection π if iV α = 0 for

all π-vertical vector fields V on Y .

We denote the module of semi-basic k-forms with respect to π by Ωk
0(π). These forms

are sections of the pullback bundle π∗
∧k(X), which we denote for the sake of brevity

by
∧k

0(π).

Note that the concept of semi-basic k-forms is not limited to the case of jet bundles.

The following definition, however, is inextricably tied up with the special structure of

the first jet bundle.

Definition 1.5. Let ω be a k-form on J1π. Then ω is a contact k-form if (j1φ)∗ω = 0

for all sections of π. If ω is a contact k-form, we say that ω is a 1-contact k-form if

iV ω is π1-horizontal for every π1-vertical vector field V . We say that ω is an m-contact

k-form (where m > 1 and m ≤ k) if iV ω is an (m−1)-contact form for every π1-vertical

vector field V .

If we denote by θa the contact one-form dya − yaµdxµ, the differential ideal of contact

forms is algebraically generated by θa and dθa, a = 1, . . . ,m.

We denote the module of m-contact k-forms on J1π by Ωk
c,m(J1π) and define the module

Ωk
c,≥m(J1π) of at least m-contact k-forms as

Ωk
c,≥m(J1π) = Ωk

c,m(J1π)⊕ · · · ⊕ Ωk
c,k(J

1π).
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The fundamental result in this area is given below. Its proof can be found in [64].

Proposition 1.6. Every k-form ω has a canonical decomposition of the form π∗1,0ω =

ωh+ωc,1 +· · ·+ωc,k, where ωh is a unique horizontal form, and ωc,m are uniquely defined

m-contact k-forms, for m = 1, . . . , k.

1.2. Higher-order jets. In chapter 9, we will encounter higher-order field theories,

in particular with Lagrangians of order 2, i.e. depending on the fields and their first-

and second-order derivatives. To deal with that kind of field theories, we introduce the

manifolds Jkπ of higher-order jets. Most of the theory of higher-order jet bundles is

similar to the first-order case, but there are a number of new aspects, such as iterated

jet bundles, that deserve additional attention.

Let x be a point in X. We define an equivalence relation on the set of local sections

Γx(π) of π at x and declare two sections to be k-equivalent if their Taylor expansions

at x in a coordinate chart agree up to the kth order. It can be shown that if these

Taylor expansions agree in any one coordinate chart centered at x, then they agree in

all coordinate charts at x. By analogy to the first-order case, the equivalence class of a

local section φ at x is denoted by jkxφ.

Definition 1.7. The kth order jet manifold Jkπ is the set of all such equivalence classes:

Jkπ := {jkxφ where x ∈M and φ ∈ Γx(π)},

where Γx(π) has a similar meaning as in definition 1.1.

Note that, according to this definition, J0π is just Y .

The kth order jet bundle is equipped with a number of projections πk,l : Jkπ → J lπ

(where l ≤ k), constructed by “truncating” to order l the Taylor expansion defining an

element of Jkπ. Formally, we define πk,l as follows: πk,l(j
k
xφ) = jlxφ. In addition, there

exist projections πk : Jkπ → X defined as πk = π ◦ πk,0.

A natural coordinate system on Jkπ is given by (xµ, ya; yaµ; yaµ1µ2
, . . . , yaµ1···µk), for a =

1, . . . ,m and µi = 0, . . . , n, with the restriction that

yaµ1···µl = yaσ(µ1···µl) for all 0 < l ≤ k, (1.4)

and for any permutation σ ∈ Sl. These coordinate functions are defined as follows:

yaµ1···µl(j
k
xφ) :=

∂lφ

∂xµ1 · · · ∂xµl
(x).

The condition (1.4) hence expresses the commutativity of the partial derivatives.

An interesting observation is that, for any positive k and l, the (k + l)th order jet

bundle Jk+lπ is embedded in the iterated jet bundle Jkπl. Indeed, there exists an

embedding ιk,l : Jk+lπ ↪→ Jkπl defined by ιk,l(j
k+l
x φ) := jkx(jlφ). All this is similar to the
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case of tangent bundles, where the iterated tangent bundle T (TQ) has a distinguished

submanifold T 2Q, whose elements are equivalence classes of “osculating curves”.

In order to derive the coordinate form of the embedding ιk,l, we have to set up a number

of rather involved coordinate systems. The iterated jet bundle Jkπl is equipped with a

coordinate system of the following form:

(xµ; yaµ1···µp;ν1···νq), for all p = 0, . . . , l, and q = 0, . . . , k.

Again, the rough idea is that yaµ1···µp;ν1···νq represents the “derivative” of yaµ1···µp with

respect to {xν1 , . . . , xνq}. For the sake of notational simplicity, we have adopted the

convention that if p = 0, then yaµ1···µp;ν1···νq is just ya;ν1···νq , and similarly for the case

where q = 0: yaµ1,...,µp;ν1,...,νq
is then just yaµ1,...,µp

The fibre coordinates satisfy the following symmetry condition (compare with (1.4)):

yaσ(µ1···µp);τ(ν1···νq) = yaµ1···µp;ν1···νq for all σ ∈ Sp, τ ∈ Sq,

for all p = 0, . . . , l and q = 0, . . . , k.

By comparison with (1.4), it follows that Jk+lπ is precisely the subset of Jkπl whose

elements have coordinates that are symmetric under the full permutation group Sp+q

for all p = 0, . . . , l and q = 0, . . . , k.

Finally, Jk+lπ is characterized as a submanifold of Jk+lπ by the condition

yaµ1···µp;ν1···νq = yaσ(µ1···µp;ν1···νq) (= yaµ1···µpν1···νq), (1.5)

for all σ ∈ Sp+q, where p = 0, . . . , l and q = 0, . . . , k. In coordinates, ιk,l : Jk+lπ ↪→ Jkπl
is given by ιk,l(y

a
µ1···µpν1···νq) = yaµ1···µp;ν1···νq , with the same notations as above.

In this thesis, we will only be concerned with J2π and its embedding into J1π1. The

latter has a coordinate system (xµ, ya, yaµ; ya;ν , y
a
µ;ν), where a = 1, . . . , k and µ, ν =

1, . . . , n+1. Note that yaµ;ν is not symmetric under the exchange of µ and ν. According

to (1.5), the image of J2π under ι1,1 is the submanifold of J1π1 determined by the

following equation:

ya;µ = yaµ and yaµ;ν = yaν;µ = yaµν . (1.6)

1.3. Connections on fibre bundles. The concept of a connection on a manifold, or

by extension, of a connection on a fibre bundle, is central in differential geometry. In

this thesis, we will use the definition of connection given by Charles Ehresmann. In his

view, a connection on a fibre bundle π : Y → X is a smooth n-dimensional distribution

on Y which is transversal to the vertical bundle V π. Equivalently, one has the following

definition.

Definition 1.8 (see [94], def. 3.5.1). An Ehresmann connection on π is a vector-valued

one-form Υ ∈ Ω1
0(π)⊗X(Y ) such that Υ σ = σ for every σ ∈ Ω1

0(π). (Recall that Ω1
0(Y )

denotes the module of semi-basic 1-forms with respect to π.)
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In bundle coordinates, such a connection is locally given by

Υ = dxµ ⊗
(

∂

∂xµ
+ Γaµ(x, y)

∂

∂ya

)
.

Let Υ be an Ehresmann connection. The image H of Υ, regarded as map from π∗TX
to TY , is a bundle of n-planes on Y determining a connection in the original sense of

Ehresmann, as H is transversal to the vertical bundle V π. The converse is also true;

this is treated in lemma 3.5.3 and lemma 3.5.4 in [94]. Summarizing, we have:

Proposition 1.9. Every Ehresmann connection determines a subbundle H of the tan-

gent bundle TY which is transversal to the vertical bundle: TY = H⊕V π. Conversely,

each such decomposition determines an Ehresmann connection.

In coordinates, H is spanned by vector fields of the form(
∂

∂xµ

)H
:=

∂

∂xµ
+ Γaµ(x, y)

∂

∂ya
.

Let TY = H ⊕ V π be a decomposition of the tangent bundle as in the above proposi-

tion. Vectors contained in H will be called horizontal ; H is the horizontal distribution.

Associated to such a decomposition is a set of complementary projectors

h : TY → H and v : TY → V π,

referred to as the horizontal and vertical projector, respectively. Based on the concept

of projections in the tangent bundle, one can come up with more general definitions of

connections (see [60]).

A final, particularly fruitful interpretation of a connection is that of a jet field, i.e. a

section of the bundle π1,0 : J1π → Y , for which we will also use the notation Υ. We

may associate a horizontal distribution H to a jet field Υ : Y → J1π as follows: for

each y ∈ Y , Υ(y) is an element of J1π and, hence, can be viewed as a linear map Υ(y) :

TxX → TyY , where x = π(y) (see the alternative characterisation of jets immediately

before remark 1.2). Now, define H(y) as the image of Υ(y). The assignment y 7→ H(y)

defines a horizontal distribution on Y . A full proof of the equivalence between jet fields

and Ehresmann connections is given in [94], proposition 4.6.3. In coordinates, the jet

field associated to an Ehresmann connection is given by

Υ : (xµ, ya) 7→ (xµ, ya,Γaµ(x, y)).

An integral section of a jet field Υ : Y → J1π is a local section φ of π such that

j1φ = Υ ◦ φ. Integral sections do not always exist, not even locally: their existence is

related to the curvature of the Ehresmann connection associated to the jet field.
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Definition 1.10. Let π : Y → X be a fibre bundle and Υ an Ehresmann connection

on π with horizontal projector h. The curvature of Υ is the vector-valued two-form RΥ

on Y defined as

RΥ(X1, X2) := h([X1, X2]) + [h(X1),h(X2)]− h([h(X1), X2])− h([X1,h(X2)]),

for arbitrary vector fields X1, X2 on Y .

In coordinates, the curvature is given by RΥ = Ra
µνdx

µ ⊗ dxν ⊗ ∂
∂ya

, where

Ra
µν =

∂Γaν
∂xµ
−
∂Γaµ
∂xν

+ Γbµ
∂Γaν
∂yb
− Γbν

∂Γaµ
∂yb

(1.7)

and Γaµ are the connection coefficients of Υ.

The curvature measures the lack of integrability of the horizontal distribution, and

is equal to one half of the Nijenhuis torsion of the horizontal projector h (proposi-

tion 3.5.14 in [94]). Similarly, when we interpret the connection as a jet field, the

curvature is the obstruction for the existence of integral sections.

Remark 1.11. We now have three equivalent characterizations of Ehresmann connec-

tions. As we will not be using other types of connections, we will refer to all three

concepts of Ehresmann connections simply as connections. �

1.3.1. Connections on π1 : J1π → X. The definition of connections on the first jet

bundle proceeds just as in the case of arbitrary bundles. However, the special nature

of the first jet bundle leads to a number of additional interesting properties.

Recall that J2π is a submanifold of the iterated jet bundle J1π1 by (1.6). We define

a second-order jet field as a jet field on π1 taking values in J2π, i.e. a section of

π2,1 : J2π → J1π. A standard (i.e. not necessarily second-order) jet field in (π1)1,0 :

J1π1 → J1π has the following coordinate form:

Υ : (xµ, ya; yaµ) 7→ (xµ, ya, yaµ; ya;µ = Γaµ(xκ, yb, ybκ), y
a
µ;ν = Γaµν(x

κ, yb, ybκ)). (1.8)

From the coordinate expressions (1.6) defining J2π as a submanifold of J1π1, we see

that Υ is of second order if and only if the following conditions hold:

Γaµ = yaµ and Γaµν = Γaνµ. (1.9)

If a second-order jet field is integrable, then its integral sections are prolongations of

sections of π : Y → X. As we shall see, second-order jet fields are the geometric

counterpart of systems of second-order PDEs. Let us first define a connection with

horizontal projector h to be semi-holonomic if

ihθ = 0, for each contact 1-form θ. (1.10)

For the definition of the contraction operator of a (1, 1)-tensor field with a k-form, we

refer the reader to appendix A.
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In coordinates, the horizontal projector h of a connection on π1 can be written as

h = dxµ ⊗
(

∂

∂xµ
+ Γaµ

∂

∂ya
+ Γaµν

∂

∂yaν

)
, (1.11)

and the associated jet field Υ has the form indicated in (1.8). A local section σ of π1,

with σ(x) = (xµ, σa(x), σaµ(x)), is an integral section of the jet field Υ if

∂σa

∂xµ
= Γaµ(x, σb, σbκ) and

∂σaµ
∂xν

= Γaµν(x, σ
b, σbκ). (1.12)

From this expression, it follows that σ can be written as σ = j1φ, where φ is a section

of π, if and only if Γaµ = yaµ: in that case, the first condition of (1.12) translates to
∂σa

∂xµ
= σaµ, and the connection is at least semi-holonomic.

Similarly, second-order jet fields can be equivalently characterized in terms of certain

classes of contact forms (see proposition 5.4.6 in [94]). This characterisation will not

be needed in this thesis: it suffices to note that second-order jet fields are necessarily

semi-holonomic, and if they are integrable, their integral sections satisfy the following

system of second-order PDEs:

∂2φa

∂xµ∂xν
= Γaµν

(
x, φb,

∂φb

∂xκ

)
.

A necessary, though not sufficient condition for integrability of this system is that that

Γaµν = Γaνµ, which is precisely the second condition in (1.9).

2. Lagrangian field theories

The geometry of classical field theories has been studied by many authors and is by now

well established. In this section we recall some basic aspect of that theory. We start by

giving a brief overview of first-order field theories; for a comprehensive treatment, we

refer the interested reader to [11,22,36,48,94] and the references therein. In section 2.2,

we study the effects of a symmetry action, and we recall Noether’s theorem. Finally, in

subsection 2.3, we turn our attention to field theories of second order (which will play

a major role in chapter 9), and we indicate some of the differences with first-order field

theories.

2.1. Covariant field theories of first order. Let there be given a fibre bundle

π : Y → X, whose (local) sections represent fields.

2.1.1. The Poincaré-Cartan (n + 2)-form. A fundamental object in Lagrangian field

theory is the so-called Poincaré-Cartan form, an (n + 2)-form associated to a given

Lagrangian, which is related to the variational background of the Euler-Lagrange equa-

tions. The Poincaré-Cartan form can also be used to recast the Euler-Lagrange equa-

tions in an intrinsic form.
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Definition 2.1. A Lagrangian density is an (n + 1)-form L along the projection π1.

Equivalently, a Lagrangian density is a horizontal (n + 1)-form (with respect to the

projection π1) on J1π.

Both aspects of this definition can be rephrased as follows: a Lagrangian density is a

map L : J1π →
∧n+1(X) such that, for all γ ∈ J1π, L(γ) ∈

∧n+1
x (X), where x = π1(γ).

Since X is equipped with a fixed volume form η, any Lagrangian density can be written

as L = Lη, where L is a function on J1π, called the Lagrangian. From this point of view,

the explicit distinction between Lagrangian densities and the associated Lagrangian

functions is almost trivial, but note that one can easily think of situations (i.e. in

general relativity) where it is not desirable to consider a fixed volume form on the base

space. Such situations will not occur in this thesis, however.

A Lagrangian L is said to be regular if its Hessian matrix is non-degenerate, i.e.

det

(
∂2L

∂yaµ∂y
b
ν

)
6= 0

at each point of J1π.

Using the vertical endomorphism Sη, we can now construct the following (n+ 1)-form

on J1π, called the (first-order) Cartan form:

ΘL := S∗ηdL+ Lη

and we then define a particular (n + 2)-form, called the Poincaré-Cartan form, as

ΩL := −dΘL. If L is regular, which we will always assume in the sequel, the Poincaré-

Cartan form is a multisymplectic form according to the following definition.

Definition 2.2 (see [21,33,35]). A closed m-form Ω on a manifold M is called mul-

tisymplectic if the mapping v ∈ TxM 7→ ivΩ(x) ∈
∧m−1
x (M) is injective for all x ∈M .

Note that symplectic forms (m = 2) and volume forms (m = dimM) are particular

examples of multisymplectic forms and, moreover, these are the only two cases where

the mapping in definition 2.2 is surjective as well as injective (assuming M is finite

dimensional). Despite their apparent similarity, multisymplectic geometry is generally

quite different from symplectic geometry. One of many important differences is that

there is no Darboux theorem for general multisymplectic forms.

Remark 2.3. Contrary to what their definition may suggest, ΘL and ΩL are associated

to the Lagrangian density rather than to the Lagrangian itself, i.e. if Lη = L′η′ for

some other volume form η′ on X, then ΘL = ΘL′ , provided the volume form η′ is used

to construct ΘL′ . A similar remark can be made about ΩL. �
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The following coordinate expressions for ΘL and ΩL will often be convenient:

ΘL =
∂L

∂yaµ
(dya − yaνdxν) ∧ dnxµ + Ldn+1x

and

ΩL = − ∂L
∂ya

dya ∧ dn+1x− d

(
∂L

∂yaµ

)
∧ (dya − yaνdxν) ∧ dnxµ. (1.13)

2.1.2. The Euler-Lagrange equations. Let U be an open subset of X with compact

closure, and define the action functional S as

S(φ) =

∫
U

L(j1φ)η, (1.14)

for each local section φ of π whose support is contained in U .

An infinitesimal variation of such a section φ is a vertical vector field V along φ such

that V (x) = 0 for all x ∈ ∂U . A finite variation of φ is a local one-parameter group

of diffeomorphisms {ϕε}, (where ε takes values in an open interval (−a, a) containing

zero) defined on a neighbourhood of φ(U), and satisfying the following conditions: for

each ε ∈ (−a, a),

(1) ϕε respects the fibered structure of Y , i.e. π ◦ ϕε = π;

(2) ϕε is the identity on the boundary of φ(U).

A section φ is an extremal or critical point of (1.14) if

d

dε
S(ϕε ◦ φ)

∣∣∣
ε=0

= 0,

for any finite variation {ϕε}. A standard argument then shows that the extremals of

(1.14) are characterized by the following set of Euler-Lagrange equations :[
∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)]
(j2φ) = 0. (1.15)

These partial differential equations can be rewritten in intrinsic form by means of the

Poincaré-Cartan form:

Theorem 2.4. A section φ of π is a critical point of the action S, or, equivalently,

satisfies the Euler-Lagrange equations (1.15), if and only if

(j1φ)∗iWΩL = 0 (1.16)

for all vector fields W on J1π.

Proof: See, for instance, [11, prop. 7.1.2], [48, thm. 3.1] or [22]. �

In this thesis, we will mostly be concerned with a kind of “linearized version” of the

Euler-Lagrange equations obtained by looking for a connection on π1 whose integral sec-

tions will be extremals of the action S. More precisely, we have the following important

proposition:
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Proposition 2.5. Let h be the horizontal projector of a holonomic connection on π1.

The integral sections of the associated jet field are extremals of (1.14) if and only if

ihΩL = nΩL. (1.17)

Proof: See [94, thm. 5.5.5] and [31]. �

Moreover, a simple coordinate computation shows that, given a regular Lagrangian

L on J1π, a connection on π1 satisfying (1.17) will automatically be semi-holonomic.

Equation (1.17) is also referred to as the De Donder-Weyl equation of Lagrangian field

theory.

Remark 2.6. One can prove that the integral sections of a solution h of the De Donder-

Weyl equation are sections σ of π1 such that σ∗(iWΩL) = 0 for all vector fields W on

J1π, where σ need not be the prolongation of a section of π. These equations are

referred to as the De Donder equations of Lagrangian field theory. In the case of a

regular Lagrangian, one can furthermore show that any solution σ of the De Donder

equations is necessarily the prolongation of a solution of the Euler-Lagrange equations

(see for instance [10]). The De Donder equations will not be used in the remainder of

this thesis. �

2.2. Symmetries and Noether’s theorem. Let G be a Lie group acting on π :

Y → X by bundle automorphisms. By this, we mean that there exist Lie group actions

Φ : G × X → X and Φ : G × Y → Y , such that, for each g ∈ G, the pair (Φg,Φg)

(collectively denoted by Φg) is a bundle automorphism. Here, Φg is a shorthand notation

for the diffeomorphism Φ(g, ·), and similarly for Φg.

Such an action induces an action on J1π by prolongation, where G acts on J1π by the

action which assigns to each g ∈ G the prolongation j1Φg. Consider now an element ξ of

the Lie algebra g and denote the infinitesimal generator of the prolonged action corre-

sponding to ξ by ξJ1π. Note that ξJ1π is just j1ξY , the prolongation of the infinitesimal

generator on Y corresponding to ξ.

We say that a Lagrangian density L is invariant under the prolonged action of G if

(j1Φg)
∗L = L for all g ∈ G. Here, we have interpreted L as a horizontal (n + 1)-form

on J1π. If we write the Lagrangian density as L = Lη, then invariance of L implies the

following equivariance condition for the Lagrangian function:

L(j1Φg(γ)) = L(γ) Jac(Φg)(x), for all g ∈ G, γ ∈ J1π, and where x = π1(γ).

Here, Jac(Φg) denotes the Jacobian of the diffeomorphism Φg. It can be shown that

equivariance of the Lagrangian, in the sense defined above, implies invariance of the

Cartan (n+ 1)-form, expressed as (j1Φg)
∗ΘL = ΘL for all g ∈ G, or, infinitesimally,

LξJ1π
ΘL = 0. (1.18)
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Let L be a G-equivariant Lagrangian. To each ξ ∈ g, one can associate an n-form JLξ
according to JLξ := ξJ1π ΘL. We now introduce the momentum map JL as the element

of Ωn(J1π)⊗g∗ defined by
〈
JL, ξ

〉
= JLξ for all ξ ∈ g. The importance of the momentum

map lies in the following theorem, which we have taken here from [48, thm. 4.7]:

Proposition 2.7 (Noether). Let L be an invariant Lagrangian density. For all ξ ∈ g,

the following conservation law holds:

d[(j1φ)∗JLξ ] = 0,

for all sections φ of π that are solutions of the Euler-Lagrange equations (1.15).

Remark 2.8. In this section, we considered only Lie group actions on J1π that are

prolongations of actions on Y . This special case will be sufficient for the remainder of

this thesis, but one can equally well envisage actions that are not prolongations. In that

case, the existence of a momentum map imposes additional conditions on the action.

This is also the case in mechanics. �

2.3. Second-order field theories. Many of the Lagrangians arising in elasticity are

of higher order. In particular, we will encounter a second-order model in chapter 9.

We now recall a number of results from the geometric formalism for second-order field

theories (see [61, 94] and the references therein). Much of this formalism is similar

to the first-order case, but a brief warning is in order here. In the first-order case,

both the Lagrangian and the Poincaré-Cartan form reside on J1π. For kth order field

theories, however, the Lagrangian is a function on Jkπ, as one would expect, but the

Poincaré-Cartan form lives on J2k−1π.

A second-order Lagrangian is a function L on J2π. Associated to L is a second-order

Cartan form, an (n+ 1)-form on J3π, whose coordinate expression reads

ΘL =

[
∂L

∂yaν
− d

dxµ

(
∂L

∂yaνµ

)]
dya ∧ dnxν +

∂L

∂yaνµ
dyaν ∧ dnxµ

+

[
L− ∂L

∂yaν
yaν +

d

dxµ

(
∂L

∂yaνµ

)
yaν −

∂L

∂yaνµ
yaνµ

]
dn+1x. (1.19)

Let us also define the second-order Poincaré-Cartan form as ΩL := −dΘL.

Remark 2.9. In expressions such as (1.19) and (1.20) below, the implied sum in a term

of the form
∂L

∂yaνµ
yaνµ

is over symmetric pairs of indices µ, ν only. �



14 Lagrangian field theories

Many results from the previous section on first-order field theories carry over imme-

diately to the higher-order case. Let U be again an open subset of X with compact

closure and define the action S as

S(φ) =

∫
U

L(j2φ)η,

where φ is a section of π with support contained in U . A section φ is a critical point

of this functional (under arbitrary variations defined exactly as in section 2.1.2) if and

only if it satisfies the second-order Euler-Lagrange equations :[
∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)
+

d2

dxµdxν

(
∂L

∂yaµν

)]
(j4φ) = 0. (1.20)

There also exists an intrinsic formulation of the Euler-Lagrange equations. We quote

from [61]:

Proposition 2.10. Let L be a second-order Lagrangian. A section φ of π is a solution

of the second-order Euler-Lagrange equations if and only if (j3φ)∗(W ΩL) = 0 for all

vector fields W on J3π.

Remark 2.11. It should be noted that there always exists a Cartan form for higher-

order field theories, but that uniqueness is not always guaranteed (contrary to the

first-order case). However, by imposing additional conditions, Saunders [94] was able

to prove uniqueness for second-order field theories. This unique form, given in (1.19),

was derived by Kouranbaeva and Shkoller [61] by means of a variational argument. �

Just as in the first-order case, the action of a Lie group G acting on π by bundle auto-

morphisms gives rise to a prolonged action on J2π. If L is a G-equivariant Lagrangian

with respect to this action, then the momentum map JL ∈ Ωn(J3π) ⊗ g∗, defined as〈
JL, ξ

〉
= JLξ , where JLξ = ξJ3π ΘL, is conserved: d[(j3φ)∗JLξ ] = 0 for all sections φ of

π that are solutions of the Euler-Lagrange equations (1.20).

3. The Cauchy formalism

We now come to a radically different view of classical field theories. Whereas in the

previous sections we have stressed the advantages of the covariant, finite-dimensional

jet bundle approach, we will now introduce a different, complementary framework based

on techniques from infinite-dimensional geometry. This approach is referred to as the

Cauchy formalism, because it is a generalisation of the typical Cauchy formulation used

for example in general relativity.

In this formalism, it is assumed that the base space X is diffeomorphic to a Cartesian

product of the form R × M . The coordinates on M then play the role of “spatial

coordinates”, while the coordinate on R is a “coordinate time”. It should be stressed
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that there can be some amount of arbitrariness in the specification of the diffeomorphism

between X and R×M ; as a result, for instance in general relativity the coordinate time

need not coincide with physical time of an observer.

Roughly speaking, in the Cauchy formalism the evolution of the system is specified by

an ODE on an infinite dimensional space, and the evolution is formally identical to

that of a certain mechanical system, whose configuration space consists of embeddings

of M into Y , while the velocity space consists of embeddings of M into J1π. This

setup is sometimes conceptually clearer than the jet bundle approach, but also allows

the use of results from the analysis of ODEs, such as the Cauchy-Kowalewska theorem

on the existence and uniqueness of solutions, which are not immediately accessible in

the covariant framework.

On the other hand, there are many classical field theories for which the base space

is itself just R ×M . A typical example is nonrelativistic fluid dynamics, where M is

the reference configuration of the fluid. The application of the results from Cauchy

theory then leads to the Arnol’d formulation of fluid dynamics as an ODE on the

diffeomorphism group of M . These observations were the starting point for the seminal

results of Ebin and Marsden [42] in 1970 on the short-time existence of well-behaved

solutions to the Euler equations in three dimensions.

In this section, we start by giving a brief overview of some formal aspects of Cauchy

theory. We completely ignore any questions related to smoothness; our aim is just

to show that there is a natural way to transfer the dynamics of a classical field from

the first jet bundle to the space of Cauchy data, and that a connection solving the De

Donder-Weyl equation (1.17) induces a second-order vector field on the space of Cauchy

data which solves the equations of time-dependent mechanics on this space.

Remark 3.1. Of course, the division of the base space X into spatial variables and

time is only meaningful for “evolution type” field theories, and excludes, for example,

elliptic PDEs. While the covariant results in this thesis hold for arbitrary kinds of

field theories, our most important examples will be hyperbolic. See [25] for a detailed

treatment of this distinction. �

3.1. The space of Cauchy data. We first recall some basic aspects of the Cauchy

formalism for Lagrangian field theories, following the treatments presented in [11,35,

91].

3.1.1. Definitions. Consider as usual a fibre bundle π : Y → X whose base space X

is an (n + 1)-dimensional oriented manifold with volume form η. Let M be an n-

dimensional compact oriented manifold with volume form ηM . The pair (M, ηM) is

called a Cauchy surface. Points of M will usually be denoted by u. In the sequel, we
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will always assume that M has volume one, i.e.∫
M

ηM = 1. (1.21)

The volume form ηM on M will not play a significant role until section 3.1.3.

Definition 3.2. The space of (parametrized) Cauchy surfaces X̃ is the space of all

embeddings τ : M ↪→ X.

We now define the infinite-dimensional analogue of, respectively, the “configuration

space” and the “velocity space”.

Definition 3.3. The space of Dirichlet data is the manifold Ỹ whose elements are

embeddings δ : M ↪→ Y having the property that there exists a section φ of π and an

element τ of X̃ such that δ = φ ◦ τ .

Definition 3.4. The space of Cauchy data is the manifold Z̃ whose elements are em-

beddings from M into J1π, having the property that for each embedding κ : M ↪→ J1π,

there exists a section φ of π and an element τ of X̃ such that κ = j1φ ◦ τ .

The respective projections π1,0 : J1π → Y and π : Y → X induce by composition

natural projections π̃1,0 : Z̃ → Ỹ and π̃ : Ỹ → X̃: π̃1,0(κ) is defined as π1,0 ◦ κ, and π̃

is defined similarly. We further introduce the projection π̃1 as π̃1 := π̃ ◦ π̃1,0.

The spaces X̃, Ỹ , and Z̃ can be given smooth manifold structures (see remark 3.5

below). Tangent vectors to each of these manifolds have convenient finite-dimensional

interpretations. Take for instance an element Vτ ∈ TτX̃. Formally, Vτ is the tangent

vector at ε = 0 of a curve ε 7→ c(ε) of embeddings such that c(0) = τ . By taking a

fixed element u ∈ M and applying each embedding c(ε) : M ↪→ X to that element, we

obtain a curve in X, denoted by cu and defined as cu(ε) := c(ε)(u). Hence, Vτ can be

interpreted as the vector field along τ defined by

Vτ : M → TX, Vτ : u 7→ Vτ (u) =
dcu(ε)

dε

∣∣∣
ε=0
∈ Tτ(u)X.

Conversely, each vector field along τ is an element of TτX̃. As those vector fields are

just sections of the pullback bundle τ ∗TX, we have the identification

TτX̃ ∼= Γ(τ ∗TX). (1.22)

Furthermore, note that since τ is a bijection onto its image, one can identify Vτ with

a vector field on X, defined along the submanifold τ(M). A second point of interest

is that any vector field v on X induces a vector field V on X̃ by composition: simply

define V (τ) as v ◦ τ .

The tangent vectors to Ỹ and Z̃ have similar interpretations as vector fields along

elements of Ỹ and Z̃, respectively. However, because of the additional conditions on
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the elements of Ỹ and Z̃, not all such vector fields along maps are tangent vectors.

Precise characterisations were given in [91] but will not be needed here.

Remark 3.5. A few technical remarks are in order here.

(1) The spaces X̃, Ỹ , and Z̃ can be made into smooth infinite-dimensional manifolds

in a number of ways. For more information, we refer to [11,63]

(2) Usually, X and M are taken to be manifolds with boundary and the embeddings τ

belonging to X̃ are then assumed to map the interior and the boundary of M into

the interior and the boundary of X, respectively. In this way, boundary conditions

can be taken into account. However, in chapter 9 these boundaries are merely zero

dimensional and can therefore be included without additional complications. �

3.1.2. Integration of forms. In the previous section, we saw that there is a close rela-

tion between, for instance, vector fields on J1π and tangent vectors to Z̃. Similarly,

integration of forms provides a means of turning (n+ k)-forms on J1π into k-forms on

Z̃. Let α be an (n+ k)-form on J1π. We then define α̃ as follows:

α̃(κ)(W1, . . . ,Wk) =

∫
M

κ∗(iW1∧···∧Wk
α), (1.23)

for W1, . . . ,Wk ∈ TκZ̃. Here, the pull-back is defined by

κ∗(iW1∧···∧Wk
α)(u)(V1, . . . , Vn) = α(κ(u))(W1(u), . . . ,Wk(u), Tuκ(V1), . . . , Tuκ(Vn)),

for all V1, . . . , Vn ∈ TuM .

Not all k-forms on Z̃ can be obtained by integrating a suitable density. Conversely, the

mapping α 7→ α̃ is not injective either: any (n + k)-form α which is at least (k + 1)-

contact induces the zero form on Z̃. This is proved in the next proposition.

Proposition 3.6. Let κ be an element of Z̃ and consider an (n + k)-form α. Then

α̃ = 0 if and only if α is at least (k + 1)-contact.

Proof: Let α be an (n + k)-form on J1π and assume that α̃(κ)(W1, . . . ,Wk) = 0 for

all κ ∈ Z̃ and all W1, . . . ,Wk ∈ TκZ̃. In particular, consider a set of k arbitrary vector

fields v1, . . . , vk on J1π and put Wi = vi ◦ κ, for i = 1, . . . , k.

We also have that, for every function f on M with compact support U ⊂ M , the

following integral is zero: ∫
U

f(κ∗iW1∧···∧Wk
α) = 0.

Indeed, replace for example W1 by fW1 in (1.23). A standard argument then shows

that κ∗(iW1∧···∧Wk
α) = 0. Now, it is easy to see that

κ∗(iW1∧···∧Wk
α) = τ ∗j1φ∗(iv1∧···∧vkα),
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where we have written κ as j1φ ◦ τ . As j1φ and τ are arbitrary, this implies that

iv1∧···∧vkα is at least 1-contact, and α itself is then at least (k + 1)-contact.

Conversely, if α is an at least (k + 1)-contact form, then it is easily seen that α̃ = 0. �

3.1.3. Splitting the base manifold. We now introduce an additional element into our dis-

cussion: we assume that X is diffeomorphic to the product space R×M . As mentioned

in the introduction to section 3, the philosophy underlying this assumption is that we

somehow make a distinction between time and the spatial variables. As a result, we

shall see that the sequence of bundles Z̃ → Ỹ → X̃ can be reduced to the sequence

J1π̃ → Ỹ → R, a setup which is well known from time-dependent mechanics (on a

infinite dimensional configuration space Ỹ ).

Let Ψ denote the diffeomorphism between X and R×M ; Ψ is called a splitting of X.

An element τ of X̃ is then called admissible if there exists a (necessarily unique) t ∈ R
such that τ(u) = Ψ(t, u) for all u ∈M .

Instead of considering the whole manifold X̃ as in the previous section, we now restrict

X̃ to consist only of admissible embeddings. The spaces Ỹ and Z̃ are restricted accord-

ingly by considering only Dirichlet and Cauchy elements projecting down (under π̃ and

π̃1,0, respectively) onto admissible embeddings.

By restricting our attention to admissible embeddings, we have constructed a bijection

between R and X̃, by mapping each t ∈ R to the embedding Ψ(t, ·). One can prove

that Ψ is a diffeomorphism.

There is a canonically defined vector field T on X̃, defined as follows: for all τ ∈ X̃,

T(τ) ∈ TτX̃ is given by

T(τ)(u) =
d

ds
Ψ(s, u)

∣∣∣
s=t

for all u ∈M,

where t is such that τ(·) = Ψ(t, ·). This vector field is just the push-forward of the

vector field ∂
∂t

under the diffeomorphism between R and X̃.

The elements of Ỹ and Z̃ are assumed to project down onto admissible embeddings.

One can easily prove that, similarly, tangent vectors to these spaces have to project

down onto T (or a multiple thereof).

Proposition 3.7. Let δ be an element of Ỹ and consider Wδ ∈ TδỸ . Then, for any

u ∈M , there exists a constant k ∈ R such that

Tδ(u)π(Wδ(u)) = kT(t, u), or Tδπ̃(Wδ) = kT,

where t = π̃(δ). Similarly, if Xκ is any element of TκZ̃, then there exists for any u ∈M
a constant k such that

Tκ(u)π1(Xκ(u)) = kT(t, u), or Tκπ̃1(Xκ) = kT.
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Proof: This is proposition 5.1.1 in [91]. �

Using the diffeomorphism Ψ we now consider a special volume form η on X, defined as

η = dt∧ ηM , where ηM is the volume form on M (see the definition of a Cauchy surface

in section 3.1.1). In the sequel we will always assume that X is oriented in terms of

this volume form. Note that, if η̃ is the one-form induced by η using (1.23), then this

particular choice for η implies that

η̃ = π̃∗1dt. (1.24)

The main consequence of these restrictions is that there exists a diffeomorphism between

Z̃ and the jet bundle J1π̃. This was not the case for the space of Cauchy data as defined

in the previous section.

Theorem 3.8. There exists a bijection between Γ(π) and Γ(π̃). As a result, there also

exists a bijective correspondence between Z̃ and J1π̃.

Proof: See [91, par. 5.2.]. The one-to-one correspondence between sections φ of π

and sections ϕ of π̃ : Ỹ → X̃ is determined by

φ(x) = ϕ(τ)(u), where x = Ψ(t, u) and τ(·) = Ψ(t, ·).

The bijection between Z̃ and J1π̃ is then defined by mapping κ ∈ Z̃ to the one-jet

j1
τϕ ∈ J1π̃. Here, we have written κ as j1φ ◦ τ , and ϕ is the section of π̃ associated to

φ. The proof that this is a well-defined bijection can be found in [91, par. 5.2.]. �

We will use the bijection between Γ(π) and Γ(π̃) implicitly, but we will always stick to

the notation “φ” for a section of π and “ϕ” for the corresponding section of π̃.

3.2. The dynamics on the space of Cauchy data. In the previous section, we

have reduced the spaces of Cauchy and Dirichlet data to a form which resembles the

bundle setup in time-dependent mechanics, with a configuration space fibered over the

reals. We now show that the specification of a Lagrangian on J1π, and the associated

geometric objects, induce a system of ODEs on the space of Cauchy data, which are

formally identical to the Euler-Lagrange equations in time-dependent mechanics.

Let L be a regular Lagrangian on J1π and consider the Poincaré-Cartan form ΩL. This

(n + 2)-form induces a induces a 2-form Ω̃L on the space Z̃ of Cauchy data according

to (1.23). Likewise, the volume form η induces a one-form η̃ on Z̃. One can prove

that both Ω̃L and η̃ are closed forms and, in particular, it turns out that Ω̃L = −dΘ̃L,

where Θ̃L is the one-form on Z̃ induced by the Cartan (n + 1)-form ΘL following the

prescription (1.23). See [91] for more details.

In his thesis [91, section 5.2.3], Santamaŕıa showed furthermore that the space of Cauchy

data Z̃ can be equipped with a vertical endomorphism S̃η̃ induced by the corresponding

object Sη on J1π. In the case under consideration, the base space X̃ is 1-dimensional,
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and S̃η̃ therefore is a vector valued one-form that takes a similar form as in time-

dependent mechanics. It is constructed as follows: take any κ ∈ Z̃, with κ = j1φ ◦ τ ,

where τ is an element of X̃ and φ a section of π. In view of theorem 3.8, we write κ as

j1
τϕ. For arbitrary Wκ ∈ TκZ̃, we then put

S̃η̃(Wκ) =
(
Tj1τϕπ̃1,0(Wκ)− Tτϕ ◦ Tj1τϕπ̃1(Wκ)

)v
, (1.25)

where the superscript ‘v’ denotes the natural vertical lift operation from T Ỹ to V π̃1,0.

We deliberately ignore the precise definition of this operation: the only fact that will

be needed below (especially in the proof of proposition 3.9) is that it is a linear bundle

map.

In accordance with the established terminology in time-dependent mechanics, we say

that a vector field Γ on Z̃ is a second-order vector field (or a SODE for short) if

S̃η̃(Γ) = 0 and iΓη̃ = 1 . (1.26)

Consider now a connection Υ on π1 : J1π → X, with horizontal projector h. One can

then construct a vector field Γ on Z̃ as follows. For κ ∈ Z̃, with κ = j1φ ◦ τ , define the

vector Γ(κ) ∈ TκZ̃ by

Γ(κ)(u) = h
(
Tτ(u)j

1φ(T(τ)(u))
)
, (1.27)

i.e. Γ(κ)(u) ∈ Tκ(u)J
1π is the horizontal lift of T(τ)(u) ∈ Tτ(u)X under the given

connection Υ. We then have the following interesting property.

Proposition 3.9. If Υ is a semi-holonomic connection on π1, then the vector field Γ

on Z̃, defined by (1.27), is a second-order vector field.

Proof: For the contraction of Γ with η̃ we find that

(iΓη̃) (κ) =

∫
M

κ∗(iΓ(κ)η) =

∫
M

τ ∗(iT(τ)η) = 1 ,

where the last equality follows from the normalization assumption (1.21) and for the sec-

ond equality we have used the fact that (with previous conventions) iΓ(κ)η = π∗1
(
iT(τ)η

)
and π1 ◦ κ = τ . Hence, we have shown that Γ verifies the second condition of (1.26).

Next, we investigate the first condition of (1.26). Since the given connection Υ is

semi-holonomic, it is easily checked in coordinates that h satisfies

Tγπ1,0(h(vγ)) = Tγ(φ ◦ π1)(vγ), (1.28)

where γ = j1
xφ and vγ ∈ TγJ1π. We now compute S̃η̃(Γ(κ)). With Wκ = Γ(κ), the first

term on the right-hand side of (1.25) becomes

Tκπ̃1,0(Γ(κ))(u) = Tκ(u)π1,0(Γ(κ)(u))

= Tκ(u)π1,0(h(Kκ(u))),
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where κ = j1
τϕ and where, for notational convenience, we have written Tj1φ(T(τ)(u))

as Kκ(u). Using property (1.28), we further obtain

Tκπ̃1,0(Γ(κ))(u) = Tκ(u)(φ ◦ π1)(Kκ(u))

= Tκ(u)φ(T(τ)(u)),

so that

Tκπ̃1,0(Γ(κ)) = Tτϕ(T(τ)),

from which it follows that S̃η̃(Γ(κ)) = 0, which completes the proof that Γ defines a

second-order ODE. �

We are now in a position to state the main theorem: the vector field Γ, induced by a

solution h of the De Donder-Weyl equation, satisfies the equations from time-dependent

mechanics on J1π̃.

Theorem 3.10. If h satisfies the De Donder-Weyl equation (1.17), then the vector

field Γ on Z̃, defined by (1.27), satisfies the equations

iΓΩ̃L = 0 and iΓη̃ = 1 .

Proof: See [91, chapter 5]. �

Remark 3.11. Using the integration of forms (1.23), one can find a more manageable

form for the vertical endomorphism S̃ in (1.25):〈
α, S̃(Xκ)

〉
≡
〈
S̃∗(α), Xκ

〉
=

∫
M

κ∗(Xκ S∗η(α)). (1.29)

This is easily verified by a coordinate calculation, using the coordinate expressions for

S̃ in [91]. �

4. Elasticity as a multisymplectic field theory

Following Marsden et al. [81], we will show in this section that the classical theory

of elastodynamics can be interpreted as a multisymplectic field theory. We derive the

equations of motion using the jet-bundle approach, and we make the link between the

Cauchy formulation and the conventional geometric formulation of elasticity.

Let (M,G) be an n-dimensional orientable Riemannian manifold with metric G. We

refer to M as the reference configuration; the points of M label the points of the abstract

continuum. Secondly, let (S, g) be a Riemannian manifold of dimension m with metric

g: S is the physical space in which the body moves. In most cases, S is just the

Euclidean space R3, or a subset thereof, but this is by no means necessary. Coordinates

on M will be denoted by xi (i = 1, . . . , n) and those on S by ya (a = 1, . . . ,m). We

denote the space of embeddings of M into S by C∞(M,S). Just as the spaces of Cauchy
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data in section 3, C∞(M,S) can be given the structure of a smooth infinite-dimensional

manifold.

Note that the dimensions of M and S do not have to agree. For instance, in the

important case of Cosserat rods, M will be one-dimensional, and S will be three-

dimensional.

A configuration of a continuum is an embedding of M into S. Physically, such a con-

figuration assigns to each point of M (i.e. each point of the abstract continuum) its

location in S. A motion of a continuum is an assignment of a configuration to each time

t in an interval ]a, b[⊂ R, i.e. a curve in the space of embeddings C∞(M,S). Elasto-

dynamics thus reduces to the study of mechanical systems on the infinite-dimensional

configuration space C∞(M,S). This point of view was taken by many authors; see,

among others, [44,76,96].

Remark 4.1. In elasticity, coordinates on M are usually denoted as XI , I = 1, . . . , n,

and coordinates on S as xi, i = 1, . . . ,m. It is also common to denote the coordinates

on J1π by (t,XI , xi, vi, F i
I). We will not use this convention here. �

4.1. Covariant field theory. Consider the manifolds X := R×M and Y := X × S
and let π : Y → X be the natural projection given by π(t, x, y) := (t, x). A motion

of a continuum induces a section of π: let {ϕt} be a family of configurations; the map

φ : (t, x) 7→ (t, x, ϕt(x)) is then a section of π. The converse is not immediately true:

a section of π induces a family of mappings ft : M → S, but these mappings need not

be embeddings. We will say that ft is regular if it is an embedding.

Due to its special structure (the triviality of π together with the fact that X is a

product manifold), the jet bundle J1π can be written as a product of more elementary

constituents. Roughly speaking, we separate each jet γ ∈ J1π into a part involving

spatial derivatives, and a part involving the time derivative. This is a special case of

the space + time decomposition of the jet bundle in Cauchy analysis.2

Lemma 4.2. The first jet bundle J1π is isomorphic, as an affine bundle over Y =

R×M × S, to R× [J1(M,S)×S TS]. Here, the bundle R× [J1(M,S)×S TS] consists

of triples (t, κ, v) such that πS(κ) = τS(v), where τS : TS → S is the tangent bundle

projection, and πS : J1(M,S)→ S was defined in remark 1.2.

Proof: Take any point (t,m, s) in R × M × S and consider a 1-jet γ ∈ J1π such

that π1,0(γ) = (t,m, s). An alternative interpretation of γ is that of a linear map

γ : T(t,m)(R×M)→ TsS. Consider now the map Ψ(t,m,s), mapping γ to the element of

2This aspect of Cauchy analysis was not treated in section 3, but can be found, for example, in [49,
paragraph 6B].
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R× [J1(M,S)×S TS] given by

Ψ(t,m,s)(γ) =

(
t, γ(0t, ·), γ

(
∂

∂t

∣∣∣
t
, 0m

))
, (1.30)

where 0m and 0t are the zero vectors in TmM and in TtR, respectively. Here, we have

identified T(t,m)(R×M) with TtR× TmM , and γ(0t, ·) : TmM → TsS is the linear map

obtained by restricting γ to {0t} × TmM . Note that γ(0t, ·) ∈ J1(M,S).

Let us now construct the map Φ : J1π → R× [J1(M,S)×S TS] as follows:

Φ : γ 7→ Φ(γ) := Ψπ1,0(γ)(γ).

It is easy to check that Φ is an isomorphism of affine bundles. �

In natural bundle coordinates (ya, ẏa) on TS and (xi, ya; ya;i) on J1(M,S), the isomor-

phism of lemma 4.2 is given by (xµ, ya; yaµ) 7→ (t;xi, ya, ya;i = yai ; ẏ
a = ya0).

Assume that a mass density ρ : M → R is given. A suitable Lagrangian for continuum

mechanics is then given by

L(γ) =
1

2

√
det[G]ρ(x)g(v, v)−

√
det[G]ρ(x)W (x,G(x), g(y), F ), (1.31)

(compare with [81, expr. 2.3]), where v ∈ TS and F ∈ J1(M,S) are determined by

(t, v, F ) = Φ(γ), where Φ is the isomorphism introduced in lemma 4.2. The function

W in (1.31) is the stored energy density, which depends only on the spatial derivatives

of the field, represented by F .

The field equations associated to (1.31) are the following: (see [81, eq. 2.13])

ρgab

(
Dφ̇

Dt

)b

− 1√
det[G]

∂

∂xi

(
ρ
∂W

∂yai
(j1φ)

√
det[G]

)
= −ρ∂W

∂gbc

∂gbc
∂ya

(j1φ), (1.32)

where D denotes covariant differentiation with respect to g. In the case where M and

S are Euclidian, these equations reduce to the well-known equations from continuum

mechanics: ÿa − ∂xiσia = 0, where σia is the Piola-Kirchhoff stress tensor (see [76]):

σia =
∂W

∂yai
.

These equations should be supplemented by the balance law of angular momentum,

which is a consequence of the fact that the Lagrangian (1.31) is invariant under orthog-

onal transformations (see [69,70]).

Remark 4.3. Fluid dynamics can be treated as a special sub-case of the general theory

outlined above. In the case of a fluid moving in a fixed container M , the base space of

π is given by R ×M and the fibre is M . The Lagrangian is still given by (1.31) but

now the metric g coincides with G. �
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4.2. The infinite-dimensional setting. Having described above a covariant geomet-

ric framework for elasticity, we now turn to Cauchy analysis. Our aim in this section is

to show that Ỹ is in this case just R×C∞(M,S), and that Z̃ is R×TC∞(M,S). Hence,

one can expect a close relationship between the Cauchy formalism and the traditional

geometric approach, where the configuration space is also C∞(M,S).

Note that X = R×M is naturally equipped with a foliation of hypersurfaces of constant

time (equivalently, the natural splitting of X is just the identity). Therefore, we expect

the Cauchy analysis to have less of an arbitrary character than in section 3.

Remark 4.4. Throughout the remainder of this chapter, we denote the space C∞(M,S)

of embeddings of M into S by Q. �

It is easy to see that the space of Dirichlet data Ỹ is diffeomorphic to R×Q. On the

other hand, we also have the following proposition, where Z̃, the space of Cauchy data,

again consists of embeddings κ : M ↪→ J1π such that there exists a fixed t ∈ R and a

section φ of π for which κ(m) = j1φ(t,m), for all m ∈M .

Proposition 4.5. The space of Cauchy data Z̃ is diffeomorphic to R× TQ.

Proof: Consider an element κ of Z̃ and for a fixed t ∈ R, let φ be a section of π such

that κ(m) = j1φ(t,m) for all m ∈ M . The section φ induces an element δ := φ(t, ·) of

Q, and, because of lemma 4.2, κ induces a map Xδ : M → TS along δ. By assigning

to each κ the corresponding pair (t,Xδ), we obtain a map Θ from Z̃ to R× TQ.

Conversely, let (t, δ) be an element of R × Q, and consider an element Xδ of TδQ.

Consider a curve ε 7→ δε ∈ Q, defined in a neighbourhood of 0, and such that δ0 = δ

and δ̇0 = Xδ. Let φ be the local section of π, defined on an open neighbourhood of

{t} ×M in R×M by the following prescription:

φ : (t′,m) 7→ (t′,m, δt′−t(m)).

Now, let κ : M ↪→ J1π be the Cauchy map given by κ(m) = j1φ(t,m). Note that κ

does not depend on the actual curve δε, but only on the tangent vector Xδ. Indeed, the

components of j1φ(t,m) are (t,m, δ(m), φaµ(m, t)), where

φa0(t,m) =
d

dt′
δt′−t(m)

∣∣∣
t′=t

= Xδ(m), and φai (t,m) =
∂δa

∂xi
(m).

Finally, we consider the map Ξ : R × TQ → Z̃ taking (t,Xδ) to κ. It is easy to check

that Θ and Ξ are each other’s inverse. �

For future reference, we also mention that TQ is equipped with the usual geometric

objects known from tangent bundle geometry, such as a vertical lift operation, a vertical

endomorphism, and a Liouville vector field. Because of the special nature ofQ as a man-

ifold of embeddings, these objects are induced by their finite-dimensional counterparts
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on TS. This provides us with a convenient way of avoiding any functional-theoretic

aspects that would arise in a direct definition.

Definition 4.6. The Liouville vector field ∆ on TS induces a vector field ∆̃ on TQ by

composition: ∆̃(X) = ∆ ◦X for all X in TQ. Similarly, the vertical endomorphism S

on TS induces a (1, 1)-tensor S̃ on TQ by composition: S̃(X) = S ◦X. We will refer

to ∆̃ as the Liouville vector field, and to S̃ as the vertical endomorphism on TQ.

By putting Ŝ = S̃ − ∆̃⊗ dt, we obtain a vertical endomorphism on R× TQ = Z̃.

The model introduced in this section will be used as an illustrative example throughout

our discussion on nonholonomic field theories (starting from chapter 6). The Cauchy

analysis of this kind of field theory (where the base space can be written canonically as

R×M) will allow us to distinguish a special class of constraints in chapter 8, and will

also form the basis of the theory in chapter 9.





Chapter 2

Variational integrators

As we mentioned in the introduction, it is often useful and desirable to use numerical

methods to gain an insight into the dynamics of a mechanical system. However, tradi-

tional numerical integration schemes often do not respect the geometric background of

the equations of motion and therefore lead to relatively inaccurate results, at least in

the long run.

In this chapter, we report on a different class of integration schemes, designed to remedy

this defect. In particular, they are derived by use of a discrete variational principle on

a suitable space. Consequently, they have a number of interesting properties, the most

important of which is that the discrete flow is symplectic with respect to a natural

symplectic form. The purpose of this chapter is twofold: to serve as an introduction

for the theory of discrete field theories in chapter 3, and to give a quick overview of

geometric integration methods, which will be used in chapter 9.

The construction of discrete mechanical systems is the subject of section 1. In section 2,

we then turn our attention to geometric integration of field theories. While the last few

years have seen substantial advances in this particular area, an extensive background

theory for this kind of discrete fields is lacking. Most of our investigations will therefore

proceed by analogy to the case of mechanics.

The presentation in section 1 is inspired by the survey paper [79] of Marsden and

West, and also by [52, chapter VI.6]. For more information on symplectic integrators,

see also [68]. A good overview of multisymplectic methods can be found in [18].

1. Geometric integration of mechanical systems

In this section, we recall some basic elements from discrete mechanics, and we give an

overview of how they may be used in the construction of geometric integrators.

1.1. Discrete mechanics. We start with a quick overview of discrete mechanics.

The tangent bundle TQ of a configuration space Q is discretized by considering the

Cartesian product Q × Q. The idea is that a suitable approximation to a tangent

vector vq is obtained by considering a pair (q, q′), with q′ close to q such that q and

q′ belong to the same chart (U, ψ), such that (ψ(q′) − ψ(q))/h (where h ∼ d(q, q′))
provides a “good” approximation to Tqψ(vq). Of course, the idea of what constitutes
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a good approximation is model dependent, but it is clear that the Cartesian product

Q×Q plays a fundamental role in discretizing TQ.

A discrete dynamical system is a diffeomorphism Υ : Q × Q → Q × Q of the form

Υ(q0, q1) = (q1, q2). A discrete Lagrangian is a function Ld on Q×Q. From now on, we

will assume that an appropriate discrete Lagrangian Ld is given; its construction will

be dealt with later. One can then consider the following discrete action:

S(q0, q1, . . . , qN) =
N−1∑
i=0

Ld(qi, qi+1). (2.1)

As in the case of continuous mechanical systems, we are interested in discrete tra-

jectories, i.e. sequences {q0, q1, . . . , qN}, that extremize this action with respect to

appropriate variations. These extremal sequences are characterised in theorem 1.2.

Definition 1.1. Let Q×k denote the k-fold Cartesian product of Q with itself. If f is a

function on Q×k, we define the ith differential of f , denoted by Dif : Q×k → T ∗Q, as

Dif(q1, q2, . . . , qk) = d[f(q1, . . . , qi−1, ·, qi+1, . . . , qk)]qi ∈ T ∗qiQ.

Note that Dif is a one-form along the projection pri onto the ith factor.

Theorem 1.2. A sequence {q0, q1, . . . , qN} is an extremum of (2.1) under arbitrary

variations that keep the end points fixed if and only if it satisfies the following set of

discrete Euler-Lagrange equations:

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, for k = 1, . . . , N − 1. (2.2)

Let H be the matrix with entries Hij given by

Hij =
∂2Ld

∂qi0∂q
j
1

.

If the Lagrangian is regular, in the sense that H is invertible, the implicit equations

(2.2) can be reformulated as an explicit map Υ : (qk−1, qk) 7→ (qk, qk+1), where the triple

(qk−1, qk, qk+1) satisfies (2.2).

Associated to a discrete Lagrangian are two discrete Legendre transformations, denoted

by F+Ld,F−Ld : Q × Q → T ∗Q, and defined as F+Ld = D1Ld and F−Ld = −D2Ld.

These maps may be used to pull back the canonical symplectic potential Θ on T ∗Q
to Q × Q, which gives Θ+

Ld
= (F+Ld)

∗Θ and Θ−Ld = (F−Ld)∗Θ. Moreover, these one-

forms satisfy Θ+
Ld
− Θ−Ld = dLd, and a symplectic form ΩLd can hence be defined by

ΩLd = dΘ+
Ld

= dΘ−Ld . In analogy with the continuous case, Θ+
Ld

and Θ−Ld are called the

(discrete) Cartan forms, and ΩLd is called the (discrete) Poincaré-Cartan form.
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Remark 1.3. A well-known property of the canonical symplectic form on T ∗Q is that

α∗Θ = α for all one-forms α on Q. By using a slight extension of this result to forms

along the projection, we see that Θ+
Ld

, resp. Θ−Ld can be identified in a natural way with

F+Ld and −F−Ld. This is the discrete counterpart of the well-known result from the

continuum case that the Poincaré-Cartan form and the Legendre transformation are

two aspects of the same object (see for instance [92]). �

Theorem 1.4. Let Υ : Q × Q → Q × Q be a solution of the discrete Euler-Lagrange

equations (2.2). Then Υ is a symplectic mapping with respect to the symplectic form

ΩLd, i.e. Υ∗ΩLd = ΩLd.

Until now, the discrete Lagrangian was simply assumed to be given. However, if we

know a Lagrangian L : TQ → R for the corresponding continuous problem, a natural

discrete Lagrangian suggests itself.

Let there be given a regular Lagrangian L on TQ. Associated to L is the so-called

exact discrete Lagrangian LE, defined on a neighbourhood of the diagonal in Q × Q,

and given explicitly by

LE(q0, q1;h) =

∫ h

0

L(q(t), q̇(t))dt, (2.3)

where t 7→ q(t) is the unique solution of the Euler-Lagrange equations such that

q(0) = q0 and q(h) = q1. It can be proved that such a solution exists for q0, q1 nearby

points and h sufficiently small (see [82] for a proof). The importance of the exact

discrete Lagrangian lies in the following theorem. In a nutshell, this theorem states

that the solution trajectories of the discrete Euler-Lagrange equations follow exactly

the continuous solutions.

Theorem 1.5. Consider a pair (q0, q1) in Q×Q and let q(t) be a solution of the Euler-

Lagrange equations (defined for t ∈ [0, 2h]) such that q(0) = q0 and q(h) = q1. Let q2

be the point determined in terms of q0 and q1 by the discrete Euler-Lagrange equations

(2.2) associated to the exact discrete Lagrangian LE. Then q(2h) = q2.

Proof: This is a weaker version of theorem 1.6.4 in [79]. �

Example 1.6. Let Q be equipped with a Riemannian metric g and consider the kinetic

energy Lagrangian L(v) = 1/2g(v, v). Between any two points q0 and q1 that are

sufficiently close, there exists a unique length minimizing geodesic; the exact discrete

Lagrangian is then the Riemannian distance: LE(q0, q1;h) = d(q0, q1). Note that unless

(Q, g) is geodesically complete, LE is only defined on a neighbourhood of the diagonal

in Q×Q, in contrast to the Riemannian distance d, which is defined everywhere. �

In practice, the computation of the exact discrete Lagrangian (2.3) requires the solution

of the Euler-Lagrange equations. One therefore resorts to using an approximation of
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LE, which leads to discrete trajectories that approximate the exact flow. To make these

claims more rigorous, a number of definitions are needed.

Definition 1.7. A discrete Lagrangian Ld : Q×Q→ R is a kth-order discrete approx-

imation of LE if there exists an open neighbourhood U of the diagonal in Q×Q, and a

constant C such that ‖Ld(q0, q1)− LE(q0, q1;h)‖ ≤ Chk+1 for all (q0, q1) ∈ U .

Definition 1.8. A discrete flow Υ : Q × Q → Q × Q is a kth-order discrete flow

if there exists a constant C and a neighbourhood U of the diagonal in Q × Q such

that ‖q2 − q(2h)‖ ≤ Chk+1 for all (q0, q1) ∈ U . Here, q(t) is the exact flow such that

q(0) = q0 and q(h) = q1, and q2 is determined by Υ(q0, q1) = (q1, q2).

One can then prove that a kth-order approximation of the exact discrete Lagrangian

induces a kth-order discrete flow. In practice, one usually employs second-order ap-

proximations. As an illustration, we show how the midpoint rule for the numerical

evaluation of definite integrals can be used to construct a class of second-order discrete

Lagrangians.

Let us assume that the configuration space Q is a vector space, or a convex subset

thereof. Applying the midpoint rule to the integral in the definition of LE gives

LE(q0, q1;h) = hL(q(h/2), q̇(h/2)) +O(h3) = hL

(
q0 + q1

2
,
q1 − q0

h

)
+O(h3),

where, in the second step, we have expanded q(h/2) and q̇(h/2) in a Taylor series. The

approximation Ld, defined as

Ld(q0, q1) = hL

(
q0 + q1

2
,
q1 − q0

h

)
, (2.4)

is therefore a second-order approximation, and the resulting discrete flow will also be

of second order. Of course, other discretizations can be obtained by using different

quadrature formulas, such as the trapezium rule, for the exact discrete Lagrangian.

One can think of the discrete Lagrangian Ld in (2.4) as being obtained by pulling back

the continuous Lagrangian L by the discretization mapping Φ : Q×Q→ TQ, defined

as

Φ(q0, q1) =

(
q0 + q1

2
,
q1 − q0

h

)
.

Example 1.9. Consider the following Lagrangian L = v2/2 − V (q), describing the

motion of a particle of unit mass under the influence of a potential V . An associated

second-order discrete Lagrangian is given by

Ld =
h

2

(
q1 − q0

h

)2

− hV
(
q0 + q1

2

)
,
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and the resulting discrete Euler-Lagrange equations are then

qk+1 − 2qk + qk−1

h2
= −1

2
∇V

(
qk−1 + qk

2

)
− 1

2
∇V

(
qk + qk+1

2

)
,

for all k. It is straightforward to check that these equations are indeed of second order.

This discrete method is equivalent to the well-known midpoint method (see [79]). �

Remark 1.10. The Cartesian product Q×Q is a particular example of a Lie groupoid

and it turns out that many constructions from the preceding paragraph can be extended

to the case where the configuration space is a Lie groupoid. This particular insight was

formulated by Weinstein [110], and extended by Marrero et al. [75]. �

1.2. Nonholonomic integrators. The framework of the previous section can be ex-

tended in order to deal with mechanical systems with linear nonholonomic constraints.

Here, we follow [28], where a discrete d’Alembert principle was introduced.

If D is a constraint distribution, whose annihilator is spanned by the k one-forms

Aα ∈ Ω1(Q), and if ϕα(q, v) = 〈v,Aα(q)〉 are k functions whose vanishing defines D, we

can define k discrete constraint functions ϕαd : Q×Q→ R by a similar construction as

in (2.4): we put

ϕαd (q0, q1) = ϕα
(
q0 + q1

2
,
q1 − q0

h

)
.

Theorem 1.11 (see [28]). Let L be a Lagrangian and D a constraint distribution de-

fined as above. The algorithm defined by

D1Ld(qn, qn+1) +D2Ld(qn−1, qn) = λαA
α(qn), (2.5)

where the multipliers λα are determined by the requirement that ϕαd (qn, qn+1) = 0, is

second-order, symmetric, and satisfies the discrete constraints exactly.

Nonholonomic integrators were first introduced in [28]. Despite some theoretical inves-

tigations (see e.g. [34]), it is safe to say that nonholonomic integrators are not well un-

derstood yet, and there are clues that nonholonomic integrators behave fundamentally

different from ordinary symplectic integrators. Even though the flow of a nonholo-

nomic system is explicitly nonsymplectic, this result is nevertheless quite surprising.

Given the previous successes in using geometric methods in nonholonomic mechanics,

one would expect similar conservation results as obtained by backward error analysis

in the symplectic case (see [52]). It seems that the contrary is true: the energy is

conserved for mechanical systems with linear nonholonomic constraints, but in [84], a

simple geometric integrator was presented that clearly shows energy diffusion.
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2. Discrete multisymplectic field theory

In this section, we give a very brief overview of discrete Lagrangian field theories. The

purpose of this overview is twofold: to pave the way for subsequent generalization to

Lie groupoid field theories in chapter 3, as well as allowing us to construct numerical

methods for nonholonomic field theories in chapter 9.

Our treatment is mainly based on [80], and, to a lesser extent, on [19]. For a recent

overview of multisymplectic integrators and their properties, see [3,18].

For the remainder of this chapter, we will only consider bundles π of the form π :

R2 × Q → R2, i.e. π is trivial, and the base space is R2. In this case, a field is just

a map φ : R2 → Q. In addition, one can easily prove (see for instance [86]) that the

jet bundle is in this case isomorphic to R2 × [TQ⊕ TQ]. For reasons of simplicity, we

shall also consider only Lagrangians that do not depend on the coordinates of the base

space, i.e. Lagrangians of the form L : TQ⊕ TQ→ R.

2.1. Discrete fields. In this section, we begin by discretizing the base space, and

by defining discrete fields. Using these definitions, we then recall the definition of the

discrete jet bundle, as proposed in [80].

Definition 2.1. A mesh in R2 is a discrete subset1 V of R2. A discrete field is a map

φ : V → Q.

Of course, the idea behind this definition is that a discrete field is determined by its

values at certain discrete points in space-time. Note that the subset V ⊂ R2 should

be specified at the outset: in the cases that we consider here, V will be just a regular

lattice in Rk, but less regular subsets are equally possible. For example, one might want

to increase the density of mesh points in regions where the field is expected to vary

wildly, or where other “extreme conditions” apply; see for example [69,70].

Throughout this thesis, we will mostly illustrate our results on the following quadran-

gular mesh:

V = {xi,j = (hi, kj) ∈ hZ× kZ}.
Here, the grid size is determined by the parameters h and k. A possible extension

to more general meshes will be treated in the last chapter of this thesis.. Finally, we

denote the value of a field φ : R2 → Q at a point xi,j simply by φi,j := φ(xi,j).

Remark 2.2. In remark 3.1 in chapter 1, we already hinted that most of the examples

in this thesis would be of “evolution type”. A similar remark can be made for this

chapter, and the reader is encouraged, when confronted for example with a variable

1Recall that a subspace S of a topological space X is called discrete if, for every x ∈ S, there exists
an open neighbourhood U of x in X such that S ∩ U = {x}.
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xi,j, to think of i and j as a discrete time and a discrete spatial variable, respectively.

�

For future reference, we introduce the sets of triangles X3 and squares X4 in V as

follows:

X3 := {(xi,j, xi+1,j, xi,j+1) ∈ V ×3} and X4 := {(xi,j, xi+1,j, xi+1,j+1, xi,j+1) ∈ V ×4}.

Note that the elements of X3 and X4 are ordered sets. We denote the elements of X3 by

[x], and for [x] = (xi,j, xi+1,j, xi,j+1), we put [x]1 := xi,j, [x]2 := xi+1,j, and [x]3 := xi,j+1.

Elements of X4 are also denoted as [x] (it will be clear from the context to which set

a generic element [x] belongs), and the subscript notation [x]i, i = 1, . . . , 4 is defined

similarly.

The main idea behind these definitions is that the values of a discrete field at the vertices

of a triangle or a square can be used to define a discrete jet, which is an approximation

to a continuous jet in the same sense that a pair (q0, q1) is an approximation to a tangent

vector. The idea behind this definition will be explained more fully in the next section.

Definition 2.3. A discrete jet is a pair ([x], [q]), where [x] is a triangle in V (i.e. an

element of X3), and [q] is an element of Q×3. The set of all discrete jets is denoted by

J1
dπ
∼= X3 ×Q×3.

A similar definition exists for the case of quadrangles. In that case, a discrete jet is also

a pair ([x], [q]), but now [x] is a quadrangle and [q] is an element of Q×4.

2.2. Discretizing the Lagrangian: the set of triangles. Recall that J1π is isomor-

phic to R2× [TQ⊕TQ]. Inspired by the discretization mappings for TQ in section 1.1,

we now propose the discretization map Φh,k : J1
dπ → J1π defined as

Φh,k([x], [q]) =

(
x0 + x1 + x2

3
;
q0 + q1 + q2

3
;
q1 − q0

h
,
q2 − q0

k

)
. (2.6)

One should think of the last three factors in the expression on the right-hand side as

being a discretization of an element in TQ ⊕ TQ, where the second factor represents

the base point, while the two last factors are discretizations of elements of TQ.

Again, such a map obviously depends on the choice of a coordinate system on Q.

Moreover, we are interested only in Lagrangians that do not depend on the base space

coordinates, and therefore, we will simply omit the base space coordinates in (2.6) and

view Φh,k as a map from Q×3 to TQ⊕ TQ.

Let L : TQ ⊕ TQ → R be a continuous Lagrangian; we then define its discrete coun-

terpart Ld : Q×3 → R by Ld := hkΦ∗h,kL.
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Example 2.4. The Lagrangian for the wave equation is just L = 1
2
((y0)2 − (y1)2). Its

discretization is therefore given by

Ld(q0, q1, q2) =
hk

2

(
q1 − q0

h

)2

− hk

2

(
q2 − q0

k

)2

. (2.7)

The discrete field equations will be derived in the next section. �

2.3. Discretizing the Lagrangian: the set of quadrangles. The discretization

(2.6) is the most straightforward possible. However, as we shall see, there are cer-

tain cases where other discretizations are more appropriate. For example, in [80], the

authors proposed the map Ψh,k : Q×4 → J1π defined as follows:

Ψh,k(q0, q1, q2, q3) =

(
q0 + · · ·+ q3

4
;
q1 − q0

h
,
1

2

(
q2 − q1

k
+
q3 − q0

k

))
, (2.8)

If L : TQ⊕TQ→ R is a Lagrangian, we again define the associated discrete Lagrangian

as Ld := hkΨ∗h,kL.

Example 2.5. Let L be the Lagrangian for the wave equation as in example 2.4. The

corresponding discrete Lagrangian is then given by

Ld(q0, q1, q2, q3) =
hk

2

(
q1 − q0

h

)2

− hk

8

(
q2 − q1

k
+
q3 − q0

k

)2

.

As we shall see, the effect of using the average in (2.8) is that the resulting field equations

are implicit. The advantage is that these equations will be unconditionally stable (i.e.

for all values of h and k), in contrast with the equations derived from (2.7). �

2.4. The field equations. Once the concept of discrete Lagrangian is defined, the

derivation of the Euler-Lagrange equations follows quite easily. For the sake of definite-

ness, we use here the definition of the discrete jet bundle based on the set of triangles.

Hence, the discrete Lagrangian is a function on Q×3. Note that all definitions can easily

be extended to the case of quadrangles.

Definition 2.6 (see [80]). A triangle [x] touches a vertex y ∈ V if y is a vertex of [x].

The following concepts have been taken from [80]. Let UF be a finite subset of X3. The

set UF induces a finite subset UV of V , where a vertex x is an element of UV if and

only there exists a triangle [y] ∈ X3 such that [y] touches x. We define the interior of

UV , denoted by intUV , as the set of vertices x such that all three triangles touching x

are elements of UF . The closure of UV , denoted by clUV , is then defined as the set of

vertices of the triangles that touch vertices in UV . Finally, we define the boundary of

UV , denoted by ∂UV , as the set of vertices x ∈ UV which belong also to clUV but not

to intUV .
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From now on, we restrict our attention to regular sets of vertices UV , which are such

that UV is exactly the union of its interior and its boundary.

Definition 2.7. Let φ : UV → Q be a discrete field restricted to UV . An infinitesimal

variation of φ is a vector field V along φ such that V (x) = 0 for all x ∈ ∂UV . A finite

variation of φ is a local one-parameter group of diffeomorphisms {ϕε}, defined on a

neighbourhood of φ(UV ), such that ϕε is the identity on φ(∂UV ).

The action functional S is defined in the usual way:

S(φ) =
∑

[x]∈UF
L(ψ([x])),

where we have introduced the map ψ : UF → Q×3 associated to the field φ as follows:

ψ([x]) = (φ([x]1), φ([x]2), φ([x]3)). (2.9)

We now look for discrete fields φ such that

d

dε
S(ϕε ◦ φ)

∣∣∣
ε=0

= 0

for all variations ϕε of φ. By the same reasoning as that leading to theorem 1.2, we

then obtain the following set of discrete Euler-Lagrange equations:

D1L(φi,j, φi+1,j, φi,j+1) +D2L(φi−1,j, φi,j, φi−1,j+1) +D3L(φi,j−1, φi+1,j−1, φi,j) = 0,

(2.10)

for all (i, j) ∈ UV .

Example 2.8. For the discrete wave Lagrangian introduced in example 2.4, the discrete

Euler-Lagrange equations become

φi+1,j − 2φi,j + φi−1,j

h2
=
φi,j+1 − 2φi,j + φi,j−1

k2
,

the standard second-order finite difference approximation to the wave equation. We

know from numerical analysis that such an explicit scheme becomes unstable if h/k > 1:

this is the famous CFL bound (see [1]). In order to avoid the CFL bound, implicit

schemes are needed. To this end, the authors of [80] introduced the four-point dis-

cretization (2.8). The Euler-Lagrange equations associated to the discrete Lagrangian

in example 2.5 can be derived in a similar way as above, and become

φi+1,j − 2φi,j + φi−1,j

h2
=

1

4

(
φi−1,j+1 − 2φi−1,j + φi−1,j−1

k2
+ 2

φi,j+1 − 2φi,j + φi,j−1

k2
+
φi+1,j+1 − 2φi+1,j + φi+1,j−1

k2

)
.

These equations are implicit, and hence present a new level of complication. The

advantage is that they are unconditionally stable. �
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2.5. The Poincaré-Cartan forms. For the purpose of this section, we assume that a

discrete Lagrangian is a function Ld on Q×k. So far, we have more or less distinguished

between k = 3 and k = 4, but only to emphasize the different rationales behind both

approaches. If we compare the final results, we may conclude that the particular value

of k does not have any profound consequences. Therefore, we will no longer make

the explicit distinction between both cases. This also underlines the fact that almost

everything in this chapter carries over without change to the case of an irregular mesh.

Associated to Ld are k Poincaré-Cartan 1-forms θ
(i)
Ld

: Q×k → T ∗Q defined by

θ
(i)
Ld

(q1, . . . , qk) := DiLd(q1, . . . , qk) ∈ T ∗qiQ. (2.11)

Compare with the Poincaré-Cartan forms defined in section 1.1. It is straightforward

to see that θ
(1)
Ld

+ · · ·+ θ
(k)
Ld

= dLd. Furthermore, we define Ω
(i)
Ld

:= dθ
(i)
Ld

, for i = 1, . . . , k.

The k Poincare-Cartan forms share many properties with their counterparts θ+,−
L from

mechanics; we will return to this once we treat their generalization to the context of Lie

groupoids in chapter 3. The immediate purpose of defining the Poincaré-Cartan forms

here is that they are needed for the multisymplectic form formula in the next section.

Remark 2.9. In some ways, the discretization of Lagrangian field theory using k

Poincaré-Cartan forms is not satisfactory. Indeed, our approach started by taking

a discretization of the base space, while leaving the fibres continuous. By enforcing this

distinction between the base space and the fibres, we end up with a discrete theory

which resembles more the so-called k-symplectic approach to Lagrangian field theory

(see [50, 86]), which uses only the geometry of the standard fibre, while neglecting

the base space. In the k-symplectic approach, the dynamics is formulated using k

presymplectic 2-forms rather than one multisymplectic form, and the same holds for

the dynamics of the discrete field theories in this chapter (see (2.11)). However, the

similarities do not end here. In the k-symplectic approach, the fields take value in the

following manifold:

T (k)Q := TQ⊕ · · · ⊕ TQ,
instead of the jet bundle. By replacing each factor TQ by its Moser-Veselov discretiza-

tion Q×Q, one can see that T (k)Q is naturally discretized by the k-fold product Q×k.
For k = 3, 4, this is the space of triangles and quadrangles, respectively.

Currently, there appears to be no discretization of multisymplectic Lagrangian field

theory which does not rely implicitly or explicitly on k-symplectic theory. We shall

have more to say on this in the last chapter.

Note that the k-symplectic theory is also related to Bridges’s multisymplectic theory

(see [17]), which was subsequently used for the construction of geometric integrators as

well (see [19,68]). The relation between Bridges’s theory and conventional multisym-

plectic field theory was studied by Marsden and Shkoller [78]. �
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2.6. Multisymplecticity. In mechanics, it is well known that the flow of a Lagrangian

or a Hamiltonian vector field is symplectic with respect to an appropriate symplectic

form. This fact lies at the basis of many important results in mechanics. Moreover,

preserving symplecticity in a discrete mechanical system generally leads to qualitatively

better results.

There is a similar, but less known result for classical field theory, known as the mul-

tisymplectic form formula, which embodies the conservation of multisymplecticity. In

this section, following [80], we first recall the multisymplectic form for continuous field

theories, and then we show that solutions of the discrete Euler-Lagrange equations

satisfy a similar property.

Finally, we recall a different interpretation of conservation of multisymplecticity due to

Bridges & Reich [19], and we show that their conservation law can be derived from the

discrete multisymplectic form formula.

2.6.1. Continuous field theories. Let π : Y → X be a fibre bundle. We denote by

M the set of sections Γ(π) of π. The set M can be given the structure of a smooth

manifold; see also remark 3.5 in chapter 1.

Let L : J1π → R be a Lagrangian and define the set SL of solutions of the Euler-

Lagrange equations as follows:

SL = {φ ∈M : (j1φ)∗(W ΩL) = 0 for allW ∈ X(J1π)}.

It is well known that SL is not always a true submanifold of M. However, for the

purpose of this exposition, we will assume that this is nevertheless the case. Similarly,

we define a distribution F on SL as follows:

F(φ) = {V ∈ TφM : (j1φ)∗Lj1V (W ΩL) = 0 for allW ∈ X(J1π)},

for all φ ∈ SL. The elements of F(φ) are referred to as first variations, as they solve

the linearised form of the Euler-Lagrange equations. We now have the necessary tools

to state the multisymplectic form formula:

Theorem 2.10. If φ ∈ M is a solution of the Euler-Lagrange equations, and V,W ∈
F(φ) are first variations, then the following multisymplectic form formula holds:∫

U

(j1φ)∗(j1V j1W ΩL) = 0. (2.12)

Proof: See [80, thm. 4.1]. �

Remark 2.11. In [80], a more general situation is considered, namely where M is

not just a space of sections, but a space of embeddings φ : U ⊂ X → Y . The

advantage of this generalization is that it also allows for horizontal variations and

horizontal symmetries, rather than just for vertical variations and symmetries. �
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2.6.2. Discrete field theories. For the case of discrete field theories, there is a multi-

symplectic form formula which is similar to (2.12).

Let UF be again a finite subset of Xk (k = 3, 4), and let Md be the set of all maps

φ : UV → Q. The set Sd,L is then defined to be the subset of Md whose elements are

solutions of the Euler-Lagrange equations (2.10).

Inspired by the developments in the previous section, we define finite and infinitesimal

first variations as follows:

Definition 2.12. A finite first variation of an element φ of Sd,L is a local one-parameter

group of diffeomorphisms {ϕε}, defined on a neighbourhood of φ(UV ), such that ϕε ◦ φ
is again an element of Sd,L, for all ε.

In other words, a finite first variation transforms solutions of the discrete Euler-Lagrange

equations into new solutions. We then define a infinitesimal first variation of φ ∈ Sd,L
somewhat circularly as a vector field V along φ such that there exists a finite first

variation ϕε with the property that

V (x) =
d

dε
ϕε(φ(x))

∣∣∣
ε=0

for all x ∈ UV .

Let ϕε now be a first variation with infinitesimal counterpart V . Note that ϕε is not

necessarily zero on φ(∂UV ). Varying the action with respect to such a variation gives

dS(φ) · V =
∑

x∈intUV

EL(x) · V (x) +
∑

[x]:[x]∩∂UV 6=∅

(
k∑
i=1

DiL(ψ([x])) · V (xi)

)

where xi is the ith vertex of [x], and EL(x) is just a shorthand form for the left hand

side of (2.10), and ψ : Xk → Q×k is map associated to φ as in (2.9). Hence, since φ is

a solution of the discrete Euler-Lagrange equations, dS can be written as

dS(φ) · V =
∑

[x]:[x]∩∂UV 6=∅

(
k∑
i=1

θ
(i)
L (ψ([x])) · V (xi)

)
, (2.13)

where xi is again the ith vertex of [x].

This equation shows that the Poincaré-Cartan 1-forms arise in the same variational

way as their continuous counterparts: by submitting the action to variations that do

not vanish on the boundary, and inspecting the remaining terms. Expression (2.13) can

also be used to prove the discrete version of the multisymplectic form formula: consider

two infinitesimal first variations V1 and V2 of φ ∈ Sd,L, and use (2.13) to expand the

right hand side of the trivial identity d2S(φ)(V1, V2) ≡ 0. The result is given in the

following theorem.
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x

[x2] [x1]

[x3]

Figure 2.1. The triangles [x1], [x2] and [x3] touching a given vertex x.

Theorem 2.13. If φ is a solution of (2.10), and V1, V2 are first variations of φ, then

the following discrete multisymplectic form formula holds:∑
[x]:[x]∩∂UV 6=∅

(
k∑
i=1

(V1(xi) V2(xi) Ω
(i)
L )(ψ([x]))

)
= 0. (2.14)

Proof: The proof of this theorem can also be found in [80]. �

2.6.3. A special case. A related formula was derived by Bridges & Reich in [19]. As we

shall see, a version of their result can be derived from (2.14) in the case that k = 3.

Note first of all that (2.13) and hence (2.14) still hold if (with some abuse of notation)

∂UV consists of a single grid point x. The sum in (2.14) is then over all triangles that

touch x:
3∑
l=1

Ω
(l)
L (ψ([xl]))(V1(x), V2(x)) = 0, (2.15)

where [xl], l = 1, 2, 3, are the triangles that touch xi,j, with the convention that [xl]l = x

(see figure 2.1). We now introduce the following notation:

η
(x)
i,j = Ω

(2)
L (ψ([x2]))(V1(xi,j), V2(xi,j)) and η

(y)
i,j = Ω

(3)
L (ψ([x3]))(V1(xi,j), V2(xi,j)).

By using the fact that Ω
(1)
L + Ω

(2)
L + Ω

(3)
L = 0 in (2.15), we then obtain the following

discrete conservation law:

η
(x)
i,j − η

(x)
i−1,j + η

(y)
i,j − η

(y)
i,j−1 = 0,

to be compared with [19, Proposition 1].





Chapter 3

Discrete Lagrangian field theories on Lie groupoids

In the previous chapter, we have recalled a number of basic aspects from discrete field

theories. Although geometric objects such as the Poincaré-Cartan forms already made

a brief appearance there, it might appear to the untrained eye that the role of geometry

in discrete field theory is rather limited.

The present chapter is partly designed to dispel that impression. We examine a new

class of field theories, taking values in a Lie groupoid. As we shall see shortly, the

description of such field theories is strongly influenced by the geometry of the target

Lie groupoid. Since the developments of the previous chapter are encompassed by the

current framework, this provides a sounder foundation for some of the constructions in

the previous chapter.

Moreover, the use of Lie groupoid field theories is not limited to acting as a new

framework for old results: in chapters 4 and 5, we will show that these field theories

arise naturally in the context of symmetry and reduction.

1. The discrete jet bundle

As in the previous chapter, we consider only field theories where the bundle is of the

form π : R2×Q→ R2 (see the discussion at the beginning of section 2 in chapter 2). In

the last chapter, an extension of this formalism to arbitrary bundles will be sketched.

In addition we assume the existence of a Lie groupoid G over Q. A Lie groupoid is

a generalization of the usual concept of a Lie group, with the important distinction

that the multiplication of two arbitrary elements is not always defined. Briefly, it is

a small category in which all the arrows are invertible, and which is equipped with a

suitable smooth structure. In appendix B, we have collected some basic definitions and

examples regarding Lie groupoids.

In section 1.1, we start by reviewing the mesh concept from chapter 2. It isn’t until

section 1.2, when we introduce an appropriate discretization of the jet bundle, that the

Lie groupoid G is needed.
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1.1. Discretizing the base space. This section is essentially a recapitulation of the

discussion following definition 2.1 in chapter 2. The material is not really new, but a

number of points are emphasized that were glossed over in chapter 2.

1.1.1. The mesh. In chapter 2, a mesh is defined as a discrete subset V of R2. This

definition has to be amended somewhat for Lie groupoid field theories: in addition

to knowing the vertices of the mesh, we also need some way of telling which vertices

“belong together”. This can be made more rigorous by means of some elementary

concepts from graph theory, which we now review.

A graph is a pair of sets (V,E), where the elements of V are called vertices, while the

elements of E are pairs {x0, x1} of vertices called edges. In contrast to what is usually

assumed in graph theory, we will allow V and E to be (countably) infinite. Note that

the edges in E are undirected, and that our class of graphs is automatically simple since

there is by definition at most one edge connecting each pair of distinct vertices.

A path between two vertices x and y is a sequence of edges {x, p1}, {p1, p2}, . . . , {pl, y}.
A graph is said to be connected if there exists a path between any two vertices. In the

sequel, we will only consider connected graphs.

A planar graph is a graph (V,E) where V is a subset of R2 and the edges are curves

in R2 connecting pairs of vertices such that if any two edges intersect, they do so in

a common vertex. For a planar graph, there is a notion of face, defined as follows.

Consider the geometric realisation |E| of (V,E), which is just the union of all edges.

The complement R2\|E| of |E| is a disconnected set, whose connected components are

the faces of the planar graph (V,E). A face is therefore a region in the plane, bounded

by a number of edges.

The degree of a face is defined as the number of edges that make up the boundary of

that face. Dually, the degree of a vertex is defined as the number of edges arriving in

that vertex.

Armed with these definitions, we now come to the following definition of the concept of

a “mesh”. In some sense, this definition was already implicit in chapter 2: the sets of

triangles or quadrangles from section 2.1 can be viewed as the set of faces of a certain

graph, whose set of edges is determined implicitly.

Definition 1.1. A mesh in X = R2 is a connected planar graph (V,E) in X such that

the following conditions are satisfied:

(1) the edges are realised as segments of straight lines in R2;

(2) the degree of the faces is constant and equal to some natural number k > 2;

(3) the degree of the vertices is always larger than two.

Again, the precise characteristics of such a mesh have to be dictated by the problem

under scrutiny. For most of this chapter, we will use the triangular and quadrangular



3.1 The discrete jet bundle 43

Figure 3.1. Square mesh in R2, with counterclockwise orientation.

meshes from chapter 2, but note that definition 1.1 also allows for example hexagonal

meshes. Furthermore, the developments in this chapter can be easily extended to the

case of irregular meshes as well. Other generalizations, such as meshes where the edges

are arcs, are also conceivable.

Remark 1.2. A few trivial remarks concerning notation are in order:

(1) A typical element e of E is a straight line segment, and is hence determined by

specifying its begin and end vertices x0 and x1. This will be reflected in our

notation: we denote e simply as {x0, x1} ∈ V × V .

(2) Each face f is a k-sided polygon, and will hence be denoted by specifying its corner

vertices:

f {x1, . . . , xk} ∈ V ×k.
Furthermore, the set of all faces will be denoted as F . �

1.1.2. The local groupoid E. In order to bring to the fore the algebraic character of the

set of edges E of a given mesh (V,E), we construct a new set E ′, whose elements are

ordered pairs (x, y) ∈ V × V satisfying the following axioms:

(1) (x, x) ∈ E ′ for all x ∈ V ;

(2) if {x, y} is an element of E, then (x, y) ∈ E ′ and (y, x) ∈ E ′.

The important difference between E and E ′ is that the elements of E are undirected

edges, whereas the elements of E ′ are directed. As we will no longer have a use for E,

no confusion can arise if we, henceforth, denote E ′ simply by E.

If we define the source and target mappings αX , βX : E → V in the usual way as

αX(x, y) = x and βX(x, y) = y, then E is a subset of the pair groupoid V × V ,

satisfying all but one of the axioms of a discrete groupoid: if e1 = (x, y) and e2 = (y, z)

are elements of E such that βX(e1) = αX(e2), then the multiplication e1 · e2, defined as

e1 · e2 = (x, z), is an element of V × V but not necessarily of E.

This is strongly reminiscent of the concept of local groupoid introduced by Van Est

in [101] in the context of Lie groupoids as, roughly speaking, differentiable groupoids

in which the condition β(e1) = α(e2) is necessary but not sufficient for the product e1 ·e2
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to exist. Even though in its original definition this concept makes no sense for discrete

spaces, the name is nevertheless quite appropriate and so we will continue to refer to

E as a local groupoid.

1.1.3. The set of k-gons Xk. We now introduce the set of k-gons Xk. The elements

of this set are the faces of the mesh, but with a consistent orientation. Indeed, the

natural orientation of X = R2 allows us to write down the edges of each face f in (say)

counterclockwise direction:

f =
(
(xk, x1), (x1, x2), . . . , (xk−1, xk)

)
.

We now introduce Xk as the set of all faces, considered as k-tuples of edges written

down in the counterclockwise direction:

Xk =
{(

(xk, x1), (x1, x2), . . . , (xk−1, xk)
)

where {x1, . . . , xk} ∈ F
}
.

We will also refer to the elements of Xk as k-gons and denote them as

[x] :=
(
(xk, x1), (x1, x2), . . . , (xk−1, xk)

)
.

To refer to the ith component of a k-gon [x], we will use the subscript notation: [x]1 =

(xk, x1) and [x]i = (xi−1, xi) for i = 2, . . . , k. In the following, we will assume that the

indices are defined “modulo k, plus one”, which allows us to write [x]i = (xi−1, xi), for

all i = 1, . . . , k.

It is useful to note that a k-gon is not changed by a cyclic permutation of its elements

and that the common edge of two adjacent k-gons is traversed in opposite directions.

Example 1.3. In the example given in figure 3.1, the degree of the faces is four. The

elements of X4 are the faces with the counterclockwise orientation indicated on the

figure. �

1.2. The discrete jet space Gk. We now complete our programme of discretizing

the jet bundle of π. Recall that there exists a Lie groupoid G over Q with source map

α and target map β, and where Q is regarded as a submanifold of G. We will now use

G to construct a manifold Gk, which is similar to Xk, playing the role of discrete jet

bundle. Roughly speaking, the elements of Gk are sequences of k elements in G, which

are composable, and such that, when multiplied together, they yield a unit element.

Definition 1.4. The discrete jet bundle is the manifold Gk consisting of all ordered

k-tuples (g1, . . . , gk) ∈ G× · · · ×G such that

(g1, g2), (g2, g3), . . . , (gk, g1) ∈ G2 and g1 · g2 · · · gk = α(g1)(= β(gk)).

(Recall that G2 is the set of composable pairs; see appendix B.)
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Elements of Gk will be referred to as “k-gons” in G, and will be denoted as [g] =

(g1, . . . , gk). A subscript refers to the individual components of a k-gon: [g]i = gi. Note

that, whereas Xk is a discrete set due to its compatibility with the mesh, Gk is a smooth

manifold and dim Gk ≥ dimG.

Example 1.5. At this point, it is perhaps useful to show how definition 1.4 ties in with

the developments in chapter 2. Consider the pair groupoid Q × Q over Q; it is then

easy to see that the discrete jet bundle associated to this particular choice of groupoid

is just the k-fold product Q×k. This is precisely the fibre part of the discrete jet bundle

defined in chapter 2 (see definition 2.3). �

The discrete jet bundle Gk can be equipped with the following two operations:

(1) the inverse of a given k-gon [g], denoted as [g]−1 and defined as

[g]−1 = (g−1
k , g−1

k−1, . . . , g
−1
1 );

(2) a collection of k mappings α(i) : Gk → Q, called generalized source maps and

defined as α(i)([g]) = α(gi).

2. Discrete fields

Formerly, a discrete field was a map from the set of vertices V to the manifold Q. In

the present context, a discrete field will be a certain kind of map from the set of edges

E to the Lie groupoid G, with the important property that composable pairs of edges

(i.e. edges having a vertex in common) are mapped to composable pairs in G. The

definition from chapter 2 can be recovered by considering discrete fields taking values

in the pair groupoid Q×Q.

Definition 2.1. A discrete field is a pair φ = (φ(0), φ(1)), where φ(0) is a map from V

to Q and φ(1) is a map from E to G such that

(1) α(φ(1)(x, y)) = φ(0)(x) and β(φ(1)(x, y)) = φ(0)(y);

(2) for each (x, y) ∈ E, φ(1)(y, x) = [φ(1)(x, y)]−1.

(3) for all x ∈ V , φ(1)(x, x) = φ(0)(x).

The definition we have given here is strongly reminiscent of that of a groupoid morphism

(see section 1 in appendix B). Of course E is not a proper groupoid but just a subset

of V × V . However, a discrete field can be uniquely extended to a groupoid morphism

from V × V into G, as we now show.

Proposition 2.2. Let φ = (φ(0), φ(1)) be a discrete field. Then there exists a unique

groupoid morphism ϕ : V × V → G extending φ.
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Proof: First of all, we define a map f : V → Q by putting f(x) := φ(0)(x) ∈ Q for all

x ∈ V . This will be the base map of the morphism ϕ.

Now, let (x, y) be any element of V ×V . If (x, y) ∈ E, then we put ϕ(x, y) := φ(1)(x, y).

If (x, y) /∈ E, then, because of the connectivity of the mesh (see definition 1.1), there

exists a sequence (x, u1), (u1, u2), . . . , (ul, y) in E such that in the pair groupoid V ×V ,

(x, y) = (x, u1) · (u1, u2) · · · (ul, y). (3.1)

We now put ϕ(x, y) = φ(x, u1) · φ(u1, u2) · · ·φ(ul, y). As each factor on the right-hand

side is composable with the next (see property (1) in def. 2.1), this multiplication is

well defined. We only have to prove that ϕ(x, y) does not depend on the sequence used

in (3.1). Therefore, consider any other decomposition of (x, y) as a product in V × V
of elements of E, i.e.

(x, y) = (x, u′1) · (u′1, u′2) · · · (u′m, y). (3.2)

and form the product

(x, x) = (x, u1) · (u1, u2) · · · (ul, y) · (y, u′m) · (u′m, u′m−1) · · · (u′1, x).

By acting on both sides with ϕ, we obtain

f(x) = ϕ(x, u1) · · ·ϕ(ul, y) · [ϕ(u′m, y)]−1 · · · [ϕ(x, u′1)]−1

and therefore

f(x)ϕ(x, u′1) · · ·ϕ(u′m, y) = ϕ(x, u1) · · ·ϕ(ul, y).

By noting that f(x) = α(ϕ(x, u′1)), a left-sided unit, we obtain the desired path inde-

pendence.

To prove that ϕ is unique, we consider a second groupoid morphism ϕ′, with base map

f ′, extending φ, i.e. such that

ϕ′(x, y) = ϕ(x, y) = φ(1)(x, y) for (x, y) ∈ E.

Then, let (x, y) be an arbitrary element of V × V . By writing (x, y) as a sequence of

elements in E as in (3.2), and applying ϕ′ to this product, we may conclude that ϕ′

coincides with ϕ on the whole of V × V . �

Remark 2.3. 1 The preceding proposition makes clear why property 3 of Definition 2.1

cannot be omitted. Indeed, consider the Lie group G = GL(2,R), and let (φ(0), φ(1)) be

the pair of constant maps defined as

φ(0)(x) =

(
1 0

0 1

)
and φ(1)(x, y) =

(
0 1

1 0

)
.

The pair (φ(0), φ(1)) satisfies the requirements of definition 2.1 except for property 3,

but cannot be extended to a groupoid morphism. �
1We are grateful to R. Benito and D. Mart́ın de Diego for pointing out to us this example, as well as
the absence of property 3 from Definition 2.1 in an earlier version of [108].
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ψ

φ([x]4) ψ([y])
φ([x]2)

φ([x]1)

φ([x])3

[y]
[x]1

[x]4 [x]3
[x2]

Figure 3.2. A discrete field φ and its associated mapping ψ : Xk → Gk

Henceforth, we will use the notation ‘φ’ for both the discrete field (φ(0), φ(1)) and the

groupoid morphism extending it. The notation Φ (used in appendix B) will be reserved

for morphisms from G to itself.

Let us briefly recapitulate these developments. We started from the mesh (V,E) in X,

and defined a discrete field essentially as a mapping attaching a groupoid element to

each element of E. We then showed that such discrete fields are equivalent to morphisms

of groupoids.

It now remains to make the link between morphisms from V ×V to G on the one hand,

and mappings from Xk to Gk on the other hand. It is straightforward to see that a

morphism φ : V × V → G induces a map ψ : Xk → Gk by putting

ψ([x]) = (φ([x]1), . . . , φ([x]k)). (3.3)

(see also figure 3.2). The map ψ has some properties reminiscent of those of groupoid

morphisms. Of particular importance is the following:

Morphism property: if [x] and [y] are elements of Xk having an edge in common,

then the images of [x] and [y] under ψ have the corresponding edge in Gk in common.

Explicitly:

[x]l = ([y]m)−1 implies that ψ([x])l = (ψ([y])m)−1. (3.4)

Proposition 2.4. There is a one-to-one correspondence between groupoid morphisms

φ : V × V → G and mappings ψ : Xk → Gk satisfying the morphism property.

Proof: We have already associated with a groupoid morphism φ a map ψ satisfying

the morphism property. To prove the converse, let ψ : Xk → Gk be a map satisfying

the morphism property. Define first φ : E → G as follows.

(1) For (u, u) ∈ E, we take a k-gon [x] having u as its lth vertex: u = αX([x]l) and

we put

φ(u, u) = α(l)(ψ([x])).

It is straightforward but rather tedious to show that this expression does not

depend on the choice of [x]. Let [y] be another k-gon, with u as its mth vertex.
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����

u
[x]l−1

[x]l [z]n+1

[z]n

[y]m

[y]m−1

Figure 3.3. A vertex of degree four.

Let us assume for the sake of simplicity that u has degree four (the general case

can be dealt with by repeated application of this special case). Then the edges

that emerge from u are [x]l and [y]m, as well as ([x]l−1)−1 and ([y]m−1)−1 (see

figure 3.3) and there exists exactly one k-gon [z] such that

[z]n = ([x]l)
−1 and [z]n+1 = ([y]m−1)−1.

By definition, we have

β(ψ([z])n) = α(ψ([z])n+1) and β(ψ([y])m−1) = α(ψ([y])m).

On the other hand, the morphism property ensures that

ψ([x])l = (ψ([z])n)−1 and ψ([y])m−1 = (ψ([z])n+1)−1.

By applying α to the left equality and β to the right equality, we finally obtain

α(l)(ψ([x])) = α(m)(ψ([y])),

which shows that φ(u, u) does not depend on [x].

(2) For (u, v) ∈ E, u 6= v, we take [x] in Xk such that (u, v) = [x]l and we put

φ(u, v) = ψ([x])l.

This is well defined because of the morphism property and, moreover, φ satisfies

φ(y, x) = (φ(x, y))−1.

By applying proposition 2.2 we obtain the desired morphism φ : V × V → G. �

In a way, the mapping ψ associated to a morphism φ plays the role of “first jet prolon-

gation” of φ. Similarly, the morphism property is in some sense a discrete analogue of

the distinction between holonomic and non-holonomic sections of J1π.

Remark 2.5. It is perhaps useful to illustrate the theory developed so far by applying it

to groupoid mechanics. In this case, the base space X is R, but all of the constructions

for X = R2 carry through to this case. As a discretization of R, we choose the canonical

injection ι : Z ↪→ R. A discrete field can then be identified with a bi-infinite sequence

of pairwise composable groupoid elements . . . , g−2, g−1, g0, g1, . . ., which is precisely the

definition of an admissible sequence in [75,110]. �
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2.1. The prolongation P kG. Let AG denote the Lie algebroid associated to G (see

appendix B).

We recall that the discrete jet bundle Gk is equipped with k generalized source maps

α(i) : Gk → Q, defined as α(i)([g]) = α([g]i). By use of these maps, we define the

prolongation P kG of Gk through the following commutative diagram:

P kG //

��

AG× · · · × AG

��

Gk // Q× · · · ×Q

It follows that P kG consists of elements ([g]; v1, . . . , vk), where vi ∈ Aα(gi)G for each

i = 1, . . . , k. We denote by π(k) : P kG→ Gk the projection which maps ([g]; v1, . . . , vk)

onto [g]. Furthermore, there exist k bundle morphisms (P (i), p(i)) : P kG→ PG, where

PG is the prolongation of the Lie groupoid G, defined in section 3.1.1 of appendix B.

These morphisms are defined as follows. The base space map p(i) : Gk → G is the

projection onto the ith factor, p(i)([g]) = [g]i, and the total space map P (i) is defined as

P (i)([g]; v1, . . . , vk) = (gi; vi, vi+1). (3.5)

The definition of P kG is strongly reminiscent of that of the prolongation of a Lie

groupoid over a fibration (see section 3.1), although in general Gk is not a groupoid.

The exact nature of P kG is unclear at this stage, but we will show in section 2.1.2 that

the algebroid structure of PG can be used to equip P kG with a Lie algebroid structure

by requiring that the maps (P (i), p(i)) are Lie-algebroid morphisms.

Remark 2.6. For k = 2, the manifold G2 is diffeomorphic to G, with the diffeomor-

phism ϕ mapping each pair (g, g−1) onto g. Note that p(1) = ϕ. In addition, we have

that

α(1) = α ◦ ϕ and α(2) = β ◦ ϕ,

confirming our intuition that the maps α(i) are some sort of “generalized source maps”.

Furthermore, the projection P (1) is given by

P (1)(g, g−1;uα(g), vβ(g)) = (g;uα(g), vβ(g)),

and so in fact it is just the natural identification of P 2G with PG. On the other hand,

P (2) is given by

P (2)(g, g−1;uα(g), vβ(g)) = (g−1; vβ(g), uα(g)).

We recalled in section 3.1 that PG is a groupoid over AG in a natural way. A brief

comparison shows that P (2) is just the inversion mapping of PG, once we use P (1) to

identify PG and P 2G. �
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2.1.1. The injection I : P kG ↪→ TGk. Of central importance for the following develop-

ments is the fact that there exists a bundle injection I of P kG into TGk. In order to

define I, we recall that a section v of the Lie algebroid AG defines on G a left-invariant

vector field vL and a right-invariant vector field vR (see expression (B.1)). We also

recall that we use the same notation for the point-wise operation (see remark 2.3).

Now, let ([g]; v1, . . . , vk) be any element of P kG, and define I([g]; v1, . . . , vk) ∈ T[g]Gk

as

I([g]; v1, . . . , vk) = (vR1 (g1) + vL2 (g1), vR2 (g2) + vL3 (g2), . . . , vRk (gk) + vL1 (gk)). (3.6)

To prove that the right-hand side is a tangent vector to Gk at [g], we take for each

i = 1, . . . , k a curve ε 7→ hi(ε) ∈ Fα(gi) in the α-fibre through gi such that hi(0) = α(gi)

and ḣi(0) = vi. Then the vector on the right-hand side is the tangent vector at 0 to the

following curve in Gk:

ε 7→
(
h−1

1 (ε)g1h2(ε), h−1
2 (ε)g2h3(ε), . . . , h−1

k (ε)gkh1(ε)
)
.

Definition 2.7. Let [g] be an element of Gk. The ith tangent lift is the map L
(i)
[g] :

Aα(gi)G→ T[g]Gk defined as

L
(i)
[g](v) = I([g]; 0, . . . , 0, v, 0, . . . , 0) for v ∈ Aα(gi)G,

where v occupies the ith position among the arguments of I([g]; . . .). We will frequently

use the notation v
(i)
[g] for the element L

(i)
[g](v).

Remark 2.8. We pointed out that P 2G is isomorphic to PG. In this case, the injection

I is given by

I : (g;uα(g), vβ(g)) 7→ T (rg ◦ i)(uα(g)) + T lg(vβ(g)) ∈ Vgβ ⊕ Vgα,

and coincides with the isomorphism Θ : PG→ V β⊕V α (see section 3.1 of appendix A).

In this case, the map I can also be seen as the anchor of the Lie algebroid PG. This

theme will return in the next section, when we endow P kG with the structure of a Lie

algebroid, with I as its anchor map. �

2.1.2. The Lie algebroid structure on π(k) : P kG → Gk. In order to endow P kG with

the structure of a Lie algebroid, we introduce the concept of the lift of a section of AG

to P kG. Let v be a section of AG; we then define v(i) as the section of P kG given by

v(i)([g]) := ([g]; 0, . . . , 0, v(α(gi)), 0, . . . , 0),

where v(α(gi)) occupies the ith place. This lift operation should not be confused with

the tangent lift of definition 2.7 (although they are related), and will only be used in

this section.
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We now define a Lie algebroid structure on P kG. The anchor ρ(k) : P kG→ TGk is the

injection I defined in (3.6), and the bracket is defined component-wise as follows. Let

v and w be sections of AG, and define

[v(i), w(j)]PkG =

{
0 if i 6= j,

[v, w](i) if i = j.
(3.7)

It is straightforward to prove that the bracket and the anchor satisfy the requirements of

definition 2.1 in appendix B. We denote the associated exterior differential on
∧

(P kG)∗

by d(k).

Corollary 2.9. The projection mappings P (i) : P kG → PG defined in (3.5) are Lie

algebroid morphisms.

Proof: The projection map P (i) is fibrewise surjective; hence we will use proposition 2.4

in appendix B. The first part, ρ̂ ◦ P (i) = Tp(i) ◦ ρ(k), follows easily from the definitions.

Now, let v and w be sections of AG. Note that v(i) and v(i−1) are P (i)-related to respec-

tively v(1,0) and v(0,1), where we have used the notations of section 3.1.1 in appendix B.

If j 6= i− 1, i, then v(j) is P (i)-related to the zero section of AG.

To complete the proof, we now need to show that [v(i), w(i)] is P (i)-related to [v, w](1,0),

P (i−1)-related to [v, w](0,1), and P (j)-related (j 6= i−1, i) to the zero section. Explicitly:

P (j) ◦ [v(i), w(i)]PkG =


[v, w](1,0) ◦ pi if j = i,

[v, w](0,1) ◦ pi−1 if j = i− 1,

0 all other cases.

(3.8)

This follows immediately from (3.7). �

3. Lagrangian field theories

Having thus prepared the geometric stage, we now turn to the analysis of discrete field

theories. In essence, this is not very different from the procedure followed in chapter 2:

the discrete Euler-Lagrange equations characterise the extremals of a certain discrete

action sum, etc. The difference lies of course in the details: a discrete Lagrangian is

now a function on Gk, the Poincaré-Cartan forms are sections of the dual of P kG, and

the discrete Legendre transformations are defined accordingly.

3.1. The Poincaré-Cartan forms. Let L : Gk → R be a discrete Lagrangian. To

L one can associate k sections θ
(i)
L of (π(k))∗ : (P kG)∗ → Gk, called Poincaré-Cartan

forms, which are defined as follows:〈
θ

(i)
L ([g]), ([g]; v1, . . . , vk)

〉
= (v

(i)
i )[g](L),
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where vi ∈ Aα(gi)G and v
(i)
i is the ith tangent lift of vi to Gk (cf. definition 2.7). As∑

v
(i)
i = I([g]; v1, . . . , vk), we may conclude that

d(k)L =
k∑
i=1

θ
(i)
L .

Remark 3.1. In the case k = 2, it follows from remark 2.8 that θ
(1)
L , resp. θ

(2)
L , can be

identified with the Poincaré-Cartan forms θ−L , resp. θ+
L , defined in [75] as

θ−L (g;uα(g), vβ(g)) = dL(g)(uR(g)) and θ+
L (g;uα(g), vβ(g)) = dL(g)(vL(g)).

Indeed, let us consider the function Lmech on G given by Lmech = ϕ∗L, where ϕ : G2 → G

is the diffeomorphism introduced in remark 2.6, or, explicitly, Lmech(g) = L(g, g−1).

Then, by definition,

θ
(1)
L (g, g−1;uα(g), vβ(g)) =

d

dt
L(h−1(t)g, g−1h(t))

∣∣∣
0
,

where h(t) ∈ Fα(g) is such that h(0) = α(g) and ḣ(0) = uα(g). The right-hand side can

now be rewritten as

d

dt
Lmech(h−1(t)g)

∣∣∣
0

=
〈
dLmech, T (rg ◦ i)(uα(g))

〉
= θ−L (g;uα(g), vβ(g)).

There is a similar identification of θ
(2)
L with θ+

Lmech
. �

3.2. The field equations. We derive the discrete field equations for a Lie groupoid

morphism φ : V × V → G by varying a discrete action sum. Let L : Gk → R be a

discrete Lagrangian and consider a finite subset UF of Xk. Define the action sum S as

follows:

S(φ) =
∑

[x]∈UF
L(ψ([x])), (3.9)

where ψ is the map from Xk to Gk associated to the morphism φ (see proposition 2.4). In

order to derive the discrete Euler-Lagrange equations, we first need a suitable definition

of finite and infinitesimal variations.

3.2.1. Variations. Let us start with the definition of a finite variation. A key property

is of course that the variation of a groupoid morphism should yield a new groupoid

morphism.

There are two ways in which this property can be implemented. First of all, if we

consider discrete fields as morphisms φ : V × V → G, a finite variation Φε has to be

a groupoid morphism of G to itself. Only then is the composition of Φε with φ again

a morphism. However, if we view discrete fields as mappings ψ : Xk → Gk satisfying

the morphism property, then it is not so obvious how to define a finite variation. We

want the composition Ψε ◦ ψ to satisfy again the morphism property: this is achieved
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by imposing a number of additional conditions, which can be thought of as “morphism

properties” for Gk.

Of course, in view of proposition 2.4, one expects that maps Ψ satisfying these morphism

properties (to be defined below) are just groupoid morphisms fromG to itself in disguise.

This is proved in proposition 3.3 below.

Let us first introduce a slight modification of the source mappings α(i):

α̂(i) : Gk → Gk, α̂(i)([g]) = (α([g]i), . . . , α([g]i)).

It is obvious that for any l ≤ k,
(
α̂(i)([g])

)
l
= α(i)([g]).

Definition 3.2. A map Ψ : Gk → Gk is said to satisfy the morphism properties if, for

all [g], [h] ∈ Gk,

(1) Ψ ◦ α̂(i) = α̂(i) ◦Ψ for i = 1, . . . , k;

(2) if [g]l = [h]m, then Ψ([g])l = Ψ([h])m.

Proposition 3.3. There is a one-to-one correspondence between groupoid morphisms

Φ : G→ G and mappings Ψ : Gk → Gk satisfying the morphism properties.

Proof: Let Φ be a morphism from G to itself. As in (3.3), Φ induces a mapping

Ψ : Gk → Gk satisfying the morphism properties, namely:

Ψ([g]) = (Φ([g]1), . . . ,Φ([g]k)) .

Conversely, let Ψ : Gk → Gk be a mapping satisfying the morphism properties and let

g be any element of G. In order to define Φ(g), we take any [η] ∈ Gk such that there

exists a natural number l ≤ k for which g = [η]l. We then put

Φ(g) := Ψ([η])l.

Morphism property 2 ensures that Φ(g) depends only on g and not on the other com-

ponents of [η]. We now have to check that Φ is a morphism of G to itself.

(1) In order to prove that α ◦ Φ = Φ ◦ α, we take any g ∈ G and consider [η] ∈ Gk

such that [η]l = g. Then α(Φ(g)) = α(Ψ([η])l) = α(l)(Ψ([η])).

However, because of morphism property 1 we have

α̂(l)
(
Ψ([η])

)
= Ψ

(
α̂(l)([η])

)
= Ψ

(
(α(g), . . . , α(g))

)
. (3.10)

For any arbitrary m ≤ k, we have that Φ(α(g)) = Ψ
(
(α(g), . . . , α(g))

)
m

, and so,

by considering the mth component of (3.10),

Φ(α(g)) =
(
α̂(l)
(
Ψ([η])

))
m

= α(l)
(
Ψ([η])

)
,

from which we conclude that α(Φ(g)) = Φ(α(g)) for all g ∈ G. A similar argument

can be used to show that Φ commutes with β.
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(2) We now show that Φ(g−1) = Φ(g)−1 for any g ∈ G. Let

[ξ] = (g, g−1, α(g), . . . , α(g)),

then Ψ([ξ])1 = Φ(g), Ψ([ξ])2 = Φ(g−1) and Ψ([ξ])j = Φ(α(g)) for j = 3, . . . , k.

Moreover, since Ψ([ξ]) ∈ Gk, we have, by definition of Gk, that Ψ([ξ])1 · · ·Ψ([ξ])k =

α(Ψ([ξ])1), or

Φ(g)Φ(g−1)Φ(α(g)) · · ·Φ(α(g)) = α(Φ(g)),

which, after simplification, leads to Φ(g−1) = Φ(g)−1.

(3) Finally, we have to show that if (g, h) is a composable pair, i.e. β(g) = α(h), then

(Φ(g),Φ(h)) is also composable, and moreover, Φ(gh) = Φ(g)Φ(h). The proof of

this property is similar to the proof of the previous property.

Consider the following k-gon:

[η] = (g, h, (gh)−1, α(g), . . . , α(g)).

Then, as Ψ([η]) ∈ Gk, we conclude that, first of all, β(Φ(g)) = α(Φ(h)), and

secondly

Φ(g)Φ(h)Φ((gh)−1) = α
(
Φ(g)

)
.

By using the previous properties, as well as some of the standard properties of the

groupoid G, we find that Φ(gh) = Φ(g)Φ(h).

We conclude that Φ : G→ G is a groupoid morphism. �

Corollary 3.4. Let Ψ : Gk → Gk be a map satisfying the morphism properties. Then

for each [g] ∈ Gk,

Ψ([g]−1) = Ψ([g])−1.

Proof: This can be proved directly, or by noting that Ψ induces a groupoid morphism

Φ such that

Ψ([g]) =
(
Φ([g]1), . . . ,Φ([g]k)

)
,

and writing out the definition of [g]−1 and Ψ([g])−1. �

After these introductory lemmas, we now turn to the concepts of finite and infinitesimal

variations of a morphism φ : V × V → G. Let UF be the finite subset of Xk used in

defining the discrete action S in (3.9), and recall from definition 2.6 in the previous

chapter that UF induces a finite subset UV of V . In a similar fashion, UF induces a

finite subset UE of E, where an edge (x0, x1) is an element of UE if and only if there

exists a k-gon [x] in UF and an index i such that either (x0, x1) = [x]i or (x1, x0) = [x]i.

We also define the boundary ∂UE of UE to be the following set:

∂UE :=
{

(u, v) ∈ V × V : ∃[x], [y] ∈ Xk such that [x]l = (u, v), [y]m = (v, u)

and [x] ∈ UF , [y] /∈ UF
}
.
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In other words, the boundary ∂UE consists of edges that, when traversed in opposite

directions, are part of two k-gons [x] and [y], one of which is contained in UF , while the

other one is not.

Definition 3.5. A finite variation of a discrete field φ is a one-parameter family of

maps hε : UV → G such that α ◦ hε = φ(0) for all ε. In addition, hε(x) ≡ φ(0)(x) for all

x ∈ ∂UE.

Recall that φ(0) : V → Q was introduced in definition 2.1 as the “base map” of the

discrete field φ.

In other words, a finite variation is just an assignment of a curve in the α-fibre through

φ(0)(x) to each vertex in UF . Such a finite variation induces a one-parameter family of

maps Φε : φ(UE)→ G, defined as

Φε(g) = hε(x0)−1ghε(x1) where g = φ(x0, x1). (3.11)

Even though these maps are not defined on the whole of G, they satisfy the defining

properties of a groupoid morphism and hence give rise to a one-parameter family Ψε :

ψ(UF ) → Gk through proposition 3.3, where ψ : Xk → Gk is the map associated to φ

as in proposition 2.4. These maps have the following form:

Ψε([g]) = (k1(ε)−1g1k2(ε), k2(ε)−1g2k3(ε), . . . , kk(ε)
−1gkk1(ε)), (3.12)

where ki(ε) = hε(xi) if [g] = ψ([x]).

Based on these constructions, infinitesimal variations can now be defined in a natural

way, by taking the derivative of a finite variation:

Definition 3.6. A infinitesimal variation of a discrete field φ is a map V : UV → AG

along φ(0) (i.e. such that V (x) ∈ AqG, where q := φ(0)(x)). In addition, V (x) = 0 if

x ∈ ∂UV .

An infinitesimal variation V of a field φ gives rise to a section Γ of π(k) along ψ in the

obvious way by putting Γ([x]) = (V (x1), . . . , V (xk)). This point of view will hardly

ever be needed, except in our derivation of the multisymplectic form formula.

3.2.2. The field equations. We now have at our disposal all the tools required to derive

the discrete field equations. For the sake of notational clarity, this will be done for the

quadrangular mesh only; the generalization to non-regular meshes is straightforward

but notationally quite intricate.

Let UF be again the finite subset of Xk used in (3.9) to define the discrete action, and let

UV and UE be the associated subsets of V and V × V respectively. Consider a discrete

field φ : UE → G and let hε : UV → G be a finite variation of φ as in definition 3.5.

Recall from (3.11) that hε defines a one-parameter family of maps Φε : φ(UE)→ G; we

will denote by φε the composition Φε ◦ φ.



56 Discrete Lagrangian field theories on Lie groupoids

xk,l−1

[x1][x2]

xk,l

[x3] [x4]

xk+1,lxk−1,l

xk,l+1

Figure 3.4. The vertex xk,l and the four surrounding faces

The morphism φ : UE → G is an extremum of (3.9) under arbitrary variations if and

only if
d

dε
S(φε)

∣∣∣
ε=0

= 0. (3.13)

From this condition the discrete Euler-Lagrange equations easily follow. The remainder

of this section is devoted to this derivation.

Let xk,l be an element of V ; naturally, xk,l is a common vertex of four quadrangles,

denoted by [xi], for i = 1, . . . , 4. Here, we have employed the convention that α([xi]i) =

xk,l; i.e. xk,l is the ith vertex of [xi] (see figure 3.4). We denote the image of [xi] under

ψ by [gi].

The effect of the variation hε on (for example) the quadrangle [g1] is to map it to a new

quadrangle [g1(ε)], given by

[g1(ε)] = (hε(xk,l)
−1g1hε(xk+1,l), . . . , hε(xk,l+1)−1g4hε(xk,l)).

Here, [g1] is written as (g1, g2, g3, g4).

Similar expressions can be written down for [g2], [g3], and [g4]. By substituting these

formulae into (3.13), we eventually obtain

d

dε
S(φε)

∣∣∣
ε=0

=
∑

xk,l∈UV

(
(vk,l)

(1)
[g1](L) + (vk,l)

(2)
[g2](L) + (vk,l)

(3)
[g3](L) + (vk,l)

(4)
[g4](L)

)
, (3.14)

where the superscript i denotes the ith tangent lift of an element of AG to TGk (see

definition 2.7), and vk,l := d
dε
hε(xk,l)|ε=0 is the infinitesimal variation associated to

hε, evaluated at xk,l. As the elements vk,l are independent, we obtain the following

characterization of the extremals of S.

Theorem 3.7. Let φ : UE → G be a discrete field defined on a finite set UE ⊂ V × V .

Then φ is an extremum of the action sum (3.9) if and only if, for all v ∈ AqG, where

q = φ(0)(xi,j), the following discrete Euler-Lagrange equations hold:

v
(1)
[g1](L) + v

(2)
[g2](L) + v

(3)
[g3](L) + v

(4)
[g4](L) = 0. (3.15)
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Here, the quadrangles [gi], i = 1, . . . , 4 are defined as in the discussion preceding this

theorem.

In case where G is the pair groupoid Q×Q, the equations (3.15) reduce to the discrete

Euler-Lagrange equations derived in chapter 2 following [80].

3.3. The Legendre transformation. In this section, we introduce a notion of Le-

gendre transformation and use it to show that the pullback of the canonical section of a

suitable dual bundle yields the Poincaré-Cartan forms constructed in section 3.1. More

precisely, the Legendre transformation will be a collection of k bundle maps from P kG
to the bundle P τ∗(AG) → A∗G. As sketched in section B-3.2.1, the dual of the latter

is equipped with a canonical section θ and the pullback of this section by each of the

bundle maps corresponding to the Legendre transformation, will provide the full set of

Poincaré-Cartan forms.

We first introduce the pullback bundles P (i)(AG), i = 1, . . . , k, constructed by means

of the following commutative diagram:

P (i)(AG)

��

// TGk

Tα(i)

��
AG ρ

// TQ

The bundles P (i)(AG) bear the same relation to Gk as Pα(AG) and P β(AG) to G.

3.3.1. The mappings P(i) : P kG → P (i)(AG). For each i = 1, . . . , k, there is a natural

injection ϕ(i) : G→ Gk defined as

ϕ(i)(g) = (α(g), . . . , α(g), g, g−1, α(g), . . . , α(g))

where g and g−1 occupy the ith and the (i+ 1)th position, respectively. For i = k, ϕ(k)

is defined as

ϕ(k)(g) = (g−1, α(g), . . . , α(g), g).

The projections P (i) : P kG → PG, as defined in section 2.1, can be used to define

projection mappings P(i) : P kG→ P (i)(AG) by means of the composition

P(i) : P kG P (i)

−→ PG
A(Φα)−→ Pα(AG)

id×Tϕ(i)

−→ P (i)(AG),

where A(Φα) : PG→ Pα(AG) was defined in section B-3.2.2.

Remark 3.8. For k = 2, we now show that P(1) and P(2) can be identified with

A(Φα) and A(Φβ), respectively. We recall that P 2G is isomorphic to PG and that

there is a diffeomorphism ϕ : G2 → G sending each (g, g−1) to g (see remark 2.6).

Hence, ϕ(1) is just ϕ−1 and ϕ(2) equals ϕ−1 ◦ i. There is a natural identification of

P (1)(AG) with Pα(AG), and of P (2)(AG) with P β(AG). Using these identifications, it
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is straightforward to see that P(1) can be identified with A(Φα). The identification of

P(2) with A(Φβ) takes some more work. Consider first the composition

Pα(AG)
id×Tϕ(2)

−→ P (2)(AG) ∼= P β(AG),

which is easily seen to be equal to id × Ti. We then obtain the following for the map

P(2), considered as a map into P β(AG):(
(id× Ti) ◦ A(Φα) ◦ P (2)

)
(g, g−1;uα(g), vβ(g))

= (id× Ti ◦ A(Φα))(g−1; vβ(g), uα(g))

= (id× Ti)(g−1; vβ(g), T (rg−1 ◦ i)(vβ(g)) + T lg−1(uα(g)))

= (g : vβ(g), T (rg ◦ i)(uα(g)) + T lg(vβ(g)))

= A(Φβ)(g;uα(g), vβ(g)),

where we again refer to section 3.2.2 for the definition of A(Φβ). �

3.3.2. Definition of the Legendre transformations. Given a Lagrangian L : Gk → R,

there are k distinguished bundle maps (PFL(i),FL(i)) from P kG to the bundle P τ∗(AG)

over A∗G, which we call Legendre transformations.

For each i = 1, . . . , k, the base map FL(i) : Gk → A∗G is defined as follows. For each

[g] ∈ Gk, FL(i)([g]) is the element of A∗α(gi)
G defined by

FL(i)([g])(vα(gi)) = v
(i)
α(gi)

(L) for all vα(gi) ∈ Aα(gi)G.

Recall that v
(i)
α(gi)

is the ith tangent lift of vα(gi) to T[g]Gk. The total space map PFL(i) :

P kG→ P τ∗(AG) is defined as the composition (id× TFL(i)) ◦P(i).

Proposition 3.9. Let θ be the canonical section of [P τ∗(AG)]∗ → A∗G defined in

section B-3.2.1. Then, for i = 1, . . . , k,

(PFL(i),FL(i))?θ = θ
(i)
L .

Proof: Let ([g]; v1, . . . , vk) be an element of P kG and consider

[(PFL(i),FL(i))?θ][g]([g]; v1, . . . , vk) = θFL(i)([g])(PFL(i)([g]; v1, . . . , vk)). (3.16)

Now, the canonical section θ is defined by the following rule: for α ∈ A∗G and (v,Xα)

in (P τ∗(AG))α, we have that θα(v,Xα) = α(v). Noting that

PFL(i)([g]; v1, . . . , vk) = (vi, ·)

(the precise form of the second argument doesn’t matter), the right-hand side of (3.16)

then becomes

FL(i)([g])(vi) = θ
(i)
L ([g]; v1, . . . , vk),

where the last equality follows by comparing the definition of the ith Poincaré-Cartan

form with the ith Legendre transformation. �
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3.4. Variational interpretation of the Poincaré-Cartan forms. In this section,

we derive a multisymplectic form formula for discrete field theories on Lie groupoids.

The existence of such a formula is a consequence of the variational background of the

discrete Euler-Lagrange equations and should therefore come as no surprise.

In fact, the analysis in this section is very similar to the developments in chapter 2,

and to those in [80]. Conversely, when the target groupoid is Q × Q, then our results

reduce to those given before.

3.4.1. Arbitrary variations. Consider again a finite subset UF of Xk and let ∂UE be the

boundary of the associated subset UE ⊂ V ×V . Let φ : UE → G be a morphism defined

on UE.

We now define a finite first variation of φ as a one-parameter family of maps hε : UV →
G such that α◦hε = φ(0) for all ε. In addition, we require that the composition of Φε with

φ is a solution of the discrete field equations for all ε. Here, Φε : φ(UE)→ G is defined

as in (3.11). First variations hence resemble ordinary variations (see definition 3.5)

except for the fact that they are not necessarily trivial on the boundary of the image

of φ.

Associated to a finite first variation hε of φ is again an infinitesimal first variation V ,

which is a section of AG along φ(0) defined by

V (xi,j) =
d

dε
hε(xi,j)

∣∣∣
ε=0
.

When extremizing the action sum (3.9) under first variations, there are now two different

kinds of contributions. The first comes from the interior of UV , and yields the discrete

Euler-Lagrange equations, as we saw before. The second is the contribution from the

boundary ∂UV , which takes the following form (with the notations of section 3.2):

d

dε
S(φε)

∣∣∣
ε=0

=
∑

[x]∩∂UV 6=∅

 ∑
l;α([x]l)∈∂UV

(
θ

(l)
L (ψ([x])) · Vψ([x])

) , (3.17)

where V is the infinitesimal variation associated to ϕε. Once again, we see how the

Poincaré-Cartan forms arise naturally in the context of discrete Lagrangian field theo-

ries.

3.4.2. Multisymplecticity. By exactly the same reasoning as in chapter 2, we now derive

a criterion for multisymplecticity. We will not repeat the entire proof, but we only

highlight some of the key points. For more information, the reader is referred to [80].

DefineMd to be the manifold of morphisms φ : UV → G and consider the subset Sd,L of

morphisms that solve the discrete field equations. We now erect a certain Lie algebroid

over Sd,L, denoted by AG, and defined as follows:

AG(φ) = Γ(φ∗(0)AG) for all φ ∈ Sd,L.
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In other words, the fibre of AG over φ is the module of sections of the pullback bundle

φ∗(0)AG. Formally, AG inherits the structure of a Lie algebroid from AG. Indeed,

sections v and w of AG induce sections ṽ and w̃ of AG by composition: ṽ(φ) := v ◦φ(0),

and similarly for w̃. For this class of sections, the bracket and the anchor are determined

by

[ṽ, w̃]AG(φ) := [v, w] ◦ φ(0) and ρAG(ṽ) := ρ ◦ ṽ.

In the case of standard discrete field theories as in chapter 2, AG is the tangent bundle

TQ, and AG is just TMd. By definition, an infinitesimal first variation V of a discrete

field φ is an element of AG(φ). On the other hand, not all such elements are first

variations.

The action sum S can be interpreted as a function on Md, and by restriction also

on Sd,L. As AG is a Lie algebroid, its space of sections is equipped with an exterior

derivative ‘d’; after some thought, it can be seen that dS · V can be expressed as

dS · V =
∑

[x]∩∂UV 6=∅

 ∑
l;α([x]l)∈∂UV

(
θ

(l)
L (ψ([x])) · Vψ([x])

) .

By an argument similar to [80, thm. 4.1], it can then be shown that, for any φ ∈ Sd,L
and V1, V2 first variations of φ, the identity d2S(φ)(V1, V2) ≡ 0 can be written as

0 =
∑

[x]∩∂U 6=∅

 ∑
l;α(l)([x])∈∂U

(
Ω

(l)
L (ψ([x]))(V1, V2)

) , (3.18)

which is the desired multisymplectic form formula (compare with 2.13).

4. Examples

In this section, we treat some special examples of Lie groupoid field theories. By taking

for G the pair groupoid Q×Q, we show that the discrete multisymplectic field theory

of section 2 in chapter 2 is a special case of Lie groupoid field theory. Secondly, in

subsection 4.2 we study the case of discrete fields taking values in a Lie group G.

(Recall from appendix B that Lie groups are particular examples of groupoids). These

field theories go by the name of Euler-Poincaré theories and play an important role in

the theory of reduction, which will be the topic of the next chapter.

4.1. Relation with the standard formalism. Throughout this section, G will be

the pair groupoid Q× Q. As we pointed out before, a morphism φ : V × V → Q× Q
can be seen as an assignment of an element of Q to each vertex in V . This is formalized

in the next lemma.
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Lemma 4.1. Consider a morphism φ from V × V to Q × Q and let f : V → Q

be the associated map between the sets of units. Then φ(x, y) = (f(x), f(y)) for all

(x, y) ∈ V × V .

Proof: If φ(x, y) = (q0, q1), then

q0 = αQ(φ(x, y)) = f(αV (x, y)) = f(x).

Similarly, q1 = f(y) and therefore φ(x, y) = (f(x), f(y)) for all (x, y) ∈ V × V . We

conclude that φ is completely determined by specifying f : in the future, we will therefore

identify φ and f . �

It is easy to see that Gk is just Q×k: the identification is given by(
(qk, q1), (q1, q2), . . . , (qk−1, qk)

)
7→ (q1, q2, . . . , qk).

Furthermore, the prolongation algebroid P kG can be identified with the k-fold Cartesian

product of TQ with itself. For a vector field v on Q, the ith tangent lift of v is the

following section of (TQ)×k:

v(i) : (q1, q2, . . . , qk) 7→ (0, . . . , 0, v(qi), 0, . . . , 0),

where v(qi) occupies the ith place.

Now, let L : Gk → R be a Lagrangian and denote by L̂ the induced map on Q×k. The

ith Poincaré-Cartan form then becomes

θ
(i)
L (q1, . . . , qk; v1, . . . , vk) = dL̂(q1, . . . , qi−1, ·, qi+1, . . . , qk) · vi,

where vi ∈ TqiQ for i = 1, . . . , k. This agrees with our original definition of the Poincaré-

Cartan forms in (2.11).

It is instructive to see what becomes of the concepts of finite and infinitesimal variations

in this case: an infinitesimal variation is just a vector field on Q defined along a discrete

field φ : V → Q. A finite variation is then a one-parameter family of diffeomorphisms

defined in a neighbourhood of Imφ.

For the case of the square mesh of figure 3.1, we may describe the field by assigning a

value φi,j ∈ Q to each vertex (i, j). Let L̂(q1, q2, q3, q4) be a Lagrangian density; then

{φi,j} is a solution of the field equations (3.15) associated to L if and only if, for all

(i, j) ∈ V ,

D1L(φi,j, φi+1,j, φi+1,j+1, φi,j+1) +D2L(φi−1,j, φi,j, φi,j+1, φi−1,j+1)+

D3L(φi−1,j−1, φi,j−1, φi,j, φi−1,j) +D4L(φi,j−1, φi+1,j−1, φi+1,j, φi,j) = 0,

and we obtain the same discrete Euler-Lagrange equations as in chapter 2.
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g−1
3

ϕ

g1

g2g3

g1

Figure 3.5. The map ϕ : G3 → G × G.

4.2. The Euler-Poincaré equations. Let G be a Lie group. As shown in example 1.1

of appendix B, G can be interpreted as a Lie groupoid over a singleton, and therefore

one can study discrete fields taking values in G using the framework for Lie groupoid

field theories developed in this chapter. The resulting equations are called the Euler-

Poincaré equations. As we shall see in the next chapters, the Euler-Poincaré equations

can also be derived using a symmetry reduction procedure.

Let G3 be the manifold of triangles corresponding to the Lie group G. The elements

of G3 are triples (g1, g2, g3) such that g1 · g2 · g3 = e and G3 can therefore be identified

with G × G using the following diffeomorphism (see also figure 3.5):

ϕ : G3 → G × G, with ϕ(g1, g2, g3) = (g1, g
−1
3 ). (3.19)

A few notational conventions are in order here. Let L be a Lagrangian on G3: we

denote the induced function on G × G by `; i.e. `(g, h) = L(g, g−1h, h−1). Secondly, if

φ : V × V → G is a morphism, then we use the following notation for the image of φ:

ui,j := φ((i, j), (i+ 1, j)) and vi,j := φ((i, j), (i, j + 1)). (3.20)

Let us now derive the discrete field equations for a field theory taking values in the

Lie group G. This derivation is similar to the one in the proof of theorem 3.7, but

as the resulting field equations (the so-called Euler-Poincaré equations) will play an

important role in the next two chapters, it is useful to repeat it for this special case.

Proposition 4.2. A morphism φ : V × V → G is an extremum for the action defined

by L if and only if it satisfies the following set of discrete Euler-Poincaré equations:[(
R∗ui,jd`(·, vi,j)

)
e
−
(
L∗ui−1,j

d`(·, vi−1,j)
)
e

]
+[(

R∗vi,jd`(ui,j, ·)
)
e
−
(
L∗vi,j−1

d`(ui,j−1, ·)
)
e

]
= 0.

(3.21)

Proof: Let hε : UV → G be a variation of a field φ as in definition 3.5. The varied

action is then given by

S(φε) =
∑

(i,j)∈U
`(hε(i, j)

−1ui,jhε(i+ 1, j), hε(i, j)
−1vi,jhε(i, j + 1)),
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and therefore φ is an extremum if d
dε
S(φε)

∣∣
ε=0

= 0, or explicitly,∑
(i,j)∈UV

(
D1`(ui−1,j, vi−1,j) · TLui−1,j

(V (i, j))−D1`(ui,j, vi,j) · TRui,j(V (i, j))

+D2`(ui,j−1, vi,j−1) · TLvi,j−1
(V (i, j))−D2`(ui,j, vi,j) · TRvi,j(V (i, j))

)
= 0,

where V : UV → g is the infinitesimal variation associated to hε. The equations (3.21)

follow immediately. �

In [15, 16, 77], and later also in [75], the authors derived equations for discrete me-

chanics on a Lie group G, where G is also the symmetry group. These equations were

also referred to as the discrete Euler-Poincaré equations. Roughly speaking one can

recognize in (3.21) two copies of these equations, one for the “spatial” direction and

one for the “time” direction.





Chapter 4

Symmetry for discrete Lagrangian field theories

In the preceding chapter, we established a Lie groupoid framework for discrete La-

grangian field theories. In this chapter and the next one, we will study the role of

symmetry in this framework. The purpose of the present chapter is to point out a

number of general aspects of symmetry; in the next chapter, we will then focus on a

special case, namely the Euler-Poincaré equations of section 4.2 in the last chapter.

In section 1, we start by proving a reduction theorem for Lie groupoid field theories with

symmetry. As we will show in section 1.3, this reduction theorem is “multisymplectic”

in the sense that it maps multisymplectic field theories into new multisymplectic field

theories. Finally, in section 2 we introduce the concept of a Noether symmetry, and we

prove that every such symmetry gives rise to a conservation law.

A word of explanation is in order here concerning our definition of a symmetry action.

In this chapter, we will assume that there exists a surjective Lie groupoid morphism

Φ of the original Lie groupoid G to a new Lie groupoid G′, which we call the reduced

groupoid, and that there exists a reduced Lagrangian L′ on G′k such that the pullback

of L′ by Φ yields the original Lagrangian. The reduction theorem then relates the

solutions of the original discrete Euler-Lagrange equations with those on the reduced

Lie groupoid.

There is no better way to justify this abstract approach than by considering an example:

let G be a Lie group and consider the pair groupoid G × G. If L is a left G-invariant

Lagrangian, then the reduced Lie groupoid is (G × G)/G, where G acts on G × G by

the left diagonal action. Note that (G × G)/G is isomorphic to G by the isomorphism

mapping [(g, h)] to g−1h. The Lie groupoid morphism Φ mentioned above is then just

the quotient morphism:

Φ : G × G → (G × G)/G ∼= G where Φ(g, h) = g−1h.

As we shall see later on, if L is left G-invariant, then there exists a reduced Lagrangian

on this reduced Lie groupoid, and the eventual effect of the reduction procedure is

that we have eliminated the G-symmetry. It should be noted that the equations thus

obtained are the Euler-Poincaré equations: this will be the subject of section 1.1 below.

However, a detailed study of these equations is postponed to the next chapter.

In this chapter, as well as in the next, we will work mostly with the triangular mesh

described in chapter 2.
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1. Lagrangian reduction

In this section, we turn to Lagrangian reduction in the context of discrete field the-

ories with values in Lie groupoids. Although we have insisted on using a triangular

mesh, it will be apparent that the reduction theorem 1.3, as well as the accompanying

propositions 1.4 and 1.5, can be proved for general meshes as well.

Definition 1.1. Let Φ : (G,Q)→ (G′, Q′) be a morphism of Lie groupoids. Associated

to Φ there is a bundle map Ψ : P kG→ P kG′, whose base map Ψ : Gk → G′k and total

space map Ψ : P kG→ P kG′ are defined by

Ψ([g]) = (Φ(g1), . . . ,Φ(gk)) and Ψ([g]; v1, . . . , vk) = (Ψ([g]);AΦ(v1), . . . , AΦ(vk)) ,

where AΦ is the Lie algebroid morphism induced by Φ (see appendix B).

It will often happen in this chapter that Φ is a submersion. In that case, AΦ is fibrewise

surjective and we may find a local basis of sections {eA} = {eα, ea} of AG and a local

basis of sections {ēα} of AG′ adapted to AΦ, i.e. such that

AΦ ◦ eα = ēα ◦ Φ and AΦ ◦ ea = 0. (4.1)

In other words, the sections eα are AΦ-related to ēα while the sections ea are AΦ-related

to the zero section.

Lemma 1.2. Let Φ : (G,Q)→ (G′, Q′) be a Lie groupoid morphism, which is a surjec-

tive submersion. The bundle map Ψ associated to Φ is a morphism of Lie algebroids.

Proof: The proof is again an application of theorem 2.4 in appendix B.

Consider the basis of sections defined in the paragraph before. It follows from (4.1)

that (eα)(i) is Ψ-related with (ēα)(i), and (ea)(i) with the zero section. We now have

to prove a similar property for the commutators [(eα)(i), (eβ)(j)], [(eα)(i), (eb)(j)], and

[(ea)(i), (eb)(j)].

For the first commutator, we have

Ψ([(eα)(i), (eβ)(i)]([g])) = Ψ([eα, eβ](i)([g])) = [AΦ([eα, eβ](α(gi))](i) ([g]).

But AΦ is a Lie algebroid morphism and hence AΦ ◦ [eα, eβ] = [ēα, ēβ] ◦Φ. By plugging

this into the last equation, we obtain

Ψ([(eα)(i), (eβ)(i)]([g])) = [ēα, ēβ](i)(Ψ([g])).

The other commutators are easily seen to be zero. We now show that Ψ intertwines

the anchor mappings of P kG and P kG′. Let ([g]; v1, . . . , vk) be an element of P kG and

notice that the ith factor of

(ρ(k) ◦Ψ)([g]; v1, . . . , vk) =(
Ψ([g]); [AΦ(v1)]R(g′1) + [AΦ(v2)]L(g′2), . . . , [AΦ(vk)]

R(g′k) + [AΦ(v1)]L(g′1)
)
,
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where g′i = Φ(gi), is just (ρ̂ ◦ PΦ)(gi; vi, vi+1). Here, PΦ : PG → PG′ is the Lie

algebroid morphism defined at the end of section 3.1.1 in appendix B. Because of the

morphism properties of PΦ, this is

(TΦ ◦ ρ̂)(gi; vi, vi+1) = TΦ(vRi (gi) + vLi+1(gi)).

The other components can be treated in a similar way and finally we end up with

ρ(k)′ ◦Ψ = TΨ ◦ ρ(k). �

Theorem 1.3 (Reduction). Consider a morphism Φ : (G,Q) → (G′, Q′), which is a

surjective submersion. Furthermore, let L : G3 → R be a Lagrangian on G3 and assume

that there exists a reduced Lagrangian L′ on G′3 such that L = Ψ?L′ on G′3, where Ψ

is the map associated to Φ as in definition 1.1.

A morphism φ : V × V → G is a solution of the discrete field equations for L if and

only if the induced morphism Φ ◦ φ : V × V → G′ satisfies the field equations for L′.

Proof: The proof relies on the following equality: for i ≤ k, [g] ∈ G3, and v ∈ AqG,

where q := α(gi),

v
(i)
[g] (L) = [AΦ(v)]

(i)
Ψ([g]) (L′), (4.2)

which is relatively straightforward to prove. With the same notations as above, this

implies that

EL([g1], [g2], [g3]) · v = EL′(Ψ([g1]),Ψ([g2]),Ψ([g3])) · (AΦ(v)). (4.3)

Here, EL([g1], [g2], [g3]) is the left-hand side of the Euler-Lagrange equations (3.15) in

chapter 3 (for the triangular mesh), and [g1], [g2] and [g3] are such that there exists

an element q ∈ Q such that α(i)([gi]) = q for i = 1, 2, 3 (as in the formulation of

theorem 3.7 in the previous chapter). The subscript L indicates that we consider the

Euler-Lagrange equations on Gk with respect to L. The expression EL′ is defined in a

similar way, but now one considers the Euler-Lagrange equations on G′3 associated to

L′.

Therefore, if φ is such that Φ ◦ φ is a solution of the Euler-Lagrange equations for L′,
then φ itself is a solution of the Euler-Lagrange equations for L.

Conversely, if Φ is a submersion, AΦ is surjective, and it follows from (4.3) that if φ is

a solution of the field equations for L, then Φ ◦ φ is a solution of the field equations for

L′. �

1.1. The Euler-Poincaré equations. Let G be a Lie group, and consider the pair

groupoid G × G. Recall from the last chapter (lemma 4.1) that discrete fields taking

values in G ×G can be identified with mappings from V to G, and that the manifold of

triangles G3 for the pair groupoid G × G is just the triple product G×3.
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Assume that L : G×3 → R is left G-invariant in the following sense:

L(g1, g2, g3) = L(hg1, hg2, hg3) for all (g1, g2, g3) ∈ G×3 and h ∈ G. (4.4)

Such a Lagrangian induces a Lagrangian ` on G × G as follows: `(g−1
1 g2, g

−1
1 g3) =

L(g1, g2, g3). Similarly, a discrete field φ : V → G gives rise to a reduced field ϕ :

V × V → G defined as ϕ(x0, x1) := φ(x0)−1φ(x1).

Let us now show how the discrete Euler-Poincaré equations fit into the framework of

Lagrangian reduction. Let G be a Lie group and consider the pair groupoid G × G
over G. Let Φ : G × G → G be the morphism defined as Φ(g, h) = g−1h. Let L be a

G-invariant Lagrangian on G×3 as in (4.4) and consider the induced Lagrangian ` on

G × G.

Let φ : V ×V → G×G be a discrete field, and ϕ := Φ◦φ : V ×V → G the reduced field.

According to theorem 1.3, φ is a solution to the Euler-Lagrange equations associated

to L if and only if ϕ is a solution to the field equations associated to `. We will come

back to this situation once we have proved theorem 2.1 in the next chapter.

Reduction in discrete field theories is thus very similar to the corresponding theory in

mechanics. We glossed over some subtle differences, however, mainly related to the

reconstruction problem. This will be treated in more detail in the next chapter. Briefly

speaking, not every solution of the reduced field equations is necessarily of the form

ϕ = Φ ◦ φ.

1.2. The reduced Poincaré-Cartan forms. Let L : G3 → R be a Lagrangian, Φ :

(G,Q)→ (G′, Q′) a morphism of Lie groupoids, and assume that there exists a reduced

Lagrangian L′ on G′k such that L = Ψ?L′ (see also the formulation of theorem 1.3).

The Poincaré-Cartan forms associated to L are then related to those associated to L′,
as shown in the following proposition.

Proposition 1.4. Let Ψ be the bundle map associated to the morphism Φ as in defini-

tion 1.1. Then Ψ?θ
(i)
L′ = θ

(i)
L , as well as Ψ?Ω

(i)
L′ = Ω

(i)
L .

Proof: For all ([g]; v1, v2, v3) ∈ P 3G, we have that

Ψ?θ
(i)
L′ ([g]; v1, v2, v3) = θ

(i)
L′

(
Ψ([g]);AΦ(v1), . . . , AΦ(v3)

)
= [AΦ(vi)]

(i)
Ψ([g]) (L′) = v

(i)
[g] (L)

= θ
(i)
L ([g]; v1, v2, v3),

where, in the third step, we have used (4.2). The corresponding statement for Ω
(i)
L and

Ω
(i)
L′ then follows immediately, using the fact that Ψ is a morphism of Lie algebroids

(lemma 1.2). �
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1.3. Multisymplecticity of the reduced equations. We now show that the re-

duced field equations also conserve multisymplecticity. Of course, this is obvious if

we think of the variational derivation of the multisymplectic form formula: since the

reduced equations are also variational, it follows that a similar formula can be derived

for these equations as well. Here, we follow a different route, and show that the mul-

tisymplectic form formula for the reduced equations follows from the original formula

for the unreduced equations.

Proposition 1.5. Assume that Φ is a submersion, and that the solutions of the discrete

field equations derived from L are multisymplectic. Then the same holds for the reduced

solutions of the field equations associated to L′.

Proof: The solutions of the discrete field equations are multisymplectic if (3.18) from

chapter 3 holds. Using proposition 1.4, we may rewrite the summand as

Ω
(l)
L (ψ([x]))(V1, V2) = Ω

(l)
L′ (ψ

′([x]))(Ψ(V1),Ψ(V2)),

where ψ′ = Ψ ◦ ψ is a reduced solution. Plugging this into (3.18) then shows that ψ′

is multisymplectic with respect to first variations of the form Ψ(V ). However, if Φ is a

submersion, then all reduced first variations are of this form. �

Remark 1.6. As in continuum field theory (see [23]), it is possible that not all solutions

of the reduced equations are of the form ψ′ = Ψ ◦ ψ, where ψ is a solution of the

unreduced problem. For this class of solutions, proposition 1.5 need not be true. �

2. The Noether theorem

Let L : G3 → R be a discrete Lagrangian. We now turn to the Noether symmetries

of L. In this context a Noether symmetry is a section v of AG with a number of

properties listed below in definition 2.1. Briefly speaking, these amount to asking that

L be invariant under the flow of v, up to a term which does not contribute to the

discrete Euler-Lagrange equations.

Definition 2.1. A section v of AG is a Noether symmetry of the Lagrangian L if there

exist functions f2, f3 on Q such that

v(1)(L) + v(2)(L) + v(3)(L) = (α(2)∗f2 − α(1)∗f2) + (α(3)∗f3 − α(1)∗f3).

Just as in the continuous case, each such Noether symmetry gives rise to a conservation

law. This is the content of the celebrated Noether theorem, proved in the context of

discrete Lagrangian field theories in theorem 2.2. For an overview of symmetries in

classical field theory, see [35].
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Theorem 2.2 (Discrete Noether theorem). Let v be a Noether symmetry of L and

consider the functions

η(x) = θ
(2)
L (ω)− α(2)∗f2 and η(y) = θ

(3)
L (ω)− α(3)∗f3,

where ω is the section of P 3G defined by

ω([g]) :=
(
[g]; v(α(1)([g])), v(α(2)([g])), v(α(3)([g]))

)
.

Then for any solution φ of the discrete Euler-Lagrange equations, the following conser-

vation law holds:

η(x)([g1])− η(x)([g2]) + η(y)([g1])− η(y)([g3]) = 0, (4.5)

where [g1], [g2], [g3] are triangles in the image of φ such that α(1)([g1]) = α(2)([g2]) =

α(3)([g3]).

Proof: We have that

η(x)([g1])− η(x)([g2]) + η(y)([g1])− η(y)([g3])

= θ
(2)
L ([g1])(ω)− f2(α(2)([g1]))− θ(2)

L ([g2])(ω) + f2(α(2)([g2]))

+ θ
(3)
L ([g1])(ω)− f3(α(3)([g1]))− θ(3)

L ([g3])(ω) + f3(α(3)([g3])).
(4.6)

Note that θ
(i)
L ([g])(ω) = v

(i)
[g] (L). The section v is a Noether symmetry, and therefore

θ
(2)
L ([g1])(ω) + θ

(3)
L ([g1])(ω) =

− θ(1)
L ([g1])(ω) + f2(α(2)([g1]))− f2(α(1)([g1])) + f3(α(3)([g1]))− f3(α(1)([g1])).

Substituting this in (4.6), we finally obtain

η(x)([g1])− η(x)([g2]) + η(y)([g1])− η(y)([g3]) = EL([g1], [g2], [g3]) · v(q), (4.7)

where q = α(1)([g1]) = α(2)([g2]) = α(3)([g3]). �

In the next chapter, we will show that if the Lagrangian L is G-invariant as in (4.4),

then the conservation law given by Noether’s theorem and the Euler-Poincaré equations

are intimately related.



Chapter 5

Euler-Poincaré reduction for discrete field theories

We now focus on a special class of discrete Lagrangian field theories with symmetry,

namely the Euler-Poincaré theories. These field theories were first derived in chapter 3;

in chapter 4, we showed that they also arise through a reduction process. In this

chapter, we take a closer look at the reduction theorem and the field equations for field

theories taking values in a Lie group G. In this case, alternative interpretations of the

concept ‘field’ are possible. If G is Abelian, then a field can be viewed as a G-valued

cochain on the mesh. On the other hand, if G is nonabelian, then a new interpretation

suggests itself: that of a discrete G-connection (definition 1.5 below).

The latter is particularly fruitful: in this way, we stay close to continuous framework

(see [23,24]) where the reduced fields are also (continuous) connections. Moreover, it

is known that such a reduced field can be “reconstructed” to a solution of the original,

unreduced problem if and only if the reduced field has curvature zero. In section 2.3, we

show that a similar obstruction in terms of discrete curvature arises in the reconstruction

of the discrete Euler-Poincaré equations.

In section 3, we then take an alternative route to the Euler-Poincaré equations: inspired

by a similar treatment in [23], we show that the Noether theorem of the last chapter

yields a conservation law which is equivalent to the Euler-Poincaré equations. The key

to this identification is the set of discrete Legendre transformations from chapter 3.

As a modest final application, we consider (from section 4 onwards) the Lagrangian

of harmonic mappings into a Lie group: we propose an extension of the well-known

Moser-Veselov algorithm, demonstrate its equivalence to the Euler-Poincaré equations,

and establish a special form of the field equations of discrete harmonic mappings, using

the concepts of discrete geometry established earlier.

1. Discrete differential geometry

Some elementary concepts of discrete differential geometry come up quite naturally in

the study of discrete fields taking values in a Lie group G. Recall that a discrete field

taking values in the pair groupoid G × G (an “unreduced field” as in section 1.1 in the

previous chapter) can be identified with a map from V to G (lemma 4.1 in chapter 3).

On the other hand, reduced fields are maps from the set of edges E to G. As we shall

see in this section, if G is Abelian, unreduced and reduced fields correspond to discrete
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0-forms and discrete 1-forms, respectively. This is the main reason for the introduction

of discrete geometry in the study of Euler-Poincaré reduction. Moreover, as we shall

see later on, if G is nonabelian, then reduced fields have a natural interpretation as

discrete G-connections.

1.1. Discrete differential forms. This section is dedicated to a review of some el-

ementary concepts of algebraic topology, but for the sake of clarity we only introduce

what is strictly necessary for the developments in subsequent sections. Almost every-

thing in this section can be extended to much more general settings; the reader wishing

to do so is referred to [39,56,112], or to the text book [53].

Consider again a mesh (V,E) in R2 as in definition 1.1 in chapter 3. The collection of

sets {V,E, F} together with its various incidence relations determines a CW-complex

(see [53, p. 5]) and this leads us naturally to the concepts of homology and cohomology.

It is therefore not unreasonable to expect that some of these concepts will resurface in

our study of discrete field theories later on.

A fundamental concept in topology is that of an n-chain. This is a formal linear

combination (with coefficients in R) of “n-dimensional elements”. More precisely, the

vector space of 0-chains consists of finite linear combinations of elements of V :

C0 = {α1x1 + · · ·+ αmxm : α1, . . . , αm ∈ R, x1, . . . , xm ∈ V }, (5.1)

where it should be stressed that the elements of C0 are formal linear combinations of

elements of V . Similarly, the vector space C1 is generated by elements of E, and C2 by

elements of F .

Remark 1.1. We recall that each edge in E is realized as a segment of a straight line

in R2, and hence is determined by its begin and end vertex. This will be reflected in

our notation by writing an edge e simply as an ordered pair (x0, x1). In particular, the

fact that e− e = 0 in C1 for any edge e = (x0, x1) implies that −e can be identified with

(x1, x0). �

It is customary to define discrete n-forms as n-dimensional cochains, i.e. elements of

the dual vector space C∗n. From this definition, it follows immediately that a discrete

zero-form induces a function φ : V → R. Conversely, such a function gives rises to a

zero-form through linear extension.

Similarly, in view of remark 1.1, discrete one-forms can be identified with functions

ϕ(x0, x1) on the set of edges E. In contrast to what this notation may suggest, it

should be borne in mind that these functions are not necessarily defined on the whole

of V × V , but only on the subset of edges E. We note that ϕ(x0, x1) = −ϕ(x1, x0) for

any edge (x0, x1).
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Figure 5.1. Square mesh (black) and its dual (light).

We continue in a similar vein by defining discrete two-forms as functions ψ(q1, . . . , qk)

on the set of faces. Again, these functions can be extended unambiguously by linearity

to a proper cochain. To summarize, we have the following definition:

Definition 1.2. For n = 0, 1, 2, a discrete n-form is a linear map f : Cn → R. For

n > 2, all discrete n-forms are zero. The set of all discrete n-forms is denoted by C∗n.

For the sake of self-containedness, we recall the explicit form of the coboundary operator

d : C∗n → C∗n+1. For a zero-form φ, dφ(q0, q1) = φ(q1)− φ(q0). For a one-form ϕ,

dϕ(q1, . . . , qk) = ϕ(q1, q2) + ϕ(q2, q3) + · · ·+ ϕ(qk−1, qk). (5.2)

The coboundary of a discrete two-form is defined to be zero. We will sometimes refer

to d as the “discrete differential”.

1.2. The discrete Hodge star. As could be expected from the continuous theory,

the discrete Hodge star ?, to be introduced below, maps discrete n-forms into (2− n)-

forms. However, there is an additional complication in the discrete case: the forms ?f

are not defined on the mesh itself, but rather on a dual mesh, which we now define.

The dual mesh (V ∗, E∗) is constructed as follows. For every face in F , there is a vertex

in V ∗ (for which one usually takes the barycentric dual; see [39]). There is an edge

in E∗ between two vertices q0, q1 ∈ V ∗ if and only if the faces in F corresponding to

q0 and q1 have an edge in common. This determines the sets V ∗ and E∗; the set F ∗

consists of the faces of this dual graph. It is easy to see that to each face in F ∗, there

corresponds a vertex in V . See figure 5.1 for an illustration.

Implicit in this definition is the existence of a duality operator ∗ between n-chains on

the mesh and (2 − n)-chains on the dual mesh. This duality is well defined, but only

up to orientation. We now use the orientation of R2 to settle this point. The definition

used here agrees with the algorithm for the orientation of dual cells proposed by Hirani

(see [56, remark 2.5.1]).

We define ∗ first on the elements of V , E, and F . By linearity, it will then be determined

on the whole of Cn. There is no ambiguity in determining the orientation of the dual

vertex ∗f of a face f. We define the dual ∗x of a vertex x to be the corresponding face
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in F ∗: ∗x = (r1, r2, r3, r4), with the natural orientation, i.e. the vertices are listed in

anticlockwise order. Finally, the definition of ∗ on E is slightly more intricate; here,

we follow [56]. Let (x0, x1) be an edge in E and let {r0, r1} be the corresponding dual

edge, considered as an unordered set. The line segments [x0, x1] and [r0, r1] determine

a basis of R2: if this basis is positively oriented, then ∗(x0, x1) = (r0, r1), otherwise,

∗(x0, x1) = (r1, r0). In the case of the square mesh of figure 5.1, the action of ∗ on E

corresponds to an anticlockwise rotation over π/2.

On the dual mesh, one can again introduce discrete forms. We will denote the vector

space of discrete n-forms on the dual mesh by D∗n.

In the case of the square mesh of figure 5.1, the dual mesh is again square and hence

there is a natural way to extend ∗ to an operator from (V ∗, E∗) to (V,E). It is then

easy to check that ∗ ∗ v = (−1)n(2−n)v for any v ∈ Cn.

Definition 1.3. The discrete Hodge star ? : C∗n → D∗2−n is defined by

(?α)(∗v) = α(v).

The definition given here is (up to a constant) a special case of the one proposed in [39].

Note that it follows immediately that ? ? α = (−1)n(2−n)α, where we have defined the

Hodge star on D∗n as in definition 1.3, but using the duality operator ∗ defined on

(V ∗, E∗).

With the discrete Hodge star and the coboundary operator of the previous paragraph,

we now arrive at the definition of the discrete codifferential.

Definition 1.4. Let α be a discrete n-form. Then the discrete codifferential δα is the

discrete (n− 1)-form δα defined as δα = ? d ? α.

It is useful to write out this definition for a few explicit cases. If ϕ is a discrete one-form,

then δϕ is given by

(δϕ)(x) = ϕ(x1, x) + ϕ(x2, x) + ϕ(x3, x) + ϕ(x4, x),

where x1, x2, x3, x4 are the end points of the edges that emanate from x. In other words,

δϕ assigns to each vertex x the sum of contributions from ϕ on the edges that have x

as a vertex. Finally, for a discrete two-form ψ we note that δψ is the discrete one-form

given by

δψ(x0, x1) = ψ(f0)− ψ(f1),

where f0 and f1 are the faces that have (x0, x1) as a common edge, and where f0 is the

face where the orientation of the boundary edges agrees with the ordering of (x0, x1),

whereas f1 is the face with the opposite ordering.
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1.3. Discrete connections. In the preceding sections, we introduced discrete one-

forms as assignments of a real number to each edge e ∈ E. This theory can be extended

in a straightforward way to discrete forms taking values in an arbitrary Abelian Lie

group G, the only significant difference being that we have to redefine the spaces of

n-chains Cn as consisting of formal linear combinations with coefficients in Z.

For instance, if ϕ : C1 → G is a discrete one-form, then dϕ is determined by its action on

the set F by (5.2) and can be extended by linearity to yield a map from C2 to G, where

it should be borne in mind that the elements of C2 are still formal linear combinations

of elements in F , but now with coefficients in Z.

The theory of discrete forms with values in an Abelian Lie group will be used in section 4,

but in the general case, we will be confronted with mappings from E to a non-Abelian

Lie group G. Such maps can no longer be interpreted as discrete one-forms. Luckily,

it turns out that these maps have a natural interpretation as discrete G-connections,

which we now define.

Definition 1.5. A discrete G-connection is a map ω : E → G, such that, for all edges

e ∈ E, ω(e−1) = ω(e)−1. The curvature of such a connection is the map Ω : F → G
defined as Ω(f) = ω(e1) · · ·ω(ek), where e1, . . . , ek are the boundary edges of the face f.

A discrete G-connection is said to be flat if Ω(f) = e for all f ∈ F .

Note that in the case of a non-flat connection, Ω(f) depends not only on f, but also

on the exact representation of f as a set of edges e1, . . . , e4 (any cyclic permutation of

this set represents the same face). However, this indeterminacy does not occur for flat

connections, the only case that we will consider later on.

The theory of discrete G-connections closely mimics the usual theory of connections. As

an example, we mention the following proposition, from which a number of interesting

properties may be deduced.

Proposition 1.6. Consider a discrete G-connection ω : E → G. If ω is flat, then there

exists a unique mapping φ : V × V → G such that φ|E = ω.

Proof: See [108, prop. 7]. Note that this theorem remains trivially unchanged if we

replace R2 by any other simply connected manifold. �

There are some immediate consequences of this proposition that are worth mentioning.

Let ω : E → G be any discrete G-connection. In particular, ω need not be flat. Then,

ω induces a morphism ω̂ from the groupoid of paths P to G as follows:

ω̂(e1, e2, . . . , em) = ω(e1)ω(e2) · · ·ω(em).

Here, the groupoid of paths P is the set of paths in E, i.e. sequences of composable

elements e1, e2, . . . , em, equipped with the natural source and target mappings.
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We call ω̂ the “discrete holonomy mapping”. Note that if ω is a flat connection, ω̂

maps closed paths to the unit in G. Furthermore, in the case of a flat connection, it

can be easily established that simplicially homotopic paths have the same image under

ω̂. This is the discrete counterpart of a well-known theorem of continuous connections

(see [59, p. 93]): if ω is a flat connection, then any two closed homotopic loops have

the same holonomy.

In the case of a flat connection, ω̂ descends to a map from Π, the path groupoid,

consisting of paths in E modulo simplicial homotopy (keeping the end points fixed), to

G. For a simply connected manifold, Π is isomorphic to V ×V and we have established

the existence of a map ω̂ : V × V → G. This is basically the proof of proposition 1.6.

Remark 1.7. The concept of discrete G-connections used here is common in lattice

gauge theories (see [4,113]). A related concept was put forward by Novikov in [88]. �

2. Discrete Euler-Poincaré reduction

In this section, we pick up the thread from section 1.1 in chapter 4 and continue our

investigation of Euler-Poincaré reduction.

We consider again fields φ taking values in the pair groupoid G × G (where G is a Lie

group). Recall from lemma 4.1 in chapter 3 that such fields can be identified with maps

that associate an element of G to each vertex. After reduction by the natural left action

of G on G × G, they induce mappings ϕ that associate a group element to each edge.

Explicitly, if φ : V → G is an unreduced field, then the reduced field ϕ : E → G is given

by ϕ(e) = φ(x0)−1φ(x1), where e = (x0, x1). From the last section, we know that such

maps have a natural interpretation as discrete G-connections.

In the forthcoming theorem 2.1, it is shown how the field equations for the unreduced

fields φ are equivalent to the discrete Euler-Poincaré equations for the reduced fields ϕ.

Both sets of equations arise by extremizing a certain action functional. In theorem 2.4,

we deal with the reconstruction problem. Starting from a reduced field ϕ : E → G,

it is shown that ϕ gives rise to a solution φ : V → G of the original field equations

if and only if the curvature of ϕ vanishes. This treatment was inspired by the work

of Castrillón et al. [24], who developed Lagrangian reduction for field theories in the

continuous case.

2.1. Review: discrete fields. Let G be an arbitrary Lie group. Recall from lemma

4.1 in chapter 4 that morphisms from V × V into G × G can be identified with maps

φ : V → G assigning a value φi,j = φ(xi,j) in G to each vertex xi,j. Both interpretations

will be used interchangeably throughout the remainder of this chapter.

The Lie group G has a natural diagonal action by left translations on the groupoid G×G:

g · (g1, g2) = (gg1, gg2). As the quotient groupoid (G × G)/G is naturally isomorphic
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to the Lie group G itself, reduced fields are defined to be morphisms ϕ : V × V → G
attaching a group element to each edge in E.

Let Φ : G×G → G be the morphism defined as Φ(g, g′) = g−1g′. A morphism φ : V → G
induces a reduced field ϕ : V × V → G, defined as ϕ = Φ ◦ (φ × φ), or explicitly, by

ϕ(e) = φ(x0)−1φ(x1), where e = (x0, x1). This reduced field can be described as an

assignment of a group element ui,j to each “vertical” edge ((i, j + 1), (i, j)), and of a

group element vi,j to each “horizontal” edge ((i, j), (i+ 1, j)), where

ui,j = φ−1
i,j φi+1,j and vi,j = φ−1

i,j φi,j+1. (5.3)

See also (3.20). We will use these notations throughout this chapter.

For the pair groupoid G × G, the manifold of triangles G3 is naturally isomorphic to

the triple product G×3. In this case, a discrete Lagrangian is therefore just a function

L : G×3 → R. On the other hand, the set of triangles G′3, associated to the Lie group

G (viewed as a Lie groupoid), is easily seen to be diffeomorphic to G × G (this is the

isomorphism (3.19), as depicted on figure 3.5). For the remainder of this chapter, the

identification of G3 with G×3, and of G′3 with G × G, will be understood.

Let us now turn to the prolongation algebroid P kG over Gk. In the case of the pair

groupoid, this algebroid is just the Cartesian product (TG)×3. In the case of a Lie

group G, the prolongation is (G × G) × (g ⊕ g ⊕ g). The bundle map Ψ associated

to the morphism Φ (as in definition 1.1 in chapter 4) then has a particularly simple

interpretation: Ψ : G×3 → G × G is given by Ψ(g1, g2, g3) = (g−1
1 g2, g

−1
1 g3), while the

map Ψ between the total spaces is just left translation:

Ψ(g1, g2, g3; v1, v2, v3) = (g−1
1 g2, g

−1
1 g3;TLg−1

1
(v1), TLg−1

2
(v2), TLg−1

3
(v3)). (5.4)

In the remainder of this chapter, we wish to study the situation where a discrete La-

grangian L : G×3 → R is given, which is invariant under the natural diagonal left action

of G on G×3. In that case, L gives rise to a reduced Lagrangian ` : G × G → R defined

by

`(g−1
1 g2, g

−1
1 g3) = L(g1, g2, g3).

Note that, in line with the general theory of chapter 4, ` and L are related as follows:

` ◦Ψ = L.

2.2. The reduction problem. Given a discrete Lagrangian L, the discrete action

sum S is given by

S(φ) =
∑
(i,j)

L(φi,j, φi+1,j, φi,j+1),

where φ is a map from V to G. Recall that φ is an extremum of this action if and only φ

satisfies the discrete Euler-Lagrange equations (3.15). In the case of a triangular mesh,
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these equations are given by

D1L(φi,j, φi+1,j, φi,j+1)+D2L(φi−1,j, φi,j, φi−1,j+1)+D3L(φi,j−1, φi+1,j−1, φi,j) = 0. (5.5)

Similarly, we may define the reduced action sum s as

s(ϕ) =
∑
(i,j)

`(ui,j, vi,j).

A morphism ϕ : V × V → G is an extremum of s if and only if it satisfies the discrete

Euler-Poincaré equations derived in proposition 4.2 of chapter 4. The central aspects

of discrete Euler-Poincaré reduction are summarized in the following theorem. This

theorem, as well as its proof, are very similar to the discrete reduction process in

mechanics (see [77]). Moreover, this theorem is in fact a special case of theorem 1.3 in

chapter 4.

Theorem 2.1 (Reduction). Let L be a G-invariant Lagrangian on G×3 and consider

the reduced Lagrangian ` on G × G. Consider a discrete field φ : V → G and let

ϕ : V × V → G be the associated reduced field defined as ϕ = Φ ◦ (φ × φ). Then the

following are equivalent:

(a) φ is a solution of the discrete Euler-Lagrange equations for L;

(b) φ is an extremum of the action sum S for arbitrary variations;

(c) the reduced morphism ϕ is a solution of the discrete Euler-Poincaré equations:[(
R∗ui,jd`(·, vi,j)

)
e
−
(
L∗ui−1,j

d`(·, vi−1,j)
)
e

]
+[(

R∗vi,jd`(ui,j, ·)
)
e
−
(
L∗vi,j−1

d`(ui,j−1, ·)
)
e

]
= 0;

(5.6)

(d) the reduced morphism ϕ is an extremum of the reduced action sum s for variations

of the form

δui,j = TRui,j(θi,j+1)− TLui,j(θi,j) ∈ Tui,jG (5.7)

and

δvi,j = TRvi,j(θi,j+1)− TLvi,j(θi,j) ∈ Tvi,jG, (5.8)

where θi,j = TLφ−1
i,j

(δφi,j) ∈ g.

Proof: The equivalence of (a) and (b) follows from a standard argument in discrete

Lagrangian field theories, and was proved in [108, sec. 5.1]. The equivalence of (c) and

(d) follows from theorem 1.3 in chapter 4.

In order to prove the equivalence of (b) and (d), we note that L = Ψ?`, from which we

conclude that if ϕ = Φ◦φ, then S(φ) = s(ϕ). Now, consider the components {ui,j} and

{vi,j} of the reduced field, as in (5.3). It is easy to check that an arbitrary variation

ε 7→ φi,j(ε) of φ induces corresponding variations δui,j and δvi,j of ui,j and vi,j, given by

(5.7) and (5.8).
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Finally, we show the equivalence of (d) with the Euler-Poincaré equations (5.6). The

reduced action sum s(ϕ) is given by:

d

dε
s(ϕ(ε))

∣∣∣
ε=0

=
∑
i,j

d

dε
`(ui,j(ε), vi,j(ε))

∣∣∣
ε=0

=
∑
i,j

(d`(·, vi,j) · δui,j + d`(ui,j, ·) · δvi,j) .

Substitution of (5.7) and (5.8) into this expression then yields (after relabelling some

of the summation indices) the discrete Euler-Poincaré equations (5.6). �

Remark 2.2. The variations δui,j and δvi,j are of a more general kind than those in

chapter 3 (definition 3.6). In chapter 3, a variation is thought of as a map V : UV → g,

whereas δui,j and δvi,j are in fact maps from UE, a subset of the set of edges, to TG

(along the discrete field). �

2.3. The reconstruction problem. Let there be given, as in theorem 2.1, a G-

invariant Lagrangian L, a solution φ : V → G of the discrete Euler-Lagrange equations,

and a reduced morphism ϕ = Φ ◦ φ. The reduced morphism ϕ is a map from E to G
and has a natural interpretation as a discrete connection in the sense of definition 1.5.

This connection is easily seen to be flat.

To tackle the converse problem, we use the following consequence of proposition 1.6.

Proposition 2.3. Let ω be a flat discrete G-connection with associated discrete holo-

nomy ω̂ : V × V → G. Then there exists a map φ : V → G such that ω(x0, x1) =

φ(x0)−1φ(x1). The map φ is unique up to the choice of an element of G.

Proof: Choose an arbitrary vertex x0 and a group element g0, and define φ(x0) = g0.

Let x1 be any other vertex and put φ(x1) = g0ω̂(x0, x1). This map is well defined. �

Let ϕ : E → G be a solution of the discrete Euler-Poincaré equations (5.6). We now

wish to construct a solution φ of the original problem, such that ϕ = Φ ◦φ. The map φ

is provided by proposition 2.3, on the condition that ϕ is a flat connection. As soon as

ϕ is not flat, the holonomy ω̂ is path dependent, and no such φ can exist. Therefore,

we have the following theorem.

Theorem 2.4 (reconstruction). Let ϕ : E → G be a solution of the Euler-Poincaré

equations (5.6). There exists a solution φ : V → G of the unreduced Euler-Lagrange

equations (5.5) if and only if ϕ is flat. In that case, φ is unique up to the choice of an

element of G.

Remark 2.5. In some cases, the element g0 ∈ G determining the map φ is fixed by

considering boundary conditions, or initial values. �
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3. The Noether theorem

In section 2 of chapter 4, we introduced the concept of Noether symmetries and the as-

sociated conservation laws. From (4.7) in the proof of the Noether theorem (theorem 2.2

in the previous chapter), one can see that the fact that φ satisfies the Euler-Lagrange

equations (the right hand side) implies that a certain conservation law holds. However,

in general, there are not enough Noether symmetries to conclude the converse: if φ is

an arbitrary discrete field satisfying the conservation law (4.5), then φ is not necessarily

a solution of the Euler-Lagrange equations.

The case of a left-invariant Lagrangian on a configuration space of the form G × G
is special in this regard, because in this case the converse does hold and the Euler-

Lagrange equations can be rewritten as, and are equivalent to, a certain conservation

law. This is the discrete counterpart of a similar construction in [23] for continuum

field theories.

The Poincaré-Cartan forms for an unreduced Lagrangian L : G×3 → R are given by

θL(1) : G×3 → (T ∗G)×3,
〈
θL(1)(g1, g2, g3), (v1, v2, v3)

〉
= 〈dL(·, g2, g3)g1 , v1〉 ,

and similarly for θL(2) and θL(3). Note that θL(1) + θL(2) + θL(3) = dL. The Poincaré-Cartan

forms associated to the reduced Lagrangian ` = Ψ?L : G × G → R are given by

θ`(1) : G2 → g∗ ⊕ g∗ ⊕ g∗, (5.9)〈
θ`(1)(u1, u2), (ξ1, ξ2, ξ3)

〉
= −〈d`(·, u2), TRu1(ξ1)〉 − 〈d`(u1, ·), TRu2(ξ1)〉 ,

where ξ1, ξ2, ξ3 ∈ g. The other Poincaré-Cartan forms θ`(2) and θ`(3) are then〈
θ`(2)(u, v), (ξ1, ξ2, ξ3)

〉
= 〈d`(·, v), TLu(ξ2)〉 (5.10)

and 〈
θ`(3)(u, v), (ξ1, ξ2, ξ3)

〉
= 〈d`(u, ·), TLv(ξ3)〉 . (5.11)

Note that θ`(i) and θL(i), for i = 1, 2, 3, are related by proposition 1.4 in chapter 4.

3.1. The unreduced Lagrangian. Assume that L : G×3 → R is a left G-invariant

Lagrangian, in the sense that L(hg1, hg2, hg3) = L(g1, g2, g3) for all h in G. According

to Noether’s theorem, associated to this symmetry there is a conservation law.

Let ξ be an element of g. Infinitesimal invariance of the Lagrangian under the flow

generated by ξ is expressed as

〈dL(g1, g2, g3), (ξG(g1), ξG(g2), ξG(g3))〉 = 0, (5.12)

where ξG, defined by ξG(g) = TRg(ξ), is the fundamental vector field associated to ξ.

This shows that ξ is a Noether symmetry of L according to definition 2.1 in chapter 4.
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From the Noether theorem (theorem 2.2 in chapter 4), we then conclude that the

following conservation law holds:

η(x)(ψ(f1))− η(x)(ψ(f2)) + η(y)(ψ(f1))− η(y)(ψ(f3)) = 0, (5.13)

where η(x) =
〈
θ

(2)
L , (ξG, ξG, ξG)

〉
, η(y) =

〈
θ

(3)
L , (ξG, ξG, ξG)

〉
, and f1, f2, f3 are three trian-

gles that touch a common vertex (see figure 2.1). As in the proof of theorem 2.2, the

conservation law (5.13) can be written as

〈D1L(ψ(f1)) +D2L(ψ(f2)) +D3L(ψ(f3)), ξG〉 = 0. (5.14)

As ξ ranges over the whole of g, we conclude that the conservation law (5.13) is equiv-

alent with the discrete Euler-Lagrange equations.

Remark 3.1. The above discussion can rephrased in terms of discrete momentum maps.

For i = 1, 2, 3, we define the functions J iξ on G×3 as

J iξ(g1, g2, g3) =
〈
θL(i)(g1, g2, g3), (ξG(g1), ξG(g2), ξG(g3))

〉
.

Because of (5.12), we have J1
ξ + J2

ξ + J3
ξ = 0 for all ξ ∈ g. For more information on

discrete momentum maps, see [80]. �

3.2. The reduced Lagrangian. Not only is the Noether theorem equivalent to the

unreduced discrete field equations, it turns out that it contains the Euler-Poincaré

equations as well. To show this, we start from the discrete conservation law as expressed

in (4.6). We use the same notational conventions as in the preceding section and write

Ψ(ψ(fi)) = (ui, vi), i = 1, 2, 3.

Furthermore, we note that, by definition, (ψ(f1))1 = (ψ(f2))2 = (ψ(f3))3; this unique

element of G is denoted by g. By rewriting each of the three expressions in (4.6) in

terms of the reduced Lagrangian ` only, we obtain〈
θL(1), (ξG, ξG, ξG)

〉
(ψ(f1)) = −

〈
R∗u1

d`(·, v1), η
〉
−
〈
R∗v1d`(u1, ·), η

〉
,

where η = Adg−1ξ, as well as〈
θL(2), (ξG, ξG, ξG)

〉
(ψ(f2)) =

〈
L∗u2

d`(·, v2), η
〉

and 〈
θL(3), (ξG, ξG, ξG)

〉
(ψ(f3)) =

〈
L∗v3d`(u3, ·), η

〉
.

Putting all of these expressions together gives the following new form of the conservation

law (5.13):〈 [
R∗u1

d`(·, v1)− L∗u2
d`(·, v2)

]
+
[
R∗v1d`(u1, ·)− L∗v3d`(u3, ·)

]
, η
〉

= 0.

As η ranges over the whole of g, we conclude that the conservation law (5.13) implies

the discrete Euler-Poincaré equation (5.6).
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4. Extending the Moser-Veselov approach

In their seminal paper [85], Moser and Veselov approached the problem of finding an

integrable discretization of the rigid-body equations by embedding the rotation group

SO(n) into a linear space, namely gl(n). Somewhat later, Marsden, Pekarsky, and

Shkoller [77] then developed a general procedure of Lagrangian reduction for discrete

mechanical systems, and showed that the Moser-Veselov equations are equivalent to the

discrete Lie-Poisson equations.

Here, we intend to do the same thing for a fundamental model in field theory: that of

harmonic mappings from R2 into a Lie group G. We will show that it is possible to

develop a Moser-Veselov type discretization of these field equations, provided that G
is embedded in a linear space. As could be expected, these discrete field equations are

equivalent to the Euler-Poincaré equations.

In the continuous case, the harmonic mapping Lagrangian is given by

L =
1

2

〈
φ−1φx, φ

−1φx
〉

+
1

2

〈
φ−1φy, φ

−1φy
〉
, (5.15)

where 〈·, ·〉 is the Killing form on g. For the sake of clarity, we will only treat the case of

harmonic maps that take values in SO(n), embedded in gl(n), in which case the Killing

form is just the trace. We stress that the entire theory can be generalized to the case

of an arbitrary semi-simple group G, embedded in a linear space.

Consider the quadrangular mesh from section 2.1 in chapter 2 and denote the mesh

spacing by h. As usual, we denote the values of the field φ on the vertices by φi,j. We

discretize the reduced partial derivatives φ−1φx and φ−1φy by writing them as follows:

φ−1φx ≈
1

h
φTi+1,j(φi+1,j − φi,j) and φ−1φy ≈

1

h
φTi,j+1(φi,j+1 − φi,j),

where φTi+1,j denotes the transpose of φi+1,j ∈ SO(n). Substituting this into (5.15)

yields the following discrete Lagrangian (up to an unimportant constant):

Ld = − 1

h2
tr(φTi,jφi+1,j)−

1

h2
tr(φTi,jφi,j+1).

In order to ensure that φi,j ∈ SO(n), we need to impose the constraint that φTi,jφi,j =

I. We are thus led to consider the following constrained action involving Lagrange

multipliers:

S(φ) =
∑
i,j

(
tr(φTi,jφi+1,j) + tr(φTi,jφi,j+1)− 1

2
tr
(
Λi,j(φ

T
i,jφi,j − I)

))
, (5.16)

where we have redefined the Lagrange multipliers Λi,j to get rid of the factor −1/h2

(see [77]). Note that Λi,j is a symmetric matrix of Lagrange multipliers.
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The field equations are obtained by requiring that S be stationary under arbitrary

variations; they are given by

φi+1,j + φi−1,j + φi,j+1 + φi,j−1 = φi,jΛi,j. (5.17)

We multiply these equations by φTi,j from the right, and remark that φΛφT is symmetric

in order to get rid of the Lagrange multipliers:

φi+1,jφ
T
i,j + φi,j+1φ

T
i,j + φi−1,jφ

T
i,j + φi,j−1φ

T
i,j =

φi,jφ
T
i+1,j + φi,jφ

T
i,j+1 + φi,jφ

T
i−1,j + φi,jφ

T
i,j−1.

By introducing the following quantities,

mi+1,j = φi+1,jφ
T
i,j − φi,jφTi+1,j and ni,j+1 = φi,j+1φ

T
i,j − φi,jφTi,j+1,

the field equations can be rephrased as the following set of conservation laws:

mi+1,j + ni,j+1 = mi,j + ni,j. (5.18)

Finally, let us introduce the discrete momenta Mi,j and Ni,j, defined as

Mi,j = φTi−1,jmi,jφi−1,j and Ni,j = φTi,j−1ni,jφi,j−1.

The field equations governing the behaviour of these quantities are then easily deter-

mined to be, on the one hand{
Mi,j = αi,j − αTi,j where αi,j = ui−1,j;

Ni,j = βi,j − βTi,j where βi,j = vi,j−1,
(5.19)

as well as, on the other hand, the counterpart of (5.18):

Mi+1,j +Ni,j+1 = AdαTi,jMi,j + AdβTi,jNi,j. (5.20)

The similarities with the Moser-Veselov equations for the discrete rigid body are obvious

(see [85, eq. 4]).

Remark 4.1. It is now straightforward to see the equivalence between the Moser-

Veselov and the Euler-Poincaré equations. Indeed, starting from the reduced La-

grangian `, put

Mi+1,j = R∗ui,jd`(·, vi,j) and Ni,j+1 = R∗vi,jd`(ui,j, ·),

which can be interpreted as a discrete Legendre transformation. Furthermore, put

αi,j = ui−1,j and βi,j = vi,j−1. The Euler-Poincaré equations (5.6) then reduce to the

Moser-Veselov equations derived above. �
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5. An application: harmonic mappings

In our extension of the Moser-Veselov algorithm, we already made a brief start on

the study of discrete harmonic mappings. Here, we would like to summarize some

further points of interest. However, before doing so, it is perhaps useful to start with

a brief review of harmonic mappings in the continuous case. For more information,

see [23,114].

5.1. The continuum formulation. In this section, we consider harmonic mappings

φ : R2 → G with values in an arbitrary Lie group G with bi-invariant metric 〈·, ·〉. The

continuum Lagrangian is given by (5.15); the associated field equations are τ(φ) = 0,

where τ(φ) is the tension of φ, defined as

τ(φ)a = hij
(

∂2φa

∂xi∂xj
− Γkij

∂φa

∂xk
+ Ca

bc

∂φb

∂xi
∂φc

∂xj

)
,

where hij are the components of the metric on R2, with associated Christoffel symbols

Γkij, and Ca
bc are the Christoffel symbols of the bi-invariant metric on G. In our case, hij

is of course just the flat Euclidian metric.

The Euler-Poincaré equations for harmonic mappings are partial differential equations

for a g-valued one-form α on R2. These equations were derived from a reduced varia-

tional principle in [23]; here, we present a more direct derivation (see [114]).

Let θ be the (left) Maurer-Cartan form on G, defined as θg(vg) = TLg−1(vg), which

satisfies the Maurer-Cartan equation dθ+ 1
2
[θ, θ] = 0. For any mapping φ : R2 → G, we

now consider the pull-back form α = φ∗θ. Naturally, α satisfies a Maurer-Cartan type

equation:

dα +
1

2
[α, α] = 0. (5.21)

Conversely, if a g-valued one-form α on R2 satisfies this equation, then it is possible to

find a map φ : R2 → G such that α = φ∗θ.

In addition, one can prove that φ is harmonic if and only if α is co-closed:

δα = 0. (5.22)

At this point, one usually introduces a spectral parameter allowing one to write both

equation (5.21) and (5.22) as a single equation (see [114]). We will not go this far;

rather, we will prove in the next section that there exists a natural discrete counterpart

of these two equations.

5.2. Discrete harmonic mappings. In this section, we derive the discrete field equa-

tions for harmonic maps by use of the Euler-Poincaré reduction procedure. We recall

the expression (5.16) for the discrete action. By starting from the unreduced action
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sum S, we may easily derive the field equations (5.17). We now multiply these equa-

tions from the left (rather than from the right as in the derivation of the Moser-Veselov

equations) to obtain the following set of Euler-Poincaré equations:

ui,j + vi,j + uTi−1,j + vTi,j−1 = Λi,j, (5.23)

together with the integrability condition

ui,jvi+1,ju
−1
i,j+1v

−1
i,j = e. (5.24)

Using then the symmetry of Λi,j, we eliminate the multipliers Λi,j to arrive at the

following expression:

ui,j + vi,j − ui−1,j − vi,j−1 = uTi,j + vTi,j − uTi−1,j − vTi,j−1.

If we view ϕ as a gl(n)-valued discrete one-form in the sense of section 1.1, then the

Euler-Poincaré equations can be conveniently expressed using the discrete codifferential:

δϕ = (δϕ)T ,

or [[δϕ]] = 0, where [[·]] denotes the antisymmetric part of a matrix: [[A]] = 1
2
(A−AT ).





Chapter 6

Geometric aspects of nonholonomic field theories

In this chapter, we give a geometric interpretation of classical field theories with non-

holonomic constraints. In a nutshell, a constrained problem consists of looking for

sections φ of a bundle π that extremize a certain action density, but with the added

condition that the prolongations j1φ take values in a certain submanifold C of J1π. Of

course, an arbitrary solution of the Euler-Lagrange equations will not satisfy the latter

condition automatically; rather, one has to introduce certain reaction forces, that keep

the solution constrained to C.

In mechanics, this problem setting is well known, and two different approaches exist for

the determination of the dynamics.

• One may restrict the action functional S to curves which satisfy the constraint.

This is the so-called constrained variational or vakonomic approach (which stands

for dynamics of the “Variational Axiomatic Kind”).1

• On the other hand, one might leave the domain of S completely free, and impose

restrictions on the variations instead. In particular, one can obtain the reaction

forces from the d’Alembert principle, which specifies that variations satisfying the

constraints should perform no work. The resulting approach is referred to as the

nonholonomic method.

Somewhat surprisingly at first sight, these two approaches are not equivalent, unless

the constraints are integrable (see [27]). Nowadays, it is generally accepted that the

nonholonomic approach is the correct one for the dynamics of mechanical systems.

This was already known to pioneers such as Korteweg, and was verified experimentally

by Murray & Lewis [71]. The vakonomic approach, on the other hand, is used in

subriemannian geometry and control theory.

Both the nonholonomic and the vakonomic method have their counterparts in classical

field theory. Here, we propose an extension of the methods from nonholonomic mechan-

ics. The vakonomic method was treated by Garćıa-Perez et al. [45] and, in the context

of elasticity theory, by Marsden et al. [81]. We also mention the work of Bibbona et

al. [8,9], who showed that the nonholonomic framework in this chapter is inappropriate

for certain kinds of constraints. These observations will be dealt with in chapter 9. The

1We prefer the etymology of Kozlov [62], according to whom the roots of the word “vakonomic” go
back to the Italian verb “vacare” (to be free, to have nothing to do).
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distinction between the vakonomic and the nonholonomic treatment in general will be

made clearer in chapter 8.

In this chapter, we will mainly focus on the geometry of nonholonomic constraints. In

particular, we construct in section 2 a special projection operator which maps solu-

tions of the free De Donder-Weyl equation (1.17) to solutions of the nonholonomic De

Donder-Weyl equation (introduced below). Finally, in section 4, we invoke the Cauchy

framework to show that a nonholonomic field theory induces a nonholonomic mechan-

ical system (in the traditional sense) on the space of Cauchy data, thus extending the

analogy of section 3 in chapter 1.

1. Nonholonomic Lagrangian field theory

As in chapter 1, we consider a fibre bundle π : Y → X with oriented (n+1)-dimensional

base space X, with η a volume form on X. The fibre bundle π is assumed to have rank

m and is equipped with bundle coordinates (xµ, ya) as in the first chapter.

Let a first-order Lagrangian L : J1π → R be given. Assume that C ↪→ J1π is a

submanifold of J1π of codimension k, representing some external constraints imposed

on the system. For the sake of clarity, two assumptions will be made regarding the

nature of C: first, that C projects onto the whole of Y , i.e. π1,0(C) = Y , and secondly,

that the restriction (π1,0)|C : C → Y of π1,0 to C is a fibre bundle, which, however, need

not be an affine subbundle of π1,0.

Of these two assumptions, the latter in particular is quite restrictive. With proper

caution, one can probably carry out the further analysis under some weaker condition.

However, from the point of view of practical examples, not much would be gained by

such an extension.

Since C is a submanifold of J1π, one can always find a covering of C consisting of open

subsets U of J1π, with U ∩ C 6= ∅, such that on each U ∈ U there exist k functionally

independent smooth functions ϕα that locally determine C, i.e.

C ∩ U = {γ ∈ J1π : ϕα(γ) = 0 for 1 ≤ α ≤ k}. (6.1)

Additionally, the assumption that (π1,0)|C be a fibre bundle implies that the matrix with

entries ∂ϕα

∂yaµ
has maximal rank k at each point γ ∈ C ∩ U .

1.1. The bundle of constraint forms. In nonholonomic mechanics, the derivation

of the equations of motion of a mechanical system with nonholonomic constraints is

based on the so-called d’Alembert principle and involves, among others, the specifica-

tion of a suitable bundle of admissible “reaction forces” (and a corresponding bundle of

admissible virtual velocities), defined along the constraint submanifold. This choice re-

lies on an additional rule or principle. In nonholonomic mechanics it is quite common to
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use the so-called Chetaev principle, whereby the bundle of reaction forces is constructed

directly in terms of the given constraints. In principle, however, the specification of the

appropriate bundle of reaction forces (or virtual displacements), compatible with the

given constraints, is problem dependent and need not necessarily be based on Chetaev’s

rule. For a critical discussion of this matter we refer to [74]; see also [99].

In general, we shall model these “reaction forces” as certain (n+1)-forms. The reasoning

behind this particular model is as follows. Recall that in geometric mechanics a force

is modelled as a one-form α on TQ, and the work done by α along a variation X (a

vector field on TQ) is then simply given by the pairing W := 〈α,X〉. In the Cauchy

framework, an (n + 1)-form induces a one-form on the space of Cauchy data, which is

then a force in the sense alluded to above.

Returning to the case of first-order field theory with external constraints, we follow

a similar procedure and introduce a special subbundle F of rank k of the bundle of

exterior (n + 1)-forms on J1π defined along the constraint submanifold C, where we

recall that k is the codimension of C. This bundle, called the bundle of constraint

forms, will play a role similar to that of the bundle of reaction forces in nonholonomic

mechanics.

We stress that the module of constraint forms is to some extent an independent unknown

of the model. We begin by introducing a submodule F of the module of (n+1)-forms on

J1π; the bundle F will then be determined by the fact that F is the module of sections

of F . The only conditions that we impose on F are of a technical nature: an element

of F is an (n+ 1)-form Φ defined along C, satisfying the following two assumptions:

(1) Φ is n-horizontal, i.e. Φ vanishes when contracted with any two π1-vertical vector

fields;

(2) Φ is 1-contact, i.e. (j1φ)∗Φ = 0 for any section φ of π.

Apart from these assumptions, the nature of F is left entirely free.

Regarding the local expression of the constraint forms, one can find an open cover U
of C such that on each open set U ∈ U , the module F is generated by k independent

(n+ 1)-forms Φα that locally read

Φα = (Cα)µa(dya − yaνdxν) ∧ dnxµ = (Cα)µaθ
a ∧ dnxµ, (6.2)

for some smooth functions (Cα)µa on U . Independence of the forms Φα clearly implies

that the (k × (n + 1)m)-matrix whose elements are the functions (Cα)µa , has constant

maximal rank k. The bundle of constraint forms (or constraint forces) is then defined

by

F = ∪γ∈CFγ with Fγ = {Φ(γ) |Φ ∈ F} .
At this point, the reason for selecting a constraint bundle of the type described above

is primarily based on the analogy with nonholonomic mechanics.
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Remark 1.1. In [10] the authors have constructed the bundle of constraint forms by

considering a natural extension of the Chetaev principle commonly used in mechanics

when dealing with nonlinear nonholonomic constraints. More precisely, they define the

local generators Φα of the bundle of constraint forms by putting

Φα := S∗η(dϕ
α) , (6.3)

where the ϕα are the local constraint functions defined in (6.1). One easily verifies that

these Φα are indeed of the form (6.2), with

(Cα)µa =
∂ϕα

∂yaµ

In the case we are considering, the linear independence of these Φα is guaranteed by

our initial assumption that C has the structure of a fibre bundle over Y . �

1.2. The constraint distribution. As we will now show, the constraint bundle F

gives rise to a distribution D along C, called the constraint distribution. As above,

consider an open cover U of C such that on each U ∈ U , the module F is generated by

k independent (n+ 1)-forms Φα of the form (6.2).

Proposition 1.2. For each α, there exists a unique vector field Zα ∈ X(U) such that

iZαΩL = −Φα. (6.4)

Proof: Take Zα to be a π1,0-vertical vector field on U , i.e.

Zα = (Zα)aµ
∂

∂yaµ
.

With this choice, equation (6.4) reduces to

(Zα)aµ
∂2L

∂yaµ∂y
b
ν

= (Cα)νb , (6.5)

which determines the (Zα)aµ uniquely, as L is supposed to be regular. This already

proves the existence of a solution of (6.4). Uniqueness then follows from the fact that

ΩL is multisymplectic. �

The vector fields Zα span a k-dimensional distribution DU on U . It is not difficult to

check that for any two open sets U, V ∈ U with nonempty intersection, and for each

γ ∈ U ∩ V , we have that DU(γ) = DV (γ). Indeed, assume that F is generated on U

by k independent forms Φα and on V by k independent forms Φ̄α. Then, there exists a

nonsingular matrix of functions Aαβ on U ∩ V such that

Φα = AαβΦ̄β .
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If we denote the corresponding generators of DU by Zα and those of DV by Z̄α, it

readily follows from the previous proposition that

Zα
|U∩V = AαβZ̄

β
|U∩V ,

which proves that DU = DV on U ∩ V . Consequently, the local distributions described

in the previous proposition induce a well-defined (global) distribution D along the

constraint submanifold C, whose sections are π1,0-vertical vector fields. Moreover, using

a similar argument as above, one easily verifies that this distribution does not depend

on the initial choice we made for an open cover U of C.

1.3. The nonholonomic field equations. Summarizing the above, we are looking

for a field theory built on the following data:

(1) a Lagrangian density Lη with regular Lagrangian L ∈ C∞(J1π);

(2) a constraint submanifold C ↪→ J1π which can be locally represented by equations

of the form ϕα(xµ, ya, yaµ) = 0, for α = 1, . . . , k and where the matrix (∂ϕα/∂yaµ)

has maximal rank k;

(3) a bundle F of constraint forms and an induced constraint distribution D, both

defined along C, whereby F is locally generated by k independent (n + 1)-forms

(6.2), and D is defined according to the construction described in proposition 1.2.

To complete our model for nonholonomic field theory, we now have to specify the

field equations. Proceeding along the same lines as in [10] we introduce the following

definition, using a generalization of d’Alembert’s principle.

Definition 1.3. A local section φ of π : Y → X, defined on an open set U ⊂ X with

compact closure, is a solution of the nonholonomic constrained problem described above

if j1φ(U) ⊂ C and ∫
U

(j1φ)∗Lj1VLη = 0 ,

for all π-vertical vector fields V on Y that vanish on the boundary of φ(U) and such

that

j1V Φ = 0 along Im j1φ (6.6)

for all sections Φ of the bundle F of constraint forms.

Putting V = V a(x, y)∂/∂ya and taking into account the expression (1.3) for the pro-

longed vector field j1V , it is easily seen that the condition (6.6) translates into

(Cα)µaV
a = 0 along Im j1φ,

where the (Cα)µa are the coefficients of the constraint forms introduced in (6.2). One

can then verify that if φ(x) = (xµ, φa(x)) is a solution of the constrained problem, then
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the functions φa(x) satisfy the following system of partial differential equations:

∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)
= λαµ(Cα)µa (a = 1, . . . ,m) , (6.7)

ϕα
(
xµ, φa(x),

∂φa

∂xµ
(x)

)
= 0 (α = 1, . . . , k) . (6.8)

As usual, the (a priori) unknown functions λαµ play the role of “Lagrange multipliers”.

The equations (6.7) are called the nonholonomic field equations for the constrained

problem. Note that if the bundle F of constraint forms is defined according to a

Chetaev-type prescription (see remark 1.1), then we recover the nonholonomic field

equations derived in [10].

Let I(F ) be the ideal of differential forms, defined along C, generated by the constraint

forms: i.e any element of I(F ) is of the form
∑

i λi ∧ Φi, for some Φi ∈ F and arbi-

trary differential forms λi. Again proceeding along the same lines as in [10] we can

formulate the following modification of the De Donder-Weyl problem for nonholonomic

Lagrangian field theory: find a connection on π1 : J1π → X with horizontal projector

h such that along the constraint submanifold C

ihΩL − nΩL ∈ I(F ) and Im h ⊂ TC . (6.9)

For simplicity we will refer to (6.9) as the nonholonomic De Donder-Weyl equation. In

coordinates, if we represent h by (1.11), one can easily check that the relation on the

left of (6.9) leads to the following set of equations for the connection coefficients of the

connection we are looking for:

(Γbν − ybν)
(

∂2L

∂yaµ∂y
b
ν

)
= 0 ,

∂L

∂ya
− ∂2L

∂xτ∂yaτ
− Γbτ

∂2L

∂yb∂yaτ
− Γbτν

∂2L

∂ybτ∂y
a
ν

+ (Γbν − ybν)
∂2L

∂ya∂ybν
= λατ (C

α)τa ,

for a = 1, . . . ,m and µ = 1, . . . , n + 1 and some Lagrange multipliers λατ . These

expressions should still be supplemented by the requirement that for any γ ∈ C and

any v ∈ TγJ1π, h(v) ∈ TγC. This is equivalent to requiring that h(v)(ϕα) = 0 for all

v ∈ TCJ1π, where ϕα (α = 1, . . . , k) are the (local) constraint functions. If, locally, h

is written in the form (1.11), then the previous condition translates into the following

additional equations for the connection coefficients in points of C:

∂ϕα

∂xµ
+ Γbµ

∂ϕα

∂yb
+ Γbµν

∂ϕα

∂ybν
= 0 for all µ = 1, . . . , n+ 1; α = 1, . . . , k.

One can prove that in case of a regular Lagrangian, integral sections of a connection sat-

isfying (6.9) will be 1-jet prolongations of solutions of the nonholonomic field equations

(see [10] for details).
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2. The nonholonomic projector

The purpose of the present section is to show that for a nonholonomic first-order field

theory in the sense described above, one can construct, under an appropriate addi-

tional condition, a projection operator which maps solutions of the De Donder-Weyl

equation (1.17) for the free (i.e. unconstrained) Lagrangian problem into solutions of

the nonholonomic De Donder-Weyl equation (6.9).

Given a constrained problem as described in the previous section, with regular La-

grangian L, constraint manifold C ↪→ J1π and constraint distribution D, we now impose

the following compatibility condition: for each γ ∈ C, we require that

D(γ) ∩ TγC = {0}. (6.10)

If C is locally defined by k equations ϕα(xµ, ya, yaµ) = 0 and if D is locally generated by

the vector fields Zα (see subsection 1.2), a straightforward computation shows that the

compatibility condition is satisfied if and only if

det
(
Zα(ϕβ)(γ)

)
6= 0 ,

at each point γ ∈ C. Indeed, take v ∈ TγC∩D(γ), then v = vαZ
α(γ) for some coefficients

vα. On the other hand, 0 = v(ϕβ) = vαZ
α(ϕβ)(γ). Hence, if the matrix

(
Zα(ϕβ)(γ)

)
is invertible, we may conclude that v = 0 and the compatibility condition holds. The

proof of the converse is similar.

We now have the following result.

Proposition 2.1. If the compatibility condition (6.10) holds, then at each point γ ∈ C
we have the decomposition

TγJ
1π = TγC ⊕D(γ).

Proof: The proof immediately follows from (6.10) and a simple counting of dimensions:

dimTγC = dimTγJ
1π − k and dimD(γ) = k. �

The direct sum decomposition of TCJ1π determines two complementary projection op-

erators P and Q:

P : TCJ1π → TC and Q = I − P : TCJ1π → D ,

where I is the identity on TCJ1π. We will call P the nonholonomic projector associated

to the given constrained problem.

Given a connection on π1 such that the associated horizontal projector h is a solution

of the free De Donder-Weyl equation (1.17), we will prove that the operator P ◦h|TCJ1π

satisfies the constrained De Donder-Weyl equation (6.9). Note that this operator is only

defined along C and, therefore, strictly speaking, is not the horizontal projector of a

connection on π1. However, one can show (lemma 2.3) that its restriction to TC induces
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a genuine connection on the restricted bundle (π1)|C : C → X, and so the constrained

De Donder-Weyl equation still makes sense for this kind of map.

Remark 2.2. In the following, we will introduce the concept of “connection on a sub-

bundle of π1”. A similar concept was introduced, from a slightly different point of view,

in [32, appendix C]. �

Lemma 2.3. The map P◦h|TCJ1π : TCJ1π → TC (⊂ TCJ1π), v 7→ P(h(v)) is a projector

whose restriction hP to TC induces a connection on (π1)|C : C → X.

Proof: First of all, we check that for each γ ∈ C the map Pγ ◦hγ is a projector. Indeed,

taking into account that ImQ = D is π1,0-vertical, it follows that for all v ∈ TγJ1π

(hγ ◦ Pγ)(v) = hγ(v)− (hγ ◦ Qγ)(v) = hγ(v).

and therefore

(Pγ ◦ hγ)
2 = Pγ ◦ hγ.

The restriction hP of P ◦ h|TCJ1π to TC obviously is still a projector. The key point we

now have to prove is that Im (hP) is a complementary bundle to V (π1)|C in TC, i.e.

Im (hP)⊕ V (π1)|C = TC . (6.11)

For that purpose we start by observing that along C we have TC ∩ V π1 = V (π1)|C. In

view of Proposition 2.1 one can then easily derive the following direct sum decomposi-

tion:

V (π1)|C ⊕D = V π1 (along C). (6.12)

Next, by taking into account the fact that the constraint distribution D is vertical, and

therefore that hP(TγC) = (P ◦ h)(TγJ
1π) for every γ ∈ C, it is a routine exercise to

verify that

dim(P ◦ h)(TγJ
1π) = dim h(TγJ

1π) . (6.13)

We now prove the direct sum decomposition (6.11). Take any v ∈ TC with v ∈ Im (hP)∩
V (π1)|C, then there exists a vector w ∈ TC such that v = P(h(w)) = h(w)−Q(h(w)).

Since v is π1-vertical, we conclude that h(w) = 0 and, hence, v = 0. This already

implies that Im (hP) ∩ V (π1)|C = 0. The equality (6.11) now follows from a simple

dimensional argument. Indeed, relying on Proposition 2.1 as well as on (6.12) and

(6.13), we have at each point γ ∈ C:

dim(hP(TγC)) + dimVγ(π1)|C = dim(h(TγJ
1π)) + dimVγπ1 − dimD(γ)

= dim(TγJ
1π)− dimD(γ)

= dimTγC .

This concludes the proof that hP = P ◦h|TC is the horizontal projector of a connection

on (π1)|C. �
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Although (π1)|C : C → X is not a first-order jet bundle, we will say that a connection

on (π1)|C, with associated horizontal projector hC, is semi-holonomic if for each contact

1-form θ on J1π

ihC ι
∗θ = 0, (6.14)

where ι : C ↪→ J1π is the canonical injection. Suppose τ : X → C is an integral

section of a connection on (π1)|C, in the sense that Tτ(TxX) ⊂ hC(Tτ(x)C) for all x in

the domain of τ . Then, if the given connection is semi-holonomic one can verify that,

locally, τ can be written as the first jet prolongation of a (local) section of π.

As mentioned at the end of subsection 2.1, the regularity of L together with the fact

that h satisfies the free De Donder-Weyl equation, imply that h is a semi-holonomic

connection on J1π. Herewith one can prove the following result.

Lemma 2.4. The connection on (π1)|C defined in Lemma 2.3, with horizontal projector

hP , is semi-holonomic.

Proof: We will use the fact that h is semi-holonomic and therefore satisfies (1.10). Let

v ∈ TγJ1π be a π1,0-vertical vector, then for any contact 1-form θ on J1π we have that

ivθ(γ) = 0. Now, for each v ∈ TCJ1π we have that (P ◦h−h)(v) = −Q(h(v)) ∈ D and,

hence, (P ◦ h− h)(v) is π1,0-vertical. Therefore iP◦hθ(v) = ihθ(v) = 0 for any contact

1-form θ and any v ∈ TCJ1π. From this one can readily deduce that hP satisfies (6.14)

and so we may conclude that the induced connection on (π1)|C is indeed semi-holonomic.

�

We now arrive at the main result of this section. From now on, for ease of notation, we

will use the projector P ◦h without further indication of its domain. The latter should

be clear from the context.

Theorem 2.5. Consider a constrained problem of the type described above, with regular

Lagrangian L, constraint submanifold C ↪→ J1π and bundle of constraint forms F , and

assume the compatibility condition (6.10) holds. Let h be the horizontal projector of a

connection on π1, satisfying the free De Donder-Weyl equation (1.17) and let P be the

nonholonomic projector associated to the constrained problem. Then the projector P ◦h
determines a solution of the constrained De Donder-Weyl problem (6.9) and restricts

to the horizontal projector of a semi-holonomic connection on (π1)|C : C → X.

Proof: Along C we can rewrite the free De Donder-Weyl equation as

iP◦hΩL − nΩL = −iQ◦hΩL.

Therefore, in order to prove that P ◦h satisfies the constrained De Donder-Weyl equa-

tion, we only need to verify that the right-hand side is an element of I(F ).

We can write the projector h as h = dxµ ⊗ XH
µ , with XH

µ = (∂/∂xµ) + Γaµ(∂/∂ya) +

Γaµν(∂/∂y
a
ν) (see (1.11)). Along C we can then put Q(XH

µ ) = λαµZ
α for some functions
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λαµ and with the vector fields Zα as defined in Proposition 1.2. Then, at each point

γ ∈ C and for any v1, . . . , vn+2 ∈ TγJ1π we obtain

(iQ◦hΩL)(v1, . . . , vn+2) =
n+2∑
i=1

(−1)i+1ΩL((Q ◦ h)(vi), v1, . . . , v̂i, . . . , vn+2)

=
n+2∑
i=1

(−1)i+1λαµdxµ(vi)(iZαΩL)(v1, . . . , v̂i, . . . , vn+2)

= −λαµ(dxµ ∧ Φα)(v1, . . . , vn+2) .

This shows that, along C,

iQ◦hΩL = −λαµdxµ ∧ Φα ∈ I(F ),

which completes the proof of the first part of the theorem.

The proof that P ◦ h induces a semi-holonomic connection on (π1)|C follows from the

previous lemmas 2.3 and 2.4. �

Note that even in case a connection on π1, with horizontal projector h satisfying the free

De Donder-Weyl equation, is holonomic (or integrable), the ‘projected’ semi-holonomic

connection hP = P ◦ h on (π1)|C need not admit integral sections in general.

3. An example from incompressible hydrodynamics

As an example of a field theory with an external constraint, we consider the case of an

incompressible fluid flow. This problem is traditionally treated using the constrained

variational approach (see for instance [81] for a geometric treatment). From the point

of view of nonholonomic field theory it is therefore an a-typical example since (contrary

to prior expectation) the constrained field equations resulting from the nonholonomic

approach agree with those derived using the vakonomic approach.

The reason for this unexpected agreement stems from the fact that the incompressibility

constraint can be written as a divergence — recall that for a mechanical system with

a nonholonomic constraint that arises from a total time derivative of a function on

the configuration space, the nonholonomic and the vakonomic equations of motion are

equivalent.

3.1. The constrained problem. We recall the geometric formalism for fluid dynam-

ics outlined in section 4.1 of chapter 1. Here, we shall assume that both the material

manifold M and the spatial manifold S are open subsets of R3. Consider now the

function J : J1π → R given by

J (γ) := det (yai (γ)) where y = π1,0(γ) and x = π1(γ).
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Here, yai (for i = 1, . . . , n) represents the “spatial part” of yaµ. Note that (yai ) is a

square matrix, which is invertible when restricted to regular sections. For any section

φ of π, J ◦ j1φ measures the volume change of a small fluid element under the fluid

motion represented by φ. The incompressibility constraint is expressed by imposing the

condition J (j1φ) = 1, i.e. we have the constraint function

ϕ(γ) := J (γ)− 1, (6.15)

defining a constraint submanifold C in J1π. This constraint was examined in [81]

using the vakonomic formalism (as is customary); here, we will use the nonholonomic

framework and see what equations result. For the bundle F of constraint forms, we

adopt the generalized Chetaev principle (see remark 1.1); F is the line bundle along C
generated by the 4-form

Φ := S∗η(dϕ)

= J (y−1)ia(dy
a − yaνdxν) ∧ d3xi ,

3.2. The nonholonomic field equations. Before proceeding towards the field equa-

tions, we make the additional assumption that we are dealing with a barotropic fluid

which, in particular, implies that W depends on the yai through J , i.e. W = W (J ).

The nonholonomic field equations (6.7) for a barotropic fluid with Lagrangian (1.31),

subject to the incompressibility constraint (6.15) and with constraint form Φ, then

become

ρ
dya0
dt
− d

dxj
(
ρW ′J (y−1)ja

)
= λiJ (y−1)ia (a = 1, 2, 3) , (6.16)

which should be considered together with the constraint equation J (γ)− 1 = 0. This

should be compared with equation (4.8) in [81]. In that paper, the field equations for

an incompressible barotropic fluid were derived by means of a constrained variational

approach. Since there is only one constraint equation, this approach gives rise to only

one Lagrangian multiplier P , which is commonly interpreted as a pressure.

Our approach, however, runs into trouble here. In mechanics, one usually determines

the Lagrange multipliers by taking the derivative with respect to time of the constraints,

and uses the equations of motion to eliminate the accelerations. Under some modest

assumptions, this procedure fully determines the multipliers in terms of the positions

and the velocities.

No such approach is possible in the context of field theories. In order to do so, one

would need to be able to write the field equations as

ya,µν = faµν(x
κ, ybλ),

where the “comma notation” is used to denote partial derivatives. However, it is clear

from (6.16) that the field equations for hydrodynamics cannot be written in this form.
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Hence, it follows that there may be several sets of multipliers λi, all of whom satisfy

the constraint equations and the field equations.

We therefore make an additional assumption, that there exists a function P such that

λi = ∂P
∂xi

. This assumption is rather ad hoc, but leads to a set of equations which

coincides with the field equations derived using the vakonomic approach. That these

two sets of equations should agree is at first sight rather remarkable. The reason for

this is to be found in the fact that the incompressibility constraint is determined by a

divergence. More precisely, we have the following property.

Proposition 3.1. The constraint function ϕ can be written (locally) as a total diver-

gence, i.e. there exist functions ψµ such that ϕ = dψµ

dxµ
.

Proof: One can easily verify that

d

dxµ

(
∂ϕ

∂yaµ

)
− ∂ϕ

∂ya
≡ 0,

i.e. ϕ is a “null-Lagrangian”, which is equivalent to ϕ being a divergence (see e.g. [89,

thm. 4.7]). More directly, if we consider the functions

ψ0 = 0 and ψi =
1

3
J ya(y−1)ia − xi ,

with y−1 the inverse of the matrix (yai ), which are well defined on a neighborhood of C,
a rather tedious but straightforward computation shows that ϕ = dψµ/dxµ. �

Note that the nonholonomic approach would have given the wrong kind of field theories

if proposition 3.1 did not hold. This can be observed in other, more sophisticated field

theories, and was claimed in [8, 9]. Our response to this criticism can be found in

chapter 8, where we will also make a detailed study of the comparison between the

constrained variational approach and the nonholonomic approach (in the case of affine

constraints).

3.3. The nonholonomic projector. To illustrate some further concepts defined in

the preceding sections, we now turn to the explicit form of the nonholonomic projector

P for the example of incompressible fluid (not necessarily barotropic). As there is

only one constraint, the constraint distribution D is spanned by a single vector field

Z = Za
µ∂/∂y

a
µ. The coefficients of this vector field can be derived from (6.5) where, in

the present case, Cµ
a = ∂ϕ/∂yaµ:(

1 0

0 ∂2W
∂yai ∂y

b
j

)(
Zb

0

Zb
j

)
=

(
0

J (γ) (y−1)ia

)
.



6.4 Cauchy formalism for nonholonomic field theory 99

If, for brevity, we denote the Hessian matrix of W with respect to the yai by H, then Z

is the vector field along C given by

Z = (H−1)abijJ (y−1)jb
∂

∂yai
.

Let us consider the function C := Z(ϕ), or explicitly

C = (H−1)abijJ 2(y−1)ia(y
−1)jb.

For each γ ∈ C, C(γ) 6= 0 from which it follows that the compatibility condition (6.10)

holds. The nonholonomic projector P is then found to be

P = I − 1

C
dϕ⊗ Z.

4. Cauchy formalism for nonholonomic field theory

We will now describe the transition from the multisymplectic covariant treatment of

nonholonomic field theory, discussed in the previous sections, to the formulation of the

problem on the space of Cauchy data. In chapter 1, it was shown that a covariant

field theory on J1π formally induces a mechanical system on the space of Cauchy data.

Here, we will extend that analogy by proving that a nonholonomic field theory gives

rise in a similar fashion to a nonholonomic mechanical system on the space of Cauchy

data.

4.1. Introductory definitions. For the remainder of this chapter, let us assume that

the compatibility condition (6.10) holds. In order to adapt the Cauchy formalism to

the nonholonomic case, we first define a subset C̃ of Z̃ as follows:

C̃ :=
{
κ ∈ Z̃ : Imκ ⊂ C

}
. (6.17)

This set can be equipped with a smooth manifold structure such that C̃ becomes

a (infinite-dimensional) submanifold of Z̃, and should be thought of as the infinite-

dimensional (global) analogue to the (local) constraint submanifold. There exists a

particularly convenient expression for tangent vectors to C̃:

Lemma 4.1. For every κ ∈ C̃, there exists a natural bijection between TκC̃ and the

space of sections of the pullback bundle κ∗TC.

Proof: The proof is similar to the proof of (1.22). �

For each κ ∈ C̃, let

D̃κ :=
{
Wκ ∈ TκZ̃ : ImWκ ⊂ D

}
,
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where D is the constraint distribution along C. Equivalently, D̃κ can be identified with

the set of sections of κ∗D. Putting D̃ = ∪κ∈C̃Dκ, one may verify that D̃ determines a

smooth distribution on Z̃ along C̃.

Next, for κ ∈ C̃ and for each section α of the bundle F of constraint forms along C, we

define an element α̃κ of T ∗κ Z̃ by

α̃κ(Wκ) =

∫
M

κ∗(iWκα), for all Wκ ∈ TκZ̃. (6.18)

The set of all such covectors α̃κ determines a subspace F̃κ of T ∗κ Z̃ and F̃ =
⋃
κ∈ C̃ F̃κ is

a codistribution on Z̃ along C̃.

The Chetaev principle. In the remainder of this section, we assume that the Chetaev

principle (see remark 1.1) holds, and we show that the bundle of reaction forces F̃ ,

determined by (6.18), can also be constructed starting from the submanifold C̃ and

using the vertical endomorphism S̃η̃. We prove that

F̃ = S̃∗η̃(T
◦C̃),

which is precisely the geometric form of the Chetaev principle in mechanics (see [26]).

This result is a first example of the fact that, using Cauchy analysis, nonholonomic field

theories become genuine nonholonomic mechanical systems.

Using the volume form ηM on M , we may establish a correspondence between one-forms

on J1π and one-forms on Z̃ by putting, for α ∈ Ω1(J1π),

α̃κ(Xκ) =

∫
M

κ∗(α(Xκ))ηM .

In other words, α̃ is the one-form on Z̃ associated to the (n+ 1)-form α∧ ηM according

to the prescription (1.23).

Lemma 4.2. For every κ ∈ C̃, there exists a natural bijection between the annihilator

subspace T ◦κ C̃ and the space of sections of κ∗T ◦C.

Proof: Only the inclusion of T ◦κ C̃ in the space of sections of κ∗T ◦C is not entirely

obvious. Consider α ∈ T ◦κ C̃, then for all Xκ ∈ TκC̃, we have

α(Xκ) =

∫
M

κ∗(Xκ α)ηM = 0.

By a standard argument, it follows that Xκ(u) α(u) is a contact form for any u ∈ M .

But as α(u) is a one-form, we have Xκ(u) α(u) = 0, or α(u) ∈ T ◦κ(u)C. �

Proposition 4.3. The bundle of reaction forces F̃ , defined in (6.18), satisfies

F̃ = S̃∗η̃(T
◦C̃).
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Proof: Let κ be an element of C̃ and consider α ∈ F̃ (κ). Then, by definition, there

exist k functions λα on M such that

α(Xκ) =

∫
M

κ∗(Xκ S∗η(λαdϕα)) =
〈
S̃∗η̃(λαdϕα), Xκ

〉
,

where we have used the form (1.29) of S̃η̃. We conclude that α = S̃∗η̃(λαdϕα); the

converse is similar. �

4.2. The nonholonomic equations of motion. Since we assume that the given

constrained problem satisfies the compatibility condition, we can use the nonholonomic

projector P and the complementary projector Q = I − P (cf. section 2) to define two

operators P̃ , Q̃ : TC̃Z̃ → TC̃Z̃ by composition. For each κ ∈ C̃ and Wκ ∈ TκZ̃, put

P̃κ(Wκ) = P ◦Wκ (∈ TκZ̃), Q̃κ(Wκ) = Q ◦Wκ (∈ TκZ̃) .

Using the properties of P and Q, it is not hard to check that, for each κ ∈ C̃, P̃κ and

Q̃κ define complementary projectors in TκZ̃, i.e.

(P̃κ)2 = P̃κ, (Q̃κ)2 = Q̃κ and P̃κ + Q̃κ = Iκ ,

with Iκ the identity on TκZ̃. This implies that TκZ̃ = Im P̃κ⊕ Im Q̃κ. Again relying on

the definitions of C̃, D̃, P̃ and Q̃, and on the properties of the nonholonomic projector

P , one can prove that

Im P̃κ = TκC̃ and Im Q̃κ = D̃κ.

Summarizing, we may conclude that under the given conditions we have the following

decomposition of TZ̃ along C̃:
TC̃Z̃ = T C̃ ⊕ D̃ .

Let h be the horizontal projector of a connection Υ on π1 and let Γ denote the vector

field on Z̃ defined by (1.27). The composition P̃ ◦Γ then determines a vector field on C̃,
shortly denoted by P̃(Γ), and it is not difficult to see that it is precisely the vector field

associated to the induced connection on (π1)|C with horizontal projector hP = P ◦ h

(see section 2). We now have the following interesting result.

Lemma 4.4. There exists a section α̃ of F̃ , such that

iP̃(Γ)Ω̃L = iΓΩ̃L + α̃. (6.19)

Proof: For κ ∈ C̃ and Wκ ∈ TκZ̃, one can deduce from the definition of Ω̃L that

(iP̃(Γ)Ω̃L)(κ)(Wκ) =

∫
M

κ∗(iP̃(Γ)(κ)iWκΩL).

For the integrand on the right-hand side we have that, with u ∈M ,

iP̃(Γ)(κ)(u)iWκ(u)ΩL = iΓ(κ)(u)iWκ(u)ΩL − iQ̃(Γ)(κ)(u)iWκ(u)ΩL,
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where Q̃(Γ) is the vector field associated to Q ◦ h (note that Q̃(Γ) is defined along C̃).
Since Q̃(Γ)(κ)(u) is an element of the constraint distribution D, the contraction with

ΩL yields a form ακ(u) ∈ Fκ(u). Integration over M then gives (6.19). �

We have now collected all ingredients needed to formulate the main result of this sec-

tion. Consider a constrained Lagrangian field theory, with regular Lagrangian L, with

constraints verifying the appropriate conditions and such that the base manifold X

admits a global space-time splitting.

Theorem 4.5. Let h be a solution of the unconstrained De Donder-Weyl equation

(1.17) and let Γ be the corresponding second-order vector field on Z̃. Then, the vector

field P̃(Γ) on C̃ satisfies the following relations:

iP̃(Γ)η̃ = 1, iP̃(Γ)Ω̃L ∈ F̃ and P̃(Γ) ∈ T C̃. (6.20)

Proof: The first of these relations can be proved as in theorem 3.10 in chapter 1. If h

satisfies the De Donder-Weyl equation, then the associated vector field Γ is contained

in the kernel of Ω̃L (see proposition 3.10). Expression (6.19) then proves the first part

of (6.20). The second part follows from the definition of C̃. �

In addition, we note that P̃(Γ) is still a vector field of second-order type, due to propo-

sitions 2.4 and 3.9.

To conclude, we have shown that under the appropriate assumptions, the Cauchy for-

malism for nonholonomic field theory induces a vector field of “second-order type” on

the infinite-dimensional subspace C̃ of the space of Cauchy data Z̃. This vector field is a

solution of the nonholonomic equations of motion, and can be written as the projection

of the second-order vector field on Z̃ associated to the free (unconstrained) Lagrangian

system.



Chapter 7

The nonholonomic momentum equation

In this chapter, we study nonholonomic field theories in the presence of symmetry. In

this case, symmetries no longer automatically lead to conservation laws as with the

Noether theorem. Rather, there exists an equation which describes the evolution of

these “conserved currents”. This equation was first derived in the context of mechanics

in [13,20]; here we establish a similar result for field theories. Throughout this chapter,

π : Y → X will be a fibre bundle as in chapter 1.

We begin by proving a number of additional properties of connections on π1. In sec-

tion 2, we then treat the case of field theories where no constraints are present. This

should be thought of as more of a warming-up exercise: our main purpose is to review

the covariant Noether theorem (see also proposition 2.7 in chapter 1) in a way suitable

for generalization to the constrained case. In section 3, we introduce constraints into

the framework and we study the implications for the Noether theorem. Finally, in sec-

tion 4 we break covariance by going to the Cauchy setting to make the link with the

geometric structures known from nonholonomic mechanical systems with symmetry.

1. Further properties of connections on π1

In this section, we will prove a number of straightforward properties of connections

on π1 that will be used later on. The main results here are closely related to those

in section 1.3 in chapter 1, but as they are only relevant for the developments in this

chapter, we mention them here.

Lemma 1.1. Let L be a Lagrangian on J1π with associated Cartan form ΘL. For each

semi-holonomic connection Υ on π1 with horizontal projector h, the following holds:

ihΘL = nΘL + Lη.

Proof: We give the proof in coordinates. For any connection h, we have

ihdn+1x = (n+ 1)dn+1x and ihdnxµ = ndnxµ.

Therefore,

ihΘL =
∂L

∂yaν
ihθ

a ∧ dnxν + n
∂L

∂yaν
θa ∧ dnxν + (n+ 1)Ldn+1x,



104 The nonholonomic momentum equation

where the forms θa are the contact 1-forms introduced in section 1.1.3. If h is semi-

holonomic, the first term on the right-hand side is zero and we obtain the desired

expression. �

This lemma can be viewed as the jet-bundle analogue of the well-known fact in La-

grangian mechanics that iXθL = ∆(L) for any second-order vector field X, where θL is

the Cartan one-form corresponding to L, and ∆ the Liouville vector field.

Lemma 1.2. Let V be a vertical vector field on Y and j1V its prolongation to J1π. If

Υ is a semi-holonomic connection on π1 with horizontal projector h, then the Frölicher-

Nijenhuis bracket [j1V,h] is a vector-valued one-form taking values in V π1,0.

Proof: If V = V a ∂
∂ya

, then

j1V = V a ∂

∂ya
+

(
∂V a

∂xµ
+
∂V a

∂yb
ybµ

)
∂

∂yaµ
.

For the bracket, we have that [j1V,h] = Lj1V h and a straightforward calculation then

shows that this is a semi-basic vector-valued one-form taking values in V π1. We now

focus on the coefficient of dxµ ⊗ ∂
∂ya

, which is just

j1V (Γaµ)−
(
∂V a

∂xµ
+ Γbµ

∂V a

∂yb

)
.

This coefficient is easily seen to vanish when Γaµ = yaµ, i.e. when h is semi-holonomic,

which completes the proof. �

As a corollary, we note that this lemma implies that the contraction of [j1V,h] with a

semi-basic form (in particular with ΘL) vanishes.

2. Symmetry in the absence of nonholonomic constraints

Let G be a Lie group acting on Y by bundle automorphisms Φg over the identity in

X. The assumption that G acts vertically is probably superfluous, but for the sake of

clarity we will assume it nevertheless. We recall from section 2.2 in chapter 1 that, for

a prolonged action, there always exists a covariant momentum map which is explicitly

given by

JLξ = j1ξY ΘL.

The covariant Noether theorem (proposition 2.7 in chapter 1) states that the momentum

map JL is conserved. Here, we give an alternative formulation suitable for generalisation

later on.

Proposition 2.1 (Covariant Noether theorem). Let Υ be a connection on π1 such that

the associated horizontal projector h is a solution of the unconstrained De Donder-

Weyl equation (1.17). For every ξ ∈ g, the momentum map JLξ is constant on integral
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sections of h:

dhJ
L
ξ = 0.

Proof: In this proof, we make frequent use of some elementary properties of the

Frölicher-Nijenhuis bracket. For the sake of completeness, we have summarized these

properties in appendix A.

We have

dhJ
L
ξ = dhij1ξY ΘL

= (ihd− dih)ijξY
ΘL

= ihLj1ξY ΘL − ihij1ξY dΘL − dihij1ξY ΘL. (7.1)

In the last expression, the first term vanishes because of the invariance of the Cartan

form (see (1.18)). The second term can be rewritten by using the field equations (note

that h(j1ξY ) = 0 as j1ξY is π1-vertical):

ihij1ξY dΘL = ij1ξY ihdΘL = −nij1ξY ΩL,

whereas for the last term we have, using lemma 1.2,

dihij1ξY ΘL = dij1ξY ihΘL

= dij1ξY (nΘL + Lη) .

Now, ij1ξY (Lη) = 0 and so we obtain

dhJξ = nij1ξY ΩL − ndij1ξY ΘL = −nLj1ξY ΘL = 0,

again due to the invariance of ΘL. �

Remark 2.2. In chapter 1, we mentioned a slightly different type of Noether theorem

(proposition 2.7). Following [48, p. 45], we stated that if φ is a solution of the field

equations, then d(j1φ)∗Jξ = 0. However, it is not hard to prove that, for any k-form α on

J1π, (j1φ)∗dhα = d(j1φ)∗α if and only if j1φ is an integral section of h. Proposition 2.1

therefore implies that d(j1φ)∗Jξ = 0. The proof of proposition 2.7 in chapter 1 is more

straightforward; our proof has the advantage that it will be easily extensible to the case

where nonholonomic constraints are present. �

3. The constrained momentum map

In this section, we study the case of a constrained field theory, with regular Lagrangian

L, constraint submanifold C, and bundle of reaction forces F satisfying the conditions

at the beginning of section 1.3 in chapter 6. The constrained De Donder-Weyl equations

are then given by (6.9).
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Suppose now that in addition to these nonholonomic constraints, there is also a sym-

metry group G acting on J1π by prolonged bundle automorphisms as in the previous

section, such that L, C, and F are G-invariant, i.e.

L ◦ j1Φg = L, j1Φg(C) ⊂ C and (j1Φg)
∗F ⊂ F (7.2)

for all g ∈ G. Throughout this section, the action of G on Y will be assumed to be

vertical, as in the previous sections.

In general, as in the case of nonholonomic mechanics (see [6,13,20]), it will no longer

be true that these symmetries give rise to conserved quantities; the precise link will

be made clear by the nonholonomic momentum equation or constrained Noether the-

orem (theorem 3.1 below). Our treatment extends the one in [20]; we refer to that

paper, as well as to [6,13] and the references therein, for more information about the

nonholonomic momentum equation in mechanics.

We first introduce the following “distribution”:

E(γ) = {v ∈ TγJ1π : ivΦ = 0 for all Φ ∈ F} where γ ∈ C. (7.3)

It is possible that the rank of E is not constant. For a given γ ∈ C we consider all

elements ξ of the Lie algebra g such that j1ξY (γ) ∈ E(γ). The set of all such ξ we

denote by gγ. We take gE to be the disjoint union of all these spaces gγ and we assume

that gE can be given the structure of a bundle over C.

With these elements in mind, we define the constrained momentum map as the map

Jn.h. : C →
∧n(J1π)⊗ gE , constructed as follows. With every section ξ̄ of gE , one may

associate a vector field ξ̃ on J1π, along C, by putting ξ̃(γ) = (ξ̄(γ))J1π(γ). Remark that

ξ̃ is a section of E . We then define Jn.h.
ξ̄

along C as

Jn.h.
ξ̄ = iξ̃ΘL.

The importance of the nonholonomic momentum map lies in the nonholonomic mo-

mentum equation:

Theorem 3.1 (Nonholonomic momentum equation). Let Υ be a connection on π1 such

that the associated horizontal projector h is a solution of the constrained De Donder-

Weyl equation. Assume furthermore that G is a Lie group acting vertically on J1π

and preserving the Lagrangian. Then the nonholonomic momentum map satisfies the

following equation:

dhJ
n.h.
ξ̄ = Lξ̃(Lη) along C. (7.4)

Proof: Equation (7.1) from the proof of proposition 2.1 can be used without modifi-

cation:

dhJ
n.h.
ξ̄ = ihLξ̃ΘL − ihiξ̃dΘL − dihiξ̃ΘL

= ihLξ̃ΘL + iξ̃(nΩL + ζ)− nLξ̃ΘL + niξ̃dΘL.
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In this expression, we have substituted the constrained De Donder-Weyl equation: ζ

is an element of I(F ). As ζ can be written as ζ = λαµdxµ ∧ Φα (see the proof of

theorem 2.5 in chapter 6), with Φα taking values in the bundle F , we may conclude

that iξ̃ζ = 0. Therefore, we end up with

dhJ
n.h.
ξ̃

= ihLξ̃ΘL − nLξ̃ΘL

= Lξ̃ihΘL − i[ξ̃,h]ΘL − nLξ̃ΘL

= Lξ̃(Lµ),

where we have used the remark following lemma 1.2 to conclude that i[ξ̃,h]ΘL = 0. �

We finish by noting that in the case where ξ̃ can be written as j1ξY (for example, when

ξ̄ is a constant section), we may conclude from the G-invariance of L that dhJ
n.h.
ξ̃

= 0.

4. The Cauchy formalism

Until now, all of our results have been derived in a purely covariant setting where all of

the coordinates on the base space X are treated on an equal footing. We will now break

covariance by making the transition to the Cauchy framework. We use the conventions

of section 3 in chapter 1.

In the previous chapter, we showed that the nonholonomic field equations on J1π for-

mally induce the equations of motion for a nonholonomic mechanical system on the

space of Cauchy data. In this section, we complete that picture by showing that there

is a similar transition for some of the symmetry aspects discussed above. In particular,

we will show that the covariant Noether theorem induces a version of the nonholonomic

momentum lemma (see [13,20]) on the space of Cauchy data.

We recall from section 3.1 in chapter 1 that a vector field V on J1π induces a vector

field Ṽ on Z̃ by composition: Ṽ (κ) = V ◦κ, and that an (n+k)-form α on J1π induces a

k-form α̃ on Z̃ by integration as in (1.23). In addition, we recall that the covariant field

equations induce a dynamical system Γ on Z̃ whose determining equations are formally

identical to those of a time-dependent mechanical system with an infinite-dimensional

configuration space

iΓΩ̃L = 0 and iΓη̃ = 1. (7.5)

and that, in the case of nonholonomic field theory, the induced dynamical system on Z̃

is determined by

iΓΩ̃L

∣∣
C̃ ∈ F̃ and Γ ∈ T C̃. (7.6)

In both cases, the vector field Γ is induced by the corresponding solution of the uncon-

strained or constrained De Donder-Weyl equation.

In the next sections, we will exhibit the structures on Z̃ induced by the (nonholonomic)

momentum map and we will show how the covariant momentum equation give rises
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to a momentum equation on Z̃ which is formally identical to the one encountered in

nonholonomic mechanics (see for example [13,20]).

The component Jξ of the covariant momentum map is an n-form on J1π. Because of

(1.23), it induces a map J̃ξ ∈ C∞(Z̃) on the space of Cauchy data:

J̃ξ(κ) =

∫
M

κ∗Jξ.

In the constrained case, there is a similar definition for the map J̃n.h.
ξ in the Cauchy

formalism, induced by the component Jn.h.
ξ of the constrained momentum map. Note

that Jn.h.
ξ is defined along C.

4.1. The unconstrained case. We now turn to proving the analogue of Noether’s

theorem in the Cauchy framework. There are essentially two ways in which one could

approach this problem: either by directly defining the action of G on Z̃ and using the

standard techniques known from mechanics, or by showing that the covariant Noether

theorem leads in a straightforward way to a corresponding theorem on the space of

Cauchy data. We choose to follow the second approach, as it allows us to postpone

to the very end all of the technical matters associated with the calculus on infinite-

dimensional manifolds.

Proposition 4.1. Let Υ be a connection in π1 such that the associated horizontal pro-

jector h is a solution of the De Donder-Weyl equation (1.17). Let J̃ be the momentum

map associated to the covariant momentum map J . Then Noether’s theorem holds:

Γ(J̃ξ) = 0 for all ξ ∈ g, where Γ is a solution to the equations of motion (7.5) in the

Cauchy formalism.

Proof: We will use the following characterisation of the exterior derivative dJ̃ξ in terms

of dJξ: 〈
Ṽ , dJ̃ξ

〉
(κ) =

∫
M

κ∗(iṼ dJξ),

for an arbitrary vector field Ṽ on Z̃. For a proof, we refer to [91, prop. 3.3.9] or to the

expressions used in [49, lemma 5.1].

The embedding κ : M ↪→ J1π can be written as κ = j1φ◦ τ . Without loss of generality,

we may take φ to be a solution of the field equations. This lies at the heart of the Cauchy

analysis: κ specifies the values of the fields and their derivatives on a hypersurface and

due to the (supposed) hyperbolicity of the equations of motion, the subsequent evolution

is then fixed (and given by j1φ). Formally, let t 7→ c(t) be an integral curve of Γ such

that c(0) = κ. Then j1
xφ = [c(t)](u), where x = Ψ(t, u) (and Ψ : R ×M → X is a

splitting of X as in section 3.1.3 in chapter 1).
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We then have, noting that h(T) = Tj1φ(T),〈
Γ, dJ̃ξ

〉
(κ) =

∫
M

κ∗(iΓdJξ) =

∫
M

τ ∗(j1φ)∗(ih(T)dJξ) =

∫
M

τ ∗iT((j1φ)∗dJξ).

As we pointed out in the remark following proposition 2.1, one can check that (j1φ)∗dhα

is equal to d(j1φ)∗α if and only if j1φ is an integral section of h. We conclude that〈
Γ, dJ̃ξ

〉
(κ) =

∫
M

τ ∗iT((j1φ)∗dhJξ). (7.7)

As the ξ-component Jξ of the covariant momentum map satisfies Noether’s theorem,

i.e. dhJξ = 0, we have that Γ(J̃ξ) = 0. This establishes the theorem of Noether in the

Cauchy framework. �

4.2. The constrained case. Quite surprisingly, much of the material developed in

the preceding section carries over quite naturally to the constrained case. In particular,

for the nonholonomic momentum map, equation (7.7) still holds:〈
Γ, dJ̃n.h.

ξ̄

〉
(κ) =

∫
M

τ ∗iT((j1φ)∗dhJ
n.h.
ξ̄ ), for κ ∈ C,

where we attribute a similar meaning to all terms involved: h is a solution of the

constrained De Donder-Weyl equation, j1φ is an integral section of the corresponding

connection and Γ = h(T). Note that Γ is now a solution of (7.6).

Now, if Jn.h.
ξ̄

satisfies the nonholonomic momentum equation, then〈
Γ, dJ̃n.h.

ξ̄

〉
(κ) =

∫
M

τ ∗iT((j1φ)∗Lξ̄(Lη)). (7.8)

In the following proposition, we further elaborate the right-hand side. We recall that

the vector field ξ̃ on J1π naturally induces a vector field ξ̂ on Z̃ by putting ξ̂(κ) = ξ̃ ◦κ.

Proposition 4.2. Let Υ be a connection on π1 such that along the constraint subman-

ifold C the associated horizontal projector h satisfies the constrained De Donder-Weyl

equation (6.9). Assume a Lie group G acts in the way described in (7.2) and let J̃n.h.

be the momentum map associated to the covariant momentum map Jn.h.. Then J̃n.h.

satisfies the nonholonomic momentum equation: for all ξ̄ ∈ gE ,

Γ(J̃n.h.
ξ̄ ) = ξ̂(L̃) along C.

Proof: We rewrite the right-hand side of (7.8) by performing exactly the opposite

manipulations as we did to obtain eq. (7.7). This leads to〈
Γ, dJ̃n.h.

ξ̄

〉
(κ) =

∫
M

κ∗ih(T)Lξ̃(Lη) =

∫
M

κ∗Lξ̃(ih(T)(Lη)) +

∫
M

κ∗i[h(T),ξ̃](Lη).
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The last term vanishes as Lη is semi-basic and [h(T), ξ̃] is π1-vertical (ξ̃ is π1-vertical).

By lemma 3.3.9 of [91], we see that the first term on the right-hand side equals∫
M

κ∗Lξ̃(ih(T)(Lη)) = Lξ̂(L̃),

and this proves the momentum equation in the Cauchy formalism. �



Chapter 8

Holonomic and affine nonholonomic constraints

In mechanics, a holonomic constraint is a constraint on the configuration space, while

a nonholonomic constraint is a nonintegrable constraint on the velocity space. In field

theory, there is apparently no such obvious distinction, especially for the case where a

canonical splitting of the base space exists (for instance elasticity).

Already in chapter 6 it became clear that it is indeed not so clear to decide whether,

for a given constraint, the nonholonomic approach is the right one or not. For instance,

a naive generalisation of the definitions from mechanics would lead to the belief that

the incompressibility constraint, being nonintegrable, would be a good candidate to be

a true nonholonomic constraint. However, if it wasn’t for proposition 3.1 in chapter 6,

additional terms would have appeared in the nonholonomic field equations which are

absent from the traditional equations governing incompressible fluid dynamics.

Even worse, the literature abounds with nonintegrable constraints on J1π for which no

analogue of proposition 3.1 can be found, and for these constraints, the nonholonomic

method would probably not give the right field equations (see also the discussion in

section 1.2 of the next chapter). It seems that we therefore need a more sophisticated

criterion to make the distinction between nonholonomic and other constraints. This

was also noted in [81].

Many of these problems can be understood using the interplay between the covariant

and the Cauchy formulation. The incompressibility constraint, and the constraints to

which we alluded in the previous paragraph all have one important property in com-

mon: they do not involve derivatives with respect to time. As a consequence, as we

shall see, they induce holonomic constraints on the space of Cauchy data, meaning that

if anyone were to start immediately from the Cauchy formulation, he or she, using con-

ventional wisdom from classical mechanics, would treat these constraints as holonomic

(for example, by adding to the Lagrangian a linear combination of the constraints).

Therefore any covariant formulation on the jet bundle must ultimately give the same

results when making the transition to the Cauchy framework.

This issue is treated below in section 1.3. For constraints that induce holonomic con-

straints on the space of Cauchy data, which we call non-covariant holonomic constraints,

this distinction is somewhat artificial. However, this discussion will provide us with a

number of criteria for a true nonholonomic constraint in field theory, which will be used
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in the next chapter to construct a physically relevant example of a nonholonomic field

theory.

In the remainder of this chapter, we then return to the covariant framework for non-

holonomic constraints (see chapter 6). We extend the vakonomic approach to the case

of constrained field theories, and finally, as a nice side-result, we derive a geometric cri-

terion for the equivalence of the vakonomic and the nonholonomic approaches. This is

an extension of a celebrated method of Cortés et al. [27]. Briefly speaking, we interpret

the constraint distribution as the horizontal distribution of an Ehresmann connection:

if the curvature of this connection vanishes (which is equivalent to the integrability of

the constraints), then the nonholonomic and the vakonomic approach agree.

1. Holonomic constraints

1.1. Covariant holonomic constraints. Let π : Y → X be a fibre bundle as in the

preceding chapters. A distribution D on Y is said to be weakly horizontal (with respect

to π) if there exists a distribution W contained in V π such that D⊕W = TY . If W is

the whole of V π, then D is the horizontal distribution of a connection on π. See [65]

for more information on weakly horizontal distributions.

A weakly horizontal distribution D induces an affine submanifold C ↪→ J1π defined as

follows: γ is an element of C if γ, viewed as map from TxX to TyY (where x = π1(γ)

and y = π1,0(γ)), takes values in D(y). In coordinates, if the annihilator D◦ is spanned

by the k forms Aαadya + Aαµdxµ, then C is the zero level set of the k(n + 1) functions

ψαµ ≡ Aαay
a
µ+Aαµ. Note that weak horizontality implies that the matrix Aαa has maximal

rank k.

If D is integrable, the constraints induced by D are said to be holonomic: in that case,

j1φ takes values in C if and only if φ takes values in a fixed leaf of the foliation induced

by D, and we conclude that the constraints can be integrated to constraints on Y .

From a purely covariant point of view, it is therefore a straightforward matter to decide

whether a constraint is holonomic or not. However, the matter is more complicated as

there exists a large class of constraints for which physical reasoning suggests that a holo-

nomic treatment is appropriate, whereas these constraints are certainly not integrable

in the sense indicated above. This will be illustrated in the next section.

Remark 1.1. Constrained field theories with holonomic and affine nonholonomic con-

straints were also treated in great detail by Krupková and Volný in [66]. �

1.2. Non-covariant holonomic constraints. Let us consider, as an example, the

constraint of incompressibility J = det(yai ) − 1 from section 3 in chapter 6. This

constraint does not involve the derivative of the fields with respect to time, and we
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shall see that it becomes a constraint on the configuration space once we make the

transition to the Cauchy framework.

We recall from section 4 in chapter 1 that the dynamics of a fluid in R3 can be modelled

by considering sections of the trivial bundle π : X × R3 → X, where X = R× R3. For

such a field theory, the space of Dirichlet data is diffeomorphic to R × C∞(R3,R3),

while the space of Cauchy data is diffeomorphic to R × TC∞(R3,R3) (proposition 4.5

in chapter 1): roughly speaking, an element κ of Z̃ can be represented in this case as

a triple [t, Jac(φ), ψ], where φ : R3 → R3 is a smooth map with Jacobian Jac(φ) and ψ

is a vector field on R3 along φ. The diffeomorphism between Z̃ and R× TC∞(R3,R3)

is then given by [t, Jac(φ), ψ] 7→ (t, ψ). Note that φ, and hence Jac(φ), is completely

determined by the specification of ψ, because φ = τR3 ◦ψ, where τR3 : TR3 → R3 is the

tangent bundle projection.

Let C be the hypersurface in J1π determined by the incompressibility constraint, and

consider the induced submanifold C̃ of Z̃ as in (6.17). Using the diffeomorphism

between Z̃ and R × TC∞(R3,R3) outlined above, C̃ gives rise to a submanifold of

R × TC∞(R3,R3), which we also denote by C̃. However, since the incompressibility

constraint does not involve derivatives with respect to time, C̃ is induced by the sub-

manifoldM of R×C∞(R3,R3) consisting of pairs (t, φ) such that φ∗µ = µ, where µ is

the Euclidian volume form on R3. We conclude that, ultimately, the incompressibility

constraint is determined by the manifold M. As M is a submanifold of the configu-

ration space, we may say that this constraint is holonomic. This is a consequence of

the fundamental fact that the incompressibility constraint does not involve derivatives

with respect to time.

This can be generalized to other classes of constraints as in the following definition,

where we use the general setting of elasticity as described in section 4 in chapter 1 (i.e.

X = R×M and Y = X × S). It should be emphasized that this definition only makes

sense for field theories whose base space is R×M : only in that case can a meaningful

distinction be made between spatial derivatives and derivatives with respect to time

(lemma 4.2 in chapter 1).

Definition 1.2. Let J be the vertical endomorphism on TS (see (1.1)). A constraint

submanifold C is said to be non-covariantly holonomic if for any vector v ∈ T (TS) in

the image of J , TΦ−1(v) is tangent to C, where Φ is the isomorphism between J1π and

R× [J1(M,S)×S TS] defined in lemma 4.2 in chapter 1.

Note that the image of J in T (TS) is spanned by the coordinate vector fields ∂
∂ẏa

, and

under the isomorphism Φ these vector fields are pulled back to the coordinate vector

fields ∂
∂ya0

. If we therefore suppose that C is locally defined by the vanishing of the k
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constraint functions ϕα, then this definition is an intrinsic restatement of the fact that

∂ϕα

∂ya0
= 0,

i.e. the constraint functions do not depend on derivatives with respect to time.

In conclusion, for field theories such as elasticity, where a natural splitting of the base

space is present, non-covariant holonomic constraints have to be treated as holonomic

constraints, even though they may be non-integrable. In the next chapter, we will

investigate how constraints should be treated that do involve derivatives with respect to

time. We will then establish a new Chetaev principle, which singles out time derivatives,

and discards spatial derivatives.

Remark 1.3. We have seen that noncovariant holonomic constraints have to be treated

as holonomic. This is done by adding to the Lagrangian L a term λαϕ
α, and hence

corresponds to the vakonomic treatment of constraints (see [81]). A few remarks are

in order concerning this approach.

(1) The incompressibility constraint is useful to motivate the definition of a noncovari-

ant holonomic constraint, but this example is slightly misleading as well. Recall

from proposition 3.1 in chapter 6 that the incompressibility constraint can be writ-

ten as a divergence. In this rather special case, both the nonholonomic approach

of chapter 6 and the vakonomic treatment (see [81]) yield the same results.

(2) Truesdell and Noll (see [100, sec. 30]) propose the so-called principle of determin-

ism to deal with noncovariant holonomic constraints. According to this principle,

if the material is hyperelastic, one adds to the stored energy function W a linear

combination of the constraints:

W  W + λαϕ
α, (8.1)

where the functions λα are some Lagrange multipliers. As the Lagrangian for

continuum mechanics is L = ρ
2
g(v, v)−W , this replacement in fact corresponds to

the vakonomic treatment of constraints, which is also the method used in [81]. �

2. The Skinner-Rusk approach for constrained field theories

The remainder of this chapter will be devoted to the comparison of the vakonomic and

the nonholonomic treatment for constrained field theories. We shall assume that these

constraints are affine, in the sense of being induced by a weakly horizontal distribution

as in section 1.1. In this chapter, we shall follow the work of Cortés et al. [27], who

used the so-called formulation of Skinner and Rusk to recast both models in a form

which allows a straightforward geometric comparison.
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As the Skinner-Rusk formulation for field theory is not yet universally known, we devote

this section to a brief revision of this theory. A full treatment can be found in [32,43].

In [97, 98], Skinner and Rusk reformulated the equations of motion of a mechanical

system as a presymplectic system on TQ ⊕ T ∗Q. Their idea in studying this system

was to obtain a common framework for both regular and singular dynamics. Over the

years, however, the framework of Skinner and Rusk was extended in many directions.

For our purposes, the most important contributions are [32, 43], where the authors

reformulated classical field theories as a Skinner-Rusk type system on J1π ×
∧n+1

2 Y .

2.1. The bundle framework. For notational convenience later on, we henceforth

denote the usual system of bundle coordinates on Y as (xµ, yA), for µ = 1, . . . , n + 1

and A = 1, . . . ,m.

Let
∧n+1

2 Y be the bundle of (n+ 1)-forms on Y satisfying the following property:

α ∈ (
∧n+1

2 Y )y if iviwα = 0 for all v, w ∈ (V π)y.

In coordinates, an element α of
∧n+1

2 Y can be represented as α = pµAdyA∧dnxµ+pdn+1x.

Hence, on
∧n+1

2 Y , we have a coordinate system (xµ, yA; pµA, p). The bundle
∧n+1

2 Y is of

fundamental interest in classical field theory, because it can be equipped with a natural

multisymplectic form, which is the generalisation to higher degree of the symplectic

form on a cotangent bundle. If we introduce first the (n+ 1)-form Θ as

Θ(α)(v1, . . . , vn+1) = α(Tρ(v1), . . . , Tρ(vn+1)), where v1, . . . , vn+1 ∈ Tα(
∧n+1

2 Y )

and where ρ :
∧n+1

2 Y → Y is the bundle projection, then this multisymplectic form is

defined by setting Ω := −dΘ (see [22]).

The central stage for Skinner-Rusk theories is the product bundle J1π ×
∧n+1

2 Y → Y .

On this bundle, there exists a duality pairing 〈·, ·〉 : J1π ×
∧n+1

2 Y → R, which is

reminiscent of the obvious pairing by duality on TQ ⊕ T ∗Q, the bundle originally

considered by Skinner and Rusk. This pairing is defined as follows: let αy ∈ (
∧n+1

2 Y )y
and j1

xφ ∈ J1π, such that π1,0(j1
xφ) = y. Now, consider an (n+1)-form α̃ on Y extending

αy, i.e. such that α̃(y) = αy. The pullback (φ∗α̃)(x) is then a form at x of maximal

degree, and hence a multiple a(x) of the volume form: (φ∗α̃)(x) = a(x)ηx. We now

define the duality pairing as 〈
j1
xφ, α

〉
:= a(x). (8.2)

One can easily check that this definition is independent of the extension of α. In

coordinates, we have that a(x) = pµAy
A
µ + p.

3. Skinner-Rusk formulation of vakonomic field theories

Let ι : C ↪→ J1π be a constraint submanifold of codimension k(n + 1) in J1π, locally

annihilated by k(n + 1) functionally independent constraint functions Ψα
µ, where α =
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1, . . . , k and µ = 1, . . . , n + 1. Further on, C will be induced by a weakly horizontal

distribution as in section 1, but for now this is not required. As in chapter 6, we

assume that (π1,0)|C is a fibration, such that it is possible to choose locally an adapted

coordinate system (xµ; yA; yaµ, y
α
µ) on J1π, and functions Φα

µ(xν , yA, yaν) such that C is

locally determined by the following set of k(n+ 1) equations:

yαµ − Φα
µ(xν , yA, yaν) = 0. (8.3)

Hence, (xµ; yA; yaµ) define coordinates on C. We now redefine Ψα
µ as yαµ −Φα

µ(xν , yA, yaν);

note that the zero level set of these functions is still C.

3.1. Direct derivation. The vakonomic approach to the constrained problem speci-

fied by a Lagrangian L and a constraint manifold C consists of looking for extremals of

the following augmented Lagrangian: Lvak = L+ λµαΨα
µ (see [81]), where the functions

λµα are Lagrange multipliers. In other words, we impose the constraints on the space of

sections where the action is defined, rather than on the variations, as in nonholonomic

field theory.

Let L̃ := ι∗L : C → R be the induced Lagrangian on C. By looking for extremals of the

action associated to Lvak, and rewriting the resulting extremality conditions in terms

of L̃, we obtain the following vakonomic field equations :

d

dxµ

(
∂L̃

∂yaµ
− λνα

∂Φα
ν

∂yaµ

)
=
∂L̃

∂ya
− λνα

∂Φα
ν

∂ya
(8.4)

together with
dλµα
dxµ

=
∂L̃

∂yα
− λµβ

∂Φβ
µ

∂yα
and yαµ = Φα

µ. (8.5)

3.2. Skinner-Rusk formulation. Consider now the Cartesian product bundle πW0 :

W0 := C ×
∧n+1

2 Y → Y . Define also the projection π0 : W0 → X by putting π0 = π ◦
πW0 . The given Lagrangian L induces a function Hvak, called generalized Hamiltonian,

on W0, defined as follows:

Hvak(j1
xφ, α) =

〈
j1φ, α

〉
− L̃(j1

xφ), for all (j1
xφ, α) ∈ (W0)y, (8.6)

where 〈·, ·〉 is the pairing between J1π and
∧n+1

2 Y defined in (8.2), and L̃ = ι∗L is

again the restriction of L to C. In coordinates, we have Hvak = pµay
a
µ + pµαΦα

µ + p −
L(xµ, yA, yaµ,Φ

α
µ).

The multisymplectic form Ω on
∧n+1

2 Y can be used, together with the generalized

Hamiltonian Hvak, to define a pre-multisymplectic form ΩHvak
on W0:

ΩHvak
= Ω + dHvak ∧ η.

In terms of this form, the Skinner-Rusk field equations are given by

ihΩHvak
= nΩHvak

, (8.7)
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where h is the horizontal projector of a connection on π0 (see [32,43]). We will show

that these equations are equivalent to the vakonomic field equations (8.4) and (8.5). In

brief, we will construct a sequence of submanifolds

. . . ↪→ W3 ↪→ W2 ↪→ W1 ↪→ W0 = J1π ×
∧n+1

2 Y .

where W1, W2 and W3 admit the following interpretation:

(1) W1 consists of points where a solution h of (8.7) exists;

(2) W2 contains the points of W1 where the image of the solution h is tangent to W1;

(3) W3 is defined by an additional technical assumption, to be specified later on.

Under a certain regularity condition, W1 and W2 coincide and only the manifolds W0,

W1 and W3 come into play. In the general case, one needs to apply some form of Gotay’s

constraint algorithm to formulate the dynamics on a final constraint submanifold W∞,

but this will not be considered here.

Let us now turn to the construction of W1, W2, and W3. Notice that the field equation

(8.7) does not necessarily have a solution on the whole of W0. Hence, we introduce

a subset W1 ↪→ W0, defined as the set of points of W0 for which there does exist a

horizontal projector of a connection on π0 : C ×
∧n+1

2 Y → X solving equation (8.7). If

h has the following coordinate expression:

h = dxµ ⊗
( ∂

∂xµ
+ AAµ

∂

∂yA
+Bµ

∂

∂p
+ Cν

µA

∂

∂pνA
+Da

µν

∂

∂yaν

)
, (8.8)

for unknown functions AAµ , Bµ, Cν
µA, and Da

µν , then a brief coordinate calculation shows

that W1 is determined by the following equations:

pµa = −pνα
∂Φα

ν

∂yaµ
+
∂L̃

∂yaµ

= −pνα
∂Φα

ν

∂yaµ
+
∂L

∂yaµ
+
∂L

∂yαν

∂Φα
ν

∂yaµ
. (8.9)

In addition, the connection coefficients have to satisfy the following constraints:

Aαµ = Φα
µ, Aaµ = yaµ

Cµ
µA + pµα

∂Φα
µ

∂yA
− ∂L̃

∂yA
= 0. (8.10)

Let us now assume that W1 is a manifold. This is a very restrictive assumption, but for

the sake of clarity, we adopt it nevertheless. When dealing with real-world applications,

it should be verified by calculations, and it can be expected that interesting behaviour

may occur in the points where W1 fails to be a manifold.
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Secondly, we define W2 as the submanifold of W1 where the image of the horizontal

projector h solving (8.7) is tangent to W1. This is expressed by the following equation:

h

(
∂

∂xµ

)(
pνa −

∂L̃

∂yaν
+ pκα

∂Φα
κ

∂yaν

)
= 0.

In coordinates, this implies the following for the connection coefficients of h:

Cν
µa −Dµ

(
∂L̃

∂yaν

)
+ Cκ

µα

∂Φα
κ

∂yaν
+ pκαDµ

(
∂Φα

κ

∂yaν

)
= 0, (8.11)

where Dµ is the operator defined as

Dµ =
∂

∂xµ
+ yaµ

∂

∂ya
+ Φα

µ

∂

∂yα
+Da

µν

∂

∂yaν
.

Equation (8.11) uniquely determines the coefficients Da
µν if the following matrix is

nonsingular:

Cµνab =
∂2L̃

∂yaµ∂y
b
ν

− pκα
∂2Φα

κ

∂yaµ∂y
b
ν

.

This we now assume. Hence, W2 is the whole of W1. If Cµνab is singular, additional steps

in the “constraint algorithm” are necessary. For this procedure, we refer to [32].

We end this section by giving a meaning to the coordinate p, and, at the same time, fix-

ing the remaining connection coefficient Bµ. This we do by considering the submanifold

W3 of W2 defined as

W3 := W2 ∩ {Hvak(xµ, yA, yaµ; pµA) = 0}.

Demanding that a horizontal projector h on W2 solving (8.7) is tangent to W3 leads to

the following condition for Bµ:

Bµ + Cν
µay

a
κ + Cν

µαΦα
ν +Da

µνp
ν
a + pναDµ(Φα

ν )−Dµ(L) = 0

which allows for the determination of Bµ in terms of the other connection coefficients

as well as the momenta pµA.

Let us now proceed to derive the vakonomic field equations. On W3, the Skinner-Rusk

equation (8.7) can be locally written as

dya

dxµ
=
∂Hvak

∂pµa
and

dpµa
dxµ

= −∂Hvak

∂ya
,

where Hvak is defined on W3 as Hvak := −p = pµay
a
µ + pµαΦα

µ − L̃. By substituting this

expression, we finally obtain the following field equations:

∂L̃

∂ya
− pµα

∂Φα
µ

∂ya
=

d

dxµ

(
∂L̃

∂yaµ
− pνα

∂Φα
ν

∂yaµ

)
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as well as

dpµα
dxµ

=
∂L̃

∂yα
− pµβ

∂Φβ
µ

∂ya
and yαµ = Φα

µ(xν , yA, yaν).

If we identify the momenta pµα with the Lagrange multipliers λµα, then these equations

are precisely the vakonomic field equations (8.4) and (8.5).

Note in passing that, if L̃ is regular, then W3 is a multisymplectic manifold, with

multisymplectic form ΩW3 := j∗3,0ΩHvak
, where j3,0 : W3 ↪→ W0 is the canonical injection.

This can be verified by a routine coordinate calculation.

Affine constraints. An important simplification occurs when the constraints are

affine. In particular, we assume that there exists a fibration τ : Y → Q of Y over

a new manifold Q, which is fibered in turn over X (see (8.12)). The constraint distri-

bution D will then be taken to be the horizontal distribution of a connection on τ . See

the commutative diagram below:

Y
τ //

π

��

Q

π′����
��

��
��

X

(8.12)

Consider a system of bundle coordinates (xµ, ya) on Q, where µ = 1, . . . , n + 1 and

a = 1, . . . ,m − k, and assume that there exists bundle coordinates on Y adapted to

both π and τ , i.e. coordinates (xµ; ya, yα), collectively denoted by (xµ, yA), such that

τ is locally given by τ(xµ, yA) = (xµ, ya). In nonholonomic mechanics, a similar setup

was studied in [93].

Let D be the horizontal distribution of a connection on τ . Since TY = D ⊕ V τ , and

because V τ ⊂ V π, D is a weakly horizontal distribution on Y , and hence induces a

constraint submanifold C ↪→ J1π.

Assume that D is annihilated by the k one-forms ψα = AαAdyA+Aαµdxµ as in section 1.1.

Because of the weak horizontality of D, the matrix AαA has maximal rank k, and without

loss of generality, we can therefore assume that the annihilator D◦ is locally spanned

by the following k forms:

φα := dyα −Bα
a dya −Bα

µdxµ.

This basis is generally more suited for our purposes.
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In case of affine constraints, the coefficients Da
µν are determined by the following ex-

pression:

Db
µν

∂2L̃

∂yaµ∂y
b
ν

= − ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φb

µ

∂2L̃

∂yb∂yaµ
+
∂L̃

∂ya
+Bα

a

∂L̃

∂yα

+ pµα

(
∂Bα

a

∂xµ
+ ybµ

∂Bα
a

∂yb
+ Φβ

µ

∂Bα
a

∂yβ
−Bβ

a

∂Φβ
µ

∂yα
−
∂Φα

µ

∂ya

)
, (8.13)

where Φα
µ = Bα

a y
a
µ + Bα

µ . The expression between brackets in equation (8.13) is closely

related to the curvature of D. Indeed, we recall that the curvature R of D is a section

of
∧2 Y ⊗ TY , locally defined as R = Rα

abdy
a ∧ dyb ⊗ ∂

∂yα
+Rα

aµdya ∧ dxµ ⊗ ∂
∂yα

, where

(see (1.7))

Rα
ab =

∂Bα
a

∂yb
− ∂Bα

b

∂ya
+Bβ

b

∂Bα
a

∂yβ
−Bβ

a

∂Bα
b

∂yβ

Rα
aµ =

∂Bα
a

∂xµ
−
∂Bα

µ

∂ya
+Bβ

µ

∂Bα
a

∂yβ
−Bβ

a

∂Bα
µ

∂yβ
.

(See definition 1.10 in chapter 1). Bearing this in mind, one then obtains for the

coefficients Da
µν the following expression:

Db
µν

∂2L̃

∂yaµ∂y
b
ν

=− ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φb

µ

∂2L̃

∂yb∂yaµ
+
∂L̃

∂ya
+Bα

a

∂L̃

∂yα

+ pαµ(Rα
aby

b
µ +Rα

aµ).

(8.14)

These expressions will play an important role in the comparison between vakonomic

and nonholonomic dynamics below in section 5.

4. Skinner-Rusk formulation of nonholonomic field theories

A similar, but slightly more involved method can be used to cast the nonholonomic

field equations into Skinner-Rusk form. We consider a constraint submanifold C of

codimension k(n+1), determined by similar expressions as in (8.3). The nonholonomic

field equations will be recast as a Skinner-Rusk type system on the bundle π̄W̄0
: W̄0 :=

J1π ×
∧n+1

2 Y → Y .

Consider first the bundle of constraint forms F spanned by the (n+1)-forms Φα defined

in (6.3) using the Chetaev principle. We again denote by I(F ) the ideal in Ω•(J1π)

generated by F and we use the same notation to denote the pullback of this ideal to

W̄0.

In the nonholonomic case, the generalized Hamiltonian is defined as

Hnh := 〈pr1, pr2〉 − pr∗2L.
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Note that Hnh involves the values of L on the whole of J1π and not just on C as in the

vakonomic approach. The pre-multisymplectic form ΩHnh
is then defined as in section 3

by putting ΩHnh
:= Ω + dHnh ∧ η.

The nonholonomic field equations are now

(ikΩHnh
− nΩHnh

)|C×Vn+1
2 Y ∈ I(F ) and (Im k)|C×Vn+1

2 Y ⊂ T (C ×
∧n+1

2 Y ) (8.15)

for a horizontal projector k on π̄0 := π ◦ π̄W̄0
; notice the similarity between these

equations and the nonholonomic field equations (6.9). A similar computation as in

section 3 shows us that a horizontal projector, with coordinate expression

k = dxµ ⊗
( ∂

∂xµ
+ AAµ

∂

∂yA
+Bµ

∂

∂p
+ Cν

µA

∂

∂pνA
+DA

µν

∂

∂yAν

)
, (8.16)

is a solution of the nonholonomic field equations if and only if

AAµ = yAµ , pµA =
∂L

∂yAµ
and Cµ

µA =
∂L

∂yA
+ λκαµ

∂Ψα
κ

∂yAµ
, (8.17)

where Ψα
κ = yακ − Φα

κ and the λκαµ are a set of Lagrange multipliers, to be determined

by imposing the second part of (8.15). Let us now define a submanifold W̄1 of W̄0,

specified by the relations (compare with (8.9)):

pµA =
∂L

∂yAµ
(8.18)

Again as with vakonomic dynamics, we define the submanifold W̄2 ↪→ W̄1 as the set of

points where the image of the solution k determined by (8.17) is tangent to W1. This

leads to the following conditions:

Cν
µA −

∂2L

∂xµ∂yAν
− yBµ

∂2L

∂yB∂yAν
−DB

µκ

∂2L

∂yBκ ∂y
A
ν

= 0, (8.19)

as well as

Dα
µν −

∂Φα
ν

∂xµ
− yAµ

∂Φα
ν

∂yA
−Da

µκ

∂Φα
ν

∂yaκ
= 0. (8.20)

It is easily seen that, in the case of a regular Lagrangian, these conditions do not restrict

the submanifold W̄1 any further, i.e. W̄2 = W̄1.

Finally, we define the submanifold W̄3 as (compare with the definition of W3 in the

vakonomic case):

W̄3 := W̄2 ∩ {Hnh(xµ, yA, yaµ; pµA) = 0}.
Demanding that a connection k whose image is tangent to W̄2 has an image tangent to

W̄3 imposes an additional condition on the the connection coefficient Bµ:

Bµ + Cν
µAy

A
ν +DA

µνp
ν
A −

(
∂L

∂xµ
+ AAµ

∂L

∂yA
+DA

µν

∂L

∂yAν

)
= 0.
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If we now define Hnh along W̄3 as Hnh := −p = pµAy
A
µ − L, then the nonholonomic

Skinner-Rusk equations (8.15) become

dyA

dxµ
=
∂Hnh

∂pµA
and

dpµA
dxµ

= −∂Hnh

∂yA
+ λναµ

∂Ψα
ν

∂yAµ
,

together with the constraint equations yαµ = Φα
µ(xν , yA, yaν). By using the expression

for Hnh as well as (8.18), we finally obtain that the Skinner-Rusk equations imply the

standard nonholonomic field equations:

d

dxµ

(
∂L

∂yAµ

)
− ∂L

∂yA
= λκαµ

∂Ψα
κ

∂yAµ
,

together with the constraints.

Affine constraints. We now focus on affine constraints, and employ a similar conven-

tion for the bundle D of constraint forms as in the vakonomic case. In this case, the

third equation of (8.17) splits into two sets of equations,

Cµ
µa =

∂L

∂ya
− λµαµBα

a and Cµ
αµ =

∂L

∂yα
+ λµαµ.

One can combine these two expressions to eliminate the Lagrange multipliers. In the

resulting expression, one can then substitute expression (8.19) to eliminate Cµ
µA, and

expression (8.20) to express Dα
µν in terms of Da

µν . After a long computation, we finally

obtain

Db
µν

∂2L̃

∂yaµ∂y
b
ν

= − ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φβ

µ

∂2L̃

∂yβ∂yaµ
+
∂L̃

∂ya

+
∂L

∂yαµ

(
ybµ
∂Bα

a

∂yb
+ Φβ

µ

∂Bα
a

∂yβ
+
∂Bα

a

∂xµ
−
∂Φα

µ

∂ya

)
.

(8.21)

5. Comparison between both approaches

Definition 5.1. Let X be a manifold and consider two fibrations πC , πD : C,D → X.

Consider a smooth map f : C → D and let h be a connection on πC, and k a connection

on πD. These connections are then said to be f -related if

Tf ◦ hp = kf(p) ◦ Tf for all p ∈ C.

Consider now the vakonomic and nonholonomic manifolds W3 and W̄3. There exists an

obvious surjective submersion f : W3 → W̄3, given in coordinates by f(xµ, yA, yaµ; pµα) =

(xµ, yA, yaµ) (see [27, 65]). The map f can be given an intrinsic meaning by using the

Legendre transformation.
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In order to study the relation between W3 and W̄3, and hence the relation between

vakonomic and nonholonomic classical field theory, we make use of the following obser-

vation of Krupková [65] and Cortés et al. [27]: if h and k were f -related connections,

then any integral section of h would project down (under f) to an integral section of k.

The original theorem concerned integral curves of vector fields, but using definition 5.1

also covers integral sections of connections.

Let h be a vakonomic connection (with connection coefficients as determined in sec-

tion 3) and k be a nonholonomic connection (with coefficients as in section 4). By

considering the set of points S1 of W3 where h and k are f -related, we obtain a first

characterization of the equivalence between h and k. Let us assume that S1 is not

empty, otherwise both connections are entirely unrelated. A comparison of both sets

of connection coefficients then shows the following:

Proposition 5.2. S1 is locally determined by the vanishing of the following set of func-

tions on W3:

ϕa =

(
∂L̃

∂yαµ
− pµα

)
(Rα

aby
b
µ +Rα

aµ).

Proof: The local expression for S1 follows by considering the following contracted

difference:

ϕa =
∂2L̃

∂yaµ∂y
b
ν

(
Ďb
µν − D̂b

µν

)
,

where Ď is the set of vakonomic connection coefficients (8.14), and D̂ is the set of

nonholonomic coefficients (8.21). �

The submanifold S1 can be seen as the first stage in a certain constraint algorithm (see

[27,65]), the result of which is a final submanifold S∞ (which might be empty) where

the vakonomic and nonholonomic dynamics are equivalent. A general discussion of this

constraint algorithm would not differ from the treatment of Krupkova and Cortés et al.

and is hence omitted. We only wish to point out that, if the constraints are holonomic,

and hence Rα
ab = Rα

aµ = 0, then S1 is the whole of W3 and vakonomic and nonholonomic

dynamics are everywhere equivalent, by which it is confirmed that the vakonomic and

nonholonomic description give the same results for holonomic constraints.





Chapter 9

Nonholonomic kinematic constraints in elasticity

1. Introduction

Having established in the previous chapters a theoretical framework for nonholonomic

field theories, we now exhibit a simple, physical example of a field theory with nonholo-

nomic constraints. The basic model is that of a Cosserat rod, a special kind of elastic

medium. This rod is allowed to move in a horizontal plane which is supposed to be

sufficiently rough, so that the rod rolls without sliding. In this way, we obtain what

one could reasonably call a continuum version of the vertical rolling disc.

1.1. Cosserat rods. The theory of Cosserat rods constitutes an approximation to

the full three-dimensional theory of elastic deformations of rod-like bodies. Originally

conceived at the beginning of the twentieth century by the Cosserat brothers, it laid

dormant for more than fifty years until it was revived by the pioneers of rational me-

chanics (see [100, §98] for an overview of its history). It is now an important part of

modern nonlinear elasticity and its developments are treated in great detail for instance

in [2], which we follow here.

A Cosserat rod can be visualised as specified by a curve s 7→ r(s) in R3, called the

centerline, to which is attached a frame {d1(s),d2(s),d3(s)}, called the director frame

(models with different numbers of directors are also possible). The rough idea is that

the centerline characterizes the configuration of the rod when its thickness is neglected,

whereas the directors model the configuration of the laminae transverse to the cen-

terline. In the Cosserat theory, the laminae are assumed to deform homogeneously,

and therefore the specification of a director frame in R3 fixed to a lamina completely

specifies the configuration of that lamina. For the remainder of this chapter, we shall

assume that the laminae can only effect Euclidian motions. In this case, the director

frame can be chosen to be orthogonal.

One is encouraged to think of the director frame at a point as a body frame of a

rigid body (the lamina). Indeed, the idea of considering a Cosserat rod as a “curve’s

worth of rigid bodies”, going back to the work of Kirchhoff, is a very fruitful one. We

will extend it in this chapter by constructing a continuum’s worth of nonholonomic

mechanical systems. The basic idea is to consider the motion of a Cosserat rod in a

horizontal plane, and to impose on this model the constraint of rolling without sliding.
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Figure 9.1. Geometry of the constrained rod

This example can be modelled as an elastic medium (in the sense of section 9 in chap-

ter 1). The constraints can be incorporated into this model using the theory of chapter 6,

but in order to construct the bundle of reaction forces, some additional care is required.

We again have to take into account the distinction between the time derivative and

derivatives with respect to the spatial variables, as in chapter 8. The nonholonomic

Cosserat rod can also be modelled as the continuum limit of a nonholonomic mechani-

cal system, and as we shall now demonstrate, this is a nice heuristic way of getting an

insight into the form of the reaction forces.

Indeed, consider N rigid discs rolling vertically without sliding on a horizontal plane,

and assume that these discs are interconnected by flexible beams of length `/N , as in

figure 9.1. Now let the number of discs go to infinity, while keeping the total length `

fixed: the result is the nonholonomic Cosserat rod.

This mechanical model is interesting for a number of reasons. First of all, the non-

holonomic field equations are derived by varying the action with respect to admissible

variations, and this obviously requires the specification of a bundle of admissible varia-

tions, or equivalently, a bundle of reaction forces. In mechanics, this is commonly done

by taking recourse to the principle of d’Alembert, which states that the virtual work of

the reaction forces is zero. In field theory, this principle can be interpreted in a number

of non-equivalent ways, and it is the mechanical model which will eventually determine

our choice.

Secondly, our model is a counterexample to the often-held belief that constraints in

classical field theories are necessarily vakonomic. In sections 1.2 and 1.3 these two

aspects are treated more in detail.

1.2. Relation with other approaches. In a number of papers [8,9], Bibbona, Fat-

ibene, and Francaviglia contrasted the vakonomic and the nonholonomic treatments

for classical field theories, and concluded that for relativistic hydrodynamics only the

former gives correct results. Another typical example of a vakonomic constraint is the

incompressibility constraint in nonrelativistic fluid dynamics, treated by Marsden et

al. [81]. Many more can be found in Antman’s book [2] and in the papers by Garćıa

et al. [45].
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In contrast, our field theory arises as the continuum limit of the vertically rolling disc,

a textbook example of a nonholonomic mechanical system. These nonholonomic con-

straints survive in the continuum limit and hence provide a very strong motivation for

the study of nonholonomic techniques in field theories.

It should also be noted that similar theories as ours were explored before by Vignolo

and Bruno (see [109]). They considered constraints depending only on the time deriva-

tives of the fields, and their resulting analysis is therefore more direct. However, the

underlying philosophy is the same: the constraints are “(. . . ) purely kinetic restrictions

imposed separately on each point of the continuum”.

1.3. Modelling the constraint forces. One important characteristic of the non-

holonomic field theories of chapter 6 is that they are fully covariant, i.e. no distinction

whatsoever is made between the spatial variables and time. In contrast, the nonholo-

nomic Cosserat rod arises as the continuum limit of a mechanical system and for this

kind of systems, there is indeed a canonical direction of time.

This noncovariance plays a fundamental role in determining the reaction forces. In

this introductory section, we will derive a tentative form of these forces by use of the

mechanical analogue, and in subsequent sections, we will then show that these reaction

forces can be provided by a “noncovariant” version of the familiar Chetaev principle.

Whereas the bundle of reaction forces in chapter 6 was generated by the forms S∗η(dϕ
α),

we will see that the noncovariant Chetaev reaction forces are linear combinations of the

forms Φα = S∗n.c.(dϕ
α), where the noncovariant vertical endomorphism Sn.c. is designed

to take into account the difference between space and time.

1.3.1. Nonholonomic mechanical systems. The mechanical background is not essential

for the description of the continuum theory, but rather serves as a justification for some

of our definitions. In particular, it provides a number of valuable clues regarding the

type of constraint forces needed to maintain such a nonholonomic constraint. Let S be

the configuration space of the vertically rolling disc, so that the configuration space for

the entire model, consisting of N discs, is the product space SN . Denote by ϕα(i) the

constraints of rolling without sliding imposed on the ith wheel; ϕα(i) can be seen as a

function on TSN .

With these conventions, a motion of the system is a curve t 7→ c(t) in SN , and a

variation of such a motion c is then a vector field (X1, X2, . . . , XN) on SN along c, i.e.

a collection of maps Xi : R→ TS such that Xi(t) ∈ Tci(t)S for all i = 1, . . . , N , where

ci := pri ◦ c.

Let us now consider the one-forms Φα
(i) := J∗(dϕα(i)), where J is the vertical endo-

morphism on TSN (see (1.1)). In geometric mechanics, linear combinations of these

one-forms represent the possible reaction forces at the ith wheel; the bundle F , defined
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as

F :=
〈
Φα

(1)

〉
⊕
〈
Φα

(2)

〉
⊕ · · · ⊕

〈
Φα

(N)

〉
then represents the totality of all reaction forces along the rod. In coordinates, the

one-forms Φα
(i) are given by

Φα
(i) =

∂ϕα(i)
∂ẏ(i)

dy(i)

(
=
∑
a

∂ϕα(i)
∂ẏa(i)

dya(i)

)
for all i = 1, . . . , N. (9.1)

Here, (y(i), ẏ(i)) is a coordinate system on the ith factor of TSN . Note that there is no

summation over the index i in (9.1), and that the summation over individual coordinates

is implicit, as shown in the term between brackets.

Knowing the precise form of the bundle of reaction forces F is important because the

nonholonomic equations of motion are derived by varying the action with respect to

admissible variations. Moreover, the principle of d’Alembert tells us that a variation

is admissible if it belongs to the annihilator of F , i.e. a variation (X1, . . . , XN) of c is

admissible if〈
X̄i(t), α(c(t))

〉
= 0, for all (i, t) ∈ {1, . . . , N} × R and α ∈ F, (9.2)

where X̄i is a lift of Xi to T (TS) such that TτS ◦ X̄i = Xi. In coordinates, this is

equivalent to

vi
∂ϕ(i)

∂ẏ(i)

= 0 for all i = 1, . . . , N, (9.3)

where we have written Xi = vi
∂

∂y(i)
. Note that there is again no summation over i.

In the next paragraph, we will let the number N go to infinity, while keeping the

length ` constant. The result is a field theory, and a reaction force will be a continuous

assignment of a one-form on TS to each point of the centerline of the rod. This definition

will be the starting point for our treatment in the main body of the text; from the

developments in chapter 6, it follows that once we know the bundle of reaction forces,

we can derive the nonholonomic field equations.

1.3.2. The continuum model. In the continuum limit, a field is a map φ from R×[0, `] to

S, and can be modelled as a section of a trivial bundle π, whose base space is R× [0, `],

and with standard fibre S. The constraints ϕ(i) from the previous paragraph are then

replaced by a constraint function ϕα on J1π.

As pointed out in section 2.1.2 in chapter 1, an infinitesimal variation of a field φ is a

map X : R × [0, `] → TS with the property that X(s, t) ∈ Tφ(s,t)S; in other words, a

vector field along φ. Taking our cue from (9.3), we say that a variation X is admissible

if the following holds (in coordinates):

Xa(s, t)
∂ϕα

∂ya0
= 0,
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where we have written X(s, t) = Xa(s, t) ∂
∂ya

.

This condition can be rewritten in intrinsic form by using the natural isomorphism

between the first jet bundle and the product bundle R× [J1(M,S)×S TS] (lemma 4.2

in chapter 1). Now, let J be the vertical endomorphism on TS. This map has a trivial

extension to the whole of R× [J1(M,S)×S TS], and by using the natural isomorphism

with J1π, we obtain a map J∗ from T ∗(J1π) to itself. The bundle F of constraint forces

is then generated by the forms Φα := J∗(dϕα). The similarity with the mechanical case

is obvious.

2. Nonholonomic kinematic constraints

Before tackling the Cosserat example, we will sketch in this section an abstract frame-

work for a certain class of classical field theories with nonholonomic constraints, the

Cosserat rod being one of these. These field theories are described using a bundle of

the type described in section 4 of chapter 1: the base space X is the product R ×M
and the total space Y is X × S. The nonholonomic constraints are “noncovariant”, in

the sense that they involve derivatives of the fields with respect to time (compare with

definition 1.2 in the previous chapter).

The main objective of this section is to propose a suitable definition for the bundle of

reaction forces for such constrained field theories. In the next section, this theory will

then be applied to the Cosserat rod, and we shall see that the resulting field equations

are precisely those which are obtained by taking the continuum limit of the mechanical

model described in section 1.3. This serves as a justification for the axiomatic approach

that we are about to follow.

2.1. A new vertical endomorphism. Recall the coordinate expression (1.2) of the

vertical endomorphism Sη on J1π. This tensor field was constructed by Saunders [94]

using a previously defined map assigning to each one-form ω on X the vector-valued

one-form Sω on J1π given in coordinates by (see [94, p. 156])

Sω = ωµ(dya − yaνdxν)⊗
∂

∂yaµ
, where ω = ωµdxµ. (9.4)

Roughly speaking, the vertical endomorphism Sη then arises, once a volume form on

X is chosen, by putting

Sη = Sdxµ∧̇(π∗1dnxµ), (9.5)

where the wedge operator ‘∧̇’ is defined as follows: if Φ is a vector-valued k-form on J1π,

and α is a regular (i.e. R-valued) l-form, then Φ∧̇α is the vector-valued (k + l)-form

given by 〈Φ∧̇α, β〉 = 〈Φ, β〉 ∧ α for all β ∈ Ω1(J1π).

It is obvious that (9.5) is fully covariant, in the sense that no distinction is made between

the variables on the base space. However, in elastodynamics, this is not always desirable,



130 Nonholonomic kinematic constraints in elasticity

as we have a distinguished direction of time. Therefore, we propose the following “non-

covariant” vertical endomorphism:

Definition 2.1. The non-covariant vertical endomorphism is the vector-valued (n +

1)-form Sn.c. defined as Sn.c. := Sdt∧̇(π∗1ηM), where Sdt is the vector-valued one-form

associated to dt as in (9.4).

Note that dt is a well defined one-form on X = R ×M ; therefore, Sn.c. is an intrinsic

object. In coordinates, Sn.c. is given by

Sn.c. = (dya − yaµdxµ) ∧ dnx0 ⊗
∂

∂ya0
.

Remark 2.2. In section 1.1.1 in chapter 1, we stated that the construction of the

vertical endomorphism Sη is related to the affine structure of the bundle π1,0 : J1π →
Y . The noncovariant vertical endomorphism can be understood in a similar vein, by

restricting the affine action of π∗T ∗X ⊗ V π on J1π to π∗T ∗R⊗ V π. �

2.2. The bundle of constraint forces. Let ι : C ↪→ J1π be a constraint manifold.

As in section 1.1 of chapter 6, in addition to C, we also need to specify a suitable

bundle of reaction forces. Let us first describe the general appearance of such a bundle.

Later on, we will then see how one can use the noncovariant vertical endomorphism of

section 2.1 to give a noncovariant version of the Chetaev principle of chapter 6.

Recall from section 1.1 of chapter 6 that reaction forces are modelled as n-horizontal

1-contact (n+ 1)-forms (defined along C). Forms which satisfy these requirements can

be locally expressed as in (6.2). In this section, we attribute a special status to the time

coordinate, and therefore we require not only that a reaction force Φ is an n-horizontal

one-contact (n+ 1)-form defined along C, but also that the following holds:

iviwΦ = 0

for all tangent vectors v, w on J1π such that T (pr1 ◦π1)(v) = T (pr1 ◦π1)(w) = 0, where

pr1 : R ×M → R is the projection onto the first factor (this condition expresses that

v and w do not contain a component proportional to ∂
∂t

). In coordinates, this implies

that Φ has the following form:

Φ = Aa(dy
a − yaµdxµ) ∧ dnx0, (9.6)

where the Aa are local functions on C. Compare this with (6.2) and note that only the

“time” component is left (i.e. the component proportional to θa ∧ ( ∂
∂t

η)).
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2.2.1. The Chetaev principle. Using the noncovariant vertical endomorphism Sn.c., we

may construct a special bundle of reaction forces of the form (9.6). This is the nonco-

variant Chetaev principle.

Assume that C is locally defined as the zero set of k functionally independent functions

ϕα. Then the associated bundle of reaction forces is the bundle F locally spanned by

the following (n+ 1)-forms: Φα := S∗n.c.(dϕ
α), or in coordinates:

Φα =
∂ϕα

∂ya0
(dya − yaµdxµ) ∧ dnx0. (9.7)

The (n+ 1)-form Φα is therefore of the form outlined in (9.6), with Aαa = ∂ϕα

∂ya0
.

Note the similarity with the construction in (6.3); the proof that F is a well defined

bundle of (n+ 1)-forms defined along C proceeds along the same lines as in chapter 6.

2.2.2. Reaction forces as one-forms. Using the isomorphism of J1π with R×[J1(M,S)×S
TS] (lemma 4.2 in chapter 1), we may construct a bundle of one-forms F̄ along C which

is closely related to the bundle F defined in the previous section.

The bundle F̄ is a k-dimensional codistribution on J1π, along C, whose elements are

maps α : C → T ∗S such that α(γ) ∈ T ∗s S, where s = (pr2 ◦ π1,0)(γ). If we denote

by πTS : J1π → TS the composition πTS := pr3 ◦ Ψ, where Ψ is the isomorphism

defined in lemma 4.2 in chapter 1, then the elements of F̄ can equivalently be viewed as

one-forms along the projection πTS. By pull-back, these one-forms then induce proper

one-forms defined along C. In local coordinates, an element α of F can be represented

as α = Aa(x
µ, ya, yaµ)dya, where the Aa are local functions on C.

Now, we establish the Chetaev principle in this context by specifying a bundle of reac-

tion forces starting from the constraint manifold C. The vertical endomorphism J on

TS (see (1.1)) extends trivially to a (1, 1)-tensor Ĵ on R × [J1(M,S) ×S TS], defined

as

Ĵ(α, β, γ) := (0, 0, J(γ)), (9.8)

where α ∈ T ∗t R, β ∈ T ∗uJ
1(M,S), and γ ∈ T ∗v (TS) (and where (t, u, v) ∈ R ×

[J1(M,S)×S TS]). We denote the adjoint of this map as Ĵ∗.

Assume again that C is locally given as the zero set of k constraint functions ϕα.

By means of the isomorphism Ψ of lemma 4.2 in chapter 1, these functions induce k

functions on R× [J1(M,S)×S TS], which we also denote by ϕα.

Let us now define a codistribution F̄ on J1π, defined along C, locally generated by the

one-forms ψα given by

ψα := Ψ∗[Ĵ∗(dϕα)].

In local coordinates, these forms are given by

ψα =
∂ϕα

∂ya0
dya (9.9)
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and should be compared to the (n + 1)-forms Φα defined in (9.7). The precise link is

given in the following proposition:

Proposition 2.3. Let W be a π1-vertical vector field on J1π. Then iWΦ = 0 for all

Φ ∈ F if and only if iWψ = 0 for all ψ ∈ F̄ .

Proof: If W is given by W = W a ∂
∂ya

+W a
µ

∂
∂yaµ

, then

iWΦα = W aAαadnx0 while iWψ
α = W aAαa ,

where Φα and ψα are the local generators of F and F̄ , respectively. �

Recall that the Euler-Lagrange equations are derived by considering vertical variations

only. As we will see later on, admissible variations for the nonholonomic problem are

prolongations j1V of vertical vector fields, such that 〈j1V, α〉 = 0 for all reaction forces

α. Proposition 2.3 then tells us that in deriving the nonholonomic Euler-Lagrange

equations, these reaction forces can be modelled either as (n + 1)-forms (i.e. as ele-

ments of F ) or as one-forms (elements of F̄ ). However, whenever nonvertical variations

are considered (for example when applying the nonholonomic momentum lemma to a

horizontal symmetry) only the use of F will yield correct results.

2.3. The field equations. Having introduced the constraint manifold C and the

bundle F of constraint forces, we are now ready to derive the field equations. Let

L : J1π → R be a first-order Lagrangian. From section 2.1, we know that a section

φ defines an extremum of the action (1.14) associated to L if and only if the Euler-

Lagrange equations are satisfied:

(j1φ)∗iWΩL = 0 for allW ∈ X(J1π).

In the case of nonholonomic constraints, we consider only infinitesimal variations com-

patible with the constraint, as in the following definition.

Definition 2.4. A variation V of a field φ (taking values in C, i.e. such that j1φ ⊂ C)

defined over an open subset U with compact closure is admissible if

(j1φ)∗(j1V Φ) = 0 for all Φ ∈ F. (9.10)

Variations are π-vertical vector fields and therefore (9.10) is equivalent to the fact that

j1V Φ = 0 along Im j1φ, which is precisely the condition (6.6) in definition 1.3 in

chapter 6.

By varying the action S (defined as in (1.14)) with respect to a variation V , we obtain

after integrating by parts

0 =
d

dε
S(j1(Φε ◦ φ))

∣∣∣
ε=0

=

∫
U

(
∂L

∂ya
− d

dxµ
∂L

∂yaµ

)
V adn+1x, (9.11)
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where Φε is a finite variation associated to V . If the variations V were arbitrary, then

(9.11) would immediately yield the Euler-Lagrange equations. Because of definition 2.4,

however, there are some restrictions to be imposed on the set of variations. The resulting

nonholonomic Euler-Lagrange equations are derived below.

Definition 2.5. A local section φ of π, defined on an open subset U ⊂ X with com-

pact closure, is a solution of the nonholonomic problem determined by L, C, and F if

j1φ(U) ⊂ C and (9.11) holds for all admissible variations V of φ.

It follows from (9.11) that a local section φ is a solution of the nonholonomic problem

if it satisfies the nonholonomic Euler-Lagrange equations :[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λαA

α
a (j1φ) and ϕα(j1φ) = 0. (9.12)

Here, λα are unknown Lagrange multipliers, to be determined from the constraints. An

intrinsic form of these equations is derived below in theorem 2.8.

Lemma 2.6 (lemma 3.2 in [48]). Let W be a vector field on J1π. If φ is a section

of π and if either W is tangent to the image of j1φ or if W is π1,0-vertical, then

(j1φ)∗(iWΩL) = 0.

Now, let φ be a section such that the image of j1φ is a subset of C and consider a vector

field W which is tangent to the image of j1φ, i.e. there exists a vector field w on X

such that Tj1φ(w(x)) = W (j1
xφ) for all x ∈ X. One can follow a similar reasoning as

in the proof of lemma 3.2 in [48] to show that

(j1φ)∗(W Φ) = w ((j1φ)∗Φ)

for any Φ ∈ F . Since Φ is 1-contact, the right-hand side of this expression vanishes. On

the other hand, if W is π1,0-vertical, it follows automatically that (j1φ)∗(W Φ) = 0.

We have therefore proved the following lemma:

Lemma 2.7. Let φ be a section of π such that j1
xφ ∈ C for all x ∈ U ∈ X. If either

W is tangent to the image of j1φ or W is π1,0-vertical, then (j1φ)∗(W Φ) = 0 for all

Φ ∈ F .

Theorem 2.8. Let φ be a section of π. If Im j1φ ⊂ C, then the following assertions

are equivalent:

(a) φ is a stationary point of the action (1.14) under admissible variations;

(b) φ satisfies the Euler-Lagrange equations (9.12);

(c) for all vector fields W on J1π such that (j1φ)∗(W Φ) = 0 for all Φ ∈ F ,

(j1φ)∗(W ΩL) = 0. (9.13)
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Proof: Let us first prove the equivalence of (a) and (c). For arbitrary, not necessarily

admissible variations, the following result holds (this is equation 3C.5 in [48]):

d

dε
S(φε)

∣∣∣
ε=0

= −
∫
U

(j1φ)∗(j1V ΩL).

For admissible variations, we have therefore∫
U

(j1φ)∗(j1V ΩL) = 0.

Now, we may multiply V by an arbitrary function on X and this result will still hold

true. The fundamental lemma of the calculus of variations therefore shows that

(j1φ)∗(j1V ΩL) = 0, (9.14)

for all admissible variations V defined over U . By using a partition of unity as in [48],

it can then be shown that (9.14) holds for all π-vertical vector fields V such that

(j1V ) Φ = 0 for all Φ ∈ F . This expression is equivalent to (9.13): to see this, take an

arbitrary vector field W on J1π such that (j1φ)∗(W Φ) = 0 for all Φ ∈ F . The vector

field W can be decomposed as the following sum (to be considered along the image of

j1φ):

W = w‖ + j1V + vπ1,0 ,

where w‖ is tangent to the image of j1φ, j1V is the prolongation of a π-vertical vector

field V , and vπ1,0 is a π1,0-vertical vector field. Using lemma 2.7, we have that

(j1φ)∗(j1V Φ) = (j1φ)∗(W Φ) = 0,

and from lemma 2.6, we get (j1φ)∗(W ΩL) = (j1φ)∗(j1V ΩL). The right-hand side

of this equation vanishes since j1V is admissible, and therefore we conclude that W

satisfies (9.13).

The equivalence of (b) and (c) is just a matter of writing out the definitions. In

coordinates, the left-hand side of (9.13) reads (for a prolongation of a vertical vector

field V )

(j1φ)∗(j1V ΩL) = V a

(
∂L

∂ya
(j1φ)− ∂

∂xµ
∂L

∂yaµ
(j1φ)

)
dn+1x,

and this holds for all admissible variations V . Therefore, if φ satisfies (9.13), then there

exist k functions λα such that[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λαA

α
a (j1φ).

The converse is similar. �

We see from the proof of this theorem that only vertical vector fields yield nontrivial

results for (9.13). For such vector fields, one can define admissibility in terms of the

codistribution F̄ defined in section 2.2.2.
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Remark 2.9. The nonholonomic field equations can also be cast into De Donder-Weyl

form as in chapter 6. Let F be the bundle of reaction forces, generated by the (n+ 1)-

forms Φα in (9.7). It is easily checked that there exist vector fields Zα, locally defined

along C, such that Zα ΩL = −Φα; this is the analogue of proposition 1.2 in chapter 6.

In local coordinates, these vector fields are given by

Zα =
∂ϕα

∂yb0
(H−1)µ0

ab

∂

∂yaµ
,

where H is the Hessian of L. Let D be the distribution along C spanned by the vector

fields Zα: if TC ∩ D = {0}, then we have again the decomposition TJ1π = TC ⊕ D
(along C), and the solutions of the nonholonomic De Donder-Weyl equation can be

obtained through projecting the “free” solutions onto TC.

In the case where L is a Lagrangian of the form (1.31) used in elastodynamics, then

the vector fields Zα take a particularly simple form: one can easily check that

Zα =
√

det [G]
∂ϕα

∂ya0
gab

∂

∂yb0
,

where gab is the metric on the standard fibre S. These vector fields look very similar to

the ones constructed in nonholonomic mechanics. The compatibility condition TC∩D =

{0} is then equivalent to the regularity of the matrix Zα(ϕβ). �

2.4. Noether’s theorem. The nonholonomic momentum lemma (theorem 3.1 in chap-

ter 7) can also be applied to the kind of nonholonomic constraints considered here, if

we replace the covariant bundle of reaction forces used in chapter 7 by the bundle F

described in section 2.2 of this chapter.

Recall that the notation ξ is used to designate a section of the bundle gE , which is

defined as in section 3 in chapter 7: here we have that (compare with (7.3))

E(γ) = {v ∈ TγJ1π : iv(S
∗
n.c.dϕα) = 0 for each α = 1, . . . , k} where γ ∈ C.

For a given γ ∈ C, we consider the set gγ consisting of all ξ ∈ g such that ξ(1)(γ) ∈
E(γ), and then we define the bundle gE over C as the disjoint union of all gγ. Recall

also that every section ξ̄ induces a vector field ξ̃ on J1π defined along C by putting

ξ̃(γ) = (ξ̄(γ))J1π(γ).

An important corollary of the nonholonomic momentum lemma regards the case where

the section ξ is “constant”, i.e. there exists a ξ ∈ g such that ξ̄(γ) = ξ for all γ ∈ C. In

that case, ξ̃ is just ξJ1π and hence the right-hand side of (7.4) vanishes as L is supposed

to be G-invariant. This can easily be proved directly, as we now show. In fact, this

theorem is some cases stronger than the nonholonomic momentum equation, which

only holds for vertical symmetries, while the symmetries considered here can have a

horizontal component as well. An important example is conservation of energy for the
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Figure 9.2. Geometry of the constrained rod

nonholonomic Cosserat rod (proposition 3.3 below). In this case, the symmetry vector

field is ∂
∂t

, which is not vertical.

Theorem 2.10. Let L be a G-invariant Lagrangian density. Assume that ξ ∈ g is such

that ξJ1π α = 0 along C for all α ∈ F . Then the following conservation law holds:

d[(j1φ)∗JLξ ] = 0, (9.15)

for all sections φ of π that are solutions of the nonholonomic field equations.

Proof: Let ξ be an element of g such that, along C, ξJ1π Φ = 0 for all Φ ∈ F . Because

of the nonholonomic field equations, (j1φ)∗ξJ1πΩL = 0. Now, according to (1.18), we

have

0 = LξJ1π
ΘL = diξJ1π

ΘL + iξJ1π
dΘL.

Upon pulling back this identity along a solution j1φ of the nonholonomic field equations,

we obtain (9.15). �

3. A Cosserat-type model

Recall that in the introduction we considered a Cosserat rod whose laminae are rigid

discs. In this case, one can choose the director frame {d1,d2,d3} to be orthogonal with,

in addition, d2 and d3 of unit length (attached to the laminae) and d1 aligned with

r′(s), the tangent vector to the centerline. If, in addition, the centerline is assumed to

be inextensible, so that we may choose the parameter s to be arc length, d1 is also of

unit length and the director frame is orthonormal. In this case, the specification of,

say, d2 is enough to determine a director frame: putting d1 ≡ r′, we then know that

d3 = d1 × d2.

Here, we will consider the case of a Cosserat rod with an inextensible centerline and

rigid laminae. In addition, we will assume that the centerline is planar, which will allow

us to eliminate the director frame almost completely. The result is a Lagrangian field

theory of second order, to which the results of section 2 can be applied.
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3.1. The planar Cosserat rod. Consider an inextensible Cosserat rod of length `

equipped with three directors. If we denote the centerline at time t as s 7→ r(t, s),

inextensibility allows us to assume that the parameter s is the arc length. Secondly,

we can take the director frame {d1,d2,d3} to be orthonormal, such that d1 is the unit

tangent vector r′. We will not take the effect of gravity into account.

In addition, we now assume that the centerline is a planar curve moving in the horizontal

plane, i.e. r(t, s) can be written as (x(t, s), y(t, s), 0). We introduce the slope ϕ(t, s)

of the centerline as (cosϕ, sinϕ) = (x′(t, s), y′(t, s)). Furthermore, we define the angle

θ(t, s), referred to as the torsion of the rod, as the angle subtended between ez and d3.

The director frame is completely determined once we know the slope ϕ(s, t) and the

torsion θ(s, t).

The specific constraints imposed on our rod model therefore allow us to eliminate the

director frame in favour of the slope ϕ and the torsion θ. Furthermore, as we shall see,

the slope ϕ is related to the curvature of the centerline. Note that, in formulating the

dynamics, we still have to impose the inextensibility condition (x′)2 + (y′)2 = 1. Note

that this constraint does not involve derivatives with respect to time, and as we saw in

chapter 8, it should therefore be modelled as a vakonomic constraint.

Remark 3.1. Note that θ has nothing to do with the usual geometric concept of torsion

of a curve in R3, and neither is θ related to the concept of shear in (for example) the

theory of the Timoshenko beam. �

3.2. The dynamics. As the director frame is orthonormal, there exists a vector u,

defined by d′i = u×di, called the strain or Darboux vector. With the conventions from

the previous section, u takes the following form:

u = θ′d1 + ϕ′ez.

(u can be thought of as an “angular momentum” vector, but with time-derivatives

replaced by derivatives with respect to arc length.)

The dynamics of our rod model can be derived from a variational principle. The kinetic

energy is given by

T =
1

2

∫ `

0

(
ρ(s)(ẋ2 + ẏ2) + αθ̇2

)
ds,

where α is an appropriately chosen constant. Here, the mass density is denoted by ρ,

and will be assumed constant from now on.

For a hyperelastic rod, the potential energy is of the form

V =

∫ `

0

W (u1, u2, u3)ds,
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where W (u1, u2, u3) is called the stored energy density, and the ui are the components

of u relative to the director frame: ui = u ·di. In the simplest case, of linear elasticity,

W is a quadratic function of the strains:

W (u1, u2, u3) =
1

2

(
K1u

2
1 +K2u

2
2 +K3u

2
3

)
. (9.16)

We will not dwell on the physical interpretation of the constants Ki any further (in

this case, they are related to the moments of inertia of the laminae). If the rod is

transversely isotropic, i.e. if the laminae are invariant under rotations around d1, we

may take K2 = K3. The potential energy then becomes

V =
1

2

∫ `

0

(
β(θ′)2 +Kκ2

)
ds,

where κ is the curvature of the centerline, i.e. κ2 = (ϕ′)2 = (x′′)2 + (y′′)2, and where

we have put β := K1 and K := K2. Models with a similar potential energy abound

throughout the literature and are generally referred to as the Euler elastica. For more

information, see [67] and the references therein.

3.3. The second-order model. Having eliminated the derivative of the slope ϕ from

the stored energy density, we end up with a model in which the fields are the coordinates

of the centerline (x(t, s), y(t, s)) and the torsion angle θ(t, s). This model fits into the

framework developed in section 2.3; the base space X is R × [0, `], with coordinates

(t, s) and the total space Y is X × R2 × S1, with fibre coordinates (x, y, θ).

The total Lagrangian now consists of kinetic and potential energy, as well as an addi-

tional term enforcing the constraint of inextensibility, and can be written as

L =
ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 − 1

2

(
β(θ′)2 +Kκ2

)
− 1

2
p
(
(x′)2 + (y′)2 − 1

)
, (9.17)

where p is a Lagrange multiplier associated to the constraint of inextensibility. The

field equations associated to this Lagrangian take the following form:
ρẍ+Kx′′′′ = ∂

∂s
(px′)

ρÿ +Ky′′′′ = ∂
∂s

(py′)
αθ̈ − βθ′′ = 0,

(9.18)

to be supplemented with the inextensibility constraint

(x′)2 + (y′)2 = 1, (9.19)

which allows to determine the multiplier p. Note in passing that the dynamics of the

centerline and the torsion angle θ are completely uncoupled. This will change once we

add nonholonomic constraints.
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3.4. Field equations and symmetries. We recall the expression (1.19) for the

second-order Cartan form. If a Lie group G is acting on Y by bundle automorphisms,

and on J3π by prolonged bundle automorphisms, there is a Lagrangian momentum

map JLξ = ξJ3π ΩL, as described in section 2. We now turn to a brief overview of

the symmetries associated to the rod model introduced in the previous section. For an

overview of symmetries in the general theory of Cosserat rods, see [40].

3.4.1. Translations in time. The Lie group R acts on X by translations in time: Φε :

(s, t) 7→ (s, t+ε). The Lagrangian is equivariant and the pullback toX (by a solution j3φ

of the field equations) of the momentum map associated to the infinitesimal generator
∂
∂t

is given by

(j3φ)∗JL∂
∂t

=
[
(px′ −Kx′′′)ẋ+ (py′ −Ky′′′)ẏ + βθ′θ̇ +K(x′′ẋ′ + y′′ẏ′)

]
dt (9.20)

+
[ ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 +

K

2
((x′′)2 + (y′′)2) +

β

2
(θ′)2 +

p

2
((x′)2 + (y′)2 − 1)︸ ︷︷ ︸

E

]
ds,

where we have introduced the energy density E . By taking the exterior derivative of

(9.20) and integrating the conservation law d[(j3φ)∗JL∂/∂t] = 0 over [0, `]× [t0, t1] ⊂ R2,

we obtain

E(t1)− E(t0) =

∫ t1

t0

[
(px′ −Kx′′′)ẋ+ (py′ −Ky′′′)ẏ + βθ′θ̇ +K(x′′ẋ′ + y′′ẏ′)

]`
0

dt,

(9.21)

where E(t) =
∫ `

0
Eds is the total energy, which is conserved if suitable boundary con-

ditions are imposed. This is the case, for instance, for periodic boundary conditions or

when both ends of the rod can move freely, i.e. when

px′ −Kx′′′ = py′ −Ky′′′ = 0 and x′′ = y′′ = θ′ = 0 at s = 0, `.

3.4.2. Spatial translations. Consider the Abelian group R2 acting on the total space Y

by translation, i.e. for each (a, b) ∈ R2 we consider the map Φ(a,b) : (s, t;x, y, θ) 7→
(s, t;x + a, y + b, θ). The Lagrangian density is invariant under this action and the

associated momentum map is

JL(v1,v2) = −ρ(v1ẋ+ v2ẏ)ds+ (v1px
′ − v1Kx

′′′ + v2py
′ − v2Ky

′′′)dt for all (v1, v2) ∈ R2.

Again, under suitable boundary conditions, JL(v1,v2) gives rise to a conserved quantity,

which is the total linear momentum of the rod.

Similarly, S1 acts on Y by translations in θ, with infinitesimal generators of the form

α ∂
∂θ

, and the corresponding momentum map is

JLα = −βθ′dt− αθ̇ds.

The ensuing conservation law is given by αθ̈ = βθ′′ and, hence, is just the equation of

motion for θ.
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3.4.3. Spatial rotations. Finally, we note that the rotation group SO(2) acts on Y by

rotations in the (x, y)-plane. The infinitesimal generator corresponding to 1 ∈ so(2) ∼=
R is given by y ∂

∂x
− x ∂

∂y
; its prolongation to J3π is

ξJ3π = y
∂

∂x
− x ∂

∂y
+ ẏ

∂

∂ẋ
− ẋ ∂

∂ẏ
+ y′

∂

∂x′
− x′ ∂

∂y′
+ · · · ,

where the dots represent terms involving higher-order derivatives. As ΘL is semi-basic

with respect to π3,1, these terms make no contribution to the momentum map. The

momentum map is given by

JL1 = [−x(−py′ +Ky′′′) + y(−px′ +Kx′′′)−K(x′′y′ + y′′x′)] dt+ ρ(xẏ − yẋ)ds,

leading to the conservation of total angular momentum. Note that the angular momen-

tum does not involve θ, in contrast to the corresponding expression in more general

treatments of Cosserat media. This is a consequence of the fact that we defined the

action of SO(2) on Y to act trivially on the S1 factor.

3.5. A nonholonomic model. Consider again a Cosserat rod as in the previous

section. The constraint that we are now about to introduce is a generalization of the

familiar concept of rolling without sliding in mechanics: we assume that the rod is

placed on a horizontal plane, which we take to be perfectly rough, so that each of the

laminae rolls without sliding.

However, as the Cosserat rod is also supposed to be incompressible, one must take

care that the additional constraints do not become too restrictive.1 Indeed, a simple

argument shows that the model of an incompressible rod which rolls without sliding,

and which cannot move transversally, can only move like a rigid body.

There are two immediate solutions: either one relaxes the incompressibility constraint,

or one allows the rod to move laterally as well. Either solution introduces a lot of

mathematical tedium which greatly obscures the physical background of the system.

Here, we will therefore consider a simplified model containing aspects of both models.

In particular, we will assume that the motion of the nonholonomic rod is such that the

incompressibility constraint is satisfied approximately throughout the motion; this is

equivalent to the following assumption:√
(x′)2 + (y′)2 ∼= 1. (9.22)

By neglecting the incompressibility constraint in the Lagrangian, a simplified model

is then obtained. Of course, this new model is a mathematical simplification of the

true physics. However, numerical simulations show that
√

(x′)2 + (y′)2 is bounded

throughout the motion, and it’s therefore reasonable that the dynamics of this model is

close to the true dynamics. One could think of the mathematical model as describing a

1This was pointed out to me by W. Tulczyjew and D. Zenkov.
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Cosserat rod whose constitutive equation is specified on mathematical grounds, rather

than derived from first principles.

The constraints of rolling without sliding are given by (see [12,26]):

ẋ+Rθ̇ sinϕ = 0 and ẏ −Rθ̇ cosϕ = 0, (9.23)

where R is the radius of the laminae. By eliminating the slope ϕ we then obtain

ẋ+Rθ̇y′ = 0 and ẏ −Rθ̇x′ = 0. (9.24)

Incidentally, the passage from (9.23) to (9.24) again illustrates why derivatives with

respect to time play a fundamentally different role as opposed to the other derivatives.

The Lagrangian density of the nonholonomic rod is still given by (9.17); we recall that it

is of second order, as the stored energy function (9.16) is of grade two. The constraints

on the other hand are of first order. By requiring that the action be stationary under

variations compatible with the given constraints (a similar approach to section 2.3), we

obtain the following field equations:

Definition 3.2. A section φ of π is a solution of the nonholonomic problem if and only

if Im j1φ ⊂ C, and, along C,

(j3φ)∗(W ΩL) = 0 (9.25)

for all π-vertical vector fields V on Y such that (j1φ)∗(W Φ) = 0 for all Φ ∈ F .

The left-hand side of (9.25) is just the Euler-Lagrange equation (1.20) for a second-

order Lagrangian. As the constraints are first order, they can be treated exactly as in

section 2.3. In coordinates, the nonholonomic field equations hence are given by

∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)
+

d2

dxµdxν

(
∂L

∂yaµν

)
= λα

∂ϕα

∂ya0
.

By substituting the Lagrangian (9.17) and the constraints (9.24) into the Euler-Lagrange

equations, we obtain the following set of nonholonomic field equations:
ρẍ+Kx′′′′ = λ

ρÿ +Ky′′′′ = µ

αθ̈ − βθ′′ = R(λy′ − µx′),
(9.26)

where λ, µ are Lagrange multipliers associated with the nonholonomic constraints.

These equations are to be supplemented by the constraint equations (9.24).

Conservation laws. In the familiar case of the rolling disc, it is well known that energy

is conserved. There is a similar conservation law for the nonholonomic rod.

Proposition 3.3. The total energy (9.21) is conserved for each solution of the non-

holonomic field equations (9.26) and constraints (9.24). A fortiori, the solutions of the

nonholonomic field equations satisfy the local conservation law d[(j3φ)∗JL1 ] = 0, where

JL1 is the momentum map associated to time translation introduced in (9.20).
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Proof: This follows immediately from proposition 2.10 and the fact that ∂
∂t

(or rather

its prolongation to J1π) annihilates F along the constraint manifold. Indeed, if we

introduce the forms Φ1 and Φ2, defined as in (9.7), and explicitly given by

Φ1 = (dx− ẋdt) ∧ ds+Ry′(dθ − θ̇dt) ∧ ds;

Φ2 = (dy − ẏdt) ∧ ds−Rx′(dθ − θ̇dt) ∧ ds,

then (
∂

∂t

)
J1π

Φ1 = −(ẋ+Rθ̇y′)ds,

which vanishes when restricted to C. A similar argument shows that the contraction of
∂
∂t

with Φ2 vanishes. Hence, proposition 2.10 can be applied; the associated momentum

map is just (9.20). �

To find the nonholonomic counterpart of the other conservation laws in section 3.4,

we need to use the full nonholonomic momentum lemma. Here, we only consider the

translation action of section 3.4.2, as it appears that the rotational action of section 3.4.3

is not a nonholonomic symmetry.

Here, the Lagrangian is of second order, but the derivation of the nonholonomic mo-

mentum lemma proceeds exactly as in chapter 7, up to a few minor modifications:

the nonholonomic momentum map Jn.h. is now defined on J3π, and the nonholonomic

momentum equation hence becomes

dhJ
n.h.
ξ̄ = π∗3,2Lj2ξ̃(Lη), (9.27)

where h is a solution of the nonholonomic De Donder-Weyl equation.

Consider the action of R2 × S1 on Y by translations; i.e. for each (a, b, ϕ) we consider

the map Φ(a,b,ϕ) : (s, t, x, y, θ) 7→ (s, t, x + a, y + b, θ + ϕ). Let ξ = (v1, v2, vθ) be an

element of the Lie algebra of R2 × S1. The corresponding fundamental vector field is

given by

ξY = v1
∂

∂x
+ v2

∂

∂y
+ vθ

∂

∂θ
.

In order for the nonholonomic momentum lemma to apply, ξJ1π must annihilate the

bundle of constraint forms F . For the nonholonomic Cosserat rod, this is the case when

the fundamental vector field has the following form (considered as a vector field along

π1,0):

ξ̃ = −Ry′ ∂
∂x

+Rx′
∂

∂y
+

∂

∂θ
.

(Any scalar multiple of the above vector field is also allowed.) This vector field corre-

sponds with the section ξ̄ = (−Ry′, Rx′, 1) of gE . By pulling back (9.27) by an integral

section j3φ of h, we obtain

d((j3φ)∗Jn.h.
ξ̄ ) = j2φ∗Lξ̃(Lη), (9.28)
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where we recall that the left-hand side of (9.27) (pulled back along an integral section

of h) can be rewritten as follows (see also remark 2.2 in chapter 7):

dhJ
n.h.
ξ̄ = d[(j3φ)∗Jn.h.

ξ̄ ].

The right-hand side of (9.28) is

j2φ∗Lξ̃(Lη) =
[
−Rρẏ′ẋ+Rρẋ′ẏ −KRx′′′y′′ +KRy′′′x′′

]
η.

The nonholonomic momentum map Jn.h., on the other hand, is given by

Jn.h.
ξ̄ = −

[
ρ(Rx′ẏ −Ry′ẋ) + αθ̇

]
ds−

[
KR(y′x′′′ − x′y′′′) + βθ′

]
dt,

and the nonholonomic momentum equation (9.27) hence becomes

Ry′(ρẍ+Kx′′′′)−Rx′(ρÿ +Ky′′′′) = αθ̈ − βθ′′. (9.29)

This conservation law can also be derived from the nonholonomic field equations (9.26)

by subtracting the second equation multiplied by x′ from the first equation multiplied

by y′, and using the third equation to eliminate the Lagrange multipliers λ and µ.

Unfortunately, the knowledge of this nonholonomic conservation law does not help us

in solving the field equations (in contrast with the situation for the vertical rolling disc

as in [12]).

4. Discrete nonholonomic field theories

In this section we present an extension to the case of field theories of the discrete

d’Alembert principle described in [28]. We also derive an elementary numerical inte-

gration scheme aimed at integrating the field equations (9.26).

As in the previous sections, we will consider the trivial bundle π with base space X =

R×M (where M = [0, `]), and total space Y the product X × S, where S = R2 × S1.

Our discretization scheme is the most straightforward possible, where the base space

X is discretized by means of the uniform mesh Z× Z.

4.1. Discrete Lagrangian field theories. We begin by giving an overview of discrete

Lagrangian field theories, inspired by [61,80]. In order to discretize the second-order jet

bundle, we need to approximate the derivatives of the field (of first and second order).

This we do by means of central differences with spatial step k and time step h:

η̇ ≈ ηn+1,i − ηn,i
h

, η′ ≈ ηn,i+1 − ηn,i−1

2k
, and η′′ ≈ ηn,i+1 − 2ηn,i + ηn,i−1

k2
, (9.30)

where η stands for either x or y. Other derivatives will not be needed. For θ, we use

θ̇ ≈ θn+1,i − θn,i
h

and θ′ ≈ θn,i+1 − θn,i
k

. (9.31)

Let M be the uniform mesh in X = R2 whose elements are points with integer coor-

dinates; i.e. M = Z × Z. The elements of M are denoted as (n, i), where the first
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component refers to time, and the second to the spatial coordinate. We define a 9-cell

centered at (n, i) ∈M, denoted by [x](n,i), to be a nine-tuple of the form

[x](n,i) :=
(
(n− 1, i− 1), (n− 1, i), (n− 1, i); (n, i− 1), (9.32)

(n, i), (n, i+ 1); (n+ 1, i− 1), (n+ 1, i), (n+ 1, i+ 1)
)

It is clear from the finite difference approximations that a generic second-order jet j2
xφ

can be approximated by specifying the values of φ at the nine points of a cell.

However, in the case of the nonholonomic rod, the Lagrangian depends only on the

derivatives whose finite difference approximations were given in (9.30) and (9.31).

Therefore, we can simplify our exposition by defining a 6-cell at (n, i) to be the six-tuple

[x](n,i) :=
(
(n, i− 1), (n, i), (n, i+ 1); (n+ 1, i− 1), (n+ 1, i), (n+ 1, i+ 1)

)
. (9.33)

We will refer to 6-cells simply as cells. Let us denote the set of all cells by X6 :=

{[x](n,i) : (n, i) ∈ M}. We now define the discrete 2nd order jet bundle to be J2
dπ :=

X6×S×6 (see [61,80,108]). A discrete section of π (also referred to as a discrete field)

is a map φ :M→ S. Its second jet extension is the map j2φ : X6 → J2
dπ defined as

j2φ([x](n,i)) := ([x](n,i);φ(x1), . . . φ(x6)),

where x1, . . . , x6 are the vertices that make up [x](n,i) (ordered as in (9.33)). Given a

vector field W on Y , we define its second jet extension to be the vector field j2W on

J2
d given by

j2W ([x]; s1, . . . , s6) = (W (x1, s1),W (x2, s2), . . . ,W (x6, s6)).

Let us now assume that a discrete Lagrangian Ld : J2
dπ → R is given. The action sum

Sd is then defined as

Sd(φ) =
∑

[x]∈UF
Ld(j

2φ([x])), (9.34)

where UF is a finite subset of X6. Given a vertical vector field V on Y and a discrete

field φ, we obtain a one-parameter family φε by composing φ with the flow Φε of V :

φε([x]) = ([x]; Φε(φ([x])1), . . . ,Φε(φ([x])6)) . (9.35)

The variational principle now consists of seeking discrete fields φ that extremize the

discrete action sum. The fact that φ is an extremum of S under variations of the form

(9.35) is expressed by∑
(n,i)∈M

〈
X(φ(n,i)), D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1)))(9.36)

+D4L(j2φ([x](n−1,i+1))) +D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1)))
〉

= 0.
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As the variation X is completely arbitrary, we obtain the following set of discrete

Euler-Lagrange field equations :

D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1))) + (9.37)

D4L(j2φ([x](n−1,i+1))) +D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1))) = 0.

for all (n, i). Here, we have denoted the values of the field φ at the points (n, i) as φn,i.

4.2. The discrete d’Alembert principle. Our discrete d’Alembert principle is noth-

ing more than a suitable field-theoretic extension of the discrete Lagrange-d’Alembert

principle described in [28]. Just as in that paper, in addition to the discrete Lagrangian

Ld, two additional ingredients are needed: a discrete constraint manifold Cd ⊂ J1
dπ and

a bundle of constraint forces Fd on J2
dπ. However, as our constraints (in particular

(9.24)) are not linear in the derivatives, as opposed to the case in [28], our analysis will

be more involved.

The discrete constraint manifold Cd ↪→ J1
dπ will usually be constructed from the con-

tinuous constraint manifold C by subjecting it to the same discretization as used for

the discretization of the Lagrangian (i.e. (9.30) and (9.31)). To construct the dis-

crete counterpart Fd of the bundle of discrete constraint forces, somewhat more work

is needed.

Remark 4.1. For the discretization of the constraint manifold, it would appear that

we need a discrete version of the first-order jet bundle as well. A similar procedure as

for the discretization of the second-order jet bundle (using the same finite differences

as in (9.30) shows that a discrete 1-jet depends on the values of the field at the same

four points of a cell as a discrete 2-jet: the difference between J1
dπ and J2

dπ lies in the

way in which the values of the field at these points are combined. Therefore, we can

regard the discrete version of C, to be defined below, as a subset of J2
dπ. �

4.2.1. The bundle of discrete constraint forces. In this section, we will construct Fd
by following a discrete version of the procedure used in section 2.2. Just as in the

continuous case, it is here that the difference between spatial and time derivatives

will become fundamental. Indeed, we will discretize with respect to space first, and

(initially) not with respect to time. It should be noted that the construction outlined in

this paragraph is not entirely rigorous but depends strongly on coordinate expressions.

Presumably, one would need a sort of discrete Cauchy analysis in order to solidify these

arguments. For now, we will just accept that this reasoning provides us with the correct

form of the constraint forces.

For the sake of convenience, we suppose that C is given by the vanishing of k independent

functions ϕα on J1π. By applying the spatial discretizations in (9.30) and (9.31) to

ϕα, we obtain k functions, denoted as ϕα1/2, on J2
d ×TS. We define the semi-discretized

constraint submanifold C1/2 to be the zero level set of the functions ϕα1/2.
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Consider now the forms

Φα
1/2 := J∗(dϕα1/2)

(where J is the vertical endomorphism (1.1) on TS); they are the semi-discrete counter-

parts of the forms Φα defined in (9.7). The forms Φα
1/2 are semi-basic. By discretizing

the time derivatives, however, we obtain a set of basic forms on J2
dπ, which we also

denote by Φα
1/2. An example will make this clearer.

Example 4.2. Consider, for instance, the constraint manifold C ↪→ J2π defined as the

zero level set of the function ϕ = Aab y
a
0y

b
1 + Bb(y

b
1)2, where Aab and Bb are constants.

By applying (9.30) and (9.31), it follows that Cd is given as the zero level set of the

function

ϕd([y]) := Aab
yan+1,i − yan,i

h

ybn,i+1 − ybn,i−1

2k
+Bb

(
ybn,i+1 − ybn,i−1

2k

)2

for [y] ∈ J1
dπ,

and C1/2 as the zero level set of the function

ϕ1/2([y], v) := Aab v̇
a
ybn,i+1 − ybn,i−1

2k
+Bb

(
ybn,i+1 − ybn,i−1

2k

)2

for [y] ∈ J1
dπ and v ∈ TS. The bundle Fd is then generated by the one-form Φ1/2 :=

J∗(dϕ1/2), or explicitly,

Φ = Aab
ybn,i+1 − ybn,i−1

2k
dya.

�

4.2.2. The discrete nonholonomic field equations. Assuming that Ld, Cd and Fd are

given (their construction will be treated in more detail in the next section), the deriva-

tion of the discrete nonholonomic field equations is similar to the continuum derivation:

we are looking for a discrete field φ such that Im j1φ ⊂ Cd and such that φ is an ex-

tremum of (9.34) for all variations compatible with the constraints, in the sense that the

variation X satisfies, for all (n, i),

X(φ(n,i)) Φα
1/2(j2φ([x](n,i))) = 0.

From (9.36) we then obtain the discrete nonholonomic field equations :

D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1)))+

D4L(j2φ([x](n−1,i+1))) +D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1))) =

λαΦα
1/2(j2φ([x](n,i))), (9.38)

where the Lagrange multipliers λα are to be determined from the requirement that

Im j1φ ⊂ Cd.
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4.3. An explicit, second-order algorithm. In this section, we briefly present some

numerical insights into the nonholonomic field equations of section 3.5. Our aim is

twofold: for generic boundary conditions, the nonholonomic field equations (9.26) can

probably not be solved analytically and in order to gain insight into the behaviour of our

model, we therefore turn to numerical methods. Secondly, in line with the fundamental

tenets of geometric integration, we wish to show that the construction of practical

integration schemes is strongly guided by geometric principles.

In discretizing our rod model, we effectively replace the continuous rod byN rigid rolling

discs interconnected by some potential (see [5]). This is again an illustration of the fact

that the constraints are truly nonholonomic. Our integrator is just a concatenation of

the leapfrog algorithm for the spatial part, and a nonholonomic mechanical integrator

for the integration in time.

As a first attempt at integrating (9.26), we present an explicit, second-order algorithm.

In the Lagrangian, the derivatives are approximated by

ẋ ≈ xn+1,i − xn,i
h

and x′′ ≈ xn,i−1 − 2xn,i + xn+1,i

k2
,

where h is the time step, and k is the space step. Similar approximations are used for

the derivatives of y, and for θ we use

θ̇ ≈ θn+1,i − θn,i
h

and θ′ ≈ θn,i+1 − θn,i
k

. (9.39)

The discrete Lagrangian density can then be found by substituting these approximations

into the continuum Lagrangian (9.17). Explicitly, it is given by

Ld =
ρ

2h2

(
(xn+1,i − xn,i)2 + (yn+1,i − yn,i)2

)
+

α

2h2
(θn+1,i − θn,i)2 − β

2k2
(θn,i+1 − θn,i)2

− K

2k4
(xn,i−1 − 2xn,i + xn,i+1)2 − K

2k4
(yn,i−1 − 2yn,i + yn,i+1)2. (9.40)

Note that Ld only depends on four of the six points in each cell (see (9.33)). The

discrete constraint manifold Cd is found by discretizing the constraint equations (9.24).

In order to obtain a second-order accurate approximation, we use central differences:

x′ ≈ xn,i+1 − xn,i−1

2k
,

(and similar for y′, ẋ, ẏ, θ̇) and hence we obtain that Cd is given by

xn+1,i − xn−1,i +
R

2k
(θn+1,i − θn−1,i)(yn,i+1 − yn,i−1) = 0, (9.41)

and

yn+1,i − yn−1,i −
R

2k
(θn+1,i − θn−1,i)(xn,i+1 − xn,i−1) = 0, (9.42)

for all (n, i). The semi-discrete constraint manifold C1/2, on the other hand, is given by

ẋn,i +
R

2k
θ̇n,i(yn,i+1 − yn,i−1) = 0,
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and

ẏn,i −
R

2k
θ̇n,i(xn,i+1 − xn,i−1) = 0,

and hence Fd is generated by

Φ1 = dx+
R

2k
(yn,i+1 − yn,i−1)dθ and Φ2 = dy − R

2k
(xn,i+1 − xn,i−1)dθ. (9.43)

We conclude that the discrete nonholonomic field equations (9.38) are in this case

xn+1,i − 2xn,i + xn−1,i = h2λi −
h2K

k4
∆4xn,i (9.44)

and

yn+1,i − 2yn,i + yn−1,i = h2µi −
h2K

k4
∆4yn,i (9.45)

as well as

α(θn+1,i − 2θn,i + θn−1,i) = Rh2

(
λi
yn,i+1 − yn,i−1

2k
− µi

xn,i+1 − xn,i−1

2k

)
+
βh2

k2
∆2θn,i,

where ∆2 and ∆4 are the 2nd and 4th order finite difference operators in the spatial

direction, respectively:

∆2fn,i := fn,i+1 − 2fn,i + fn,i−1

and

∆4fn,i := fn,i+2 − 4fn,i+1 + 6fn,i − 4fn,i−1 + fn,i−2.

In order to determine λi and µi, these equations need to be supplemented by the discrete

constraints (9.41) and (9.42).

For the purpose of numerical simulation, the following values were used: α = 1, β = 0.8,

ρ = 1, K = 0.7, ` = 4, and R = 1. For the spatial discretization, 32 points were used

(corresponding to k ≈ 0.1290) and the time step was set to h = 1/8k2, a fraction of

the maximal allowable time step for the Euler-Bernoulli beam equation (see [1]). The

ends of the rod were left free and the following initial conditions were used:

r0(s) = (s, 0), θ0(s) = −π
2

cos
πs

`
and ṙ0(s) = (0, 0), θ̇0(s) = 0.

An mpeg movie (created with Povray, an open source ray tracer) depicting the motion

of the nonholonomic Cosserat rod is available from the author’s web page2. In figure 9.3,

an impression of the motion of the rod is given. The arrows represent the director field

d3 and serve as an indication of the torsion. The rod starts from an initially straight,

but twisted state and gradually untwists, meanwhile effecting a rotation.

In figure 9.4, the energy of the nonholonomic rod is plotted. Even though our algorithm

is by its very nature not symplectic (or multi-symplectic – see [19]), there is still the

similar behaviour of “almost” energy conservation.

2http://users.ugent.be/∼jvkersch/nonholonomic/
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Figure 9.3. Motion of the rod from t = 0 to t ≈ 4.5.



150 Nonholonomic kinematic constraints in elasticity

Figure 9.4. Energy behaviour of the integration algorithm.



Chapter 10

Conclusions and future work

1. Discrete jets in higher dimensions

During our treatment of discrete field theories, we have always assumed that the space

of independent variables is two-dimensional, and in most cases, we have discretized this

space with a regular mesh. However, it is apparent, for example from the derivation

of the Euler-Lagrange equations, or the proof of the Euler-Poincaré reduction theorem,

that neither is essential for the definition of discrete jets.

For a general base space X, which is not necessarily Euclidian or two-dimensional, we

introduce a discretization as follows:

Definition 1.1. A discretization of X is a simplicial complex K together with a home-

omorphism ι : K → X.

This concept of discretization was studied in detail by many authors; we refer to [39,

56] for an overview of its use in discrete exterior calculus. Note also that such a

discretization was the starting point for Whitney’s geometric integration theory (see

[111]).

Discretizations of jets are then easily defined as (n+ 2)-tuples in Y which project down

onto an (n+ 1)-simplex in X. This definition is inspired by definition 2.3 in chapter 2,

where discrete jets were defined as triples or quadruples projecting down onto a triangle

or a quadrangle, respectively.

Definition 1.2. A discrete jet is an (n + 2)-tuple (y0, . . . , yn+1) in Y such that the

projection (π(y0), . . . , π(yn+1)) is an (n + 1)-simplex in X. The set of all discrete jets

is called the discrete jet bundle, and is denoted by J1
dπ.

The Lie groupoid theory of chapter 3 can also be extended without much difficulty:

we define a discrete jet over an (n + 1)-simplex k to be an assignment of a groupoid

element to each edge of k, such that the cyclic multiplication of the groupoid elements

on each face of k is a unit. Again, this definition reduces to the familiar case studied

in chapter 3 once we take X to be R2 with its triangular mesh.

Remark 1.3. In the contemporary literature, a few geometric structures have appeared

that might be of use in Lie groupoid field theory:
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(1) In a recent paper [113] on lattice gauge theories, Wise introduces a discretization

of space-time by means of a hypothetical “n-graph” structure, which is a list of

data X0, X1, X2, . . ., where X0 is a set of vertices, X1 a set of edges, and so on,

with sets Xi of higher-dimensional objects. These sets have to specify various

incidence relations, the nature of which is still not entirely clear. It is probable

that this definition could be used instead of definition 1.1. The advantage is

that this definition is more in line with the concepts from graph theory which we

employed at the beginning of chapter 3.

(2) Recall that in chapter 3 we defined Gk roughly speaking as k-gons whose edges

were labelled by elements of G. In [7], the authors consider a similar structure.

They construct a simplicial manifold (see [41, p. 89] for a definition) whose sets

of n-dimensional simplices Gn are defined as follows: the elements of Gn are n-

simplices whose 1-dimensional faces are labelled by elements of G. Under suitable

assumptions, the manifold of k-gons Gk can be identified with the set of 2-simplices,

and we obtain the following sequence:

· · ·G2
∼= Gk // //// G1

∼= G //// Q.

Presumably, the sets of higher-dimensional simplices would be useful in construct-

ing discretizations of field theories whose base space is of dimension higher than

two. �

2. Nonholonomic field theories

It is clear that the study of nonholonomic field theories forms a vast subject, and

that in this thesis only a few straightforward results could be explored. A first acute

problem is the lack of an extensive number of interesting physical examples. The

model outlined in section 3.5 of chapter 9 can be extended in a number of ways: first

and foremost, one could use the stored energy function for a linear extensible beam

instead of the expression used in section 3.5. We did not pursue that road any further,

since the resulting field equations quickly became prohibitively unwieldy. Furthermore,

to obtain physically interesting results, one should opt for a realistic nonlinear stored-

energy function, rather than the quadratic one used in chapter 9.

On the other hand, one could choose to maintain the inextensibility constraint and

instead relax the constraints to allow lateral sliding. This model would be somewhat

similar to the one studied in chapter 9. From a numerical point of view, the inextensi-

bility constraint could be implemented by an extension of the Shake/Rattle algorithm,

as proposed in [5].

Another interesting option would be the development of higher-order geometric schemes

for nonholonomic field theories. As a first step, one could try to derive higher-order
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q

[x3]

[g2] [g1]

[g4]

Figure 10.1. A typical element of G4
2; q is the projection of this element under π4

2.

integrators for nonholonomic mechanical systems. Such integrators, of arbitrarily high

order, can be constructed by composition (see [84]) but in order to gain insight into

the behaviour of these schemes (in particular the question whether they are amenable

to backward error analysis) other classes of integrators should be studied as well.

3. Lie groupoid field theories with nonholonomic constraints

In [57], Iglesias et al. study mechanical systems with nonholonomic constraints on Lie

groupoids. The advantage of this approach is that it incorporates many discretiza-

tions of classical systems (including for instance the homogeneous sphere on a rotating

horizontal table) which are unrelated at first sight. It would appear that a similar

framework can be developed for field theories, thus uniting the two main themes of this

thesis, Lie groupoid discretizations and nonholonomic constraints.

As in chapter 3, consider a Lie groupoid G and let L : Gk → R be a discrete Lagrangian.

Before introducing nonholonomic constraints into this picture, let us first define a ob-

ject, denoted by Gk
2 and playing the role of “second-order discrete jet bundle”. For

the sake of clarity, we henceforth assume that k = 4. The elements of G4
2 are 4-tuples

([g1], [g2], [g3], [g4]) ∈ (G4)×4 such that (see figure 10.1)

[g1]4 = [g2]2, [g2]1 = [g3]3, [g3]2 = [g4]4, and [g4]3 = [g1]1.

The manifold G4
2 is equipped with a distinguished projection π4

2 : G4
2 → Q, defined as

π4
2([g1], [g2], [g3], [g4]) = α(1)([g1]) (= α(2)([g2]) = α(3)([g3]) = α(4)([g4])).

In addition to L, we also assume that the following objects are given:

(1) a constraint submanifold Cd ↪→ Gk, containing the diagonal ∆ in Gk;

(2) a set Dc of admissible variations, which is a subbundle of (π4
2)∗AG. In other words,

the elements of Dc are maps v : G4
2 → AG such that v([g1], . . . , [g4]) ∈ AqG, where

q = π4
2([g1], . . . , [g4]). We assume that the rank of Dc is equal to the dimension of

Cd.
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By varying the action density as in (3.14), but only with respect to admissible variations,

we finally obtain the following discrete nonholonomic field equations on the Lie groupoid

G (compare with theorem 3.7 in chapter 3):

Theorem 3.1. Let φ : UE → G be a discrete field defined on a finite set UE ⊂ V × V .

Then φ is an extremum of the action sum (3.9) with respect to admissible variations if

and only if ψ takes values in Cd and the following discrete nonholonomic field equations

hold:

v
(1)
[g1](L) + v

(2)
[g2](L) + v

(3)
[g3](L) + v

(4)
[g4](L) = 0 for all v ∈ Dc([g1], [g2], [g3], [g4]) ⊂ AqQ,

where ([g1], . . . , [g4]) is defined as in the discussion preceding theorem 3.7 in chapter 3.

Assume that a subbundle D◦c of (π4
2)∗A∗G can be found such that 〈Φ, v〉 = 0 for all

Φ ∈ D◦c ([g1], . . . , [g4]) and all v ∈ Dc([g1], . . . , [g4]), and let Φα be a local basis of sections

for D◦c . The discrete nonholonomic field equations in theorem 3.1 can be proved to be

equivalent to the following set of equations:

v
(1)
[g1](L) + v

(2)
[g2](L) + v

(3)
[g3](L) + v

(4)
[g4](L) = λα 〈Aα([g1], [g2], [g3], [g4]), v〉 , (10.1)

for all v ∈ AqQ.

The discrete field equations for the nonholonomic Cosserat rod can be recovered from

(10.1) by taking the Lie groupoid G to be the pair groupoid Q × Q, defining Cd to

be given by (9.41) and (9.42), and taking D◦c to be spanned by (9.43). Some of the

definitions above should be adapted since the Lagrangian for the nonholonomic Cosserat

rod is of second order.

While it would thus appear that the incorporation of nonholonomic constraints into

the framework of Lie groupoid field theories is indeed possible, there are as of yet

not enough examples of nonholonomic field theories in order to appreciate the value

of such an extension. Judging from the embarrassment of riches with which one is

confronted in the case of mechanical systems (see [57,75]), we are nevertheless confident

that Lie groupoid methods will also prove to be useful for discrete field theories with

nonholonomic constraints.



Appendix A

Elementary properties of the Frölicher-Nijenhuis

bracket

In this appendix, we review some properties of the Frölicher-Nijenhuis bracket and the

various derivations associated to vector-valued forms on a manifold. For a detailed

treatment of the Frölicher-Nijenhuis bracket, we refer the reader to [60,94].

Let M be a manifold. A vector-valued one-form h is a section of TM⊗T ∗M . Associated

to h is a derivation ih (of type i∗ and degree 0), defined by

(ihα)(v0, . . . , vk) =
k∑
i=0

(−1)iα(h(vi), v0, . . . , v̂i, . . . , vk) for α ∈ Ωk+1(M). (A.1)

We then define dh as dh := ih ◦ d− d ◦ ih; this is a derivation of type d∗ and degree 1.

Vector-valued forms of higher degree are defined accordingly as sections of the tensor

product TM ⊗
∧k(T ∗M). A vector-valued k-form R can easily be seen to give rise

to a derivation iR of degree k − 1 (by virtue of a generalization of (A.1)) as well as a

derivation dR of degree k. A vector-valued form of degree zero is simply a vector field,

and the associated derivations are in this case the contraction iX and the Lie derivative

LX .

The Frölicher-Nijenhuis bracket of a vector-valued r-form R and a vector-valued s-form

S is then defined as the unique vector-valued (r + s)-form [R, S] for which

dR ◦ dS − (−1)rsdS ◦ dR = d[R,S].

We have deliberately been vague about the nature of this bracket: most of the time we

will only need the bracket of a vector field X with a vector-valued one-form h (which

will be the horizontal projector of a connection). In this case, it is not hard to prove

that

[X,h] = LXh.

The following lemma collects the properties of the Frölicher-Nijenhuis bracket that we

will be needing in the body of the text. They can be suitably generalized and form part

of a well-investigated calculus, for which we refer to [60].

Lemma 1.2. Let X be a vector field on M and h a vector-valued one-form. Then, for

any k-form α on M , the following holds:



156 Elementary properties of the Frölicher-Nijenhuis bracket

(1) iXihα = ihiXα + ih(X)α;

(2) ihLXα = LXihα− i[X,h]α.

Proof: Let α be a 2-form (the case of a k-form α is completely similar) and Y a vector

field on M . Then

(iXihα)(Y ) = α(h(X), Y )− α(h(Y ), X)

= (ih(X)α)(Y ) + (ihiXα)(Y ),

which confirms the first property.

The second property (a special case of lemma 8.6 in [60]) can be proved directly by

noting that a derivation is completely determined by its action on functions and one-

forms. For a function f both sides of the relation (2) vanish and for a one-form α we

have for the left-hand side

(ihLXα)(Y ) = (LXα)(h(Y )) = LX(α(h(Y )))− α([X,h(Y )])

= LX(α(h(Y )))− α((LXh)(Y ))− α(h([X, Y ])).

Taking together the first and third term, we obtain LX(ihα)(Y ), whereas the second

term is just i[X,h]α(Y ). �



Appendix B

Lie groupoids and Lie algebroids

In this section, we recall some of the basic definitions and results from the theory of

Lie groupoids and algebroids. It is not our intention to give a detailed introduction

to the subject: for a more in-depth overview, the reader is referred to [72] and the

references therein. We will also recall some of the constructions in [75] that will be

generalized in the next sections. We note that the definition of a groupoid used here

agrees with [75,110] but differs from [95] with respect to the order in which the factors

of the product gh are written.

1. Lie groupoids

A groupoid is a set G with a partial multiplication m, a subset Q of G whose elements

are called identities, two surjective maps α, β : G→ Q (called source and target maps

respectively), which both equal the identity on Q, and an inversion mapping i : G→ G.

A pair (g, h) is said to be composable if the multiplication m(g, h) is defined; the set

of composable pairs will be denoted by G2. We will denote the multiplication m(g, h)

by gh and the inversion i(g) by g−1. In addition, these data must satisfy the following

properties, for all g, h, k ∈ G:

(1) the pair (g, h) is composable if and only if β(g) = α(h), and then α(gh) = α(g)

and β(gh) = β(h);

(2) if either (gh)k or g(hk) exists, then both do, and they are equal;

(3) α(g) and β(g) satisfy α(g)g = g and gβ(g) = g;

(4) the inversion satisfies g−1g = β(g) and gg−1 = α(g).

On a groupoid, we have a natural notion of left translation lg, defined as lg(h) = gh, for

any h ∈ G such that α(h) = β(g). There is a similar definition for a right translation

rg.

A morphism of groupoids is a pair (f, φ) of maps φ : G → G′ and f : Q → Q′

satisfying α′ ◦ φ = f ◦ α, β′ ◦ φ = f ◦ β and such that φ(gh) = φ(g)φ(h) whenever

(g, h) is composable. Note that (φ(g), φ(h)) is a composable pair whenever (g, h) is

composable.

A Lie groupoid is a groupoid for which G and Q are differentiable manifolds, with

Q a closed submanifold of G, the maps α, β,m and i are smooth and α and β are
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submersions. We denote by Fα(g) the α-fibre through g ∈ G, i.e. Fα(g) = α−1(α(g)),

with a similar definition for Fβ(g). As α and β are submersions, both Fα(g) and Fβ(g)

are closed submanifolds of G.

Example 1.1. Any Lie group G can be considered as a Lie groupoid over a singleton

{e}, where the anchors α, β map any element onto e and the multiplication is defined

everywhere. Another example of a Lie groupoid is the pair groupoid Q × Q, where

α(q1, q2) = q1, β(q1, q2) = q2, and multiplication is defined as (q1, q2) · (q2, q3) = (q1, q3).

For other, less trivial examples, we refer to the works mentioned above. �

2. Lie algebroids

Definition 2.1. A Lie algebroid over Q is a vector bundle τ : E → Q together with

a vector bundle map ρ : E → TQ (called the anchor map of the Lie algebroid) and a

bracket [·, ·] : Γ(τ)× Γ(τ)→ Γ(τ) defined on the sections of τ , such that

(1) Γ(τ) is a real Lie algebra with respect to [·, ·];
(2) ρ([φ, ψ]) = [ρ(φ), ρ(ψ)], for all φ, ψ ∈ Γ(τ), where the bracket on the right-hand

side is the usual Lie bracket of vector fields on Q and we write the composition

ρ ◦ φ as ρ(φ);

(3) [φ, fψ] = f [φ, ψ] + ρ(φ)(f)ψ, for all φ, ψ ∈ Γ(τ) and f ∈ C∞(Q).

The Lie algebroid structure allows us to define an exterior differential dE on the space

of sections of
∧∗(E∗), as follows: for functions f ∈ C∞(Q), we put dEf(v) = ρ(v)f

(where v ∈ E), while for sections θ of
∧k(E∗), we define dEθ by

dEθ(v0, v1, . . . , vk) =
∑
i

ρ(vi)θ(v0, . . . , v̂i, . . . , vk)

+
∑
i<j

(−1)i+jθ([vi, vj], v0, . . . , v̂i, . . . , v̂j, . . . , vk).

It can be shown that dE is nilpotent: d2
E = 0.

To any Lie groupoid G over Q one can associate a Lie algebroid τ : AG→ Q as follows.

At each point x ∈ Q, the fibre AxG is the vector space Vxα = kerTxα and the anchor

map ρ on AxG is identified with the restriction of Txβ to Vxα. In order to define the

bracket on the space of sections, we note that there exists a bijection between sections

of τ and left- and right-invariant vector fields on G. More specifically, if v is a section of

τ , then the left- and right-invariant vector fields are denoted as vL and vR respectively,

and defined by

vL(g) = Tβ(g)lg(vβ(g)) and vR(g) = Tα(g)(rg ◦ i)(vα(g)). (B.1)
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Let v and w be sections of τ . The bracket [v, w] is then defined by noting that [vL, wL]

is again a left-invariant vector field, and putting

[v, w]L = [vL, wL].

We remark that our definition of vR differs in sign from the one used in [75].

Conversely, we say that a Lie algebroid τ : E → Q is integrable whenever one can find

a Lie groupoid such that E is its associated Lie algebroid. It has been known for some

years that not all Lie algebroids are integrable. Necessary and sufficient conditions for

integrability have been given in [29].

Example 2.2. The Lie algebroid of a Lie group G is just its Lie algebra. The Lie

algebroid of the pair groupoid Q×Q is the tangent bundle TQ. �

Remark 2.3. For a given section v of τ , we have denoted the corresponding left- and

right-invariant vector fields as vL and vR, respectively. We will also use this notation for

the point-wise operation, by denoting, for vx an element of AxG and g ∈ α−1(x) ⊂ G,

the left translated vector Txlg(vx) as (vx)
L(g), and similarly the right translated vector

Tx(rg ◦ i)(vx) as (vx)
R(g). �

2.1. Lie algebroid morphisms. Consider two vector bundles τ ′ : E ′ → Q′ and

τ : E → Q, and let Φ = (Φ,Φ) be a vector bundle map from τ ′ to τ . Let θ be a section

of
∧k(E∗). Then the pullback of θ by Φ is the section Φ?θ of

∧k(E ′∗) defined as

(Φ?θ)q(v1, . . . , vk) = θΦ(q)(Φ(v1), . . . ,Φ(vk)), v1, . . . , vk ∈ E ′q.

Note that we used a “star” ? instead of an “asterisk” ∗ to denote the pullback, which

should serve as a reminder that we consider the pullback of θ by a bundle map rather

than by an arbitrary differentiable map from E ′ to E.

Now, assume that both τ and τ ′ are equipped with the structure of a Lie algebroid over

Q and Q′, respectively, and denote their respective anchor mappings by ρ and ρ′. In

this case, a vector bundle map Φ is said to be a morphism of Lie algebroids if for each

section θ of
∧k(E∗),

Φ?dEθ = dE′Φ
?θ,

where dE and dE′ are the differentials on E and E ′, respectively. In other words, Φ is

a chain map.

A more practical criterion to decide whether a given bundle map is a morphism of

Lie algebroids is given below. We say that a section φ′ of τ ′ and a section φ of τ are

Φ-related if Φ ◦ φ′ = φ ◦ Φ.

Proposition 2.4. Let τ ′ : E ′ → Q′ and τ : E → Q be Lie algebroids as in the preceding

discussion, and let Φ : E ′ → E be a fibrewise surjective vector bundle morphism. Then

Φ is a morphism of Lie algebroids if the following conditions are satisfied:
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(1) ρ ◦ Φ = TΦ ◦ ρ′;
(2) if φ′ is Φ-related with φ, and ψ′ with ψ, then [φ′, ψ′] is Φ-related with [φ, ψ].

Proof: This is proposition 1.5 in [55]. �

A final class of Lie algebroid morphisms consists of morphisms induced by Lie groupoid

morphisms. Consider Lie groupoidsG′ andG overQ′ andQ, respectively. Any groupoid

morphism Φ = (Φ,Φ) from G′ to G induces a bundle map, denoted by AΦ, from AG′

to AG. The base map of AΦ is just Φ, while the total space map is defined as follows:

AΦ(vq′) := TΦ(vq′) ∈ VΦ(q′)(α) = AΦ(q′)G.

See also theorem 1.7 in [55].

3. Prolongations of Lie groupoids and algebroids

3.1. The prolongation of a Lie groupoid over a fibration. Let G be a Lie

groupoid over a manifold Q with source and target maps α and β and consider a

fibration π : P → Q. The prolongation P πG is the Lie groupoid over P defined as

P πG = {(g; p1, p2) ∈ G× P × P : π(p1) = α(g) and β(g) = π(p2)}.

Alternatively, P πG is defined by means of the following commutative diagram:

P πG //

��

P × P
π×π

��
G

(α,β)
// Q×Q

(B.2)

It can be shown that P πG is a Lie groupoid over P , with source and target mappings

απ, βπ : P πG→ P defined as

απ(g; p1, p2) = p1 and βπ(g; p1, p2) = p2,

and with multiplication given by

(g; p1, p2)(h; p2, p3) = (gh; p1, p3).

Note that απ(h; p2, p3) = βπ(g; p1, p2) implies that α(h) = β(g). Finally, the inversion

mapping is defined as

i : (g; p1, p2) 7→ (g−1; p2, p1),

and we can regard P as a subset of P πG via the identification p 7→ (π(p); p, p).
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3.1.1. The prolongation PG. There is one particular prolongation that will play a sig-

nificant role in what follows. It is obtained by taking for the fibration π : P → Q in

(B.2) the Lie algebroid projection τ : AG→ Q to obtain

P τG ⊂ G× AG× AG

which, henceforth, we also simply denote as PG. We recall that PG consists of triples

(g; vx, wy), where g ∈ G, vx ∈ AxG, wy ∈ AyG, and x = α(g), y = β(g). It is

pointed out in [75,95] that PG is isomorphic as a vector bundle over G to the direct

sum V β ⊕ V α, where V α is the subbundle of TG consisting of α-vertical vectors (and

similarly for V β); the isomorphism Θ : PG→ V β ⊕ V α is defined by

Θ(g;uα(g), vβ(g)) = (T (rg ◦ i)(uα(g)), T lg(vβ(g))). (B.3)

It should also be remarked that PG is a vector bundle over G, and in fact, PG can

be endowed with the structure of an integrable Lie algebroid over G, where the anchor

map ρ̂ : PG→ TG is given by

ρ̂ : (g;uα(g), vβ(g)) 7→ T (rg ◦ i)(uα(g)) + T lg(vβ(g)) = (uα(g))
R(g) + (vβ(g))

L(g).

The bracket of PG is induced by the Lie algebroid structure of AG. Let φ be a section

of AG; we then define sections φ(1,0) and φ(0,1) of PG as follows:

φ(1,0)(g) = (g;φ(α(g)), 0) and φ(0,1)(g) = (g; 0, φ(β(g))).

The bracket of sections of PG is then determined by the following relations:

[φ(1,0), ψ(1,0)]PG = [φ, ψ](1,0), [φ(0,1), ψ(0,1)]PG = [φ, ψ](0,1), and [φ(1,0), ψ(0,1)]PG = 0.

For more information, see [75].

A groupoid morphism Φ : (G′, Q′)→ (G,Q) naturally induces a map PΦ : PG′ → PG,

defined as PΦ(g;u, v) = (Φ(g);AΦ(u), AΦ(v)). It is easy to see that PΦ is an algebroid

morphism.

3.2. The prolongation of a Lie algebroid over a fibration. Let τ : E → Q be

a Lie algebroid and consider a fibration π : P → Q. The prolongation P πE is the Lie

algebroid over P defined as

P πE = {(a, v) ∈ E × TP : ρ(a) = Tπ(v)},

or by the following commutative diagram as

P πE

��

// TP

Tπ
��

E ρ
// TQ

(B.4)
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We denote by π̂ : P πE → P the map defined as π̂(a, v) = πTP (v), where πTP : TP → P

is the tangent bundle projection of P . It can be shown that π̂ : P πE → P can be given

the structure of a Lie algebroid (see [55,83,95]).

3.2.1. The prolongations P τ (AG) and P τ∗(AG). Let G be a Lie groupoid over a man-

ifold Q with Lie algebroid τ : AG → Q. By taking for the fibration π underlying

diagram (B.4) the map τ , we obtain the prolongation P τ (AG). It is very useful to

think of P τ (AG) as a sort of Lie algebroid analogue of the tangent bundle to AG. In-

deed, P τ (AG) can be equipped with geometric objects, such as a Liouville section and

a vertical endomorphism, which have their counterpart in tangent bundle geometry.

Similarly, by taking for π : P → Q the dual bundle τ ∗ : A∗G → Q, we obtain the

prolongation P τ∗(AG), which is a Lie algebroid over A∗G and should be thought of as

the Lie algebroid analogue of the tangent bundle to A∗G. Just as any cotangent bundle

is equipped with a canonical one-form, there exists a canonical section

θ : A∗G→
[
P τ∗(AG)

]∗
,

defined as follows: for α ∈ A∗G and (v,Xα) ∈ (P τ∗(AG))α, we put θα(v,Xα) = α(v).

In the case that G is the pair groupoid Q×Q, we have that A∗G = T ∗Q and we obtain

the usual canonical one-form on T ∗Q.

It was shown in [55] that P τ (AG), the prolongation of the Lie algebroid AG, is isomor-

phic to A(PG), the Lie algebroid associated to the prolongation Lie groupoid PG.

3.2.2. The prolongations Pα(AG) and P β(AG). Associated to the source and target

mappings α and β of a groupoid G there are two prolongations Pα(AG) and P β(AG),

whose fibres over G are defined as follows: for each g ∈ G, put

Pα
g (AG) = {(vα(g), Xg) ∈ Aα(g)G× TgG : Tβ(vα(g)) = Tα(Xg)}

and

P β
g (AG) = {(vβ(g), Xg) ∈ Aβ(g)G× TgG : Tβ(vβ(g)) = Tβ(Xg)}.

Both of these algebroids are integrable: indeed, it follows from the general theory that

Pα(AG) is isomorphic to the Lie algebroid of the prolongation PαG, and similarly for

P β(AG).

Furthermore, we remark that there are two distinguished mappings from PG (regarded

as a Lie algebroid over G) into Pα(AG) and P β(AG), given by

AΦα : (g;uα(g), vβ(g)) 7→ (g;uα(g), T (rg ◦ i)(uα(g)) + T lg(vβ(g))) ∈ Pα(AG)

and

AΦβ : (g;uα(g), vβ(g)) 7→ (g; vβ(g), T (rg ◦ i)(uα(g)) + T lg(vβ(g))) ∈ P β(AG).

The notations AΦα and AΦβ serve as a reminder of the fact that these Lie algebroid

maps stem from morphisms between the corresponding groupoids (see [75]).



Nederlandse samenvatting

In dit proefschrift worden enkele aspecten van de differentiaalmeetkundige theorie van

klassieke veldentheorieën behandeld. In het bijzonder geven we een aanzet tot het

vinden van een antwoord op de volgende vragen:

(1) Hoe kunnen methoden uit de theorie van Liegroepöıden gebruikt worden om struc-

tuurbewarende discretisaties van klassieke veldentheorieën op te stellen?

(2) Bestaan er fysisch relevante voorbeelden van klassieke veldentheorieën met niet-

holonome bindingen?

Discrete veldentheorieën met waarden in een Liegroepöıde

Situering. De motivatie voor dit deel van het proefschrift is terug te voeren op het

werk van Marsden, Patrick en Shkoller [80], die structuurbehoudende discretisaties con-

strueerden voor klassieke veldentheorieën (zie ook [18,68]). We veralgemenen Liegroe-

pöıde-methodes uit [75] om discretisaties op te stellen van klassieke veldentheorieën met

waarden in een Liegroepöıde G. Deze Liegroepöıde wordt als gegeven verondersteld en

is afhankelijk van de probleemstelling:

• voor de triviale groepöıde Q×Q bekomen we uiteindelijk het standaardformalisme

van Marsden, Patrick en Shkoller (paragraaf 4.1 in hoofdstuk 3);

• in alle andere gevallen bekomen we nieuwe resultaten. Belangrijk is vooral het

geval dat in hoofdstuk 5 besproken wordt, waar G een Liegroep is.

Het belang van dit formalisme is tweevoudig. Allereerst werpt deze beschrijving een

nieuw licht op de meetkundige achtergrond van discrete veldentheorieën, zoals we ver-

derop zullen bespreken. Daarenboven duiken Liegroepöıden op natuurlijke wijze op

bij symmetriereductie van discrete veldentheorieën: zelfs de reductie van een “triviale”

veldentheorie met waarden in Q×Q geeft aanleiding tot een veldentheorie die waarden

aanneemt in de Atiyah-groepöıde (Q×Q)/G (met G een Liegroep), waarvoor voorheen

geen concrete beschrijving bestond.

Discrete velden. In hoofdstuk 3 stellen we een meetkundig formalisme op voor vel-

dentheorieën die waarden aannemen in een Liegroepöıde G. Naast de specificatie van

een geschikte Liegroepöıde G nemen we ook aan dat er een bepaald planair graaf (V,E)
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in R2 gegeven is, dat dienst doet als domein voor de discrete velden. Deze discrete vel-

den worden opgevat als afbeeldingen van de verzameling van bogen van dit graaf naar

de Liegroepöıde G. De specificatie van dit graaf is probleem-afhankelijk: met het oog

op numerieke integratie zou men er bijvoorbeeld voor kunnen kiezen om de dichtheid

van de elementen van V en E te laten toenemen in gebieden van R2 waar de velden

veel variëren. Uiteindelijk bekomen we zo de volgende definitie:

Definitie 1. Een discreet veld is een paar φ = (φ(0), φ(1)), waarbij φ(0) een afbeelding

is van V naar Q en φ(1) een afbeelding is van E naar G zo dat

(1) α(φ(1)(x, y)) = φ(0)(x) en β(φ(1)(x, y)) = φ(0)(y);

(2) voor elke (x, y) ∈ E hebben we dat φ(1)(y, x) = [φ(1)(x, y)]−1.

(3) voor alle x ∈ V geldt er dat φ(1)(x, x) = φ(0)(x).

Centraal in onze beschrijving is de variëteit Gk, waarvan de elementen k-tupels zijn van

samenstelbare elementen in G zodat de cyclische vermenigvuldiging een eenheid in G

oplevert:

(g1, g2, . . . , gk) ∈ Gk als (gi, gi+1) ∈ G2 (voor i = 1, . . . , k) en g1·g2 · · · gk = eα(g1),

waarbij G2 de verzameling van samenstelbare paren in G×G voorstelt. In het discrete

kader speelt de variëteit Gk de rol die door de jetbundel J1π in het continue geval

vervuld wordt.

Uit stelling 2.2 in hoofdstuk 3 kunnen we dan afleiden dat elk discreet veld φ uit te

breiden valt tot een afbeelding ϕ : V × V → G die daarenboven aan alle eigenschap-

pen voldoet van een morfisme van groepöıdes. Een alternatieve karakterisering wordt

gegeven in stelling 2.4: elk morfisme van V × V naar G kan opgevat worden als een

afbeelding van F , de vlakken van de graaf, naar Gk.

Nu induceert de meetkundige structuur van de Liegroepöıde G een aantal interessante

structuren op Gk die gebruikt kunnen worden voor discrete veldentheorie, maar ook

op zich de moeite van het bestuderen waard zijn. Over Gk bestaat er eerst en vooral

een bepaalde vectorbundel, die we met P kG noteren en gedefinieerd wordt door het

onderstaand commutatief diagram:

P kG //

��

AG× · · · × AG

��

Gk // Q× · · · ×Q

Hierbij stelt AG de Lie-algebröıde voor die geassocieerd is aan G. In het geval van

discrete mechanica (dat immers opgevat kan worden als deelgebied van discrete vel-

dentheorie) valt deze bundel samen met de prolongatie PG van G. Net zoals PG zelf

een Lie-algebröıde is, kan men aantonen dat ook P kG uitgerust kan worden met de

structuur van een Lie-algebröıde. Dit wordt aangetoond in paragraaf 2.1.2. Merk op
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dat er een aantal canonische projecties van P kG op PG bestaan (zie (3.5)); wanneer

we P kG uitrusten met de Lie-algebröıdestructuur gedefinieerd door (3.8) en PG met

de gekende structuur, dan worden deze projecties gepromoveerd tot morfismen van Lie-

algebröıdes. Deze eigenschap definieert bovendien de Lie-algebröıdestructuur op P kG
op unieke wijze.

De Lie-algebröıde P kG speelt een cruciale rol in de opbouw van de meetkundige theorie

van discrete velden. Een algemene eigenschap uit de theorie van Lie-algebröıdes leert

dat de modulen van secties van de duale bundel (hier genoteerd als P kG∗) en van

de antisymmetrische producten
∧
P kG∗ kunnen voorzien worden van een uitwendige

afgeleide

d(k) :
∧nP kG∗ →

∧n+1P kG∗.
De secties van

∧
P kG∗ spelen in deze context dus de rol van differentiaalvormen. Met

behulp van de operator d(k) kunnen we dan k Poincaré-Cartanvormen θ
(i)
L definiëren,

die secties zijn van P kG∗ met de volgende kenmerkende eigenschap:

d(k)L =
k∑
i=1

θ
(i)
L .

Hierbij is L een gegeven functie op Gk, die we aanduiden als de discrete Lagrangiaan.

Een andere blik op de Poincaré-Cartanvormen wordt geboden door de discrete Legend-

retransformaties, een verzameling van k morfismen van P kG naar een nieuwe prolon-

gatiebundel P τ∗(AG) over A∗G. Deze bundel wordt gedefinieerd in appendix B en

de duale bundel ervan is voorzien van een canonische sectie θ (zie [38]), die ruwweg

overeenkomt met de canonische 1-vorm op een coraakbundel. In stelling 3.9 wordt dan

aangetoond dat de pull-back van deze canonische sectie langsheen elk van de k discrete

Legendretransformaties precies de verzameling van Poincaré-Cartanvormen oplevert.

In paragraaf 3.2 leiden we uiteindelijk een stelsel van vergelijkingen af die de dynamica

van een discreet veld specificeren. De oplossingen van deze veldvergelijkingen zijn de

extrema van de actie S, die als volgt gedefinieerd wordt:

S(φ) =
∑

L(ψ([x])), (2.5)

waarbij de som genomen wordt over een eindige deelverzameling van F , de verzameling

van vlakken van het graaf, en ψ : F → Gk de afbeelding is geassocieerd met het

morfisme φ. Zo bekomen we de volgende stelling:

Stelling 2. Zij φ : UE → G een discreet veld gedefinieerd op een eindige deelverzameling

UE ⊂ V ×V . Dan is φ een extremum van de discrete actie (2.5) als en slechts als voor al-

le v ∈ AqG (waar q = φ(0)(xi,j)), aan de volgende discrete Euler-Lagrangevergelijkingen

voldaan is

v
(1)
[g1](L) + v

(2)
[g2](L) + v

(3)
[g3](L) + v

(4)
[g4](L) = 0. (2.6)

Hierbij zijn de elementen [gi], i = 1, . . . , 4 gedefinieerd als op figuur 3.4.
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In het geval dat G de triviale groepöıde Q×Q is, vallen deze veldvergelijkingen samen

met de differentievergelijkingen afgeleid door Marsden, Patrick en Shkoller [80]. Andere

types van discrete veldvergelijkingen worden behandeld in hoofdstuk 5.

Merk op dat de vergelijkingen (2.6) geen naiëve discretisatie zijn van een stel partiële

differentiaalvergelijkingen: ze ontstaan daarentegen door het gebruik van discrete ver-

sies van de onderliggende meetkundige structuren. In het bijzonder zijn de resulterende

vergelijkingen afkomstig van een discrete actie (in dit geval gegeven door (2.5)) en

men kan daaruit besluiten dat de oplossingen ervan voldoen aan de speciale behouds-

wet (3.18). Deze wet, waarnaar men verwijst als de wet van behoud van multisym-

plecticiteit (zie [19]), is het veldentheoretisch analogon van het symplectisch-zijn van

de veelgeroemde geometrische integratieschema’s voor klassieke mechanica. Aangezien

symplectische integratoren over het algemeen een gedrag vertonen dat kwalitatief veel

beter is dan dat van traditionele, niet-symplectische integratoren, neemt men aan dat

multisymplectische integratoren eveneens superieure resultaten zullen opleveren. Deze

verwachting werd ten dele ingelost in [80], maar een theoretische onderbouwing ont-

breekt vooralsnog.

Discrete veldentheorieën met symmetrie

Zoals reeds voorheen aangehaald werd, levert de symmetriereductie van een discrete

veldentheorie met een bepaalde symmetrie een nieuwe discrete veldentheorie op. De

“target space” van deze gereduceerde veldentheorie is zelfs in de meest eenvoudige

gevallen een niet-triviale Liegroepöıde: het gebruik van het formalisme uit hoofdstuk 3

dringt zich dus op.

In hoofdstuk 4 beschouwen we enkele algemene gevolgen van de aanwezigheid van sym-

metrie. Dit gegeven wordt vrij abstract gëınterpreteerd als het bestaan van een nieu-

we groepöıde G′ en een submersief morfisme Φ van G naar G′. Hierbij speelt G′ de

rol van “gereduceerde Liegroepöıde”. Om deze definitie wat concreter te maken, is

het aangewezen bijvoorbeeld het geval te beschouwen waarbij G de triviale groupöıde

Q×Q is en G een Liegroep die regulier werkt op Q. In dat geval werkt G ook regulier

(via de diagonale actie) op Q × Q en is het morfisme Φ gewoon de quotiëntafbeelding

Φ : Q×Q→ (Q×Q)/G.

Het eerste deel van hoofdstuk 4 is gewijd aan enkele algemene eigenschappen van een

dergelijk morfisme Φ. Op het niveau van de prolongatiebundels induceert Φ een af-

beelding Ψ van P kG naar P kG′, waarvan men kan aantonen (stelling 1.2) dat het een

morfisme van Lie-algebröıdes is. Neem dan aan dat L en L′ twee discrete Lagrangianen

zijn op respectievelijk Gk en G′k, die door pull-back gerelateerd zijn: L = Ψ?L′. In het

geval van de situatie geschetst op het eind van de vorige paragraaf wil dit gewoon zeggen

dat L G-invariant is, en dat L′ de gëınduceerde Lagrangiaan is op de quotiëntruimte.
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Zo komen we dan uiteindelijk tot de volgende reductiestelling:

Stelling 3 (Reductie). Beschouw een submersief morfisme Φ : (G,Q) → (G′, Q′). Zij

L : G3 → R een discrete Lagrangiaan op G3 en beschouw de geassocieerde Lagrangiaan

L′ = Ψ?L op G′3.

Dan is een morfisme φ : V × V → G een oplossing voor de discrete veldvergelijkingen

voor L als en slechts als het gëınduceerde morfisme Φ ◦ φ : V × V → G′ een oplossing

is voor de discrete veldvergelijkingen geassocieerd met L′.

In geval waarbij L en L′ door pull-back via Ψ gerelateerd zijn, kan men verder nog

aantonen (stelling 1.4) dat ook de Poincaré-Cartanvormen van L en L′ op dergelijke

manier met elkaar in verband staan. Hieruit kan men afleiden dat een gereduceerde

veldentheorie multisymplectisch is in het geval dat de originele veldentheorie dat ook

is. Onder reductie worden multisymplectische veldentheorieën dus omgezet in nieuwe

veldentheorieën, die eveneens multisymplectisch zijn.

In het tweede deel van hoofdstuk 4 wordt dan een ander aspect van symmetrie bespro-

ken, namelijk de aanwezigheid van behoudswetten geassocieerd met een symmetrie (de

zogenaamde stelling van Noether). We definiëren (infinitesimale) Noethersymmetrieën

als secties van AG die de Lagrangiaan invariant laten, op een aantal specifieke termen

na, die niet aan de dynamica bijdragen. Het mag geen verwondering wekken dat ook in

het discrete geval een Noethersymmetrie aanleiding geeft tot een bepaalde behoudswet,

die in dit geval echter discreet is.

De Euler-Poincarévergelijkingen. De ontwikkelingen in hoofdstuk 4 komen echter

pas tot hun volle recht in het daaropvolgende hoofdstuk, waarin de Euler-Poincaréver-

gelijkingen besproken worden. In dit hoofdstuk beschouwen we de Liegroepöıde G ×G,

waarbij G een Liegroep is, en nemen we aan dat L : G×3 → R een links-invariante

Lagrangiaan is:

L(gg1, gg2, gg3) = L(g1, g2, g3) voor alle g ∈ G en (g1, g2, g3) ∈ G×3.

In dit geval bestaat er een gereduceerde Lagrangiaan ` op de variëteit van k-gonen geas-

socieerd aan de gereduceerde groupoid (G ×G)/G (die isomorf is met G zelf). Expliciet

wordt ` gegeven door `(g−1
1 g2, g

−1
1 g3) = L(g1, g2, g3). Aangezien de quotiëntafbeelding

Φ : G × G → (G × G)/G ∼= G een surjectieve submersie is, is de reductiestelling (stel-

ling 3) toepasbaar en besluiten we dat een morfisme φ : V × V → G × G een op-

lossing is van de Euler-Lagrangevergelijkingen van L als en slechts als het morfisme

Φ ◦ φ : V × V → G een oplossing is van het gereduceerde vraagstuk. De Euler-

Lagrangevergelijkingen geassocieerd aan de gereduceerde Lagrangiaan ` worden aan-

geduid als de Euler-Poincarévergelijkingen en kunnen direct afgeleid worden door het

formalisme uit hoofdstuk 3 toe te passen op de Liegroep G (opgevat als Liegroepöıde).
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Stelling 4. Zij L een G-invariante Lagrangiaan op G×3 en beschouw de gereduceerde

Lagrangiaan `. Beschouw een discreet veld φ : V ×V → G×G en zij ϕ : V ×V → G het

gereduceerde veld gedefinieerd als ϕ = Φ◦φ. Dan zijn de volgende uitspraken equivalent:

(a) φ is een oplossing van de Euler-Lagrangevergelijkingen voor de Lagrangiaan L;

(b) φ is een extremum van de actie S voor willekeurige variaties;

(c) het gereduceerde morfisme ϕ is een oplossing van de discrete Euler-Poincaréver-

gelijkingen: [(
R∗ui,jd`(·, vi,j)

)
e
−
(
L∗ui−1,j

d`(·, vi−1,j)
)
e

]
+[(

R∗vi,jd`(ui,j, ·)
)
e
−
(
L∗vi,j−1

d`(ui,j−1, ·)
)
e

]
= 0;

(2.7)

(d) het gereduceerde morfisme ϕ is een extremum van de gereduceerde actie, voor va-

riaties van de volgende vorm:

δui,j = TRui,j(θi,j+1)− TLui,j(θi,j) ∈ Tui,jG (2.8)

en

δvi,j = TRvi,j(θi,j+1)− TLvi,j(θi,j) ∈ Tvi,jG, (2.9)

waarbij θi,j = TLφ−1
i,j

(δφi,j) ∈ g.

Merk op dat we, in tegenstelling tot de situatie voor mechanische systemen, niet

näıefweg kunnen zeggen dat er een bijectief verband bestaat tussen oplossingen van

het gereduceerde en het ongereduceerde vraagstuk. Niet alle oplossingen van het gere-

duceerde vraagstuk kunnen immers geschreven worden in de vorm ϕ ≡ Φ◦φ. De vraag

stelt zich dus wanneer een oplossing van het gereduceerde vraagstuk afkomstig is van

een oplossing van het oorspronkelijke probleem.

Dit reconstructieprobleem kent een eenvoudige oplossing wanneer we discrete velden

vanuit een nieuwe hoek bekijken. In hoofdstuk 5 tonen we aan dat discrete velden die

waarden aannemen in de Liegroep G opgevat kunnen worden als discrete G-connecties

(definitie 1.5), een concept gekend vanuit de studie van roosterijktheorieën1 (zie [4,51])

en onafhankelijk daarvan bestudeerd door Novikov [88].

Stelling 5 (Reconstructie). Zij ϕ : E → G een oplossing van de Euler-Poincaréverge-

lijkingen. Dan bestaat er een oplossing φ : V → G van de oorspronkelijke veldvergelij-

kingen als en slechts als ϕ, opgevat als discrete G-connectie, vlak is. In dat geval is φ

uniek op de keuze van een element van G na.

We eindigen hoofdstuk 5 met een uitbreiding van de vergelijkingen van Moser en Veselov

(zie [85]). Deze nieuwe discrete vergelijkingen beschrijven de dynamica van een discrete

harmonische afbeelding met waarden in een half-enkelvoudige Liegroep G.

1Net zoals een ijkveld voor de ijkgroep G niets anders is dan een connectie op een hoofdvezelbundel
met structuurgroep G, is een ijkveld op een rooster op natuurlijke wijze een discrete G-connectie.
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Klassieke veldentheorieën met niet-holonome bindingen

Na de behandeling van discrete veldentheorieën met waarden in een Liegroepöıde ko-

men we dan tot het tweede deel van het proefschrift, waarin klassieke veldentheorieën

bestudeerd worden die onderhevig zijn aan niet-holonome bindingen.

Situering. De studie van mechanische systemen met niet-holonome bindingen gaat

terug op het werk van Hertz [54] en zijn tijdgenoten (zie ook het overzichtsartikel

[90] van Poincaré). Na het werk van deze pioniers leefde de studie van niet-holonome

systemen vooral in de Sovjetunie verder (zie [87]). Met de hernieuwde belangstelling

voor mechanica vanuit differentiaalmeetkundige hoek sinds de jaren 80 van de vorige

eeuw kende de theorie van niet-holonome systemen echter een sterke opleving, die tot

op vandaag voortduurt en waarvan de recente werken [12,26] getuigen.

Voor klassieke veldentheorieën is de situatie enigszins anders. Vanuit wiskundig stand-

punt kan men een niet-holonome binding eenvoudig definiëren als een binding die af-

hangt van de afgeleiden van de velden, en die niet integreerbaar is. Een dergelijke

binding kan meetkundig voorgesteld worden als de specificatie van een deelvariëteit C
van de jetbundel J1π. Dit was het vertrekpunt voor een aantal theoretische studies

(zie [10, 66]) waarin een differentiaalmeetkundig kader geschetst wordt voor klassieke

veldentheorieën met niet-holonome bindingen. Ondanks deze elegante beschrijvingen

ontbrak een overtuigend voorbeeld van een dergelijke veldentheorie vooralsnog.

In dit proefschrift wordt allereerst de theoretische beschrijving van niet-holonome vel-

dentheorieën verder uitgediept. In de latere hoofdstukken wordt dan een fysisch voor-

beeld geconstrueerd van een continuum met een niet-holonome binding, de zogenaamde

niet-holonome Cosseratstaaf. Deze ontwikkelingen worden hierna besproken.

Geometrische behandeling. In hoofstuk 6 vatten we de bespreking van veldentheo-

rieën met niet-holonome bindingen aan, uitgaande van de volgende gegevens:

(1) een reguliere Lagrangiaan L : J1π → R;

(2) een bindingsoppervlak C, een deelvariëteit van J1π zodanig dat de restrictie van

π1,0 : J1π → Y tot C een deelbundel van J1π bepaalt;

(3) een bundel van (n+ 1)-vormen F , gedefinieerd langs C, die we de bundel van reac-

tiekrachten noemen. Hierbij dienen de elementen van F aan twee eigenschappen

te voldoen:

(a) Φ ∈ F is n-horizontaal, in de zin dat de contractie van Φ met elke twee

π1-verticale vectoren nul geeft;

(b) Φ is 1-contact : voor elke sectie φ van π geldt dat (j1φ)∗Φ = 0.

Daarnaast nemen we aan dat de rang van F gelijk is aan de codimensie van C, die we

met k noteren. Lokaal wordt een bindingsoppervlak gegeven door het nul worden van
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k functies ϕα op J1π: een 1-jet j1
xφ is dus een element van C als en slechts als lokaal

geldt dat

ϕα
(
xµ, φa(x),

∂φa

∂xµ
(x)

)
= 0.

Let op het optreden van de afgeleiden van de velden φa met betrekking tot de variabelen

xµ op de basisvariëteit (de onafhankelijke veranderlijken).

De bundel van reactiekrachten F behoeft wat meer uitleg. In het kader van veldentheo-

rie kan een kracht gemodelleerd worden als een (n+1)-vorm Φ op J1π. Een variatie van

een veld φ kan immers gezien worden als een verticaal vectorveld V gedefinieerd langs

het beeld van j1φ, en ruwweg gesproken bekomt men dan de globale arbeid op tijdstip

t door de n-vorm V Φ te integreren langs het beeld van j1φ, gerestringeerd tot het

hyperoppervlak van constante tijd t in X. Om een zinvol onderscheid te kunnen maken

tussen tijdachtige en ruimtelijke variabelen op X is het Cauchy formalisme (paragraaf 3

in hoofdstuk 1) vereist.

De niet-holonome projector. De bijzondere voorwaarden die aan F opgelegd worden,

impliceren het bestaan van een k-dimensionale distributie D op J1π (gedefinieerd langs-

heen C), die als volgt gedefinieerd wordt:

X ∈ D als en slechts als iXΩL ∈ F,

waarbij ΩL de multisymplectische vorm geassocieerd aan L voorstelt. In tegenstelling

tot in het symplectisch geval is het over het algemeen niet mogelijk om voor een gegeven

(n + 1)-vorm Φ een vectorveld X te vinden zodat X ΩL = Φ. Omwille van de n-

horizontaliteit en de 1-contacteigenschap is dit echter wel het geval voor elementen van

F .

Onder bepaalde voorwaarden kunnen we dan de raakbundel aan J1π in punten van C
schrijven als de volgende directe som:

TγJ
1π = D(γ)⊕ TγC voor alle γ ∈ C.

Noteren we nu met P de projectie van TJ1π op TC, en zij h de horizontale projector

van een connectie op π1, dan kunnen we aantonen dat de samengestelde afbeelding P◦h
opnieuw een connectie bepaalt, maar ditmaal op (π1)|C. Meerbepaald bekomen we zo

de volgende hulpstelling:

Hulpstelling 6. De samenstelling P ◦ h|TCJ1π : TCJ1π → TC (⊂ TCJ1π), v 7→ P(h(v))

is een projectie-afbeelding, waarvan de restrictie hP tot TC een connectie op (π1)|C :

C → X induceert. Bovendien is deze connectie semi-holonoom als h semi-holonoom is.

De niet-holonome De Donder-Weylvergelijking. Het uiteindelijk hoofdresultaat kan dan

als volgt geformuleerd worden. Zij h een oplossing van de vrije De Donder-Weylver-

gelijking (1.17): dan is P ◦ h een oplossing van de De Donder-Weylvergelijking met

bindingen gespecificeerd door C en F .
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Stelling 7. Beschouw een niet-holonome veldentheorie gespecificeerd door een Lagran-

giaan L, een bindingsoppervlak C en een bundel van reactiekrachten F . Neem aan dat

de compatibiliteitsvoorwaarde (6.10) geldt. Zij h een oplossing van de vrije De Donder-

Weylvergelijking (1.17) en zij P de niet-holonome projectie-afbeelding.

Dan bepaalt de projectie P ◦ h een oplossing van de Donder-Weylvergelijking (6.9)

met bindingen. Daarenboven is P ◦ h de horizontale projector van een semi-holonome

connection op (π1)|C : C → X.

Het Cauchy-formalisme. We besluiten hoofdstuk 6 met een blik op het Cauchy-forma-

lisme. In het geval er geen bindingen aanwezig zijn, induceert een oplossing van de

vrije De Donder-Weylvergelijking een tweede-orde vectorveld op de ruimte van Cauchy-

data dat voldoet aan de bewegingsvergelijkingen voor een tijdsafhankelijk mechanisch

systeem. Dit is een klassiek resultaat uit de Cauchy-theorie, dat geometrisch behandeld

werd in [11, 49, 91] en hier uitgebreid wordt naar het geval waar er niet-holonome

bindingen aanwezig zijn.

Allereerst tonen we aan dat C en F corresponderende oneindigdimensionale objecten C̃
en F̃ induceren op de ruimte van Cauchy-data. Daarna stellen we de vergelijkingen op

voor een mechanisch systeem op de ruimte van Cauchy-data met niet-holonome bindin-

gen gespecificeerd door C̃ en F̃ , en bewijzen we dat een oplossing van het niet-holonoom

De Donder-Weylprobleem een tweede-orde vectorveld induceert dat een oplossing is van

deze vergelijkingen.

Symmetrie en het niet-holonome momentlemma. Zij G een Liegroep die op de

totale variëteit (de ruimte van afhankelijke veranderlijken) werkt en waarvan de actie

de Lagrangiaan invariant laat (zodat G een symmetriegroep is). De gekende stelling

van Noether leert dan dat er D behoudswetten bestaan geassocieerd aan die symmetrie-

actie, waarbij D de dimensie is van G. Deze behoudswetten kunnen compact neerge-

schreven worden met behulp van de zogenaamde momentafbeelding (Eng. momentum

map), een g∗-waardige n-vorm J op J1π gedefinieerd als

〈J, ξ〉 := Jξ, waarbij Jξ := ξJ1π ΘL,

waarbij ξJ1π de infinitesimale generator is, geassocieerd aan een element ξ van g. Voor

elke oplossing φ van de Euler-Lagrangevergelijkingen geldt dan de volgende behoudswet:

d(j1φ)∗Jξ = 0 voor alle ξ ∈ g.

Wanneer een veldentheorie onderworpen is aan niet-holonome bindingen, is de stelling

van Noether niet langer geldig. In plaats daarvan heeft men voor niet-holonome me-

chanische systemen het zogenaamde niet-holonome momentlemma (Eng. momentum

lemma) dat de evolutie beschrijft van de behouden grootheden onder de niet-holonome

stroming. Dit lemma werd bewezen in [13, 20] en de veralgemening ervan naar de

context van veldentheorie vormt het onderwerp van hoofdstuk 7.
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Nemen we aan dat G een Liegroep is die de data van het niet-holonome probleem (L,

C, en F ) invariant laat, dan geldt de volgende stelling.

Stelling 8 (Niet-holonome momentlemma). Zij h de horizontale projector van een con-

nectie op π1 die de oplossing is van de niet-holonome De Donder-Weylvergelijking. Dan

voldoet de niet-holonome momentafbeelding aan de volgende vergelijking:

dhJ
n.h.
ξ̄ = Lξ̃(Lη) langs C. (2.10)

Hierbij is de niet-holonome momentafbeelding Jn.h.
ξ̄

de restrictie van de gewone moment-

afbeelding tot de vectoren ξ in g waarvan de contractie van de infinitesimale generator

ξ̃ met de elementen van F nul oplevert. Indien het rechterlid van (2.10) nul wordt,

hebben we te maken met een echte behoudswet.

Bij overgang naar Cauchy-formalisme induceert de niet-holonome momentafbeelding

een momentafbeelding (in de zin van symplectische meetkunde) die voldoet aan een

niet-holonoom momentlemma (in de zin van [13]) op de ruimte van Cauchy data. Deze

gëınduceerde momentafbeelding is in feite niets anders dan de vorm Jn.h.
ξ̄

, gëıntegreerd

over een hyperoppervlak van constante tijd.

Niet-covariante niet-holonome bindingen

In het laatste deel van dit proefschrift construeren we dan een voorbeeld van een niet-

holonome veldentheorie. In hoofdstuk 6 hadden we reeds aangetoond dat het niet-

holonome formalisme de correcte veldvergelijkingen oplevert voor de dynamica van een

onsamendrukbare vloeistof, alhoewel men op grond van de traditionele aanpak in feite

zou verwachten dat dat niet zo is.

Op dit thema komen we terug in hoofdstuk 8, waar we een klasse van bindingen identi-

ficeren die op het eerste zicht niet-holonoom zijn, maar toch behandeld moeten worden

met het vakonoom formalisme (zie hieronder). Het fundamentele inzicht is dat deze

bindingen niet afhangen van de tijdsafgeleiden van de velden, en indien we dan de over-

gang maken naar het Cauchy-formalisme blijkt dat deze bindingen holonome bindingen

induceren op de ruimte van Cauchy-data. Het Cauchy-formalisme is dus van wezenlijk

belang in de classificatie van mogelijke bindingen.

Deze opmerking zal van wezenlijk belang blijken te zijn bij onze behandeling van niet-

covariante niet-holonome bindingen in hoofdstuk 9.

Het Skinner-Ruskformalisme. In het tweede deel van hoofdstuk 8 beschouwen we

dan het Skinner-Ruskformalisme voor veldentheorieën met bindingen. Het voordeel van

dit formalisme is dat het een eenvoudige differentiaalmeetkundige vergelijking toelaat

tussen twee verschillende, inequivalente modellen voor de dynamica, zijnde:



Niet-covariante niet-holonome bindingen 173

(1) de niet-holonome methode van hoofdstuk 6;

(2) de vakonome methode, waarbij de veldvergelijkingen afgeleid worden door de ac-

tiefunctionaal te beperken tot de ruimte van velden die voldoen aan de bindingen.

De aanpak van Skinner en Rusk maakt gebruik van de productbundel J1π ×
∧n+1

2 Y ,

waarbij
∧n+1

2 Y de bundel van n-horizontale (n + 1)-vormen (zie boven) op Y is. Op

deze bundel kan men een De Donder-Weylvergelijking formuleren met behulp van een

zekere pre-multisymplectische vorm. Het oplossen van deze vergelijking komt dan neer

op het toepassen van een algoritme zoals dat van Gotay (zie [32,43]).

Ook de vakonome en de niet-holonome methode kunnen in dit formalisme ingepast

worden. In hoofdstuk 8 beschouwen we enkel het geval waarbij de bindingen opgevat

kunnen worden als de horizontale deelruimte van een Ehresmann-connectie op een be-

paalde fibratie. Uiteindelijk tonen we dan aan dat de vakonome en de niet-holonome

dynamica equivalent zijn als en slechts als de kromming van deze connectie verdwijnt.

Dit is op zijn beurt equivalent met het integreerbaar zijn van de bindingen.

De niet-holonome Cosseratstaaf. In het laatste hoofdstuk komen alle voorgaande

thema’s samen bij de constructie van een fysisch voorbeeld van een veldentheorie met

niet-holonome bindingen.

Dit voorbeeld dient gesitueerd te worden in de theorie van de Cosserat-media: we

beschouwen een Cosseratstaaf, wat erop neerkomt dat we de dynamica van een lange

elastische staaf bestuderen door benaderend aan te nemen dat de transversale beweging

van de staaf Euclidisch is. De staaf kan dus met andere woorden enkel buigen of

torsioneel vervormd worden en de dynamica is volledig vastgelegd door het specificeren

van de middellijn en van een basis van vectorvelden langs die middellijn (zie figuur 9.1

op pagina 126).

De niet-holonome bindingen duiken op wanneer we zo’n staaf op een vast horizontaal

vlak laten bewegen dat voldoende ruw is, zodat de beweging van de staaf van het type

“rollen zonder glijden” is. Om dit probleem te analyseren, is het aangewezen om de

Cosseratstaaf te interpreteren als een continuum-versie van de verticaal rollende schijf,

een standaardvoorbeeld van een niet-holonoom mechanisch systeem (zie [13]). Op basis

van dit inzicht tonen we aan dat de bundel van reactiekrachten F voor dit systeem ook

niet-covariant is: F kan uit C afgeleid worden door te stellen dat

F = S∗n.c.(T
◦C),

waarbij Sn.c. het zogenaamde niet-covariante verticaal endomorfisme is, gedefinieerd in

paragraaf 2.1. Deze vectorwaardige n-vorm heeft de volgende coördinaatgedaante:

Sn.c. = (dya − yaµdxµ) ∧ dnx0 ⊗
∂

∂ya0
.
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Wanneer we deze uitdrukking vergelijkingen met het gewone verticaal endormorfisme

(1.2), zien we dat de tijdsafgeleiden hier een bevoorrechte rol spelen, wat het adjectief

“niet-covariant” verklaart. In het licht van de ontwikkelingen in hoofdstuk 8 kunnen

we aantonen dat deze niet-holonome bindingen ook bij overgang naar het Cauchy-

formalisme niet-holonoom blijven.

Veldvergelijkingen. De veldvergelijkingen voor een dergelijke niet-holonome veldenthe-

orie kunnen bekomen worden door middel van het formalisme in hoofdstuk 6. In dit

hoofdstuk nemen we echter een alternatieve route en leiden we de veldvergelijkingen

direct af door de actie te variëren met betrekking tot toelaatbare variaties (variaties die

aan de bindingen voldoen). Zo bekomen we de volgende stelling:

Stelling 9. Zij φ een sectie van π. Indien Im j1φ ⊂ C, dan zijn de volgende beweringen

equivalent:

(a) φ is een extremum van de actie (1.14) onder toelaatbare variaties;

(b) φ is een oplossing van de niet-holonome Euler-Lagrangevergelijkingen:[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λαA

α
a (j1φ) and ϕα(j1φ) = 0.

(c) voor alle vectorvelden W op J1π zodat (j1φ)∗(W Φ) = 0 voor alle Φ ∈ F geldt

(j1φ)∗(W ΩL) = 0.

Voor het geval van de niet-holonome staaf zijn de veldvergelijkingen gegeven door:
ρẍ+Kx′′′′ = λ

ρÿ +Ky′′′′ = µ

αθ̈ − βθ′′ = R(λy′ − µx′),
waarbij λ en µ Lagrange-multiplicatoren zijn, geassocieerd aan de niet-holonome bin-

dingen:

ẋ+Rθ̇y′ = 0 en ẏ −Rθ̇x′ = 0.

Symmetrie. De niet-holonome Cosseratstaaf is invariant onder de actie van een aantal

symmetriegroepen. Allereerst is er de groep van translaties in de tijd, waarvan de

symmetriegenerator het vectorveld ∂
∂t

is. Dit is echter geen verticaal vectorveld en dus

is het niet-holonome momentlemma van hoofdstuk 7 niet toepasbaar. Aan de hand van

de bewegingsvergelijkingen kunnen we echter direct aantonen dat er met deze symmetrie

toch een behoudswet geassocieerd is, waaruit we na integratie kunnen afleiden dat de

globale energie behouden is, zoals verwacht.

In het geval dat de Cosseratstaaf niet onderworpen is aan niet-holonome bindingen,

kan men gemakkelijk aantonen dat de dynamica eveneens invariant is onder de actie

van de Euclidische groep SE(2). De behoudswetten geassocieerd met de actie van

dit semidirect product stemmen (na integratie) overeen met behoud van impuls- en
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draaimoment. Wanneer de niet-holonome bindingen in rekening gebracht worden, blijkt

dat enkel de R2-deelgroep van SE(2) corresponderend met translaties een niet-holonome

symmetrie-actie bepaalt. Op deze actie is het niet-holonome momentlemma wel van

toepassing en uiteindelijk bekomen we zo de volgende behoudswet:

Ry′(ρẍ+Kx′′′′)−Rx′(ρÿ +Ky′′′′) = αθ̈ − βθ′′.

Numerieke integratie. Aangezien de veldvergelijkingen van de niet-holonome Cosserat-

staaf naar alle waarschijnlijkheid niet integreerbaar zijn, construeren we in paragraaf 4

van hoofdstuk 9 een numeriek integratieschema voor de dynamica. Hiertoe gebruiken

we de inzichten uit hoofdstukken 2 en 3 om een discrete versie van het principe van

d’Alembert op te stellen.

Voor de Cosseratstaaf leidt dit principe tot een expliciete, tweede-orde geometrische in-

tegrator die de bindingen exact bewaart. Naast het behoud van de bindingen vertoont

deze integrator ook andere interessante eigenschappen: net zoals bij symplectische in-

tegratoren is de energie weliswaar niet exact behouden, maar is de numerieke fout op

de energie daarentegen wel begrensd.
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